
ABSTRACT

Title of dissertation: Semiparametric Cluster Detection

Shihua Wen
Doctor of Philosophy, 2007

Dissertation directed by: Professor Benjamin Kedem
Mathematical Statistics Program
Department of Mathematics

In this dissertation, a Semiparametric density ratio testing method which bor-

rows strength from two or more samples is applied to moving windows of variable

size in cluster detection. This Semiparametric cluster detection method requires

neither the prior knowledge of the underlying distribution nor the number of cases

before scanning. To take into account the multiple testing problem induced by nu-

merous overlapping windows, Storey’s q-value method, a false discovery rate (FDR)

methodology, is used in conjunction with the Semiparametric testing procedure.

Monte Carlo power studies show that for binary data, the Semiparametric

cluster detection method and its competitor, Kulldorff’s scan statistics method, both

achieve similar high power in detecting unknown hot-spot clusters. When the data

are not binary, the Semiparametric methodology is still applicable, but Kulldorff’s

method may not be as it requires the choice of a correct probability model, namely

the correct scan statistic, in order to achieve power comparable to that achieved by

the Semiparametric method. Kulldorff’s method with an inappropriate probability

model may lose power.



Moreover, when the data are binary, the Semiparametric density ratio model

reduces to the same scan statistic as Kulldorff’s Bernoulli model. If a cluster can-

didate is known, under certain conditions the Semiparametric method achieves a

higher power than the power achieved by a certain focused test in testing the hy-

pothesis of no cluster.

The Semiparametric method potential in cluster detection is illustrated using a

North Humberside childhood leukemia data set and a Maryland-DC-Virginia crime

data set.
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Chapter 1

Introduction

In this dissertation, I develop a semiparametric scan statistics method for

cluster detection. I refer to this method as semiparametric cluster detection method

or semiparametric method in short. This method applies a semiparametric density

ratio model to moving windows of variable size to scan the study region and detect

potential clusters of events or cases. The simulation studies show that the statistical

power of the semiparametric method is comparable to the current Kulldorff’s spatial

scan statistics method [29, 30, 31], but the semiparametric method requires fewer

distributional assumptions on the data. The semiparametric method works well in

many cases adhering to a unified setting [26, 70], but Kulldorff’s method requires the

choices of a correct probability model, namely the correct scan statistic, in order to

achieve the power achieved by the semiparametric method. The semiparametric scan

statistics methodology has also been successfully applied to real data which points

to its potential in cluster detection. The first chapter gives a brief description of the

purpose and the general frame of this dissertation.

1.1 Scan Statistics and Cluster Detection

Scan statistics arise when scanning in time or space, or both, looking for

unusual clusters of certain events or cases [18]. Here, an event can be the occurrence
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of some type of disease, or some sort of physical or chemical measurements, etc. A

cluster is defined as a certain spatial or temporal subregion where the probability

distribution of an event is different from the event probability distribution in the

rest of the region. More generally, a cluster is a subregion where the behavior of an

observable is different from the behavior of the observable in the rest of the region.

For instance, a city neighborhood where the crime rate is higher than in the rest

of the city defines a cluster. Another example can be a subregion comprised of

several counties with higher disease rate than all other counties in a region. If we

can locate (detect) the clusters more accurately, we can make better decisions and

more efficient policies.

The modern literature about scan statistics can be traced back to the 1960’s.

Since then, it has been applied in many fields, including epidemiology, criminology,

economics, health management, brain imaging, genetics, mining, quality control,

astronomy, syndromic surveillance, and so on. See Glaz et al. (2001), Glaz and

Naus (1991), Kulldorff (1999), Naus (1965), Pickle et al. (2003), and Shmueli et al.

(2006) [18, 43, 30, 49, 58]. Of particular importance is the so called Kulldorff’s spa-

tial scan statistics method. Kulldorff’s method uses circular, elliptic, or cylindrical

scan window to detect clusters in two or higher dimensions, their location and size,

by making an assumption about the underlying distribution (typically Bernoulli

or Poisson) of the scanned region. These distributional assumptions are used in

computing Kulldorff’s spatial scan statistic, a likelihood ratio type test statistic, to

determine the cluster candidate. A p-value for the significance of the cluster candi-
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date is obtained by a Monte Carlo hypothesis testing procedure or by a permutation

test [29, 30, 31]. A detailed review of Kulldorff’s method is given in Chapter 2.

