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Abstract
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This thesis implements a recently proposed algebraic methodology for
optimal domain of attraction estimation, and extends the method to include
optimal estimation of the largest inscribed ball. In addition, a numerical optimal
estimation methodology is proposed. The thesis addresses the important issues
of Liapunov function construction and the optimal choice of parameters in the
family of Liapunov functions. Several examples are included, including a
detailed discussion of the classical inverted pendulum. Finally, the thesis
addresses the importance of including a measure of the size of the domain of
attraction as part of a generalized objective function in optimization-based

controller design.
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Chapter I. Introduction

The nature of control system design has undergone a rapid evolution as a
result of developments in computer technology. Today's designer is no longer
limited to the use of simple graphical schemes for controller design. It is now
possible to develop high order as well as nonlinear models of the open loop
system and to develop complex and optimized control schemes. Thus the
modern setting for controller design is one in which the designer does not seek
ad hoc designs or closed form, analytical solutions arising from simple design
specifications and objectives. Rather, the designer deals with general constraints
and seeks to maximize a combination of objectives.

The topic of this thesis is motivated by this design framework. In the
design of controllers for many nonlinear systems, an important consideration is
the size of the domain of attraction of an equilibrium point. A measure of the
size is given by the radius of the largest ball in R" contained in the domain of
attraction. This work presents a methodology for the optimal estimation of this
size. This estimate can then be used in combination with other objectives as part
of a generalized objective function.

An understanding of the estimation methodology presented in this thesis
requires knowledge of mathematical tools from diverse fields. Chapter 2
presents a summary of these tools from nonlinear controls theory and abstract
algebra. Many approaches have been proposed in the controls literature to
perform domain of attraction estimates. These are presented in chapter 3. The
methods are classified as non-Liapunov and Liapunov-based. The latter are
characterized by their reliance on a suitably constructed Liapunov function. The
available Liapunov based methods are classified as Zubov methods and LaSalle

methods.
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The methodology pursued in this thesis is a LaSalle ﬁethod. As such, the
issue of having a suitable Liapunov function must be addressed. The
construction of Liapunov functions is a difficult task which has not progressed
substancially since the days of Liapunov, though advances have recently been
attained for the class of systems that are critically stable. The construction of
families of Liapunov functions is addressed in chapter 4.

Given a function in the family of Liapunov functions, the next task is to
find the critical level set value for that Liapunov function. In chapter 5 we
approach this task in two ways. The first approach is through a scheme that
exploits knowledge of the boundary of the domain of attraction. This reduces
the problem to the solution of a set of equations with polynomial nonlinearities.
The method is made viable by the application of the theory of Grobner bases to
the solution of this system of equations. This method has been proposed
recently, and it is implemented in this work. The proposed method is extended
by also applying the theory of Grobner bases to the optimal estimation of the
largest ball contained within the (optimal) estimate of the domain of attraction.

Although the algebraic approach in principle produces the optimal
estimate, we find experimentally that it is limited to systems with simple
dynamics and simple Liapunov functions. Thus in this thesis a second
methodology is developed. This numerical methodology also results in the
optimal estimation of the domain of attraction. Though less elegant than the
algebraic approach, it is more feasible in practice with currently available tools.

Each choice of Liapunov function from a family of such functions results
in a different estimate of the domain of attraction and of the radius of the
inscribed sphere. Thus, there is a need for an intelligent selection of parameter
values to obtain the best possible estimate. Chapter 6 addresses the task of

optimizing the parameter values of the family of Liapunov functions.



There are several examples contained in the thesis as the optimal
estimation methodology is developed; In addition, the methodology is applied
to the inverted pendulum with linear stabilization. This example is developed
in detail in chapter 7. Chapter 8 summarizes the goals and results of this
research and proposes further directions of study. This includes research
directed at improving the optimal estimation methodology, as well as on the use
of this estimate in optimfzation-based controller design.

The appendices contain the computer code used to implement the
algebraic estimation methodology. The code is written in Mathematica, a
powerful high level language useful for numerical, symbolic, and graphical
computation. The simulation of system dynamics to verify the computational

results obtained is done with the use of the Simnon and kaos software packages.



Chapter II. Mathematical preliminaries

This chapter is intended to summarize the key mathematical tools used in
this work. For a more detailed and complete presentation, sources in the

bibliography or equivalent sources should be consulted.
i. Liapunov theory

Liapunov's second method, or direct method, is a key tool for the
qualitative study of nonlinear differential equations. It was first presented by
the Russian mathematician Aleksandr Liapunov in his doctoral dissertation in

1892. The following is the version of his theorem that will be useful for our

purposes.

Theorem 1 (Liapunov). Let D be an open subset of R” and let 0 D be an

equilibrium point of the autonomous system of equations
x=f(x), | (1)

where f:D — R" is a locally Lipschitz mapping from D into R". Let V:D —» R

be a continuously differentiable function such that V(0)=0, V(x) >0 for
xeD\{0},and V(x)<0 for xeD.

Then x =0 is stable.

If in addition we have V(x) <0 for x e D\ {0}, then x=0 is

asymptotically stable.

The significance of this result is that we can study the stability of an



equilibrium point of a system without having to solve the differential equations
describing the system. This is also possible through Liapunov's first or indirect
method, i.e. through linearization about an operating point. However,
linearization is inconclusive if it results in at least one eigenvalue with zero real
part and none with positive part. In such a case, it has been proven that the
system is not exponentially stable, but it may or may not be stable, and in fact it

may still be asymptotically stable. The following example illustrates these cases.

Example 1. The scalar differential equations ¥ =0, x=-x>,and x = x> all have
the same linearization about the origin, namely x =0. Note that the first is

stable, the second asymptotically stable, and the third unstable.

A second advantage of the direct method is that it also provides global
stability information. Specifically, the Liapunov function can be used to provide
(conservative) estimates of the domain of attraction of the equilibrium point.
The set Q, = {x eR"/Vx)< c} is contained in the domain of attraction provided
that Q. is bounded, connected, and contained in D.

There is a significant difficulty associated with the use of Liapunov's
direct method, for though we are spared from the task of solving nonlinear
differential equations, there is to date no general methodology for the
construction of high order Liapunov functions.

The construction of quadratic Liapunov functions for an exponentially
stable equilibrium point can be performed by using the linearized system.

Consider the autonomous system (1). Let A= gf— . Since the equilibrium point
£9 x=0

x =0 is exponentially stable, the eigenvalues of A satisfy

Re[4,(A)1<0Vi,1<i<n. Then V(x)= x"Pxisa Liapunov function for (1), where



P is chosen as follows. Choose a symmetric positive definite Q € ™", and

consider the Liapunov equation:
PA+A'P=-Q (2)
Then the unique solution P of (2) is positive definite, and V(x) =x"Px is a

Liapunov function for (1).

The Liapunov equation can be solved by using the Kronecker product,

defined by:
anB ... amB
A®B= Sl
amB ... amB
p1 g1
We express P and Q in column form, with p=| : [and g=| ! |, where pi and
pn qn

g: are the ith columns of P and Q, respectively. It turns out that Ap =-gq,
where 4=(AT®1)+(I®A"). Thus p=-A4"4. Note that A will always be
nonsingular for an exponentially stable system, because Re[4,(2)] < 0Vi, where
1<i<n’ This follows from the fact that the set of eigenvalues of Ais
{l;(A) +A,(A),1<i<n,1<j< n} ,and Re[4,(A)] <0Vi,1<i<n since the
linearization is exponentially stable.

The matrix A4 will be singular if the equilibrium point is aymptotically,
but not exponentially, stable. In such a case, Liapunov's function cannot be
utilized to construct a Liapunov function. A theorem to this effect can be found

in Vidyasagar [27]:

Theorem 2. Let Ae R™" and let {4,,1<i < n} be the (not necessarily distinct)



eigenvalues of A. Then (14) has a unique solution P corresponding to every

QeRX™ ifand onlyif 4, + ;" # 0Vi, j, where * denotes complex conjugation.

The following is an example of the construction of a quadratic Liapunov

function for an exponentially stable equilibrium point.

Example 2. Consider the system given by

i'1 = xlz - xz (3)

Linearizing this system about the equilibrium point (0,0), we obtain

= Ax, where A=|" M| setg=|? ©
xX= ,were—l_l.eQ-Ol.
We have
0 1 1 O 2
P -1 -1 0 4 0
= a =
10 -1 1 |3IT o)
o0 -1 -1 -2 1
SO
-1 0.5 -0.5 -0.5(2 2.5
g = 0.5 -0.5 0.5 0 |0 _ -1
P==29=705 05 -05 o fo|7|-1]
-05 0 0 -05(1 1.5

Thus, a quadratic Liapunov function for (2) is given by

2. -1
Vix)= xr{ X

_— SJX' This constructive method can be improved by exploiting

the fact that P and Q are symmetric.



ii. Abstract Algebra and Gribner Bases

To lead up to the key algebraic result that will be used in this work,

several algebraic structures and definitions need to be briefly reviewed.

