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For small area estimation, model based methods are preferred to the tradi-
tional design based methods because of their ability to borrow strength from related
sources. The indirect estimates, obtained using mixed models, are usually more re-
liable than the direct survey estimates. To draw inferences from mixed models, one
can use Bayesian or frequentist approach. We consider the Bayesian approach in this
dissertation. The Bayesian approach is straightforward. The prior and likelihood
produce the posterior, which is used for all inferential purposes. It overcomes some
of the shortcomings of the empirical Bayes approach. For example, the posterior
variance automatically captures all sources of uncertainties in estimating small area
parameters. But this approach requires the specification of a subjective prior on the
model parameters. Moreover, in almost all situation, the posterior moments involve
multi-dimensional integration and consequently closed form expressions cannot be
obtained. To overcome the computational difficulties one needs to apply computer

intensive MCMC methods.



We apply linear mixed normal models (area level and unit level) to draw in-
ferences for small areas when the variable of interest is continuous. We propose
and evaluate a new prior distribution for the variance component. We use Laplace
approximation to obtain accurate approximations to the posterior moments. The
approximations present the Bayesian methodology in a transparent way, which fa-
cilitates the interpretation of the methodology to the data users. Our simulation
study shows that the proposed prior yields good frequentist properties for the Bayes
estimators relative to some other popular choices. This frequentist validation brings
in an objective flavor to the so-called subjective Bayesian approach.

The linear mixed models are, usually, not suitable for handling binary or count
data, which are often encountered in surveys. To estimate the small area propor-
tions, we propose a binomial-beta hierarchical model. Our formulation allows a
regression specification and hence extends the usual exchangeable assumption at
the second level. We carefully choose a prior for the shape parameter of the beta
density. This new prior helps to avoid the extreme skewness present in the posterior
distribution of the model parameters so that the Laplace approximation performs

well.
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Chapter 1
Literature Review

1.1 Small Area Estimation

Small area estimation has received considerable attention over the last three
decades. This attention reflects the demand for reliable small area estimates for
allocating federal funds to local jurisdictions and for regional planning. Small areas
can be a geographical region (e.g. state, county, municipality etc.) of a country, a
demographic group (a particular sex, race or age group) or a demographic group
within a geographical area. In the absence of adequate direct information in small
areas, small area estimation technique borrows strength from related sources to
produce precise small area estimates.

There are various reasons for the scarcity of direct reliable data on the vari-
ables of interest for small areas. In the context of sample survey, national surveys
are usually designed to represent the whole nation (large area) and hence cannot
guarantee reasonable representation to all the small areas within that large area.
Over-sampling is often employed in surveys in order to increase sample sizes for
some domains, but that leaves other domains with few sample cases or even no
sample cases, since the total sample size is usually fixed by the survey budget. For
example, in the National Health and Nutrition Examination Survey (NHANES) III,

certain minority groups residing predominantly in certain states (e.g., California



and Texas) were oversampled. This design strategy resulted in small samples for
the states that do not have large populations for these minority groups. There are
even instances where surveys have no sample in some small areas. For example, un-
til recently, in estimating the number of poor school age (5-17) children in counties,
the U.S. Census Bureau used the March Income Supplement of the Current Pop-
ulation Survey (CPS) where more than half of the 3141 counties do not have any
CPS sample (release of 2005 estimates mention the change to American Community
Survey). This problem of small or zero sample size in small areas prevents the use
of direct survey estimates for small area parameters since the estimates are likely
to be highly unreliable (i.e. the estimators will have unacceptably large standard
errors) or unavailable.

Small area statistics are needed for the planning of reforms, welfare and admin-
istration in many fields, including health programs, agriculture, poverty reduction
programs. Thus, the importance of producing reliable small area statistics can-
not be over-emphasized. For example, health planning often takes place at the
small area level (e.g., state, county) since health characteristics are known to vary
across geography. The U.S. National Health Planning Resource Development Act
of 1974 mandates Health System Agencies to collect and analyze data related to the
health status of the residents and the health delivery systems in their health service
areas (Nandram, 1999). The U.S. National Center for Health Statictics (NCHS)
pioneered the use of synthetic estimation, based on implicit models, to develope
state estimates of disability and other characteristics for different groups from the

National Health Interview Survey (NHIS) (Rao, 2003). Maps of regional morbid-



ity and mortality rates play an important role in assessing environmental equity
(Marshall, 1991). They provide central tools for identifying areas with potentially
elevated risk. Hence, mapping the incidence of a disease over different small areas is
useful in allocation of government resources to various geographical areas and also
to identify factors potentially causing a disease.

The U.S. National Agricultural Service (NASS) publishes crop acerage esti-
mates at the county level using remote sensing satellite data as auxiliary information
(Rao, 2003). County estimates assist the agricultural authorities in local agricultural
decision making. Also, county crop yield estimates are used to administer federal
programs involving payments to farmers if crop yields fall below certain threshold.
The U.S. Substance Abuse and Mental Health Administration (SAMHSA) uses Na-
tional Household Survey on Drug Use and Health (NSDUH) to produce state level
and sub-state level (groups of counties or census tracts) small area estimates for more
than 20 binary outcomes related to substance use, treatment, and mental health.
These estimates are being used for treatment planning purposes by the states.

Small area estimation of variables studied in social surveys is a growing need
for government. The Statistical Methodology Division of the Office of National
Statistics (ONS) of U.K. established the Small Area Estimation Project (SAEP) in
April 1998. The aim of this project was to derive estimates for variables contained in
social surveys at the level of political wards (roughly 2000 households). The variables
considered in this project are gross weekly household income, average weekly gross
household income, number of people to help in a crisis with data from General

Household Survey (GHS), Family Resources Survey (FRS)(Heady & Clarke, 2003).



In response to the growing need for precise income and poverty statistics for
small areas, the US Census Bureau formed a committee on Small Area Income and
Poverty Estimates (SAIPE) in the early 1990s. This committee was created with
the goal of providing more timely and precise estimates for subnational areas such
as states, counties, school districts, etc., these estimates were needed to allocate
government funds. Improving America’s Schools Act of 1994 called for the use of
updated SAIPE estimates of poor school-age children (aged 5-17) for counties and
school districts to allocate more than $7 billion (now over $12 billion) of funds an-
nually for educationally disadvantaged children under Title I of the Elementary and
Secondary Education Act (Citro & Kalton, 2000). Thus, small area estimation has
wide applicability for survey sampling, disease mapping, poverty mapping, and map-
ping of health characteristics. For more use and application of small area statistics
see Rao (2003), and Jiang & Lahiri (2006b).

In the absence of adequate direct information for small areas, it is customary
to borrow strength from related sources to form indirect estimators that increase
the effective sample size and hence reduce the sampling errors of the estimators.
Such indirect estimators are usually based on implicit or explicit models which
combine information from the sample survey, various administrative/census records,
or previous surveys. In the disease mapping problem, where the main concern is the
small population size, one can consider borrowing strength by exploiting the possible
correlation among the neighboring areas and/or past disease incidence information
for the small area under consideration (Jiang & Lahiri, 2006b).

Once relevant sources of information are identified for a particular small area

4



of interest, a model is developed. Various indirect methods that combine informa-
tion using implicit models have been discussed in Ghosh & Rao (1994) and Rao
(2003). Formal evaluation for indirect methods, such as synthetic and composite
estimation, that use implicit models is problematic, because the model involved is
not spelled out. A synthetic estimator for small areas involves a reliable direct es-
timator for a large area, covering several small areas. For example, a regression
synthetic estimator for a particular area uses data from all the areas to estimate the
regression coefficient. Synthetic estimator is derived under the assumption that the
small areas have the same characteristics as the large area. This strong assumption
often leads to the synthetic estimator having large bias. An intuitive way to balance
the potential bias of a synthetic estimator against the instability of a direct estima-
tor is to take a weighted average of the two estimators (Ghosh & Rao, 1994). The
estimator obtained obtained in such a way is known as composite estimator. An
explicit model is useful in small area estimation, this gives the users an idea of how
different information sources are combined. These methods permit formal model
building process, including model selection and model diagnostics, and provide a
good measure of uncertainty of the point estimator or predictor under a reasonable

working model.

1.2 Linear Mixed Models in Small Area Estimation

Linear mixed models are often used in small area estimation because of their

flexibility in combining information from different sources and taking different sources



of errors into account. These models may be classified into two broad classes, area
level and unit level models, based on the availability of data for the variable to be

modeled.

1.2.1 Area Level Model

Area level models are used to model survey-weighted direct estimates of the
true small area parameters. For this class of models, relevant auxiliary information
can be used at the small area level. An area level model borrows strength from
relevant sources and also captures the differences in the small areas not only through
the available auxiliary variables, but also through area specific random effects. In
contrast, an implicit regression model motivating a synthetic estimation method
assumes no between area variations other than those explained by the area-specific
auxiliary variables (Jiang & Lahiri, 2006b).

Area level models are particularly helpful when it is difficult to obtain detailed
data for the sampled units for various reasons, including issues related to the con-
fidentiality of the data at the sampled unit level. Since the survey estimates are
directly modeled, area level models usually result in design-consistent small area es-
timators. Also, the use of area level model avoids the need to deal explicitly with the
survey design; this is accounted for in the sampling variance estimates. However,
the estimation of the sampling variances of the survey-weighted estimates, which
are needed in a typical area level model, is a challenging problem, due to the small

sample sizes in the small areas.



To deal with this problem, researchers have considered appropriate models
to improve the stability of the sampling variances. Fay & Herriot (1979), Otto
& Bell (1995), Hinrichs (2003), Gershunskaya & Lahiri (2005), and Wolter (1985)
discuss the problem of smoothing variances. The Generalized variance function
(GVF) (Wolter, 1985, p. 201-217) method is found to be useful in stabilizing the
sampling variances in the context of small area estimation. In GVF method, a
mathematical model is used to describe the relationship between the variance of
a survey estimate and its expectation. The choice of the function is based on the
premise that the relative variance is a decreasing function of the magnitude of the
expectation (Wolter, 1985, p. 203). The parameters of the model are estimated using
past data. In practice, both the expectation and the variance of the survey estimate
are unknown, we need to use the survey estimate and an estimate of the variance.
An estimate of the design-based sampling variance of the direct survey estimate is
obtained using one of the standard variance estimating techniques (linearization,
jackknife, balanced repeated replication etc.). In the context of SAIPE project,
Otto & Bell (1995) used GVF method for smoothing the sampling variances at the
state level. In their model they also accounted for the differences in the variances
by state (through random state effects), dependence of variances on sample size,
sampling variance correlations over time (through an autoregressive-moving-average
time series model). Once the relatively stable sampling variances are obtained, they
are assumed to be known in a typical area level model. Any procedure which
treats the sampling variances as known will not take into account the variability

in estimating the sampling variances. To incorporate this additional variability,
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researchers have considered alternate modeling. See Arora & Lahiri (1997), Bell &
Otto (1992), Kleffe & Rao (1992).

In order to estimate the per-capita income of small places (population less
than 1000), Fay & Herriot (1979) used an area level model to combine survey data
with relevant administrative and census records. The Fay-Herriot model and its
different extensions have been found to be effective in many small area applications.
Particular cases of the Fay-Herriot model, some even before their paper, can be found
in the literature in the context of a wide variety of applications. This includes the
estimation of false alarm probabilities in the New York city (Carter & Rolph, 1974),
batting averages of major league baseball players (Efron & Morris, 1975), ranking
of the 23 kidney transplant hospitals (Morris & Christiansen, 1996), estimation of
the poverty ratios for U.S. states and counties (Citro & Kalton, 2000) in the SAIPE

program.

1.2.2  Unit Level Model

A unit level model can be used to model study variables available at the sam-
pled unit level. This class of models has the potential to use auxiliary information
at both the unit and area level (Moura & Holt, 1999). In unit level mixed models,
area-specific random effect terms capture the correlation possibly present among the
sample units within a small area. One advantage of area level modeling, discussed in
the previous section, is that it usually leads to a design-consistent small area estima-

tor. But if the sampling weights are ignored in unit level modeling, this leads to an



estimator that is not design-consistent (unless the sampling design is self-weighting
within the small area). Survey practitioners prefer to use design consistent model
based estimators because such estimators provide protection against model failures
as the small area sample size increases (Rao, 2003, p. 148).

A unit level model may be a good choice when all the relevant unit level
data, including all the design information such as stratification and clustering, are
available for the sampled units. To produce design-consistent small area estimators
using a unit level model, it is necessary to incorporate all the design information
while building the model. However, this modeling is more challenging than an area
level model. The absence of relevant design information poses a problem in unit
level modeling. Failure to incorporate some design variables which govern unequal
selection probability of units may result in an estimator that is not design-consistent.
For example, in the context of the SAIPE project, to obtain model based estimates
of poverty ratios for counties using CPS data, if one wants to consider a unit level
model, the prior decennial census population count for the counties must be included
as a covariate or the resulting estimator may not be design-consistent. The CPS
primary sampling units (counties or a group of counties) are drawn with probability
proportional to prior census population count in the CPS design.

In the absence of detailed design information, one needs to use the survey
weights following the approaches outlined in Kott (1989), Prasad & Rao (1999), You
& Rao (2002), Rao (2003), Jiang & Lahiri (2006a), under a frequentist paradigm.
The basic idea is to obtain a survey-weighted aggregated area level model from the

unit level model by taking a weighted average with weights as normalized survey



weights. Then the model based small area estimators obtained from the aggre-
gated model satisfy the design consistency property. These estimators also satisfy
the benchmarking property without any adjustment in the sense that they add up
to the direct survey regression estimator when aggregated over areas (You & Rao,
2002). This approach, perhaps, is possible to implement only for a linear unit
level model. For other types of unit level small area models (e.g., binomial with
logistic regression) this is essentially an unsolved problem— there is no generally ap-
plicable accepted solution. Some researchers have addressed this issue for specific
applications. Jiang & Lahiri (2006a) proposed a general model assisted approach
encompassing continuous and binary reposnse variable. Their model assisted es-
timator converges in probability to the customary design-consistent estimator as
the domain and sample sizes increase. For use of survey weights in a hierarchical
Bayesian set up, the readers are encouraged to see You & Rao (2003), Rao (2003),
and Lahiri & Mukherjee (2007).

A good application of unit level model in small area estimation can be found
in the paper by Battese et al. (1988). They used a nested error regression model to
estimate mean area under different crops (corn and soybeans) for twelve counties
(small areas) of north central lowa. To consider the correlation structures, where
reported crop hectares for geographically closer segments have stronger correlation
than those farther apart, they included a random county effect in the model. The
nested error regression model, considered by Battese et al. (1988) and Prasad & Rao
(1990), is also termed as random intercept model. This can be viewed as a particular

case of multilevel models which allow small area slopes as well as the intercept to
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be random and lead to improved small area estimates with the potential to use area
level covariates (Moura & Holt, 1999). Multilevel models considered by Moura &
Holt (1999) are also known as random regression coefficient models (Dempster et al.,
1981) in the literature.

Besides small area estimation, nested error regression models and their various
extensions have been found to be very useful in other fields as well, including lon-
gitudinal studies and animal breeding. For example, to study the effect of a drug,
Propranolol, on hypertension, blood pressure measurements were taken on several
persons after administration of the drug and a placebo both in the upright and
reclining positions (McCulloch, 2003). To predict the mean blood pressure at the
person level, we need to consider a unit level model on the blood pressure measure-
ment of a particular person, at a particular position, and with a particular drug
condition. In the model we need to treat the person effect as random, as contrasted
with treating persons as fixed, like the effects for position or drug, to capture the

correlation between measurements taken on the same person.

1.3 Generalized Linear Mixed Models in Small Area Estimation

The linear mixed models discussed in Section 1.2 are designed for continuous
dependent variables, but they are not suitable for handling binary or count data.
Generalized Linear Models (GLMs) are an extension of linear models that allow
the usual regression methodology to apply to discrete data such as counts, binary

responses, survival times which are very frequently observed in real life. A nice
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account of GLMs can be found in McCullagh & Nelder (1989). But inferences from
GLMs are based on the assumption that the responses are independent. In many real
life problems, the observations are correlated. For example, in longitudinal studies,
measurements obtained from the same individual over different times are likely to be
dependent. In multi-stage cluster sampling, the responses of the individuals within
the same cluster are possibly correlated. To analyze such data, we apply another
extension of linear models, known as mixed models or variance components models
(Searle et al., 1992), discussed in Section 1.2. However, these mixed models may not
be appropriate for discrete data. This leads to the development of Generalized Linear
Mixed Models (GLMMs)(McCulloch, 2003; Jiang & Lahiri, 2006b). To estimate the
number of poor school-age children at the county and state level, the SAIPE project
of the U.S. Census Bureau uses an area level normal linear mixed model, though
the unit level data is binary. To estimate the unemployment rate at the state level,
Datta et al. (1999) proposed a time series generalization of the Fay-Herriot model,
though the corresponding response variable (the employment status of an individual
obtained from CPS) is binary. These modeling assumptions may not be appropriate
in all situation. For small sample size within the small area, the validity of the
assumption is questionable.

The idea behind GLMMSs is conceptually simple: incorporate random effects
into the linear predictor portion of a GLM. This simple change allows us to ac-
commodate correlation in the context of a broad class of models for non-normally
distributed data. In other words, it is a convenient way to build the multivariate
distributions for non-normal data that can accommodate dependence among the
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observations. Most survey data are binary or categorical in nature, hence the prob-
lem of estimating rates and proportions for small areas using GLMMs had received
considerable attention in the recent past. For some particular uses of GLMMs in

small area estimation, see Chapter 4.

1.4 Inferential Procedures for Small Area Problems

Once relevant sources of information are identified for a particular small area of
interest, a model needs to be postulated. The inferential procedure can be Bayesian
or frequentist (classical). In a classical approach, the Empirical Best Linear Unbiased
Predictors (EBLUPs) are used to estimate the true small area quantities (see Jiang
& Lahiri (2006b), and the references therein). Whether we are in Bayesian or
frequentist paradigm depends on whether we assume a prior on the hyperparameters
(see Section 1.4.1). That is why the empirical Bayes approach is also considered as
a frequentist approach by many researchers (Jiang & Lahiri 2006b, p. 4-5, Rao
2003, p. 179, Datta & Ghosh 1991, p. 1748), since it does not consider any prior
distribution for the hyperparameters. Instead, the hyperparameters are estimated
using some classical method. As an inferential approach, empirical Bayes (EB) and
hierarchical Bayes methods have wide applicability in small area estimation in the
sense of handling models for binary and count data as well as normal linear mixed
models (Rao, 2003). In the latter case, EB and EBLUP are identical as discussed

in the following section.
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1.4.1 Empirical Bayes (EB) Approach

It is convenient to explain the empirical Bayes or EBLUP approach in the
context of a basic area level model (such as the Fay-Herriot model). Let y; be the
survey-weighted direct estimate of some true small area quantity (such as a mean)
0; for the ¢th small area, ¢ = 1,...,m. The Fay-Herriot model, widely used in
the small area estimation literature, consists of two levels. In level 1, a sampling
model, ;|0 N (0;, D;), is used to capture the sampling variability of the regular
survey estimate y;. In Level 2, a linking model, 6;|3, A N (x3, A), relates the
true small area quantity 6; to a p x 1 vector of known covariates x;. In this model,
[ is a p x 1 vector of unknown regression coefficients and A is an unknown variance
component. The sampling variances, D;’s, are assumed to be known, though in
practice they are estimated by some suitable method, see Section 1.2.1. To estimate
the number of poor school-age (5-17) children for the U.S. states, up through 1995,
the Census Bureau employed an empirical Bayes methodology using the Fay-Herriot
model that combines the direct survey (CPS) estimates of poverty ratio with the
auxiliary information obtained from Internal Revenue Service individual income tax
returns, food stamp administrative records, population estimates from the Census
Bureau’s demographic estimates program, and the previous census (Citro & Kalton,
2000).

In small area estimation, the main objective is usually to draw inferences about
the high-dimensional parameters #;. However, as an intermediate step, estimation

of the low-dimensional parameters  and A, usually referred to as hyperparame-
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ters, is also important. Empirical Bayes methodology assumes the hyperparameters
involved at level 2 to be known. When hyperparameters are known, the Bayes es-
timator of 6; is in the form of a shrinkage estimator, (1 — B;)y; + Bz, where
B; = D;/(A+ D), is the shrinkage factor which shrinks the direct estimates to the
regression synthetic estimates. In practice, § and A are unknown and estimated
from the data.

When A is known but [ is unknown, use of weighted least square estimate
B4 = (X’VVAX)*1 (X'Way), of B in the Bayes estimator of ; is a standard practice,
where Wy = diag (1/(A + D;)), X is the m x p matrix of covariates, and y is the mx1
vector of small area direct estimates. Note that B 4 is also the maximum likelihood
estimator of 3, under the Fay-Herriot model. When A is known, the empirical
Bayes estimator of the ith small area mean #; and its measure of uncertainty are
identical to the best linear unbiased predictor (BLUP) of 0; (0; = x}3 + v;, where v;
is the area level random effect term) and its mean squared error, respectively, under
the linear mixed model y; = x;3 + v; + ¢;, where {v;} and {e;} are independently
distributed with v; ~ iid N(0, A) and e; ~ ind N (0, D;). Note that the weighted
least square estimate of (3 involves the variance component A which is also unknown,
in practice. The unknown variance component needs to be estimated using some
suitable method (see Section 1.4.2). Then the estimate of A is plugged in the Bayes
estimator given above along with B 4 and we obtain the empirical Bayes estimator
(equivalently, empirical best linear unbiased predictor) of the small area mean 6;.