In this dissertation we propose a certain semiparametric generalization of Kull-

dorff’s method which requires much less than complete distributional assumptions

and which does not require the number of cases prior to scanning for the time con-

suming Monte Carlo hypothesis testing. The semiparametric approach used in this

research is the density ratio model as in Fokianos et al. (2001), Qin and Lawless

(1994), and Qin and Zhang (1997) [13, 52, 53]. Given m = q + 1 samples,

gj(x)

gm(x)
= exp{αj + β′jh(x)}, j = 1, . . . , q, q = m− 1

where gm(x) ≡ g(x) is the (reference) probability density function of the mth sam-

ple, gj(x) is the probability density function of the jth sample, (αj,β
′
j) are the

parameters relating the jth and the reference densities, and βj = (βj1, . . . , βjp)
′

with dimension p depends on the choice of the known tilt vector-valued function

h(x). By following this setup, testing for distributional homogeneity is equivalent

to testing H0: β=0, where β = (β′1, . . . , β
′
q)
′. Other than an assumption concerning

the tilt function h(x), this method does not require prior knowledge of any distribu-

tion. Once h(x) is chosen, all the parameters and the reference distribution function

G(x) are estimated from the combined data composed of all the samples.

The semiparametric cluster detection method discussed in this dissertation

merges the semiparametric density ratio model with Kulldorff’s scan procedure lead-

ing to a fairly general cluster detection procedure. The idea is quite natural. Since

cluster detection amounts essentially to testing the homogeneity of the probability
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distributions between the cluster region and the non-cluster region, the cluster de-

tection problem is to test if β = 0 in the semiparametric density ratio model. A

detailed study of this semiparametric method is described in Chapter 3.

1.2 Other Scan Statistics Methods

Besides Kulldorff’s method and the semiparametric method proposed in this

dissertation, there are other types of scan statistics methods. I list some of them in

this section.

Glaz et al. (2001) defines a scan statistic Sw based on point data where the

occurrence of an event is represented by a point in the study interval. This interval

could be a one dimensional line, such as time, or a higher dimensional set, such as

a geographic map [18]. The point data are assumed to be distributed uniformly

or to follow a Poisson process over the whole study interval. Figure 1.1 gives an

example of this type of scan statistic. The solid line represents a time line scaled

into [0, 1). Each small triangle (point) is denoted as an event occurring at that

moment. A scan window slides along the line. Let Sw be the largest number of

events occurred in a window of fixed size w. Then this Sw is called the scan statistic

and the corresponding window is the cluster candidate. The problem of interest is

the probability of k or more events occurred in the given window w. More precisely,

if the total number of N events over the interval is given, the problem is to compute

the retrospective probability P (Sw ≥ k|N), which is a conditional probability. If

N is viewed as a random variable, on the other hand, the prospective probability
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P (Sw ≥ k) is unconditional.

Figure 1.1: Illustration of Glaz’s scan statistic in one dimension.

Given N points independently uniformly distributed on interval [0,1), Wallen-

stein and Neff (1987) [67] gives the following easy to compute approximation for

P (Sw ≥ k|N) as a simple sum of binomial and cumulative binomial probabilities.

Let

b(k; N, w) =




N

k


 wk(1− w)N−k

Gb(k; N, w) =
N∑

i=k

b(i; N, w)

Then approximately,

P (Sw ≥ k|N) ≈
(

k

w
−N − 1

)
· b(k; N,w) + 2Gb(k; N,w) (1.1)

When the data follows a Poisson Process on the interval [0,T) with rate λ,

Newell (1963) [46] gives the following asymptotic formula of P (Sw ≥ k),

P (Sw ≥ k) ≈ 1− exp{−λkwkT/(k − 1)!}

Glaz and Naus (1991) give tight bounds and approximations for scan statistic

probabilities for independently and identically distributed (i.i.d.) discrete data for
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fixed window size [17]. Naus and Wallenstein (2004) derive accurate approximations

for the joint distributions of scan statistics for a range of values of w, or of k, that

can be used to set an experiment-wide level of significance that takes into account

the multiple comparisons involved. This makes it possible to determine the cluster

sizes from various scanning window sizes [45].

