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This thesis has two parts. The first is a study of Fourier frames. We follow the

development of the theory, beginning with its classical roots in non-uniform sampling

in Paley-Wiener Spaces, to its current state, the study of the spectral properties of

finite measures on locally compact abelian groups. The aim of our study is to classify

measures by their spectral properties. To this end, we extend a law of pure type and

the classification of compactly supported, absolutely continuous spectral measures

to the setting of locally compact abelian groups, using the generalization of Beurling

density established by Gröchenig, Kutyniok, and Seip.

We also aim to understand the relationship between the geometry of the sup-

porting set of a measure and the spectral properties it exhibits. To this end, we

propose a method of constructing Bessel spectra for the middle-third Cantor mea-

sure.

In the second part, we study extensions of the Laplacian Eigenmaps algorithm

and their uses in hyperspectral image analysis. In particular, we show that there is a



natural way of including spatial information in the analysis that improves classifica-

tion results. We also provide evidence supporting the use of Schrödinger Eigenmaps

as a semisupervised tool for feature extraction. Finally, we show that Schrödinger

Eigenmaps provides a platform for fusing Laplacian Eigenmaps with other clustering

techniques, such as kmeans clustering.
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Chapter 1

Introduction

1.1 Background

Through analogy and generalization, the term spectrum has evolved into its

own spectrum of mathematical meaning. Ambiguous words have their benefits,

however, as they provide enough wiggle room to unite distinct ideas under a common

theme. Case in point, the thesis in hand.

We use spectrum in the manner that Physics intended, as a set of observable

or measurable quantities that provide clues as to the structure and composition of a

system. In both parts, a spectrum will define a sequence of functions in the Hilbert

space of square integrable functions with respect to some measure. We will study

the relationship between such spectra and the geometry of the underlying space on

which the functions are defined.

1.1.1 Fourier Analysis on Locally Compact Abelian Groups

Part I takes place on locally compact abelian groups (LCAGs). This is a

classical area of mathematics and hence there are a number of excellent treatises

on the subject. We used the following as resources for the necessary background

material [25, 49, 50].

Definition 1.1.1 (Dual Group). Let G be a LCAG. Continuous homomorphisms
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mapping G to C of modulus 1 are called characters. The set of characters form a

group, Γ, called the dual group of G. For each γ ∈ Γ, we write the character it is

associated with as eγ(x). When G = Rd, Γ is isomorphic to Rd, and we will use the

following normalization for the characters:

eγ(x) = e2πi〈γ,x〉.

Endowed with the weak topology induced by G, Γ is a LCAG. The Pontryagin

duality theorem tells us that duality is symmetric, that is, Γ is the dual of G if and

only if G is the dual of Γ.

Definition 1.1.2 (Haar Measure). Each G admits a family of nontrivial, translation

invariant, Borel regular measures. Such measures are called Haar measures and are

unique up to a multiplicative constant. We will denote Haar measures on G by mG

and Haar measures on Γ by µΓ. When G = Rd, the Lebesgue measure is a Haar

measure and we will denote it by m.

We will occasionally use the following notation for the integration of Borel

measurable functions f on G and φ on Γ:

mG(f) =

∫
G

f(x)dx, µΓ(φ) =

∫
Γ

φ(γ)dγ.

Definition 1.1.3 (Fourier Transform). The Fourier transform of a function f ∈

L1(G) is given by

f̂(γ) =

∫
G

f(x)eγ(x)dx.

Given a Haar measure on either G or Γ, a dual Haar measure can be chosen

so that the Inversion Theorem holds.
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Theorem 1.1.1 (Inversion Theorem). If f ∈ L1(G) and f̂ ∈ L1(Γ),

f(x) =

∫
Γ

f̂(γ)ex(γ)dγ,

for almost every x ∈ G.

When the Inversion Theorem is satisfied, it can be used to show that there is

a nice extension of the Fourier transform from L1 ∩ L2(G) to all of L2(G).

Theorem 1.1.2 (Plancherel’s Theorem). There is a unique extension of the Fourier

transform from L1 ∩ L2(G) to an isometry mapping L2(G) onto L2(Γ).

We will use the same notation, f̂ , for the Fourier transform of a function

f ∈ L2(G).

1.1.2 Frames and Sampling

Frames, introduced by Duffin and Schaeffer in [12], provide a natural gener-

alization of orthonormal bases in Hilbert spaces. Christensen’s book [9] provides a

good overview of basic frame theory and Young’s book [54] is an excellent introduc-

tion to Fourier frames and related topics.

Frames provide a generalization of orthonormal bases by relaxing Parseval’s

identity: ∑
|〈x, h〉|2 = ‖x‖2.

Definition 1.1.4 (Frames). Let H be a Hilbert space (finite or infinite dimensional).

A set F = {fj : j ∈ J} is a frame for H if ∃A,B > 0 such that ∀h ∈ H,

A‖h‖2 ≤
∑
j∈J

|〈h, fj〉|2 ≤ B‖h‖2. (1.1)
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The tightest bounds satisfying (1.1) are called the lower and upper frame bounds

for F . The upper bound is also called the Bessel bound. A set F is called a Bessel

sequence if the Bessel bound is satisfied.

While frames are computationally more challenging than orthonormal bases,

the relaxation of Parseval’s identity has the advantage of allowing redundancy. As

a result, frames provide a degree of robustness and numerical stability, necessary for

many applications, that orthonormal bases do not have.

Definition 1.1.5 (Frame Operators). Associated with each frame is the frame op-

erator

F : H→ H, F(h) =
∑
j∈J

〈h, fj〉fj (1.2)

The frame operator is bounded, self-adjoint, positive and invertible. Moreover,

F−1(F ) is also a frame, called the dual frame, with frame bounds B−1 and A−1. Each

element of the Hilbert space can be expanded in terms of the frame and the dual

frame.

Theorem 1.1.3 (Frame Expansion). Let h ∈ H. Then we have

h =
∑
j∈J

〈h,F−1fj〉fj =
∑
j∈J

〈h, fj〉F−1fj. (1.3)

In general, the coefficients appearing in (1.3) are not unique. When the ex-

pansion is unique, i.e. when the frame is a basis, we say that F is a Riesz basis.

Definition 1.1.6 (Fourier Frames). Let M1(Γ) be the the space of Borel probability

measures defined on Γ. For µ ∈M1(Γ), we consider H = L2(µ), the space of square
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integrable functions with respect to µ. When µ is the normalized restriction of Haar

measure to a set Ω of finite measure, we will simply write L2(Ω).

A Fourier frame is a sequence of characters which form a frame for L2(µ). We

will typically write such sequences as

E(S) = {es(γ) : s ∈ S ⊂ G}.

If E(S) is a

• Bessel sequence, we say that S is a Bessel spectrum.

• Fourier frame, we say that S is a frame spectrum and µ is a spectral measure.

• Riesz basis, we say that S is a Riesz spectrum and µ is a Riesz spectral measure.

• Fourier basis, i.e. orthonormal basis, we say that S is a Fourier spectrum and

µ is a Fourier measure.

If µ is Haar measure restricted to some set Ω, we say Ω has these properties and

replace measure in the terms above with set.

Our definition of a spectral measure differs from that found in the literature.

Typically, the term spectral measure is reserved for a measure that simply admits

a Fourier basis. We are interested in studying Fourier frames in general, however,

and we found it more convenient to use the term to refer to this broader class of

measures.

Fourier frames arise naturally in sampling theory for spaces of bandlimited

functions.
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Definition 1.1.7 (Paley-Wiener Spaces). Let f ∈ L2(G). We say that f is Ω-

bandlimited if supp(f̂) ⊂ Ω;

PWΩ = {f ∈ L2(Ω) : supp(f̂) ⊂ Ω}

is the space of Ω-bandlimited functions. These spaces are also often referred to as

Paley-Wiener spaces because of the work done by Paley and Wiener in the setting

where Ω is an interval in R [46].

The Classical Sampling Theorem states that if a function is bandlimited to an

interval, then it is completely determined by its sampled values, taken uniformly at

a rate greater than or equal to its bandwidth, i.e. the length of the interval. Fourier

frames provide a generalization of the Classical Sampling Theorem to non-uniform

sampling.

1.1.3 Iterated Function Systems

Definition 1.1.8 (Iterated Function System). An iterated function system (IFS)

Φ = {φ1, . . . , φN}

is a collection of contraction mappings on a complete metric space X.

Definition 1.1.9 (IFS Operators). An iterated function system induces a mapping

on the power set of X, P(X), given by

Y ∈ P (X) 7→ Φ(Y ) =
N⋃
i=1

Yi

Yi = φi(Y ). (1.4)
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This mapping is called the Hutchinson operator. A set is said to be invariant with

respect to Φ if

Y = Φ(Y ) =
N⋃
i=1

Yi.

Iterated function systems also induce a mapping on M(X). For µ ∈ M(X),

the push forward of µ by φi ∈ Φ is given by

φi(µ)(Y ) = µ(φ−1
i (Y )). (1.5)

Let c ∈ RN be a probability vector ; that is, for 1 ≤ i ≤ N , ci > 0 and

N∑
i=1

ci = 1.

For each Φ and c, let Φc : M1(X)→M1(X) be given by

Φc(µ) =
N∑
i=1

ciµi.

A measure is said to be invariant with respect to Φc if

µ = Φc(µ) =
N∑
i=1

ciµi.

The interest in iterated function systems lies in the study of their invariants.

In [26], Hutchinson showed that each IFS has a unique compact invariant set and

a unique invariant measure. In particular, iterated function systems can be used to

create measures supported by sets with a fractal-like structure.

An IFS of interest to us will be

Φ = {1

3
x,

1

3
(x+ 2)};

Φ produces the middle-third Cantor set as an invariant. The invariant measure

supported by the middle-third Cantor set is called the middle-third Cantor measure.

7



1.1.4 Laplacian Eigenmaps

Part II of the thesis focuses on the application of Laplacian Eigenmaps to the

problem of material classification in hyperspectral images.

Laplacian Eigenmaps (LE) was proposed as a tool for dimension reduction

and feature extraction in [1]. It is motivated largely by the theoretical connections

between the eigenvalues of the Laplacian and the geometric properties of the system

it is acting on provided by spectral graph theory and spectral geometry.

Definition 1.1.10 (Graph Laplacian). Given a graph, let G be the adjacency matrix

for the graph. That is, G(i, j) = 1 if there is an edge connecting the i-th and j-th

nodes, and G(i, j) = 0 otherwise. A weight matrix for G is an assignment of positive

weights to the edges of G. That is, W (i, j) > 0 if G(i, j) = 1 and is 0 otherwise. The

degree matrix, D, for W is the diagonal matrix storing the total amount of weight

present at each node:

D(i) =
∑
j

W (i, j).

The weighted graph Laplacian is given by

L = D −W.

Definition 1.1.11 (LE Algorithm). The algorithm for Laplacian Eigenmaps con-

sists of three steps:

1. Construct a nearest neighbor graph for the given dataset.

2. Compute a weighted graph Laplacian.

3. Solve a generalized eigenvalue problem.

8



1.2 Outline of Results

In Section 2.1, we prove an oversampled version of the Classical Sampling

Theorem in the setting of locally compact abelian groups. When G = Rd, we show

that oversampling allows smooth kernels to be used in the sampling reconstruction

formula. In Section 2.2, we introduce the theory of non-uniform sampling in LCAGs.

In particular, we make note of the extension of Landau’s density criterion for sam-

pling [37] to compactly generated LCAGs [22]. We prove that the classical stability

theorems for sampling in PWΩ, Ω ⊂ Rd, can be extended to sampling in compactly

generated LCAGs.

In Section 3.1, we introduce the main objectives of our general research pro-

gram:

• Characterize measures of each spectral type.

• Given µ ∈M1(Γ), provide a complete characterization of its spectra.

Using the results from Section 2.2, we extend to compactly generated LCAGs the

recent work in [24], which shows that µ ∈ M1(Rd) is spectral only if it is dis-

crete, absolutely continuous, or singularly continuous. We also extend to compactly

generated LCAGs the complete characterization, provided in [36], of compactly sup-

ported, absolutely continuous spectral measures.

In Section 3.2, we provide a simple patch to an apparent gap in Hutchinson’s

proof for invariant measures, noted, for example, in [34]. We show that, without loss

of generality, it can be assumed we are working in a situation where his proof is cor-

rect. We also introduce Cantor measures and show that three different constructions
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of Cantor measures:

• as invariants of iterated function systems,

• as the distributional derivative of the Cantor-Lebesgue function on a perfect

homogeneous set, and

• as the Haar measure on a totally disconnected group,

overlap nontrivially. In particular, they provide three equivalent constructions of

the middle-third Cantor measure.

In Section 3.3, we examine the spectral properties of the middle-third Cantor

measure. Known to lie outside the class of Fourier measures, it is a significant open

problem as to whether the middle-third Cantor measure admits a Fourier frame.

We present a simple, in terms of the theory involved, viable approach towards con-

structing Bessel spectra for the middle-third Cantor measure. The idea is a natural

one and was motivated by the construction of the Cantor set itself. Hence, it is

unsurprising that it is not unique. The work in this section was done independently,

however, it overlaps with a recent paper of Dutkay, Weber, and Han [13].

In Section 4.1, we provide a brief overview of the theory for Laplacian Eigen-

maps. In Section 4.2, we present two examples of its use in image analysis. The first

provides the details of a research project, born out of a collaboration with the Naval

Surface Warfare Center, Panama City, in which we used Laplacian Eigenmaps in the

analysis of sonar data in an effort to determine the contents of a barrel on the ocean

floor. The second is an example of its use in the analysis of hyperspectral images.

10



The latter example provides a basis of comparison for the methods introduced in

Chapter 5.

In Section 5.1, we describe a natural way in which spatial information can be

included in the analysis of hyperspectral images via Laplacian Eigenmaps, signif-

icantly improving the accuracy of the classification of materials in the image. In

Section 5.2, we introduce Schroedinger Eigenmaps (SE), a generalization of Lapla-

cian Eigenmaps, presented by Czaja and Ehler in [11]. We provide a proof of

concept that SE can be used as a semi-supervised learning tool for feature extrac-

tion in hyperspectral images. We also show that Schroedinger Eigenmaps provides

an interesting platform in which Laplacian Eigenmaps can be fused with clustering

techniques, such as Kmeans Clustering. This fusion of methods yields a significant

improvement in classification accuracy on a dataset where Laplacian Eigenmaps

performs poorly.
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Part I

Fourier Frames
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Chapter 2

Fourier Sampling

2.1 Uniform Sampling

The cornerstone of sampling theory is the Classical Sampling Theorem. It

states that, given Ω = [−ω, ω], every function f ∈ PWΩ can be recovered from its

sampled values if they are taken at a rate greater than or equal to the bandwidth,

2ω. The minimal rate for recovery, determined by the bandwidth, is called the

Nyquist rate.

Theorem 2.1.1 (Classical Sampling Theorem). Let 1
T
≥ 2ω, then

∀f ∈ PWΩ, f(x) = T
∑

f(nT )
sin(2ωπ(x− nT ))

π(x− nT )
(2.1)

where the series converges in L2(R) and uniformly on R.

The Classical Sampling Theorem is often referred to as the Shannon Sam-

pling Theorem, the Nyquist-Shannon Sampling Theorem, the Whittaker-Shannon-

Kotelnikov Sampling Theorem, or some combination thereof. The ideas contained

in the theorem actually date back at least as far as Cauchy [5].

When sampling at the Nyquist rate, there is only one possible sampling kernel

that can be used in the reconstruction, namely the sinc function given in (2.1).

In [4], Benedetto shows that by relaxing the Nyquist condition, a broad family of

sampling kernels can be used. In this section, we prove a version of this theorem
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for LCAGs. The benefits of oversampling are easily evident in Rd, where smooth

sampling kernels can be chosen to replace sinc in the reconstruction formula. We

provide a simple construction of a family of smooth sampling kernels.

2.1.1 Oversampling in Locally Compact Abelian Groups

Kluvánek generalized the Classical Sampling Theorem, proving it in the setting

of locally compact abelian groups [32]. To sample uniformly in a LCAG, values are

taken over a lattice.

Definition 2.1.1 (Lattices). A lattice is a discrete subgroup of G whose quotient

group, G/H, is compact. When G = Rd, this is equivalent to H = AZd, where

A ∈ GLd(R). Such an A is called a basis for H. Lattice bases are not unique; given

one basis A for H, every basis can be written as AV , where V ∈ GLd(Z).

Definition 2.1.2 (Tiles). Given a lattice H, let C0 be any measurable coset rep-

resentation of G/H. We call such a C0 a tile for H, since we can write G as the

pairwise disjoint union of translates of C0 by the members of H. When G = Rd, the

sets C0 = AQ0, where A is a basis for H and Q0 = [0, 1]d is the unit cube, are tiles

for H. These tiles are called the fundamental cells for H.

Not all LCAGs contain a lattice. For example, Qp, the field of p-adic numbers,

fails to contain a discrete subgroup. The following structure theorem for compactly

generated, LCAGs shows that assuming either G or Γ is compactly generated is

sufficient for G to contain a lattice. See [25], e.g., for a proof.
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Theorem 2.1.2 (Structure Theorem). Let G be a compactly generated, locally com-

pact abelian group. Then G is isomorphic to Rd×Zn×K, where n, d ≥ 0 and K is

a compact abelian group.

Definition 2.1.3 (Dual Lattice). The annihilator of a closed subgroup H is defined

as

H⊥ = {γ ∈ Γ : eγ
∣∣
H
≡ 1}. (2.2)

To keep our notation consistent, we will use Λ as a pseudonym for H⊥. The annihi-

lator Λ is the dual group of G/H. Similarly, H is the dual group of Γ/Λ. A locally

compact abelian group is discrete if and only if its dual is compact. It follows that

H is a lattice if and only if Λ is also a lattice. Thus, the annihilator of a lattice is

often called the dual lattice.

A key concept in Kluvánek’s generalization is periodization by the dual lattice.

Definition 2.1.4 (Λ-Periodization). Given a lattice H with dual lattice Λ and a

function φ defined on Γ, the Λ-periodization of φ is the function

φΛ([γ]) =
∑

Λ

φ(λ+ γ) (2.3)

defined on Γ/Λ.

Let µΓ/Λ be the Haar measure on Γ/Λ of unit mass. The mapping φ 7→ µΓ/Λ(φ)

is a translation invariant, positive linear functional on Cc(Γ). Hence, there is a

constant cH > 0 such that

cH

∫
Γ

φ(γ)dγ =

∫
Γ/Λ

φΛ([γ])d[γ]. (2.4)
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In fact, cH = (mΓ(Ω))−1, where Ω is any tile for Λ.

We can now state Kluvánek’s theorem.

Theorem 2.1.3 (Kluvánek, [32]). Let H ⊂ G be a lattice with dual lattice Λ. If

Ω ⊂ Γ is a tile for Λ, then

∀f ∈ PWΩ, f(x) = cH
∑
h∈H

f(h)kΩ(x− h), (2.5)

where kΩ is defined by k̂Ω = 1Ω. The series converges in L2(G) and uniformly on

G.