It is customary to judge any estimator by its corresponding measure of un-
certainty. Estimation of the mean squared error (MSE) of the empirical Bayes (or
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EBLUP) estimator of 6; is quite complicated. It requires rigorous asymptotics to
find a closed form expression of the measure of uncertainty under certain regu-
larity conditions. The measure of uncertainty associated with an empirical Bayes
estimator of the true small area mean can be decomposed into three parts. The
first term measures the uncertainty in the model for estimating #;, and the second
term measures the uncertainty in the estimation of 3. Generally, there is no closed
form expression available for the third term, which measures the uncertainty in es-
timating the variance component A. The third term depends on the method used
in estimating the variance component, while the first two terms remain the same
for any method used to estimate the variance component. Asymptotic expressions
of the third term can be found in literature. See Prasad & Rao (1990) when the
ANOVA method is used to estimate the variance component; Datta & Lahiri (2000)
for the ML and REML estimators of A; Smith (2001) and Datta et al. (2005) for the
Fay-Herriot method-of-moment estimator of A. Also for a detailed derivation of the
MSE estimator (mse), readers are encouraged to see the above mentioned papers.
A naive approach of obtaining the measure of uncertainty of the empirical
Bayes estimator (equivalently the MSE of BLUP when A is known) is to plug-in the
variance estimator of A in the posterior variance of #; when A is known. When A
is known, the MSE of the BLUP of 6; is given by D; (1 — B;) + B2z ¥4 x;, where
Y4 = (X'WyX )_1. In this expression, an estimate of the variance component
is plugged in to obtain the measure of uncertainty of EBLUP of ;. This naive
approach does not take into account the uncertainty associated with the estimation

of the variance component and only considers the first two terms as mentioned above.
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The corresponding 95% interval estimation is based on the standard EB+1.96/mse
type confidence interval. The simplicity of this method is quite appealing. However,
the current research in small area estimation (see Hall & Maiti (2006), Chatterjee
et al. (2008), and Li (2007)) suggests that this kind of confidence interval typically
suffers from an undercoverage problem. When n;, the number of sampled units in
the ith small area, is small and m is large, the first two terms will dominate and
one can ignore the third term. However, when m is moderate in size or n; is not
small, the third term can be substantial and should not be ignored. Also when
the synthetic estimator is far apart from the direct estimator, the contribution of
the measure of uncertainty from the third term will be large. See Kass and Steffey

(1989) and Bell (1999) for further discussion.

1.4.2 Variance Component Estimation

In an empirical best linear unbiased prediction (EBLUP) or empirical Bayes
approach, no prior distribution is assumed on the variance component A. A is
estimated using some frequentist method. Three methods of variance component
estimation are widely used in small area estimation. These are the analysis of
variance (ANOVA; Prasad & Rao (1990)), the method of moments (Fay & Herriot
(1979); Pfeffermann & Nathan (1981); Datta et al. (2005)) and the likelihood-based
methods. All of these methods can produce unreasonable estimate of A, i.e., they can
produce a negative or zero estimate of A. The likelihood-based method essentially

maximizes certain likelihood function of A. The profile likelihood and residual
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likelihood are well known in the literature (see Rao (2003); Jiang (2007)).

The maximum likelihood (ML) method, which maximizes the profile likeli-
hood function, was introduced to variance component estimation by Hartley & Rao
(1967). Under some regularity conditions, ML estimators have some good large sam-
ple properties. For example, they are consistent, efficient, and normally distributed.
Another attractive feature of ML estimation is that the asymptotic dispersion ma-
trix of the estimators is always available, except perhaps when ML estimate occurs
at the boundary point. It is the inverse of the information matrix. Note that the
weighted least square estimate (ﬁ 4) of 3 is also ML if we plug-in the ML estimate
of A.

There are certain situations met in practice where the ML estimator is in-
consistent. Neyman & Scott (1948) showed that for a partially consistent series
of observations (units in different small areas have different means but the same
variance), the ML estimator of variance component has got a downward bias which
is usually the case as the maximum likelihood method does not take into account
the effect of estimating the fixed effects. Moreover, it is not a consistent estimator.
In another example, again for a partially consistent series of observations (this time
with same mean but different variances) Neyman and Scott showed that the ML
estimator of the mean (u), although consistent, does not have the property of asymp-
totic efficiency. That means it is possible to find an estimator of u other than the
ML estimator whose mean squared error is less than that of the maximum-likelihood
estimator. Also for the p-variate normal distribution, the maximum-likelihood esti-
mator of the mean vector is unbiased, consistent, normally distributed but inadmis-
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sible under squared error loss for p > 3. An estimator (J) of a parameter is said to
be inadmissible if the average loss incurred by ¢ is greater than or equal to that of
another estimator (¢’), for all values of the parameter space and greater than that
of ¢’ for at least one parameter value. James-Stein’s (1961) shrinkage estimator,
although biased, has smaller average squared error loss.

REML maximizes the residual likelihood function. In classical inference, the
residual maximum likelihood method is preferred to maximum likelihood as a vari-
ance component estimation method. REML is intended to reduce the downward
bias of ML. REML separates the part of the data used for the estimation of variance
components from that used for the estimation of fixed effects to eliminate the fixed
effects from the likelihood. This is a deficiency of ML estimators of variance com-
ponents, which take no account of the loss of degrees of freedom resulting from the
estimation of the model’s fixed effects. REML determines a linear transformation,
z = A'y, of data y that is free of fixed effects. This can be done by considering the
error contrasts. REML estimators of variance components maximize the likelihood
based on the transformed data rather than the original data. For further details
see Patterson & Thompson (1971) and Harville (1974). Under standard regularity
conditions, the residual maximum likelihood estimator is consistent estimator of A,
for large m (Jiang, 1996).

But in many practical applications, both maximum likelihood (ML) and resid-
ual maximum likelihood (REML) estimates of variance components occur at the
boundary point. For example, in a two-level Poisson-gamma model, the ML es-
timate of the variance component can be infinity (Christiansen & Morris, 1997);
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for the Fay-Herriot model, the ML or REML estimate of variance component can
be zero (Bell, 1999). When that happens, we come up with several unreasonable
implications on the estimators and its measure of uncertainty. For example, in the
context of the Fay-Herriot model, when A = 0, the empirical Bayes estimate of 6;
gives zero weight to the direct estimate, which is unreasonable for large areas. To
overcome this problem i.e., to change the curvature of the likelihood function in
order to have an estimate falling within its admissible range, an adjustment term is
multiplied with the likelihood function (Christiansen & Morris (1997), Tang (2002),
Morris (2006)) and then the adjusted likelihood function is maximized to obtain
an estimate of the variance component. This method is termed as adjustment for
density maximization (ADM) by Morris and his collaborators. Morris (2006, p. 72-
76) suggests an adjustment term A that needs to be multiplied with the residual
likelihood function. Recently, Li & Lahiri (2008) demonstrated the superiority of
the ADM method that maximizes the adjusted profile likelihood over the one that
maximizes the adjusted residual likelihood. They also proved analytically that the
ADM estimators of A are strictly positive and consistent under the same regularity
conditions used for the asymptotic properties of REML.

Bell (1999), in the context of SAIPE program, considered a relatively less
familiar mean likelihood (MEL) approach to find an estimate of the model variance
A, while producing state level estimates of poverty ratios among school-age children.
The MEL estimate is the posterior mean of A obtained from the marginal posterior
density of A, assuming uniform prior on A. Naturally, the MEL always produces

positive estimates of A. In this paper he compared the empirical Bayes approach
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with the plug-in MEL estimate of A to the fully Bayesian approach.

1.4.3 Hierarchical Bayesian Approach

The hierarchical Bayesian approach to inference considers the hyperparame-
ters to be unknown all through the inferential procedure and requires some prior
distribution on the hyperparameters. The beauty of this approach is its ability to
structure complicated models, inferential goals, and analysis. The prior and likeli-
hood produce the full joint posterior distribution, which is used for all inferential
purposes. In that sense, this approach is very straightforward. It overcomes some
of the shortcomings of the empirical Bayes approach. The posterior variance of 6;,
which measures the precision of the estimator of #;, automatically takes into account
all sources of uncertainty. But, unlike the empirical Bayes approach, the introduc-
tion of a third level of prior specification often leads to a nonstandard posterior; one
needs to apply the computer-intensive Markov Chain Monte Carlo (MCMC) tech-
nique to estimate the parameters, even with uniform prior. In almost all situations,
closed form expressions for the posterior means and variances cannot be obtained
and hence it becomes difficult to interpret the formulae. This makes the hierarchi-
cal Bayesian methodology less appealing to users. For specific implementation of
the hierarchical Bayesian approach for small area estimation see the introduction
sections of the Chapters 2, 3, and 4.

The prior distribution plays a major role in Bayesian analysis. Any subjective

prior information, if available, should be used in Bayesian analysis. However, such
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a prior distribution may not be available in many applications. In the absence of
a subjective prior information, statisticians often use various noninformative priors
that have been proposed in the literature to carry out a noninformative Bayesian
analysis. Noninformative priors are usually improper. In a hierarchical Bayesian
approach, it is important to check for the propriety of the posterior distributions
involved, in case improper priors are used for the hyperparameters. Improper priors
may lead to a posterior distribution (the basis of inference) which is not a proper
density. The popular Bayesian software BUGS (Spiegelhalter et al., 1997), based
on Gibbs sampling (Gelfand & Smith, 1990) or, more generally, the MCMC tech-
nique, cannot inform the users that the posterior is improper. Gibbs conditionals
corresponding to an improper posterior may appear perfectly reasonable. For an
example of this phenomenon, see Hobert & Casella (1996). That is why one should

demonstrate the propriety of posterior before a MCMC technique is used.

1.4.4 Approximations in Hierarchical Bayesian Approach

The Monte Carlo Markov Chain (MCMC) technique can be used to implement
complex hierarchical Bayesian models. In general, it is not feasible to draw indepen-
dent samples from the joint posterior distribution of the parameters 7 (includes the
small area parameters and the hyperparameters), because of the intractable form of
the posterior. MCMC avoids this difficulty by constructing a Markov chain (a time
dependent sequence of events) of the parameters such that the distribution of the

chain converges to a unique stationary distribution, under certain conditions, which
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is equivalent to the posterior distribution of the parameters. Then, the posterior
mean of  can be approximated by the average of the sequences of the Markov chain,
after ignoring a sufficiently large burn-in. These properties follow from the ergodic
theorem of stochastic process, which can be viewed as law of large numbers for a
dependent sequence. For further details on MCMC methods see Rao (2003) and
Robert & Casella (2004).

Although the MCMC method is justified by the ergodic theorem, in practice
results from a MCMC run can depend heavily on several factors. This includes the
choice of the initial values for the parameters, the burn-in length, the number of
replicates after discarding the burn-in samples, the number of chains, the time series
plot for the chains corresponding to each parameter (to see how well the chain mixes
and whether the chain has converged), and the autocorrelation plot (ideally there
should be low autocorrelation for samples further apart). All these factors are care-
fully examined in a Bayesian analysis. If the Bayesian methodology is to be carried
out routinely by someone with minimal knowledge of sophisticated MCMC methods,
then the convergence of the MCMC technique may not be checked properly, which
may lead to unreasonable conclusions. Also the slow computation speed of MCMC
does not permit its evaluation by repeated use in simulation. Approximation to the
complex posterior distribution and posterior moments can be useful in such situa-
tion. The approximations are designed to present the Bayesian methodology in a
transparent way, which facilitates the interpretation of the methodology to the data
users. Simple approximation of a complex posterior distribution and its moments
has been discussed by many researchers, including Tierney et al. (1989); Kass &
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Steffey (1989); Morris (1988, 2006); Christiansen & Morris (1997); Tang (2002).

1.4.4.1 Adjusted density method

The adjusted density method (Morris, 1988) approximates a complex univari-
ate density (possibly a posterior density) with a Pearson density. To do so, this
method first multiplies the given univariate density by the appropriate Pearson
quadratic function, after which fitting is done by matching the first two derivatives
of the adjusted density to that of a two-parameter Pearson family. The choice of a
Pearson density depends, in most cases, on the support of the given density. For
example, Christiansen & Morris (1997) examined beta approximation to the pos-
terior density of shrinkage factors in the context of hierarchical Poisson regression
modeling. Before going into the detail of the methodology, we describe the Pearson
density.

In general, the Pearson family, with respect to the quadratic function, @ (z) =

(x—po)d

¢ + iz + qo > 0, has density p (z) = Kg (m, wo) exp{ m [ 1) } o0 For

fixed @), the Pearson family can be viewed as a two-parameter distribution, denoted

by

Pearson(m, po; Q) = Pearson [mean = pg, variance = Q(uo)/(m — ¢2)].

Examples of the most familiar Pearson families include the normal, gamma, inverse
gamma, beta, and F' distributions.
Suppose the density f (x) of some random variable X is to be approximated

by a Pearson(m,uo;@) = p(x) density specified by @, perhaps chosen because its
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range agrees with that of f. Define [ (z) = log (f (z) Q (z)). Then, with respect to

the Pearson measure %, f(x) @ (x) is a density. Express f (z) @ (z) in the form of
exp {—m i %} by matching two derivatives of the logarithms of the adjusted
density and the Person density at the modal value. Letting I’ (x) = 0, with xy be
the root of this derivative, then xy = o and —1" () |z=0y, = m/Q (x0).

An example: Suppose we need to calculate the moments (or approximate
the posterior density p(B)) of shrinkage factor, B, of the type m/(m + n); m >
0, n > 0. We come across with this kind of shrinkage factor frequently in small
area estimation. Since 0 < B < 1, we can choose the beta distribution as the
approximating distribution from the Pearson family. The beta is a rich family of
distributions in the sense that it exhibits a fairly wide variety of shapes on the
unit interval (0, 1). It encompasses right skewed, symmetric, negatively-skewed
distribution. Moreover, the uniform (0, 1) is a special case of Beta distribution.

Define [ (B) = log{p(B).B (1 — B)}, where B (1 — B) is the adjustment to
p (B) required for this particular example. Let B maximize [ (B), so that I <E> =0

and define —1" (é) = 1y, the Pearson information. If the approximating Pearsonian

density is Beta (aq,as), then we can write it as

Kexp{—(al—i—ag)/B_gz{ (_‘“BJ; az) dB} ﬁ.

Comparing it with the Pearsonian form (mentioned above), we get py = alc_‘ﬁaz,

m = a; + a, and Q (B) = B(1 — B). Thus, we obtain B = —%— and iy = By

. . . N\ 2
Simple calculation leads to a; = B2 <1 — B) igand ays = B (1 — B) 19, and so

B ~ Beta <B2(1 — B)ig, B(1 — B)2i0> is the recommended approximation to the
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density of B.

This method allows approximation of univariate densities by distributions
other than the normal, and hence there is a possibility of more accurate approx-
imation for small sample sizes. This approximation makes the calculation of the
posterior moments easy as the mean and variance of the Pearson density are known
beforehand. For further details, see Morris (1988). The advantage of this approxi-
mation is that an entire distribution is being fitted by a Pearson family, not just the
moments. So any kind of inference can be drawn conveniently. For example, to find
the quantiles of the complex distribution, standard ¢, chi-square, F' tables or the
readily available softwares can be used. This method is useful for noninformative
Bayesian analysis—that is, when noninformative priors, say uniform, are used at the
third level. When we have a subjective prior in hand, chosen by following some ob-
jective criteria or on the basis of some prior knowledge, application of this method
changes the prior ultimately because of the additional adjustment term and restricts
us to use the subjective prior in the analysis. For an illustration of this phenomenon
using SAIPE data, see Chapter 2. Another shortcoming of this approximation is
that it does not generalize in an obvious way to the multidimensional case, whereas
Laplace’s method can be used to approximate the posterior moments easily for the

multidimensional case.
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1.4.4.2 Laplace Approximation

Laplace’s method is a technique of classical applied mathematics and very
useful for asymptotic evaluation of integrals. This remarkable method provides
accurate approximations to the posterior means and variances of any real function
of parameter vector 6 in Bayesian analysis. Posterior moments can be expressed
as ratio of integrals and the application of Laplace’s method to ratio of integrals
leads to accurate approximation for the posterior moments. This method has been
applied by many authors in the context of Bayesian analysis. See Tierney & Kadane
(1986); Tierney et al. (1989); Kass & Steffey (1989); Butar & Lahiri (2002); Datta
et al. (2005).

The basic method can be described as follows. Consider an integral

/ b(0) exp(nL(6)) do.

Laplace’s method provides an approximation of the above integral when n (usually
the sample size in statistical applications, but here the number of small areas) is
large. The idea is that if L has a unique maximum at 6, then for large n the value
of the integral depends only on the behavior of the function L near its maximum
(Tierney & Kadane, 1986). In other words, the approximation is based on Taylor
series approximation to L(.) and b(.) about . For the convenience of exposition,

we assume that the parameter 6 is one-dimensional and b (6) = 1. Then the second
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order approximation of the above integral is given by:

/ exp [nL(8)] d ~ exp [nL(é)] / exp {—2% (9 - éﬂ df
_ m.%.exp [nL(é)] ,

where 02 = —1/L" (é) The last step follows by comparing the integrand with a

normal density. Higher order approximations may be derived by retaining higher
order terms in the expansion of L() and b(). When b () is not equal to 1, i.e. b(0) is
any general function of #, which is usually the case, then we need to calculate higher
order derivatives of L() and b(). But when we consider the ratio of integrals, the third
derivatives of L disappear under certain form of Laplace approximation. See Kass
et al. (1988) for several forms of Laplace approximation to ratio of integrals. In the
context of the Fay-Herriot model, if we consider §# = A, the variance component,
then we can take L() and b() as log-posterior density of A and shrinkage factor

respectively in order to approximate the posterior moments of the shrinkage factor.

1.5 Discussion and Outline of the Dissertation

In this chapter, we have given a broad overview of small area estimation, its
usefulness and application in a wide variety of settings. We discussed model based
approaches in drawing inferences for small areas. We discussed several methods
for the estimation of the variance component, which plays an important role in
obtaining reliable small area estimates and the associated measure of uncertainty. In
a hierarchical Bayesian set up, for the ease of implementation and evaluation of the
hierarchical Bayesian procedure, we discuss two approximate methods. However, in
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this chapter no attempt is made to identify the research gap and how this dissertation
is going to fill that. That is done in the next three chapters separately. See the
introduction and outline section of each of the following chapters to find out the
novel contribution of this dissertation to address some of the research gaps in small
area estimation.

In Chapters 2 and 3, we apply linear mixed normal models (area level and unit
level) to draw inferences for small areas when the variable of interest is continuous.
We propose a new prior distribution for the variance component. We also use
Laplace approximation to obtain accurate approximations to the posterior moments
of interest. The approximations present the Bayesian methodology in a transparent
way, that makes it easier for data users to interpret the methodology.

The linear mixed models used in Chapter 2 and 3 are not suitable for handling
binary or count data. In Chapter 4, we consider hierarchical Bayes estimation of
small area proportions. The binomial-beta hierarchical model we use is different
from the usual mixed logistic model suitable for the proportion estimation prob-
lem. Our formulation allows a regression specification and hence extends the usual
exchangeable assumption at the second level. Also, we carefully choose a prior for
the shape parameter of the beta density. This new prior helps to avoid the extreme
skewness present in the posterior distribution of the model parameters so that the
Laplace approximation performs well.

In Chapters 2, 3, and 4 we carry out some empirical applications to demon-
strate the utility and accuracy of our approach in solving real-life small-area esti-

mation problem relative to existing methods.
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Chapter 2
On the Prior Selection and Approximations in the Fay-Herriot Model

2.1 Introduction

In order to estimate the per-capita income of small places (population less than
1000), Fay & Herriot (1979) used an area level model to combine survey data with
relevant administrative and census records. The Fay-Herriot model, extensively used
in the small area estimation literature, consists of two levels. In Level 1, a sampling
model captures the sampling variability of the regular survey estimates y; of true
small area means 6;,

In Level 2, a linking model relates the true small area means 6; to a p x 1 vector of

known covariates x;,
0,08, A N3, A), i =1,...,m. (2:2)

In the above model, § is a p x 1 vector of unknown regression coefficients and
A is an unknown variance component. The sampling variances, D,’s are assumed
to be known, though in practice they are estimated by some suitable method, see
Chapter 1 (Section 1.2.1), for details about the estimation of D;.

In small area estimation, usually the main objective is to draw inferences

about the high-dimensional parameters, i.e. #;. However, as an intermediate step,
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estimation of the low-dimensional parameters § and A, usually referred to as hyper-
parameters, is also of importance. In the hierarchical Bayes implementation of the
Fay-Herriot model, a prior distribution, often a vague or noninformative prior, is
assumed on the hyperparameters. For example, Morris & Christiansen (1996) used
the following prior distribution for the problem of ranking and identifying the best

or worst of several individuals:
p(B,A) x1; (8,A) € RP x [0, 0] (2.3)

The prior distribution (2.3) for the hyperparameters is simple to interpret and is
often recommended. The uniform prior for A is noninformative and yields a posterior
distribution of A for which the mode is identical to the residual maximum likelihood
(REML) estimator of A (Harville 1977; Berger 1985, p. 192). Thus, the posterior
mode of A, under prior (2.3), enjoys good frequentist properties, which follows from
the general theory on REML; see Jiang (1996).

In spite of good asymptotic properties of the posterior mode, under prior (2.3),
it could produce an undesirable zero estimate of A for a given data set. For example,
in estimating annual poverty ratios of school-age (5-17) children for the U.S. states
using CPS data in the SAIPE program, the REML estimate of A is zero for the years
1989-1992 (Bell, 1999) and 1997 (see Section 2.5). When A = 0, we come up with
several unreasonable implications on the estimators and its measure of uncertainty
(see Bell, 1999, for details). In discussing Jiang & Lahiri (2006b), Morris noted
that the likelihood function of A is invariably right-skewed so that its mode will

be smaller than most of its distribution, as we know for a right-skewed distribution
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mean > median > mode. Hence, the maximum likelihood (ML) estimate of A is
biased toward zero — substantially so if A is small. The same comments apply to
REML and hence to the posterior mode of A, under prior (2.3). Morris (2006)
proposed to multiply the residual likelihood by an adjustment term (A) to change
the curvature of the likelihood function and then to maximize the adjusted likelihood
so that the resulting estimator of A approximates the mean of the distribution, not
the mode. This method is termed as adjustment for density maximization (ADM)
by Morris and his collaborators (Christiansen & Morris, 1997; Morris, 2006; Tang,
2002).

Recently, Li & Lahiri (2008) proved that Morris” ADM estimator of A is strictly
positive and is consistent, for large m, under standard regularity conditions. They
also noted that frequentist properties of estimators of both A and the shrinkage
factor B; [see (2.4)] improve when the residual likelihood function of A is replaced
by the profile likelihood function. A natural question, not addressed till date, is:
For which prior on A, are the posterior mode and the ADM estimator of Morris
2006 (or Li & Lahiri, 2008) identical? By addressing this question in this chapter,
we specify the full hierarchical Bayes model, which is useful in solving wide range
of problems.

The Monte Carlo Markov Chain (MCMC) technique can be used to imple-
ment the proposed hierarchical Bayesian model. Although the MCMC method is
justified by the ergodic theorem, in practice results from a MCMC run can de-
pend heavily on several factors (see Chapter 1, Section 1.4.4). All these factors

are carefully examined in a Bayesian analysis. If the Bayesian methodology is to
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be carried out routinely by someone with minimal knowledge of the sophisticated
MCMC method, then the convergence of the MCMC technique may not be checked
properly, which may lead to unreasonable conclusions. Also its slow computation
speed does not permit its evaluation by repeated use in simulation. That is why
we intend to implement our proposed hierarchical Bayes procedure, which involves
two new priors on A, by simple approximations, motivated from the application of
Laplace’s method to ratio of integrals. Simple approximation to a complex poste-
rior distribution and its moments has been discussed by many researchers, including
Tierney et al. (1989); Kass & Steffey (1989); Morris (1988, 2006); Christiansen &
Morris (1997); Tang (2002). The approximations offer simple interpretations of the
Bayesian methodology.