Definition 1. A group (G,+) is a set together with a binary operation for which
the following properties hold:

1. Closure under (+).

2. Associativity under (+).

3. Existence of identity element in G.

4. Existence of inverses in G.
A group is said to be abelian (or commutative) if Va,beG, a+b=b+a.

Definition 2. A ring (R,+,x) is a set together with two binary operations for
which the following properties hold: |

1. (R,+) is an abelian group.

2. Closure and associativity under (x).

3. Multiplication is distributive over addition.

A ring is said to be commutative if Va,beR, axb=bxa. In general, there
need not be an elerhent 1eR such that ax1=1xa=a VaeR. If thereis, then
(R,+,x) is called a ring with unit element. For our purposes, we will be
interested in commutative rings with unit element. For simplicity, from this
point on we refer to these simply as rings. Examples of these rings are the set of

integers and the set of rationals, each with the usual addition and multiplication.



Definition 3. An ideal I of a ring R is a subset of R such that for all a,beI and for

allreR, rxael and a+bel.

Given a set PcR, (P) denotes the smallest ideal of R containing P. P is the
generating set for (P).
We will be using ideals and rings in the context of polynomials. To

introduce polynomial rings, we need to first introduce the notion of a field.

Definition 4. A ring for which the elements different from 0 form an abelian

group under multiplication is called a field.

Definition 5. A polynomial ring, denoted by F[x,,x,,...x,], is the set of
polynomials in the variables x,,x,,... x, with the usual addition and

multiplication, where the coefficients are from the field F .

In this thesis, the piolynomial ring of interest is R[x,,x,,...x,]-

The following notation is used to bijectively relate monomials of
R[x,,%,,...x,] to vectors in A[": For ae A[",x% = x,"x,%...x,*, and degx® = a.
This notion of degree is useful in the context of Grébner bases but is somewhat
unintuitive as it is unlike the usual notion of degree. For example, we typically

think of deg(x,’x,) as 3, whereas with the notion of degree just introduced it is
2
1l

monomials that it contains. For the notion of highest degree to be meaningful,

The degree of a polynomial is then defined as the highest degree of the

we need an ordering relation on the vector-valued degree values.
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Definition 6. A term ordering < is a well-ordering on A" satisfying the

following: Va,B,ye N":a<f=>a+y<B+7.

The specific term ordering we will be using is known as the strict
lexicographic term ordering, represented by <,. It is defined by the following:

a <, p e Jjsuchthat @; <B; and Vi< jia; = 3.

Example 3. Consider the strict lexicographic term ordering on A_*. We have

-]

. Equivalently, we say that deg(x,’x,’x,”) <, deg(x,’x,"x,). Also, since

, we have deg(x,’x,’x,” +x,x,%) <, deg(x,’x,x,).

It is clear that the strict lexicographic term ordering depends on the
ordering that we impose on the polynomial variables. In the discussion above

we have implicitly worked with the variable order (x,,x,,...,x,) for n variables.

For a general set of variables this order needs to be specified.

Example 4. Consider the strict lexicographic term ordering on A(?, and
consider polynomials in the variables x,y. With the variable order (x,y), we
have deg(xy?®) <, deg(x’y). With the variable order (y,x), we have
deg(x’y) <, deg(xy?).

Now we present the main concept of this section. Let A be an ideal in

R(x;,x,,...x,]-

Definition 7. A subset G < A is a Grobner base for A with respect to the term
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ordering <, if
i. (G)=A and
ii. VgeG, fe A\{0}, we have
deg(f)=deg(g) or deg(g)<,deg(f)

The significance of a Grébner base of an ideal of a polynomial ring is

captured by the following result:

Theorem 3 (Buchberger). Consider the Grébner base G for the ideal

AcRx, ,X,,-..X,,] with respect to the strict lexicographic term ordering. Then G

contains a polynomial p e R[x,].

This is an interesting theoretical result which is useful in solving systems
of polynomial equations in several unknowns. A complete discussion of our use

of Grobner bases is contained in chapter 5.

Example 5. The ideal ({xy -1,y - x}) has the Grbner base {y - x, x> — 1} with
respect to the variable ordering (y,x). Notice that the Grébner basis contains a

polynomial in x alone.

Buchberger's algorithm is the most commonly employed to calculate
Grobner bases. The computational expenditure is considerable both in terms of

the degree of the polynomials and the number of variables.
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Chapter III. Survey of estimation methods

Several methodologies for estimating domains of attraction have been
proposed in the controls literature. This chapter provides an overview of some
of these methods, both Non-Liapunov and Liapunov-based. In addition,
motivation is given for the methodology pursued in this thesis. Before

discussing these methods, let us recall the definition of domain of attraction.

Definition 8. The domain of attraction R, of an asymptotically stable equilibrium

point x" of (1) is the set of points x € R" such that I‘im O(t,x)=x", where O(t,x)

is the solution to (1) starting at x at t=0.
i. Non-Liapunov Methodologies

This class of methods does not explicitly use Liapunov functions. Some
attention has been given to the tracking function method and the describing
function method. More recently, work has been done on what is known as the
trajectory reversing method.

The trajectory reversing method involves using numerical methods to
expand an initial estimate of the domain of attraction. This is done by doing
backward integration of (1). Alternatively, this can be viewed as forward

integration of the system
x =—f(x). 4

Assume that we have an initial estimate W, of the domain of attraction

R,, so that W, c R,. Define the backward mapping F:R" — R" by
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F(x) = ®(-t,,x),x e W,, (5)

where @(t,x) is the solution of (1) that starts at x at time {=0, and where
t,€(0,T), T>0. Tis chosen such that ®(—¢,x) is defined on [0,T] for all x e W,,.
Let W, =F(W,). Then W, cW, cR,. W, isa subset of W, because W, is

positively invariant for (1). We define this notion below.

Definition 9. A set M € R" is said to be positively invariant if x € M implies

O(t,x) e M,t>0.

In fact, it can be proved that W, is a proper subset of W, provided
W, # R,. Thus, W, is a better estimate of R, than W,. This argument can be

extended as follows. Define

Wg = F,’(Wo)lp,'(x) = (D(_ti,X)- (6)

For t.

i+1

>t,i>0, wehave W, cW,, cR,. Thus, the sequence W,,W,,...
provides increasingly better estimates of R,.

This method is generally implemented by obtaining approximations of

the sets W, through computer simulation. The method has proven to be
effective, especially for low-order systems. Nevertheless, it does not generate

analytical estimates of the domain of attraction.

ii. Liapunov-based methodologies

There are two broad categories of estimation methodologies involving the

use of a suitable Liapunov function. These are typically referred to as Zubov
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methods and LaSalle methods.

The Zubov methods are based on Zubov's theorem, which gives

necessary and sufficient conditions for a given region to be the domain of

attraction of an equilibrium point.

Theorem 4 (Zubov). Consider the system of differential equations

¥ =f(x),xeR" (7)

where f:D — R" is a locally Lipschitz mapping with domain DcR", 0eD.

Assume that there are two functions V:D — R and ¢:R" — R which satisfy the

following:

(i) Vis continuously differentiable, 0 < V(x) <1VxeD, and

V([0,b)) N D is bounded for b<1.

(8).

(ii) ¢ is continuous on R", ¢(x)=0, and ¢(x)=0=x=0.

(iii) Forall xe D, V(x) and ¢(x) satisfy

V(x)=-¢(x)1-V(x)]. (8)

(iv) }1.% Vix)=1.

Then D is exactly the region of asymptotic stability R, for the origin of

To find the domain of attraction, we must find a function V(x) which

satisfies the conditions of the theorem for a chosen ¢(x). Several methods are

based on finding an approximate solution to (8), which does not admit a closed

form solution. Other Zubov methods involve solving a different partial
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differential equation known as the Zubov generalized equation.

The problem with the Zubov methods is that approximating solutions to
(8) involves considerable computation and, more significantly, partial sums in
the series solution to V(x) do not converge uniformly to the actual V(x). Asa
result, with currently available techniques, approximate solutions to (8) are not
related in any known way to the domain of attraction. Research in this area is
currently directed at circumventing these numerical difficulties using novel
numerical approaches.

Recently the "Crystal Growth Algorithm" has been proposed by Hilton
[15]. This approach has the advantage that as the solution to (8) is constructed
on an increasing number of points on a grid in phase space, a less conservative
estimate of the domain of attraction is obtained. This is more in the spirit of the
LaSalle estimation methodologies. Let us briefly examine Hilton's method.

The method involves numerically approximating the solution of (8)
through a two-step process. First, values of V(x) at grid points around the origin
are determined by using the approximation V(x) = 0 near x = 0. Thus, the value

of V(x) at these points can be found by solving the simplified equation

V(x)=-¢(x), &)

where ¢(x) is any function satisfying (ii) from Theorem 4.