The Nyquist rate in this setting corresponds to 1/cH . However, whereas the

Nyquist rate uniquely defines the sampling set in the Classical Sampling Theorem,

in general, there can be many lattices with the same Nyquist rate. What makes

the Kluvánek Theorem (and thus the Classical Sampling Theorem) work is not the

sampling rate itself, but the relationship between Γ/Λ and its dual H.

By relaxing this relationship slightly, we can adapt Kluvánek’s argument to

prove the following.

Theorem 2.1.4. Let Ω0 be a relatively compact, measurable subset of Γ. Let H ⊂ G

be a lattice with dual lattice Λ such that the canonical mapping π : Γ → Γ/Λ is

injective on Ω0. Let k ∈ L2(G) be such that

(i) k̂
∣∣
Ω0
≡ 1, and

(ii) π is injective almost everywhere on supp(k̂).

Then

∀f ∈ PWΩ0 , f(x) = cH
∑

f(h)k(x− h). (2.6)
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The reconstruction converges in L2(G) and uniformly on G.

Proof. Let Ω be a tile for Λ whose closure contains supp(k̂). We will think of L2(Ω)

and similar spaces as closed subspaces of L2(Γ), with each φ ∈ L2(Ω) vanishing off

of Ω.

Renormalize µΓ, letting µ̃Γ = cHµΓ. It follows from (2.3) that Λ-periodization

provides an isometric isomorphism between L2(Ω) and L2(Γ/Λ).

Let φh(γ) = 1Ω(γ)eh(γ). The Λ-periodization of the set {φh : h ∈ H} is

precisely the group of characters on Γ/Λ. Since Γ/Λ is compact, and since we have

chosen µΓ/Λ to have total mass 1, the characters form an orthonormal basis for

L2(Γ/Λ). Thus, {φh : h ∈ H} is an orthonormal basis for L2(Ω).

For f ∈ PWΩ0 , f̂ ∈ L2(Ω0) ⊂ L2(Ω). Thus,

f̂(ω) =
∑
h∈H

∫
Ω

f̂(γ)φh(γ)dµ̃Γ(γ)

φh(ω)

= cH
∑
h∈H

∫
Ω

f̂(γ)eh(γ)dγ

φh(ω)

= cH
∑
h∈H

f(h)φh(ω) (2.7)

in L2(Ω).

Multiplying both sides of (2.7) by k̂, we have

f̂(ω) = k̂(ω)f̂(ω) = cH
∑
h∈H

f(h)k̂(ω)eh(ω) (2.8)

in L2(Γ). By the Plancherel Theorem, we may take the inverse Fourier transform

of both sides, giving

f(x) = cH
∑
h∈H

f(h)k(x− h) (2.9)
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in L2(G).

To prove the series converges to f uniformly on G, note it follows from the

Inversion Theorem that every f ∈ PWΩ0 is equal almost everywhere to a contin-

uous function. Hence, without loss of generality, we may assume f is continuous.

Similarly, without loss of generality, we may assume k is continuous as well.

For each finite HN ⊂ H, we have∣∣∣∣∣f(x)− cH
∑
h∈HN

f(h)k(x− h)

∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

(
f̂(γ)− cH

∑
h∈HN

f(h)eh(γ)k̂(γ)

)
ex(γ)dγ

∣∣∣∣∣∣
≤ 1
√
cH

∥∥∥∥∥f̂(γ)− cH
∑
h∈HN

f(h)eh(γ)k̂(γ)

∥∥∥∥∥
L2(Ω)

.

(2.10)

Therefore, uniform convergence on G follows from the convergence of (2.10)

in L2(Ω) as HN → H.

2.1.2 Smooth Sampling

The slow rate of decay of kΩ motivates our desire for more choices in the

selection of a sampling kernel. For example, let AQ0 = Ω ⊂ Rd be a fundamental

cell for Λ. Then

kΩ(x) =

∫
Ω

ex(γ)dγ

= det(A)

∫
C0

eA∗x(γ) dγ

= det(A)
d∏
j=1

sin(π〈Aj, x〉)
π〈Aj, x〉

, (2.11)
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where Aj is the j-th column of A. The best we can say is that kΩ decays as

|kΩ(x)| ≤ c

‖x‖2

.

Slow decay rates lead to large truncation errors, a problem in applications where

finite approximations to (2.5) are necessary.

This problem is remedied by oversampling. It allows us to choose k such that

k̂ is smooth. The smoothness of k̂ significantly increases the rate of decay for k,

yielding

|k(x)| ≤ c

(1 + ‖x‖2)p
∀p ≥ 1.

Theorem 2.1.5. Let Ω0 ⊂ Rd be a bounded, measurable set. Let H and Λ be a pair

of dual lattices such that the canonical mapping π : Rd → Rd/Λ is injective on Ω0.

Then there is an k ∈ S(Rd), the space of Schwartz functions, such that

∀f ∈ PWΩ0 , f(x) = cH
∑

f(h)k(x− h), (2.12)

with convergence in L2(Rd) and uniformly on Rd.

Proof. By Theorem 2.1.4, it suffices to show that there is an k ∈ S(Rd) such that

k̂
∣∣
Ω0
≡ 1 and π is injective on supp(k̂).

Since π is injective on Ω0, there is a coset representation Ω such that Ω0 ⊂ Ω◦.

Then

d(Ω0,Ω) = ε > 0.

Let δ < ε/2 and choose φ ∈ C∞c (Rd) such that supp(φ) = Bδ(0) and

∫
φ(x)dx = 1.
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We let

Bδ(Ω0) =
⋃
ω∈Ω0

Bδ(ω)

and define K to be the convolution of φ and 1Bδ(Ω0). Since φ is smooth, K is smooth.

For ω ∈ Ω0, Bδ(ω) = ω −Bδ(0) ⊂ Bδ(Ω0). Thus

K(ω) = φ ∗ 1Bδ(Ω0)(ω)

=

∫
Bδ(Ω0)

φ(ω − γ) dγ

=

∫
Bδ(0)

φ(γ) dγ = 1.

Since d(Ω,Ω0) = ε > 2δ, for ω /∈ Ω, Bδ(ω) ∩Bδ(Ω0) = ∅. This implies,

K(ω) =

∫
Bδ(Ω0)

φ(ω − γ)dγ = 0.

Thus,

K(ω) =


1 if ω ∈ Ω0

0 if ω /∈ Ω

.

Finally, take k to be the inverse Fourier transform of K. The space of Schwartz

functions is invariant under the Fourier transform. Since K ∈ C∞c (Rd) ⊂ S(Rd),

k ∈ S(Rd).

2.2 Non-Uniform Sampling and Fourier Frames

In non-uniform sampling, lattices are replaced with sampling sets.

Definition 2.2.1 (Sampling Sets). Let Ω ⊂ Γ have finite Haar measure. A set
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S ⊂ G is said to be a sampling set for Ω if ∃A,B > 0 such that,

∀f ∈ PWΩ, A‖f‖2 ≤
∑
s∈S

|f(s)|2 ≤ B‖f‖2. (2.13)

By (2.13), a bandlimited function is uniquely determined by its values taken

over a sampling set. In fact, the definition gives a little more: If S is a sampling set

for PWΩ, then Ω-bandlimited functions can be reconstructed from their sampled

values.

The Plancherel Theorem, the Inversion Theorem, and the fact that L2(Ω) ⊂

L1(Ω) for sets of finite measure, together prove that S is a sampling set for PWΩ if

and only if its reflection, S− = {−s : s ∈ S}, generates a Fourier frame for L2(Ω).

Since frame spectra are invariant under reflection, S is a sampling set if and only if

it is a spectrum.

Frame expansion provides a reconstruction formula for f ∈ PWΩ from its

sampled values. If S is a sampling set and F is the frame operator associated with

the Fourier frame generated by S−, taking the inverse Fourier transform of the dual

frame expansion gives

f(x) =
∑
s∈S

f(s)ks(x), k̂s(x) = F−1(es(x)). (2.14)

The reconstruction converges in L2(G).

2.2.1 Beurling Density in Rd

Landau proved that the Nyquist condition, necessary for uniform sampling,

generalizes to a necessary condition for non-uniform sampling in Rd [37].
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Definition 2.2.2 (Beurling Density). For r > 0, let Qr(x) denote the cube of

sidelength r centered at x. The upper and lower Beurling densities of S are given

by

D+(S) = lim sup
r→∞

sup
x∈Rd

card(S ∩Qr(x))

rd
(2.15)

D−(S) = lim inf
r→∞

inf
x∈Rd

card(S ∩Qr(x))

rd
. (2.16)

A set S ⊂ Rd is uniformly discrete if there is a neighborhood of the origin, U ,

such that

∀s ∈ S, (s+ U) ∩ S = {s};

S is said to be relatively separated if it is the union of finitely many uniformly

discrete sequences.

Theorem 2.2.1 (Landau, [37]). Let Ω ⊂ Rd be a set of positive measure. If a

uniformly discrete S is a sampling set for PWΩ, then D−(S) ≥ m(Ω).

This statement of Landau’s theorem differs from his original statement by a

factor of (2π)d because of our normalization of the Fourier transform.

In general, the Nyquist condition is not strong enough to guarantee sampling,

even when S is a lattice. When Ω ⊂ R is an interval, however, Beurling proved

that the density condition with strict inequality is sufficient to guarantee that a

uniformly discrete S is a sampling set for Ω [6].

Seip and Jaffard showed, independently, that a sampling set must necessarily

be relatively separated. Using this fact, the condition that S be uniformly discrete

may be removed from Beurling’s and Landau’s results [29, 51].
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Seip and Ortega-Cerdà solved the remaining, difficult problem of characteriz-

ing the sampling sets with D−(S) = m(Ω) [45]. They characterized such sampling

sets as the zero sets of a certain family of entire functions.

Landau proved Theorem 2.2.1 via an investigation of the eigenvalues of the

bounded, self-adjoint positive operator PΩQUPΩ defined on L2(Rd), where PΩ is

orthogonal projection onto PWΩ and QU is orthogonal projection onto L2(U). A

shorter, yet somewhat less precise, proof was provided in [21] based on an adaptation

of the Ramanathan-Steger Comparison Principle [48].

Theorem 2.2.2 (Comparison Principle, [21]). Let

F = {fk : 1 ≤ k ≤ n}, H = {hj : 1 ≤ j ≤ m} ⊂ PWΩ

and suppose that Ĥ ⊂ L∞(Ω). Let

S =
n⋃
k=1

Sk and T =
m⋃
j=1

Tj.

Assume that {f(x− s) : f ∈ F, s ∈ S} is a Riesz basis for its closure in PWΩ and

that {h(x − t) : h ∈ H, t ∈ T} is a frame for PWΩ. Then, ∀ε > 0, ∃R > 0 such

that ∀r ≥ 0 and ∀y ∈ Rd,

(1− ε)
n∑
k=1

card(Sk ∩Br(y)) ≤
m∑
j=1

card(Tj ∩Br+R(y)). (2.17)

2.2.2 Beurling Density in LCAGs

Landau’s theorem can be generalized to compactly generated, locally compact

abelian groups [22]. The first step is to find a suitable notion of density in this
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setting. Motivated by (2.17), the authors of [22] define the density of a discrete

sequence by comparing it to some fixed lattice.

Let G and Γ be a dual pair of LCAGs such that Γ is compactly generated.

By Theorem 2.1.2, Γ = Rd × Zn × Π, where Π is a compact abelian group. Hence,

G = Rd×Tn×D, where D is a discrete (possibly uncountable) abelian group. The

fundamental lattice in G is chosen to be H0 = Zd × {0}n ×D.

Definition 2.2.3. Let a, b > 0. We write aS � bT if, given ε > 0, ∃ a compact

K ⊂ G such that, ∀ compact L ⊂ G,

(1− ε)a card(S ∩ L) ≤ b card(T ∩ (K + L)). (2.18)

Definition 2.2.4 (Beurling Density). Let S be a discrete subset of G. The upper

and lower Beurling densities of S are given by

D+(S) = inf{b : S � bH0} (2.19)

D−(S) = sup{a : aH0 � S}. (2.20)

To get a feel for 2.19 and 2.20, we provide the proof of a result from [22]

showing that this definition is in fact a generalization of Beurling density on Rd.

Proposition 2.2.1. When G = Rd the two notions of Beurling density agree for all

discrete subsets S.

Proof. We will show that both definitions of lower Beurling density are equivalent.

The equivalence of upper Beurling density can be proved similarly.

Let S ⊂ Rd and let

a0 = sup{a : aZd � S}.
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We want to show

a0 ≤ lim inf
r→∞

inf
x∈Rd

card(S ∩Qr(x))

rd
.

Without loss of generality, we may assume a 6= 0.

Given a < a0, for every ε ∈ (0, 1), there is a compact K ⊂ Rd satisfying (2.18).

Since K is compact, there is an R > 0 such that K ⊆ QR(0). Let L = Qr(x) for

some x ∈ Rd and r > 0. Then L+K ⊂ QR+r(x) and by (2.18),

card(QR+r(x) ∩ S) ≥ (1− ε)a card(Qr(x) ∩ Zd)

≥ (1− ε)a(r − 1)d

= (1− ε)a
(
r − 1

r +R

)d
(r +R)d.

Thus, for sufficiently large r,

card(QR+r(x) ∩ S) ≥ (1− ε)2a(r +R)d.

This is true for all ε ∈ (0, 1) and a < a0, hence

lim inf
r→∞

inf
x∈Rd

card(S ∩Qr(x))

rd
≥ a0.

On the other hand, suppose

lim inf
r→∞

inf
x∈Rd

card(S ∩Qr(x))

rd
= a0.

Again, without less of generality, we may assume a0 6= 0. Then, for every ε ∈ (0, 1),

there exists an R > 0 such that

∀r ≥ R, card(Qr(x) ∩ S) ≥ (1− ε)a0r
d.
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Let C0 be a tile for the lattice RZd such that C0 = QR(0). Let L be a compact

set; L intersects finitely many translates of C0 by elements of RZd. Write these as

C1, . . . , CN . Then

L =
N⋃
n=1

(Cn ∩ L) ⊆
N⋃
n=1

Cn,

with each union being pairwise disjoint.

Each x ∈ Cn satisfies ‖l − x‖∞ ≤ R for some l ∈ L. Thus

N⋃
n=1

Cn ⊆ L+Q2R(0).

Then, we have

card(S ∩ (L+Q2R(0))) ≥ card(S ∩ (
N⋃
n=1

Cn))

=
N∑
n=1

card(S ∩ Cn)

≥ (1− ε)a0NR
d.

Moreover, if we assume R ∈ N,

card(Zd ∩ L) ≤ card(Zd ∩ (
N⋃
n=1

Cn))

=
N∑
n=1

card(Zd ∩ Cn)

= NRd.

Hence, a0Zd � H.

2.2.3 Density Conditions on LCAGs

An argument based on a further generalization of the comparison principle can

then be used to prove the Nyquist condition in the setting of compactly generated,
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locally compact abelian groups.

Theorem 2.2.3 (Gröchenig, Kutyniok, and Seip, [22]). Let Ω ⊂ Γ be a set of

positive measure and assume that µΓ has been normalized so that µΓ([−π, π]d ×

{0} × Π) = 1. If S is a sampling set for PWΩ, then D−(Ω) ≥ µΓ(Ω).

They also provide a characterization of sets S such that the upper inequality

of (2.13) is satisfied, i.e. sets S that are a Bessel spectrum for Ω. The result is a

nice generalization of what is known for Rd.

Theorem 2.2.4 ([Gröchenig, Kutyniok, and Seip, [22]). A set S is a Bessel spectrum

for a set of positive measure if and only if it is relatively separated.

We recast this as a density condition below.

Theorem 2.2.5. Let Ω ⊂ Γ be a set of positive, finite measure. Then S is a Bessel

spectrum for Ω if and only if D+(S) <∞.

To prove Theorem 2.2.5, it suffices to prove the following.

Proposition 2.2.2. D+(S) <∞ if and only if S is relatively separated.

Proof. In the following, let H0 be the fundamental lattice in G. Let C0 be a tile

for H0 which contains the identity. The translates of C0 by the elements, h, of the

fundamental lattice will be written as Ch.

(=⇒) Since D+(S) < ∞, there is an N > 0 and a compact set K such that,

for every h ∈ H,

card(S ∩ Ch) ≤ N card(H0 ∩ (K + Ch)).
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However,

card(H0 ∩ (K + Ch)) = card(H0 ∩ (K + C0)).

Hence, there is an M > 0 such that each Ch contains at most M points. This implies

that we can write S as the disjoint union of M uniformly discrete sequences.

(⇐=) Since S is relatively separated, there is an N > 0 such that each Ch

contains at most N points of S.

Let K = C0 ∪ C−0 and let L be any compact subset of G. There exist NL <∞

tiles such that

L ⊂
NL⋃
n=1

Chn .

It follows that

card(S ∩ L) ≤ NL ·N.

Furthermore,

L ∩ Chn 6= ∅ =⇒ hn ∈ K + L.

Hence,

card(H0 ∩ (K + L)) ≥ NL.

Therefore, D+(S) ≤ N <∞.

2.2.4 Stability of Sampling Sets

For a relatively compact Ω ⊂ Rd, the stability of Bessel spectra under bounded

perturbations and the stability of sampling sets (or frame spectra) under small

perturbations is well known (see, e.g., [12]). We adapt an argument from [22] to

establish these facts for compactly generated, locally compact abelian groups.
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Given a function g : G→ C and a set U ⊂ G, define

g?(x) = sup
u∈U
|g(x+ u)|.

As in [22], we will use the following fact from [49]. Given a relatively compact Ω ⊂ Γ

there is a g ∈ L1(G) such that:

• ĝ(ω) = 1, ∀ω ∈ Ω, and

• for any compact, symmetric neighborhood of the origin, U ,

g? ∈ L1(G). (2.21)

Theorem 2.2.6. Let Ω ⊂ Γ be a set of positive, finite measure and let S = {sj} be a

Bessel spectrum for Ω. Let V ⊂ G be a relatively compact, symmetric neighborhood

of the identity. If T = {tj} satisfies,

tj ∈ sj + V

for each j in the indexing set, J , then T is also a Bessel spectrum for Ω.

