TECHNICAL RESEARCH REPORT

Design of Material Flow Networks in
Manufacturing Facilities

by J.W. Herrmann, G. loannou, I. Minis
R. Nagi, and J.M. Proth

T.R. 94-50

INSTITUTE FOR SYSTEMS RESEARCH|

‘ ' v Sponsored by
the National Science Foundation
‘ Engineering Research Center Program,
the University of Maryland,

‘ Harvard University,

and Industry




Design of Material Flow Networks in

Manufacturing Facilities

J.W. Herrmann*  G. Ioannou’ I. Minisf R. Nagi!  J.M. Proth$

Abstract

In this paper we consider the design of material handling flow paths in a discrete
parts manufacturing facility. A fixed-charge capacitated network design model is pre-
sented and two efficient heuristics are proposed to determine near-optimal solutions to
the resulting NP-hard problem. The heuristics are tested against an implicit enumer-
ation scheme used to obtain optimal solutions for small examples. For more realistic
cases, the solutions of the heuristics are compared to lower bounds obtained by either
the linear programming relaxation of the mixed integer program, or an iterative dual
ascent algorithm. The results obtained indicate that the heuristics provide good so-
lutions in reasonable time on the average. The proposed methodology is applied to
design the flow paths of an existing manufacturing facility. The role of the flow path

network problem in the integrated shop design is also discussed.
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1 Introduction

The overall performance of an industrial firm may be significantly impacted by the design of
its manufacturing facility. A well-designed facility results in efficient material handling, small
transportation times, and short queues. This in turn leads to low work-in-process, effective
production management, decreased cycle times and manufacturing inventory costs, improved
on-time delivery performance, and, consequently, higher product quality [16, 19]. The global
problem of facility design includes three interrelated tasks: i) placing the manufacturing
resources (machines, departments or cells) within the available area of the shop (shop layout),
ii) selecting the material handling system (MHS) flow paths or aisles, and iii) designing the
MHS, e.g. determining the number of transporters necessary to serve the material flow as
well as the assignment of empty transporter moves.

A large body of literature has focused on the layout problem, and several powerful meth-
ods have been developed to place the shop resources in such a manner that inter-resource
material handling is minimized [6, 7]. But although the material handling effort also depends
upon the topology of the network connecting the resources, limited attention has been paid
to developing good network designs.

The research in MHS flow path design has focused on a few types of MHS, such as
Automated Guided Vehicle Systems (AGVS) [23]. For the case of unidirectional AGVS

with fixed aisles, the problem of determining the flow path directions was first formulated
by Gaskins and Tanchoco [4] as a zero-one integer programming problem. This model has
been extended by Kaspi and Tanchoco [10] and Sinriech and Tanchoco [21]. Goetz and
Egbelu [5] developed a heuristic approach that reduces the number of constraints required.
For the same type of MHS, Venkataramanan and Wilson [22] presented a similar but more
compact formulation based on strongly connected graphs. They also extended the model to
account for unloaded flow information. All these models were solved by different branch-and-
bound algorithms [10, 11, 21, 22]. Sharp and Liu [20] developed an analytical method for
configuring fixed-path, closed-loop MHS based on a mixed integer programming formulation.
Egbelu and Tanchoco [3] also studied the merits of bidirectional AGVS. Their simulation

results showed that the efficiency and productivity of the manufacturing shop is increased,



compared to unidirectional AGVS, at the cost of control complexity and considerable guide
path investment.

All studies mentioned above are limited in scope, since they address a special fixed aisle
system. In this case, the only design variable is the direction of each edge in the associated
graph, the configuration of which has been fixed a priori. Kim and Tanchoco [12] proposed
a network design model which accounts for both transportation costs and fixed costs such
as construction, space and control costs. Their solution approach consists of an enhanced
branch-and-bound approach that employs a tighter bound and a more efficient search scheme
compared to the one in [10].

Beyond AGVS, a few research studies have considered general MHS flow path design
problems. Proth and Souilah {19] proposed a fast branch-and-bound algorithm to evaluate
the shortest path between two departments/cells, which may serve as the flow path of the
MHS. Their method, though applicable to every type of horizontal transportation system,
does not account for practical system constraints, such as material flow bounds within MHS
aisles to prevent congestion. Montreuil and Ratliff [18] suggested a cut tree algorithm to
generate a minimum weight spanning tree, the edges of which represent flow path segments.
Weights which reflect the minimum cut tree flows are assigned to each edge. Based on these
weights, the flow path that corresponds to the minimum material handling cost is determined.
This is accomplished by adjusting the edge lengths in order to minimize the cumulative
product of the flow through each edge and the edge length. The cut tree method is valid
only when the flow path is a priori selected to be a spanning tree of the graph of the resource
input/output stations. Thus, it cannot address closed loops or multi-row configurations,
which are usually preferable. Chhajed et al. [2] impose a grid on the entire facility, the
edges of which can be used as MHS aisles. The MHS flow path design consists of selecting
the most appropriate edges of the grid and is formulated as a mixed integer problem. A
Lagrangian relaxation of the mixed integer formulation decomposes the problem into shortest
path subproblems that may be solved in linear time. However, their formulation allows flow
paths to pass through entity-occupied areas, which is clearly impractical. Finally, Maxwell
and Wilson [15] developed a network flow model for analyzing the traffic in dynamically