Once the V(x) values at grid points around the origin have been
determined, the second part of the numerical scheme is applied. This involves
using a finite difference scheme to determine V(x) at grid points adjacent to the
starting grid. As additional V(x) values at grid points are determined, those
with V(x)<1 are included in the domain of attraction estimate. Those with

V(x) 21 are rejected. The process continues until the estimated region is
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surrounded by rejected grid points.

Currently Hilton's method is limited to systems with three state variables.
This work is promising and performs well for low order systems and simple
dynamics. For more complex systems, issues relating to memory allocation
need to be further addressed. In addition, though a dense grid of points reduces
numerical errors, these errors accumulate as the estimate is extended because
each approximate value is based on previous approximate values. Thus, the
values at grid points far from the origin become increasingly less accurate.

Hilton's method has suggested the numerical estimation methodology
introduced in this thesis. Though this also involves the use of a grid of points in
state space, the methodology is entirely different. Indeed, the methodology
introduced here is a LaSalle method (to be discussed below), and does not
involve the use of Zubov's equation. Despite the recent advances by Hilton, it is
acknowledged in the controls literature [8] that the development of effective
Zubov methods is a difficult task.

LaSalle methods are based on the use of a Liapunov function defined on a
region D as stated in the asymptotic stability version of Theorem 1. In
particular, on the set D the Liapunov function V(x) is positive definite, it has a
negative definite time derivative, and V(0) = 0. LaSalle methods involve finding
the largest positive invariant set of a certain type that is contained in D. D itself
is not in general a positively invariant set. Several methods involve constructing
sets that are not of the form Q_= {x eR"/V(x)< c}. Such methods typically are
based on the theory of dynamical systems and involve characterizing the
boundaries of positively invariant sets. Often the following result characterizing

the boundary of the domain of attraction is employed:

Theorem 5. Let x =0 be an asymptotically stable equilibrium point for (1).
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Then its domain of attraction R, is an open, invariant set. In addition, the

boundary of R, is a union of trajectories.

In this thesis, we work exclusively with sets of the form Q. The key
issues associated with the determination of a good estimate of this form include
the choice of an optimal Liapunov function from a family of Liapunov functions
and a choice of c e R suéh that Q_ is as large as possible while remaining
connected, bounded, and contained in D. One method to construct _ is the
following. First construct a quadratic Liapunov function as discussed in chapter
2. Then determine the largest circular region C c R" for which the Liapunov
function is known to satisfy the conditions of Theorem 1. Finally, the largest
positive invariant set of the form Q. contained in C is determined. This is then
the estimate of the domain of attraction. Let us illustrate this method with the

following example, which follows Khalil [18].

Example 6. Consider the following system:

X, ==2%;+ X%, (10)
Xy = =X, + XX,

Linearizing the system about the equilibrium point at (0,0), we find that

-2 0
the system is exponentially stable at the origin, with A= gf; =[ 0 _1].
20
Solving the Liapunov equation with Q=I, we obtain P = 4 1l
0 =
2

We now must determine the largest circular region C satisfying the

conditions of Theorem 1. Note first that V(x) is positive on all of R" \ {0}.
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The time derivative of V(x) = x"Px is given by

V(x) = (x> +x,5)+ (Elz—xlzx2 +x,%,°). (11)

Now use the change of variables

X, =pcos ¥, x, = psind. (12)

We then have

V(x) = -p? + p° cos ¥ sin ¥(sin ¥ + %cos ¥

s—p2+—§p3<0,f0r p<%. (13)

To determine the largest value of c such that Q, is contained in the circle

of radius % centered at (0,0), we compute A, (P)xr? = % X (j%—)2 =0.8. Thus

Q, with ¢=0.79 is an estimate of the domain of attraction.

In general, this method yields very conservative estimates of the domain
of attraction of an equilibrium point. This is due to the fact that the region of
state space in which we seek the largest acceptable level set value of the
Liapunov function is limited to a circular region on which V(x) is negative
definite. This limitation is shown schematically in figure 1.

Thus, the task before us is to improve upon this methodology. There are
three key steps to effecting this improvement. The first step is to generate a
higher order, more useful family of Liapunov functions than can be generated
by Liapunov's equaﬁon. The second step is to use a more effective methodology

to determine the critical level set value of the Liapunov function. Finally, the
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third step is to implement an optimization methodology to select the parameter

values in our family of Liapunov functions.

Figure 1.
N
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Chapter IV. Construction of Liapunov Functions

The construction of a parametrized family of Liapunov functions for
asymptotically stable equilibria is the first step to implementing the proposed
estimation methodology. We consider separately equilibrium points that are
exponentially stable and those that are critically stable. The notion of critically

stable is defined below.
i. Exponentially stable equilibria

The construction of quadratic Liapunov functions for exponentially stable
equilibria has been examined in chapter 2. The justification for the method rests
on the fact that an equilibrium point of a nonlinear system is exponentially
stable if and only if the linearization is exponentially stable. This result does not
hold for the more general notion of asymptotic stability, as can be seen from
example 1.

The theory of quadratic Liapunov functions can be extended to include
piecewise linear Liapunov functions. Quadratic and piecewise linear Liapunov
functions can then be viewed as special cases of Liapunov functions constructed
through the use of vector norms. This generalization is discussed by Kiendl,
Adamy, and Stelzner [19]. There may be some hope of generalizing this notion
further to include piecewise quadratic Liapunov functions, which can then be
used as approximations to higher order Liapunov functions. Indeed, every
higher order function can be approximately locally be a quadratic function.

A second extension to the theory of quadratic Liapunov functions

constructed with Liapunov's equation,
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PA+ATP=-Q, (14)

invplves the definiteness of Q. It turns out that Q need only be positive
semidefinite. This is discussed further by Ingwerson [16].

Besides the constructive methods based on Liapunov's equation, a second
line of research is based on analytical methodologies involving the use c;f line
integral techniques. Much of this work dates to the 1960's. Actually, the first
result dates back to Liapunov, who gave the following result to prove his second
(or direct) method. Assume that the origin is an exponentially stable
equilibrium point for (1). If the Jacobian of f(x) with respect to the state vector

evaluated at the origin is symmetric, a Liapunov function for (1) is given by

Vx)= —J:f(x) -dx. ' (15)

Note that the integral is path independent. Further work includes the variable
gradient method, which involves choosing a vector function g(x) as a candidate
gradient of a positive definite function V(x), and such thatV(x) is negative
definite. Other related results are presented by Ingwerson [16] and by Reiss and
Geiss [23], among others.

The disadvantage of these methodologies in the present context is that
they are not strictly formal methods that can be implemented for an arbitrary
system. As Ingwerson [16] puts it, "a certain amount of ingenuity is required".
These methods can be useful in the analysis of specific classes of systems.

Additional work invblves finding a Liapunov function based on the
linearization of the system about the origin without resorting to Liapunov's

equation. Chen and Chu [4] show how to convert a matrix A from controller
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canonical form to a form known as the Schwarz form. A Liapunov function can
then be determined from the entries of the Schwarz form.

At present, there is no available methodology for the construction of high
order Liapunov functions for exponentially stable equilibria. Of course, the
addition of any cubic or higher order terms to a quadratic Liapunov function is
still a valid Liapunov function, since the quadratic terms dominate near the
origin. Yet itis not clear how these terms should be chosen to construct
functions useful in improving domain of attraction estimates. Thus, in this
thesis we will use the family of quadratic Liapunov functions based on the
linearization of the system, as discussed in chapter 2. The construction of these
functions has been implemented in Mathematica. The computer code can be

found in Appendix A.
ii. Critically stable equilibria
We define the notion of critical stability as follows:

Definition 10. An equilibrium point for the autonomous system of equations (1)

is said to be critically stable if it is stable but not exponentially stable.

In terms of the Jacobian of the system evaluated at the equilibrium point,
there are no eigenvalues in the open right half plane, at least one simple
_eigenvalue on the imaginary axis, and no repeated eigenvalues on the imaginary
axis.
The construction of high order Liapunov functions for critically stable
equilibria is developed by Fu and Abed [7]. Specifically, they present an explicit

construction of quartic and quintic Liapunov functions. These correspond to the
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case where the Jacobian has a simple zero eigenvalue, and the case where there
is a pair of complex conjugate poles on the imaginary axis, respectively. Thus
the estimation methodology for critical cases can make use of these functions.
These explicit constructions of Liapunov functions in critical cases are of
more significance than one might realize. The explicit construction of quadratic
Liapunov functions presented earlier assumes that the equilibrium point is
exponentially stable. There is no methodology for the construction of quadratic
Liapunov function for a critically stable equilibrium point. Indeed, there is no

such function. We see this in the example below, due to Fu and Abed [7].