Proof. If ∃C > 0 such that ∀f ∈ PWΩ,

∑
j∈J

|f(sj)− f(tj)|2 ≤ C‖f‖2 (2.22)

then ∑
j∈J

|f(tj)|2 =
∑
j∈J

|f(tj)− f(sj) + f(sj)|2 ≤ (
√
B +

√
C)2‖f‖2

where B is the Bessel bound for S. Hence it suffices to prove (2.22).
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Let g ∈ L1(G) be as in (2.21), and let g? be defined using U = V + V . Then,

for each j, we have

|f(tj)− f(sj)|2 = |f ∗ g(tj)− f ∗ g(sj)|2

=

∣∣∣∣∣∣
∫
G

f(x) (g(tj − x)− g(sj − x)) dx

∣∣∣∣∣∣
2

≤
∫
G

|f(x)|2|g(tj − x)− g(sj − x)|dx
∫
G

|g(tj − y)− g(sj − y)|dy

≤ 2‖g‖1

∫
G

|f(x)|2|g(tj − x)− g(sj − x)|dx

We will show that ∑
j∈J

|g(tj − x)− g(sj − x)| ∈ L∞(G).

For a fixed x0 ∈ G, let Vj = V + sj − x0. Then

∑
j∈J

|g(tj − x0)− g(sj − x0)| =
∑
j∈J

(mG(V ))−1

∫
Vj

|g(tj − x0)− g(sj − x0)|dx

≤ 2(mG(V ))−1
∑
j∈J

∫
Vj

|g?(x)|dx

= 2(mG(V ))−1
∑
j∈J

∑
h∈H0

∫
Ch∩Vj

|g?(x)|dx

= 2(mG(V ))−1
∑
h∈H0

∑
j∈J

∫
Ch∩Vj

|g?(x)|dx (2.23)

where H0 is the fundamental lattice, C0 is a fixed tile for H0, and Ch = h+ C0.

We claim that there is an N ∈ N such that at most N of the Vj intersect Ch

for each h. Note that

Ch ∩ Vj 6= ∅ =⇒ sj ∈ Ch + V0,

where V0 = V+x0. We have assumed that S is a Bessel spectrum and soD+(S) <∞.
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Hence, there is an N > 0 and a compact set K such that

card(S ∩ (V0 + Ch)) ≤ N card(H0 ∩ (V0 + Ch +K))

= N card(H0 ∩ (V0 + C0 +K)).

The set V0 +C0 +K is compact and thus contains only finitely many h ∈ H0.

Hence,

card(S ∩ (V0 + Ch)) ≤M <∞.

where M is independent of h. This, along with (2.23), implies that

∑
j∈J

|g(tj − x0)− g(sj − x0)| ≤ 2(mG(V ))−1
∑
h∈H0

M

∫
Ch

|g?(x)|dx

≤ 2M(mG(V ))−1‖g?‖1

Therefore,

∑
j∈J

|f(sj)− f(tj)|2 ≤ 4M(mG(V ))−1‖g?‖1‖g‖1‖f‖2.

Theorem 2.2.7. Let Ω ⊂ Γ be a set of positive, finite measure and let S = {sj} be

a sampling set for PWΩ. There exists a relatively compact, symmetric neighborhood

of the identity, V ⊂ G, such that, if T = {tj} satisfies

tj ∈ sj + V,

for every j in the indexing set, J , then T is also a sampling set for PWΩ.

Proof. By Theorem 2.2.6, any such T will satisfy the Bessel bound. If ε < A and

∑
j∈J

|f(sj)− f(tj)|2 ≤ ε‖f‖2 (2.24)
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then

(
∑
j∈J

|f(tj)|2)1/2 ≥ (
∑
j∈J

|f(sj)|2)1/2 − (
∑
j∈J

|f(sj)− f(tj)|2)1/2

≥ (
√
A−
√
ε)‖f‖.

Squaring both sides gives the lower sampling inequality. Hence, it suffices to prove

(2.24).

Let g be defined as in (2.21). Then, ∀f ∈ PWΩ,

|f(tj)− f(sj)|2 = |f ∗ g(tj)− f ∗ g(sj)|2

= |
∫
G

f(x) (g(tj − x)− g(sj − x)) dx|2

≤
∫
G

|f(x)|2|g(tj − x)− g(sj − x)|dx
∫
G

|g(tj − y)− g(sj − y)|dy

≤
∫
G

|f(x)|2|g(tj − x)− g(sj − x)|dx
∫
G

|g(y)− g(vj + y)|dy

where vj = sj − tj ∈ V . Given δ > 0, choose V small enough so that

∫
G

|g(y)− g(vj + y)|dy < δ.

Since S is a sampling set, it is relatively separated. Hence,

S =
N⋃
n=1

Sn,

where the union is pairwise disjoint and each Sn = {sni } is uniformly discrete.

Making V smaller if necessary, choose W ⊃ V small enough so that

• {Wi = W + s1
i } is pairwise disjoint,

• card(S ∩Wi) ≤ N , and
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• for each sj ∈ Wi,

V + sj ⊂ Wi.

Fix x0 ∈ G. Let W 0
i = W + s1

i + x0 and let g? be defined using U = W +W .

Then,

∑
i∈J

∑
sj∈Wi

|g(tj − x0)− g(sj − x0)|

= (mG(W ))−1
∑
i∈J

∑
sj∈Wi

∫
W 0
i

|g(tj − x0)− g(sj − x0)|dx

≤ 2N(mG(W ))−1
∑
i∈J

∫
W 0
i

|g?(x)|dx

≤ 2N(mG(W ))−1‖g?‖1.

Thus, ∑
j∈J

|f(sj)− f(tj)|2 ≤ 2Nδ(mG(W ))−1‖g?‖1‖f‖2.

Since W , and hence g?, depends only on S, V can be chosen so that

2Nδ(mG(W ))−1‖g?‖1 ≤ ε.
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Chapter 3

Fourier Spectra for L2(µ)

3.1 General Properties

A natural generalization of the local Fourier analysis discussed in Chapter 2 is

the Fourier analysis for L2(µ), where µ is an arbitrary measure in M1(Γ). Unlike the

case for sets of finite measure, there is no guarantee in this general setting that such

an analysis can be carried out. A fundamental problem is to classify the measures

which admit Fourier frames. Ultimately, the goal is to develop a set of criteria so

that, given µ ∈ M1(Γ), we not only know if µ is spectral, but we can completely

characterize the spectra it admits. However, even in the simplest case, when Γ = R,

such problems are far from being resolved.

We will investigate the role the geometry of the support of µ plays in determin-

ing its spectra. The degree to which geometry influences spectral properties clearly

decreases with the rigidity of the requirements of the type in question. Though, as

we will see in Section 3.3.1, it manifests itself even on the level of Bessel spectra.

For Fourier spectra, this study is closely related to the Fuglede conjecture.

Fuglede’s Conjecture ([20]). A set Ω ⊂ Rd of finite measure admits a Fourier

spectrum S if and only if Ω tiles Rd, that is, if and only if there is a T ⊂ Rd such
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that

Rd =
⋃
t∈T

Ω + t

and the union is pairwise disjoint almost everywhere.

This question arose naturally out of Fuglede’s work on differential operators.

He was interested in classifying the domains Ω ⊂ Rd such that the family of differ-

ential operators, ∆k = −i ∂
∂xk

, can be extended to a family of commuting self-adjoint

operators acting on L2(Ω). He proved that a domain admits such an extension if

and only if L2(Ω) contains a Fourier basis. The conjecture was posited based on his

observation of the relationship between Fourier sets and tilings when either T or S

is assumed to be a lattice.

A number of positive results were achieved—

• the conjecture is true for convex planar domains [27];

• convex sets having a smooth boundary are not Fourier sets (a positive result

since it also known that such sets do not tile) [28];

• the conjecture is true for the union of two intervals [35];

—until Tao found a counterexample in d ≥ 5 with a finite configuration of cubes

that has a Fourier basis, but does not tile [52]. A similar construction was used

in [43] and [33] to prove that the same implication is false in d = 4 and d = 3,

respectively. A counterexample to the converse was similarly found in a string of

papers for d = 5, d = 4, and d = 3 [33, 18, 17]. Both directions remain open for

d = 1 and d = 2.
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The problem of characterizing sets which admit Riesz spectra has a similar

type of geometric rigidity, however, it has proved to be more difficult than its Fourier

counterpart. In R, there are several families of finite unions of intervals that are

known to have Riesz spectra (see [41, 39] for example). It is still an open question

whether any finite union of intervals admits a Riesz spectra. In R2, it is known

that convex polygons are Riesz spectral sets [40]. Beyond these results, not much

else is known. The machinery involved with Riesz spectra is significantly more

technically difficult than that for Fourier spectra and presents an obstacle that

must be overcome.

For Fourier frames in general, the only case that has been completely solved is

a single interval in R. In all dimensions and in LCAGs, we have seen that the size

of the set determines a necessary condition on the density of its spectra, however

this condition is far from being sufficient. On the other hand, recent results have

also shown that frames are significantly less rigid than their basis counterparts. In

fact, there exist families of universal spectra:

Theorem 3.1.1 (Matei and Meyer, [42]). There exists sets S such that D−(S) >

m(Ω) is sufficient for S to be a frame spectrum for any Ω such that m(∂Ω) = 0.

In this section, our investigation of the geometry of supp(µ) will focus on size.

The effect of the size of the support of µ on its spectral properties sheds light on

the fundamental problem posed above. Namely, we use necessary density conditions

imposed by the size of supp(µ) in the setting of LCAGs to generalize several recent

results addressing the problem of characterizing measures of a given spectral type.

36



3.1.1 Necessary Density Conditions

When Γ is not discrete, each measure µ ∈ M1(Γ) can be written as µ =

µd + µsc + µac where µd is discrete and µsc and µac are singularly continuous and

absolutely continuous with respect to Haar measure. In [24], it was shown that

when Γ = Rd, if L2(µ) contains a Fourier frame then µ decomposes purely as one of

these three types. We extend this result to compactly generated LCAGs.

First, we establish necessary density conditions for measures of each type.

Lemma 3.1.1. If S is a Bessel spectrum for µ ∈M1(Γ), then

D+(S) <∞.

Proof. For µ ∈ M1(Γ), µ̂(0) = 1. Since µ̂ is continuous, given c ∈ (0, 1), there is an

open neighborhood U of 0 such that

∀x ∈ U, µ̂(x) ≥ c > 0.

Let B > 0 be the Bessel bound for E(S). For every x ∈ G,

B ≥
∑
s∈S

|µ̂(s− x)|2 ≥
∑

s∈(U+x)

|µ̂(s− x)|2 ≥ c · card(S ∩ (U + x)).

Hence, there is an N ∈ N such that every translate of U contains at most N elements

of S.

Let H0 be the fundamental lattice in G. Let C0 be a tile for H0 which contains

the identity. Since C0 is compact, there is an N0 ∈ N such that C0 can be covered

by N0 translates of U . Moreover, each tile Ch = C0 + h can also be covered by N0

translates of U . Hence, each Ch contains at most NN0 points of S. This implies S

is relatively separated. By Proposition 2.2.2, D+(S) <∞.
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Lemma 3.1.2. If S is a spectrum for a discrete measure µ, then

card(S) <∞.

Proof. We have µ =
∑

λ∈Λ cλδλ, where Λ is a discrete subset of Γ. Let φ(γ) =

1{λ0}(γ) for some λ0 ∈ Λ. Then

card(S)|cλ0 |2 =
∑
s∈S

|cλ0es(λ0)|2

=
∑
s∈S

|〈φ, es〉|2 <∞.

Definition 3.1.1. We say that f : G→ C is locally integrable on G if f(x)1K(x) ∈

L1(G) for every compact K ⊂ G.

Proposition 3.1.3. Let f : G→ C be a Borel measurable function. Then f ∈ L2(G)

if and only if there is a discrete S ⊂ G with D−(S) > 0 such that

fS(x) =
∑
s∈S

|f(s− x)|2

is locally integrable on G.

Proof. (=⇒) Suppose f ∈ L2(G). Let H0 be the fundamental lattice for G and let

C0 be a tiling cell associated with H0. Then

‖f‖2 =
∑
h∈H0

∫
C0+h

|f(x)|2dx

=
∑
h∈H0

∫
C−0

|f(h− y)|2dy

=

∫
h−C0

fH0(y)dy, (3.1)
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for any h ∈ H0.

Since

G =
⋃
h∈H0

(h− C0),

given a compact set K ⊂ G, there exist finitely many h1, . . . , hN ∈ H0 such that

K ⊂
N⋃
n=1

(hn − C0).

From (3.1), it follows that ∫
K

fH0(x) ≤ N‖f‖2.

(⇐=) Suppose fS(x) =
∑

s∈S |f(s− x)|2 is locally integrable for some discrete

set S ⊂ G, with D−(S) = D > 0. Then, given ε > 0, there is a compact set K such

that for every compact L ⊂ G,

card((K + L) ∩ S) ≥ D(1− ε) card(L ∩H0).

In particular, there is a compact set K containing the identity such that for each

h ∈ H0,

card((K + h) ∩ S) ≥ 1.

Let U = (K∪K−)+C0, where C0 is again a tiling cell for H0. For each h ∈ H0,

there is an s ∈ S such that s ∈ (K ∪ K−) + h. This implies h ∈ (K ∪ K−) + s.

Hence, h+ C0 ⊂ s+ U . Since C0 is a tiling cell,

G =
⋃
h∈H0

(C0 + h) ⊂
⋃
s∈S

(U + s).
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However, fS is locally integrable and U is compact. Therefore,

‖f‖2 ≤
∑
s∈S

∫
s+U

|f(x)|2dx

≤
∫
U−

fS(x)dx <∞.

Lemma 3.1.4. If S is a spectrum for a singular measure µ ∈M1(Γ), then

D−(S) = 0.

Proof. If S is a spectrum for µ, we have that

µ̂S(x) =
∑
s∈S

|µ̂(s− x)|2 ≤ B <∞

for every x ∈ G. Hence, µ̂S ∈ L∞(G) and is locally integrable. By Proposition

3.1.3, if D−(S) > 0, then µ̂ ∈ L2(G). This would imply that µ = φdγ where

φ ∈ L2(Γ); µ is singular, however, so φ must be identically 0. This implies µ = 0, a

contradiction.

For each absolutely continuous measure µ ∈M1(Γ), we write φµ for its Radon-

Nikodym derivative. Since we assume µ to be finite, each φµ is a non-negative

function in L1(Γ).

Definition 3.1.2. We define the nonzero set of a function φ : Γ→ C to be

Σ(φ) = {γ ∈ Γ : φ(γ) 6= 0}.

Also, given N ≥ 1, define

ΣN(φ) = {γ ∈ Γ :
1

N
≤ |φ(γ)| ≤ N}.
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Lemma 3.1.5. Let φ be a Borel measurable function and let Ω be any set of pos-

itive, finite measure contained in ΣN(φ) for some N ≥ 1. Let µ be the absolutely

continuous measure defined by dµ = φ(γ)1Ω(γ)dγ.

For any S ⊂ G, E(S) is a Fourier frame for L2(µ) if and only if it is a Fourier

frame for L2(Ω).

Proof. (=⇒) Let A,B > 0 be the frame bounds for E(S) in L2(µ). For each

ψ ∈ L2(Ω), define

(ψ/φ)(γ) =


ψ(γ)
φ(γ)

if φ(γ) 6= 0

0 otherwise

.

Then ψ/φ ∈ L2(µ), since

‖ψ/φ‖2
µ =

∫
Ω

|(ψ/φ)(γ)|2φ(γ)dγ ≤ N‖ψ‖2.

Thus, ∑
s∈S

|〈ψ, es〉|2 =
∑
s∈S

|〈ψ/φ, es〉µ|2 ≤ B‖ψ/φ‖2
µ ≤ BN‖ψ‖2.

Similarly, ∑
s∈S

|〈ψ, es〉|2 =
∑
s∈S

|〈ψ/φ, es〉µ|2 ≥ A‖ψ/φ‖2
µ ≥

A

N
‖ψ‖2.

Therefore, E(S) is a Fourier frame for L2(Ω) with frame bounds A′, B′ > 0

satisfying

A

N
≤ A′ ≤ B′ ≤ BN.

(⇐=) Now let A,B > 0 be the frame bounds for E(S) in L2(Ω). For each

ψ ∈ L2(µ), ψφ ∈ L2(Ω), since

‖ψφ‖2 =

∫
Ω

|ψ(γ)φ(γ)|2dγ ≤ N‖ψ‖2
µ.
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Thus, ∑
s∈S

|〈ψ, es〉µ|2 =
∑
s∈S

|〈ψφ, es〉|2 ≤ B‖ψφ‖2 ≤ BN‖ψ‖2
µ.

Similarly, ∑
s∈S

|〈ψ, es〉µ|2 =
∑
s∈S

|〈ψφ, es〉|2 ≥ A‖ψφ‖2 ≥ A

N
‖ψ‖2

µ.

Therefore, E(S) is a frame for L2(µ) with frame bounds A′, B′ > 0 satisfying

A

N
≤ A′ ≤ B′ ≤ BN.

Lemma 3.1.6. If S is a spectrum for an absolutely continuous measure µ ∈M1(Γ),

then

D−(S) > 0.

Proof. Choose N > 0 such that ΣN(φµ) has positive measure. Then for some

compact set Ω ⊂ Γ,

0 < µΓ(ΩN) <∞, where ΩN = Ω ∩ ΣN(φµ).

By Lemma 3.1.5, H is a frame spectrum for L2(ΩN).

Therefore, by Theorem 2.2.3, we must have that D−(S) ≥ µΓ(ΩN) > 0.

Theorem 3.1.2 (Law of Pure Type). If L2(µ) contains a Fourier frame, then µ is

either discrete, absolutely continuous, or singularly continuous.

Proof. Note that this is trivially true if Γ is discrete. If Γ is not discrete, each

µ ∈ M1(Γ) admits a decomposition into its discrete, singularly continuous, and

absolutely continuous parts, written µ = µd + µsc + µac. The decomposition is
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mutually singular, meaning that Γ can be written as the pairwise disjoint union

of measurable sets, Γd, Γsc, and Γac, such that each set is non-null only for its

corresponding measure.

Thus, the spaces L2(µd), L
2(µsc), and L2(µac) can be thought of as closed

subspaces of L2(µ). This implies that if S is a frame spectrum for L2(µ), then it is

a frame spectrum for L2(µd), L
2(µsc), and L2(µac) simultaneously.

By Lemma 3.1.2, if S is a frame spectrum for L2(µd) and µd is not trivial, then

S is finite. This implies that L2(µ) is a finite dimensional space, which is true only

if µ is discrete. Hence, µ is either purely discrete or purely continuous.

Suppose µ is purely continuous. Lemma 3.1.4 implies that if µsc is non-trivial,

then D−(S) = 0. Lemma 3.1.6 implies that, if µac is non-trivial, then D−(S) > 0.

Hence, µ is either purely singularly or absolutely continuous.

3.1.2 Absolutely Continuous Spectral Measures

Here, we extend the results of [36] to compactly generated LCAGs, providing

a complete characterization of compactly supported, absolutely continuous spectral

measures in terms of their Radon-Nikodym derivative. We will show that if an

absolutely continuous measure is spectral, then its Radon-Nikodym derivative is

essentially bounded and cannot decay to zero on the boundary of its nonzero set.

Let Ma(Γ) be the space of absolutely continuous measures in M1(Γ).

