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Delay, Elasticity, and Stability Trade-Offs in
Rate Control

Priya Ranjan, Eyad H. Abed, and Richard J. La

Abstract— We adopt the optimization framework for rate allocation
problem proposed by Kelly and characterize the stability condition with ar-
bitrary communication delay. We demonstrate that there is a fundamental
trade-off between the price elasticity of demand of users and responsiveness
of the resources through a choice of price function as well as between the
system stability and resource utilization.

I. INTRODUCTION

With the unprecedented growth and popularity of the Internet
the problem of rate/congestion control is emerging as a more
crucial problem. Poor management of congestion can render
one part of a network inaccessible to the rest and significantly
degrade the performance of networking applications. Kelly has
proposed an optimization framework for rate allocation in the
Internet [4]. Using the proposed framework he has shown that
the system optimum is achieved at the equilibrium between the
end users and resources. Based on this observation researchers
have proposed various rate-based algorithms that solve the sys-
tem optimization problem or its relaxation [4], [8], [9]. How-
ever, the convergence of these algorithms has been established
only in the absence of feedback delay, and the impact of feed-
back delay has been left open as well as any trade-off that may
exist between stability and selected utility and cost functions.

In this work we establish a delay-independent global sta-
bility criterion for system optimization problem in the pres-
ence of arbitrary delay for simple one resource problem with
one flow. This flow could be interpreted to represent aggre-
gate behavior of the users in the system. This is derived using
the invariance-based global stability results for nonlinear delay-
differential equations [10], [3], [2]. This kind of global stability
results are different from that based on Lyapunov or Razumikhin
theorems in the sense that in our set up also hints the structure of
emerging periodic orbits (like their periodicity and amplitude) in
the case of loss of stability.

Generally speaking, our results tell us that if the user and
resource curves have a stable market equilibrium, then corre-
sponding dynamical equation for flow-optimization will con-
verge to the optimal point in the presence of arbitrary delay.
This result essentially shows that stability is related to utility
and price curves in a fundamental way. In particular, for a given
price curve, it possible to design stable user utility functions
such that the ensuing dynamical system converges to the opti-
mal flow irrespective of communication delay. Conversely, if
the underlying market equilibrium is unstable then it is possible
to find a large enough delay for which the optimal point loses
its stability and gives way to oscillations. These results provide
an interesting perspective for designing end user algorithms and
active queue management (AQM) mechanisms. It is also worth
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noting that in general characterizing the exact conditions for sta-
bility with a delay is difficult. Hence, our result provides a sim-
ple way of dealing with the problem of widely varying feedback
delay in communication networks through a clever choice of the
user utility function and price functions.

This paper is organized as follows. Section II describes the
optimization problem for rate control. Relevant previous work
on the stability criterion of a system given by a delayed differ-
ential equation is given in Section III. Our main results are pre-
sented in Section IV, which is followed by numerical examples
in Section V. We conclude the paper in Section VI.

II. BACKGROUND

In this section we briefly describe the rate control problem in
the proposed optimization framework. Consider a flow travers-
ing a single resource. The rate control problem can be formu-
lated as the following net utility optimization problem from the
end user’s point of view [4]:

���
�

����� � � ���� (1)

s. t. � � �

where � is the rate, ���� is the utility of the user when it receives
a rate of �, ���� is the price per unit flow the user has to pay
when the rate is �, and � is the capacity of the resource. The
proposed end user algorithm in the absence of delay is given by
the following differential equation [6].

�

��
���� � � ����� � ��������� (2)

where ���� is the price per unit time user is willing to pay,
���� � �������, and �	 � 
 �, is a gain parameter.

The case where ���� is a fixed constant, i.e., ���� � ��	���,
is studied in [5]. In this paper we assume that ���� � ���� �

�
�

������ with a family of utility functions to be specified shortly
[6]. Now, suppose that congestion signal generated at the re-
source, i.e., �������, is returned to the user after a fixed round
trip time � . In the presence of delay the interaction is given by
the following delayed differential equation

�
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���� � � ����� � ���� � ����� � �� (3)
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�

(4)

After normalizing time by � and replacing � � � � � , eq. 4
becomes:
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where 
 � �
��

. It is precisely eq. 6 we are interested in from
stability point of view. For � 

 
, this equation can be seen
as a following singular perturbation


�

��
���� � �������� ������ 
�� (7)

of general nonlinear difference equation with continuous argu-
ment given by

������� � ������ 
��	 � � � (8)

where ���� � ��
�

��� and ���� � ����� in the context of eq. 6.
Under certain natural invertibility conditions on ����, it leads to
much studied equation [12]

���� � � ���� � 
��	 � � � (9)

where � ��� � ���������. For the solution of eq. 9 to be con-
tinuous for � � �
, along with the continuity of � and ����,
which is the initial function, a so-called consistency condition
������� ���� � � ����
�� is required [3], [12].