loaded MHS with fixed paths. Their method is an analytical tool that can be used to



evaluate the performance of candidate designs.

In this paper, we concentrate on the design of material flow networks for horizontal MHS,
including automated guided vehicles, manual or automated rail carts, industrial trucks, and
forklifts. Under certain conditions (i.e. if the handling operations follow the aisle network),
overhead cranes and bi-directional conveyors, can be also included. A fixed-charge capaci-
tated network design model is introduced, which incorporates critical practical concerns such
as fixed costs, operating costs, and aisle capacities. This network design problem is NP-hard
[9]. We propose two heuristic methods which generate near-optimal solutions to realistic-
sized problems. The quality of the solutions to small problems is assessed by comparing
them to the optimal solutions derived by a branch-and-bound procedure. The solutions to
larger problems are compared to lower bounds obtained through a linear relaxation of the
mixed integer program and through a dual ascent approach. The results indicate that both
heuristics provide good solutions in reasonable time for real life problems. Since this design
problem takes place at the planning stage of a manufacturing system, computation time
is not a key objective, assuming that it remains at a reasonable level. Thus the proposed
model and the two heuristics can be employed to design efficient material flow networks in
manufacturing facilities.

The paper is organized as follows: In Section 2 the flow path design problem is formulated
as a multi-commodity fixed-charge capacitated network design model. In Section 3 two
heuristic procedures are proposed to determine near-optimal solutions. In Section 4 these
heuristics are applied to several shop design examples in order to assess the quality of the
solutions obtained. In addition, Section 4 presents an industrial application of the design
methodology. Finally, Section 5 discusses the applicability of the methodology to the global

shop design problem and summarizes the conclusions of this study.

2 Problem Formulation

Consider an orthogonal unit grid imposed on the area of the manufacturing shop (see Figure
1). The unit length of the grid is defined such that it is larger than the width of a typical MHS

aisle and it is fine enough to adequately capture the geometry of the shop, including restricted



areas, and the geometry of the manufacturing departments/cells. Each intersection of the
grid represents a node of the underlying graph (i.e. the graph from which the material flow
network will be constructed). Note that grid intersections which are inside restricted areas
or areas occupied by manufacturing entities (e.g. point A in Figure 1) are not graph nodes.
The only exceptions are special nodes that coincide with input and output stations of cells or
departments (through which material enters and leaves the department/cell, respectively).

Two such nodes are denoted by I and O in Figure 1.
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Figure 1: Manufacturing shop and department/cell representations

Let N be the set of grid nodes, A the set of undirected arcs {,j} that connect these
nodes, and G = (IV, A) the associated graph. Note that all arcs have unit lengths, since they
connect two adjacent nodes. Also, since the flow is directed, let A be the set of directed
arcs that correspond to A, i.e. (4,7),(j,i) € A if {i,j} € A. We consider the problem of
selecting some of the arcs of this graph to form the material flow network. Two important
cost contributors are addressed:

1. Fixed Cost: Including an arc in the material flow network results in a certain fixed

charge. This accounts for the cost of constructing this segment of the flow path (e.g.

the unit cost of installing a conveyor or an AGVS), the space cost (since devoting a part



of the shop to the MHS makes that area otherwise unavailable) and the corresponding

control cost (e.g. traffic control at path intersections).

2. Variable Cost: This represents the cost of routing parts across the network, i.e. the

material handling cost.

These costs are in conflict, since including a large number of arcs may offer a substantial
reduction in the routing (variable) costs due to shorter origin-destination paths at the expense
of increased fixed charges. On the other hand, using fewer arcs in the final design results in
lower fixed costs and higher routing costs (due to longer origin-destination paths). Thus, the
objective is to achieve the best tradeoff between the fixed and variable costs of the network;
i.e. to provide efficient material handling through a flow network that is inexpensive to
construct and operate.

This problem falls into the category of fixed-charge network design models, which arise
in a variety of problems and have attracted significant research interest. Magnanti and
Wong [14] and Minoux [17] survey alternative formulations, recent solution approaches, and
applications of this problem.