Lemma 3.1.7. If µ ∈Ma(Γ) is spectral, then

µΓ(Σ(φµ)) <∞.

43



Proof. Note that

Σ(φµ) =
∞⋃
N=1

ΣN(φµ).

Suppose µΓ(Σ(φµ)) =∞. Given M > 0, there is an N > 0 and a compact set

Ω ⊂ Γ such that

µΓ(ΩN) ≥M, where ΩN = Ω ∩ ΣN .

Let S ⊂ G be a spectrum for µ. By Lemma 3.1.5, E(S) is a frame for L2(ΩN).

Hence, by Theorem 2.2.3,

D−(S) ≥ µΓ(ΩN) ≥M.

This holds for arbitrarily large M , hence D−(S) = ∞. This implies D+(S) = ∞,

which contradicts Lemma 3.1.1.

Lemma 3.1.8. If µ ∈ Ma(Γ) is a spectral measure, then there is a constant c > 0

such that

φµ ≥ c a.e. on Σ(φµ).

Proof. For k ∈ N, let

Ωk = {γ :
1

k + 1
≤ φµ(γ) <

1

k
}.

Let Ch = C0 +h be the translates of a tiling cell C0 associated with the fundamental

lattice H0. For each k such that µΓ(Ωk) > 0, choose an h = h(k) such that µΓ(Ωk ∩

Ch) > 0. Define

Ωh
k = Ωk ∩ Ch.

Let S be a spectrum for µ. By Lemma 3.1.1, D+(S) < ∞. Hence, S is a

Bessel spectrum for each Ch. The frame inequality is invariant under spatial and
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spectral translations. Thus, the Bessel bound, B > 0, for E(S) is the same in each

L2(Ch). Since Ωh
k ⊂ Ch, the Bessel bound for each Ωh

k is independent of k. Letting

A be the lower frame bound for E(S) in L2(µ), we have

A

k + 1
µΓ(Ωh

k) =
A

k + 1

∫
Γ

|1Ωhk
(γ)|2dµ

≤
∑
s∈S

|
∫
Γ

1Ωhk
(γ)es(γ)dµ|2

=
∑
s∈S

|
∫
Ωhk

φµ(γ)es(γ)dγ|2

≤ B

∫
Ωhk

|φµ(γ)|2dγ

≤ B

k2
µΓ(Ωh

k).

Rearranging, we have

A ≤ k + 1

k2
B.

Since B is independent of k, the right hand side tends to 0 as k → ∞. Hence,

µΓ(Ωk) > 0 for only finitely many k.

Lemma 3.1.9. Let Ω, Ω′ be Borel measurable sets of positive, finite measure. Then

∃γ0 ∈ Γ such that µΓ((γ0 + Ω) ∩ Ω′) > 0.

Proof. Consider the convolution

φ(γ0) = 1Ω− ∗ 1Ω′(γ0)

=

∫
1Ω−(γ0 − γ)1Ω′(γ)dγ

= µΓ((Ω + γ0) ∩ Ω′).
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Note that

φ̂(0) = 1̂Ω−(0)1̂Ω′(0) = µΓ(Ω)µΓ(Ω′) > 0.

Since φ̂ is continuous, it must be greater than zero on a set of positive measure.

Thus, φ must be greater than zero on a set of positive measure. In particular, there

is at least one γ0 ∈ Γ such that

φ(γ0) = µΓ((Ω + γ0) ∩ Ω′) > 0.

Lemma 3.1.10. If µ ∈Ma(Γ) is spectral, then φµ ∈ L∞(Γ).

Proof. For k ∈ N, let

Ωk = {γ : k ≤ φµ(γ) ≤ k + 1}.

Choose an N > 0 such that µΓ(ΣN(φµ)) > 0. If µΓ(Ωk) > 0, by Lemma 3.1.9,

∃γ0 ∈ Γ such that µΓ(Ωk ∩ (ΣN + γ0)) > 0. Define

ΩN
k = Ωk ∩ (ΣN + γ0).

Let E(S) be a Fourier frame for L2(µ) with frame bounds A,B > 0. By

Lemma 3.1.5, E(S) is a Fourier frame for L2(ΣN) with frame bounds A′, B′ > 0

satisfying

A

N
≤ A′ ≤ B′ ≤ BN.

Since the frame inequality is invariant under spatial translations and is inherited by

subspaces, E(S) is a Fourier frame with the same frame bounds for L2(ΣN + γ0),

and hence L2(ΩN
k ).
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Note φµ1ΩNk
∈ L2(ΩN

k ). Thus,

A

N
k2µΓ(ΩN

k ) ≤ A

N

∫
ΩNk

|φµ(γ)|2dγ

≤
∑
s∈S

|
∫

ΩNk

φµ(γ)es(γ)dγ|2

=
∑
s∈S

|
∫
Γ

1ΩNk
(γ)es(γ)dµ|2

≤ B

∫
Γ

|1ΩNk
(γ)|2dµ

≤ B(k + 1)µΓ(ΩN
k ).

Rearranging, we have

B ≥ A

N

k2

k + 1
.

The right hand side tends to infinity as k → ∞. Therefore, µΓ(Ωk) > 0 for only

finitely many k.

Theorem 3.1.3. Let µ be a compactly supported measure in Ma(Γ). Then, µ is

spectral if and only if there exists an N > 1 such that

µΓ(Σ(φµ) \ ΣN(φµ)) = 0.

Proof. Lemmas 3.1.8 and 3.1.10 together prove that the condition is necessary. To

prove that it is sufficient, note that since Γ is compactly generated, we have Γ =

Rd × Zn × Π, where Π is a compact abelian group. Since suppµ is compact, it

is contained in ΩN = [−N
2
, N

2
]d × {−N, . . . , N}n × Π for some N > 0. Letting

ΛN = (NZ)d × (2NZ)n × Π, we have that ΩN is a coset representation of Γ/ΛN ;

that is, ΩN is a tile for the lattice ΛN .
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Therefore, letting SN = Λ⊥N , E(SN) is a Fourier basis for L2(ΩN).

3.2 Self-Similar Measures

In contrast with absolutely continuous measures, singular measures do not

come with many user friendly tools, challenging us to come up with new ideas and

a new approach. The class of self-similar singular measures provides a first step in

this direction. Derived from iterated function systems, their rich geometric structure

gives a tractable approach towards understanding their spectral properties.

In this section, we describe the class of self-similar measures. We show that

self-similar measures produce examples of Cantor measures, i.e. measures supported

by a Cantor set. We discuss several other constructions of Cantor measures, and

show that, for a certain class of self-similar measures, these examples are equivalent.

3.2.1 Invariant Sets and Measures

In [26], Hutchinson studied iterated function systems and their invariants.

In particular, he established the idea that each iterated function system induces an

invariant set and an invariant measure. His proof of the fact that invariant measures

exist and are unique had a gap in it, however. The basic idea was to define a metric

on the space of Borel probability measures, M1(X), and show that each iterated

function system induces a contraction with respect to this metric.

Definition 3.2.1 (Hutchinson’s metric). A function, φ, is Lipschitz if its Lipschitz
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constant

rφ = sup
x,y∈X

d(φ(x), φ(y))

d(x, y)

is finite. Let Lip(X) be the space of Lipschitz functions and Lip1(X) ⊂ Lip(X)

be the subspace of functions whose Lipschitz constants are less than or equal to 1.

Define

δ(µ, ν) = sup{|µ(φ)− ν(φ)| : φ ∈ Lip1(X) ∩ L1(µ) ∩ L1(ν)}.

The existence and uniqueness of invariant measures then follow from the Con-

traction Mapping Principle if δ is complete. In general, this is not the case.

In [34], the gap is remedied by introducing a new metric on a subspace of

M1(X). We present a simple proof of Hutchinson’s original result by showing that,

without loss of generality, one can confine the search for an invariant measure within

a subspace M1(Y ) ⊂ M1(X) where Y is compact subset of X. In this setting,

Hutchinson’s original proof is correct.

Besides Hutchinson’s paper, we found [16] and the last chapter of [19] useful

resources in the following.

For convenience, we recall the basic definitions for iterated functions systems

from Chapter 1.

Definition 3.2.2 (Iterated Function System). An iterated function system (IFS)

Φ = {φ1, . . . , φN}

is a collection of contraction mappings on a complete metric space X.

Definition 3.2.3 (IFS Operators). An iterated function system induces a mapping
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on the power set of X, P(X), given by

Y ∈ P (X) 7→ Φ(Y ) =
N⋃
i=1

Yi

Yi = φi(Y ). (3.2)

This mapping is called the Hutchinson operator. A set is said to be invariant with

respect to Φ if

Y = Φ(Y ) =
N⋃
i=1

Yi.

Iterated function systems also induce a mapping on M(X). For µ ∈ M(X),

the push forward of µ by φi ∈ Φ is given by

φi(µ)(Y ) = µ(φ−1
i (Y )). (3.3)

Let c ∈ RN be a probability vector ; that is, for 1 ≤ i ≤ N , ci > 0 and

N∑
i=1

ci = 1.

For each Φ and c, let Φc : M1(X)→M1(X) be given by

Φc(µ) =
N∑
i=1

ciµi.

A measure is said to be invariant with respect to Φc if

µ = Φc(µ) =
N∑
i=1

ciµi.

Definition 3.2.4. Since each φi ∈ Φ is a contraction, φ ∈ Lip(X) with Lipschitz

constant ri < 1. We define

rΦ = max
1≤i≤N

ri.

50



If Y is invariant, it is invariant under repeated applications of Φ. We will use

the following notation for this action:

Y =
⋃

ι∈In(N)

Yι,

where In(N) = {1, . . . , N}n, ι = {i1, . . . , in} and Yι = φι(Y ), with

φι = φi1 ◦ φi2 ◦ . . . ◦ φin ∈ Φn.

For completeness, we provide a proof of Hutchinson’s theorem on the existence

of unique, invariant sets. This particular proof also motivates our patch in the gap

of the proof of invariant measures. In the proof, we make use of the following lemma.

Lemma 3.2.1. Let Y be a closed, bounded set, invariant with respect to Φ. Let

Z ⊂ X be any closed set such that Φ(Z) ⊂ Z. Then Y ⊂ Z.

Proof. For any x ∈ X and Z ⊂ X, let

d(x, Z) = inf
z∈Z

d(x, Z).

In our case, Z is closed, and thus d(x, Z) = 0 if and only if x ∈ Z. Define

dY (Z) = sup
y∈Y

d(y, Z).

Since Y is bounded, dY (Z) <∞.

Given ε > 0, choose an y0 ∈ Y such that dY (Z) ≤ d(y0, Z) + ε. Since Y is

51



invariant, there is a y ∈ Y and a φi ∈ Φ such that y0 = φi(y). Thus we have

dY (Z) ≤ d(φi(y), Z) + ε

≤ d(φi(y), Zi) + ε

≤ rΦd(y, Z) + ε

≤ rΦdY (Z) + ε.

This holds ∀ε > 0, implying

dY (Z) ≤ rΦdY (Z).

Since rΦ < 1, we must have dY (Z) = 0. Therefore, Y ⊂ Z.

Note that if Y and Z are both closed, bounded sets, invariant with respect to

Φ, we have

Y ⊂ Z ⊂ Y =⇒ Z = Y.

This proves that if a closed, bounded invariant set exists for Φ, it is unique.

Theorem 3.2.1 (Hutchinson, [26]). For each iterated function system Φ, there is a

unique closed, bounded subset Y such that Φ(Y ) = Y . Moreover, Y is compact.

Proof. We have already proved the uniqueness part of the theorem. We must show

that such an invariant set exists.

Since X is complete, each φi has a unique fixed point xi ∈ X. Fix a point

x0 ∈ X. Let Ri = d(xi, x0) and R = max{Ri : 1 ≤ i ≤ N}. Fix R0 ≥ 1+rΦ
1−rΦ

R and let
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X0 = BR0(x0). Then, for 1 ≤ i ≤ N and each x ∈ X0,

d(φi(x), x0) ≤ d(φi(x), xi) + d(xi, x0)

≤ rid(x, xi) +R

≤ rΦ(R +R0) +R

≤ R0.

Thus,

Φ(X0) ⊂ X0.

This implies that, for k > 1,

Φk(X0) ⊂ Φk−1(X0) ⊂ . . . ⊂ X0.

Define

Y =
∞⋂
k=1

Φk(X0).

Let k ≥ 1 and ψ ∈ Φk. For each y ∈ Y and n ≥ 1, there is a sequence {xnm} ⊂

Φn(X0) such that

y = lim
m→∞

xnm.

Thus,

ψ(y) = ψ( lim
m→∞

xnm) = lim
m→∞

ψ(xnm) ∈ Φk+n(X0).

This is true for every n ≥ 1, hence ψ(y) ∈ Y . By Lemma 3.2.1, Y contains the fixed

point for ψ. Thus, Y 6= ∅ and contains all of the fixed points for the functions in Φk

for each k ≥ 1.

Since Y is a closed subset of a complete metric space, it is complete as well.

To prove it is compact, we will show it is totally bounded.
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Given ε > 0, choose n ≥ 1 such that rnΦR0 < ε/4. Again, we have that

each y ∈ Y is the limit of a sequence {xnm} ⊂ Φn(X0). Choose an m such that

d(y, xnm) < ε/2; xnm = ψm(xm) for some ψm ∈ Φn and xm ∈ X0. Let ym ∈ Y be the

fixed point for ψm. Then,

d(y, ym) ≤ d(y, xnm) + d(xnm, ym)

≤ ε

2
+ rnΦd(xm, ym)

≤ ε

2
+ rnΦ2R0

< ε.

Thus, Y is covered by the collection of ε-balls around each of the fixed points of

functions in Φn. The covering is finite since there are finitely many functions in Φn,

each with a unique fixed point. Hence, Y is compact. Note that this argument also

implies that Y is the closure of the set of fixed points for the functions ψ ∈ Φk, k ≥ 1.

To complete the proof, we need to show that Φ(Y ) = Y . Clearly, Φ(Y ) ⊂ Y .

Let y ∈ Y . There is a sequence of fixed points ym converging to y. Let {ψm ∈ Φkm}

(without loss of generality km > 1) be a sequence of functions corresponding to the

fixed points ym. Each ψm = φjm ◦ ψ̃m for some φjm ∈ Φ and ψ̃m ∈ Φkm−1. By

passing to a subsequence if necessary, we may assume that there is a j ∈ {1, . . . , N}

such that jm = j for all m. Since {ψ̃m(ym)} ⊂ Y and Y is compact, we may pass

to a subsequence again and assume that the sequence {ψ̃m(ym)} converges to some

y′ ∈ Y . Thus,

y = lim
m→∞

ym = lim
m→∞

φj(ψ̃m(ym)) = φj(y
′).

Therefore, Y ⊂ Φ(Y ).
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Let YΦ be the unique invariant compact set with respect to Φ. We will show

that if µ is any invariant, Borel probability measure, its support must be YΦ. There-

fore, without loss of generality, the search for an invariant measure may be carried

out in M1(YΦ).

Lemma 3.2.2. Let µ be a Borel probability measure, invariant with respect to Φc.

Then suppµ = YΦ.

Proof. Let Y = supp(µ). Let U be an open set. If U ∩ Yi 6= ∅, φ−1
i (U) is an open

set which intersects Y . Then,

0 < µ(φ−1
i (U)) = µi(U),

implying that supp(µi) ⊃ Yi. Furthermore, if µi(U) = 0, then φ−1
i (U) ⊂ X \ Y .

This implies that U ⊂ X \ Yi. Thus, supp(µi) = Yi.

Also, for each i ∈ {1, . . . , N}, µi(Y ) has full measure by the invariance of µ.

Otherwise, we would have,

1 = µ(Y ) =
N∑
i=1

ciµi(Y ) <
N∑
i=1

ci = 1.

Thus, Y ⊃ Yi for 1 ≤ i ≤ N , and so Φ(Y ) ⊂ Y . It follows from Lemma 3.2.1 that

YΦ ⊂ Y .

For the reverse inclusion, fix R > 0 and consider

BR(YΦ) =
⋃
y∈YΦ

BR(y) .

Let x ∈ BR(YΦ). Choose y ∈ YΦ such that d(x, y) ≤ R. Then, for i = 1, 2 . . . , N ,

d(φi(x), φi(y)) ≤ rΦd(x, y) ≤ rΦR.
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Thus,

Φ(BR(YΦ)) ⊂ BrΦR(YΦ) ⊂ BR(YΦ),

and so

µ(Φ(BR(YΦ))) ≤ µ(BrΦR(YΦ)) ≤ µ(BR(YΦ)) .

We have that, for 1 ≤ i ≤ N , BR(YΦ) ⊂ φ−1
i (Φ(BR(YΦ))). Since µ is invariant,

µ(Φ(BR(YΦ)) =
N∑
i=1

ciµi(Φ(BR(YΦ))) ≥ µ(BR(YΦ))
N∑
i=1

ci = µ(BR(YΦ)).

Thus,

µ(Φ(BR(YΦ)) = µ(BrΦR(YΦ)) = µ(BR(YΦ)).

Using the same argument after the j-th iteration of Φ, we obtain that for each

j ≥ 1,

µ(BRj(YΦ)) = µ(BR(YΦ)), Rj = (rΦ)jR.

However, {BRj(YΦ)} is a decreasing sequence of sets whose intersection is YΦ. Thus,

µ(YΦ) = lim
j→∞

µ(BRj(YΦ)) = µ(BR(YΦ)).

Furthermore, this holds for any R > 0. Since µ is finite, letting R → ∞ gives us

that µ(YΦ) = 1. Since YΦ is closed and has full measure, Y ⊂ YΦ.

Therefore, suppµ = YΦ.

For the sake of completeness, we finish the proof for the existence of a unique

invariant measure.

Lemma 3.2.3. If (X, d) is a compact metric space. Then (M1(X), δ) is a complete

metric space.
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Proof. Clearly, δ is symmetric. We show that it defines a metric on M1(X) by

establishing the following 3 claims.

Claim 1: δ(µ, ν) <∞.

Let φ ∈ Lip1(X). Fix x0 ∈ X. Let φx0 be the constant function which sends

every point x to φ(x0). Note that µ(φx0) = ν(φx0). Since X is compact, there is an

R > 0 such that X ⊂ BR(x0). Thus,

|µ(φ)− ν(φ)| ≤ |µ(φ− φx0)|+ |ν(φ− φx0)|

≤ µ(d(x, x0)) + ν(d(x, x0))

≤ 2R.

Thus, δ(µ, ν) ≤ 2R.

Claim 2: δ(µ, ν) = 0 =⇒ µ = ν.

Let φ ∈ Lip(X) with Lipschitz constant r. Then φ/r ∈ Lip1(X). Hence,

µ(φ/r) = ν(φ/r), implying µ(φ) = ν(φ). By the Stone-Weierstrass Theorem, Lip(X)

is dense in C(X). Thus, µ(φ) = ν(φ) for every φ ∈ C(X). By the Riesz Represen-

tation Theorem, µ = ν.