In Section 2.2, we review the empirical and hierarchical Bayes procedure for
the Fay-Herriot model and discuss the ADM method in more detail. In this sec-
tion we also introduce two new prior distributions on A and provide conditions for
the propriety of the resulting posterior distributions. In Section 2.3, we apply the
Laplace method to approximate the posterior moments of the parameters involved,
using the new priors. We present results from a Monte Carlo simulation study
in Section 2.4 and establish the superiority of the approximate hierarchical Bayes
method resulting from one of our proposed priors relative to some other existing
methods. Here we study the frequentist bias and variance of different estimators of
A and the shrinkage factors B;. In addition, we also examine the frequentist mean
squared error and coverage properties of the resulting hierarchical Bayes estimators
of ;. In Section 2.5, we apply our hierarchical Bayes procedure on SAIPE data and
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present the results in detail. With the help of this data analysis we demonstrate
the utility and accuracy of our methods relative to some other existing methods.
A brief summary of the chapter is given in Section 2.6, along with potential fu-
ture research ideas. We present some technical details, computer programs and

convergence criteria of MCMC in the Appendices.

2.2 Selection of Prior for the Hyperparameters

When the hyperparameters § and A are known, the posterior distribution of

0; is normal with mean and variance given by:

Eily, A, B) = (1— By + Bix;8 (2.4)

V(0ily, A, 8) = Di(1— By), (2.5)

where B; = D; /(A + D;), is the shrinkage factor which shrinks the direct estimates
to a regression surface. Note that the right hand side of (2.4) is essentially the best
predictor (BP) of 6;, being the conditional mean of 6;, given data, assuming known
hyperparameters. Under the hierarchical Bayesian approach, to estimate 6; along
with a reliable measure of precision, we need to obtain E(¢;|y) and V(6;]y). To this
end, we first find the conditional posterior distribution of 3, given A, and then the
posterior distribution of A.

When A is known, the uniform prior on  in RP, the p-dimensional real space,

yields the following posterior distributions for g and 6;:

Bly,A~N [BA, EA] , (2.6)
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Oy, A~ N (1= By + Blfha, Di(1 = By) + B2/Saz|, (27)

where 34 = (X'W4X) " (X'Way), Sa = (X'W4X) ! with Wy = diag (1/(A + D;)),
X is the m x p matrix of area-level covariates, and y is the m x 1 vector of small
area direct estimates. The subscript A in both B 4 and X4 indicates the dependence
of the terms on A. Note that the posterior mean and the posterior variance of
are identical to the maximum likelihood estimator of  and its standard variance
estimator, respectively, under the marginal distribution of y. Also, the posterior
mean, F (6;]y, A), and the posterior variance, V (6;|y, A), of 6; [see (2.7)] are iden-
tical to the best linear unbiased predictor (BLUP) of 6; = z;3 + v; and its mean
squared error, respectively, under the linear mixed model y; = 0; +¢; = :c;ﬂ +v; + e,
where {v;} and {e;} are independently distributed with v; ~ iid N (0, A) and e; ~
ind N(0,D;); ¢ = 1,...,m. Note that the BLUP does not require any specifica-
tion of prior for ; however, the commonly used uniform prior for § on RP yields
frequentist inference for both § and 6;.

In practice, the variance component A is unknown. In an empirical best linear
unbiased prediction (EBLUP) or empirical Bayes approach, no prior distribution is
assumed on the variance component A, which is estimated using some suitable clas-
sical method. Three most common methods of variance component estimation are
widely used in the small area estimation. These are analysis of variance (ANOVA;
Prasad & Rao (1990)), the method of moments (Fay & Herriot (1979); Pfeffermann
& Nathan (1981); Datta et al. (2005)) and likelihood-based method. All of these

methods can produce unreasonable estimate of A i.e. they can produce negative
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or zero estimate of A. Bell (1999), in the context of SAIPE program, considered a
relatively less familiar mean likelihood (MEL) approach to find an estimate of the
model variance A, while producing state level estimates of poverty ratios among the
school-age children. The MEL estimate is the posterior mean of A obtained from
the marginal posterior density of A assuming uniform prior on A. Naturally, MEL
always produces positive estimates of A. However, the frequentist properties such
as the bias and variance of the mean likelihood estimator are not known. To avoid
the boundary estimation problem in a non-Bayesian framework, Lahiri (2003) also
suggested to consider alternate measures of central tendency (e.g., median, mean,
etc.) of the probability distribution, instead of considering mode, obtained by stan-
dardizing the marginal likelihood function.

A likelihood-based method essentially maximizes a likelihood function of A.
The profile likelihood (maximum likelihood) and residual likelihood of A are well-
known in the literature (see Rao 2003, Jiang 2007). Certain adjustments to the
residual and profile likelihood could significantly improve the estimation of both A

and B;. We define the following general likelihood function of A as
L(A) = m(A)Lr(A), (2.8)
where
12 | s ~1/2 1 5 v 5
Lr(A) o [Wu| 77| X'WaX| " exp —§(y—XﬁA) Waly — XSa) (2.9)

is the residual likelihood function of A. The factor 7(A) can be viewed as an

adjustment factor to the residual likelihood, which can produce different likelihood
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functions considered in the literature. The following choices of w(A) deserve special

mention:
(i) 7(A) =1 or no adjustment yields the residual likelihood;
(i) m(A) = [ X'W,X|"? yields the profile likelihood;

(iii) m(A) = A yields the adjusted residual likelihood proposed by Tang (2002) and

Morris (2006);

(iv) m(A) = A|X'W,4X|"? yields the adjusted profile likelihood considered by Li

& Lahiri (2008).

Under standard regularity conditions, the maximum likelihood estimator and resid-
ual maximum likelihood estimator, obtained by maximizing (i) and (ii), are consis-
tent estimators of A, for large m (Jiang, 2007). Recently, Li & Lahiri (2008) proved
that the maximizations of (iii) and (iv) yield strictly positive estimators of A, which
are also consistent under the same regularity conditions, for large m. The estimators
of A, obtained by maximization of (iii) and (iv), are known as the ADM estimators.
Li & Lahiri (2008) demonstrated the superiority of the ADM that maximizes (iv)
over the one that maximizes (iii).

From a Bayesian perspective, the marginal posterior distribution f(Aly) of A,
under the prior p(, A) < m(A), is proportional to 7(A)Lg(A) - thus the posterior
mode of A is identical to the frequentist estimator that maximizes the general like-
lihood L(A) given by (2.8) and (2.9). We can match the posterior mode of A to

the ML, REML, and ADM estimators of A by choosing the prior m(A) suitably.
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The priors corresponding to REML and ML are denoted by mrp(A) and 7p(A)
respectively. However, because of the superiority of ADM estimators over the ML
and REML we investigate only the choices (iii) and (iv) above. We denote the prior
corresponding to the choice (iii) by my (A) i.e. my (A) < A. The subscript M is
used to acknowledge that the prior is derived from the adjustment term suggested
by Morris (2006), though he did not propose the prior. The prior my(A) leads to a
proper posterior if m > p + 4 (see Appendix A of this chapter for a proof).

In this chapter, we propose a simpler prior on A starting from the choice (iv).
To this end, note that for the balanced case i.e. when the sampling variances are

equal (D; = D Vi), we have m(A) A € [0,00]. Our choice of prior for

A
(A+D)P/2>
the unequal variance case is heuristically motivated by the equal sampling variance

case. If we replace D;, i = 1,...,m by a particular representative value dy (say,

|X/X|1/2

the median of D;) in Wy, then 7 (A) becomes AT dTE

Leaving the proportionality

constant aside, we obtain

A

X T

A €0, 0] (2.10)

Note that the prior proposed in (2.10) does not depend on the individual sampling
variance, D;, unlike Datta et al. (2005). The posterior f(Aly) under the prior (2.10)
is proper, provided m > 4 (see Appendix A for a proof). We use the notation
711 (A) for this prior, since it is motivated from the adjustment term given by Li &
Lahiri (2008). Note that, for p = 0, i.e. for common mean model with known mean,
7L (A) is equivalent to 7y, (A) and consequently, the conditions for propriety are

the same.
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Figure 2.1: Plot of the proposed prior (2.10) for different p (number of covariates)
and fixed central tendency measure dy (=10) of the sampling variances

2.3 Approximate Hierarchical Bayes Method

The posterior moments of B; and #;, under the priors considered in Section 2.2,
are not in a closed-form, but can be obtained either by numerical integration or by
Monte Carlo Markov Chain (MCMC) method. We have written a program, using the
BRugs package (Thomas et al., 2006) in R (R Development Core Team, 2008), that
allows the hierarchical Bayes analysis for our new priors using the MCMC method.
But its slow computation speed does not permit its evaluation by repeated use in

simulation. Thus, for convenient implementation and evaluation of our hierarchical
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Bayes method, we approximate the posterior moments of B; and 6; using Laplace’s
method. Before going into the detailed implementation of Laplace’s method under
the Fay-Herriot model, we would like to address another method of approximating
nonstandard complex densities viz., the adjusted density method along with its

shortcomings.

2.3.1 Adjusted Density Method

We discussed the adjusted density method (Morris, 1988) with some details
in Section 1.4.4.1. This method is useful for noninformative Bayesian analysis i.e.
when noninformative priors, say uniform, are used at the third level. When we
have a subjective prior in hand, chosen by following some objective criteria as in
Section 2.2 or on the basis of some prior knowledge, application of this method
changes the prior ultimately because of the additional adjustment term and restricts
us to use the subjective prior in the analysis. This fact can be illustrated as follows.

Following the adjusted density method of Morris (1988), if we want to approx-
imate the posterior density of B; by a beta density, say Beta(a;,b;), first we write

the adjusted log-posterior density [ (B;) of B;.

[(B;) = log{f(Bily)B:(1— B;)}
= log{f(Aly) |J| Bi(1 — By)}

= log {LR(A)(AfW} (2.11)

where |.J] is absolute value of the jacobian of transformation A — B;. Note that,
in this example B;(1 — B;) is the required adjustment term, as suggested by Morris

40



(1988). Now, if we match the first derivative of (2.11) to the beta mean, we are
basically considering the mode of a different posterior density which uses 7(A) o
ﬁ instead of the prior mentioned in (2.10). Although, the approximation
performs quite accurately as illustrated by the SAIPE data analysis (see Section 2.5;
Figure 2.4). For more on the approximation i.e. how to obtain the parameters of
the beta density in order to implement the adjusted density method in practice see
Appendix B of this Chapter. Another shortcoming of this method is that it does not
generalize in an obvious way to the multidimensional case whereas Laplace’s method

can be used to approximate the posterior moments easily for the multidimensional

case, albeit ours is a univariate case.

2.3.2 Laplace Approximation

Let, A be the posterior mode, which is obtained by maximizing the posterior
distribution f(Aly), with 7 (A) = 71z (A), and let ig be the negative second deriva-
tive (Hessian) of the log posterior density evaluated at A. Also, we assume that the
Hessian should be bounded away from zero at the mode. Now, following (Kass &
Steffey, 1989), the first order approximation to the posterior mean and variance of

any real-valued smooth function, g (A), of A is given by
E{g(A)ly} =g (A) +0 (m™) (2.12)

N2 1 -

Vig ={g (4)} - +0(m™), (2.13)
where ¢’ (121) is the first derivative of g (A) at A. This follows from the standard
form of Laplace approximation to the ratio of integrals (Tierney et al., 1989). Both
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the approximations in (2.12) and (2.13) have relative error O (m~!) and are termed

as first order approximation. By relative error we mean the error term corresponding

approximation

p— and the true variance is possibly of order O (m™1).

to the quantity
We now discuss this method in the context of obtaining the first order approx-
imation for the posterior moments of ;, under the model described in Section 2.2.

From (2.7), we define
gi(A) = E(Gi\y,A) = (1 - Bi)yi + Bix;BA
and
hi(A) = V(0ily, A) = D;(1 — B;) + B}/

Using iterative expectation technique on FE(6;|y), we write the first order approxi-

mation to the posterior mean of 6; as
E(0ily) = E{g:i(A)ly} = E(0ily, A) + O(m™), (2.14)

follows directly from (2.12). Using similar iterative expectation and variance tech-
nique on V' (6;|y, A), the first order approximation to the posterior variance can be

written as

VL) = Bl +V a4y}
= [V A) 4 0]+ [ B0l AWy T+ 07| 219
= Di(l — BZ> + BZQ :L’;ZA.Iz +

{vi—alfa+ (a4 Di)x;u}iZA V(Bily) + O(m™), (2.16)

where BZ and X ; are B; and X4 evaluated at 121; U= %’%. The first and the second
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part of the equation (2.15) follows from (2.12) and (2.13) respectively. The term
V(B;]y) can be obtained by applying (2.13) with g;(A) = D;/(A + D;).

The first order approximation of the posterior variance given by (2.16) has
three clearly defined terms. The first term, 77 = D;(1 — Bz), measures the uncer-
tainty in the model for estimating 6;, the second term, Ty = foft ¥ 4 x;, measures
the uncertainty in the estimation of § and the third term, T3 (remaining portion),
accounts for the uncertainty in estimating A. In many applications, the third term
is quite small and often ignored (Bell, 1999). Kass & Steffey (1989) emphasized the
importance of the third term in their data analysis. They considered the standard
form for the first order Laplace approximation under a similar kind of model as
Fay-Herriot, but with uniform prior for the variance component, under the label
conditionally independent hierarchical models (CIHM).

To obtain a second order approximation of the posterior mean in standard
form, we need to evaluate the third order derivatives of the log-likelihood. More
complexity arises if we need a second order variance approximation, which demands
fourth and fifth derivatives of the log-likelihood (Kass et al., 1988, p. 265). To
avoid this complication, Tierney & Kadane (1986) proposed fully exponential form
of Laplace approximation. The fully exponential form is applicable only for functions
g bounded away from zero. We describe the method below in brief.

*

E{g(A)ly} = Z exp {m (£°(4) — L(A)) }, (2.17)

where L = tlog f (Aly), L* = = {log f (A|y) 4+ log g (A)}, and A* is the maximizer

of L*. o2 and 0*? be the inverse of the negative Hessian of L and L* evaluated at
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A and A* respectively. To find the second order approximation of V {g (A) |y}, we

write
V{igW) 1yt =E{F Ay} - E*{g(A)|y}. (2.18)

Then, apply (2.17) to the first term on the right hand side of (2.18) with L* =
% {log f + log g*} and subtract the square of (2.17). A similar approximation ap-
plies in the multiparameter case where the ¢’s are replaced by the determinant of the
negative Hessian matrix. In this specific implementation of Laplace approximation,
the approximations are more accurate than the conventional Laplace approximation.
For this approximation the errors are O (m~2), where as in conventional Laplace ap-
proximation the errors are O (m™'). See Tierney & Kadane (1986) for the derivation
of the error terms. Datta et al. (2005) considered standard form of second order
Laplace approximation for approximating posterior mean of #; under Fay-Herriot
model, which requires evaluation of the third derivatives of the log-likelihood. But
their approximation to the posterior variance has relative error O(m™1).

Tierney & Kadane (1986) warned against using the fully exponential method
for nonpositive function. According to them, the positivity assumption is important
to ensure that the numerator and denominator integrands are similar in shape so
that application of the Laplace approximation to the numerator and denominator
leads to similar error terms, and in taking the ratios, the order O (m™!) terms
cancel in both numerator and denominator. Tierney et al. (1989) extended the fully
exponential approach for approximating moments of functions taking both negative

and positive values, such as regression coefficients. They used the term moment
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generating function (MGF) method, which finds the second order approximations
of posterior moments of nonpositive functions without requiring the evaluation of
third derivative of likelihood function. It is instructive to note that the posterior
mode of A resulting from our prior always lies in the interior of the parameter
space, and hence application of Laplace method is straightforward. For asymptotic
expansions of posterior expectations when the mode is at the boundary, see Erkanli

(1994).

2.4 Simulation Study

In this section, we compare two frequentist approaches with our hierarchical
Bayes method. The conceptual difference between a frequentist and a Bayesian
analysis are avoided by studying the frequentist properties of the estimators un-
der two approaches. The frequentist properties of estimators are derived from the
distribution of the estimators under repeated simulations of observations following
the statistical model with known hyperparameters. We investigate the small sam-
ple (m = 15) frequentist properties of our proposed priors my(A) and 7. (A) in
estimating A, B;, and 6;, i = 1,...,m, using a Monte Carlo simulation study. In
the tables, we denote the hierarchical Bayes methods resulting from 7y, (A) by HBy
and that from 7;;(A) by HBrp. This is generic and used for the estimation of
any parameter. The hierarchical Bayes methods are approximated, using the ap-
proximations discussed in Section 2.3.2. For the estimation of A, we compare the

posterior mode using new priors with the residual maximum likelihood (REML)
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and mean likelihood (MEL) estimators, considered by Bell (1999). For the estima-
tion of the shrinkage parameters, we consider the Laplace approximation method
for our two priors along with the usual plugged-in REML and MEL estimators in
B; = D;/(A+ D;). For inference about the small area means 6;, we compare our hi-
erarchical Bayes estimators with the empirical best linear unbiased predictors (same

as empirical Bayes), using the REML and MEL estimators of A.

2.4.1 Design of the Simulation Study

For our simulation experiment, we use the Fay-Herriot model with m = 15, and
A = 1. We consider one covariate, which is generated from a gamma distribution
with mean 10 and variance 50, and an intercept term i.e., we considered p = 2. We
assume 3 = (—2,0.5). Following Datta et al. (2005), we divide the 15 small areas
into 5 groups: G1, G2, G3, G4, and G5, each group containing 3 small areas with
identical sampling variance. We consider the following sampling variance pattern for
the five groups: (4.0, 0.6, 0.5, 0.4, 0.1). That is, D; = 4.0, for the three small areas in
group G1, D; = 0.6, for the three small areas in group G2, and so on. This sampling
variance pattern is the most variable pattern among the three patterns considered
by Datta et al. (2005) and corresponds to their Type 3 pattern. In our simulation
we multiply the sampling variances by 3 to increase the values of the variances.
The median of D;’s is 1.5 i.e., we considered dy = 1.5 for our proposed prior.
We generate N = 10,000 replicates of {(y;,6;), i =1,...,m = 15} using the Fay-

Herriot model in order to study various frequentist properties of our approximate
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hierarchical Bayesian methods.

2.4.2 Comparison of Different Estimators of A

To compare the different estimators of A, we use the following criteria. Let
AU) be an estimate of A in the jth simulation run, j = 1,..., N(= 10,000). We

define,
o Bias(A)=A— A
e Variance(A) = ﬁ Z;VZI(A(j) — ;1)2, where A — % ZN . AW)
e MSE = Variance + Bias®

We define the bias, variance, and MSE for estimators of B; and 6; in a similar way.
Since the estimators are biased, as a measure of uncertainty, we present the MSE’s in
the tables instead of variance. Before comparing different estimators of A, we spell
out the proportion of zero estimates obtained over the simulation runs for all the
four estimators. Only in this situation, we explore several choices of A. For other
results we have used A = 1. Table 2.1 shows that the percentage of zero estimates
for REML can be substantial for small values of A. Here it should be noted that the
cases where REML turned out to be negative, it is truncated at zero. As expected,
all other estimators always produce positive estimates.

Table 2.2 shows that the bias of REML is negligible (1.59 %) and is the least
biased among all the methods considered. This is consistent with the theory, since

the bias of REML is of order o(m™!), under standard regularity conditions (Jiang,
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Table 2.1: Percentage of Zero Estimates for Different Estimators of the Variance
Component A

A | REML MEL HBy;, HBy
0.5 27 0 0 0
1 12.6 0 0 0
4.2 0 0 0
3 0.4 0 0 0

Table 2.2: Bias and MSE (in percent) of Different Estimators of the variance com-
ponent A

‘REML MEL HB;; HBy

Bias(%) 1.59 141.84 4546 93.24
MSE(%) | 76.69 391.01 91.13 206.98

1996). However, the REML is subject to zero estimates. The MEL always produces
positive estimates of A, but is subject to an overestimation problem. The posterior
mode HByy,, obtained using the prior 7 (A), performs the best among the three
estimators, which never yield zero estimates of A. It is also better than the other

three estimators, except REML, in terms of the MSE.

2.4.3 Comparison of Different Estimators of B;

Table 2.3 reports the average percent bias and MSE of different estimators of
B; for each of the five groups, where the average is taken over all the three small
areas in a group. Such an average makes sense, since B;’s are identical within
group. The bias of the plugged-in REML estimator of B; is worse than the bias of

the REML estimator of A, especially for groups with small D;’s. This follows from
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Table 2.3: Bias (and MSE) in percent of Different Estimators of the shrinkage factor
B;

Group \ REML MEL HB.L HBy

Gl | 0.25(0.34) -845(1.24) -2.78 (0.35) -5.64 (0.72)

G2 | 5.04 (3.79) -17.44 (4.86) -5.73 (2.06) -12.26 (3.31)

G3 | 6.03 (4.43) -17.33 (4.78) -5.60 (2.13) -12.19 (3.31)

G4 | 7.33(5.27) -16.85 (4.51) -5.30 (2.14) -11.86 (3.19)
(0.97)

G5 | 13.91 (9.85) -8.99 (1.32) -2.02 (0.97) -6.17 (1.07)

the Jenson’s inequality, since B; is a convex function of A. Even if we plug in an
unbiased estimator of A, The estimator of B; would have a positive bias. The REML
is subject to an overestimation problem whereas the other estimators are subject
to underestimation problem. This is an interesting observation, since this implies,
in estimating 6;, REML tends to put less weight on the direct estimator than the
hierarchical Bayes do. Also, unlike the other estimators, REML could estimate B;
by 1, in which case the REML-based empirical best linear unbiased predictor of
f; is identical to the regression synthetic estimator — this is surely an undesirable
feature of REML. Among the other three methods, plugged-in MEL appears to
yield the most negatively biased estimator of B;. The hierarchical Bayes method
HBy, appears to be a good compromise. Here, HBy;, is the first order Laplace
approximation to the posterior mean of B;, using prior 7 (A). In this case, HBr,
is essentially the plugged-in estimator of B; with new posterior mode of A. In terms
of MSE, the performance of HBy, is the best.