Let K be the set of material flows, or commodities, between the resources (departments or
cells); i.e. the part traffic from resource d, to resource dj, is represented by a single commodity
k € K. The flow intensity between d, and d;, or the flow for commodity k£ within a certain
time horizon, is denoted by fi. For each commodity k, let O(k) be its origin, i.e. the
output station of resource d,, and D(k) its destination, i.e. the input station of resource
dy- In addition, let F;; be the fixed-charge associated with arc {7,j} € A. This reflects the
construction, space, and control costs discussed above. Note that different fixed costs can
be assigned to various arcs in order to favor certain network configurations. Furthermore,
let B;; be the capacity of arc {i,j} € A4, i.e. the traffic that this arc can accommodate
within the design time horizon. Finally, let cfj be the routing cost for commodity k¥ € K
on arc (z,7). This may reflect the length of the arc (if different from unity) or other design
considerations and may be different for each commodity. The routing costs are generally
symmetrical, i.e. cfj = c’?i.

J
Two types of variables are required for the problem formulation. The first type comprises



continuous variables :1: that represent the fraction of the k-th commodity flow that travels
across arc (i,j) € A. The second type comprises binary variables y;; that model discrete

choices as follows:

1 if arc {%,;} is chosen as part of the network design
Yij =
0 otherwise

Also, let N (i) be the set of nodes adjacent to node i € N.
Based on these conventions, the flow path design problem can be formulated as a multi-

commodity fixed charge capacitated network design model as follows:

Problem P(G)

minimize Z=) fx Y, Cfﬂ?f, + > Fyyy (1)
keK  (ij)eA {i,j}ed
subject to :
-1 ifi= O(k)
S ok Y #h={ 1 ifi=Dk) VieNkek 2)
JEN(1) [eN(5)
0 otherwise
ke K
T Ti < Ui V{i,jle A ke K (4)
z5 20 V(i,j) € A k€ K (5)
yi; € {0,1} v{i,j} € A (6)

The objective function Z reflects the basic tradeoff between the routing costs and the
fixed costs for using network arcs. It accounts for the material flow within the shop as well as
the fixed cost for building a particular flow network. Constraints (2) are the flow conservation
equations imposed on each flow k € K. They ensure the continuity of the flow path between
each origin-destination pair. Constraint set (3) is critical for the effective operation of the
material handling system. It limits the flow through an arc to a bound, B;;, in order to
prevent traffic congestion or to account for the capacity of the MHS on that arc. Note
that including additional flow path segments will be necessary to accommodate flow beyond
an arc’s capacity. This is also consistent with vehicle collision avoidance when alternative

routes are followed, to avoid MHS conflicts (see Krishnamurty et al. [13]). The value of B;;
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depends upon the number of material handling units in the system, the overall flow intensity
(both loaded and unloaded), and the traffic control at path intersections. Constraint set

(4) prohibits flow through non-selected arcs, i.e. arcs {i,j} € A with y; = 0. Finally,

constraints (5) ensure the non-negativity of the continuous variables :nfj, while constraints
(6) force the variables y;; to assume binary values.

Since the flow path design problem is intrinsically coupled with the shop layout problem
it is important for these two problems to address positively correlated, if not identical,
objectives. The following remark shows that objective function (1) incorporates the typical
objective of shop layout optimization models, i.e. the product of material flow between

resources and the associated distance, summed over all pairs of resources.

Remark 1 Ifcfj =1, ¥(i,7) € A,k € K and G comprises only unit length arcs, then the

first term of the minimization objective (1) is the cumulative material flow times distance.

Note that since for each commodity the first summation in (1) represents the flow times the

distance, the sum over all commodities is the overall material handling cost.

3 Solution Approach

As mentioned previously, the multi-commodity fixed charge capacitated network design prob-
lem is NP-hard. Implicit enumeration schemes can provide the optimal solution for only small
problems. Consequently, we concentrate on the development of heuristics in order to obtain
near-optimal solutions, and the construction of lower bounds to assess solution quality. In
this section, we present two heuristic methods that generate a feasible solution to the mixed
integer program of P(G). They both take advantage of the linear programming relaxation

of problem P(G) and proceed by iteratively fixing one or more of the y;; variables to 1 or 0.

3.1 A fixed-charge adjustment heuristic (FCAH)

Let P'(G) refer to the linear programming relaxation of problem P(G), i.e. the linear
program derived from P(G) by replacing the binary variables y;; € {0,1} by continuous

variables y;; € [0,1]. Also, let (z,y) be an ordered pair, where z is the vector of real
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variables fo and y the vector of continuous variables y;; € [0, 1] of the relaxed problem,

which correspond to the binary variables of P(G). Suppose (2°,y°) is an optimal solution
to P'(QG).