Claim 3: δ(µ, ρ) ≤ δ(µ, ν) + δ(ν, ρ).

We have

sup
φ∈Lip1(X)

|µ(φ)− ρ(φ)| ≤ sup
φ∈Lip1(X)

(|µ(φ)− ν(φ)|+ |ν(φ)− ρ(φ)|)

≤ sup
φ∈Lip1(X)

|µ(φ)− ν(φ)|+ sup
φ∈Lip1(X)

|ν(φ)− ρ(φ)|.

Thus, δ is a metric. To see that it is complete, let {µn} be a Cauchy sequence.

Let φ ∈ Lip(X) with Lipschitz constant r. Then {µn(φ/r)} is a Cauchy sequence
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in C, implying that {µn(φ)} is a Cauchy sequence as well. Again, using the fact

that Lip(X) is dense in C(X), it follows that {µn(φ)} is a Cauchy sequence for each

φ ∈ C(X). Since C is complete, {µn(φ)} converges for each φ ∈ C.

Define

µ(φ) = lim
n→∞

µn(φ).

Then µ is a bounded linear functional on C(X). By the Riesz Representation

Theorem, µ ∈M(X). Moreover, µ is clearly positive and, since the constant function

1 ∈ C(X), it is a probability measure. Therefore, µ ∈M1(X) and δ(µ, µn)→ 0.

Theorem 3.2.2. Let Φ = {φ1, . . . , φN} be an iterated function system on a complete

metric space X. Given a probability vector c ∈ RN , there is a unique µ ∈ M1(X)

invariant with respect to Φc.

Proof. By Lemma 3.2.2, we may assume, without loss of generality, that X = YΦ.

That is, we may assume X is compact. We will show that Φc is a contraction

on (M1(X), δ). Since the metric space is complete, the result follows from the

Contraction Mapping Principle.

Let φ ∈ Lip1(X) and µ, ν ∈ M1(X). For 1 ≤ i ≤ N , the Lipschitz constant
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for φ ◦ φi is less than or equal to rΦ. Thus, φ ◦ φi/rΦ ∈ Lip1(X). Hence we have

|Φc(µ)(φ)− Φc(ν)(φ)| = |
N∑
i=1

ci(µ(φ ◦ φi)− ν(φ ◦ φi))|

= |
N∑
i=1

cirΦ(µ(φ ◦ φi/rΦ)− ν(φ ◦ φi/rΦ))|

≤ rΦδ(µ, ν)
N∑
i=1

ci

= rΦδ(µ, ν).

Therefore,

δ(Φc(µ),Φc(ν)) ≤ rΦδ(µ, ν).

3.2.2 Hausdorff Measures

In this section, we look at the relationship between invariant measures and

Hausdorff measures. The results of this section can be found in [19], [16], and [26].

The proofs were included for the benefit of the writer.

Definition 3.2.5 (Hausdorff measure). Let p ≥ 0 and q > 0. For Y ⊂ Rd, define

Hp,q(Y ) = inf{
∞∑
j=1

(diamEj)
p : Y ⊂

∞⋃
j=1

Ej, diamEj ≤ q}. (3.4)

Note that Hp,q increases as q gets smaller. Hence, the limit

Hp(Y ) = lim
q→0

Hp,q(Y ) (3.5)

exists, allowing the possibility it is infinite. For each p ≥ 0, Hp defines a regular

Borel measure on Rd, which we call the p-dimensional Hausdorff measure.
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Definition 3.2.6 (Hausdorff dimension). The p-dimensional Hausdorff measure of

any Y ⊂ Rd is equal to 0 or ∞ for most values of p. One can show that there is a

unique value of p in [0,∞] where Hp(Y ) transitions from 0 to ∞. This value, given

by

dimH(Y ) = inf{p ≥ 0 : Hp(Y ) = 0} = sup{p ≥ 0 : Hp(Y ) =∞}, (3.6)

is called the Hausdorff dimension of Y .

In this section, we will consider iterated function systems that consist solely

of functions of the form

φ : Rd → Rd, φ(x) = rU(x) + v (3.7)

where v ∈ Rd, r > 0, and U ∈ Od(R), the group of orthogonal matrices over Rd.

Such functions are called similitudes and satisfy

‖φ(x)− φ(y)‖ = r‖x− y‖, (3.8)

where ‖ · ‖ denotes the Euclidean norm on Rd. In fact, (3.8) is equivalent to (3.7).

Lemma 3.2.4. If φ is a similitude with Lipschitz constant rφ = r, then φ(Hp) =

r−pHp.

Proof. First, note that ‖φ(x)− φ(y)‖ = r‖x− y‖ for all x, y ∈ X. Thus, if E ⊂ X

with diam(E) = δ, then diam(φ−1(E)) = r−1δ.

LetA ⊂
⋃∞
j=1 Ej where diam(Ej) ≤ δ for each j. Then, φ−1(A) ⊂

⋃∞
j=1 φ

−1(Ej)

where diam(φ−1(Ej)) ≤ δr−1 for each j. Thus,

Hp,δ/r(φ
−1(A)) ≤

∞∑
j=1

diam(φ−1(Ej))
p = r−p

∞∑
j=1

(diam(Ej))
p.
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Taking the infimum over all such collections {Ej}, we have

Hp,δ/r(φ
−1(A)) ≤ r−pHp,δ(A);

letting δ go to zero gives

Hp(φ
−1(A)) ≤ r−pHp(A).

Since similitudes are surjective, we also have that, if φ−1(A) ⊂
⋃∞
j=1 Ej with

diam(Ej) ≤ δ for each j, then A ⊂
⋃∞
j=1 φ(Ej) where diam(φ(Ej)) ≤ rδ. A similar

argument yields

Hp(A) ≤ rpHp(φ
−1(A)).

Therefore, Hp(φ
−1(A)) = r−pHp(A).

Definition 3.2.7 (Self-similarity). A family of similitudes Φ = {φ1, . . . , φN} is

self-similar if Y = YΦ has the following properties:

• Hp(Y ) > 0, where p = dimH(Y ), and

• for i 6= j, Hp(Yi ∩ Yj) = 0.

A self-similar measure is an invariant measure with respect to a self-similar Φ.

Let DΦ > 0 be the unique value such that

N∑
i=1

rDΦ
i = 1.

We will see that the probability vector given by ci = rDΦ
i is a natural choice for a

self-similar iterated function system. We write the induced operator with this choice

of probability vector simply as Φ.

We will show that the following condition is sufficient for Φ to be self-similar.
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Definition 3.2.8 (Open set condition). Φ satisfies the open set condition if there

is an an open set U ⊂ Rd such that Φ(U) ⊂ U and Ui ∩ Uj = ∅ for each i 6= j.

Theorem 3.2.3 (Hutchinson, [26]). Let Φ be a family of similitudes satisfying the

open set condition. Then Φ is self-similar, dimH(YΦ) = DΦ, and µΦ is a constant

multiple of the Hausdorff measure restricted to YΦ.

To prove the theorem we will need the following lemma.

Lemma 3.2.5. Let a, b, R > 0. Suppose {Uα} is a collection of pairwise disjoint

open sets in Rd such that each Uα contains a ball of radius aR and is contained

in a ball of radius bR. Then, for every x ∈ Rd, Br(x) intersects no more than

(1 + 2b)da−d of the Uα.

Proof. By assumption, for each α, there exist xα, yα ∈ X such that

Bar(xα) ⊆ Uα ⊆ BAr(yα) .

Let x0 ∈ X. If x ∈ Br(x) ∩ Uα, then for each u ∈ Uα,

‖x0 − uα‖ ≤ ‖x0 − x‖+ ‖x− uα‖ ≤ r + 2Ar .

Thus, Uα ⊆ Br(1+2A)(x0). If Br(x0) intersects M of the Uα, then there are M disjoint

balls of radius ar inside of Br(1+2A)(x0). By adding their volumes we obtain,

M(ar)d ≤ rd(1 + 2A)d.

Rearranging gives,

M ≤ (1 + 2A)da−d.
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Proof of Theorem 3.2.3. Let Y = YΦ and D = DΦ.

Claim 1: HD(Y ) <∞

Let R = diam(Y ). Then, for ι ∈ In(N),

diam(Yι) ≤ R(rφ)n.

Let pn = R(rφ)n.

Then,

HD,pn(Y ) ≤
∑

ι∈In(N)

(diam(Yι))
D

= RD
∑

ι∈In(N)

n∏
j=1

rDij

= RD(
N∑
i=1

rDi )n

= RD .

As n→∞, pn → 0 and so the above inequality implies that HD(Y ) ≤ RD <∞.

Claim 2: HD(Y ) > 0

To find a lower bound for HD(Y ), we will use Lemma 3.2.5. Let a and A be positive

numbers such that U , the open set satisfying the Definition 3.2.8, contains a ball of

radius a/rΦ and is contained in a ball of radius A. Let C = (1 + 2A)da−d.

Let {Ej} be a collection of sets covering Y , each with diameter less than or

equal to 1. Let Rj = diam(Ej) and choose a point xj from each set Ej. Then we

have

Y ⊂
∞⋃
j=1

Ej ⊂
∞⋃
j=1

BRj(xj) .
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The result follows from showing that for each x ∈ X and sufficiently small r > 0 we

have that µΦ(Br(x)) ≤ CrD. If so, then

1 = µ(Y ) ≤
∞∑
j=1

µ(BRj(xj)) ≤ C
∞∑
j=1

RD
j .

Taking the infimum over all such coverings of Y gives us that

HD(Y ) ≥ HD,1(Y ) ≥ 1

C
.

Fix 1 ≥ r > 0 and let j be the unique positive integer for which rΦr ≤ (rΦ)j <

r. Let I ⊂
⋃j+1
k=1 I

k(N) be the collection of indices satisfying rΦr ≤ ri1ri2 . . . rik < r.

Then for each ι ∈ Ij+1(N), there is a unique ι̃ ∈ I such that Uι ⊂ Uι̃. In particular,

ι̃ ∈ Ik(N) for some k ∈ (1, . . . , j + 1). Thus

Y ⊂
⋃

Ij+1(N)

U ι ⊂
⋃
I

U ι̃ .

Moreover, {Uι̃ : ι̃ ∈ I} is a pairwise disjoint collection of open sets; for ι̃ ∈ Ik(N), Uι̃

contains a ball of radius greater than ar and is contained in a ball of radius Ar, by

our choice of a and A. Thus, each Uι̃ contains a ball of radius ar and is contained

in a ball of radius Ar. By Lemma 3.2.5, Br(x) can intersect at most C of the Uι̃,

and so it can intersect at most C of their closures.

Consider the iterated function system Φ̃ = {φι̃ : ι̃ ∈ I}. We claim that µΦ is

invariant with respect to Φ̃.

Let µ = µΦ. Since µ is invariant with respect to Φ we have

µ =
∑

ι∈Ij+1(N)

(
j+1∏
k=1

rik

)D

µι .
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Sorting by indices in I and factoring gives

µ =
∑
ι̃∈I

rDi1r
D
i2
. . . rDik

( ∑
ι∈Ij+1−k

rDl1 r
D
l2
. . . rDlj+1−k

µι

)
ι̃

=
∑
ι̃∈I

rDi1r
D
i2
. . . rDikµι̃ .

Thus,

µ(Br(x)) =
∑
ι̃∈I

rDi1r
D
i2
. . . rDikµι̃(Br(x))

≤ rD
∑
ι̃∈I

µι̃(Br(x))

≤ CrD.

The last inequality holds since Br(x) intersects at most C of the U ι̃, and hence at

most C of the supports for the µι̃.

Claim 3: The restriction of HD to Y is invariant with respect to Φ

By Lemma 3.2.4,
N∑
i=1

HD(Yi) =
N∑
i=1

rDi HD(Y ) = HD(Y ).

Thus, Φ is self-similar, i.e., HD(Yi ∩ Yj) = 0 for i 6= j.

Let E ⊂ Y . Together, self-similarity and Lemma 3.2.4 imply

HD(E) =
N∑
i=1

HD(E ∩ Yi)

=
N∑
i=1

rDi (HD)i(E).
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3.2.3 Cantor Measures

A Cantor measure is a Borel measure whose support is a Cantor set, i.e.,

a perfect, nowhere dense set. The class of self-similar measures provides many

examples of Cantor measures. The open set condition is not quite strong enough to

guarantee that the invariant measure is supported by a Cantor set. For example,

consider

Φ = {1

2
x,

1

2
(x+ 1)}, c1 = c2 =

1

2

on R. Taking U = (0, 1), it is clear that Φ satisfies the open set condition, but µΦ

is the restriction of Lebesgue measure to the unit interval.

However, if we assume that Φ separates its invariant set, and not just some

open set, we obtain the following.

Proposition 3.2.6. Let Φ = {φ1, . . . , φN}, N > 1, be an iterated function system.

Suppose that for Y = YΦ,

Yi ∩ Yj = ∅, i 6= j.

Then µΦ is a Cantor measure.

Proof. Suppose Y contains an isolated point y0. In our proof of Theorem 3.2.1, we

noted that Y is the closure of the set of fixed points for functions in Φn for some

n. Thus y0 must be the unique fixed point for some similitude φ ∈ Φn. If y is any

other point in Y , φk(y)→ y0 as k →∞. Hence we must have that Y consists solely

of y0. This contradicts our assumption that N > 1 and Φ separates Y . Therefore,

Y contains no isolated points.

66



Moreover, the separation condition implies

Y =
⋃

ι∈I(n)

Yι

is a disjoint union as well. Hence, if BR(x) is contained in Y , for each n > 0 , it

must lie in Yι for some ι ∈ I(n). However,

diam(Yι) ≤ (rΦ)n diam(Y )→ 0, as n→∞.

Therefore, Y is nowhere dense.

In [31], Kahane and Salem take a different approach to constructing measures

on Cantor sets. The Cantor sets themselves are built on R by means of repeated

dissection. Associated with each resulting set Y is a continuous, monitonically

increasing function κY : R → [0, 1]. These κY , called Cantor-Lebesgue functions,

are fashioned so they increase only at the points of Y . Everywhere else they remain

constant. Riemann-Stieltjes integration of continuous functions against κY produces

(by the Riesz Representation Theorem) a finite Borel measure whose support is Y .

Definition 3.2.9 (Perfect Homogeneous Sets). Their construction begins with an

interval [a, b] of length l. Fix an integer N ≥ 2 and select x1, x2, . . . , xN ∈ [0, 1) such

that 0 ≤ x1 < x2 < . . . < xN < 1. Let r > 0 satisfy r ≤ 1− xN and r < xn − xn−1

for 1 ≤ n < N . The first step of the dissection is to take N disjoint subintervals of

length lr from [a, b] of the form [a+ lxj, a+ l(xj+r)]. Their union is written Y1. The

same operation is then performed on the N intervals of Y1 resulting in N2 disjoint

intervals of length lr2 whose union we denote Y2. Proceeding in this manner, at the

67



m-th step, Ym is the disjoint union of Nm intervals of length lrm. Explicitly,

Ym =
⋃

[a+ l

m∑
k=1

xjkr
k−1, a+ l(rm +

m∑
k=1

xjkr
k−1)],

where the union is taken over all (j1, j2, . . . , jm) ∈ Im(N).

Finally, let Y be the intersection of the Ym. Sets resulting from such a construc-

tion are dubbed perfect homogeneous set of type (a, l, x1, x2, . . . , xN , r) by Kahane

and Salem, referring to the fact that the same ratio of dissection, r, is used at each

step.

Definition 3.2.10 (Cantor-Lebesgue Function). To construct κY , define a sequence

of functions {κm}∞m=1 satisfying the following:

1. κm is 0 for x ≤ a and 1 for x ≥ b;

2. if the intervals of Ym are numbered from left to right, κm increases linearly on

the k-th interval from (k − 1)N−m to kN−m;

3. κm is constant on the remaining intervals, taking the values needed to make

it continuous.

Note that if m < n,

∀x ∈ [a, b], |κm(x)− κn(x)| ≤ 1

Nm
.

Hence, κm converges uniformly on R. We define κY to be the limit of {κm}. Then,

κY ∈ C(R).

If x ∈ [a, b] \ Y , then κY (x) = κm(x), where m is the smallest integer such
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that x /∈ Ym. Each x ∈ Y can be written as

y = a+ l

∞∑
m=1

xjmr
m−1, jm ∈ {1, 2, . . . , N}. (3.9)

The partial sums of (3.9), which we write as yn, gives the unique sequence of left

endpoints of intervals containing x from each step. Thus,

κY (y) = lim
n→∞

κm(yn) =
∞∑
m=1

(jm − 1)N−m.

Riemann-Stieltjes integration of continuous functions against κY defines a pos-

itive linear functional on C([a, b]). By the Riesz Representation Theorem, there is

a unique Borel measure µκY with support in [a, b] such that for each f ∈ C([a, b]),

b∫
a

fdκY =

∫
fdµκY .

Notice that the Riemann-Stieltjes integral vanishes for any f ∈ C([a, b]) whose

support lies in an open interval disjoint from Y since κY is constant on such intervals.

On the other hand, for a nonnegative f ∈ C([a, b]) whose support lies in an open

interval intersecting Y , we must have that
∫ b
a
fdκY > 0. This implies that suppµκY

is precisely Y , and hence, is a Cantor measure. We will call this class of Cantor

measures, perfect homogeneous measures.

Moreover, since the integration by parts formula holds for Riemann-Stieltjes

integration, it follows that the perfect homogeneous measures can also be thought

of as the distributional derivatives of the Cantor-Lebesgue functions.

The Fourier-Stieltjes transform of µκY is given by

µ̂κY (γ) =

∫
e−2πiγxdµκY =

b∫
a

e−2πiγxdκY .
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Using the fact that κY increases by N−m over successive left endpoints of Ym, we

obtain the following approximation for µ̂Y :

µ̂κY (γ) ∼ N−me−2πiγa
∑m−1∏

k=0

e−2πiγlxjkr
m−1

,

where the sum is taken over all Nm indices (j1, j2, . . . , jm) ∈ Im(N). Rewriting this

as the product of sums gives

µ̂κY (γ) ∼ e−2πiγa

m−1∏
k=0

(N−1

N∑
j=1

e−2πiγlxjr
k

).

Letting m→∞, we have

µ̂κY (γ) = e−2πiγa

∞∏
k=0

(N−1

N∑
j=1

e−2πiγlxjr
k

).

The product converges pointwise since the modulus of each term is clearly less than

or equal to 1.

We construct an iterated function system Φ whose invariant measure has the

same Fourier-Stieltjes transform as µκY . By the uniqueness of the transform, the

two measures will be the same.

With the construction of Y in mind, define the following family of similitudes.

For 1 ≤ j ≤ N , let

φj(x) = r(x− a) + a+ lxj, Φ = {φ1, . . . , φN}.