Pozdnyakov et al. (2004) propose a martingale method for binary data to

approximate the distributions of a wide variety of scan statistics, including some for

which analytical results are computationally infeasible [50]. Glaz and Zhang (2004)

derive multiple scan statistics of variable window sizes for i.i.d. Bernoulli trials

(0/1)in one or two dimensional intervals. They also derive simple approximations

for the significance level of the scan statistics [19]. Glaz and Zhang (2006) propose a

maximum scan score-type statistic for testing the null hypothesis that the observa-

tions are i.i.d. according to a specified distribution, against an alternative that the

observations cluster within a window of unknown length. This statistic is a variable

window scan statistic, based on a finite number of standardized fixed window scan

statistics. Approximations for the significance level of this statistic are derived for

0− 1 i.i.d. Bernoulli trials uniformly distributed in the interval [0, 1).

Kulldorff’s method and the semiparametric method we propose in this dis-

sertation use circular or regular shape scanning windows. Patil and Taillie (2004)

propose a upper level set (ULS) scan method [47, 48] which detects hot-spot clusters

with irregular shape. The main idea of the ULS method is that the whole study

region is composed of cells with rate (or intensity) Ga = Ya/Aa, where Ya is the raw
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count and Aa is the “size” of cell a. A zone Z is a union of connected cells and Ω

is a collection of all the possible Z’s. For a given g, define an upper level set as

Ug = {a : Ga ≥ g}. A reduced space ΩULS is a collection of all the possible unions of

the connected cells in Ug. Thus, all the zones, Z ∈ ΩULS, can possibly become scan

windows and can be of any shape. Once the scan window is determined, similar to

Kulldorff’s method, a probability assumption is imposed to the study region to get a

likelihood ratio type statistic and the p-value of the cluster candidate is obtained by

Monte Carlo simulation. Modarres and Patil (2006) extend this ULS methodology

to bivariate data [42]. Tango and Takahashi (2005) propose a flexibly shaped scan

method [65]. It imposes an irregularly shaped window Z on each cell (e.g. county)

by connecting its adjacent cells and computes the likelihood ratio type statistic as

in Kulldorff’s method.

Most of the above mentioned methods apply to point data where the occur-

rence of an event is represented by a point and those points are assumed to be

distributed uniformly or follow a Poisson process in the study interval. Kulldorff’s

method and the ULS method can handle non-binary data, but still need to assume

a certain probability model. The semiparametric cluster detection method proposed

in this dissertation, however, does not require those specific assumptions and is ap-

plicable to many data types. See Chapter 3 for the details of the semiparametric

method.

The above scan statistics methods are mainly used to detect the location, the

size and the significance of local clusters. If the hypothesis is that the risk in a
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specified region is higher than in the rest of the region, for example, the risk of a

type of disease is higher close to a nuclear power plant than in the rest of the area,

then focused cluster tests are used. I will briefly describe the Lawson-Waller focused

test [68] in Chapter 4 when we conduct the power study. Sometimes researchers are

interested in evaluating the presence of clustering throughout the study region. For

example, we might want to know if a particular disease is infectious or not, in which

case we would expect cases to be found close to each other no matter where they

occur. In this case, global clustering tests should be used, such as Cuzick-Edwards’

(1990) k nearest neighbor (k-NN) method [6], Tango’s (2000) maximized excess

events test (MEET), Bonetti-Pagano’s (2005) M-statistic [4], and so on. Since the

semiparametric method is a cluster detection method aiming to detect the local

clusters, these global clustering tests are out of the focus of this dissertation.

In surveillance or quality control fields, early detection of outbreaks is essential

for successful operation and prevention of disasters. In the purely temporal setting,

traditional control charts method, including Shewhart charts, moving average charts,

Cumulative sum (CumSum) charts, etc., and time series methods are used. Recently

wavelet-based methods were found to offer a more elegant and suitable solution for

early detection. If multiple data sets or streams are present, the multivariate versions

of the control charts, time series, and wavelet-based methods could be potentially

implemented. Shmueli and Fienberg (2006) gives a nice review about the these

options [58].

Naus and Wartenberg (1997) have developed purely temporal scan statistics for
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two data types with the purpose of finding clusters with a minimum number of both

types of events [44]. In addition, Kulldorff et al. (2007) develop a multivariate scan

model which simultaneously incorporates multiple data sets into a single likelihood

function to search for clusters. Chapter 2 gives a brief description of Kulldorff’s

multivariate scan model.