The FCAH algorithm is based on the assertion that elements of y° with values close to
one (y7; > 1—¢, where € = 0) represent strong candidates for inclusion in the active network.
Similarly, the elements of y° with values close to zero (yf; < €) represent strong candidates
for exclusion. Consequently, a good feasible integer solution may be reached by favoring the
first class of arcs and penalizing the second. This is accomplished by adjusting the fixed
charge values Fj;.

Let € =~ 0 be a tolerance factor, r > 1, a correction factor, and p; > p; > 1 two integer
parameters that control the length of the search. The steps of the proposed heuristic are as

follows:

Algorithm FCAH(e, p1,ps,7)
Step 1: Initialization

p=1l¢=1
A=A A=A 8=4
Gq:(N7Aq)

Step 2: Solution of linear programming relazation
If S =0 then go to Step 7
Solve linear program P'(G,) to obtain (z°,y°)
if y%; € {0,1} V{3, j} € A, then go to Step 7
Step 3: Variable selection
Select arcs {s,t} € A, and {u,v} € A, such that
v = maz{yf; : {i,j} € Ay, # 1}
Yoo = min{yg; : {15} € A, yf; # 0}
Step 4: Fized-charge update
Fy + Fy/r
Fu— Fyy-r

Step 5: Fiz binary variables; update arc set



if ¢ < py then
v{i, 7} EfL,:y%Zl—s
Y =1
Add constraint y;; = 1 to P(G,) and any subsequent program
S+ S\ {i,j},
V{i,j}eﬁq:yfjgs
¥ =0
A= AN\ {65} Av < ANA{G ), (6,9}
S+ S\ {uj},
if 3{i,j} € Ag: (g =1) or (y; =0)
g =1 and go to Step 6
else
Apy — Ay, A1+ 4y, Gy = (N, A)
g - ¢+ 1 and return to Step 2
else
Add constraint y;; = 1 to P(G,) and any subsequent program
Ay — A\ {52}, Agsr 4.\ {(5,8), (t,5)}
G, =(N,4,)
g + g+ 1 and return to Step 2
Step 6: Final variable updaté
| if p > p; then
yh =1 V{4, j} € Ag41 and go to Step 7
else
p + p+ 1 and return to Step 2
Step 7: End
output near-optimal solution (z°,y°) and objective function value Z

(with respect to the original fixed costs)

Let us now discuss the parameters and the steps of the algorithm. The intent is to force

the variables y;; to either zero or one. Whenever the value of any y;;, which is computed by



the linear relaxation of P(G,), is within a tolerance factor ¢ from either 0 or 1, the variable is
fixed and the associated arc is either removed from the graph or activated. Then the problem
is reformulated accordingly. The role of the tolerance factor is obvious. A smaller value of
¢ yields a more accurate prediction of the value of the variables in the optimal solution; in
this case, however, more computational effort is required in order to fix the values of the
variables. On the other hand, if ¢ is large the algorithm may converge quickly to a poor
solution, or it may even fail to converge to a feasible solution. That is why € should be less
than the smallest possible value of all the mfj variables.

The performance of the algorithm is very sensitive to the correction factor r. The role of
r is similar to the idea of Lagrangian multipliers or to the penalty methods for constrained
optimization. Step 3 identifies the y;; closest to 1 in the solution of the linear relaxation of
problem P(G,) (Step 2). By multiplying the fixed charge of arc {3, j} by a factor of 1/r, the
probability that this arc will be included in the solution is increased. Consequently, in the
next iteration increased flow will be routed through arc {%,j}, and the linear programming
relaxation will absorb in the objective function more of the arc’s fixed charge (since a:f] < Yij)-
As a result, y;; may be within € of 1 when the relaxed problem is re-solved. The reverse
occurs for those y;; which are close to zero. The fixed charge is multiplied by r to make the
arc undesirable and drive y;; to zero. The selection of r should take into account the following
extreme cases : A large correction factor (r > 1) will lead to a myopic local optimum, while a
small correction factor (r =~ 1) will substantially increase the time necessary for the heuristic
to converge to a binary solution.

The maximum number of global iterations allowed is specified by parameter p;. In case
the number of iterations reaches p;, the variable fixing procedure of Step 6 is invoked. The
value of p; is chosen to achieve the best tradeoff between computation time and solution
quality. Parameter p, controls the number of loops within each iteration allowed without
updating the set of arcs, the binary values of which are not fixed. It is clear that increasing

pe increases the computational effort of the algorithm.
Remark 2 Algorithm FCAH converges to a feasible solution, if one exists.
The convergence of FCAH is guaranteed by Step 6. FCAH would fail to converge only if
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some necessary arc to a feasible solution was excluded in Step 5. This exclusion may occur
ife > :cf] for some (%,5) € A and k € K, so € must be chosen less than the smallest possible
value of the zf; variables. Otherwise, the feasibility of the linear relaxations at each iteration
guarantees that a feasible network can be constructed by rounding up the fractional yj;.