Example 7. Consider the following system:

. 3
X; = XXy + X,
_ ! (16)

00
The Jacobian for this system evaluated at the origin is given by [0 1].
This corresponds to a critically stable equilibrium. It can be shown that there is

no quadratic Liapunov function for the origin.
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Chapter V. Determination of Critical Level Set and Radius of
Inscribed Sphere

The principal difficulty with the determination of the critical level set as
presented in chapter 3 is that we are restricted to a ball in R" in which to
determine the largest set of the form Q_. The reason why this was done was the
resulting ease in obtaining a domain of attraction estimate. However, to obtain
less conservative estimates we must not restrict ourselves to a region of R" of
any particular shape. Rather, we must work directly with the boundary of the
domain of attraction and of the level sets of the form Q_. We need to determine
the smallest ¢ € R such that the boundary of Q, and the boundary of R,
intersect. This ¢ will then be the critical level set value.

One method to determine c is based on the use of results due to Zaborsky
[29]. The method relies on three key results. Before stating the results, the

following assumptions are made:

(A1) The equilibrium points on the boundary of R,, which we denote by JdR,,
are finite in number and hyperbolic. (Recall that an equilibrium point is said to

be hyperbolic if its Jacobian has no eigenvalues with zero real part).

(A2) The stable and unstable manifolds of equilibrium points on JR, satisfy a

technical condition known as the transversality condition.

For a hyperbolic equilibrium point ¢ of (1), its stable and unstable

manifolds, W*(g) and W*(0o) respectively, are defined as follows:
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Definition 11.

W*(o) = {x e R/ limd(t,x) = 0}

(18)
WH(0) = {x e R" / im O, %) = 0'}

t=—>—o0

(A3) Every trajectory on dR, approaches one of the equilibrium points as

I — oo,

The strongest of these assumptions is (A3), which rules out systems
where the boundary of the domain of attraction contains a limit cycle. With
these assumptions, the following results are 'obtained. The first of these gives a
more explicit characterization of the boundary of the domain of attraction than

given by Theorem 5.

Theorem 6. (see [29]) Consider a nonlinear dynamical system described by
equation (1) which satisfies assumptions (Al) to (A3). Let o,,i=1,2,..., be the
equilibrium points on the stability boundary dR, of the asymptotically stable
equilibrium point at the origin. Then

dR, = U W(o). (19)

U,'EaRA

The next result presents conditions for an equilibrium point to be on the

boundary of the domain of attraction.

Theorem 7. (see [29]) Let R, be the domain of attraction of the origin, an

asymptotically stable equilibrium point of the nonlinear dynamical system (1).
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Let o # 0 be a hyperbolic equilibrium point of (1). Then
i. o0edR, if and only if W*(6) "R, = .
ii. oedR, if and only if W*(c) cdR,.

We also need the following result concerning the values that a Liapunov

function for (1) takes on the boundary of the domain of attraction.

Theorem 8. (see [29]) Consider (1) and assume that the origin is an
asymptotically stable equilibrium point with domain of attraction R,. Let V(x)
be a Liapunov function for this system. Then a point with the minimum value
of the Liapunov function over the stability boundary dR, exists, and it must be
a type-1 equilibrium point. (An equilibrium point is said to be type-1 if its

Jacobian has exactly one eigenvalue with positive real part).

Based on these results, the following methodology can be used to

determine the critical level set value:

1. Find all the type-1 equilibrium points.

2. Order those equilibrium points whose corresponding Liapunov function
values V() are greater than 0. Let the one with lowest value of V(:) be x.

3. Check whether z is on JR, using the conditions of Theorem 7. If it is, then
V(z) is the critical value of the Liapunov function. If not, proceed to the point
with the next lowest value of the Liapunov function and check whether this

point is on dR,. Continue in this manner until the critical value is determined.

This method in principle determines the critical level set value of the

Liapunov function. The problem involves having a viable computational
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implementation of the method. It will in general be difficult to determine all the
equilibrium points of a nonlinear system. In addition, implementing either of
the conditions of Theorem 7 to determine whether an equilibrium point is on
JR, is a difficult task. Indeed, no computational implementation of this
method has been proposed. Finally, it is difficult to verify that a given system
satisfies the assumptions (A1)-(A3). If the system does not satisfy the
assumptions and the method is used, we may obtain erroneous results. Asan
example, if the domain of attraction is bounded by a limit cycle, the
methodology will not detect any equilibrium points on dR,, and will fail to
produce an estimate of the domain of attraction.

In this work, we will pursue two methodologies to determine the critical

level set value. The first is algebraic, the second numerical.
i. The Algebraic Approach

This approach to determine c is based on the use of Lagrange multiplier

techniques. The critical level set value c corresponds to a local minimum of V(x)

subject to V(x)=0. Assuming %V(x) is full rank (i.e., nonzero), the first order

necessary condition that a point must satisfy to be a local minimum is that there
exist A € R such that AVV —VV =0. Thus, the value of c is given by solving the

following system of nonlinear equations:

V-c=0, (20a)
Q=0, (20b)
AVQ-VV =0, (200)
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where we have used the abbreviation Q = V=VV. f. If -;—V(x) =0, we must
X

replace (20c) with 2 y(x)=0.
ox

These equations can be interpreted as follows. The first simply sets the
value of the Liapunov function at the point of intersection equal to the unknown
c¢. The second states that the point on the boundary of the domain of attraction
with the minimum value of the Liapunov function is an equilibrium point. This
follows from Theorem 8. The third expresses the fact that at the point of -
tangency, the gradients of the level curves are parallel. Thus we have a system
of n+2 equations (equation (20c) is a system of n equations), in n+2 unknowns (c,
A, and the n-dimensional state space vector x).

The problem now is to decide how to go about solving this sytems of
equations. We focus on the case of polynomial-type nonlinearites. With an
exclusively numerical approach, there is no certainty that all solutions will be
generated, thus the approach is an unreliable one. We proceed instead with a
combination of algebraic and numerical computation. This methodology has
been investigated recently by Forsman [6].

Making use of Theorem 2, we can compute the Grébner basis of the ideal
({V —¢,Q,AVQ - VV}) with the variable order (4,x,,x,,...,x,,¢). Thisresultsina
set of polynomials, one of which is a polynomial in c alone. The roots to this
polynomial can then be found numerically. Introducing a numerical procedure
at this stage is less of a problem. Though roots of a polynomial are difficult to
compute accurately, it is known that the number of roots equals the order of the
polynomial. Thus there is no risk of not generating the solution of interest as
was the case had the system of equations been solved directly with the use of
numerical methods.

Both the algebraic and numerical aspects of this method can be
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programmed in Mathematica. The code used to implement the methodology can

be found in Appendix B. The following example illustrates the method.

Example 8. Consider the same dynamical system considered in example 6:

X, ==2%, + XX, 1)

We use the same quadratic Liapunov function for this system:

1 1
V(X) = lez + —2-x22. (22)

Corresponding to this Liapunov function, we have

Q=—(x2+x5,2)+ (%xfxz R B )

The Grobner basis for the ideal ({V -¢,Q,AVQ - VV}) with the variable
order (4,x,,x,,c) contains a polynomial p in c alone. The solutions to p=0 are
1.33333, 6.13921, 79.3745. The critical value of the Liapunov function is given by
¢=1.33333, the smallest positive solution, with corresponding state space
variables x, =1.3333 and x, =1.3333. This is a significant improvement over the

result obtained in example 6, which was ¢=0.79.

There is one difficulty that needs to be addressed. In general, the smallest
positive root to the polynomial equation in ¢ may or may not be the critical value
of the Liapunov function. If it corresponds to a complex-valued state vector, the
root should be discarded and the next smallest considered. To check that the

state vector is real-valued, one might think to plug the chosen value of ¢ into the
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system of equations, and solve, in turn, for each of the staté variables by
computing the Grobner basis for the new system of equations. It turns out that,
although this is conceptually correct, it is not implementable in finite precision
arithmetic. A Grobner basis for an ideal is not guaranteed to exist in general. If
an inaccurate value for one unknown is put into the system of equations, there
may be no values for the other variables corresponding to a solution to the
system.

The difficulty can be resolved by discarding one of the n+2 equations
when plugging in the approximate value for ¢. In our implementation, the
equation Q=0 is discarded and candidate solutions for x, are determined. For
each of these, x, is then determined. (Thus far only two-dimensional systems
have been implemented). If a real valued state vector is found for which Q =0,
the critical value of the Liapunov function is accepted. If not, the value is
disgarded and we proceed in the same manner with the next largest value, and
so on, until the critical value is determined. This methodology is illustrated by

the following example:

Example 9. Consider the following system:

X1 = _x] + x22

: (24)
xz = “2x2
A Liapunov function for (24) is given by
V) =2+ 1), 25)

With this choice of Liapunov function,
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Q= xx," - x.7 =2, (26)

The Groébner basis for ({V —¢,Q,AVQ - VV}) with the variable ranking
A > x, > X, > ¢ contains the polynomial p=8¢® —71c® + 4c. The positive roots of
p=0 are 0.0567 and 8.8183.

First, we try plugging ¢=0.0567 into the system of equations and compute
the Grobner basis for ({V - 0.0567,AVQ — VV}) with the variable order (4,x,,x,).
The possible values for x, are 0.33675 and 0.719224. However, neither of these
results in feasible values for x,. Thus, we disregard the root c=0.0567.