Figure 2.2 plots different average B; estimates, the averages being taken over

all the 10000 simulation runs, against small areas, arranged in decreasing order of
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Figure 2.2: Plot of average values of the different estimates of the shrinkage factor
B; along with true values: average being taken over 10,000 simulations

the sampling variances, D;. For all the estimators, the weight given to the direct
estimator increases with the decrease in the sampling variance. The REML estima-
tor puts the lowest weight to the direct estimator whereas both MEL and HBy; put
more weight to the direct estimator compared to HBrp. In a sense the estimator
HBy 1, strikes a nice balance in putting weight to the direct and synthetic estimator

compared to other three estimators.
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2.4.4 Comparison of Different Estimators of 6,

In small area estimation the objective of interest is usually to draw inferences
about the small area mean 6;. In this section, we compare four estimators of 6;.
REML and MEL are the plugged-in EBLUP estimator, two hierarchical Bayes esti-
mators, HBy, and HBy, are the first order Laplace approximation to the posterior
mean of ¢; with the corresponding prior. To compare different estimators of 6;, we
introduce two other summary statistics, besides bias, variance and MSE defined in
Section 2.4.2. We study the frequentist coverage properties of the 95% confidence
interval (CI) of the type: Estimator + 1.96 x MOU, constructed using the four es-
timators based on the normal approximation. By MOU we mean the measure of
uncertainty, e.g., the posterior standard deviation for a Bayes estimator. Since we
have both Bayesian and frequentist estimators, we prefer to use this term for all the
estimators, instead of using v MSE. For the comparison purposes, we define the

following two summary statistics:

e Coverage probability of 95% CI = [number of times true 6; is included in the

interval|/ N

e Average length of CI = + Z;V:l(UC’Lj — LCL;), where LCL; and UCL; are

the lower and upper confidence limit of the corresponding CI.

Table 2.4 presents the percent MSE, coverage probability for a 95% confidence in-
terval, and average length of the confidence interval for each of the four methods.
Here, instead of considering summary statistics for 15 small areas we report the
average summary statistics for each of the five groups, where the average is taken
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over all the three small areas in a group. Although the areas within a group differ
due to the differences in the covariate, unlike Datta et al. (2005) (they considered
common mean model in the simulation), we adapt this approach to save space. On
the basis of MSE, it is clear that HBy, performs better than MEL and HBy; for all
the small areas, although the differences in the MSE tend to decrease as the sam-
pling variance decreases. In terms of MSE, the performance of REML and HBy,
is comparable, HBy, performs slightly better except for the group with the highest
sampling variance.

To construct the confidence interval for REML, as a measure of uncertainty
we use square root of both: (1) the nalve MSE estimator that does not take into
account the uncertainty in estimating A, and (2) the approximately unbiased MSE
estimator of the MSE of EBLUP, which takes into account all sources of uncertain-
ties. For an explicit expression of the MSE estimator of the EBLUP of 6;, under
Fay-Herriot model, see Datta & Lahiri (2000). For MEL estimator of 6;, we consider
the naive MSE estimator of the EBLUP of 6; with plugged-in MEL estimate of A.
Bell (1999) showed that this naive MSE estimator with plugged-in MEL estimate
of A estimates the measure of uncertainty quite accurately. For two Bayesian esti-
mators we used the first order Laplace approximation to the posterior variance of
0;. Before comparing the confidence intervals, we need to study the performance of
the estimators of the measure of uncertainty which we use to construct the confi-
dence intervals. To this end, we look at the ratio of average MOU to the true MOU
(simulated MSE of different estimators of #;). We consider the simulated MSE as

the true MOU as the estimators of MOU are biased. It is desirable that the ratio
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is close to 1. Figure 2.3 shows that, for REML with MOU as in Datta & Lahiri
(2000), these ratios are close to 1 for all the areas. For HB_LL, this ratio is close to

1 for all the areas, except for the areas with highest sampling variance.
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Figure 2.3: Plot of measure of uncertainty ratios for different estimators of the
measure of uncertainty of the small area mean 6; for 15 small areas

Regarding the performance of the confidence intervals, we can say that the
REML has got the lowest coverage rate, as low as 0.84 for some areas, compare to
the nominal rate of 0.95. The coverage property improves when we consider the
measure of uncertainty in estimating A, as opposed to ignoring it. Still REML

suffers from the undercoverage problem because of the zero estimation problem of
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A. In spite of good MSE properties of the REML estimator of 6;, its lower coverage
rate restricts its use in real life data analysis. All other methods provide confidence
intervals having at least nominal coverage rate. So, in terms of coverage, other
three methods are comparable, although HBy, performs the best (smallest average
length) in terms of the average length.

In this subsection, we also study the relative contributions of the three terms
to the posterior variance of 6; obtained using the prior w;;(A). In Table 2.5, the
columns T1, T2, and T3 exhibit the relative contributions of term 1, term 2, and
term 3 respectively. For the explicit expressions of the terms see the equation
(2.16). From the values in Table 2.5, we conclude the contribution of the term which
accounts for the uncertainty in estimating the variance component is substantially
small relative to the first term which accounts for the uncertainty in the model in

estimating the small area mean.
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Table 2.5: Relative contribution (%) of the three terms to the posterior variance of
0; using the prior 7w (A) on A: average over 10,000 simulations and 3 small areas
within each group

Group T1! T2? T33
G1 83.70 11.86 4.44
G2 69.28 24.85 5.87
G3 84.13 7.84 8.02
G4 82.03 10.45 7.52
G5 91.61 4.29 4.10

! Uncertainty in the model (first two levels of FH model, assuming
B and A known) in estimating 6;

2 Uncertainty in estimating the regression coefficient 3

3 Uncertainty in estimating the variance component A
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2.5 SAIPE Data Analysis

In this section, we analyze the SAIPE state level data for the year 1997 and
1993 using the Fay-Herriot model. We compare our approximate hierarchical Bayes
method with the method used by the U.S. Census Bureau as documented in Bell
(1999). In our notation, y; denotes the direct survey (CPS) estimate (expressed as
percentage) of the true poverty ratio 6; of school-age children in state i, i = 1,...,51
and z; is a 5 X 1 vector consisting of an intercept term and four auxiliary variables
obtained from administrative records as mentioned above. The sampling variances
D;’s were obtained from the sampling error model of Otto & Bell (1995); they fitted
a generalized variance function (GVF) to five years of direct variance and covariance
estimates for each state produced by Fay & Train (1995). The sampling variances
are assumed to be known throughout the inferential procedure i.e., the uncertainty
about the sampling error is not considered in the analysis. For further details on
the auxiliary variables, see Bell (1999) and Citro & Kalton (2000). In the tables
and figures, we denote the hierarchical Bayes methods resulting from 7. (A) by
HBy;, or HB_LL. This is generic and used for the estimation of any parameter.
The hierarchical Bayes method is approximated, using the Laplace approximations

proposed in Section 2.3.2.

2.5.1 Evaluation of the Adjusted Density Method

In this subsection, we evaluate the performance of the adjusted density method

discussed in Section 2.3.1, in the context of the SAIPE 1997 data. For illustration,
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Figure 2.4: Evaluation of the adjusted density method proposed by Morris: Ap-
proximating the posterior density of the shrinkage factor B; by a beta density

we consider the posterior distributions of B; under prior 7. (A) for four states:
California (CA), North Carolina (NC), Indiana (IN), and Mississippi (MS), using
1997 SAIPE data. Bell (1999) examined these four states for his data analysis for
the years 1989-1993. We believe this is a representative sample from the 51 states
to cover the range of sampling variances and sample sizes within states. Since the
posterior distribution of B; is in the form of a one-dimensional integral, it is possible
to obtain a highly accurate approximation to the posterior density using numerical

integration. This gives us an opportunity to compare the Beta approximation,
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suggested by Morris, with the MCMC method, treating the numerical integration as
an exact method. In Figure 2.4, we plot the posterior densities of B; using numerical
integration (dotted line) with prior 77 (A), densities obtained from applying MCMC
method (solid line) with prior 7. (A) using the BRugs package (Thomas et al., 2006)
in R (R Development Core Team, 2008) and approximate beta densities (long-dashed
line) of B;. Comparing the densities we can readily conclude that the approximation,
as obtained using the adjusted density method, performs quite accurately for all the
states (slight deviation for CA) but the approximation uses a different prior on A

rather than the prior 777, (A) [see equation (2.11)].

2.5.2 Comparison of Different Estimators of A

In Figure 2.5, we present different posterior densities of A using two different
priors on A: uniform prior and 7, (A). We can readily see, for SAIPE 1997 data,
the posterior mode under uniform prior is zero, an undesirable estimate of the
variance component A, which is by definition positive. The use of prior 711 (A)
pushes the modes of the posterior densities, for both 1993 and 1997, to the right
yielding the posterior mode HBy, that is always positive, like the MEL estimate.
Table 2.6 compares three different estimates of A: REML (posterior mode using
uniform prior), MEL (posterior mean using uniform prior as in Bell 1999), and
HBy1, (posterior mode using prior 771 (A)). It is interesting to note that, for both
the years considered, the difference between HBy, estimate and REML is much less

than that of MEL and REML.
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Figure 2.5: Plot of the posterior density of A using two years of SAIPE data: a
comparison between uniform prior and proposed prior under Fay-Herriot model

2.5.3 Results Comparing Different Estimators of B;

Since we have 51 small areas, i.e. 50 states and the District of Columbia, we
compare the estimates of B; using a graph. Figure 2.6 plots five estimates of B;:
REML, MCMC, HB_LL, EXACT and MEL, against states arranged in increasing
order of the sampling variances D;. Note that MEL and REML are regular plug-in
estimates of B;, whereas HBp, is obtained using the second order Laplace approxi-
mation to the posterior mean of B;. In other words, HBy, is obtained by applying

the fully exponential form of Laplace approximation. The estimator MCMC is the
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Table 2.6: Different variance estimates of A for two years of SAIPE data

Year ‘ REML MEL HBy,

1993 | 1.70 3.37  2.80
1997 0 1.50  1.22

posterior mean of B; obtained by applying MCMC method with prior 7, (A) using
the BRugs package in R. The EXACT estimator of B; is computed by performing
numerical integration over 100 equal subintervals of A. Since REML estimate of
A is zero for 1997, B; = D;/(A+ D;) = 1 for all the states. Thus, for any given
state, irrespective of its size, the REML puts all the weight to the regression syn-
thetic estimate and none to the direct estimate. This is not natural since, at least
for large states, like California (CA), we would expect a reasonable procedure to
put large weight to the direct estimate. From the Figure 2.6, it is evident that the
Laplace approximation performs very well as it coincides with EXACT and MCMC
for almost all the states. It is worth mentioning that our estimate would put more
weight on the direct estimate of ;, compared to the MEL estimate in an empirical

Bayes set up.

2.5.4 Results Comparing Different Estimators of 6;

Table 2.7 presents some estimates of #; and the associated measure of uncer-
tainty while considering the approximate hierarchical Bayesian approach using the
Fay-Herriot model with our new prior. Also shown are the CPS sample sizes n;

(number of households in March CPS sample), CPS direct poverty ratio estimates
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Figure 2.6: Plot of different shrinkage factor estimates using SAIPE 1997 data: Com-
parison between MEL, REML and our method considering MCMC and numerical
integration (exact) as gold standard

yi, and direct sampling variances D;. Results are presented for 10 selected states in
increasing order of D;. In addition to the four states (CA, NC, IN, MS), as in Bell
(1999), we include six other states: two small states (DC, MD), two large states (FL,
NY) and two moderately large states (MA, VA). Size of the states is categorized
on the basis of the CPS sample size. We believe that these ten states are a good
representation of the 51 states as far as the discrepancies in sampling variance and
sample size within states are concerned. Table 2.7 includes the synthetic estimate

of 0; (obtained by plugging in the posterior mode of A in B), the first and second
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Table 2.7: Approximations to the small area mean 6; and their measure of uncer-
tainty using Fay-Herriot model with new prior: SAIPE 1997 data

State | D; n; Vi x;ﬂA Lol Lo2 Sdol V1 V2 V3

CA | 234 4465 2355 22.71 2299 23.07 1.24 51.77 4737 0.85
NY | 3.06 3350 23.76 23.16 2333 23.39 127 53.96 45.60 0.42
FL 3.93 2613 18.34 19.82 1947 19.29 1.22 62.08 33.15 4.76
MA | 6.22 1187 19.66 15.04 15.79 16.22 1.47 46.55 39.14 14.30
NC 6.70 1238 13.89 16.98 16.50 16.22 1.20 71.13 19.50 9.36
IN 8.74 684 11.07 13.082 12.83 12.67 1.20 74.01 23.30 2.68
VA |1094 736 16.40 1538 1548 15.54 1.15 8238 17.28 0.32
MD | 1221 564 9.89 13.56 13.22 1298 1.27 67.82 26.57 5.60
MS | 15.88 591 20.58 22.18 22.06 22.02 1.67 40.44 59.48 0.06
DC | 30.81 548 35.85 32.42 3255 32.67 247 19.07 80.60 0.32

order Laplace approximation (Lol and Lo2 column) to the posterior mean of 6;.
Note that the first order approximation is basically the empirical Bayes estima-
tor, with HBLL(A) plugged-in the Bayes estimator of ; when A is known. The next
column (Sdol) shows the square root of the first order approximation of the poste-
rior variance of #;. In order to have an analytical expression of the posterior variance
for illustration purposes, we consider the standard form of first order Laplace ap-
proximation that makes it possible to present three clearly defined components in
the variance [see (2.16)]. We wish to explore the importance of the third compo-
nent which is usually small compared to the other two terms and is ignored. The
relative contributions (%) of the three components towards the posterior variance
are given in the last three columns (V1, V2, V3) of Table 2.7. For the state MA,
the third component is substantial (14%) compared to that of other states because
of the substantial difference between the direct estimate (19.66) and synthetic es-

timate (15.04). The maximum contribution (19%) of the third component towards
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the variance is observed for the state MI (not presented in the table). It can be
concluded that for this particular dataset, if we consider first order approximation
of the posterior variance, then the third term is small compared to other two terms.
If we compare Lol and Lo2 column of Table 2.7, we can say that there is not much
difference between the first and second order approximation of posterior mean of 6;.

For a more extensive evaluation of the approximation see Section 2.5.5.
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Figure 2.7: Point estimates of small area means 6;: Comparison between Bell
(1999)=MEL and our=HB_LL(02) method (with MCMC as the gold standard) us-
ing SAIPE 1997 data (By increasing D;)

Figure 2.7 plots three point estimates of ¢;, MEL, MCMC, HBy;,. The MEL

estimate is obtained by plugging in the MEL estimate of A in E(6;|ly, A). The
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Figure 2.8: Plot of measure of uncertainty of the estimators of small area means:
Comparison between Bell (1999)=MEL and our=HB_LL(02) method (with MCMC
as the gold standard) using SAIPE 1997 data (By increasing D;)

MCMC estimator is the posterior mean of 6; under Fay-Herriot model using the new
prior. HB_LL(02) is the second order Laplace approximation to the posterior mean
of 6; obtained by applying (2.17) with g¢; (4) = (1 — B;)y; + Bix;BA. Although,
the positivity of this function cannot be guaranteed, in general, but in our data
analysis the function g;(A) is always positive. That’s why we think the application
of (2.17) is valid. No significant disparity is observed among the three estimators.
Figure 2.8 demonstrates the difference between the measures of uncertainty of the

three estimators considered in Figure 2.7. The HB_LL estimator (second order
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Laplace approximation to the posterior variance of 6;) is obtained by applying (2.17)
and (2.18) with g (A) = D; (1 — B;) + B?z} 34 z;. The overlapping of the MCMC
(posterior variance of §; using new prior) and HB_LL estimator justifies the efficiency
of the approximation. In general, the measure of uncertainties associated with
the three estimators increase with the increase of the sampling variance D;. The
measure of uncertainty of MEL discussed in Bell (1999) seems to suffer from an

underestimation problem because it ignores the uncertainty in estimating of A.

2.5.5 Evaluation of Laplace Approximation

In this section, with the help of Figure 2.9 and Figure 2.10, we evaluate
the precision of the Laplace approximation to the posterior moments of #; using
SAIPE 1997 data. To measure the accuracy, we consider the percentage differ-
ence as the summary statistics. Mathematically, this can be defined as {(exact —
approximate)/exact} x 100. We obtain exact posterior moments by performing nu-
merical integration over 100 equal subintervals of A. Figure 2.9 shows that both
the first and second order approximation values of mean are quite close to the ex-
act value, although, the second order values are more accurate as the percentage
difference values lie on the zero line for almost all areas. Evidently, the first order
variance approximation underestimates the uncertainty, the percentage difference
being more than 20% for most states with highest being 35% for the state Delaware
(DE). The second order variance approximation slightly overestimates (percentage

difference being negative) the uncertainty for almost all areas but the absolute dif-
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Figure 2.9: Evaluation of Laplace approximation to the posterior moments of 6;
using SAIPE 1997 data and the new prior: percent difference from the exact as a
summary measure

ference is less than 4% for all areas except for the state New Mexico (NM) with
5.06%.

Figure 2.10 demonstrates the fact that if the posterior mode lies on the bound-
ary point, the Laplace approximation may end up with misleading results. For the
SAIPE 1997 data, use of uniform prior on A leads to the posterior mode to be zero.
Although this does not affect the accuracy of the mean approximation much, it re-
duces the precision of the variance approximation to a large extent. Our proposed

prior excludes the possibility of zero estimates of posterior mode. For the SAIPE
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Figure 2.10: Evaluation of Laplace approximation to the posterior moments of 6;

using SAIPE 1997 data and the uniform prior: percent difference from the exact as
a summary measure

1993 data, where the uniform prior on A does not lead to zero posterior mode (see
Figure 2.5), the approximation works much better than what is depicted in Fig-
ure 2.10. But for 1993 also, our prior performs much better than that of uniform
prior (not presented here). For example, for the second order variance approxima-
tion, the mean absolute difference is 5% for the uniform prior compared to 0.5% for

our new prior.
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2.6 Concluding Remarks

In this chapter, we examine the Fay-Herriot model which is extensively used
in small area estimation. As an inferential procedure under the Fay-Herriot model
we prefer the hierarchical Bayesian approach because of its ability to solve complex
inferential problem in a straightforward way. Once we have the relevant posterior
density, we can use it for any inferential problems, including the measure of un-
certainty and interval estimation. Implementation of hierarchical Bayes procedure
needs specification of priors on hyperparameters. We use some objective criteria to
propose a prior on the variance component A. To select the prior on A we match the
posterior distribution of A to the adjusted profile likelihood function of A. We rec-

ommend to use the prior m(A) -5 for the variance component. Besides being

X GarapT
simple, our approach has two main advantages. It removes the possibility of yielding
zero estimate for the variance component; the popular choice of uniform prior on A
suffers from this drawback if posterior mode is considered as an estimator. Our prior
also enjoys good small sample frequentist properties; simulation results justify that
conclusion. Also, in order to have closed form expressions of the posterior mean and
variance of the true small area mean, we use the Laplace approximation to ratio of
integrals, following Kass & Steffey (1989). In addition to the computational sim-
plicity, such approximations lend themselves to easy interpretations of the formulae
involved.

In the context of the Small Area Income and Poverty Estimation (SAIPE)

project, the REML estimator of the variance component A comes out to be zero
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quite frequently. When that happens we come up with several unreasonable impli-
cations on the estimator and its measure of uncertainty. For example, the empirical
Bayes estimator of the small area mean gives full weight to the synthetic estimator
and none to the direct. To overcome this issue, we use the new prior on A along with
the Fay-Herriot model. We implement our hierarchical Bayes procedure with second
order Laplace approximation. By comparing the Laplace method to the numerical
integration and MCMC method, using SAIPE data, we conclude that the second
order fully exponential form of Laplace approximation works very accurately. If the
posterior mode occurs at the boundary point, the approximation to the posterior
variance is quite poor even for second order approximation. This suggests that the
posterior mode needs to be sufficiently away from zero for the Laplace approxima-
tion to work well. We contrast our approximate hierarchical Bayes approach to the
MEL empirical Bayes approach as documented in Bell (1999). Although, the point
estimates of the small area means are quite close, there is an indication of underes-
timation in the measure of uncertainty in the Bell (1999) methodology relative to

ours.

2.7 Appendix A: Verification of the propriety of the posterior distri-

bution f(Aly) of A

The proof follows the technique used by Datta & Smith (2003) and Smith

(2001). In the proof, any constant term (i.e. the term does not involve A) is
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denoted by C, even if they are different from step to step.
1 N R
F(Aly) = CIWa[2IX'WaX| 7 exp [—5@ — XBa)Waly — XﬁA)} m(4) (A1)

We need to show that,
/ f(Aly)dA < o0 (A.2)
0

Let’s denote Ty = [Wa|'/2, Ty = | X'WaX|"V2, Ty = exp | —1(y — X34)Waly — XBa)|.
Step 1: An upper bound for T}

(Wal = T1i2) 535, Define d = min,{D;}(> 0).Thus,
A+D; > A+dVi (A.3)
Whend > 1, A+d> A+ 1. Thus, (A.3)=
A+D;>A+1=>T < (A+1)"™/2 (A.4)
When d <1, A+d > Ad+d. Thus, (A.3)=
A+D;>CA+1) =T <C(A+1)"™/? (A.5)
Combining (A.4) and (A.5), we have

Ty < C(A41)"™/2 (A.6)

Step 2: An upper bound for T;

Define f = max;{1, D;}. Then

A+D; <A+ f=f1+A/f)<f1+A)Vi (A7)
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We restate the following result from Rao (1973, p. 70): Let A and B be non negative
definite (nnd) matrices with A — B nnd. Then |A| > |B|. Using this result we can

say

IX'WaX| > C(1+A)7P2X'X]|

=T, < C(1+AP? (A.9)
Step 3: An upper bound for T3
(Y= XBa)Waly — XBa) 2 0= T3 < 1 (A.10)
Combining (A.6), (A.9), and (A.10) in (A.1), we have,

f(Aly) < C(1+ A)~ " P 2r(4) (A.11)

2.7.1 Propriety of the Posterior Corresponding to m(A) o e A+2‘0 7

When dy < 1, (A + do)P/? > (Ady + do)P/? = C(1 + A)P/2, for any p > 0. Thus,

1 1
Ardp? =T apr -
When dy > 1, (A + do)?/? > (1 + A)P/?, for any p > 0. Thus,
1 1
(A.13)

<
(A+do)P/?2 — (14 A)P/?
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Combining (A.12) and (A.13), we can say, for any dp,

1 1
N o '
Atdy? = Cayape (A.14)
Putting (A.14) in (A.11), we have,
A
f(Aly) < C—(A+ e (A.15)

The right hand side of (A.15) is integrable if m/2 > 2 = m > 4. Thus, the

posterior f(Aly) of A corresponding to the prior m(A) -z will be proper

A
X Atdo)

provided m > 4.