It turns out that a great deal about the asymptotic stability of
eq. 7 can be learned from the asymptotic behavior of following
difference equation, with �� denoting the set of positive inte-
gers:

���� � � ����	 � � �� (10)

Some of relevant previous work is presented in the following
section.

III. PREVIOUS WORK

In this section we summarize some of relevant work presented
in [2]. Consider a nonlinear delay differential equation of the
following form:

����� � ������ ��� � ������� (11)

where functions � and � are continuous for �� � �� 
 � � ��
with the values in ��. we make following additional assump-
tions on these functions:

1. ���� is strictly increasing, ���� � �, and ������ ���� �
�,

2. there is exactly one point � 
 � such that ���� � ����;
moreover, ���� 
 ���� in ��	 �� and ���� � ���� in ��	���.

Eq. 11 can be written in a singular perturbation form by
change of coordinates � � � � � and � � �

�
.

��

��
���� � ������ 
��� ������� (12)

Now define � ��� 
� ���������. Invariance and global sta-
bility of one dimensional map � can be translated to those of
eq. 11 for arbitrary time delay � as described here [3].

Let � 	 �� be a closed interval which is invariant under � .
Also, let � 
� ����
	 ��	��� and �� 
� �� � � 
 ���� �
� 
� � ��
	 ���.

Theorem 1: The set �� is invariant under eq. 12. For all � �
�� the corresponding solution ������ belongs to � for all � � �.

Now suppose that �� � �����
���� degenerates into a single

point, i.e., map � has an asymptotically stable fixed point. Then,
the following theorem holds.

Theorem 2: If � is the globally attracting fixed point of the
map � , then for any initial function � � � and every � 
 � the
corresponding solution ���� of eq. 12 approaches �.

IV. RATE CONTROL WITH FEEDBACK DELAY

We study the rate allocation problem in Kelly’s optimization
framework described in Section II [4] with the following class
of price functions:

���� �
� �

�

��
	 where � 
 � (13)

This kind of marking function arises if the resource is modeled
as ����
 queue with a service rate � packet per unit time and
a packet receives a mark with a congestion indication signal if it
arrives at the queue to find at least � packets in the queue.

The class of utility functions we consider has the form

����� � �



�




��
	 � � �� (14)

In particular, � � 
 has been found useful for modeling the util-
ity function of Transmission Control Protocol (TCP) algorithms
[7]. We say that a user �� with utility function ������ is greed-
ier than another user �� with utility function ������ if �� 
 ��.
One can interpret the notion of greed here using the notion of
price elasticity of demand [13]. With the utility functions of the
form in eq. 14 one can easily show that the price elasticity of de-
mand decreases with � as follows. Given a price �, the optimal
rate ����� of the user that maximizes the net utility ������� ��

is given by ��
�

��� . The price elasticity of demand, which mea-
sures how responsive the demand is to a change in price, is de-
fined to be the percent change in demand divided by the percent
change in price [13]. In our case the price elasticity of demand
is given by

�

�����

������
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�

�
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�

���

�
�



 � �
��

�
�����

�
�



 � �
� (15)

Therefore, one can see that price elasticity of the demand de-
creases with �, i.e., the larger � is, the less responsive the de-
mand is.

In the presence of time delay � the end user algorithm with a
utility function in eq. 14 is given by

����� � �

�



�����
� ���� � �

�
���� � �

�

��
�

	 (16)

By substituting � � � � �


 ����� �



�����
� ���� 
�

�
���� 
�

�

��

(17)

where 
 � �
� ��

. In order to apply the theorems in Section III,
we can compare the forms in eq. 11 with that of eq. 16 where

���� � �� �
��

and ���� � ���
�
�
	

��
. It is clear that although

eq. 16 looks similar to eq. 11 it does not satisfy all the assump-
tions required to apply these theorems. In particular, these func-
tions have their range in negative real numbers.