1.3 Dissertation Map

This dissertation is organized as follows. Chapter 2 describes Kulldorff’s scan

statistics method, including the Bernoulli model, Poisson model, ordinal model,

exponential model, and so on. Chapter 3 introduces the semiparametric density ratio

model and our semiparametric cluster detection method. Chapter 4 presents power

studies comparing Kulldorff’s method and our semiparametric method, including a

limited power study given that the location and the size of a cluster candidate are

known, and a complete power study which where the cluster candidate is unknown.

Chapter 5 illustrates the cluster detection potential of the semiparametric method by

analyzing a North Humberside childhood leukemia data set [26, 1] and a Maryland-

DC-Virginia crime data set. Chapter 6 summarizes the whole dissertation and

discusses possible improvements of the semiparametric cluster detection method for

future research.
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Chapter 2

Kulldorff’s Scan Statistics Method

2.1 Overview

A number of different tests for detecting spatial clusters, temporal and spatial,

have been proposed in the last three decades. One of the most popular methods

is Kulldorff’s scan statistics. Kulldorff’s scan statistics method can detect both

the location and the size of a cluster simultaneously by using a large collection of

overlapping scan windows [29, 30]. For spatial data, the method first imposes a

circular scan window on a map and lets the circle centroid move across the study

region. For any given centroid, the radius of the window varies continuously from

zero to some upper limit. Usually this upper limit is set to be the radius which covers

50% of the whole study region or population. In this way, the method generates

a large set of scan windows Z with different centroids and sizes. Under the null

hypothesis of no cluster, the underlying behavior of the data throughout the whole

study region is the same. Under the alternative hypothesis, there is at least one scan

window for which the underlying behavior is different inside the window as compared

with its complement, which means any scan window Z could be a potential cluster.

In practice, some data are updated periodically, Kulldorff (2001) [31] suggested

space-time scans for such cases. The scanning procedure of space-time scans is

almost identical to the purely spatial scan, except that the scan window becomes

10



a three dimensional cylinder instead of two dimensional. See Figure 2.1. Since the

statistical formulation of space-time scan is identical to the two dimensional case,

we will only discuss the two dimensional purely spatial scan in this paper.

Figure 2.1: Notation for Kulldorff’s method

In Kulldorff’s scan statistics method, each scan window Z is associated with

a likelihood ratio test statistic λ(Z) which can be computed based on the chosen

underlying probability model and the observed data inside and outside the scanning

window. The scan window associated with the maximum λ(Z) is defined as the pri-

mary cluster candidate occurring not by random chance. The maximum likelihood

ratio itself is called the Kulldorff’s spatial scan statistic, and the null hypothesis

is rejected for large value of the statistic. After the spatial scan statistic and the

primary cluster candidate are determined, a Monte Carlo hypothesis procedure [10]

or a permutation test procedure [33, 22] is executed to generate the probability

distribution of Kulldorff’s scan statistic under the null hypothesis of no cluster in

the study region, and a p-value is obtained. The detail steps of the Monte Carlo

hypothesis testing procedure is as follows.
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1. Obtain the value of Kulldorff’s scan statistic for the true data at hand.

2. Given the total number of the cases (events), create a large number of random

data sets generated under H0 for the whole study region.

3. Calculate the value of Kulldorff’s scan statistic for each random replication.

4. Sort the values of the Kulldorff’s scan statistics from the true and the generated

data sets, and note the rank of the one calculated from the true data set to

obtain the p-value.

The following sections describe Kulldorff’s scan statistics for the Bernoulli

model, Poisson model, and ordinal model [29, 30, 23]. As for other types of scan

statistics in Kulldorff’s scan statistics family, see Huang et al. (2007) for the ex-

ponential model [22], Kulldorff et al. (2007) for the multivariate scan model [36],

Kulldorff et al. (2006a) for the normal model [35], and Kulldorff et al. (2006b) for

elliptic window scans [34].

2.2 Bernoulli Model

Bernoulli-based scan statistics are used when individual entities have only two

states such as an individual person having breast cancer or not. Figure 2.1(a) shows

a typical setup of Kulldorff’s scan statistics method. The “purely spatial scan”

means a two-dimensional scan on a geographical map.

• G : the whole study region.
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• Z : the scan window.