2.7.2 Propriety of the Posterior Corresponding to 7(A) < A

(A.11)=

A
(A+ 1)(mfp)/2

f(Aly) <C (A.16)

The righthand side of (A.16) is integrable if (m —p)/2 >2=m > p+4.

2.8 Appendix B: Adjusted Density Method

Suppose we want to approximate the posterior density of B; by a beta density,

say Beta(a;, b;). First we write the adjusted log-posterior density [ (B;) of B;.

[(B;) = log{f(Bily)B:(1— B;)}

= log {f(Aly) |J| B:(1 — B;)}

= log {LR(A)ﬁ} (B.1)
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The parameters of the beta density are obtained by matching the first two derivatives

of [ (B;) and log adjusted beta density. After some simplifications:

~

a; = i0B(1-B) (B.2)

bi = ioBi(1— By)?, (B.3)

where B; is obtained by equating ' (B;) = 0 and g is the negative second order

derivative of the log posterior density of B;, evaluated at B;, and is given by

D;\” 821(B;) 2D;\ 0l(B)
B=B — "\ pz) “9A* B=Bi \'B3 ) 9A

The analytical expressions of first and second order derivative of [ with respect to

io = —1"(B;)

A, where [ = log Lr(A) are given below.
1 N R
LR(A) = C|WA|1/2’XIWAX’71/2 exp |:—§<y — XBA)IWA@/ — XBA):| (B5)

The derivatives can be calculated numerically using the numDeriv package (Gilbert,
2008) of R (R Development Core Team, 2008), the expressions can be used as a
check to the results produced by the numDeriv package. We need the following
results from Searle et al. (1992, Appendix M) to calculate the derivatives. If the

elements of a nonsingular matrix P are functions of a scalar ¢, then

orP~! _ _ p-19P p-1
. S—=-P 5P

Olog|P| —19P
2. —5; — = trace (P 8t)

Define, e = y—XBA. Also define u = %i;f = —Y 1 X'Wie, where ¥4 = (X', X)L

Then 2% = 2%, X'Wie — 2M X'W3e, where M = S,4(X'W3X)Z,. Now, we write
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the analytical expressions of the first and second order derivative as

ol 1 1 1
o1 —§trace(WA) + gtrace (BaX'W3EiX) + 56'W§6 + e WuaXu (B.6)
0%l 1 2 1 2y L i3
A2~ Etrace(WA) + §trace (BAX'WEiX)™ — étrace (BaX'W3EX)
0
' Wie — 26 W2Xu — (Xu)WaXu + e’WAXa—Z (B.7)
We have used 2% = —W3, 8;% = 23 to obtain the above expressions.

2.9 Appendix C: BRugs model to implement the new prior in Fay-
Herriot Model

model

{

for (i in 1:m)

{

y[i] ~ dnorm(thetali], taulil)
tauli] <- 1/d4[il

B[i] <- d[i]l/(A + d[il)
thetal[i] <- inprod(X[i,], betall) + v[i]
v[i] ~ dnorm(O, A.inv)

}

A.inv <- 1/A

betal[1l] ~ dflat()

betal[2] ~ dflat()

beta[3] ~ dflat()

betal[4] ~ dflat()

betal[5] ~ dflat()

# to incorporate new prior
dummy <- O

dummy ~ dgeneric(1ll)

11 <- log(A) - (p/2) * log(A + dO)
A 7 dflat(OT(0,)

}
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2.10 Appendix D: A note on WinBUGS convergence criteria

Deviance Information Criterion (DIC; Spiegelhalter et al. 2002) and related statis-
tics are used to assess model complexity and compare different models. It can be
considered as a Bayesian measure of fit or adequacy. DIC returns the following sum-
mary statistics in BRugs (Thomas et al., 2006). BRugs is basically the R interface of
OpenBUGS (Spiegelhalter et al., 2007).

Dbar: The posterior mean of the deviance, which is exactly the same if the node
‘deviance’ had been monitored in the samplesStats function of BRugs. This de-
viance is defined as -2 * log(likelihood): ‘likelihood’ is defined as p(y |theta), where
y comprises of all data (i.e., all stochastic nodes for which values are given), and
theta comprises the stochastic parents of y - ‘stochastic parents’ are the stochastic
nodes upon which the distribution of y depends, when collapsing over all logical
relationships.

Dhat: A point estimate of the deviance (-2 * log(likelihood)), obtained by substitut-
ing in the posterior means theta.bar of theta: thus, Dhat = -2 * log(p(y [theta.bar)).
In other words, Dhat is the deviance at the posterior means of theta.

pD: The effective number of parameters in a model as the difference between the
posterior mean of the deviance and the deviance at the posterior means of the
parameters of interest i.e., pD = Dbar - Dhat. This is a measure of model complexity.

DIC: The Deviance Information Criterion is given by DIC = Dbar + pD = Dhat + 2

* pD.

Dbar (the posterior mean of the deviance) has often been used to compare models in
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the literature, but such measure does not protect against the complexity of a model.
DIC considers an additional complexity term pD. The models with negligible prior
information, DIC will be approximately equivalent to the classical Akaike’s criterion.
The model with the smallest DIC is estimated to be the model that would best
predict a replicate dataset of the same structure as that currently observed.
Caution: It is important to note that DIC assumes the posterior mean to be a
good estimate of the stochastic parameters. If this is not so, say because of extreme
skewness or even bimodality, then DIC may not be appropriate. There are also
circumstances, such as with mixture models, in which OpenBUGS (Spiegelhalter et al.,
2007) will not permit the calculation of DIC.

BGR (Brooks-Gelman-Rubin) convergence statistic

In BRugs (Thomas et al., 2006), samplesBgr function calculates (if plot = FALSE
then returns the value only) and plots the Gelman-Rubin (1992) convergence statis-
tic, as modified by Brooks & Gelman (1998).

The method assumes that m chains have been simulated in parallel, each with dif-
ferent starting points (preferably overdispersed). Having obtained suitable starting
points, the chains are then run for 2n iterations, of which the first n are discarded
to avoid the burn-in period. Given any individual sequence, the inferences about
any parameter of interest are made by computing the sample mean and variance
from the simulated draws. Thus, the m chains yield m possible inferences. Gelman
and Rubin suggested comparing these to the inference made by mixing together the
mn draws from all the sequences. For a particular parameter (node), calculate the

between-sequence variance (B) and the within-sequence variance (W). An estimate
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of these variance ratio (R = B/W) is called potential scale reduction factor (PSRF).
If PSRF is close to 1, we can conclude that each of the m sets of n simulated
observations is close to the target distribution.

Brooks & Gelman (1998) made some minor correction to the PSRF and obtained
R.. R. may ignore some information in the simulations. According to them the
following three conditions should hold:

1. The mixtures-of-sequences variance should stabilize as function of n. Monitor
the green line in the plot.

2. The within-sequence variance should stabilize as function of n. Monitor the blue
line in the plot.

3. R, should approach 1 i.e. the red line should be very close to 1 on the right-hand
side of the plot.

Monitoring R, alone considers only the third of these conditions. Brooks and Gel-

man emphasize that one should also be concerned with individual stability of within

(blue) and pooled (green) variance estimates.
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Chapter 3

The Prior Selection and Approximations for the Nested Error
Regression Model: Estimation of Finite Population Mean for Small
Areas

3.1 Introduction

In a typical sample survey, the goal is to draw inferences about various char-
acteristics of a finite population, such as the mean or the total for a study variable
y. The traditional approach towards this inferential problem is design based (Kish,
1965). The random variables according to this approach, are the sampling indica-
tors (whether a population unit is included in the sample), and their probability
distribution generates the sampling weights. The values of y are considered to be
fixed in the design based approach. The sampling weights along with the observed
values of y are used to obtain an estimate of the finite population quantity and
the associated measure of uncertainty. The alternative view is the model based
approach (Ericson, 1969; Royall, 1971; Valliant et al., 2000), which views the finite
population as a sample from a hypothetical superpopulation, that is characterized
by a model for y. According to this approach, y is random. Model based methods
are useful in the context of small area estimation because this borrows strength from

neighboring areas and other related sources. Small area estimation is well suited to
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settings that involve several areas or strata with a small number of sample obser-
vations available from each individual stratum. Both the design and model based
approaches can be frequentist, where such procedures do not make an explicit use of
priors for the finite population or the superpopulation parameters (Ghosh, 2008). In
a Bayesian paradigm, prior distributions are used for the hyperparameters involved
in the model which describes the superpopulation. The traditional survey sampling
approach may use prior information, in the form of auxiliary variables, but that is
quite different from the Bayesian paradigm.

The mixed models are often used in small area estimation because of their flex-
ibility in combining information from different sources and taking different sources
of errors into account. These models may be classified into two broad classes, area
level and unit level models, based on the availability of data for the variable to be
modeled. A good application of a unit level model can be found in a paper by Bat-
tese et al. (1988). They used a nested error regression model to estimate the mean
area under different crops (corn and soybeans) for twelve counties (small areas) of
north central lowa. To allow for the correlation structures (in which reported crop
hectares for geographically closer segments have stronger correlations than those
farther apart), they included a random county effect in the model. The nested er-
ror regression models in Battese et al. (1988) and Prasad & Rao (1990), are also
termed random intercept models. This can be viewed as a particular type of multi-
level model that allows small area slopes as well as the intercept to be random and
lead to improved small area estimates with the potential to use area level covariates

(Moura & Holt, 1999). The multilevel models proposed by Moura & Holt (1999)
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are also known as random regression coefficient models in the literature (Dempster
et al., 1981).

The objective of this chapter is to examine the hierarchical Bayesian (HB)
approach, under a nested error regression model for estimating finite population
means for small areas. We propose a new prior for the variance component and apply
Laplace methods to approximate the various posterior moments involved in the
hierarchical Bayesian analysis. The chapter is organized as follows. In Section 3.2,
we present a review of classical and Bayesian approaches using unit level models
for small area estimation. In Section 3.3, we describe the HB procedure in detail,
justifying the choice of priors on the variance component. We propose a prior
distribution for the variance component that results in an estimator for the shrinkage
factor and small area means that have good frequentist properties. In this section, we
also give an outline of how to use the Laplace approximation to approximate various
posterior moments. This is followed by a section on simulation study, Section 3.4,
to justify the choice of priors in estimating small area means. In Section 3.5, we
implement our methodology in predicting areas under corn and soybeans for 12
counties in north central Iowa. This problem was originally explored by Battese
et al. (1988) in a classical context and revisited by Datta & Ghosh (1991) from a

Bayesian point of view with a diffuse prior for the variance components.
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3.2 Estimation of Finite Population Means using Unit level Models:

A Review

Ericson (1969) was the first to put forward a subjective Bayesian approach
for estimating finite population means, using a unit level model. Following Ericson
(1969), there is a series of papers that use unit level models in the context of finite
population sampling for small area estimation. Ghosh & Meeden (1986); Ghosh &
Lahiri (1987); Battese et al. (1988); Prasad & Rao (1990); Nandram & Sedransk
(1993); Arora et al. (1997); Datta & Lahiri (2000), among others, examined empir-
ical Bayes and empirical best linear unbiased prediction (EBLUP) approaches to
small area estimation, using unit level models. Ghosh & Lahiri (1989) proposed
a hierarchical Bayes procedure as an alternative to the EBLUP and the empirical
Bayes approaches, in order to obtain a measure of uncertainty of the small area es-
timator in a straightforward way. The model considered by Ghosh & Lahiri (1989)
was a special case of the nested error regression model considered by Battese et al.
(1988). Datta & Ghosh (1991) discussed a unified hierarchical Bayes inference ap-
proach using a general linear mixed model to estimate the finite population means
for small areas. They used inverse gamma distribution as the prior for the variance
components in the general linear mixed model. To implement their hierarchical
Bayes method, in the absence of closed form expressions for the posterior mean
and variance, Datta & Ghosh (1991) relied on numerical integration and MCMC
methods.

In the hierarchical Bayesian approach, it is important to check for the propriety
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of the posterior distributions involved, in case improper priors are used for the
hyperparameters. Smith (2001) presented a very useful sufficient condition for the
propriety of the posterior distribution when Jeffreys’ prior is used for the variance
components in a nested error regression model. They calculated the Jeffreys’ prior
(square root of the determinant of the Fisher information matrix) from the residual
likelihood of the variance component as well as from the full likelihood. In the
later case, they obtained the Jeffrey’s prior for the variance component and the
regression coefficient from the joint likelihood of regression coefficient and variance
component. Although, Datta & Smith (2003) recommended to use the Jeffreys’ prior
based on the residual likelihood to reduce the effects of the nuisance parameter on
the inference of the parameter of interest.

In this chapter, we examine the estimation of the finite populations means

Y; = N, Zjvzl Yij, © = 1,...,m, using the following nested error regression model:
yl-j:xgjﬂ—i—vi—l—eij;jzl,...,Ni,izl,...,m, (31)

where y;; is the value of the study variable for the jth unit belonging to the ith
area, x;; is the unit level p x 1 vector of known covariates, 3 is a p x 1 vector of
unknown regression coefficients, v; is the random small area effect, and e;; is the
error term. We assume v; ~ N (0,02) and e;; < N (0,02). Our objective is to draw
inferences about the finite population mean Y; for the ith small area. Battese et al.
(1988) applied the above model with p = 3. In their application, y;; is the number
of hectares of corn (or soybeans) in the jth segment of the ith county, as obtained

from a survey; z1,; and x9;; are the number of pixels classified as corn and soybeans,

83



respectively, in the jth segment of the ith county, as obtained from satellite data.

Suppose a sample s; of size n; is drawn from the N; units of the ith area
following some specified sampling design; ¢ = 1,...,m and E:’il n; = n. Following
Battese et al. (1988) and Rao (2003, p 78), we assume that the sample values also
follow the model (3.1), that is, we do not address the situation involving informative
sampling. The assumption that the sample values also obey the model (3.1) holds
true for simple random sampling from each area. According to Rao (2003), this
assumption is satisfied more generally for sampling designs that use the auxiliary
information z;; in selecting the sample, including stratified simple random sampling,
probability proportional to size designs. For a proof of this absence of selection bias,
see Rao (2003, p 79). If there is clustering within the small area, we need to consider
more complex models involving more variance components to incorporate the intra-
cluster correlation. This dissertation will not discuss such complex models. Scott
& Smith (1969), Malec & Sedransk (1985), Ghosh (2008), and others presented
Bayesian analysis for multistage cluster sampling.

Battese et al. (1988) expressed the finite population mean in terms of model
parameters and considered the prediction of a mixed effect term (combination of

both fixed and random effect), i.e., they approximated Y; as
Y, = X/ B+, (32)

where X, is the vector of known population means for the auxiliary variables. This
follows from the assumption that the sum of random errors over the population units

is negligible (see Battese et al., 1988). They first find the BLUP of the right side
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of (3.2), assuming the variance components to be known and then plugged in the
classical estimates of 02 and o2. They consider Henderson’s method IIT (Henderson,
1953) to estimate the variance components. Note that in their method, 012) can
be negative, in which case they truncate it zero. Datta & Ghosh (1991), using the
Battese et al. (1988) data set, applied diffuse priors for the variance components with
suitably chosen parameters in the inverse gamma distribution. In other words, they
used the inverse gamma IG(a,b) priors for both ¢ and A = 02 /02, where a is the
shape parameter and b is the scale parameter. But they chose a = 0 and b = 0.005
to reflect lack of prior information. The winBUGS developers (Spiegelhalter et al.,
1997, 2002) also recommended use of inverse gamma, with small parameter values
[1G(0.001,0.001)], prior for variance components. In the context of simple two-level
normal model (as in (3.1) but without covariates), Gelman (2006) noted that for
datasets in which low values of o2 are possible, inferences under inverse gamma prior
are very sensitive to the choice of small values for its parameters. Our simulation
results (Section 3.4) also supports Gelman’s claim.

We can also write the small area mean Y; as

_ 1
Y, = ﬁz Zﬁ%‘j"‘Zﬁ%j

JESs; jé¢s;

1
= E {ni¥is + (Ni — i) Yins }

where f; = n;/N; is the sampling rate, 1 — f; is the finite population correction,
Uis and ¥, are the means of the sampled and nonsampled units, respectively, for
the ith area. From (3.3), we can say that the prediction of Y; is equivalent to the
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prediction of g;,s given the sample. The right hand side of (3.2) can be considered
as a good approximation of the right hand side of (3.3) if f; ~ 0.

In this chapter, we apply a hierarchical Bayesian approach to estimate the
small area means (3.3) for finite populations. However, as an intermediate step, we
need to estimate the parameters involved in the prediction model. We propose a
new prior distribution for the variance component ratio A (a standard uniform prior
will be considered for the regression coefficients and ¢?). This prior is chosen so
that the resulting posterior mode of A is always positive and at the same time the
new prior leads to estimators of the shrinkage factors and small area means having
good frequentist properties. Since the posterior mode of A, using the new prior,
always lies in the interior of the parameter space, we can easily apply the Laplace

approximation to obtain various posterior moments.

3.3 Hierarchical Bayes Estimation of Finite Population Means

A hierarchical Bayesian version of the nested error regression model (3.1) is

given by

e Level 1: y,;;|3,v;,02 nd N(zi;f+v,02); j=1,...,N;, i=1,...,m

o Level 2: v;|o? b N(0,02)

Our aim is to find the Bayes estimator of (3.3) and its measure of uncertainty, which
are given by E(Y;ly) and V(Y;]y) respectively, where y is the vector of sampled
values of y. Whether we are in Bayesian or frequentist paradigm depends on whether
we assume a prior on the hyperparameters (3,02, 02) at the third level. The two
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levels of the Bayesian model given above can be combined into a single linear mixed
model (3.1). That is why the empirical Bayes approach is considered as a frequentist
approach by many researchers (Jiang & Lahiri 2006b, p 4-5; Datta & Ghosh 1991, p
1748), it does not assume any prior distribution for the hyperparameters. Instead,
the hyperparameters are estimated using some classical method. To obtain the
Bayesian summary statistics for Y;, we proceed as follows (assuming that the sample
values follow the same model above, as discussed in Section 3.2):

First we write the likelihood using level 1 and level 2 of the hierarchical model
as:

m 1
(0,) 2exp 5 e 2

<y|ﬁ7 V? 067 UU) X (az)i

n
2

(3.4)
Now, following Ghosh & Lahiri (1989), and Datta & Ghosh (1991), we specify prior
on o2 and X at level 3 as:
o Level 3: m(8,0%\) oc (o) w(N),

where A\ = 02 /a2, This completes our hierarchical Bayesian model. Combining the

likelihood (3.4) and the prior at level 3, we write the joint distribution of y, 3, v =

(U1, 0m), 02, X as
fly,B.v,02,0) o (02) 2N % (o) %
1 Zl (yij — _Ui)z P
1= ]: =1
exp | —5 p + 2o () (3.5)

In (3.5), we consider a flat prior (uniform prior) on o2 i.e., we consider 7(0?)

1, 02 € [0,00]. Typically, enough data will be available to estimate o2 precisely.
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Moreover, the classical ANOVA estimate of o2 is always positive. As a result, we do
not explore the choice of priors on ¢2. Any reasonable noninformative prior usually
works well for o2 (Gelman, 2006).

After collecting terms involving v; from the exponent of (3.5), we can say that

2

zn _ _ O,
vz‘y ﬂ?ae’ A ! N (1 - Bz)(yzs - I;sﬁ>7 TL_<1 - BZ) ) (36)

where B; = 1/(1 + n;A). Integrating out v; from (3.5), using matrix notation, we

write the joint distribution (without the normalizing constant) of y, 3, o2, X as

67

1 m
exp [—@ . {y;yz- + BXXiB = 298 — -
i=1 !

= TH{a+nn 2} (03" 70y
exp |03 {00 B0 - By + 1}

where T = 7%y — (S0, X{S) (S0, XI5 ™ (S0, X{Ss). From the

expression (3.7), it follows that

ﬁ|y7037/\ ~ Np [B)\a 022)\} s (38)

where By = (30, X/5X) ™ (00, Xi%iy), By = (OO0, X/%:X,)™'. The area

specific terms are defined as follows: ¥; = I; — —3—J; = (I, + \J;)7}, I, is the

1+)\n
identity matrix of order n;, J; is a n; x n; matrix with all the elements equal to 1,
X; is the n; X p matrix of covariates, y; is the vector (of length n;) of observations

for the 7th area. The subscript A in both ﬁA,\ and X, indicates the dependence of the
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terms on the ratio of variance component A = ¢2/0? alone. But one should note
that V(8)y, 0%, \) = 625, depends on both A and ¢2. One should also note that 3
and X, are different notations.

Integrating out § from (3.7), we find

Fly, o2 ) H{ 14 ni\) 1/2} ( ) (n/2-p/2) 5 |1/2

;) {—2%2%} ) (3.9)

e

From the equation (3.9), it follows that

p—2 1
aﬂ%Afle(ﬁ—%L—ygTO, (3.10)

where IG(a, b) is the inverse gamma distribution with shape parameter a and scale
parameter b. A random variable Z has an inverse Gamma distribution /G(a,b), if
its pdf is given by f(2) o< 271 exp[—b/z]; z > 0. Using the property of inverse
gamma distribution, we express the conditional posterior mean and variance of o2

given A as

T

—_— 3.11
p—— (3.11)

E(olly, ) =
272

(n—p—4)*(n—p—06)

V(otly, A) = (3.12)

Integrating out o2 from (3.9), we can write the posterior distribution of a single

variance component A as

FOly) oc [T +nan)72} [Sa 21,7272 2 () (3.13)

i=1

To present the results in a unified way, we restate (3.13) using matrix notation as

FOy) o< |22 1X2X |72 (v'Quy) PR (), (3.14)
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where ¥ = @7111 ZZ’, X = COllSingOZlgjgnix;jy Y = COllging()llgjgmyijy T/\ =
Y'Q,Y, Q) =3 — XX(X'SX) ' X'S. This formulation is presented for the ease of

writing codes in simulation and data analysis.