By making certain simple substitutions we can make eq. 17
resemble the well studied eq. 11. Consider the following sub-
stitution: ���� � �����

�

������ 
� ������� and ������� �
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����
�
����
	

��
. We first make the following assumptions on the

functions ���� and ����.
Assumption 1: (i) The function ���� is strictly decreasing

with ��
�

��� 
 � for all � 
 �.
(ii) The function ���� is strictly increasing for all � 
 �.
This allows us the following change of coordinate:

���� � ���������	 (18)

����� �
�����

�������������
(19)


 ����� � �
�

���������������� � ���������� 
���� (20)

where the inverse ������ exists from assumption 1. Let
������� 
� ��

�

�����������. Clearly, ������� 
 � under as-
sumption 1. Using this substitution in eq. 20 we get the fol-
lowing form which resembles eq. 11 closely, except for a multi-
plicative state-dependent gain �������.


 ����� � �
�
���������������� 
���� ����

�
(21)

It is eq. 21 which we wish to study and show that there is a close
correspondence between invariance and global stability proper-
ties of map ���� � ���������� 
� � ���� and those of eq. 21.
In particular, we wish to prove that if ���� � � ���� has a fixed
point then eq. 21 will have a uniformly constant solution for all
possible time delays � � � if the initial function’s range is con-
tained in the immediate basin of attraction of this fixed point.
The proofs are based on the invariance property of the underly-
ing map � ��� and the monotonicity of function ����. The map
� ��� is strictly decreasing because ������ is strictly decreasing
under assumption 1 and a composition of a strictly increasing
and a strictly decreasing function (� is strictly increasing from
assumption 1) is a strictly decreasing function.

Assumption 2: Suppose now that � 	 �� 
  � � � ���,
where  is some small positive constant and �� is an arbitrarily
large constant, is a closed invariant interval under � . In particu-
lar let � � �� �� be compact.
Let � 
� ����
	 ��	���, and �� 
� �� � � 
 ���� � � 
� �
��
	 ���. Under this assumption, we have invariance for the so-
lution of eq. 21 for all time � � � and for all 
 � �.

Theorem 3: Invariance: If � � �� , the corresponding solu-
tion ���� � ������ satisfies ���� � � for all � � �. It means that
set � is invariant under eq. 21.

Proof: : Let �� be the first time when solution ������ leaves
� with � � �� . In particular, we can assume that ����� � � and
every right hand neighborhood of � � will have a �� 
 �� such
that ����� 
 �. Then, we can find a point ��	 �� � �� � �� � 
	
such that ����� 
 � and ������ 
 �. Since ���� � 
� � �, we

have ������ � 
����������

�������������������

�
� � from eq. 21

and assumption 2 that � is invariant under � , i.e., �����������

��� � �. This contradicts with the earlier assertion about the
positivity of ������.

Similarly, lets assume that ����� � � and the trajectory exits
from left end of the interval. Then, every right hand neighbor-
hood of �� will have a �� 
 �� such that � � ����� � � due to the
smoothness of solutions, and we can find ��	 �� � �� � �� � 
	
such that � � ����� � � and ������ � �. From that �����
� � �,

we have ������ � 
����������

�������������������

�

 � from

eq. 21 and assumption 2. This contradicts with the negativity
of ������ � �. Hence, the theorem follows.

Here we note that uniform positivity of ������� over positive
real line is crucial to the proof. Next theorem considers the case
when map � has an attracting fixed point �� with immediate
basin of attraction !� 
 ���� � �� for any �� � !�. Let
��� � ����
	 ��	 !�� then following theorem holds.

Theorem 4: For any 
 
 � and � � ��� , ������ ������ �
��.

Before proving the theorem we will state a Lemma which is
the key to the proof of above theorem.

Lemma 1: Suppose that an interval ! is mapped by � into
itself. If none of the endpoints of the interval � �!� is fixed
point then for every � � �� � ����
	 ��	 !� there exists a
finite �� � ����	 
	 �� such that ������ � � �!� for all � � ��.

Proof: From last invariance theorem it is clear that ��� � !
for all � � �. The claim here is that after certain time �� it will
be limited by � �!� 	 ! .

First, assume that ���� � � �!�. Then it can be shown that
������ � � �!� for all � � �� by contradiction. Suppose that
this is not true and let �� be the first time when ������ leaves

the interval � �!�. In particular assume that it leaves from the
right end, i.e., every right-sided neighborhood of � � contains a
point �� such that ������� 
 ���� �!�. Then, the same neigh-

borhood also contains a point �� such that ������� 
 ���� �!�
and �������� 
 �. As ������ � ! for all � � ��� � 
	 ��� and
also �� � �� � �� � 
 can be assumed, we have ������ �

����������


�������������������
�

� � from eq. 21. This contradicts
the earlier assumption that ������ 
 �. The other case where
������ leaves the interval from the left end can be handled simi-
larly.