Next, we repeat the same procedure with ¢=8.8183. The possible values
of x, are 0.33675, 0.719224, 2.78078, and 4.1996. With x,=2.78078, we obtain a-
real value for x, of 3.14704. Thus the critical value for the Liapunov function is

indeed ¢c=8.8183.

The Lagrange multiplier/Grébner basis methodology for determining the
critical level set value of a Liapunov function is clearly a promising one. We see
that it outperforms the methodology presented in chapter three, which does not
make use of Lagrange multipliers and instead limits the region of interest of
state space to a ball in R". The method is easier to implement than the
manifold-based method discussed earlier, and does not involve the restrictive
assumption (A3). The main drawback is the significant computational
expenditure required to compute the Grobner basis of an ideal. Indeed, for
many systems of equations the GroebnerBasis subroutine in Mathematica is unable
to determine a Grobner basis. Also, note that the condition (20c) is a necessary
condition for a local minimum. Thus, the solution ¢ that we obtain may

correspond to a local minimum which does not correspond to the critical level
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set value of the Liapunov function. In such an event, we obtain a more
conservative estimate of the domain of attraction.

Essentially the same methodology used to determine the critical value of
the Liapunov function can be used to determine the radius of the largest ball in
R" contained in the optimal estimate of the domain of attraction. Recall that the
motivation for determining this radius is to have a measure of the size of the
domain of attraction that can be utilized in controller design.

In the special case of quadratic Liapunov functions, the radius can be

evaluated easily by using R = 7l C(P) . In general, we seek the solution to the
following system of equations:

V-c=0 _ (27a)

C-R*=0 (27b)

VC-AVV =0. (27¢)

In these equations we have used the abbreviation C(x) = x"x, so that
C(x) = R? represents a circle of radius R centered at the origin. We calculate the
Grobner basis for the ideal ({C - R?,V —¢,VC - AVV)) with respect to the

variable prder (x,,xz,...,x,,,l,Rz). Notice that ¢ is not a variable, and has been
assigned the critical value of the Liapunov function. The Grébner basis contains
a polynomial p in R? alone. We consider only positive roots to p=0, and
determine the smallest root corresponding to a real-valued state vector. The
“square root of this solution is the radius of the largest ball contained in the

estimate of the domain of attraction.

Example 10. Continuing with the system considered in example 9, we calculate



33

the Grébner basis for ({C - R?,V —¢,VC - AVV)) and follow the method just
described to determine R. We obtain R=4.199595.

Example 11. Consider the following system:

il = -x1(1 - Xlz - xzz)
. 2_ .2 (28)

In addition to the exponentially stable equilibrium point at the origin, this
system has the peculiar property that all points on the unit circle are (unstable)
equilibrium points. Thus we know a priori that the domain of attraction is given
by the open region bounded by the unit circle. Figure 2 illustrates the phase
plane plot for this system, generated using Simnon.

A Liapunov function for this system is given by:

V) =%+ %x;. (29)

Determining the critical value of the Liapunov function, we obtain ¢=0.5.

Calculating the radius of the largest ball contained in Q, ;, we obtain

R=0.707107.
This last example points in an obvious way to the need for an optimal

choice of the parameters in the Liapunov function for a system. If the Liapunov

function were chosen as
V) =x>+x," (30)

instead of (29), we would obtain R=1. The optimal choice of parameter values
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for a family of Liapunov functions is addressed in the next chapter.
ii. Computational limitations of the Algebraic Approach

In the previous section it is mentioned that the key limitation in using the
proposed algebraic methodology is the computational requirement in
computing the Grobner basis of an ideal. We now examine this issue in this
section.

The computational cost for determining a Grébner basis is very high as a
function of both the number of variables in the system of polynomial equations
as well as the highest degree present in the system of equations. Depending on
some technical details, the complexity of computing a Grobner basis for an ideal
generated by polynomials of with highest degree d in n variables is 4°®, d°™,
or d°”. In principle, it follows from Bezout's theorem that the 4% complexity
is optimal (see Forsman [6]).

Unfortunately, there is very poor documentation of the GroebnerBasis
function available in Mathematica. There is no warning when the input ideal is
too complex for the function call to handle. In part this may be due to the fact
that a relatively simple set of polynomials generating the ideal can result in
extremely high-order polynomials in the Grébner basis. This phenomenon is
difficult to predict a priori.

In practice, we find experimentally that two-dimensional quadratic
systems with quadratic Liapunov functions give rise to the most complex
systems of equations that Mathematica can handle reliably. More complicated
dynamics are handled on occasion, but more often than not the function call
cannot be executed. This computational difficulty is a limitation to the use of the

proposed algebraic methodology in practical settings, where the dimension of
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the state vector may be large. Note that only the performance of the Mathematica
software has been tested. Other symbolic computing software, such as Maple,

may prove to be more effective.
iii. The Numerical Approach

In this section we propose a new methodology to numerically determine
the critical level set value of the Liapunov function for the asymptotically stable
equilibrium point at the origin of (1). The motivation for the development of
this second approach is the limited applicability of the algebraic methodology as
discussed in the previous section.

In a practical setting, where we can expect to have many state variables
and cubic or quartic nonlinearities, we would most likely use the Trajectory
Reversing Method (discussed in chapter 3). A more recent entirely numerical,
non-Liapunov estimation methodology is presented by Kadiyala [17]. This
involves brute force forward-integration from a dense grid of starting points to
develop a good picture of the domain of attraction.

The disadvantage of these numerical schemes is that the estimates
obtained are not well-defined. By this we mean that we would require an
infinitely dense grid of starting points to obtain sets that are known to be }
contained within the domain of attraction. This drawback is the fundamental
motivation for pursuing a LaSalle method, where we obtain well-defined sets

guaranteed to be contained within the domain of attraction.

Consider the autonomous system

x=f(x), (31)
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where we assume f:D — R" is a locally Lipschitz mapping with domain

D cR",0eD . We assume that the origin is an exponentially stable equilibrium
point. Corresponding to this equilibrium point,we construct a Liapunov
function V(x) that is globally positive definite. This is not a necessary condition
for a general Liapunov function, but it is assumed in this methodology. Vi(x)
may be constructed with a quadratic part based on the linearization of the
system's dynamics, plus additional terms of even order.

The basic idea behind the method is to test the positive invariance of
increasingly larger sets of the form Q, = {x e R",V(x) <c}, where Q_ is
connected, bounded, and contains the origin. This can be done by checking the
sign of V(;c) =VV(x)- f(x) on a grid of points contained in Q_. With a quadratic
Liapunov function on R? given by V(x) = p,,x,> + 2p,%,X, + p,,X,", for some
P11/ Pras P € R satisfying p,, > 0,p,,p, > Piy°, the set of grid points with spacing d
contained within the set Q_ is given by
(32)

(), %,),=x, 0 SX,S%, 0 =X, 0 SX, 8%, )

where

£ f_c_
=—q. _.._E& =d Pn

xl_hnﬂ d lxl_uppa =u- T ’
_ | 2% - \/(Eplzxx)z - 4P22(P11x12 -0)
X, e = d- ’ (33)
- 2p,d
v =4 —2p;pX, +\/(2P12x1)2 - 4p22(pux12 =)
i 2p.,d i
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Note that both x, ,,,, and x, ., depend on x,. This set of grid points

corresponds closely to the actual set Q_, as shown in the figure below.

Figure 3.

A

R
3‘

/ % >

Note that we must test grid points that are contained within sets of the
form Q.. We cannot enlarge the estimate of the domain of attraction R, by
simply testing whether V(x) <0 at additional grid points. We must be certain
to be testing points in a candidate positive invariant set. We continue to increase
the value of ¢ until we find a grid point x* at which V(x*)20 or V(x") = 0. At
this point we stop, and the previous value of ¢ is the estimate of the critical level
set value.

To understand the theoretical basis for this methodology, consider the

following sketch in phase space:

Figure 4. \
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The point o corresponds to the point on the boundary of the domain of
attraction on which V(x) is minimized. We know from Theorem 8 that this will
occur at a type-1 equilibrium point. Recall that this means that the Jacobian of
(31) evaluated at ¢ has one right half plane pole, and no poles on the imaginary
axis. The stable manifold of o, W*(0), is part of JR,, the boundary of the
domain of attraction of the origin.

Notice in figure 4 that the sets V(x) =0 and W*(o) are shown as being
distinct sets whose intersection is {c}. In general, these sets may coincide over
portions of the phase plane, as there may be points in W*(¢) for which V(x)=0.
Notice also that points in region 1 are not in R, yet they have V(x) <0,
emphasizing the importance of testing the negative definiteness of V(x) on sets
of the form €,.