Note that

Ym =
⋃

ι∈Im(N)

φι([a, b]).
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Moreover, letting µ = µΦ, iteratively using the invariance of µ gives

µ̂(γ) = µ(e−2πiγx)

= µ̂(rγ)e−2πiγ(1−r)a(N−1

N∑
j=1

e−2πiγlxj)

= µ̂(r2γ)e−2πiγ(r−r2)ae−2πiγ(1−r)a(N−1

N∑
j=1

e−2πiγlxjr)(N−1

N∑
j=1

e−2πiγlxj)

= µ̂(r2γ)e−2πiγ(1−r2)a(N−1

N∑
j=1

e−2πiγlxjr)(N−1

N∑
j=1

e−2πiγlxj)

=
...

= µ̂(rmγ)e−2πiγ(1−rm)a

m−1∏
k=0

(N−1

N∑
j=1

e−2πiγlxjr
k

)

Since r < 1 and µ has total mass 1, limm→∞ µ̂(rmγ) = µ̂(0) = 1. Letting m → ∞

above then yields

µ̂(γ) = e−2πiγa

∞∏
k=0

(N−1

N∑
j=1

e−2πiγlxjr
k

) .

Thus we have proved the following.

Theorem 3.2.4. Let µκY be the Cantor measure associated with the perfect homo-

geneous set of type (a, l, x1, x2, . . . , xN , r). Then µκY is the unique Borel probability

measure invariant under the iterated function system Φ = {φ1, . . . , φN}, where for

1 ≤ j ≤ N , φj(x) = r(x− a) + a+ lxj.

3.2.4 Haar Measures on Cantor Sets

In this section, we consider only iterated function systems Φ = {φ1, . . . , φN}

which separate their invariant set, as in Proposition 3.2.6. We will show that a
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group structure can be induced on YΦ such that the invariant measure associated

with the equal weight probability vector is a Haar measure.

Let QN be the space {0, . . . , N − 1}N endowed with the product topology. By

Tychonoff’s theorem, this topology makes QN a compact space. Also, note that

each q ∈ QN has a neighborhood basis consisting of simple cylinders, i.e. sets of the

form

Cm(q) = {u ∈ QN : ui = qi, 1 ≤ i ≤ m}.

Lemma 3.2.7. Every open set U ⊂ QN can be written as the pairwise disjoint,

countable union of simple cylinders.

Proof. For each q ∈ U , let C(q) be the largest simple cylinder around q contained

in U . Then

U =
⋃
q∈U

C(q).

Since QN is second countable, this cover of U has a countable subcover. Further-

more, it is clear from the definition of simple cylinders that C(q) ∩ C(q′) 6= ∅ if

and only if one is contained in the other. Thus, by passing to a second subcover if

necessary, there exists a sequence {qk : k ∈ N} ⊂ U such that

U =
∞⋃
k=1

C(qk)

and the union is pairwise disjoint.

Lemma 3.2.8. YΦ is homeomorphic to QN .

Proof. Let Y = YΦ. Since Φ separates Y , for each y ∈ Y , there is a unique sequence
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of indices ιk ∈ Ik(N) such that y ∈ Yιk . Hence, the function

π : QN → Y, q 7→
∞⋂
k=1

Yqk...q1

provides a bijection between QN and Y .

The assumption that Φ separates Y also implies that {Yqk...q1 : k ∈ N} is a

neighborhood basis for π(q). Thus, to show that π is continuous, it suffices to show

that each π−1(Yqk...q1) is open. But,

π−1(Yqk...q1) = Ck(q).

A continuous bijection from a compact set to a Hausdorff space is a homeomorphism.

Therefore, π is a homeomorphism.

Addition on QN is defined inductively. For q1, q2 ∈ QN ,

(q1 + q2)(1) = (q1(1) + q2(1))(mod N)

(q1 + q2)(k) = (q1(k) + q2(k))(mod N) +

⌊
q1(k − 1) + q2(k − 1)

N

⌋
, k > 1.

where b·c rounds down to the nearest integer. Plainly stated, the group structure

on QN is given by long addition. Working from left to right, we add entrywise,

carrying the one where necessary.

With this definition of addition, QN is a compact, abelian topological group.

Namely, it is ZN , the N -adic integers.

Theorem 3.2.5. Let ν be the Haar measure on ZN , normalized so that ν(ZN) = 1.

Then µΦ = π(ν).
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Proof. Let µ = µΦ and Y = YΦ. Since π is a homeomorphism, it suffices to show

that the pullback of µ, π−1(µ), is translation invariant on ZN . From the preceding

lemmas, it follows that it is sufficient to check translation invariance for simple

cylinders.

Fix u ∈ QN and m ∈ N. Then

∀q ∈ QN , q + Cm(u) = Cm(q + u).

However, for every simple cylinder of the form Cm(q), π(Cm(q)) = Yq(1)...q(m). The

Φ invariance of µ implies that

µ(Yq(1)...q(m)) =
1

Nm

∑
ι∈Im(N)

µι(Yq(1)...q(m)).

We assumed that Φ separates Y . Hence, for every m ∈ N,

Y =
⋃

ι∈Im(N)

Yι

is a pairwise disjoint union. This implies µι(Yq(1)...q(m)) 6= 0 if and only if ι =

(q(1), . . . , q(m)). Furthermore, µι(Yι) = µ(Y ) = 1. Therfore, it follows that

∀q ∈ QN , π
−1(µ)(Cm(q)) = µ(Yq(1)...q(m)) =

1

Nm
.

Since ZN is a compact abelian group, its dual group, ẐN , is an orthonormal

basis for L2(ZN). The previous theorem allows us to push this orthonormal basis

forward into L2(µΦ), giving us the following useful corollary.

Corollary 3.2.6. Let {εp : p ∈ ẐN} be the characters for ZN . Then {εp ◦ π−1} is

an orthonormal basis for L2(µΦ).
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3.3 Spectral Properties of the Middle-Third Cantor Measure

As mentioned before, in general, singular measures provide little to work with,

turning the most basic questions from the classical setting of PWΩ into very difficult

problems. To gain any insight into the problem, it is useful to work with measures

that provide enough structure for one to get their hands dirty with computations.

The class of self-similar measures provides such a structure.

The interest in the spectral properties of self-similar measure began with a

surprising result from Jorgensen and Pedersen.

Theorem 3.3.1 (Jorgensen and Pedersen, [30]). Let Φ = {1
4
x, 1

4
(x + 2)}. The set

S ⊂ R consisting of all finite sums of the form

N−1∑
k=0

ck4
k, ck ∈ {0, 1}

generates a Fourier basis for L2(µΦ).

Numerous papers have subsequently been written on this family of measures,

though, all have fallen short when it comes to understanding the spectral properties

of the middle-third Cantor measure. We too will come up short in this section.

However, we will provide some first steps, including an outline for constructing

Bessel spectra.

3.3.1 Basic Facts

For the remainder of the section, unless stated otherwise, µ will be the middle-

third Cantor measure and Ω = suppµ will be the middle-third Cantor set. We begin
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by establishing some well known properties of µ.

First, we note that, from our work in Section 3.2, there are three different

ways of thinking of µ:

• As the invariant measure for Φ = {1
3
γ, 1

3
(γ + 2)}.

• As the distributional derivative of κ1/3, the Cantor-Lebesgue function for the

middle-third Cantor set.

• As the pushforward of Haar measure on the 2-adic integers.

These are certainly not the only ways of thinking about µ. For example, µ is also a

member of the class of Bernoulli convolutions, for which their is an extensive body

of research.

We can also compute the Fourier-Stieltjes transform of µ using our computa-

tions in Section 3.2.3:

The method of repeated dissection provides the familiar construction of Ω:

Ω0 = [0, 1]

Ω1 = [0,
1

3
] ∪ [

2

3
, 1]

...

Ωk =
2k−1⋃
j=0

Ωk
j , where Ωk

j = [ωj, ωj + 3−k] and ωj = 2
l∑

n=1

cj(n)3−j, cj(n) ∈ {0, 1}

Ω =
∞⋂
k=0

Ωk
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Thus,

µ̂(x) =
∞∏
k=1

(
1

2

(
1 + e−2πix 2

3k

))

= e−2πix(
∑∞
k=1 3−k)

∞∏
k=1

cos(
2πix

3k
)

= e−πix
∞∏
k=1

cos(
2πix

3k
) (3.10)

Proposition 3.3.1. µ̂ is an entire function of type 2π.

Proof. For z ∈ C we have,

|µ̂(z)| = |
∫
e−2πizωdµ(ω)|

≤
∫
e2π|z|ωdµ(ω)

≤ e2π|z|

since Ω ⊂ [0, 1].

Also, if c is any closed curve in C, we have∫
c

∫
e−2πizωdµ(ω)dz =

∫ ∫
c

e−2πizωdzdµ(ω) = 0.

Hence by Morera’s theorem µ̂ is entire.

Definition 3.3.1. The set

Z(µ̂) = {z ∈ C : µ̂(z) = 0}

is the zero set for µ̂.

The zero set is an important object of study for both entire functions and

spectral measures. For instance, we have the following simple necessary condition

for any S to be a Fourier spectrum for a given measure µ.
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Proposition 3.3.2. Let S be a Fourier spectrum for µ. Then

S − S ⊂ Z(µ̂).

Proof. This is simply a restatement of the requirement that S generate an orthogonal

set in L2(µ):

ν̂(s′ − s) = 〈es, es′〉µ = 0.

By computing the zero set for the middle-third µ, this simple criterion will

show that it cannot be a Fourier measure.

Lemma 3.3.3.

Z(µ̂) = {(2k + 1)3k

4
: k ∈ Z, j ∈ N}

.

Proof. The set of zeros described is precisely the set of all zeros of functions of the

form cos(2πz
3k

). Hence, the result will follow from showing that if µ̂(z) = 0, then

there is an N such that
N∏
k=1

cos(
2πz

3k
) = 0. (3.11)

Since µ̂(0) = 1, there is a neighborhood, U , of the origin in C such that

|µ̂(z)| ≥ c > 0 for all points z ∈ U . For any z ∈ C, there is an N > 0 such that

z3−N ∈ U and so µ̂(z3−N) ≥ c. If (3.11) never vanishes for z,

µ̂(z) = ec0=(z)

(
N∏
j=1

∣∣∣∣cos

(
2πz

3j

)∣∣∣∣
)
µ̂(

z

3N
),

where c0 ∈ R is the appropriate constant. Hence, if (3.11) does not equal 0, µ̂(z) >

0.
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Proposition 3.3.4. Any set S ⊂ R such that E(S) consists of mutually orthogonal

functions in L2(µ) contains at most 2 elements.

Proof. Suppose S contains 3 distinct members. Then there exist k, n ∈ Z and

m ≥ j ∈ N such that

s1 − s2 =
(2k + 1)3j

4
, and s2 − s3 =

(2n+ 1)3m

4
.

Then

s1 − s3 = (s1 − s2) + (s2 − s3) = (2k + 1 + (2n+ 1)3m−j)
3j

4
.

But

(2k + 2n3m−j + 3m−j + 1) ∈ 2Z.

This contradicts Lemma 3.3.3.

3.3.2 Constructing Spectra

Not until recently was any real progress made in understanding the spectral

properties of µ. In [15], it was shown that Bessel spectra exist. While their proof

provides significant insight into the necessary structure of Bessel spectra, it not quite

constructive. Our main goal in this section is to present a simple avenue through

which construction might be achieved.

First, we make the simple observation that, when constructing Bessel spectra,

one must avoid what we call lacunary harmonics.

Definition 3.3.2. For each (x, n) ∈ R× Z, define

L(x, n) = {xj = x+ n3j : j ∈ Z}.
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Proposition 3.3.5. If S is a Bessel spectra for L2(µ), then, for each (x, n) ∈ R×Z,

card(S ∩ L(x, n)) <∞.

Proof. Let J be the set of indices for the xj ∈ L(x, n) ∩ S. Since S is a Bessel

spectrum for µ, there is a B > 0 such that ∀x ∈ R,

∑
s∈S

|µ̂(s− x)|2 ≤ B.

Therefore,

∑
j∈J

∞∏
k=1

cos2

(
2π(xj − x)

3k

)
=
∑
j∈J

∞∏
k=1

cos2

(
2πn

3k

)
≤ B.

Thus,

card(L(x, n) ∩ S) = card(J) ≤ B

|µ̂(n)|2
<∞.

Our approach is motivated by the various constructions of the Cantor set

and its measure. In each case, the object was attained as the limit of a sequence

of operations performed on some known quantity. A natural question is to ask if

spectra can be constructed in a similar manner. We call this the limiting approach

and establish its viability for constructing Bessel spectra in the following theorem.

Theorem 3.3.2. Let {µk : k ∈ N} be a sequence of probability measures with support

in [−R,R] for some 1 ≤ M < ∞. Suppose that the sequence converges to µ in the

weak-∗ topology. For each k, let

Sk = {skj : j ∈ Ik ⊂ Z}
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be a Bessel spectrum for µk with bound Bk. Assume that the sequences have been

indexed in such a way that Ik ⊆ Ik+1. Let I = ∪Ik. Suppose that

i. for each j ∈ I, lim
k→∞

skj exists, and

ii. lim inf
k→∞

Bk <∞.

Let

sj = lim
k→∞

skj .

Then S = {sj}j∈I is a Bessel spectrum for µ.

First, we need the following lemma. It is a specific case of a well known fact

about frames in Hilbert spaces [9].

Lemma 3.3.6. To show that S is a frame spectrum for L2(µ), it suffices to show

that the frame inequality holds for a dense set of functions.

Proof. Let C be a dense subset of L2(µ) and let LS : C → l2(S) be the linear operator

defined by LS(φ) = {〈φ, es〉µ : s ∈ S}. The upper frame bound gives us that

‖LS(φ)‖2
2 ≤ B‖φ‖2

µ,∀φ ∈ C.

Hence, LS is a bounded linear operator on C. Since C is dense in L2(µ), L can

be uniquely extended to a bounded linear operator defined on all of L2(µ).

Fix φ ∈ L2(µ). Choose a sequence {φn} ⊂ C converging to φ. Then,

∑
s∈S

|〈φ, es〉µ|2 ≤ lim inf
n→∞

‖LS(φn)‖2
2

≤ lim inf
n→∞

B‖φn‖2
µ

= B‖φ‖2
µ.
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Thus,

LS(φ) = {〈φ, es〉µ : s ∈ S}.

Moreover, by the continuity of LS,

A‖φ‖2
µ = A lim

n→∞
‖φn‖2

µ

≤ lim
n→∞

‖LS(φn)‖2
2

= ‖LS(φ)‖2
2.

Therefore, the frame inequality is satisfied for every φ ∈ L2(µ).

Proof of Theorem 3.3.2. Fix φ ∈ C([−R,R]). Let LSk(φ) : I → C be the sequence

defined by

LSk(φ)(j) =


〈φ, eskj 〉µk if j ∈ Ik

0 if j /∈ Ik

Let j ∈ I. For sufficiently large k,

|〈φ, eskj 〉µk − 〈φ, esj〉µ| ≤ |〈φ, eskj − esj〉µk |+ |〈φ, esj〉µk − 〈φ, esj〉µ|.

Let M = ‖φ‖∞. Then,

|〈φ, eskj − esj〉µk | ≤M max
[−R,R]

|eskj (x)− esj(x)|

≤ 2πMR|skj − sj| → 0.

Additionally,

|〈φ, esj〉µk − 〈φ, esj〉µ| → 0

since µk
w∗−→ µ. Thus, LSkφ→ LS(φ) pointwise on I.
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Hence,

‖LS(φ)‖2
2 ≤ lim inf

k→∞
‖LSk(φ)‖2

2 ≤ lim inf
k→∞

Bk‖φ‖2
µk

= B‖f‖2
µ.

Therefore, by Lemma 3.3.6 and the fact that C([−R,R]) is dense in L2(µ) , S is a

Bessel spectra for µ.

Normalizing the sets in the construction of Ω provides a sequence of measures

inM1(R) useful for computing integrals in L2(µ). For k ∈ N0, let νk be the restriction

of Lebesgue measure to Ωk and let µk =
(

3
2

)k
νk.

Proposition 3.3.7. The sequence of measures {µk} converge to µ in the weak-∗

topology.

Proof. Consider a step function of the form

φ(x) =
2N∑
j=1

cj1ΩNj
(x), cj ∈ C.

For k ≥ N , µk(Ω
N
j ) =

1

2N
= µ(ΩN

j ). Thus, for k ≥ N ,

µk(φ) =
2N∑
j=1

cjµk(Ω
N
j ) =

2N∑
j=1

cjµ(ΩN
j ) = µ(φ).

Let ψ ∈ C([0, 1]) and define

ψN(x) =
2N∑
j=1

ψ(aj)1KN
j

(x).

Since ψ is uniformly continuous on [0, 1], we can choose N large enough so that

|ψ(x)− ψN(x)| < ε on ΩN . Thus, for k ≥ N ,

|µk(ψ)− µ(ψ)| ≤ |µk(ψ)− µk(ψN)|+ |µk(ψN)− µ(ψN)|+ |µ(ψN)− µ(ψ)|

= |µk(ψ − ψN)|+ |µ(ψ − ψN)| < 2ε.

Therefore, µk(ψ)→ µ(ψ).
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The middle-third IFS provides many examples of sequences of measures con-

verging to µ in the weak-∗ topology. For any probability measure ν with support

in [0, 1], we have Φk(ν)
w∗−→ µ. In fact, Proposition 3.3.7 can be reformulated in this

way, since Φk(µ0) = µk.

We use Proposition 3.3.7 for the following computation.

Proposition 3.3.8. Let χ(γ) =
∑2m

k=1 ck1Ωmk
(γ). Then

|〈χ, ex〉µ| =
1

2m
|µ̂(

x

3m
)||

2m∑
k=1

ckex(ωk)| (3.12)

and

‖χ‖2
µ =

1

2m

2m∑
k=1

|ck|2. (3.13)

Proof. (3.13) is straightforward since

‖χ‖2
µ =

∫
|χ(γ)|2dµ =

2m∑
k=1

|ck|2µ(Ωm
k ) =

1

2m

2m∑
k=1

|ck|2.