3.3.1 Posterior moments of finite population mean when A known

We derive E(Y;|y) and V(Y;]y) in two steps. First, we find analytical expres-
sions for these quantities when \ is known. Then using the Laplace approximation,
we obtain the final results. Here we consider the definition of ¥; as given in (3.3).
Recall that f; = n;/N; is the sampling rate, and 1 — f; = fpc;(< 1) is the finite
population correction for the i¢th small area. Using the iterative expectation and
variance technique and the results given in (3.6), (3.8), and (3.11), it is not very

difficult to get

E(Yily, )

= gi()), say (3.15)
V(Yily, \)

_ ) foei | (fpei)*(1 = By) ,

T n—p—4| N, + ni + (A — Di)’EN(4; — Dy)

= hi()\), say, (3.16)

where A; = fpc;Xins, Di = fpe;iBiis, Ai — Di = fpei{ Xins — (1 — By)is}. fx and
¥, is defined in (3.8). Note that X, is different from ¥ in (3.14). Now let’s consider

some special cases.
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Common mean model, Unbalanced case

Suppose there are no covariates and hence we have a common mean g, say, at
the second level and the first level mean is v; according to the Bayesian model de-
scribed at the beginning of Section 3.3. If we consider the definition of Y; as given in
equation (3.3), then modifying (3.15) we find E(Yi|y, \) = (1— fpc;Bi)¥is + Bi f pcifi,
where i = Y " Bingis/ > ey n;B;. Now consider the approximate definition of
the finite population mean as given in Battese et al. ie., Y; ~ u + v;, then
E(Yily,\) = (1 — B))ijis + Biji. A simple comparison between the above two ex-
pectations reveals that, when A is known, the Bayes estimate of finite population
mean Y assigns more weight to the direct estimate 7;s than the Bayes estimate of
Y; & u + v; does, since fpc; < 1. This fact was also observed by Ghosh (2008) in

the context of a simple exchangeable model.

Common mean model, Balanced case, and f; ~ 0

Here, besides the common mean assumption, we assume that n; = k Vi,n =
mk and hence B; = B = 1/(1 + k)X). Then the posterior distribution of A is given

by:
<1+k./\) (m—1)/2
A
TAY) > oo+ B ssmyar

where SSW = Y2, % (y; — 9is)? and SSB = kY, (5 — )% i = &3, G are

m(A),

the usual definition of within sum of square and between sum of square used in the
balanced one-way ANOVA. After some modification and simplification of (3.15) and

(3.16), we find E(Y;|y, \) = (1-B)y;s+Bjiand V (Yi|ly, \) = (AB+2 {SSW—i—B .SSB
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3.3.2 Choice of Prior on A\

To obtain the posterior mean and variance of Y; from (3.15) and (3.16), we
need to perform one-dimensional integral with respect to the posterior distribution
of X\. For that we need to assume a prior distribution on A\. The uniform prior on
A is noninformative and yields a posterior distribution of A for which the mode is
identical to the residual maximum likelihood (REML) estimator of A, following the
arguments discussed in Chapter 2. The posterior mode of A with uniform prior or
equivalently, the REML estimator of A can be zero for a particular application. In
many practical applications, the maximum likelihood (ML) or restricted maximum
likelihood (REML) estimates of hyperparameters occur at the boundary point. For
example, in a two-level poisson-gamma model, the ML estimate of the variance
component can occur at infinity (Christiansen & Morris, 1997). For a basic area
level normal-normal model the ML or REML estimate of the variance component
can be zero (Bell 1999, Li & Lahiri 2008, Chapter 2 of this dissertation). In order to
prevent such boundary solutions in the context of discrete data analysis, the Latent
GOLD Choice software uses Dirichlet priors for the latent and response probabilities
(Vermunt & Magidson, 2005). When the hyperparameter estimates occur at the
boundary points, it presents unreasonable implications for the small area estimators
and their measure of uncertainty, e.g., an estimator of Y; would put all the weights
to the synthetic estimator and none to the direct area specific estimator [see (3.15)].
This is not desirable for an area with lots of sample.

Following Li & Lahiri (2008), we match the posterior distribution of A\ given
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in (3.13) to the adjusted profile likelihood function of A\ to obtain an appropriate
prior distribution of A. This prior leads to a posterior distribution of A for which
the mode is always positive and results in estimators of the shrinkage factor and
small area mean that have good frequentist properties. This follows from the theory
on ADM (see Li & Lahiri 2008, and also Chapter 2, for further details). By profile
likelihood, we mean the likelihood of A that does not account for the loss of degrees

of freedom due to the estimation of regression coefficient 3. This is given by

m

Ly(\) o [T {0 +nn)=2} 107272 (3.17)

i=1

Note that, to obtain the profile likelihood (3.17), we consider /3 as the only nuisance

parameter. We plug in the ML estimate of 3 in (3.7) [without the term 7(\)] to

2

e’

obtain the joint profile likelihood of A and ¢?. Then integrating out o2, we derive

the marginal profile likelihood of A. For more on profile likelihood, see Cox & Reid

(1992, 1993). This leads to the prior
1/2
T."% A > 0. (3.18)

m

Z(Xz‘lziXi)

i=1

T(A) o A

To simplify the prior for some special cases, we proceed as follows:

A

¥, = i ————J;
= (I, = J;) + J, A
- 7 7 7 1+)\nz 147

1 A

* (nl 1+/\ni) !

1 _

= Cit——,

where J; = niiJi, C; = I, — J;. See Searle et al., 1992, Appendix M, for properties
of I and J matrices. Thus, we can write X/%;X; = X/C; X; + —— X/ J; X;. For the

14+An;
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common mean model, balanced case (ie. p =1, n; = k Vi), X/C;X; = 0,

and Ty = SSW + 258  where SSW and SSB is defined

T+kX?

X! T X;

1+)\n - 1+)\k’
in page 91. Hence, leaving the proportionality constant aside we can say m(\)

A
\/SSB+SSW (14+k)

XX, = o and Ty = (SSW+SSB)~ /2 where SSW and SSB is defined

For the common mean model, unbalanced case: X/C;X; =0,

1+An

in page 96. Hence, in this case the prior is given by m(A) oc A />0 15— (SSW +

SSB)-1/2,

3.3.3 Propriety of Posterior

The prior (o2, X) oc w(\) with w()\) given in equation (3.18), leads to a proper

joint posterior distribution f(c?, A|y), if

(i) n > m + Rank(H), where H = Rz X, Ry, = I, — Z1(Z1Z,)"'Z}, and Z; =
D", (coli<j<n;1), a block diagonal matrix of 1;. Also recall that m is the

number of small areas, n = " n;, total sample size.
(i) m >4
(iii) n > p+ 2, where p is the number of covariates in the model.

For an outline of the proof see the Appendix of this chapter.

3.3.4 Laplace Approximation

The posterior moments of Y;, using the prior in (3.18), are not in a closed-form,

but can be obtained either by numerical integration or by the Monte Carlo Markov
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Chain (MCMC) method. The slow computation speed of the MCMC method (be-
sides examining the convergence) does not permit its evaluation by repeated use in
simulation. Thus, for convenient implementation and evaluation of our hierarchical
Bayes method, we approximate the posterior moments of ¥; using Laplace’s method.
Laplace approximation method has been applied by many authors in the context
of Bayesian analysis (Tierney & Kadane 1986; Tierney et al. 1989; Kass & Steffey
1989; Butar & Lahiri 2002; Datta et al. 2005). To obtain the asymptotic variance-
covariance matrix of the parameters of the model, the Latent GOLD Choice software
(Vermunt & Magidson, 2005) uses the negative inverse of the Hessian matrix, where
the Hessian matrix is obtained by computing the second order derivative of the log-
posterior density instead of the log-likelihood of the parameters without any prior
assumption on the model parameters. This approach can be viewed as a first order
Laplace approximation to the posterior variance of the model parameters.

The first order Laplace approximation of the posterior moments of Y; is given

EYily) = () +0(1/m) (3.19)

V) = w0+ {g0} T+ 0 /m) (3.20)

where \ is the posterior mode obtained by maximizing the posterior distribution of
A with 7w(A) given by (3.18). Our prior always leads to a positive estimate of the
mode. g;(A) and h;(A) are defined in (3.15) and (3.16) respectively. gi(\) is the first
order derivative of g;(\) with respect to A\. The \ inside the parenthesis indicates

the the function is evaluated at A. The quantity 7¢ is the negative second derivative
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of log-posterior of \ evaluated at . o should be bounded away from zero. It should
be noted that that both the approximations have relative error of order (1/m). For
details on Laplace approximation, see Tierney et al. (1989); Kass & Steffey (1989).
Below we derive the analytical expressions of the posterior moments of Y; using
equation (3.19) and (3.20) under some special cases.

Common mean model, Balanced case, and f; ~ 0

E(Yily) = (1 — B)gis + Bji + O(1/m)

_ <~ B\ |[Ssw+B.5SB
vmww:@3+—){ =

= }+@w—m%dmw+ouMﬂ,
~ A 2 N N
where V(Bly) = {@} 1/iy, B is B evaluated at A.

Common mean model, Unbalanced case, and f; ~ 0
E(Yily) = (1 = B)jiis + Bifs + O(1/m),

where /i is /i evaluated at B;, B; is B; evaluated at A, fo=>3"" Bingis/ > e, ni B

Unlike the balanced case, here i is a function of A.

N

1-B | B? SSW + SSB

V(Yiy) = ( } + (@z‘s = ﬁ)Q V(Bily)+0(1/m?),

n—=>a
where SSW = Y. 3" (yij — Uis)? and SSB = Y. n;B;i(¥is — f1)*>. Unlike the

7=1
balanced case, SSB is a function of A in this situation. SSB is SSB evaluated at
I >3 _R. 2 .
A V(Bily) = { B0 1k,
To obtain the second order Laplace approximation to the posterior mean and
variance of Y;, we apply the fully exponential form suggested by Tierney & Kadane

(1986). This has the advantage of requiring only the first two derivatives of the
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corresponding posterior distribution to achieve a second order approximation, unlike
the standard form which needs fourth and fifth derivatives of the log-likelihood (Kass
et al., 1988, p 265). The second order approximation to the posterior mean is given
by

_ io

B(Tiy) = Zexp m{r (-1}, (3.21)

where L = log f(Aly), L* = L {logf(Aly) + logg;(A)}, and A* is the maximizer of

L*. i is the negative second derivative of L* evaluated at A*. The second order

approximation of posterior variance is given by
V(Yily) =T + T, (3.22)

where Ty = right hand side (RHS) of (3.21) with L* as - {logf(A|y) + logh;(\)}.
T, = right hand side of (3.21) with L* as = {logf(Aly) + logg?(A\)} — { RHS of (3.21)}°.
To apply the fully exponential form, we need g;(A) and h;(\) to be positive functions

of . Both of the above second order approximations are of relative order O(1/m?).

3.4 Simulation Study

This section compares the performance of the approximate hierarchical Bayesian
(HB) approach using our new prior on A with several other existing choices. The
HB approach is approximate as it is implemented through Laplace approximation.
Moreover, we consider one classical approach in estimating small area means that
uses the REML method to estimate the variance component A\. Here we study the
frequentist properties of the resulting Bayes procedure by a Monte Carlo simula-
tion study under the assumption of a balanced set-up, common mean (u) model
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with f; = 0. The frequentist properties of the estimators are derived from the
distribution of the estimates obtained from repeated simulations of observations fol-
lowing the statistical model assuming the hyperparameters to be known. For our
simulation experiment, we set m = 10,y = 1,k = 6, i.e., n = 60. We explore
several choices of \, by varying the values of o2 and o2. We generate N = 5,000
replicates {(yij,0i = p+wv;),7=1,...,k; i =1,...,m} using the simplified nested
error regression model to study various frequentist properties of our approximate

hierarchical Bayesian methods.

Table 3.1: Percentage of trials that posterior mode of A =0

A=02%/c2 | REML NEW WIN DG JEFF
1/5=02| 1142 0 0 0 1946
1/2=05| 1.92 0 0 0 3.8
1/1=1 | 0.38 0 0 0 070
5/5=1 | 0.14 0 0 0 040
2/1=2 | 0.04 0 0 0 006

Among the methods considered to estimate A in the simulation, the REML
estimate turns out to be zero in some cases, which is highly undesirable. This
phenomenon results in a full shrinkage for the estimator of small area mean. Also
the posterior mode of )\, obtained using the Jeffrey’s prior (JEFF) on A and o2,
is zero in some simulation runs. We consider the Jeffrey’s prior as suggested by
Datta & Smith (2003): 7(\,02) o< {o?(1 + kX\)}~!. But the percentage of time a

zero mode is obtained decreases with the increase of true value of A\. The posterior

- A
\/SSB+SSW (14+Xk)

(with uniform prior on ¢2), WinBUGS default priors (WIN): IG(0.001,0.001) on

mode of A resulting from the other three priors, viz. NEW: 7(\)
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both o2 and A, Datta & Ghosh (1991) prior (DG): IG(0,0.005) on both o2 and A,
never yields zero estimates of the variance component. The REML estimate can
also be viewed as the posterior mode of A when a uniform prior is used for both o2
and \. Note that, this particular choice of priors lead to a proper posterior when
Rank (Z1C,Z,) > 2 and n > 5; Z; = @, (coli<j<x1), a block diagonal matrix of
1 and C,, = I,, — J,. This typically holds true in practical applications (but does
not hold for m = 3, Rao 2003). The above results follow from the necessary and
sufficient conditions given by Hobert & Casella (1996) for the propriety of the joint
posterior for a general class of priors of which the uniform is a particular case.

To compare the performance of different priors for the variance components,
in estimating the shrinkage factor and the small area mean, we present the results
in the form of average in the tables below. Averaging across 10 small areas makes
sense since the same model holds for all 10 areas in the simulations. The new prior
performs very well in estimating the shrinkage factor B (see Table 3.2), both in terms
of bias and MSE (compared to all the other estimators), irrespective of the value of
A. This supports Morris and Li-Lahiri since the Laplace first order approximation to
the posterior mean of B is essentially the plugged-in estimator of B, in an empirical
Bayes set-up. The performance of the new prior is even better than the REML
method although REML does a better job in estimating A (Table not shown here).
This is not counter intuitive as it follows from Jenson’s inequality, B being a convex
function of A. Even an unbiased estimator of A would yield positive bias, if we plug
in the estimate of A to estimate B. In estimating B, Jeffrey’s prior (JEFF) does
much better than that of the inverse gamma priors (WIN and DG) on A and 2.
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Table 3.2: Bias (and MSE) in percent of different estimators of the shrinkage factor
B for different choices of A

A=02/02| REML NEW WIN DG JEFF

1/5=0.2 | 10.16(7.24) -7.79(2.47) 38.02(21.54) 35.25(19.07) 19.18(9.99)
1/2 =05 | 7.96(4.28) -0.71(1.30) 27.60(18.23) 25.95(16.28) 14.68(6.77)
1/1=1 | 4.78(1.76)  0.69(0.69) 13.50(7.08) 12.97(6.41)  8.93(2.91)
5/5=1 | 435(1.53) 0.40(0.62) 12.79(6.56) 12.28(5.91)  8.46(2.66)
2/1 =2 | 2.64(0.55) 0.76(0.27)  6.07(1.87)  5.94(1.70)  4.94(0.96)

Table 3.3: MSE of different estimators of the small area mean for different choices
of A

A=0c%/0? | REML NEW WIN DG JEFF

1/5=0.2 | 57.12 5480 78.04 74.36 59.66
1/2 =05 | 2844 27.27 38.56 37.03 29.87
1/1=1 15.45 15.11 17.75 17.46 1597
5/5 =1 75.09  73.60 85.87 84.52 T7.62
2/1=2 1597 15.82 16.72 16.64 16.27

As expected the priors WIN (/G(0.001,0.001)) and DG (IG(0,0.001)) perform
in the same way in estimating A, B, and small area mean 6#;. For small values of
A, the performance of these two priors is very poor in estimating B and 6;. The
MSE of 6; is higher for these priors relative to the new prior, see Table 3.3. Gelman
(2006) also argued that for datasets in which low values of A are possible, inferences
under inverse-gamma prior are very sensitive to the choice of small values for its
parameters.

The new prior performs reasonably well in estimating 6;, irrespective of the
choice of \. The MSE of the estimator NEW of 6; is close to REML and JEFF but

always less, and much less than that of WIN and DG estimator (see Table 3.3). The
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Table 3.4: Coverage properties of different estimators of the small area mean for
different choices of \

Coverage probability of 95% CI Average length of CI

A=oc2/c? | REML NEW WIN DG REML NEW WIN DG
1/5=021| 0.86 0.95 0.62 0.67 2.50 3.03 1.80 1.90
1/1=1 0.94 095 091 0.91 1.50 1.54 149 1.50
5/b =1 0.94 0.95 0.91 0.91 3.36 344 334 3.36
2/1=2 0.95 0.95 0.95 0.95 1.57 1.58 1.60 1.61

differences tend to be smaller as A increases. It is mentionable that the simulation
results are invariant of 2, it depends only on A. Any change in the values of o2
reflects the scale of the data. For example, when A = 1 and ¢ = 5, the MSE of 6,
for all the five methods is very close to five times the MSE of §; when A = 1 and
o2 = 1, the differences can probably be explained by the Monte Carlo simulation
error.

We also examined the coverage properties (Table 3.4) of the 95% confidence
interval for 6;, comparing the four methods: REML, NEW, WIN, DG. For REML,
we consider the usual EB=+1.96v/MSE type interval. For the hierarchical Bayesian
approaches, we first obtain the posterior variance of #; using the Laplace first order
approximation and then assume normality to obtain the intervals. For the Jeffrey’s
prior, it was not possible to obtain positive posterior variance in all simulation runs.
In many cases, the posterior mode of A under the Jeffrey’s prior turned out to be
negative, in which case we truncate it to zero. For those cases, the negative Hessian
at zero is not positive, as zero is not the posterior mode. A positive value of the

negative Hessian is required to guarantee a positive posterior variance of 6;, see the
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equation (3.20). That is why we decided to drop the Jeffrey’s prior while obtaining
the confidence intervals for small area means. This in turn establishes the superiority
of our prior which always produces positive posterior mode, and hence makes the
implementation of Laplace approximation straightforward in a Bayesian context.
The 95% confidence interval for #; resulting from the new prior, in all cases,
has a true coverage rate more than or equal to 0.95. This result shows that the
Laplace approximation accurately approximates the posterior variance of #; taking
into account all sources of uncertainties. On the contrary, the Laplace approximation
does not work well for the other two priors (WIN and DG). The coverage rates for
these two priors are very poor for small values of A, but seems to improve as A
increases. When A = 0.2, the true coverage probability corresponding to the REML
method is less (0.86) than the nominal value (0.95). This is most likely due to
the higher percentage of zero estimate of the posterior mode of A, leading to the

underestimation of the MSE.

3.5 Data Analysis

In this section, we carry out an empirical application. Battese et al. (1988)
used a nested error linear regression model to predict area under corn and soybeans
for 12 counties in north central lowa using data from the 1978 June Enumerative
Survey as well as LANDSAT satellite data. Each county was divided into area
segments, and data were collected on a sample of segments by interviewing farm

operators. The number of sample segments, n;, in a county ranged from 1 to 5, with
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a total sample size of 36, while the population count of segments N; in the counties
ranged from 394 to 687. This dataset, thus, provides an opportunity to apply
small area estimation techniques in an unbalanced set-up. Because of the negligible
sampling fractions, Battese et al. estimated the small area means Y; ~ X/3 +v;, we
also follow that assumption in this data analysis. Unit level auxiliary data, in the
form of the number of pixels classified as corn and soybeans, are available for all the
segments in the population from the LANDSAT satellite readings. So, this dataset
allows us to use three unit level covariates, as opposed to applying a simple common
mean model. The dataset can be found in Table 1 of Battese et al. (1988). One
sample segment in Hardin county was deleted from the prediction procedure because
the corn area for that segment looked erroneous to Battese et al. in a preliminary
analysis. They used model checking criteria to validate the assumed nested error
regression model (3.1) with p = 3.

We use their model in a hierarchical Bayesian approach to estimate area under
corn for each of 12 counties, whereas they used a frequentist approach (EBLUP)
to analyze the data. They obtained classical ANOVA estimates of the variance
components (62 = 140,62 = 150) for the corn data. According to our notation,
this yields a classical estimate for A = 0.93. When the value of A is less than 1,
our simulation study suggests that there can be substantial improvements in the
estimation of small area means under the hierarchical Bayesian model using our
new prior. In this section, we compare the exact posterior moments obtained after
performing an one-dimensional numerical integration using our new prior to the

approximate HB approach using Laplace approximation. Recall that, to obtain
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the posterior moments of Y; from g;(A) and h;()\), we need to perform an one-
dimensional integration. Datta & Ghosh (1991) and Rao (2003) also considered
the HB approaches to analyze this dataset, but they used different priors for the
variance components (the inverse-gamma prior, with a choice of small parameter

values).
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Figure 3.1: Plot of the posterior density of A using Battese et al. (1988) data:
a comparison between uniform prior and proposed prior for A under nested error
regression model

In Figure 3.1, we draw two different posterior densities of A using two different
priors on A: uniform prior and w(\) as defined in (3.18). From the plot we can see
that use of the new prior pushes the posterior mode (1.29) to the right, compared
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to that of uniform prior (0.725).

Table 3.5: Different point estimates of mean hectares of corn

County | n; Naive BHF EXACT Lol L:02
1 1 1222 1222 121.2 121.7 121.2
2 1 126.2 126.5 1274  126.8 1274
3 1 106.8 105.5 102.8 104.9 102.8
4 2 1085 1076 1059  107.1 105.9
) 3 1441 1453 145.8 145.1 145.9
6 3 1121 1129 113.6 112.9 113.6
7 3 112.8 112.1 111.4 112.0 1114
8 3 1220 1221 121.8 121.9 121.8
9 4 1153 116.1 116.5 116.0 116.5
10 5 1244 1242 124.5 124.5 124.5
11 5 106.9 106.1 1055 106.1 105.6
12 5 143.0 143.5 144.4 143.8 144.4

In Table 3.5, we present several point estimates of the mean hectares under
corn for the 12 counties. The Naive and BHF estimators are taken from Battese

et al. (1988) paper. Both these estimators are variants of EBLUP, having the form

~

Y; X!3 + (§is — ,,3)§;, where [ is an estimate of 3 as defined in (3.8) with

plugged-in estimates of variance component, obtained by some classical method.

2

Setting ¢; = m produces the Naive estimator. An alternative estimator of
g; (defined in their appendix) leads to the BHF estimator. These two estimators
are derived from a frequentist point of view. The last three estimators are derived
under the Bayesian paradigm using our new prior. The EXACT estimator is the
posterior mean of Y; obtained using numerical integration technique. L:ol and L:02

are respectively the Laplace first and second order approximation to the posterior

mean of Y; as discussed in Section 3.3.4. The second column of the table presents
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the sample size in each county. It is quite evident that the point estimates of the
small area means are more or less similar.

Table 3.6 displays the measure of uncertainty associated with the estimates in
Table 3.5. The Naive MSE estimator does not take into account the uncertainty in
estimating the variance components, but the frequentist MSE of the BHF estimator
incorporates all sources of uncertainty in estimating the small area mean (see Bat-
tese et al., 1988, appendix), as do all three Bayesian measures. The MSE estimates
corresponding to the Naive estimator are consistently smaller than all other estima-
tors across the counties. In general, the measures of uncertainties associated with
the estimators of Table 3.5 decrease with increasing sample sizes. Comparing the
last two columns of Table 3.6, with the EXACT column, we can emphatically say
that the Laplace approximation to the posterior variance of Y; is performing very

well. For a formal evaluation of Laplace method, see Figure 3.2.