• ZC : outside scan window.

• µ(G) : the total number of individual. entities (e.g. people) in G.

• µ(Z) : the number of individual entities in Z.

• nG : the total number of events in G.

• nZ : the number of events inside Z.

• p : the rate of events that occurred inside the scan window Z.

• q : the rate of events that occurred outside the scan window Z.

Clearly, µ(Zc) = µ(G) − µ(Z) and nZC = nG − nZ . We test the null hypothesis

H0 : p = q of no cluster. The following shows that for an alternative hypothesis that

there is a hot spot cluster p > q, each scan window Z invokes a likelihood ratio test

statistic as in equation (2.1).

Consider binary 0− 1 data. The likelihood for a fixed scan window Z is

L(Z, p, q) = pnZ (1− p)µ(Z)−nZ × qnG−nZ (1− q)(µ(G)−µ(Z))−(nG−nZ).

Under H0 : p = q, p̂0 = nG/µ(G), and the maximized likelihood becomes L0 which

is independent of Z,

L0 = sup
H0:p=q

L(Z, p, q) = p̂0
nG(1− p̂0)

µ(G)−nG .
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Under HA : p > q, p̂ = nZ/µ(Z), q̂ = (nG − nZ)/ (µ(G)− µ(Z)), and the likelihood

L(Z) is a function of Z,

L(Z) = sup
HA:p>q

L(Z, p, q)

= p̂nZ (1− p̂)µ(Z)−nZ × q̂nG−nZ (1− q̂)(µ(G)−µ(Z))−(nG−nZ).

Therefore, the likelihood ratio for a fixed scan window Z is

λ(Z) =

sup
HA:p>q

L(Z, p, q)

sup
H0:p=q

L(Z, p, q)

=





p̂nZ (1−p̂)µ(Z)−nZ×q̂nG−nZ (1−q̂)(µ(G)−µ(Z))−(nG−nZ )

p̂
nG
0 (1−p̂0)µ(G)−nG

if p̂ > q̂

1 otherwise

. (2.1)

If we were scanning for cold spots, then “>” would change to “<” above; if we were

scanning for either hot or cold spots, then it would be “ 6=” [32]. After all the λ(Z)

are computed, we determine the maximum of λ(Z)’s

λ = sup
Z∈G

λ(Z) ≡ λ(Ẑ)

as Kulldorff’s scan statistic and Ẑ to be the primary cluster candidate. We reject

the null hypothesis for large values of λ, and a Monte Carlo based p-value can be

obtained from randomization of the cases across the whole study region, given the

total number of cases as described in the previous section.

2.3 Poisson Model

Poisson-based scan statistics are used for the comparison of the number of

cases inside and outside a scan window when searching for clusters. The notion and
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setup of Kulldorff’s scan under the Poisson model follow the same scheme shown in

Figure 2.1(a). Suppose a study region is composed of I sub-regions. Assume the

number of events xi which occur in an “interval” µ(Ai) is a Poisson process with

intensity rate p inside the scan window and q outside, where i = 1, 2, . . . , I. For

example, xi could be the number of people with certain type of cancer in county Ai

whose population size is µ(Ai). In addition, we have

nG =
∑

Ai,xi∈G

xi, µ(G) =
∑
Ai∈G

µ(Ai)

and

nZ =
∑

Ai,xi∈Z

xi, µ(Z) =
∑
Ai∈Z

µ(Ai).

The null hypothesis is still H0 : p = q and the method parallels the Bernoulli case.

For a given fixed scan window Z, the likelihood is

L(Z, p, q) =
e−p·µ(Z)(p · µ(Z))nZ

nZ !

× e−q·(µ(G)−µ(Z))(q · (µ(G)− µ(Z)))nG−nZ

(nG − nZ)!
.

Under H0 : p = q, p̂0 = nG/µ(G), we obtain

L0 = sup
H0:p=q

L(Z, p, q) =
e−nG · ( nG

µ(G)
)nG · µ(Z)nZ · (µ(G)− µ(Z))nG−nZ

nZ ! · (nG − nZ)!
.

Under HA : p > q, p̂ = nZ/µ(Z) q̂ = (nG − nZ)/ (µ(G)− µ(Z)), we obtain

L(Z) = sup
HA:p>q

L(Z, p, q) =
e−nG · (nZ)nZ · (nG − nZ)nG−nZ

nZ ! · (nG − nZ)!
.