The key concern with this method is that the grid of points be sufficiently
dense such that there are points near o. If this is the case, then based on the
continuity of V(x) we conclude that there will be a grid point x* with V(x*)20
or V(x')=0. This ensures that the methodology terminates when the critical
level set value is reached. Denoting by ¢” the previous value of ¢, the estimate

of the domain of attraction is Qc. .
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Chapter VI. Optimization Methodology

There are some results in the controls literature concerning the
determination of a Liapunov function that is optimal in some sense. We need to
address the issue of determining the Liapunov function which results in the
largest radius of the ball contained in the estimated domain of attraction. Before
doing so, let us briefly introduce two interesting, different notions of optimal
Liapunov functions.

Willson [28] and later Brayton and Tong [3] make use of a methodology
to determine the best quadratic Liapunov function for a discrete time nonlinear
system. In this context, the Liapunov function is used to predict ranges of
parameter values within which a system is known to be asymptotically stable.
The optimal Liapunov function is the one which results in the largest estimates
of these ranges. The use of Liapunov functions allows one to avoid eigenvalue

calculations.

anmple 12. Consider the discrete-time dynamical system in R? described by

x(k+1)—[0
|8

;:lx(k),k =0,1,2... (34)

For this system to be asymptotically stable, we need its eigenvalues to be
of magnitude less than one. This will be true for coefficient values in the region
of parameter-space shown in figure 5.

Another notion of optimal Liapunov function involves maximizing the

estimate of the allowable perturbation to a stable system, while insuring stability
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of the system. Consider the system
x = Ax+ g(t,x) (35)

where A is Hurwitz and |g(,%)], < 7|x],V¢ 20 and Vxe R". Leta

symmetrix Q>0 be given, solve the Liapunov equation (2) for P, and let
V(x) =x"Px. V(x) is then a Liapunov function for (35). Without perturbation,
_we have an exponentially stable linear system. The time derivative ofV(x) along

the trajectories of the perturbed system is bounded as follows:

V(%) € =2 Q.2 + 220 (PYYA,2. (36)

The origin of the perturbed system will be globally exponentially stable if
Y < Amin(Q) / 22, (P). This bound clearly depends on the choice of Q. It turns
out that the bound is greatest when Q=I (see Khalil [19]). With this choice, the
quadratic Liapunov function gives the least conservative estimate of the
allowable magnitude of the perturbation term in (35).

In the present context, the notion of optimality is yet another. The
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optimal Liapunov function in a family of Liapunov functions will result in the
largest radius of the sphere contained in the estimated domain of attraction.
Each Liapunov function will result in a different estimate of the domain of
attraction, and a different radius value. Note that we assume here, as
throughout the thesis, that the equilibrium point of interest is at the origin. The
assumption is made without loss of generality as it is sufficient to make a
suitable choice of state vafiables.

Unfortunately, unlike the other notions of optimality, we do not have
necessary and sufficient conditions for optimal parameters of the Liapunov
function. Also, we lack conditions on the matrix Q that results in an optimal
quadratic Liapunov function. Thus, we must intelligently search the parameter
space to determine the optimal vector of parameter values.

Consider the following framework for an optimazion scheme in a vector
space. Let X denote the set of vectors of parameter values that correspond to
Liapunov functions, for a given family of Liapunov functions. Also, let R(x)
denote the radius of the largest ball contained in the estimate of the domain of
attraction, where the estimate is based on the Liapunov function determined by

x. Starting with an initial vector x, € X, successive iterates are generated with a

mapping A:R" — R”, so that
X = Alx), k20. (37)

The mapping A:R" — R" has the following properties:

i. A(X)c X. This ensures that a feasible vector generates another
feasible vector.

ii. Vxe X\ X ,R(A(x))> R(x), where X' is the set of local maxima of

R(x). For all points x € X', we have R(A(x)) = R(x). Note that R(x) is a

-
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complicated function of a family of Liapunov functions for the system as well as
the system dynamics.

The mapping A involves a two step algorithm. The first step involves
choosing an ascent direction in parameter space. The second step involves
choosing how far to move along the chosen direction to arrive at the next iterate.
For instance, in Newton's method the direction chosen is given by the gradient
of R evaluated at the current iterate value. Thus at step k of the iteration, the
direction is VR(x,_,). The choice of the next iterate along the chosen direction is
known as a line search. There are several iterative schemes available for its
determination. |

The difficulty with ifnplementing an iterative optimization scheme in the
present context is the complicated dependence of the function R(x) on the vector
of parameter values, x. In particular, we cannot straightforwardly compute the
gradient of R(x) with respect to x. Thus, we cannot utilize the standard
optimization schemes (Newton, Conjugate Gradient, etc.).

Some results are available for n-order quadratic systems. Genesio and
Tesi [9] have studied the problem of estimating domains of attraction for this
restricted class of systems. Their proposed methodology depends on a set of
parameter values, and the optimal values can be determined by utilizing linear
programming techniques. In addition, the methodology depends on an
additional parameter to be chosen from a specified range. Genesio and Tesi [9]
do not have any methodology to fix this additional parameter other than
sweeping through admissible values.

The situation in the general case is more difficult, since we have more
than one parameter to be fixed. The approach that we use is the following. We
search the parameter space by evaluating R(x) at a set of feasible vector values.

This includes vector values where all parameters are of equal magnitude, and
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where, in turn, a parameter is made much larger than the others.

In the case of quadratic Lyapunov functions, we can proceed similarly by
successively weighing the entries of a diagonal, symmetric, positive definite
matrix Q. This matrix is then used to generate the function V(x) as usual. The
choice of Q resulting in the largest value of R(x) corresponds to the pseudo-
optimal Liapunov function. The following examples illustrate the improved
estimates that can be obtained in this manner. Both examples employ the
algebraic approach of section V.i. Example 13 continues with the system of

Example 8, and example 14 examines the Van der Pol oscillator in reverse time.

Example 13. Consider the following system:

X, =—2X, + X,X, (38)

We have already obtained an estimate the largest ball in ®? contained in
the domain of attraction of (38) by making use of a Liapunov functions

1
generated with Q= [ :I The Liapunov function was V(x) = i-xlz + %xzz, and

01

the critical level set value was found to be ¢=1.3333. The resulting radius of the

largest inscribed sphere is 1.63299. (With the method presented by Khalil [19],

8 0 10
the radius is 1.257). Wenow try Q= [ 0 1] and Q= [ 0 8] and attempt to

8 0
improve the estimate. We find that with Q= [ 0 1:| and the corresponding

. . 1 . -
Liapunov function V(x) =2x? + Exzz, we obtain a critical level set value of

c=5.86316. The resulting radius of the largest inscribed sphere is found to be

1.71219, an improvement over the previous estimate of 1.63299.
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For two-dimensional systems as the one above we could easily try many
more choices for Q, including nondiagonal matrices. Nevertheless, in the
general setting of n-dimensional systems this would result in a methodology

that is very expensive computationally.

Example 14. Consider the following system:

X, =X,
. ) (39)
X2 = —xl +8(1—x1 )xz

This is the general form of Van der Pol's equation; we consider the system

with € =1. Linearizing the system at the origin, we find that the Jacobian is

0 1
given by [ 1 1], with eigenvalues %i j —i—i Thus the origin is an unstable

focus. Using the Poincaré-Bendixon Theorem with an appropriately chosen
annular region such as M ={xe R /1< (x* + xzz)% < 4}, it can be proven that
there exists a stable limit cycle encircling the origin and contained in M. All
trajectories in the plane (not including the origin) are drawn to the limit cycle.
Figure 6 shows a phase plane plot for the system, generated with Simnon.

If we now consider the Van der Pol equation (with £ =1) in reverse time,
we have

X, ==X,

(40)
%, = x,-(1-x.)x, :

We now have a stable focus at the origin and a domain of attraction for
the origin that is bounded by an unstable limit cycle. In the class of quadratic

Liapunov functions, a near-optimal Liapunov function is given by



Figure 6.
Phase plane plot for the Van der Pol oscillator. Notice that all trajectories in the

plane with the exception of the origin, are drawn to the stable limit cycle.
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1B.2 41
127 “1)

13
V(x)= Ex]z —-=xx, +

2

Corresponding to this choice of V(x), the critical level set value is approximately

1.0. Thus, the optimal estimate of the domain of attraction is given by Q, .
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Chapter VII. An Example: The inverted pendulﬁm

In this chapter we present a further example of the proposed estimation
methodology. This example, developed in detail, is of an inverted pendulum
with linear stabilization. A similar development of the dynamics for the

uncontrolled system can be found in Henders and Soudack [15].
i. Dynamics of the inverted pendulum

The system that we propose to study consists of a massless rod with a ball
of mass m attatched to one end. The other end of the rod is mounted on a cart of
mass M. We assume that the attatchment to the cart is such that the rod can .
swing freely through any angle, with its motion restricted to a plane spanned by
the direction of motion of the cart and the vertical direction. We further assume
that the cart moves on a frict‘ionless surface, and that the system can be
controlled through a force u in the direction of motion of the cart. The setup is

illustrated below.

Figure 7.