Table 3.6: Measure of uncertainty of the estimators of mean hectares of corn

County | n; Naive BHF EXACT L:ol L:02

9.1 10.3 10.5 10.1  10.5
9.0 10.2 10.2 9.9 10.3
8.8 10.0 10.5 10.5 10.5
7.6 8.5 8.5 8.6 85
6.2 6.8 6.7 6.8 6.6
6.2 6.8 6.6 6.8 6.6
6.2 6.8 6.6 6.8 6.6
6.3 6.9 6.6 6.7 6.6
9.9 6.0 5.8 59 5.8
5.1 5.5 5.2 54 53
5.0 5.4 5.3 9.5 5.3
5.4 5.8 5.7 5.8 .7
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Prediction of county corn areas
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Figure 3.2: Evaluation of Laplace approximation using new prior for A: percent
difference from EXACT (numerical integration) as a summary measure

To measure the precision of Laplace method, we compute the percentage dif-
ference as the summary statistics. Mathematically, this can be defined as {(exact-
approximate) /exact} x100. We treat the numerical integration results as the exact
posterior moments. Figure 3.2 shows that both the first and second order approx-
imation values of the mean are quite close to the exact value, although the second
order values are more accurate as the percentage differences lie on the zero line for
almost all counties. As far as the measure of uncertainty is concerned, the first order

Laplace approximation overestimates the variance (the percentage difference being
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negative), excepts for the first three counties. The second order Laplace approxi-
mation performs very well in estimating the true posterior variance, the percentage

differences are close to the zero line for all counties.

3.6 Concluding Remarks

In this chapter we applied unit level linear mixed model to estimate the finite
population means for small areas. As an inferential procedure we used Bayesian
approach that needs specification of prior for the hyperparameters. Following some
objective criteria, we obtain a prior distribution for the ratio (\) of variance compo-
nents, along with a standard flat prior on the regression coefficient. To approximate
the posterior moments of small area means, we apply Laplace method. Our choice
of prior avoids the extreme skewness, usually present in the posterior distribution of
variance components. This property leads to more accurate Laplace approximation.
Our simulation study shows that the resulting approximate Bayes estimators (with
new prior) of small area means have good frequentist properties such as MSE and

coverage rate.

3.7 Appendix

The propriety condition given in Section 3.3.3 follows from Smith (2001), and
Datta & Smith (2003). An outline of the proof is given below. For details see the

above mentioned papers. The joint posterior distribution of o and A, obtained by
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using the prior (3.18) in (3.9), and matrix notation, is given by

202

e

—(n/2— T _
f(ag,)\|y) o< A |E|1/2 (03) (n/2=p/2) exp {——’\} T, p/2 (A.1)

Step 1: An upper bound for |3|'/2

1+An; > 1+ A" > 1+ A n" =min{n;}

N 1 - 1
i 1 o1
< -
:il_Ill—f—/\ni_l]‘_Jl:l—f-)\
= BV < (14?2 (A.2)

Step 2: Find limy_ .. T
It is possible to show that T) is a nonincreasing function of A (For a proof see Smith

2001). Thus, Ty > limy_, T)\. Now,

lim T\ = s = Y'[Ry, — H(H'H) ' H']Y, (A.3)

A—00
where Ry, = I,, — Z1(Z1Z,)"'Z], H = Rz, X. Using (A.2) and (A.3) in (A.1), we

can write

f(02\y) < AL+ X) T (02)7 " exp [—2—] SR (A
06

e

We need to show that the right hand side of (A.4) is integrable. If n > m+ Rank(H ),
then s > 0. For s away from 0, s #/2 is bounded for any p. Now, given s > 0, we

need to find conditions which satisfy

00 A oo eXP [_F}
—————=dA\ — L " do? < A5

The first integral is integrable if m/2 > 2 = m > 4. The second one is integrable if

n—p—2

>0=n>p+2.
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Chapter 4
Hierarchical Bayes Estimation of Binary Data for Small Areas

4.1 Introduction

Surveys are usually designed to produce reliable estimates of various charac-
teristics of interest for large geographic areas. For example, the National Health
Interview Survey (NHIS) is designed to produce precise estimates of finite popula-
tion parameters related to health issues (e.g., the probability of at least one visit to
a doctor within the past 12 months) for the entire United States but not for small
geographical areas. However, for effective planning of health, social and other ser-
vices and for apportioning government funds, there is a growing demand to produce
similar estimates for small geographic areas and subpopulations. Usually, reliable
direct estimates cannot be obtained for small areas using national survey data due
to the small sample sizes in small areas. In the absence of adequate direct infor-
mation for small areas, it is customary to borrow strength from related sources to
form indirect estimators that increase the effective sample size and hence reduce
the sampling errors of the estimators. Such indirect estimators are usually based
on implicit or explicit models which combine information from the sample survey,
various administrative/census records and previous surveys. For various small area
estimation methods along with its application in different fields, we refer readers

to Ghosh & Rao (1994); Rao (2003), and the long review paper by Jiang & Lahiri
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(2006b).

Most survey data are binary or categorical in nature, hence the problem of esti-
mating rates and proportions has received considerable attention in the recent past.
Dempster & Tomberlin (1980) proposed an empirical Bayes method for estimating
census undercount for local areas using mixed logistic regression models. Stasny
(1991) considered an empirical Bayes analysis for the proportion of individuals hav-
ing a particular characteristic and the probabilities of response (response rates)
within subgroups of the population with application to the National Crime Survey
(NCS). Stroud (1991) developed a general hierarchical Bayes methodology for uni-
variate natural exponential families with quadratic variance functions (NEFQVF),
which includes binomial distribution for binary data. Stroud (1994) provided a com-
prehensive treatment of binary survey data, encompassing simple random, stratified,
cluster and two-stage sampling, as well as two-stage sampling within strata. He &
Sun (1998) developed hierarchical Bayesian estimators for hunting success rates per
trip for the counties of Missouri. They extended their methodology to include spa-
tial correlations among neighboring subareas (He & Sun, 2000). Malec et al. (1997)
provided estimates of population proportion for small geographical areas using the
National Health Interview Survey (NHIS) data. To include all sources of variation
in the model, they carried out a hierarchical Bayesian analysis. Farrell et al. (1997)
developed an empirical Bayes methods based on a second order Taylor series ex-
pansion to obtain model based predictions that requires only local-area summary
statistics for both continuous and categorical auxiliary variables. Jiang & Lahiri
(2001) provided a frequentist’s alternative to the hierarchical Bayes methods for
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small area estimation with binary data. Specifically, they obtained the best predic-
tor (BP) and empirical best predictor (EBP) of the small area specific random effect
using a mixed logistic model and studied different asymptotic properties of the pro-
posed BP and EBP. For a comprehensive review of empirical Bayes and hierarchical
Bayes methods in analyzing binary data for small areas, readers are referred to Rao
(2003).

In this chapter, we develop a new hierarchical Bayesian methodology to ana-
lyze binary data for small areas. We implement the Bayesian procedure using the
Laplace approximation. In order for the Laplace approximation work well, we need
the posterior mode of the hyperparameters to fall inside the range of the parameter
space. We choose a prior for one of the hyperparameters very carefully so that it
avoids the extreme skewness, if any, present in the posterior distribution of the hy-
perparameters. The prior is chosen following the guidelines given by Morris (2006);

Li & Lahiri (2008).

4.2 Model and Methodology

Let y;; be the value of the jth unit belonging to the ith area. y;; can take
on the value 1 or 0 depending on whether the individual possesses the relevant
characteristic or not. The particular characteristic may be visiting a physician at
least once during the past 12 months, hunting a turkey successfully in one trip
to hunting, whether an individual selected in the sample for a particular survey

responds or not, whether an individual belongs to a particular age X race X sex group
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or not, whether an individuals’ household income is below the poverty threshold or
not, etc. Also let 0; be the true proportion of having a particular characteristic in
the population (small area). We use the following hierarchical model to analyze the
data {yi;, 7=1,...,n;, i =1,...,m}.

Notation: Throughout this paper we use square brackets to express any distribution
in terms of its mean and variance, whereas round parentheses denotes standard

parameter representation.
e Level 1: yz]|‘91 iﬁ-'d Bernoulli[@i, 91(1 - 01)]
o Level 2: 6i]y, 8 ™ Betalp;, ypui(1 — )],

where logit(u;) = )3, x; is the vector of area-level covariates and 3, —oo < < oo
is a px 1 vector of unknown regression coefficients. In the context of a sample survey,
suppose we want to obtain the response probability for a particular age x race x sex
group; then the particular age, race and sex can be considered as area-level covariates
in the analysis. 0 < v < 1 is the term needed to capture the skewness and kurtosis
of the Beta distribution. Our aim is to find a precise estimate of the true proportion
for the small areas with a reliable measure of uncertainty which takes into account
all sources of error using a hierarchical Bayesian approach. In other words, we aim
to find the posterior mean and variance of 8;, ¢+ = 1,...,m. In a subjective Bayesian
analysis, the hyperparameters § and ~ are considered to be known. In the absence
of subjective input of the user, it is a common practice to use some noninformative
prior. Researchers often prefer noninformative priors for the hyperparameters to
let the data to dominate the posterior distribution and this choice also makes the
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Bayesian analysis comparable to the frequentist analysis (Albert, 1988).

The above hierarchical model closely follows the model proposed by Stasny
(1991); Stroud (1994); He & Sun (1998), with respect to the first two levels (we
come to the third level of prior for the hyperparameters later). He & Sun (1998)
used this model to estimate the hunting success rates at the county level using
data from Missouri Turkey Hunting Survey (MTHS) 1994 spring season. Their
hierarchical Bayes model has the advantage of borrowing strength from all counties
to estimate the success rates for individual counties. But their model, along with
the model considered by Stasny and Stroud, does not include covariates which might
have had an influence on hunting success rate. For their application, the success
rate may depend on some set of covariates, such as regional productivity, hunting
regulations, forest cover, distance from a large metropolitan area, and population

size (He & Sun, 1998). Our model permits including covariates in the analysis.

4.2.1 Hyperparameters Known

We reduce the data y; = (Y1, ..., ¥m,) for the ith area to the sample total
Yi = ijl Yi;; ¢ = 1,...,m, noting that y; is minimal sufficient statistic for the
level 1 model. In terms of the usual shape and scale parameter representation of
the Beta density, we can restate the level 2 model, together with level 1 model as

follows:
e Level 1: y;]0; n Binomial(n;, ;)
o Level 2: 6;|v, s Beta(a;, b;); a; > 0,b; > 0,
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where a; = ,uil_T” and b, = (1 — /Ll)1%“Z Based on the present hierarchical model,

the joint distribution of data y = (y1,...,¥Ym), 0 = (01,...,0.,), 5, 7 is given by

f(y,0,8,7) = H{f(yiwi).f(em,ﬁ)}

o [LHor -y ot a - )"

= JJor+e " —oy)mvte (4.1)

i=1

From the joint density (4.1), we can say that the true proportion 6;, given 3,7, and

the data follows Beta distribution independently, ¢ = 1,...,m or equivalently,
0il8,7.y (7 Beta(y; + a;, ni — yi + b;) (4.2)

When the hyperparameters are known, the conditional posterior mean and variance

of 6; are given by

E(0ily, 3,7) = gi(8,7) = Bipi + (1 — B;)y; (4.3)

and

T

V(Oily, B, 7) = hi(B,7) =y

gi(B,7) {1 = g:(8,7)}, (4.4)

where y; = n% >_; Yij is the sample proportion (the direct estimate of ¢;), and B; =

1
14n;7

is the shrinkage factor. The parameter 7, 0 < 7 < oo is a transformation of

the parameter ~, defined as 7 = % The shrinkage parameter B; depends only
on the shape parameter 7, unlike the situation in Christiansen & Morris (1997) in
the context of a poisson-gamma model, where B; depended on both the location

parameter and the squared coefficient of variation.
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The conditional posterior mean (in other words, the best predictor) of 6;, i =
1,...,m , which is linear in the data, can be viewed as a weighted average of the
prior mean u; and the sample mean y;, the weight being the shrinkage factor. Note
that, B; is a decreasing function of the sample size n; for the ith area. Hence, for
fixed 7, the best predictor of #; gives more weight to the direct estimate for areas
with large n; compare to the areas having small sample size. This makes (4.3) an
intuitively appealing estimator of 6;. For small values of 7, i.e. when 7 — 0, we
have full shrinkage towards the second level mean or, equivalently the best predictor
puts no weight to the direct estimate which is highly undesirable for areas having
relatively large sample size.

Researchers (Malec et al., 1997; Jiang & Lahiri, 2001; Farrell et al., 1997; He &
Sun, 2000) often use a logit model in level 2 with a random effect term in the linear
predictor along with the fixed effect term z3. But our beta prior permits a simple
expression of the conditional posterior mean of 6;, unlike considering logit model at
the second level, and in the form of a shrinkage estimator, heavily preferred in the
small area literature. This holds because the beta distribution is conjugate to the
binomial likelihood. Also the Bayes estimator obtained in this way has the minimax
property under squared error loss (for details, see Morris 1983a). In the context
of count data analysis, conjugate hierarchical Poisson-Gamma models have been
considered by Natarajan et al. (1998), Christiansen & Morris (1997), among many
others. Unlike Natarajan et al. (1998), the modeling assumptions of Christiansen &
Morris broadened the range of applications by permitting a regression specification
at level 2. Our paper extends the idea of Christiansen & Morris (1997) in the context
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of analyzing binary data.

4.2.2 Hyperparameters are not Known

In practice, the hyperparameters are not known. In an empirical Bayesian
approach, the hyperparameters # and v or equivalently § and 7 are estimated from
the marginal distribution of data and then plugged in to (4.3) and (4.4) to obtain
an estimator of #; along with a measure of uncertainty. This naive approach ignores

the uncertainty in estimating the hyperparameters. Integrating (4.1), with respect

to 6;, i =1,...,m, we can say that y;|3, T 2! Beta-binomial with probability mass
function
Iy + ai)l'(ni — v + b)) T'(a; + by
F i), ) o il JDlatb) o (43)

['(a; + b; + n;) C(a;)T(b;)
The use of Beta-binomial distribution in estimating proportions can be found in
literature (see Kleinman, 1973). In practical experience, it is possible to find greater
variation in binomial proportion data than would be expected under the binomial
distribution. In such situations the Beta-binomial distribution is used. The mean

and variance of beta-binomial distribution is given by

E(yil8,7) = nipi

ni(ng — 1) pe(1 — ps)
1+1

V(| B, 1) = nipi(1 — p;) +
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When 7 — 0, the beta-binomial distribution (4.5) is approximately the binomial

distribution. From (4.5), we can write the log likelihood of § and 7 as

m  [yi—1 ni—y;—1 n;—1
1(B,T) x Z Z log(p; + h7) + Z log(1 — p; + h7) — Z log(1 + A7)
i=1 Lh=0 h=0 h=0

(4.6)
To obtain (4.6) from (4.5), we use the property of the gamma function: I'(z) =
(x — 1)['(x — 1) and cancel terms common in both the numerator and denominator
of (4.5); then express a; and b; in terms of y; and 7 (Recall that u; is a function
of B). If y; = 0, the first term of (4.6) is taken to be zero. If y; = n;, the 2nd
term is taken to be zero. Several authors (Kleinman 1973, Tamura & Young 1986,
Tamura & Young 1987, among others) have tried to estimate the parameters of a
Beta-binomial distribution using maximum-likelihood (ML) method, the method-
of-moments, or some other modified methods. The ML estimates of a Beta-binomial
distribution cannot be obtained as a closed form solution.

Tamura & Young (1986), in the context of tumor incidences of animals, showed
that the maximum likelihood estimator of n (= 1/7, in our notation) was biased
to the right for low tumor probabilities for the small number and size of histori-
cal control groups usually available in chronic rodent bioassays. Tamura & Young
(1987) reached the same conclusion with the help of alveolar-bronchiolar adenomas
in mice data analysis. Following their argument, we can say that the maximum
likelihood estimate of 7 can be biased towards zero for selected applications. When
that happens, the empirical Bayes strategy tends to put more weight to the re-

gression synthetic part as compared to the direct part, irrespective of the sample
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size for small areas. This phenomenon is not at all desirable. In many practical
applications, maximum likelihood (ML) or restricted maximum likelihood (REML)
estimates of hyperparameters occur at the boundary point. For example, in two-level
Poisson-gamma model the ML estimate of the variance component can be infinity
(Christiansen & Morris, 1997), for a basic area level Normal-normal model the ML
or REML estimate of variance component can be zero (Bell 1999, Li & Lahiri 2008,
Chapter 2 of this dissertation). For this reason we don’t recommend empirical Bayes

method as a general solution for analyzing binary data.

4.2.3 Choice of Prior on the Hyperparameters

In a hierarchical Bayesian approach, we need to consider some prior distribu-
tion on the hyperparameters instead of estimating it from the marginal distribution
of data, as in an empirical Bayesian analysis. In this approach, to obtain E(6;|y)
and V (6;|y) from (4.3) and (4.4) respectively, we need to use an iterative expectation

and variance technique as follows:

E0:ly) = E{E(@:ly,5,7)ly}
= E{g:(8,7)ly} (4.7)
V(lily) = E{V(0ily. 8, 7)ly} + V{E(ly,5,7)ly}

= E{hi(0,7)ly} + V{g:(B,7)ly} (4.8)

The expectation and variance in (4.7) and (4.8) are with respect to the posterior
distribution of the hyperparameters 3 and 7. Note that here, unlike linear mixed
model, the regression coefficient 3 cannot be integrated out from the joint distri-
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bution (4.1). This makes it difficult to apply numerical integration technique, in
case we need to perform high dimensional integration depending on the number of
covariates involved in a particular data analysis. More complication arises due to
the third level of prior distribution.

In the absence of subjective prior information, Stroud (1991, 1994) used some
non-informative priors such as the uniform prior, which is proportional to a con-
stant, and Jeffreys’ prior, which is proportional to the determinant of the Fisher
information matrix of the parameters. Improper noninformative priors should be
used with caution because they may not result in a proper posterior. In the context
of a hierarchical poisson-gamma model, Natarajan et al. (1998) used Jeffrey’s prior
at the third level, with a suitable modification to avoid improper posterior distribu-
tion in their analysis. He & Sun (1998) used a proper gamma distribution for the
hyperparameters instead of Jeffreys or uniform prior.

Natarajan et al. and He & Sun, both implemented their models through
Monte Carlo Markov Chain (MCMC) techniques, such as Gibbs sampling (Gelfand
& Smith, 1990) and rejection sampling (Gilks & Wild, 1992). The slow computa-
tional speed of MCMC methods usually does not permit to evaluate the frequentist
properties of the resulting Bayes rule (Christiansen & Morris, 1997). Moreover, one
should not overlook the convergence issues of the MCMC methods. Although the
use of the MCMC method is justified by the ergodic theorem, in practice results from
a MCMC run can depend heavily on several factors (see Chapter 1, Section 1.4.4).
All these factors are carefully examined in a Bayesian analysis. If the Bayesian
methodology is to be carried out routinely by someone with minimal knowledge of
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the sophisticated MCMC method, then the convergence of the MCMC technique
may not be checked properly, which may lead to unreasonable conclusions. Also,
the MCMC methods do not provide any analytical expressions of the posterior mean
and variance. For these reasons many researchers prefer to apply some approximate
methods, such as the adjusted density method (Christiansen & Morris 1997; Morris
1988; Tang 2002), or the Laplace approximation (Tierney & Kadane 1986; Tierney
et al. 1989; Kass & Steffey 1989; Butar & Lahiri 2002; Datta et al. 2005; Natarajan
et al. 1998), to carry out a Bayesian analysis.

We consider Laplace approximation to implement our hierarchical model to
analyze binary data. The Laplace method does not work well if the posterior dis-
tribution of the hyperparameters is extremely skewed (Natarajan et al., 1998). We
choose the prior for the hyperparameters carefully so that we can avoid the extreme
skewness of the posterior distribution. In other words, this will ensure that the pos-
terior mode of the hyperparameters falls inside the range of the parameter space.
To ensure that the mode of a hyperparameter occurs at a finite value for a Poisson-
gamma model, Christiansen & Morris (1997) used a proper prior distribution for the
corresponding parameter. To avoid zero posterior mode for the variance components
in area and unit-level Normal-normal models, in Chapter 2 and 3 of this disserta-
tion, we proposed new prior distributions for the variance components and obtained
good frequentist properties to the resulting rules. In order to prevent boundary
solutions for the ML estimates, in the context of discrete data analysis, the Latent
GOLD Choice software use Dirichlet priors for the latent and response probabilities
(Vermunt & Magidson, 2005). For the same reason, we propose a noninformative
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prior 7w(7), 7 > 0 on 7 in this chapter, following some criteria. The assumption of
improper uniform prior on i.e. w() < 1; 5 € RP is usually accepted as it provides
good repeated sampling properties (Christiansen & Morris, 1997).

If we consider uniform priors for both # and 7, then the joint posterior distri-
bution of 3 and 7 is equivalent to the likelihood function of # and 7 as defined in
(4.6), after taking a logarithm. But as we discussed in the previous paragraph, this
may result in a boundary posterior mode of 7. As a remedy, Morris (2006) suggested
using adjusted REML likelihood. Li & Lahiri (2008), while studying the frequentist
properties of the variance component in the context of normal-normal hierarchical
model, have observed that the adjusted REML likelihood leads to an estimator with
an overestimation problem. Use of adjusted ML overcomes this problem. For fur-
ther details see Li & Lahiri (2008), Chapter 2 of this thesis. Following their criteria

we recommend to use the following prior on 7

(1) <7, T > 0. (4.9)

We don’t provide any condition for the propriety of the posterior resulting from
this prior. But we hope this will lead to a proper joint posterior distribution of
£ and 7. Our conjecture is based on the fact that this type of prior on variance
component leads to a proper posterior in the context of hierarchical linear mixed
model which follows from the necessary and sufficient conditions given by Hobert &
Casella (1996), for the propriety of the joint posterior for a general class of priors of
which the prior (4.9) is a particular case. Also for a proof of proper posterior using

this type of prior for a variance component in a basic area-level model see Appendix
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A of Chapter 2.