Therefore, the likelihood ratio for the scan window Z is shown in equation (2.2):

λ(Z) =





(nZ

eZ
)nZ · (nG−nZ

nG−eZ
)(nG−nZ) if nZ > eZ

1 otherwise

(2.2)
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where nZ is the observed number of cases inside the scan window Z and eZ is the

expected number of cases inside the scan window Z under the null hypothesis of

no cluster. As before, if we were scanning for a cluster other than hot spot, we

simply change the inequality sign as needed. After all the λ(Z) are obtained, put

λ = max
Z

λ(Z) ≡ λ(Ẑ), where Ẑ is the primary cluster candidate, and reject the

null hypothesis for large λ. A Monte Carlo based p-value can be obtained from

randomization of the cases across the study region given the total number of cases,

as in the Bernoulli model.

2.4 Ordinal Model

An ordinal model is used when individual entities have K ≥ 2 ordinal cate-

gories such as the different stages of prostate cancer (Klassen, 2005) [28]. A higher

category may reflect a more serious cancer stage. With the ordinal model, each ob-

servation is a case, and each case belongs to one of several ordinal categories. Sup-

pose the study region consists of I sub-regions and the variable of interest is recorded

in K categories. Let cik be the number of individuals in location i who fall into cat-

egory k, where i = 1, 2, . . . , I, and k = 1, 2, . . . , K. Let Ck =
∑

i cik be the number

of observations in category k across the study region, and C =
∑

k Ck =
∑

k

∑
i cik

be the total number of observations in the whole study region. The null hypothesis

of no cluster in this model means p1 = q1, . . . , pk = qk, where pk and qk are the

unknown probabilities that an observation belongs to category k inside and outside

the scanning window, respectively. To detect subregions with high rates of higher
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stages as compared with the rest of the area, one possible alternative hypothesis

could be

p1

q1

≤ p2

q2

≤ pK

qK

searching for hot-spot clusters with an excess of cases in the high-valued categories.

Obviously when K = 2, the ordinal model set up reduces to the Bernoulli model.

Following similar scan procedures as in the Bernoulli and Poisson models, the like-

lihood ratio test statistic for each scan window is:

λ(Z) =





K∏
k=1

[
∏
i∈Z

p̂k
cik · ∏

i 6∈Z

q̂k
cik

]/
K∏

k=1

(
Ck

C

)Ck
otherwise

1 pk = qk, k = 1, 2, . . . , K

(2.3)

where p̂k and q̂k are the MLEs of pk and qk under the alternative hypothesis. A

“Pool-Adjacent-Violators” algorithm can be applied to compute p̂k and q̂k [2, 11].

It is also possible to search for cold-spot clusters with an excess of cases in the low-

valued categories or simultaneously for both hot or cold spots by reversing the order

of the categories. After all the λ(Z) are obtained, compute max
Z

λ(Z) ≡ λ(Ẑ), where

Ẑ is the primary cluster candidate, and reject the null hypothesis for large λ(Ẑ). A

Monte Carlo based p-value can be obtained by randomization of the observations

across the study region given the total number of observations in each category

(C1, C2, . . . , CK). For more detail about the ordinal model, see Jung et al. (2007)

[23].
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2.5 Other Models

There are other types of scan statistics in Kulldorff’s scan statistics family,

such as the exponential model mainly for survival time data, the normal model for

continuous data that takes both positive and negative values, the multivariate scan

model for analyzing multiple surveillance data sets simultaneously, and so on.

Exponential model: The exponential model is mainly designed for survival time

data, and the likelihood function for the scan statistic is based on the exponential

distribution. However, it also could be used for other positive continuous type data

as well, especially for data with a heavy right tail. In the exponential model, each

observation is a case, and each case has one continuous variable attribute as well as

a 0/1 censoring designation. For survival data, the continuous variable is the time

between diagnosis and death or, depending on the application, between two other

types of events. If some of the data are censored, due to loss of follow-up, then

the continuous variable is the time between diagnosis and time of censoring. The

0/1 censoring variable is used to distinguish between censored and non-censored

observations. For more details about the exponential model and its scan statistic,

see Huang et al. (2007) [22].