Define µn as in Proposition 3.3.7. For j ∈ N, let n = m+ j. Then

|〈χ, ex〉µn| =

∣∣∣∣∣∣∣
(

3

2

)n 2m∑
k=1

ck

2j∑
l=1

ωkl +3−n∫
ωkl

ex(γ)dγ

∣∣∣∣∣∣∣
where the ωkl are the 2j left endpoints of the Ωn

l ⊂ Ωm
k . Letting ωk be the left

endpoint of Ωm
k we have that

ωkl = ωk + 2

j∑
i=1

cl(i)

3m+i
, cl ∈ {0, 1}j
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Thus,

|〈χ, ex〉µn| =

∣∣∣∣∣∣
(

3

2

)n 2m∑
k=1

ck

2j∑
l=1

ex(ω
k
l + 3−n)− ex(ωkl )

2πx

∣∣∣∣∣∣
=

∣∣∣∣ 3nπx sin
(πx

3n

)∣∣∣∣
∣∣∣∣∣∣ 1

2n

2m∑
k=1

ck

2j∑
l=1

ex(ω
k
l )

∣∣∣∣∣∣
=

∣∣∣∣ 3nπx sin
(πx

3n

)∣∣∣∣
∣∣∣∣∣ 1

2m

2m∑
k=1

ckex(ωk)

∣∣∣∣∣
∣∣∣∣∣∣ 1

2j

2j∑
l=1

j∏
i=1

ex

(
2cl(i)

3m+i

)∣∣∣∣∣∣
=

∣∣∣∣ 3nπx sin
(πx

3n

)∣∣∣∣
∣∣∣∣∣ 1

2m

2m∑
k=1

ckex(ωk)

∣∣∣∣∣
∣∣∣∣∣
j∏
i=1

1 + ex
(

2
3m+i

)
2

∣∣∣∣∣
=

∣∣∣∣ 3nπx sin
(πx

3n

)∣∣∣∣
∣∣∣∣∣ 1

2m

2m∑
k=1

ckex(ωk)

∣∣∣∣∣
∣∣∣∣∣
j∏
i=1

cos(
2πx

3m+i
)

∣∣∣∣∣
Taking the limit as j →∞, we have

|〈χ, ex〉µ| =

∣∣∣∣∣ 1

2m

2m∑
k=1

ckex(ωk)

∣∣∣∣∣
∣∣∣∣∣
∞∏
i=1

cos

(
2πx

3m+i

)∣∣∣∣∣ .

The class of simple functions given in Proposition 3.3.8 provides a useful tool

for the analysis of µ. Because of the totally disconnected structure of µ, this class

of functions is dense in all of L2(µ). Hence, they provide a nice computational step

towards constructing Bessel and frame sequences in L2(µ).

Note that by taking a finite set SN ⊂ S, we have

N∑
n=1

|〈χ, esn〉µ|2 =
N∑
n=1

∣∣∣∣∣ 1

2m

2m∑
k=1

ckesn(ωk)

∣∣∣∣∣
2 ∣∣∣∣∣
∞∏
i=1

cos

(
2πsn
3m+i

)∣∣∣∣∣
2

≤ 1

4m

N∑
n=1

∣∣∣∣∣
2m∑
k=1

ckesn(ωk)

∣∣∣∣∣
2

=
‖Tc‖2

4m
,
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where

T = (esn(ωk)) ∈MN,2m(C). (3.14)

Thus, the problem of constructing Bessel spectra can be reduced to the prob-

lem of constructing a family of matrices of type (3.14) in such a way that the matrix

norms can be controlled.

The following proposition shows that simply requiring T to be injective is

enough to yield Fourier frames in L2(µm).

Proposition 3.3.9. Let N ≥ 2m and choose {sn}Nn=1 ⊂ R such that

T =
(
esn(ωk)

)
∈MN,2m(C)

is 1:1. Then

S =
N⋃
n=1

{sn + 3mZ}

is a frame spectrum for L2(µm).

Proof. Since T is 1:1, there exist A, B > 0 such that

∀v ∈ C2l , A‖v‖2 ≤ ‖Tv‖2 ≤ B‖v‖2.

Fix φ ∈ L2(µl). Let φj(x) = φ(x + aj) and vx = 〈φj(x)〉2mj=1. For each n,
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E(sn + 3mZ) is an orthonormal basis for L2([0, 3−m]). Thus,

N∑
n=1

∑
j∈Z

|〈φ, esn+j3m〉µm|2 =
N∑
n=1

∑
j∈Z

∣∣∣∣∣∣
(

3

2

)m 2m∑
l=1

ωl+3−m∫
ωl

φ(ω)esn+j3m(ω)dω

∣∣∣∣∣∣
2

=
N∑
n=1

∑
j∈Z

|3m
3−m∫
0

(
2−m

2m∑
l=1

φl(ω)esn(ωl)

)
esn+j3m(ω)dω|2

=
N∑
n=1

(
3

4

)m 3−m∫
0

|
2m∑
l=1

φl(ω)esn(ωl)|2dω

=

(
3

4

)m 3−m∫
0

‖Tvx‖2dx

≤ B

(
3

4

)m 3−m∫
0

‖vx‖2dx

=
B

2m
‖φ‖µm

The lower frame bound follows similarly.

Using more technical machinery, it has been shown that when N = 2m the

same condition implies that S will generate a Riesz basis when Ω is the finite disjoint

union of equal length intervals, spaced regularly in R [7].

Finally, in [14], the authors showed that the geometry of self-similar measures

manifests itself in the spectral properties in an intriguing manner. They showed that

the Hausdorff dimension of the support of the measure will place certain restrictions

on the dimension of the spectra.

Definition 3.3.3. The upper and lower α-Beurling density of a discrete S ⊂ R are
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given by

D+
α (S) = lim sup

r→∞
sup
x∈R

card(S ∩Qr(x))

rα
(3.15)

D−α (S) = lim inf
r→∞

inf
x∈R

card(S ∩Qr(x))

rα
(3.16)

The upper and lower Beurling dimension of S is defined by

Dim+(S) = sup{α > 0 : D+
α > 0}

Dim−(S) = inf{α <∞ : D−α <∞}

The notion of Beurling dimension was introduced in [10] where they used it

to classify families of Gabor pseudoframes.

In [14], it was shown that the Beurling dimension of a Bessel spectrum cannot

exceed the Hausdorff dimension of suppµ. They also showed that if a frame spec-

trum satisfies a certain technical condition, its Beurling dimension must equal the

Hausdorff dimension.

We provide a simple proof of the result for Bessel spectra of the middle-third

Cantor measure using our computation in Lemma 3.3.8.

Theorem 3.3.3. Let S be a Bessel spectrum for µ and let α = log3 2. Then

D+
α (S) <∞. (3.17)

Proof. Suppose D+
α (S) =∞. Then given N > 0, there is an r0 > 0 such that

∀R ≥ r0, ∃x0 ∈ R : card(S ∩BR(x)) ≥ NRα. (3.18)

Since µ̂(0) = 1, given C ∈ (0, 1), there is an R0 > 0 such that µ̂(x) ≥ C for

every x ∈ BR0(0).
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Choose m ∈ N such that 3mR0 ≥ r0. Let x0 ∈ R satisfy (3.18) for R = 3mR0.

Let χ(γ) = ex0(γ)1[0,3−m](γ). If B > 0 is the Bessel bound for S, then

B

2m
= B‖χ‖2

µ ≥
∑
s∈S

|〈χ, es〉µ|2

=
∑
s∈S

1

4m
|µ̂(

s− x0

3m
)|2

≥ 1

4m

∑
s∈BR(x0)

|µ̂(
s− x0

3m
)|2

≥ C2

4m
card(S ∩BR(x0))

≥ NC2

4m
(3mR0)α =

NC2

2m
Rα

0 .

Thus,

B ≥ NC2Rα
0 .

Since N can be arbitrarily large, this contradicts the assumption that S is a Bessel

spectrum.
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Part II

Laplacian Eigenmaps
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Chapter 4

Laplacian Eigenmaps and Image Analysis

4.1 Introduction

Technological advancements over the last several decades have greatly in-

creased our ability to collect, transmit, and store large amounts of information. For

example, in a 2010 article, the Washington Post estimated that the NSA siphons

intelligence from 1.7 billion emails, calls, etc., intercepted daily [47]. Such ad-

vancements in data acquisition require the innovation of efficient means of gleaning,

representing, and analyzing the information buried therein. Many areas of research,

dimension reduction theory, data mining, machine learning, pattern recognition,

feature extraction, neural networks, and compressive sensing to name a few, have

emerged as a result.

Laplacian Eigenmaps (LE) is a member of a large catalogue of techniques,

called kernel methods, that lie in the intersection of dimension reduction theory and

feature extraction. Broadly stated, the objective of a kernel method is to find a

mapping, called a kernel, from a data set X into a feature space Y . The kernel

is typically constructed so that the dimensions of the feature space correspond to

properties of interest in the data set, yielding a better representation of the data.

The primordial example of a kernel method is Principal Component Analysis

(PCA).
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Example 4.1.1 (PCA). Let X = {x1, x2, . . . , xN} ⊂ RD. Define

x̂n = xn − c, X̂ = [x̂1 x̂2 . . . x̂N ]

where

c =
1

N

N∑
n=1

xn

is the centroid for X. Form the D ×D covariance matrix

Φ = X̂X̂T .

Diagonalize Φ and sort the eigenvectors in decreasing order according to their eigen-

values. The kernel φd : RD → Rd is the matrix whose rows correspond to the first d

eigenvectors of Φ.

4.1.1 LE Algorithm

In contrast with PCA, LE is a non-linear kernel method. The algorithm

was conceived and developed theoretically by Belkin and Nyogi [1] and has become

popular tool for a variety of dimension reduction problems and clustering problems.

Laplacian Eigenmaps belongs to a family of non-linear kernel methods moti-

vated by the problem of finding low-dimensional manifold embeddings. We assume

that X ⊂ RD lies on a manifold in RD which preserves the local geometric structure

of the data set. The goal is to find a kernel φ : X → Rd, which reflects aspects of

the local and global geometric structure of X.

The algorithm is comprised of three steps.

(1) Construct a k-nearest neighbor (kNN-)graph.
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For each xn ∈ X ⊂ RD, draw an undirected edge between xn and its k-nearest

neighbors in the data set with respect to the Euclidean metric on RD. The resulting

graph is represented by its N ×N adjancency matrix G:

G(i, j) =


1 if there is an edge connecting xi, xj

0 otherwise

Note that the k-nearest neighbor relation is not symmetric, however, by mak-

ing the edges undirected, the graph, and hence G, will be. Imposing symmetry

has several advantages. Symmetric matrices are easier to handle computationally.

Moreover, directed graphs are more likely to have connectivity issues, presenting a

barrier to acquiring any information about the global geometric structure of X.

(2) Weight the graph.

A weight matrix for G is a nonnegative, symmetric, N×N matrix W with the

same sparsity structure as G. The degree matrix corresponding to W is the diagonal

matrix D, with diagonal entries given by

D(i) =
N∑
j=1

W (i, j).

The weighted graph Laplacian is given by

L = D −W.

Since W is symmetric, L is symmetric. The Laplacian is also positive semidefinite,
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since

yTLy = yTDy − yTWy

=
1

2
(
N∑
i=1

y2
iD(i) +

N∑
j=1

y2
jD(j)− 2

N∑
i,j=1

yiyjW (i, j))

=
1

2

N∑
i,j=1

(y2
i + y2

j − 2yiyj)W (i, j)

=
1

2

N∑
i,j=1

(yi − yj)2W (i, j) ≥ 0 (4.1)

(3) Solve the eigenproblem

The d coordinate mappings for the LE embedding φ : X → Rd are given by

the eigenvectors solving the generalized eigenproblem

Ly = λDy (4.2)

for the d smallest non-zero eigenvalues. These solutions can be found by iteratively

solving

arg min
〈y,Dy〉=1

y∈Y ⊥0

yTLy (4.3)

where Y ⊥0 is the orthogonal complement of the subspace spanned by the previous

solutions and the kernel of quadratic form. It follows from the computation in (4.1)

that the minimizers of yTLy produce an embedding that will preserve the local

geometry of X. That is, φ will map close points in X to close points in Rd.

Also, note that dim(ker(Φ)) ≥ 1, since Φ(y) = 0 if y is constant. If G is

connected, any two vertices xi, xj can be connected by a path in G. Hence there is

a sequence of indices i = i0, i1, . . . , in = j such that W (ik, ik−1) > 0 for 1 ≤ k ≤ n.

Thus, if Φ(y) = 0, it must be constant along the path connecting xi, xj, implying it
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must be constant everywhere. Thus, if G is connected, dim(ker(Φ)) = 1. A similar

argument shows that, in general, dim(ker(Φ)) is equal to the number of connected

components of G. If we assume G to be connected, the zero solution provides no

further information and hence can justifiably be ignored.

4.1.2 Approximate k-Nearest Neighbors

An exact neighborhood construction can take a long time for large data sets.

For a set of N data points in RD requires O(DN2) time. To reduce the runtime,

we implemented the approximate nearest neighbor search developed in [8]. Their

method employs a Divide and Conquer routine via spectral bisection:

Divide:

The data is recursively divided into two overlapping sets. A parameter 0 < α < 1

is controls the amount of overlap. At each step the largest singular value and its

corresponding vectors are computed using the Lanczos algorithm. The points are

separated by their relation to the hyperplane determined by the left singular vector.

Brute:

The data set is divided into smaller and smaller pieces until they reach some prede-

termined manageable size. Then exact kNN is performed on each piece.

Conquer:

For points that lie in the overlap, the k-nearest neighbors are selected from search

results in both pieces.
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The amount of overlap determines the complexity of the the algorithm:

O(DN t), t =
1

1− log2(1 + α)
.

In our experience, the method worked very well, reducing computation time

from minutes to seconds, without sacrificing accuracy.

4.1.3 Geometric Motivation

The algorithm is motivated in large part by Spectral Geometry. In particular,

the typical choice of weights is motivated by the heat kernel :

x, y ∈ RD, t ∈ R ht(x, y) = (4πt)−
D
2 e−

‖x−y‖2
4t

which appears when solving the heat equation:

ut + ∆u = 0

u(x, 0) = f(x)

With this in mind, the nonzero entries of the weight matrix are chosen to be

W (i, j) =

(
e−
‖xi−xj‖

2

4σ2

)
. (4.4)

The analogy was made concrete theoretically by Belkin and Niyogi [2]. They

proved that, assuming the data set Xt is an increasingly fine, uniformly distributed

sample of a compact manifold M ⊂ RD, the system converges in probability to ∆M ,

the Laplace-Beltrami operator acting on C∞(M),

• pointwise – that is, the system converges weakly as operators acting on the

space of smooth functions – and,
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• spectrally – that is, the eigenvalues and eigenfunctions converge as well.

4.2 Applications

In this section, we provide two examples of applications of LE. The first is

a novel use of LE for dimension expansion; the dataset is embedded into a space

of greater dimension than the starting space. This highlights the fact that LE is

primarily a tool for feature extraction and can be used for finding deterministic clus-

terings of a dataset. The second is an example of its utility as a tool for meaningful

dimension reduction, and will provide a basis for comparison for the results in the

next chapter.

4.2.1 Analysis of SAS Images

This project was born out of a collaboration with a group from the Naval

Surface Warfare Center (NSWC), Panama City. The collaboration was made pos-

sible thanks to a grant from the Office of Naval Research (ONR). The project was

motivated by the following problem:

Is it possible to distinguish the contents of a barrel from sonar data?

Two classes of barrels were submerged, distinguished by their contents. One

class contained sand and the other contained an unknown synthetic material called

filler E (fE). Synthetic aperture sonar (SAS) data was collected for each submerged

barrel at a high and low frequency. The team from NSWC had developed a beam-

forming technique in which they solved an inverse Radon transform problem and
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created an image resembling a topographical map of the ocean floor from the raw

SAS data.

Figure 4.1: Raw SAS data

98



Figure 4.2: Beamformed image

Our task was to see if the high and low frequency beamformed images provided

enough variation in the dataset to develop a classification routine.

Visually, the two frequencies of any given barrel are very similar. This makes

it difficult to detect any variation between the two classes of barrels.

Using a dimension reduction technique on a two dimensional dataset seems

somewhat contradictory. However, the number of eigenvectors determined by LE is

limited by the number of data points in the set, not its dimensionality. In this case,

we were limited by the 200× 100 = 20, 000 pixels in each cropped image. Moreover,

the eigenvectors essentially provide a representation of the clustering done in the
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construction of the nearest neighbor graph. Hence, it is reasonable to hypothesize

that if sufficient variation exists to distinguish the two classes of barrels, LE will

provide evidence of this.

Our results were encouraging. First, they provided a visually diverse array of

images for each barrel (Figure 4.3). Moreover, we noticed a pattern in the mappings

of the two different classes. The energy in the images of each sand barrel tend to

be concentrated on the edges of the barrel, whereas for the fE barrels, at least one

dimension of the mapping indicates a significant amount of energy located in the

interior of the barrel as well.
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k=1 k=2

k=3 k=4

k=5

Figure 4.3: Eigenbarrel components for a fE barrel.
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Using this information, we designed the following classification routine. For

illustration, two barrels were chosen from each class, BS and BfE.

(1)) For each barrel, find the convex hull of points clearly lying on its edges.

Edges for BS Edges for BfE .

Convex hull for BS . Convex hull for BfE .

Figure 4.4: Definition of the convex hull for a barrel.

The edges of each barrel are identified via thresholding in the low frequency

image. The magnitude of the points on the edges clearly dominate the rest of

the image. The shape and size of each hull varies significantly in accordance with

the manner in which each barrel was laying on the ocean floor. However, each
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hull captures the region of the image we are chiefly interested in, namely the area

immediately following the visible edges of the barrel.

(2) Perform a histogram analysis of the exterior and interior regions of the

hull.

Interior histogram for BS Interior histogram for BfE .

Exterior histogram for BS . Exterior histogram for BfE .

Figure 4.5: Interior and exterior histograms.

The interior of the hull is defined to be hull minus the edge points. The exterior

is the complement of the hull in the image. A histogram is created for the exterior

and interior regions in each of the 5 components of the eigenbarrel. The components
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of each eigenbarrel are normalized so that ‖φk‖∞ = 1. The unit interval is divided

into 20 bins of equal size and the resulting histogram is divided by the total number

of pixels in the corresponding region so that we end up with a representation of the

proportional distribution of pixels in each bin. In Figure 4.5, larger bin numbers

correspond to larger magnitudes.

The exterior histogram is computed to indicate the level of noise present in

the area surrounding each barrel. This is important because these artifacts will

occasionally appear in the components of the mapped image and overlap the hull of

the eigenbarrel. Figure 4.6 provides an example of this phenomenon.

Figure 4.6: A barrel in a noisy environment.
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Thus, we can create a relative histogram for each image by subtracting the

exterior from the interior. In Figure 4.7, the visual differences we originally noted

are visible in the tails of the histograms.

Relative histogram for BS Relative histogram for BfE .

Figure 4.7: Relative histograms.

(3) Classify using SVM.

The relative histogram is the feature vector that we use for classification. A

support vector machine with Gaussian kernel was used to classify the set of feature

vectors. In total, there were 61 barrels—32 fE and 29 sand. We used 17 of these

for training—8 sand and 9 fE. Our results are given in Figure 4.8. Performance on

each class and overall accuracy are provided.
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Figure 4.8: Classification results for LE on SAS data.

The bottom axis indicates the number of dimensions used in the mapping.

The 0-dimensional mapping is the histogram analysis done on the original data set.

Overall accuracy increased from 70% to 80%. This provides some evidence of the

usefulness of LE as a feature extraction tool, even in a low dimensional setting.