8 M
;\)/3

I /

/
\ M —> W

There are two basic approaches to modeling the dynamics of a

X
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mechanical system. The first is through the use of N ewton's equations of
motion. The second approach is through the use of Lagrange's equations. These
equations have a different formulation but are equivalent to Newton's
equations. They come from the application of the calculus of variations to
Hamilton's Principle. This principle states that of all the possible paths along
which a dynamical system may move from one point to another within a
specified time interval, the actual path followed is that which minimizes the

time integral of the difference between the kinetic and potential energies. Thus

t -
the motion is such that | (K - P)dt is minimized, where K represents kinetic
o P

energy and P represents potential energy, and the system is considered from

time ¢, to t,. From the calculus of variations, it is known that for a functional of

the form

J= [ f0, 310, 9220, 9500, )dx - (42)

to achieve a minimum, it is necessary that the function f satisfy

A _dd i
PR L LR (43)

Defining the Lagrangian as L = K — P and the state vector as v= ,and

D D KR

applying the above result from the calculus of variations, we have

L T ui=12,.. (44)
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The kinetic energy for our system includes a term for the cart and one for
the pendulum. In particular, we have
M

Mo, md ine))? + M4 2
K= > xt+ > {dt [x +7sin(@)]}* + > {dt [ cos(6)]}

= _1;_/1x2 + %[22 +726% +2ri6cos(0)). (45)

The potential energy with respect to the height of the cart is given by

P = mgrcos(0). (46)

Applying (44) and simplifying, we obtain the following dynamical

equations for the system:

4 = 4= mgsin(6) cos(8) +mr sin(6)8*

— (47)
M +msin®(0)
§ ~mrsin(6) cos(6) 6% + (m+ M) gsin(8) — ucos(6)
= — (48)
r[M +msin“(6)]

The global dynamics of the uncontrolled system are illustrated in figure 8,
generated using kaos. We see, as expected, that the origin is an unstable

equilibrium. In particular, the origin is a saddle point with eigenvalues given by
+ Smi[\jl@& The parameter values used to generate the phase plane plot are
r
those given in (55).

We are interested in studying the global behavior of the pendulum with
linear state feedback stabilization. Thus we begin by linearizing the system at

the origin. The state equations are given by
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Figure 8.
Phase plane plot for the uncontrolled inverted pendulum. Notice that the origin

is a saddle point.
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9=y o ( OM) 1o+ 01 u. (49)
m+M)g -
00 0 —_—
| rM 3 | M ]

For our purposes, we will be interested in stabilizing the dynamics
of the pendulum without concerning ourselves with the dynamics of the cart.
Note that we can do this since the dynamics of the pendulum do not depend on

those of the cart. Thus we consider the reduced system

P 0 1}, 1 0
[.’].—. (m+M)g O[ ’]+ =1 lu, (50)
X2 ™M 2 rM

where x; =8 and x, = 6.

We denote this as
z=Az+bu. (51)

We now implement linear state feedback with u = fz, for some vector f

of feedback gains. We then have
z=[A+bf"]z. (52) -

Our system is already in controller canonical form, so we see by

inspection that the system is controllable. Thus, we are free to choose pole

locations; we choose a damping ratio { =0.7071 and a natural frequency w, =1.



53

0
Setting A+bf = [_1 ; 4142J

feedback gain vector f7 =[(m+M)g+rM 1.4142rM].

, we find that our design is implemented with the

ii. Domain of attraction estimation for the inverted pendulum

The above design results in a system for which to this point we have only
local information about the (stable) origin in state space. Before implementing
our domain of attraction estimation methodology, let us develop some intuition

as to the global behavior of the system. The stabilized system is given by

X = %

—mrsin(x,) cos(x,)x,” +(m+ M)gsin(x,) - fT[j]cos(xl)
2

2= rIM +msin®(x,)]

(53)

To determine the equilibrium points of the system, we set x, =x, =0. We
then have x, =0 and (m+ M)gsin(x,) = [(m+ M)g +rM]x, cos(x,). Simplifying,

we conclude that the equilibria are given by the solutions to the following:

(m+ M)g tan(x,) = x,
[(m+ M)g +rM] | (54)

x,=0

In order to work out this example explicitly, we choose the following set

of parameter values:
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m=0.1lkg

M =1.0kg
r=1.0m
g=9.81m/ s

(55)

Solving (54) numerically, we find that the following are the equilibrium
points of the system: (-28.6°,0),(0,0),(28.6°,0). We consider the linearization of

the system at these equilibria to determine their nature. Atboth (-28.6°,0) and‘

0 1
]. The

(28.6°,0), the Jacobian of the system is given by [1 5655 -1.2132

eigenvalues of this matrix are +0.784 and -2.00. Thus, these equilibria
correspond to saddle points.

Figure 9 contains a phase plane plot that illustratrates the global behavior
of the system, generated using kaos. We see that the origin is a stable focus, as
expected from our controller design. As expected from the calculations above,
we find that there are saddle points at (-28.6°,0) and (28.6°,0). Also, the stable
manifolds of these saddle points form the boundary of the domain of attraction
of the equilibrium point, as we expect from Theorem 6.
| Now that we have a good understanding of the global dynamics of the
pendulum with linear feedback, let us implement the algebraic optimal
estimation methodology. In the class of quadratic Liapunov functions, a near-

optimal Liapunov function is given by

S 5 13
V(x)= lez + g«/gxlxz + Exzz- (56)

Corresponding to this choice of V(x), the critical level set value is approximately

1.0 Thus, the optimal estimate of the domain of attraction is given by Q,,.



55

Figure 9.
Phase plane plot for the inverted pendulum with linear state feedback
stabilization. The domain of attraction for the origin is bounded by the stable

manifolds of the saddle point equilibria at (-28.6°,0) and (28.6°,0).
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Chapter VIII. Conclusion and Directions for Future Work

Obtaining a sufficiently large domain of attraction for an equilibrium
point of a dynamical system is an objective which must be explicitly considered
in the design of controllers for many nonlinear systems. A good example of its
importance is illustrated by Khalil [18] in the context of repair time after failure
for power systems. A gdod knowledge of the domain of attraction of a system
allows for the determination of the time available to repair the system, ensuring
that it will then return to its proper equilibrium. The larger the domain of
attraction, the more time is available for repair. Knowlege of the domain of
attraction also allows one to predict in general what level of disturbance is
tolerable for a given system.

Some efforts have already been made to design controllers with this
specific objective in mind. Recently Teel [26] has made use of linear output
regulation theory to develop a controller to extend the domain of attraction.
Saydy, Abed, and Tits [25] present sufficient conditions for the existence of a
linear feedback stabilizing an equilibrium point of a given nonlinear system
with the resulting domain of attraction containing a prespecified ball in R".
They also explicitly determine this feedback law in the case of planar systems.
In a more general setting, the availability of good estimates of the domain of
attraction and of the largest ball contained therein provides a tool for use in
optimization-based controller design, where a generalized objective function is
used.

This thesis provides a contribution to the LaSalle class of estimation
methodologies. It provides an implementation of the algebraic approach based
on Grébner bases and Lagrange multipliers, and extends the method to include

optimal estimation of the inscribed ball in R". It also develops a novel
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numerical scheme for optimal estimation. In addition, the important questions
of the construction of a family of Liapunov functions and the optimal choice of
parameters in this function are addressed.

There is much work still to be done on these last two points. Research
needs to be done on the construction of a high order family of Liapunov
functions that is useful for estimating domains of attraction. The lower the
degree of the Liapunov function, the more generic it is in some sense. Itis a
function which corresponds to a number of different systems with different
dynamics, so that it will inevitably result in conservative domain of attraction
estimates. Indeed, the family of quadratic Liapunov functions will be the same
for all systems having the same linearization. Further work is needed on the
determination of an optimal choice of parameter values when the objective
depends in a complicated manner on the parameters, as in the present context.
Perhaps the most promising approach is to try to extend the results of Genesio
and Tesi [9], which are currently restricted to the class of quadratic systems.

An additional direction for future work is of a strictly algebraic nature.
The available algorithms for the computation of the Grébner basis of an ideal is
extremely costly. Animproved algorithm would extend the applicability of the
algebraic methodology to systems with more complicated dynamics. In
addition, it would provide a useful tool for use in other areas of control theory
where problems can be reduced to the solution of a set of equations with
polynomial nonlinearities. As an example, this includes the design of controllers
with a precise specification of the set in which the Nyquist curve should lie.
Another example is the computation of equilibrium points for nonlinear

systems.

Finally, the natural extension to the topic of this thesis is the development

of design techniques that explicitly consider specifications on the domain of
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attraction as part of a generalized objective function. Kokotovic and Marino [20]
address the danger associated with traditional design techniques. By this we
refer to designs based on achieving a faster step response, disturbance rejection,
and insensitivity to parameter variations, while neglecting the system's
nonlinearities.

These classical specifications are typically achieved through high gain
feedback. However, in the presence of neglected nonlinearities, such designs
may lead to extremely small domains of attraction, or even to instabilities.

Consider the following example, due to Kokotovic and Marino [20].