3.2 A depth-first-search algorithm

Consider the state space of the mixed-integer program of Eqs.(1)-(6). By state space we
refer to the set of combinations of the values of the binary variables. If problem P(G) has
n = | A| variables, the state space consists of 2" distinct points. It is obvious that for medium
to large problems it is not possible to evaluate the objective function value for each of these
states. Thus, a heuristic that partially explores the binary tree (a tree representation of the
state space of the problem) is proposed.

In this heuristic, the state space tree of the mixed-integer program P(QG) is explored
until a feasible integer solution is obtained; i.e. the search terminates when a leaf of the
tree is encountered. This type of search from the root of the tree towards a leaf is called a
depth-first search. However, the search implemented here is enhanced to explore the most
promising nodes first. These nodes are associated with variables y;;, the values of which
are closer to either zero or one in the solution of the linear program P'(G). The basic tool
employed to evaluate the lower bound at each tree node is the linear programming relaxation

of problem P(G). The Ordered Depth-First Search (ODFS) algorithm is as follows:

Algorithm ODFS

Step 1: Initialization
Solve linear program P'(G) to obtain (z°,y°)
Rank variables y;; is descending order of Iy{’] - 0.5|
Store the y;;-variables in list L in the above order

Step 2: Depth-first-search
Set yp, = first element of L and remove it from the list
Set G, = (N, A\ {p,q}) and yp, =0
Set G1 = (N, A) and ypg =1

11



Step 3: Solution of the linear programming relazations
Solve P'(G,) to obtain the objective function value Z,
Solve P'(G) to obtain the objective function value Z;

Step 8: Variable fixing
If Z, < Z then set yo, = 0 and A - A\ {p,q}

Else set yp, =1

Step 4: Check for variables not yet fized
If L # 0 return to Step 2

Step 7: End

Output near-optimal solution (z°,7°) and objective function value Z
Y

The above depth-first search algorithm is straight forward. In Step 1, the values of the
variables y;; are derived by solving the linear programming relaxation of P(G). Then, the
variables y;; are ranked with respect to their distance from 0.5. Note that this procedure
will rank at the top of the list L those y;; variables with values closer to either zero or one.
These variables are fixed at the early stages of the search. Subsequently, the depth-first
search procedure is invoked. In Step 2, the first element y,, of the list L is selected and the
corresponding arc is either included to or excluded from the graph. This is accomplished by
solving the resulting linear programming relaxations in Step 3 and fixing the variable y,, to
the value that yields the best lower bound. The procedure is repeated until all variables are
fixed.

The effectiveness of ODFS is directly related to the quality of the linear programming

approximation of the mixed-integer program.

3.3 Exact methods and lower bounds

A straightforward branch-and-bound scheme is employed to assess the effectiveness of the
heuristics in solving small problems. It extends the ordered depth-first search heuristic and
explores implicitly the whole binary tree. Standard branch pruning and lower, as well as
upper, bound update techniques are implemented. Since cach node of the tree requires

the solution of two linear programs, the computational time is significantly large. For our
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computer implementation, only problems that comprise 30 or fewer arcs were solved to
optimality.

In order to evaluate the quality of the heuristic solution procedures for larger problems,
good lower bounds are required. Since the linear programming relaxation of the mixed
integer program is not an adequate approximation to problem P(G), it does not, in general,
provide a good lower bound. In this work, the dual ascent algorithm of Herrmann et al. [8]
is used to obtain good lower bounds. This algorithm, which is based on the labeling method
of Balakrishnan et al. [1], is presented in Appendix A and, in general, provides lower bounds
better than those of the linear programming relaxation. Both lower bounds are employed

for the evaluation and comparison of the heuristics.

4 Numerical Results

The quality of the solutions derived by the proposed heuristics is assessed in this section
through extensive computational experiments on various graph, origin-destination, and ma-
terial flow patterns. Also, the methodology is applied to the design of the flow paths in an

existing manufacturing shop.