Now assume that ���� �� � �!�. Particularly, let ���� 


���� �!�. Claim here is that ������ is decreasing for all � �

��	 ���, where �� � � is the first point with ������� � ���� �!�.
We first argue that �� � � by contradiction. Suppose �� � �
and, hence, ������ 
 ���� �!� for all � � �. From eq. 21

we have ������ � 
����������

�������������������

�
� � because

���������� � 
��� � ���� �!�. Then there exists a limit
� � ������ ������ 
 ���� �!� due to Bolzano-Weierstrass
theorem argument, which states that every strictly decreasing se-
quence which is bounded from below has a limit [1]. As � is not
a fixed point of map � , ������ � ���������� 
� Æ 
 �. This

tells us from eq. 21 that ����� � 
���������
�����������������
�

�

� Æ
�� for large enough �. This implies that ������ � �� as

� � � which is a contradiction, for this means that ������

crosses ���� �!� for some finite �. Hence, �� � �. Now, we
invoke the first part of proof where system is restarted at time ��
with ����� � ���� �!� and ���� � ! 
� � ��� � 
 ���. Using
that argument ���� � � �!� for all � � ��. The other case can be
handled similarly.

Now we provide the proof for above theorem using this lemma.
Proof: For any � � ��� , define " � ��������	 � �

��
 ��� and � � ��������	 � � ��
 ���. Clearly, �" � � 	

!�. Let !
�

be the smallest closed invariant interval containing
�" � � which is a subset of !�. Then, from existence of fixed
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point for the map � , !
�


 � �!
�

� 
 � �� �!
�

�� 
 � � � and
�����

��!
�

� � ��. Using invariance and Lemma 1 repeatedly
one can find arbitrarily small estimates for the range of trajecto-
ries with large enough time. Hence, the proof.

These theorems can be directly applied to study the dynamical
behavior of eq. 16 which is essentially described by the under-
lying discrete time difference equation

���� � � ���� (22)



�����

� ��

���
�

��
	 �� 
 � (23)

���� �

�
��

�����

� �
�

(24)

Here the invariance set � is a subset of the interval � ��, where
 is a positive constant greater than or equal to � ���. Lets look
into the dynamical behavior of map given by eq. 24. It has a
fixed point

�� � �
�

����� 	 (25)

and the market equilibrium price is given by �� � ��
������
����� .

The market equilibrium price can be obtained from that � � �

���
�

��� . This expression of equilibrium flow shows that �� in-
creases with decreasing � and thats why we characterize the user
with eq. 14 utility functions with smaller � greedier. The eigen-
value at this fixed point which is interestingly independent of the
fixed point is

#���� � �
�� 


�
� (26)

Here �� will be a locally stable fixed point if � 
 ��
. Accord-
ing to the Sharkovsky cycle coexistence ordering [11] the most
general condition for the fixed point �� to be globally attracting
is that the second iteration � ���� of the map � ��� does not have a
fixed point in the relevant invariance set other than ��, which is
locally stable. These conditions hold in our example, and hence
the fixed point �� is globally stable in the invariance set. In ad-
dition, in practice since any initial user rate in the interval ��  �
will be upper bounded by the physical link capacity �, after one
iteration the user rate will lie in the invariance set. The above
in turn implies the global delay independent stability of eq. 17.
It is interesting to note that when the utility function of user is
given by ����� �

�
�

as has been suggested for TCP algorithms,
the delay independent stability of the system cannot be ensured
by a price function of the form in eq. 13.

Our results have the following interpretation. If the functions
� � �

�

��� and � � ���� have an intersecting point that is a sta-
ble fixed point, then the communication delays are irrelevant for
system stability, and user rates and resource price converge to
the system optimum. Furthermore, our results tell us that the
stability of system depends critically on the user utility func-
tions, more specifically on the parameter �, for a given price
function. This can be seen from the eigenvalue #���� � � ���

�
.

Larger values of � mean that the slope of the price function is
steeper, which in turn implies that the price varies more widely
in response to a change in rate �. Hence, in order to maintain the

stability of system, user demand should be less elastic, i.e., the
response of user to a change in price should be less dramatic.
Thus, this presents a fundamental trade-off between the elastic-
ity of user demand and responsiveness of price function. In other
words, in order to keep the stability of system, if one wants to
increase the responsiveness of one, then the responsiveness of
the other must be sacrificed.

The above results have the following practical implications.
Characterizing the exact stability conditions of the system with
a given choice of utility and price functions is not easy. In ad-
dition, the round-trip delays of connections tend to vary widely.
Therefore, one approach to designing a stable system is to se-
lect a pair of user utility and price functions in such a way the
communication delay does not affect the stability of the system.
This is, however, not to say that the dynamics of the system do
not depend on the delay.