Example 15. The origin of the system

X1 =X,

. (57)
X, = u(t) + —;—xzz

can be stabilized with the following linear state feedback control law:
u(t) = -y*x, - 1x,. (58)

The eigenvalues of the linearization at the origin of the system with the feedback

control law(58) are given by e %Z j. Clearly, the system's response speeds

2

up as y — +e=. However, it can be shown that as y — +eo, the domain of
attraction of the origin shrinks to zero. This shows the danger of designs based
on neglected nonlinearities and based solely on specifications on the linearized

system.
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In many practical settings, an entirely numerical, non-Liapunov
estimation methodology like the Trajectory Reversing Method remains the best
way to go to obtain rough domain of attraction estimates. Yet the estimates
remain rough, for the method in principle requires that all points from an initial
estimate be integrated in reverse time. The advantage of LaSalle methodologies
over non-Liapunov methodologies, as well as over the Zubov class of Liapunov-
based methodologies, is fhat we obtain well-defined sets that are known to be
contained in the actual domain of attraction. With further research, the goal is

for LaSalle methodologies to be a viable alternative in practical settings.
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Appendix A. Mathematica code for Liapunov function

construction

The following subroutine takes as input a positive scalar n and returns an

n-dimensional identity matrix.

iden{n_] :=
Block([{i,]j,Id={}},

For [i=1,i<=n,i++,

For [3=1, j<=n, j++,
If {i==3,AppendTo[Id,1l],AppendTo[Id,0]]

]

1

Id=Partition[Id,n];

Id .

The following subroutine takes a scalar function of the state variables as
well as the corresponding state vector, and returns the gradient of the function
with respect to the state vector.

grad([V_,z_] :=

Block [({f={},1i,n=Length{z]},
For [i=1,i<=n,i++,

AppendTo[£,D[V,z[[1i]]]]
1:
f

The following subroutine takes a vector function of the state variables
and the state vector and returns the Jacobian of the vector function. In the
present context we will use this subroutine to determine the linearization of the
system dynamics with respect to the state variables.

jacobian[f_,z_] :=

Block [{3,Jd={}},

For [j=1, j<=Lengthl[z], j++,
AppendTo(J,gradl[£([j]],2]]
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The following subroutine determines the kronecker product of two n-

dimensional matrices.

kronecker [M1_,M2 ,n_] :=
Block [{i,],k,K={},row={}},
For [i=1,i<=n,i++,
For [k=1,k<=n,k++,
row={};
For [j=1, j<=n, j++,
row=Join [row,MI[[i}]([[3]}1*M2[[k]]

1z
AppendTo (K, row]

The subroutines above are utilized in the main subroutine,
getliap[f,z,Q]. It takes as input the vector of dynamics of the system, the state
vector, and a choice for the matrix Q in Liapunov's equation. The subroutine

returns the corresponding quadratic Liapunov function.

getliap [f_,z_,Q ] :=
Block [{n,J={},A={},K={},q={},
Id={},p=(},Id={},p={},P={},Kinv={},V}

n=Length[z];

(* calculate the Jacobian *)

J=jacobian [f, z]

(* set A = J(x1=0,x2=0) *)

A=J /. {x1->0,x%x2->0}

(* get g from Q *)

g=Flatten(Ql};

(* get K from A *)

K=kronecker([A,Q,n];

Id=iden(nj;

K=kronecker([Id, Transpose([A],n]
+kronecker([Transpose[A], Id,n];

(* compute p *)

Kinv=Inverse [K];

p=-Kinv . q;

(* get V from p *})

P=Partition [p,n]:
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The example below shows the use of get1iap(£, z,0] in a Mathematica

simulation:

In[1]:=
(* define dynamics and state vector *)
z = {x1,x2};
f = {x172-x2,x1-x2};

In[2]:=
(* fix Q and determine Liapunov function *)
Q ={{2,0},{0,1}};
V = getliap [f,z,Q]

Out[2]:=
3x2

5x1
1___2+ 2_1+_
x(2 x2) +x2(-x 2)

In[3]:=
(* fix Q and determine Liapunov function *)
Q={{2,1,(1,3}};
V = getliap [f,z,Q]

Out[3]:=
5x2

X].(?-gl —-x2)+ x2(—x1+ T)
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Appendix B. Mathematica code for determination of critical level

set and radius of inscribed sphere

The following two subroutines are used to retain positive real and real

elements from a list of complex numbers, respectively. They are utilized in the

main subroutine critvalue(Vv, £, z].

retainpositive{alist_] :=
Block [{worklist={},]j},

For [j=1,j<=Lengthlalist], j++,

If [Relalist{([j)]]==alist[[j]] &&
Re[alist[[j]1]]1>0,
AppendTo[worklist,alist([j]]]

]

17

worklist

retainreallalist_] :=
Block [{worklist={},]j},

For [j=1,j<=Lengthlalist], j++,

If [Re[alist([j]]]==alist[[3j]],
AppendTo[worklist,alist{[j]]]

]

1:

worklist

The subroutine critvalue(V, £, z] is given below. It takes as input a

Liapunov function for a system, the vector of system dynamics, and the state

vector. It returns the critical level set value d of the Liapunov function,

corresponding to the largest positive invariant set of the form Q,. The

methodology employed follows the discussion in section V.i. In addition to the

above subroutines, critvalue(v, £, z] also uses grad(v, z] given in Appendix A.

.critvalue(V_,£f ,z ] :=
Block[(Q,G,L,P,Pl,p,h,n,d, j, test,
dlist={},dnewlist={},x1llist={},

x2list={},x1lnewlist={},x2newlist={},x2viable={},
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const=0.000001},
calculate the time derivative of the Liapunov function
Q = gradiv,z] . £;
calculate the Lagrange multiplier equations
G = grad[Q-L*V,z];
fing GB, solving for a polynomial in d
P = GroebnerBasis [{Q,V-d,G},L,z,d};
p = First [P];
find roots of polynomial in d and put in a list
h = {ToRules [NRoots [p==0,d]]};
n Length [h];

For [i=1,i<=n,i++,AppendTo [dlist,d /. h[[il1]11;

retain only positive real roots in dnewlist
dnewlist = retainpositive[dlist];

generate feasible (xl,x2) pairs for increasing d
until a value of d is found with a feasible pair
J o= 1;
test = False;
find %1 values, retain real ones in xlnewlist
While [test==False && j<=Length[dnewlist],
Clear(xl]:
xlnewlist = {};
workingd = dnewlist[[j]];

P = GroebnerBasis [{V-workingd,G},L,x2,x1];

p = First [P]:

NRoots [p==0,x1];

h = {ToRules [NRoots [p==0,x1]1};

n = Length [h];

For [i=1,i<=n,i++,AppendTo[xllist,xl /.

h{[i111];

xlnewlist = retainreal{xlnewlist];

for fixed x1, determine real x2 for which Q is
close to zero and retain values in x2viable

*)
*)

*)

*)

*)

*)
*)

*)

For [i=1,i<=Length[xlnewlist] && Not[test],i++,

x]1 = xlnewlist([[i]]:
h = {ToRules [NRoots [V-

workingd==0,x2]1}:

hilk]]1]}:

(*

n = Length {[h];
x21list = {};

For [k=1,k<=n,k++,AppendTo [x2list, x2 /.

x2newlist = retainreal [x2list]:;
x2viable = {};
For [k=1,k<=Length[x2newlist], k++,
x2 = x2newlist[[k]]; "~
If [Abs[Q]<=const,

AppendTo[x2viable,x2]];

1:

if x2viable is not empty, we have a solution

If [Length[x2viable) != 0,test=True];

Clear([x2]:
1:
J++;
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{* return level set value *)
workingd
]

With the critical level set value determined, the next subroutine finds the
radius of the largest inscribed ball. The inputs are the Liapunov function, the

critical level set value, and the state vector.

findgenradius [V_,d_,z_] :=
Block [{R2,C,G,L,P,p,h,n,R21list={},R2newlist={}},

(* determine system of equations *)
C=12z . z;
G = grad [C,z] - L * grad [V,z];

(* determine polynomial in R2, which represents R squared *)

’ P = GroebnerBasis [{C-R2,V-4,G},z,L,R2];

p = First [P];

(* find roots of polynomial in R2 and put in a list x)
h = {ToRules [NRoots ([p==0,R211]};
n = Length[h];

For [i=1l,i<=n,i++,AppendTo [R2list,R2 /. h[[i]]]];
(* retain positive real roots in dnewlist and determine radius ¥*)
R2newlist = retainpositive [R2list]:;
R2 = First [R2newlist];
radius = R2"0.5;
radius

]

The following subroutine determines the radius of the largest inscribed
ball for the case where the Liapunov function is quadratic. The inputs are a
positive definite matrix P corresponding to the Liapunov function V(x) = x"Px,
and the critical level set value.
findradius[P_,d_] :=
Block{({rl,

r = (d / Max{[Eigenvalues[P]])"~0.5;
r
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