4.1 Evaluation of the Heuristics

Both heuristics (FCAH and ODFS) were implemented in C on a Sun Sparc IPX station.
Numerous computational tests were performed. In this section we present the results of
solving randomly generated case problems with 20 to 60 arcs. These are problems on grid
graphs, a network configuration that complies with the graph representation of the manu-
facturing facility. In each case, 50 problem instances were solved. The parameters employed
to generate the case problems were uniformly distributed over the ranges shown in Table 1.
In Table 2 the solutions of the fixed cost adjustment heuristic (FCAH) are compared to
the optimum (for the 20 and 30 arc cases) as well as the lower bounds obtained from the
dual ascent procedure and the linear relaxation, respectively (for all cases). The first column
of Table 2 lists the average percentage difference between the solution of FCAH (Zrcan)

and the optimum (Z,,). The second column lists the average percentage difference between
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Table 1: Ranges of randomly selected parameters in case problems

Parameter Range
Fixed charge 5 - 40
Number of commodities 10 - 35
Commodity flow 4 - 12
Arc capacity 30 - 250

Zrcan and the bound of the iterative dual ascent algorithm (Zp,4). Similarly, the third

column lists the average percentage difference of Zrcapy from the linear relaxation bound
(Zrp)-

Table 2: Comparison of FCAH solution vs. optimum and lower bounds

(50 problems per case)

Optimum Dual ascent Linear relaxation
Number of arcs Z”+ﬁ’;z°ﬂ x 100% Zrasp=2na 5 100% Zecgi=Zie x 100%
20 24 4.5 8.6
30 3.2 6.3 9.4
40 - 7.9 10.3
50 - 7.4 9.6
60 - 6.8 9.2

As expected, for small examples and depending on the structure of the network, the
heuristic may perform extremely well, since the number of alternative solutions is relatively
small. This is especially true if the number of flows is large, in which case most nodes
of the graph are either origins or destinations of flows. For larger problem instances, the
heuristic solution may diverge from the optimal; however, as the problem size increases, its
performance on the average is expected to improve. Finally, Table 2 shows that Zp, is
always better than Z,p (see also [8]).

Table 3 summarizes the results of the performance tests for the ordered depth-first search

scheme (Zoprs). Its performance is slightly inferior to the fixed cost adjustment heuristic.
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In addition, FCAH required significantly less computational effort, especially when the con-

vergence parameters were tuned well.
Table 3: Comparison of ODFI'S solution vs. optimum and lower bounds

(50 problems per case)

Optimum Dual ascent Linear relaxation
Number of arcs ZoRES=Zent 5 1% Zongs=2na x 100% ZepLs=Zir x 100%
opt DA LP
20 2.7 4.8 8.9
30 3.6 6.4 9.6
40 - 8.2 104
50 - 7.6 9.7
60 - 7.2 9.5

From Tables 2 and 3 we can see that the average difference between the best solution
derived by either heuristics and the average lower bound of the dual ascent is less than 8%

in all problem instances.

Table 4: Divergence measures

cases with solutions cases with solutions
within 10% of Zps 20% or more greater than Zp4
FCAH 243 0
ODFS 226 8

It is worth noting that FCAH provided good solutions consistently, while ODFS resulted
occasionally in very poor solutions. Table 4 shows the number of problems (out of 250) for
which the two heuristics resulted in solutions that are within 10% of the dual ascent lower
bound Zp4. It is clear that most of the FCAH solutions are included in this range, while
almost 10% of the ODFS solutions are not. Furthermore, there were some cases for which

the ODFS provided solutions which are 20% or more away from Zp,4 (see Table 4).
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4.2 Industrial Application

In order to illustrate the application of the proposed method the shop of a small-size man-
ufacturer of vertical blinds is considered. The shop comprises eighteen resources, numbered
consecutively from 1 to 18, which perform all operations from receiving the raw material
to shipping the finished products. It has dimensions 960’ x 600’ and is dedicated to the

manufacture of five types of final assemblies, including wood and plastic blinds.

1/0 15
10
1 4 6
1/0 1/0 I O I 0
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0 I 1/0 18
10 17 0O 9 1 14

Figure 2: Sample manufacturing shop and cells

Figure 2 shows a model of the existing shop and the grid imposed on the shop floor. Each
intersection of the grid is a node of the set IV, while each horizontal and vertical segment
is a candidate network arc (in the set A). The locations of the input (I) and output (O)
stations for each cell are also shown in Figure 2.

The production rates vary from 12 to 126 units per shift, depending on the product type
and the forecasted demand for the next two years. Several make parts are required for each
final assembly.

The material flow (from-to traffic) matrix of all make parts is given in Table 5. The

entries of this table correspond to the demand per shift, which is derived by the forecasted
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demand for the five final assemblies over a two year period. Each entry a;; represents the
number of parts which must be transported from the output station of resource d; to the

input station of resource d;.