4.2.2 Analysis of HSI

A typical camera takes pictures using three bands of light–red, blue, and green.

Hyperspectral images (HSI) are captured in 100-200 narrow bands of light. The

narrow bands provide a finer scale of classification. A fine spectrum is especially
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useful when the picture is being taken over long distances, e.g. from a plane or

satellite. Hence, HSI technology is found in a diverse array of applications requiring

remote sensing, such as searching for mineral deposits, studying forest health, and

intelligence gathering.

The large number of bands also makes it infeasible for analysts to process the

image manually, however. HSI analysis is an area of research devoted to designing

supervised, semi-supervised, and unsupervised methods for detecting and classifying

objects of interest within hyperspectral images.

HSI datasets X are typically represented as an N ×M ×D datacube.

Figure 4.9: Indian Pines hyperspectral cube

Each x ∈ X is the spectral vector for a pixel (n,m) ∈ {1, . . . N}×{1, . . . ,M}, which

corresponds to a physical location in the image.
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We introduce two datasets, Pavia University (Figure 4.10) and Indian Pines

(Figure 4.11), that will be used in the next chapter. Our analysis here will serve as

a baseline for comparison. Both datasets are freely available on the web.

False color image Ground truth

Figure 4.10: Pavia University dataset

The Pavia University image is a 610×340 pixel image. It contains 115 spectral

bands with approximately 1.3 meter resolution. It was acquired in a flyover of

Pavia, Italy using a ROSIS sensor. There is a collection of 42776 ground truth

pixels associated with this data set, covering a total of 9 classes. We chose this

data set for two reasons. First, its large size would present a suitable computational
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challenge for our methods. Second, the ground truth had a particular structure.

In Chapter 5, we will use spatial/spectral techniques to analyze the image. Many

datasets have ground truth that are spatially biased, e.g. Indian Pines. The ground

truth for Pavia University, however, is fairly spread out and intermingled, providing

a sufficient challenge for our methods.

False color image Ground truth

Figure 4.11: Indian Pines dataset

The Indian Pines image is a 145× 145 pixel image that contains 224 spectral

bands with approximately 20 meter resolution; 4 bad bands were removed, leaving a

145×145×220 datacube. It was acquired in a flyover of northwest Indiana using an

AVIRIS spectrometer. There is a collection of 10249 ground truth pixels associated

with the dataset covering a total of 16 classes. Indian Pines was selected primarily

because, as we will see, LE performs rather poorly on it. We will use Indian Pines

as a test for the methods we develop in the next chapter based on Schroedinger
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Eigenmaps.

Our implementation of LE for these datasets proceeds as follows:

(1) Compute the approximate kNN-graph

Store the graph as a sparse N ×N matrix, where N is the number of pixels.

For both Indian Pines and Pavia University, the number of nearest neighbors was

fixed at 20. We did not analyze the optimal number of nearest neighbors for either

dataset. We simply chose a number that provided a connected graph.

(2) Form the Laplacian for the graph.

Store the Laplacian as a sparse N ×N matrix. The separation parameter, σ,

was fixed at 1.

(3) Solve the generalized eigenproblem

Ignoring the trivial solution, find the first d solutions to the generalized eigen-

problem. For Pavia University, we set d = 25 and used the JDQZ eigensolver built

in to the Dimension Reduction Toolbox based on the QZ algorithm. For Indian

Pines, we set d = 50 and use the built in MATLAB sparse eigensolver, EIGS.

(4) Classify

Use the embedding as our feature vector for each pixel. Classification was

done using vector angle analysis : A certain percentage of ground truth from each

class are randomly selected for training. For each pixel, the vector angle between its

feature vector and those of the training is computed. The point is then mapped to

the class which minimizes the vector angle. This can be repeated n-times and the

classification is determined by the mode.
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We chose vector angle classification because of its simplicity. More sophisti-

cated algorithms would produce better results, however we are interested in testing

how well LE, and our extension of LE, extract features from the hyperspectral im-

age. For Pavia University we selected 1% of the ground truth pixels for each class

for training. For Indian Pines, we selected 10% .

Results

In Figures 4.12 and 4.13 we provide some selected eigenvectors for our datasets.

k=1 k=2 k=3

Figure 4.12: Selected eigenvectors from the Pavia University embedding

Note that several features are brought out in the first three dimensions. In

k = 1, the shadows of the buildings stand out, in k = 2, the meadows are apparent,

and in k = 3, several structures are highlighted.
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k=1 k=2

k=11

Figure 4.13: Selected eigenvectors from the Indian Pines embedding

In contrast, the Indian Pines embedding is much worse. The images are very

grainy, making it hard to distinguish anything. One of the reasons why is that the

image is fairly homogeneous. The picture is of flat farmland, and so most of the

objects in the image have a very similar spectral signature.

The class maps and overall accuracies are provided in Figures 4.14 and 4.15.
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Class map Ground truth map: 50.9%

Figure 4.14: LE results for Indian Pines

Class map Ground truth map: 73.6%

Figure 4.15: LE results for Pavia University
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Chapter 5

Extensions

5.1 Spatial/Spectral Analysis

Spatial information is inherently provided in the datacube, however, it wasn’t

until recently that analyst started taking advantage of it. The problem of spatial

spectral fusion has emerged as an important and active area of research in HSI

analysis. It provides a natural means of smoothing results locally, yielding better

classification.

Some recent work includes the use of wavelet packets [3], modified distance

metrics for graph construction [44], combining spectral classification with image

segmentation results [53], and adding spatial information in spectral band grouping

[38].

We show that there is a natural way of introducing spatial information into

the LE algorithm that yields results comparable to the state of the art.

In this section, we work only with the Pavia University dataset, whose specifics

can be found in Section 4.2.2. Unless otherwise stated, the parameters and method-

ologies will be the same.
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5.1.1 Pure Spatial LE

First, we must note that too much spatial information is a bad thing. Too

much spatial information will completely wash out the spectral characteristics of

the image. However, adding spatial information will typically raise the classification

percentage. Take, for example, the analysis of Pavia University using Laplacian

Eigenmaps with only spatial information.

Definition 5.1.1. The spatial metric is given by

‖xi − xj‖s = ‖s(i)− s(j)‖,

where the mapping s : {1, . . . ,MN} → {1, . . . ,M}× {1, . . . , N} provides the index

for the pixel xi, and ‖ · ‖ is the usual `2-norm. We will write ‖xi − xj‖f for the

spectral metric, i.e. the usual distance between two points in the datacube, as

spectral vectors in RD.

Pure spatial LE is done simply by replacing the spectral metric with the spatial

metric during the constructions of the kNN -graph and the Laplacian. Looking

at the ground truth map in Figure 5.1, the overall accuracy of classification has

increased significantly. However, that is clearly false progress as the class map

shows.
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Class map Ground truth map: 89.3%

Figure 5.1: Purely spatial LE results for Pavia University

The conflicting messages given by the two images in Figure 5.1 is due to the

spatial bias present in the ground truth. In the absence of complete ground truth,

to truly test spatial/spectral methods, one needs ground truth that is an emulsion

of classes. The datasets that are publicly available tend to have ground truth classes

separated into distinct spatial clumps.
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Thus, we will proceed by adding spatial information a little at a time. First, we

will introduce it into the Laplacian, forming spatial/spectral operators. Then we will

introduce it into the metric, so that the underlying geometry is now a spatial/spectral

manifold.

5.1.2 Spatial/Spectral Operators

In this section, we introduce spatial information into our analysis by modifying

the Laplacian in three different ways. Let G be the usual kNN -graph, constructed

using the spectral metric. Let Lf be the usual Laplacian obtained from this graph,

using the spectral metric in 4.4. Let Ls be the Laplacian obtained by substituting

the spatial metric in the definition of the weights. These Laplacians each depend

on their separation parameter. Thus, we define

L1(σ, η) = Lf (σ) · Ls(η) (5.1)

L2(σ, η) = Lf (σ) + Ls(η), (5.2)

L3(σ, η) = G · (Lf (σ)× Ls(η)), (5.3)

where · is entrywise multiplication and × is usual matrix multiplication.

We fix σ = 1, and let η = .2. The results of the analysis can be found in

Figures 5.2, 5.3 and 5.4.
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Class map Ground truth map: 74.7%

Figure 5.2: Classification results for L1(1, .2)
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Class map Ground truth map: 72.6%

Figure 5.3: Classification results for L2(1, .2)
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Class map Ground truth map: 74.1%

Figure 5.4: Classification results for L3(1, .2)

The results suggest that adding spatial information in the operator alone will

yield only a slight improvement in classification.

5.1.3 Spatial/Spectral Manifold

Definition 5.1.2. Let γ > 0. We define the spatial/spectral metric on X as follows:

‖xi − xj‖γ =
[
‖xi − xj‖2

f + γ‖xi − xj‖2
s

]1/2
.

Two pixels in our image are close with respect to ‖ · ‖γ if and only if they are
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close both spatially and spectrally. The parameter γ allows the user control over

how much spatial information to include in the analysis.

Using the spatial/spectral metric in the determination of the kNN -graph and

in 4.4 amount to changing the geometry of X, so that it is now a spatial/spectral

manifold. This is clearly a more significant adjustment, and so we expect a more

significant change in the results.

Again, we let σ = 1, and computed results for γ ∈ {20, 25, 30, 35, 40}:

Class map Ground truth map: 96.9%

Figure 5.5: Classification results for γ = 20
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Class map Ground truth map: 97.4%

Figure 5.6: Classification results for γ = 25
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Class map Ground truth map: 97.6%

Figure 5.7: Classification results for γ = 30
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Class map Ground truth map: 97.9%

Figure 5.8: Classification results for γ = 35
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Class map Ground truth map: 97.9%

Figure 5.9: Classification results for γ = 40

The results indicate a significant improvement over standard LE. Moreover,

the class maps indicate that the progress is legitimate.

5.2 Schrödinger Eigenmaps

In [11], Czaja and Ehler introduced Schrödinger Eigenmaps (SE), a means of

generalizing LE by introducing a potential, V , on the graph. We will use SE in our

analysis of HSI images. We will provide a proof of concept that certain potentials
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provide a semisupervised method for isolating features in an image. We will also

show that SE provides an interesting platform for which the spectral clustering of

LE can be fused with other clustering techniques. In particular, we will show that

this leads to significant improvement in the analysis of Indian Pines.

5.2.1 Introduction

Definition 5.2.1. Let V be a symmetric, positive semi-definite N ×N matrix and

let α > 0. The operator

Eα = L+ αV, (5.4)

is called a graph Schrödinger operator.

The weight α indicates the relative significance of the potential with respect

to the Laplacian operator.

We replace (4.3) with the minimization problem

arg min
yTDy=1

= yTEαy. (5.5)

The graph Schrödinger operator is analogous to the Schrödinger operator de-

fined on a manifold. In fact, it is more than analogous. In his thesis [23], Halevy

extended Belkin and Niyogi’s result on pointwise and spectral convergence to the

Schrödinger operator.

We consider two types of potentials: barriers and clusters.
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Barriers

Definition 5.2.2. A barrier potential, V , is a nonnegative diagonal matrix. The

barrier nodes are the vertices, i, for which V (i) > 0.

Similar to (4.1), for barriers we have

yTEαy = yT (L+ αV )y

=
1

2

∑
i,j

(yi − yj)2Wij + αyTV y

=
1

2

∑
i,j

(yi − yj)2Wij + α
∑
i

V (i)y2
i (5.6)

Thus (5.5) is equivalent to solving

arg min
yTDy=1

1

2

∑
i,j

(yi − yj)2Wi,j + α
∑
i

V (i)y2
i (5.7)

The diagonal potential introduces a penalty term at each nonzero entry, which

creates a well at the corresponding barrier nodes. More precisely, let yα be a solution

to (5.7) for α > 0. If V (i) 6= 0, then

|yα(i)|2 ≤ C

αV (i)
. (5.8)

Thus, as α→∞, yα(i)→ 0. The embedding must preserve local geometry, however,

so the neighbors of these vertices are also pulled toward 0.

Note that if G is connected, E is nonsingular. Hence there are no zero solutions

to worry about in this case. Again, the minimization problem can be realized by

solving a generalized eigenproblem:

Eαv = λDv. (5.9)

127



Clusters

Definition 5.2.3. Clusters Let ι = {i1, . . . , im} be a collection of vertices. A cluster

potential over ι is defined by taking V to have zeros everywhere except for V [ι, ι],

the submatrix defined by ι. For this submatrix, define

V [ι, ι] :=



1 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 1


. (5.10)

If we define a graph, G̃, on our collection of vertices by drawing an edge

between ik and ik+1, we have

G̃ =



0 1

1 0 1

. . . . . . . . .

1 0 1

1 0


.

Thus, V [ι, ι] = D̃ − G̃ is a graph Laplacian. It follows that (5.5) is equivalent to

arg min
yTDy=1

1

2

∑
i,j

(yi − yj)2Wi,j + α
m−1∑
k=1

(yik − yik+1
)2. (5.11)

The penalty term has the effect of sequentially identifying points in ι; as

α→∞,
m−1∑
k=1

(yik − yik+1
)2 ≤ C

α
→ 0. (5.12)
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Again, the embedding must preserve local geometry, so neighbors of ι are pulled

inward as well. Thus, the potential forces an increased amount of clustering around

ι.

Constant vectors are zeros for Eα. Since both L and V are Laplacians, if G

is connected, it follows that they are the only zeros. In fact, since V is assumed to

positive semidefinite, ker(yTEαy) ⊂ ker(yTLy), for any V . Thus, we may ignore the

zero eigenvalue and look for the d smallest nonzero eigenvalues.

5.2.2 Random Barrier Potentials

As in Section 4.2.2, we fix k = 20 for the number of nearest neighbors, σ = 1,

and d = 50 for the number dimensions in the embedding.

A naive barrier potential on each class of the ground truth can be defined as

follows.

Definition 5.2.4. Choose 0 < p < 1. For each class k (there are 16 for Indian

Pines), letNk be the number of ground truth for that class. Define a barrier potential

Vk by randomly selecting pNk of the ground truth from the k-th class. Define V k to

be 1 at each of the selected nodes. Given α > 0, define

Ek
α = L = αVk.

We chose p = .2 and analyzed the embeddings generated by Eα for α = 100,

α = 1000. Vector angle classification was used to classify the results. Because we are

collapsing the barrier nodes to a single point, we omit them from the classification;

10% from each class of the remaining ground truth is selected for training. Recall,
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our baseline comparison is the overall accuracy of using LE on Indian Pines, which

was 50.9%.

Overall accuracy of the classification increases by about 10% for each V k.

Figure 5.10: Overall accuracy for random barrier potentials

A better demonstration of the possible benefits of barrier potentials, however,

is given by studying the embeddings themselves. Figures 5.11 and 5.12 show two

and three dimensional projections of the embedding for the class which hosts the

barrier potential along with several other classes.
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LE

E3
1000

Figure 5.11: Effect of E3
1000 in dimensions 1 and 3 for classes 3, 7, and 8
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LE

E7
1000

Figure 5.12: Effect of E7
1000 in dimensions 6 , 9, and 13 for classes 7, 10, and 11
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Both figures indicate that SE is useful in untangling a particular class from

the rest of the data. In Figure 5.11, E3
1000 not only separates class 3 from the other

two classes, but it also pulls class 7 away from class 8. This suggests that classes 7

and 3 must be spectrally close.

In Figure 5.12, class 7 receives the barrier potential. This class is very small,

consisting of only 28 pixels. Thus V 7 is nonzero at only 5 barrier nodes. These

points are not pictured in the image.

This example shows that a potential placed at even a few number of points

can have a significant effect on the embedding. Although class 7 is buried in classes

10 and 11 in the LE embedding, Figure 5.12 indicates that it is extracted in the SE

embedding.

This suggests that barrier potentials could be a very useful semisupervised

learning tool in the hands of an expert analyst. Selecting even a few pixels that are

of interest and placing a barrier potential at these nodes, it is possible to extract a

family of pixels exhibiting a similar behavior.

5.2.3 Cluster Potentials and k-Means Clustering

We define cluster potentials in the following way:

1. Use k-means clustering, with the usual spectral metric, to cluster the hyper-

spectral image. The clustering is initialized randomly so that the construction

of the potential would be completely unsupervised.

2. Using (5.10), define a cluster potential, Vk over each of the k = 1, . . . , K
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clusters.

3. Choose an ordering of the points in each cluster.

4. Aggregate the information into one potential by summing over the individual

cluster potentials:

V =
K∑
k=1

Vk.

In our first experiment, we used two different ordering schemes: spatial and

spectral. Spatial ordering is determined by finding the spatial center of the cluster.

Points were indexed in order of their proximity to the center. Spectral ordering is

done exactly the same, except using the spectral center of the cluster.

We varied the number of clusters, from 10 to 100 by tens and let α = 100, 1000.

The results indicate significant improvement for all α and K.

Figure 5.13: Overall accuracy of classification for spatially and spectrally ordered

cluster potentials
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Spatial ordering gave a significant increase in accuracy over LE, while spectral

ordering often performed worse than LE. This indicates that the ordering is an

important step in the construction of the cluster potentials.

Motivated by the performance of spatial ordering, we made the following

amendment to the construction of the cluster potential. Instead of clustering the

entire image, grid the image and separate it into local pieces. Perform kmeans

clustering on each piece, order the points inside each cluster, and construct the

potential.

We divided India Pines into grids of size M×M for various M . We also varied

K, the number of clusters found in each grid cell. The results for this analysis are

given in the Figure 5.14 and 5.15.

Figure 5.14: Overall accuracy for gridded cluster potentials, α = 100
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Figure 5.15: Overall accuracy for gridded cluster potentials, α = 1000

With the appropriate choice of grid size and number of clusters, the gridded

kmeans cluster potential provides a significant improvement over LE. The class maps

for the three techniques indicate the same trend. Figures 5.16, 5.17, and 5.18 provide

the class map for the best results from each method, with α = 1000.

The two dimensional projection of the embedding in Figure 5.19 provides some

evidence for the improvement in classification. The cluster potentials control the

internal geometry of the individual clusters. As α → ∞, the potential forces the

individual clusters to contract. For a large enough number of clusters, this seems

to be balanced by the Laplacian, which controls the geometric relationship between

the clusters.
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Class map

Ground truth map: 52.2%

Figure 5.16: Class map for spectrally ordered cluster potential, 100 clusters
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Class map

Ground truth map: 75.6%

Figure 5.17: Class map for spatially ordered cluster potential, 60 clusters
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Class map

Ground truth map: 91.6%

Figure 5.18: Class map for gridded cluster potential, 15× 15 grid, 4 clusters
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LE

SE

Figure 5.19: Effects of a 4 cluster, 15× 15 gridded kmeans potential in dimensions 2

and 3 for classes 4, 6, and 13
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[21] K. Gröchenig and H. Razafinjatovo. On Landau’s necessary density conditions
for sampling and interpolation of band-limited functions. Journal of the London
Mathematical Society, 54(3).
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