Our results also provide us with the following design guide-
line for the AQM mechanism and end user algorithms for effi-
cient use of network resources. Note that from eq. 25 the fixed
point �� is strictly increasing in � and is strictly decreasing in �.
Therefore, in order to increase the utilization at the fixed point,
we should increase the ratio �

�
. However, this ratio cannot be

increased arbitrarily without losing the stability from eq. 26.
Therefore, in order to achieve high utilization of the resource
and maintain the stability of the system, the parameter � should
be selected as large as possible and the parameter � should be
selected just large enough so that �#����� is smaller than one.
However, having the eigenvalue close to -1 comes at the price
of a larger settling time. In order to reduce the settling time, the
ratio of �

�
should be lowered. Therefore, the selection of param-

eters � and � presents a fundamental trade-off between stability,
settling time, and utilization of the system. This is numerically
demonstrated in the following section.

We now study what effects the load of the system, i.e., the
number of users in the system, has on the stability of the system.
Since the load on a resource is beyond the control of a network
manager, ideally the stability of the system should not depend on
the load. Suppose that there are $	$ � 
	 homogeneous users
in the system. Since users are assumed to be homogeneous, we
denote the rate of a user by ����. We assume that utility function
of the users is of the form in eq. 14 and the price function used
at the resource is that of eq. 13. Then, the end user algorithm is
given by

��������

� �
�
��������

�

����� ������� � � � ��$ � ������� � �
�

(27)

� �

�



��������
� ������� � �

�
$ � ������� � �

�

��
�

	(28)

where a superscript �$� is used to denote the dependence on
$ . Following similar steps as in the single flow case above, the
discrete time difference equation corresponding to eq. 22 - 24
of single flow case is given by

�
���
��� � � ��������

� � (29)


�
�
���
���

�� � ����
�

�
$ � �

���
�

�

��

	 ����
� 
 � (30)
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�
���
��� �

�
���$��

�
���
�

���

� �
�

(31)

Then, from eq. 31 the fixed point � ���� is
�
	
�

� �

����� ,� and the
eigenvalue is given by #���������� � � ���

�
and is independent

of $ . Therefore, the stability of the system does not depend on
the number of users in the system. This can also be explained
using the price elasticity of demand. Since, given a utility func-
tion of the form in eq. 14 for some � 
 �, the price elasticity
of the demand is constant for all � 
 � from eq. 15, one would
expect the stability of the system to be independent of the op-
erating point, i.e., the fixed point, and capacity, but only on the
choices of the utility and price functions that determine the re-
sponsiveness of the users and resource, respectively.

Clearly, the network designer can rescale the price function
by a scalar, i.e.,

���� � % �
� �

�

��
	 (32)

where % 
 �. When the price function is of the form in eq.
32, the fixed point of the system with $ flows is given by

�� � %�
�

�����
�
	
�

� �

����� . Furthermore, the value of % does
not change the eigenvalue at the fixed point, i.e., the stability
condition does not depend on %. Hence, if the number of flows
traversing the resource is known, then the resource can select
an appropriate value of % so that the fixed point of the system
achieves high utilization. However, the problem with this is that
smaller values of % reduces the responsiveness of the price func-
tion.

V. NUMERICAL EXAMPLES

In this section we present numerical examples to validate our
results presented in Section IV.
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Fig. 1. Plot of ���� for � � 2, 6.1, and 10.

Fig. 1 plots ���� for � � �	 � � ���	 � � ���, � � �, and
various values of �. The value of parameter � is set to �	 ��
, and

�, respectively. Note that � � � yields an eigenvalue � ���

�
�

��, which violates the stability condition. This is illustrated in

�Here we assume that the fixed point is smaller than � .

Fig. 1. As one can see the system does not converge to the
optimal value of 2.73. On the other hand, the value of � � ��

leads to a stable system and the rate converges to the optimal
value of 1.945 as demonstrated in the figure. When we further
increase the value of � to 10 one can see that the utilization at
the fixed point decreases with a larger value of �. However, the
settling time improves with increasing �. Thus, this presents
another trade-off between settling time and resource utilization
as mentioned in Section IV.

VI. CONCLUSION

We have shown that dynamical stability of rate control prob-
lem for a simple one resource case is determined by the interac-
tion of underlying utility and price functions. In particular, we
have demonstrated a fundamental trade-off between users’ price
elasticity of demand and the responsiveness of the resource. Fur-
thermore, there is another trade-off between the global stability
of system and the utilization of the resource. These results offer
some guidelines for jointly designing the end users algorithms
and AQM mechanisms at the routers.
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