Table 5: From-to flow matrix
1 2 3 4 5 6 7 8 9 10 i1 12 13 14 15 16 17 18
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Three cases have been considered for the flow path design problem of this shop (cases Wi,
W, and W3). All three are based on the capacitated fixed-charge network design formulation.
In case Wy, the fixed charges are small and the capacities are large. This case corresponds
to the design of the flow paths for an inexpensive horizontal transportation system, such as
manually operated carts, which will use many flow paths to efficiently move material between
resources. A fixed charge of Fj; = 100 units has been assigned to each candidate arc, and
for every commodity the variable cost was set equal to the scaled arc length (1 unit). The
arc capacities were fixed to B;; = 1500 units of flow. The best configuration was obtained
by FCAH and is shown in Figure 3. This solution corresponds to a total cost Z = 46871;
i.e. fixed cost Zy = 10800 and variable cost Z, = 36071.

In this design, all commodities are routed through shortest paths. Although alternative

shortest paths exist for several origin-destination pairs, the presence of fixed charges has
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Figure 3: Inter-resource material flow paths (W)

forced commodities to employ common network arcs, thus providing a simpler and more
attractive flow path solution. Furthermore, the capacity constraints were not active in the
heuristic solution.

The second case examined (case W,) is the capacitated network design with large fixed
charges and inactive capacities. This situation may occur when the installation of expensive
high volume material handling equipment is the primary consideration. In this case, a fixed
charge of F;; = 500 units has been assigned to each candidate arc (as in case W), while the
capacity was set to B;; = 3779(= X;%, ¥12, a;;) units of flow, to guarantee that capacity
constraints are inactive. For every commodity the variable cost was set equal to the scaled
arc length (1 unit). Figure 4 shows the network design obtained by the FCAH for this case.
The total cost is Z = 82341; i.e. fixed cost Z; = 42500 and variable cost Z, = 39841.

It is clear that the configuration of Figure 4 has a smaller number of active arcs compared
to case Wy), as a result of the substantial fixed charge. In addition, the topology of the flow
network is very simple due to the absence of capacity constraints.

The third case considered (case W3) is the capacitated network design with large fixed
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Figure 4: Inter-resource material flow paths (W,)

charges and smaller capacities. This corresponds to a manufacturing shop where expensive
automated material systems (such as Automated Guided Vehicles or linear bi-directional
conveyors) are to be employed. In this case, a fixed charge of Fj; = 500 units has been
assigned to each candidate arc (as in case Ws), while the capacity was set to B;; = 700 units
of flow. Again, for every commodity the variable cost was set equal to the scaled arc length
(1 unit). The best configuration was obtained by FCAH and is shown in Figure 5. This
solution corresponds to a total cost Z = 87716; i.e. fixed cost Z; = 49500 and variable cost
Z, = 38216.

It is worth noting that some path segments are constructed to provide sufficient capacity.
One example is path c-d in Figure 5, which is activated to accommodate flow which could be
routed through path a-b if the capacity of this aisle had been greater. In addition, several
flows are not routed through shortest paths of the original graph since the high fixed cost
discourages the activation of all the required arcs, or because of capacity constraints.

Table 6 summarizes the cost metrics for the three configurations. It shows the resulting
values of the cost metrics under different fixed charges and capacities. The first row provides

the values of the fixed and variable costs for configuration W), the second row provides the
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Figure 5: Inter-resource material flow paths (Ws)
corresponding metrics for configuration W5, and the third row the ones for configuration Wi.

Table 6: Fixed and variable cost for configurations W,, Wy and Wj
Z; (Fy=100) Zj (Fy=500) 2, By

Wi 10800 54000 36071 1500
W, 8500 42500 39841 3779
W 9900 49500 38216 700

5 Conclusions

The design of the material handling flow paths is an important part of the overall facility
design problem. A multi-commodity fixed charge capacitated network design model has
been developed to determine a material flow network that is inexpensive to construct and
operate. This model offers significant advantages over existing ones, since it incorporates
critical practical concerns. However, the problem is computationally complex and, thus,

optimal solutions cannot be obtained for medium-to-large problems. Two effective heuristic
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solution techniques are proposed, and extensive computational tests have been performed.
The latter show that the quality of the heuristic solutions is satisfactory (on average within
8% of the lower bound obtained by a dual ascent procedure). The solution approach has
been employed to re-design the material flow paths of an existing manufacturing facility.

The proposed flow path design method can be employed to concurrently design the shop
layout and the material handling aisles. Efficient combinatorial optimization techniques,
such as simulated annealing or genetic algorithms, can be used to determine a near-optimal
placement of resources. For each candidate shop configuration, the proposed method can
be used to design the material flow paths and thus obtain a realistic value of the objective
function of the overall problem. At the end of the procedure, the solution provides both the
resource locations and the material flow network.