4.3 Laplace Approximation

For convenient implementation and evaluation of our hierarchical Bayes method,
we approximate the posterior moments of 6; using Laplace’s method. Many authors
used Laplace approximation method in the context of Bayesian analysis (Tierney &
Kadane 1986; Tierney et al. 1989; Kass & Steffey 1989; Butar & Lahiri 2002; Datta
et al. 2005; Natarajan et al. 1998). To obtain the asymptotic variance-covariance
matrix of the parameters of the model, the Latent GOLD Choice software (Ver-
munt & Magidson, 2005) uses the negative inverse of the Hessian matrix, where
the Hessian matrix is obtained by computing the second order derivative of the log-
posterior density (instead of the log-likelihood of the parameters without any prior
assumption on the model parameters). This approach can be viewed as a first order
Laplace approximation to the posterior variance of the model parameters.

The logarithm of the joint posterior density f(3,7]y) of § and 7 is given by

m  [yi—1 ni—yi—1 n;—1

L(B,T) x Z [Z log(p; + ht) + Z log(1 — p; + h7) — Z log(1 + h7) | +logT
i=1 Lh=0 h=0 h=0

(4.10)

The first order Laplace approximation of the posterior moments of 6; is given by

E@ly) = g:.0,7)+0(1/m) (4.11)

~ N

V(Oly) = hiB.7) +{Dg(3,7)} S{Dgi(3.7)} +00/mY)  (412)
where 3 and 7 maximize f (B, 7]y) or equivalently, are the solution of the equa-
tion (4.10) whose first derivatives are set equal to zero. g¢;(8,7) and h;(5,7) are
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defined in (4.3) and (4.4) respectively. Dg;(,7) is the vector of first order partial
derivatives of ¢;((3,7) with respect to 3 and 7, evaluated at B,f’ (B,f’ inside the
parenthesis indicates that the corresponding function is evaluated at B ,T). 3 is the
inverse of the negative Hessian of L([3,7), evaluated at 3,7. Tt should be noted
that both the approximations have relative error of order O(1/m). For details on
first order Laplace approximation, see Tierney et al. (1989); Kass & Steffey (1989).
Note that the second term in the variance expression (4.12) captures the additional
uncertainty in estimating the hyperparameters. The following derivatives may be
useful to apply some iterative procedure to obtain the posterior mode B and 7 and
the corresponding Hessian matrix. To better understand the following expressions

recall that logit(u,;) = 5.

OLB.7) _ < U
Qa2 = (1 — g -
85 Zz:;'u( ,U) %Mz‘—i—hT Z 1—,ui+h7'

h=0

O”L(B,7) . (= hr(1=2p) — 2 S (1= 2p) + (1 — )
B v (1 — p L —

B0’ ;“( t) hzg (s + )2 ; (1— i+ hr)?
GRICRA NN R I S S

opor i=1 : " i=o (it hr)? —~ (1 —pit+hr)? '

8L(5,7) B m  [yi—1 h n;—y;—1 h n;—1 h
—or Z[ZWW D NP e

-
i=1 Lh=0 h=0
2 m yi—1 2 n;—y;—1 9 ni—1 9
o2 o — — (ul + hT)2 — (1 — i + h7)2 s (1 + hT)2 72
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The Newton Raphson algorithm for solving simultaneous equations is given by:

-1

Bk+D) 3k P’L(B,r)  O*L(B.T) AL(B,T)
_ . aps’ B0t 93
7 e41) (k) OL(B,r)  O*L(Bi7) IL(B,7)
o80T or2 Bk 7 (8) or k) (k)

The convergence of Newton-Raphson method depends heavily on the initial values
of B and 7. For some initial values of 7, the algorithm does not converge. We need
to consider some objective criteria (such as using method-of-moment estimates as
initial values).

To obtain the second order Laplace approximation to the posterior mean and
variance of 6;, we apply the fully exponential form suggested by Tierney & Kadane
(1986). This has the advantage of requiring only the first two derivatives of the
corresponding posterior distribution to achieve a second order approximation, unlike
the standard form which needs fourth and fifth derivatives of the log-likelihood (Kass

et al., 1988, p. 265). The second order approximation of posterior mean is given by

|2

where L*(3,7) = L(B, 7)+log g;(5, T), and 3* and #* maximize L*. The 3*, 7* inside

i) 12
E(@Ay)z{'?"} exp [L1(5#) — L(3.7)]. (4.13)

A

the parenthesis indicates that the corresponding function is evaluated at B*, 7Y

is the inverse of the negative Hessian of L*(/3,7) evaluated at B*, T*.

The second order approximation of posterior variance is given by
V(bily) =T\ + 1, (4.14)

where T7 = right hand side (RHS) of (4.13) with L*(3,7) = L(3,7) + log hi(3, 7).
T, = right hand side of (4.13) with L*(3, 7) as L(3, 7)+log ¢2(3,7) — { RHS of (4.13)}*.
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To apply the fully exponential form, we need g;(3, 7) and h;(3, 7) to be positive func-
tions of 3, 7. Both of the above second order approximations are of relative order

O(1/m?).

4.4 Data Analysis

In this section we carry out two empirical applications, one of which includes

covariates in the analysis.

4.4.1 Missouri Turkey Hunting Survey Data

We apply our hierarchical model on the Missouri Turkey Hunting Survey
(MTHS) 1994 spring season data. This data have been analyzed earlier by He
& Sun (1998). The dataset can be found in Table 1 of their paper. In this dataset,
n; is the total number of hunting trips to the ith area, y; is the number of successful
individuals among the sample of n;. We define 6; as the probability of success for
each individual in the ith area. Our aim is to obtain E(6;|y) and V (6;]y). He & Sun
(1998) used an exchangeable model at the second level of their hierarchical model,
although they agreed that the success rate may depend on some set of covariates.
This dataset does not include any covariates. If covariates were available, to include
it in the analysis one could easily apply our model to estimate the hunting success
rate for different counties in Missouri. At the third level, they used subjective proper
prior in the form of a gamma distribution for the hyperparameters. We prefer to

use the noninformative prior 7(7) o< 7 for 7 in our analysis.
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Estimation of Hunting Success Rate
(By increasing sample size)
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Figure 4.1: Different Point Estimates of Hunting Success Rates

We have 114 counties (small areas) in this dataset. Presenting the results for all
these counties in a tabular form may not be very informative. That’s why we present
the results with the help of figures. In the figures, we use only 45 counties. We select
10 counties with small sizes (ranging from 2 to 48), 19 counties having moderate
sample size (ranging from 131-162), and 16 large counties with sample size in the
range of 328-802. In other words, in the figures we present a representative sample
as far as the sample size of the counties is concerned. In Figure 4.1, we plot five point
estimates of the hunting success rate. Five estimators considered in this plot are:

sample mean (DIRECT), the hierarchical Bayes estimate discussed in the He & Sun
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Estimation of Hunting Success Rate
(By increasing sample size)
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Figure 4.2: Standard Errors Associated with Different Point Estimates: Turkey
Hunting Data

(HS), Laplace first order approximation to the posterior mean of 6; using the new
prior for 7 (LO1), Laplace second order approximation (LO2). The estimate MCMC
is obtained from the BRugs (Thomas et al., 2006) output using the new prior. For
small counties (left side of the plot), we can evidently see that the direct estimates are
quite different from all the model based estimates, the difference decreases with the
increase in the sample size. All the model based estimates are more or less identical.
For some counties (having moderate sample size), HS estimate appears to be closer

to the direct estimate than the estimates obtained using our model. Comparing
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the estimates obtained using Laplace approximation to the MCMC output we can
say that Laplace approximation is performing well in estimating the hunting success
rate. Figure 4.2 exhibits the standard errors (SEs) assosiated with the estimators
considered in Figure 4.1. The SEs decrease with the increase in the sample size
for all the estimators. For small counties, the extremely high SEs (compared to
others) underscore the fact that for small areas model based methods should be
preferred to the direct estimator. For counties having small and moderately large
sample size, the SEs associated with the HS estimators are larger compared to that
of our estimator. Here LO1 and LO2 represent the Laplace first and second order
approximation to the posterior variance of #;, using our new prior.

In Figure 4.3, we formally evaluate Laplace approximation using the estimates
and its measure of uncertainties for all 114 counties. To measure the precision of
Laplace method, we compute the percentage difference as the summary statistics.
Mathematically, this can be defined as {(exact-approximate)/exact}x100. We treat
the output from the BRugs package as the exact posterior moments. Figure 4.3 shows
that both the first and second order approximation values of the mean are quite close
to the exact value. The percentage difference values lie on the zero line for almost
all counties. The first order approximation to the posterior variance works very
well, the absolute difference being less than 5% for all counties. There is a slight
tendency toward under-estimation, the percentage difference being positive for all
the counties. The second order approximation to the posterior variance does not

perform very well. This result seems to be very surprising.
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Estimation of Turkey hunting success rates
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Figure 4.3: Evaluation of Laplace Approximation using Turkey Hunting Data: Per-
cent Difference from MCMC as a Summary Measure

4.4.2 Baseball Data

In this section, we revisit the baseball data example given in Efron & Morris
(1975). This data set has been analyzed by several researchers in the past, including
Efron & Morris (1975); Morris (1983b); Gelman et al. (1995); Datta & Lahiri (2000);
Rao (2003); Jiang & Lahiri (2006b), among others. Efron & Morris (1975) used this
dataset to demonstrate the performance of their empirical Bayes method with an
exchangeable prior in the presence of an outlying observation. They showed that

the James and Stein’s (1961) estimator can be derived from an empirical Bayes
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context. Efron & Morris (1975) considered the problem of estimating the batting
averages of 18 baseball players (small areas, in our terminology). Although this is
a proportion estimation problem, they used hierarchical normal-normal model to
analyze the data, using suitable transformation (arcsin). At the end, the estimates
are transformed back to obtain the estimates of proportion. They did not include
any auxiliary variable in their model, instead they used an exchangeable prior at
the second level.

Gelman et al. (1995) provided additional data for this estimation problem and
included important covariates like the batting average of each player in the previous
season (1969), and the number of times at bat in the 1969 season. The dataset is
given in the Appendix. We review the problem of estimating the batting averages
of all the 18 players for the entire 1970 season. We apply our hierarchical model
on this dataset and study the utility of using covariates in the analysis. We have
a sample of size 45 for each player. Let n; be the number of times at bat for the
1th player. Then, n; = 45 Vi. Let y; be the number of hits among the number
at-bats for the player i. Also let §; be the true batting average for the 1970 season
for player i, which is known. The dataset given in Appendix differs from that of
Efron & Morris, 1975 (their Table 1) with respect to the true values (besides having
no covariate), as they considered the problem of predicting the batting averages for
the remainder of the 1970 season.

In Figure 4.4, we compare four different estimators of the 1970 season batting
averages along with the true value. These four estimators are: sample propor-

tion (DIRECT), Efron and Morris 1975 empirical Bayes estimator (EM), Laplace
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Estimation of 1970 season batting averages
(Arranged by increasing 1969 batting averages)

o
< 4 A
o
A
@ A o
°© &
A
q‘g) o A A Q .
S 3] o °
g S S A . 4 + +
s 4 $+ g
= 0 + 4 o @
g 94 © R 55 4 S§+3% 4
o] o o o N + & ° &
o A A A S A A
&
o
(\! ] A o TRUE
o A DIRECT
° A M E(I\)AZ:WOC
<& LO2:wWC
o A
o | T |
5 10 15
player

Figure 4.4: Comparison of Different Point Estimates: Baseball Data

second order approximation to the posterior mean of true batting average using
the previous year batting average as a covariate (LO2:WC), Laplace second or-
der approximation to the posterior mean of true batting average without covariate
(LO2:WOC). LO2:WC and LO2:WOC have been obtained using our new hierarchi-
cal model. The players are arranged in increasing order of previous batting averages
in the plot. Clemente, an extremely good hitter, is undoubtedly an outlier. Jiang
& Lahiri (2006b) noted that the player Alvarado is also an outlier in the sense that
his current batting average is much better than his previous batting average. For

further discussion on this see Jiang & Lahiri (2006b, p. 42-44). From the plot we
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Figure 4.5: Comparison of Point Estimates: Laplace Approximation vs MCMC

can say that LO2:WC, the estimator which uses covariates in the analysis, does a
great job in predicting the batting averages of Clemente and Alvarado, two different
types of outliers. For the first (Alvarado) and the last (Clemente) player in the plot,
the LO2:WC and TRUE values are very close. This fact was also noted by Jiang &
Lahiri (2006b), who used covariates at the second level of the normal hierarchical
model. The performance of the sample proportion (DIRECT), which is unbiased
and the maximum likelihood estimator under the binomial assumption, is very poor.
For the values of the estimates of all the players along with their standard errors

see Table 4.1 and Table 4.2.
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Estimation of 1970 season Batting Averages: without

covariates
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Figure 4.6: Evaluation of Laplace Approximation without using Covariate: Percent
Difference from MCMC as a Summary Measure

In Figure 4.5, we compare the second order Laplace approximation to the
MCMC output. Here also we carried out the analysis twice, once using the covariate
(WC) and another time without using it (WOC). The Laplace approximation works
well as the LO2:WC values coincide with the MCMC:WC and LO2:WOC values
coincide with the MCMC:WOC for most of the players. As noted earlier, inclusion of
the previous year batting average in the analysis has a prominent effect in estimating
the batting averages of two outliers. Also it (WC) does a better job for some other

players as well.
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Estimation of 1970 season Batting Averages: using
1969 batting average as covariate
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Figure 4.7: Evaluation of Laplace Approximation using Covariate: Percent Differ-
ence from MCMC as a Summary Measure

In the next two figures (Figure 4.6 and Figure 4.7), we formally evaluate
Laplace approximation using the estimates and its measure of uncertainties for all
the 18 players. To measure the precision of Laplace method, we compute the per-
centage difference as the summary statistics. Mathematically, this can be defined as
{(exact-approximate)/exact}x100. We treat the output from the BRugs package
as the exact posterior moments. In both the figures (one with covariate another
without covariate), we can see that both the first and second order approximation

values of the mean are quite close to the exact value, although the second order
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values are more accurate as the percentage difference values lie on the zero line for
almost all players. Use of covariate leads to better second order approximation of

the posterior variance if we make a comparison between Figure 4.7 and Figure 4.6.

Table 4.1: Results from the Baseball Data Analysis: without using Covariate

Player Direct True LO1 LO2 MCMC se.LO1 se.LO2 se.MCMC

Clemente | 0.400 0.352 0.313 0.334  0.332 0.050 0.042 0.055
F.Robins | 0.378 0.306 0.305 0.322 0.321 0.048 0.053 0.053
Munson 0.178 0.302 0.235 0.225  0.225 0.042 0.048 0.046
Scott 0.222 0.296 0.251 0.246  0.246 0.041 0.049 0.046
F.Howard | 0.356 0.283 0.298 0.312  0.310 0.046 0.046 0.051
Campaner | 0.200 0.279 0.243 0.237  0.236 0.041 0.043 0.046
Spencer 0.311 0.2v6 0.282 0.291  0.289 0.042 0.039 0.049
Berry 0.311 0.274 0.282 0.291  0.289 0.042 0.039 0.049
Swoboda | 0.244 0.267 0.258 0.257  0.257 0.041 0.047 0.046
Kessinge | 0.289 0.266 0.274 0.279  0.278 0.041 0.045 0.048
E.Rodrig | 0.222 0.261 0.251 0.246  0.246 0.041 0.049 0.046
Williams | 0.222 0.258 0.251 0.246  0.246 0.041 0.049 0.046
Unser 0.222 0.251 0.251 0.246  0.246 0.041 0.049 0.046
Johnston | 0.333 0.238 0.290 0.299  0.300 0.044 0.056 0.050
Santo 0.244 0.233 0.258 0.257  0.257 0.041 0.047 0.046
Petrocel 0.222  0.225 0.251 0.246  0.247 0.041 0.049 0.046
Alvarado | 0.267 0.224 0.267 0.269  0.268 0.041 0.043 0.047
Alvis 0.156 0.183 0.228 0.215 0.214 0.044 0.045 0.047
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Table 4.2: Results from the Baseball Data Analysis: using 1969 Batting Average as
Covariate

Player Direct True LO1 LO2 MCMC se.LO1 se.LO2 se.MCMC

Clemente | 0.400 0.352 0.332 0.350  0.350 0.051 0.061 0.057
F.Robins | 0.378 0.306 0.320 0.335 0.336 0.048 0.057 0.055
Munson 0.178 0302 0.239 0.223  0.225 0.041 0.050 0.046
Scott 0.222  0.296 0.251 0.243 0.244 0.039 0.046 0.046
F.Howard | 0.356 0.283 0.302 0.316 0.316 0.044 0.060 0.052
Campaner | 0.200 0.279 0.249 0.237 0.238 0.041 0.047 0.046
Spencer 0.311 0.2v6 0.277 0.285  0.285 0.041 0.053 0.049
Berry 0.311 0.274 0.277 0.285 0.284 0.041 0.049 0.049
Swoboda | 0.244 0.267 0.269 0.264  0.265 0.041 0.043 0.048
Kessinge | 0.289 0.266 0.271 0.275  0.275 0.040 0.051 0.047
E.Rodrig | 0.222 0.261 0.252 0.245 0.245 0.039 0.046 0.046
Williams | 0.222 0.258 0.253 0.245  0.246 0.039 0.044 0.046
Unser 0.222 0.251 0.258 0.250 0.251 0.040 0.047 0.047
Johnston | 0.333 0.238 0.288 0.299  0.298 0.042 0.054 0.050
Santo 0.244 0.233 0.255 0.253 0.253 0.039 0.045 0.046
Petrocel 0.222 0.225 0.245 0.238 0.239 0.039 0.045 0.046
Alvarado | 0.267 0.224 0.221 0.232  0.232 0.056 0.060 0.059
Alvis 0.156 0.183 0.229 0.211  0.212 0.042 0.047 0.046

4.5 Concluding Remarks

In this chapter, we propose hierarchical models to estimate small area propor-
tions. The linear normal mixed models, considered in Chapter 2 and 3 are usually
not applicable to analyze binary data. Our proposed hierarchical binomial-beta
model leads to a simple expression for the best predictor of true small area propor-
tion, as opposed to considering mixed logistic model, usually applied in small area
estimation to borrow strength from other areas, in the presence of covariates in the
analysis. We recommended to use an improper noninformative prior for the shape
parameter of the beta density at the third level of our hierarchical model that would

keep the posterior mode within the parameter space. In future, we will study the
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frequentist properties of the resulting Bayes estimators of the small area proportions

using the prior we recommend in this chapter.

4.6 Appendix

4.6.1 Baseball Data

Player Direct x1 X2 true

Clemente 0.400 0.314 8142 0.352
F.Robins 0.378 0.303 7542 0.306
Munson 0.178 0.256 86 0.302
Scott 0.222  0.250 2065 0.296
F.Howard 0.356 0.275 4826 0.283
Campaner 0.200 0.264 3210 0.279
Spencer 0.311 0.246 2244 0.276
Berry 0.311 0.244 454 0.274
Swoboda 0.244  0.281 5658 0.267
Kessinge 0.289  0.248 2753 0.266
E.Rodrig 0.222  0.255 2281 0.261
Williams 0.222  0.257 1216 0.258
Unser 0.222 0.271 888 0.251
Johnston 0.333  0.255 1139 0.238
Santo 0.244 0.244 1967 0.233
Petrocel 0.222 0.234 291 0.225
Alvarado 0.267 0.118 51 0.224
Alvis 0.156  0.249 3514 0.183

4.6.2 BRugs model specification without covariates

model

{

for(i in 1:m){

y[i] = dbin(thetali], n[i]) ##n[i] should be greater than 1 for all i.
thetal[i] ~ dbeta(a, b)

}

a <- mu/tau

b <- (1-mu)/tau

mu ~ dunif(0,1)

## to specify new prior for tau
dummy <- O

dummy ~ dgeneric(1l1)

11 <- log(tau)

tau ~ dflat()T(0,)

}
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4.6.3 BRugs model specification including covariates

model

{

for(i in 1:m){

y[i] = dbin(thetali], n[i]) ##n[i] should be greater than 1 for all i.
1p[i] <- inprod(X[i,], betall)
muli] <- exp(1pl[il)/(1+exp(1p[il))
ali] <- muli]/tau

bli] <= (1-muli])/tau

theta[i] ~ dbeta(alil, b[i])

}

betal[1l] = dflat()

betal[2] = dflat()

dummy <- 0

dummy ~ dgeneric(1ll)

11 <- log(tau)

tau ~ dflat()T(0,)

}
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Chapter 5

Concluding Remarks and Future Research

In this dissertation, we have developed new hierarchical Bayesian methods that
are useful for analyzing both discrete and continuous data for small area estimation.
Throughout the dissertation, our main goal has been to choose prior distributions
for the hyperparameters that offer good frequentist properties and at the same
time provide accurate approximation to the complex posterior distributions by the
Laplace method.

The extremely skewed posterior distribution of the variance component is an
unavoidable consequence of the asymmetry in the parameter space, with variance
parameters restricted to be positive. Our prior choice avoids the extreme skewness
of the posterior distribution. As a result, the Laplace approximation usually works
well, a result that contradicts some earlier research. We studied the frequentist
properties of the Bayes estimator. Our simulation results show that the frequentist
properties (e.g. MSE, coverage) of the Bayes estimator of the true small area quan-
tity (0;, say) corresponding to our proposed prior is better than the popular choice
of uniform prior and some other methods.

Although we have developed our hierarchical Bayes methods to address small
area estimation problems, there is a great potential for using such models in other

important applications. For example, in surveys there is a great deal of interest in
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estimating intra-interviewer correlation and the associated interviewer effects. The
current statistical literature on interviewer effects focus mostly on point estimation
where the ANOVA method is the usual tool. The ANOVA method can yield an
intra-interviewer correlation estimate outside the parameter range. We intend to
explore the methods proposed in the dissertation in addressing both point estimation
and interval estimation for making inference about the intra-interviewer correlation
and the interviewer effects. Another application of potential interest is the disease
mapping problem where it is necessary to smooth prevalence of certain diseases
across geography. In the future, we would like to extend our methodology to include
hierarchical Poisson models and spatial models so we can address the important
disease mapping problem.

Many large scale national surveys employ complex sample designs involving
several layers of stratification and clustering. In order to capture the variability of
such complex survey data, one needs more complex generalized linear mixed models
than the ones considered in the dissertation. In the future, we would like to find
a prior distribution for variance components using a general linear mixed model,
that would retain all the useful properties we observed in case of relatively simple
models. We also want to exploit some other objective criteria to choose a prior for
the variance components. One of them is to match the expectation of the posterior
variance of 6; to the frequentist MSE, following Datta et al. (2005) and Ganesh &
Lahiri (2008). Unlike them, we would like to consider frequentist MSE as the mean
squared error of empirical Bayes estimator of 6; when ADM method (Morris, 2006;
Li & Labhiri, 2008) is used to estimate the variance components.
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