Finally, both the layout and flow path design problems are affected by the type of material
handling systems and the routing and dispatching strategies implemented. These strategies,
which are evaluated by solving the control problem, include unloaded moves between re-
sources and thus alter the from-to material flow matrix. In order to exploit the relationship

between these three problems, two approaches are suggested in order to evaluate layouts:

e iterate between the flow path design problem and the control problem to obtain a good

combination of solutions

e generate a set of strategies for the control problem, determine a flow path design for

each strategy and the given layout, and select the best combination

However, since three computationally complex problems are to be addressed simultaneously,

significant work needs to be done to integrate the solution approaches.
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Appendix A

In this appendix, the Iterative Dual Ascent algorithm of Herrmann et al. [8] is presented.
It is an extension of the labeling method of Balakrishnan et al. [1] to the capacitated
fixed-charge network design problem. It is motivated by the observation that increases in
the variable cost of bottleneck arcs (the capacity of which is exceeded in the initial primal
solution) will divert flow to additional paths in the network. The algorithm iteratively
updates the variable cost of bottleneck arcs, thus increasing the lower bound, generates a
sequence of lower bounds and terminates with a primal feasible solution.

The basic idea of the Iterative Dual Ascent algorithm stems from the shortest path
property of the dual solution derived by the labeling method. Since the active arcs (in A4,)
which form the shortest paths, cannot accommodate all of the commodities, flow must be
directed to new arcs. This can be achieved by increasing the cost of the current shortest
paths in order to create new origin-destination paths that satisfy the shortest path property.

The underlying mechanism for the required flow diversion is straightforward. Bottleneck
arcs, {i,j} € A,, are identified and their variable costs cfj are increased for some commodity
k € K in an attempt to alter the origin-destination shortest paths. This variable cost increase
can be thought of as a penalty for violated capacity constraints. Subsequently, by re-applying
the labeling method, the slacks of additional arcs are reduced to zero. Consequently, by
iteratively implementing the labeling method and increasing the cost of bottleneck arcs,
we eventually obtain a set of active arcs such that the capacitated problem has a feasible

solution.

Algorithm IDA
Step 1 : initialization of dual variables and slacks
qg+1
wfjé—O‘v’(z’,j) €A keK
sy — Fy V{i,j} € A
u¥  shortest path from O(k) to node i, Vi € N,k € I

Z% + Thek Uh)
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Step 2 : initialization of labeled/unlabeled arc sets
Ny(k) + {D(k)},Vk € K
Ny(k) < N\{D(k)},Vk € K
Set CND = {k € K : O(k) € Ni(k)}
Step 3 : evaluation of 6-increase
Select k € CND
Set A(k) = {(i,7) € A : i € Ni(k),j € Na(k)}
Set A'(k) = {(i,5) € A(k) : ¢ + wf — (ub —uf) = 0}
Calculate 8; = min{s;; : (1,7) € A'(k)}
Calculate 6, = min{c§; + wf; — (uf —uf) : (4, 7) € A(k) \ A’(k)}
Set § + min{d;, s}
Step 4 : dual variable update and node labeling
wh — (W + 8), si5 + (545 — 9), V(4,§) € A'(k)
uf « (uf + 8), Vt € Ny(k) and Z§ « (Z3 +6)
Update sets Ny(k) and N(k) by labeling (at most) one node:
If § = 6y, s;; = 0 for some (4, j) € A'(k) set Ni(k) « Ny(k)\{s} and Np(k) ¢ Na(k)U{s}
Set CND < CND\ {k}; if CND # 0 go to Step 3
If O(k) € Ny(k), Vk € K, set Z}, = Z% and go to Step 5
Otherwise set CND = {k € K : O(k) € Ny(k)} and go to Step &
Step 5 : feasibility check on zero slack arcs
Set A? = {{i,j} € A:s;; =0}
Set G, = (N, Aj)
if Qg # 0 and g # 1 set z} = Z4~ and go to Step 7
if Qg # 0 and ¢ = 1 set Zj, = Z} and go to Step 7
if Qg = 0 identify A = {{i,7} € A¢ that violate constraint (3)}
Step 6 : variable cost update
Set ¢, = min{s;; : {i,j} € A\ A4}
Select k, € K and {3,,j,} € A
Set cf:jq — (cf:jq + ¢y)

Set Z} = (Z% + ¢,)
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g=q+1
Go to Step 2

Step 7 : termination

Output lower bound Z},
Solve the linear relaxation of CFP(G) to obtain z = (zf;)
Set yi; = 1,V{i,j} € AL 2 >0

Output primal feasible solution (z, y)
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