Normal model: The normal model is designed for continuous data and the like-

lihood function for the scan statistic is based on the normal distribution. For each

individual, called a case, there is a single continuous attribute that may be either

negative or positive. For example, the data may consist of the birth weight and

residential census tract for all newborns, with an interest in finding clusters with

18



lower birth weight. The model can also be used for ordinal data when there are very

many categories. That is, ties are allowed. It is also noticed that the results from

the normal model can be greatly influenced by extreme outliers, so it may be wise

to truncate such observations before doing the analysis. For more detail about the

normal model and its scan statistic, see Kulldorff et al. (2006a) [35].

Multivariate scan: Sometimes, especially in disease surveillance, the statistical

power to detect an outbreak that is present in all data sets may suffer due to low

numbers in each data set. Kulldorff’s Multivariate scan model can simultaneously

incorporate multiple data sets into a single likelihood function searching for clusters

and hence increasing the power. This could be done by defining the combined log-

likelihood as the sum of the individual log-likelihoods for those data sets for which

the observed case count is more than the expected, if hot-spot clusters are of interest.

When searching for clusters with low rates, the same procedure is performed, except

that we instead sum up the log-likelihood ratios of the data sets with fewer than the

expected number of cases within the window in question. When searching for both

high and low clusters, both sums are calculated, and the maximum of the two is used

to represent the log likelihood ratio for that window. In multivariate scan, all data

sets must use the same probability model and the same geographical coordinates

file. For more detail, see Kulldorff et al. (2007) [36].

Elliptic window scans: The above Kulldorff’s scan statistics commonly use a

circular scanning window. To have more flexibility, the elliptic version of the Kull-

dorff’s scan statistics uses a scanning window of variable location, shape (eccentric-
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ity), angle and size, and with and without an eccentricity penalty. The mathematical

principles behind the scan are identical for circular, elliptic or any other shape of the

window, with the only difference being the collection of candidate cluster areas con-

sidered. In general, the elliptic scan statistic performs well for circular clusters, and

equally important, the circular scan statistic performs well for elliptic clusters also.

One possible advantage of the elliptic versus the circular scan statistic is that the

former may give a better estimate of the true cluster area especially when the true

cluster is an elongated one. But the circular scan statistic requires fewer computing

resources. For more detail, see Kulldorff et al. (2006) [34].
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Chapter 3

Semiparametric Scan Statistics Method

3.1 Overview

We have described Kulldorff’s scan statistics method in the previous Chapter.

For different types of data, Kulldorff’s method needs to choose different probabilistic

models. In this dissertation, we propose a semiparametric scan statistics method

[26]. It uses the same scanning scheme as Kulldorff’s, but a semiparametric method

to develop the scan statistics and test the significance of the cluster candidate.

To take into account the multiple testing problem induced by numerous overlapping

windows, Stoney’s q-value method [60, 61], a false discovery rate (FDR) methodology

[3], is used in conjunction with the semiparametric testing procedure [70].

In the first section of this chapter, I first introduce the semiparametric density

ratio model used in this research. Secondly, I discuss how the semiparametric density

ratio model is applied to cluster detection and its advantages. In the last section

of this chapter, I describe the concept of FDR methodology as well as the q-value

used in this work.

21



3.2 Semiparametric Density Ratio Model

3.2.1 The Model

The Semiparametric method we use here is based on a density ratio model

studied by Fokianos et al. (2001), and Qin and Zhang (1997) [13, 53]. Consider m

independent samples,

x1 = (x11, x12, . . . , x1n1)
′ ∼ g1(x)

x2 = (x21, x22, . . . , x2n2)
′ ∼ g2(x)

...

xm = (xm1, xm2, . . . , xmnm)′ ∼ gm(x)

where gj(x) is the probability density function of xji, j = 1, . . . ,m, i = 1, . . . , nj.

Choosing the mth sample as the reference sample and gm(x) as the reference density,

it is assumed that the density ratio between the jth density and the reference density

has an exponential form as in (3.1),

gj(x)

gm(x)
= exp{(αj + β′jh(x))}, j = 1, . . . , q, q = m− 1 (3.1)

Notice that h(x) is a known function of x which may take on a scalar form such

as x, x2, or log x, or a vector-valued form such as (x, x2)′, or (x, log x)′, and so on.

See more in subsection 3.2.2. Here αj = αj(βj) is a scalar, but βj could be a scalar

or vector depending on h(x). Clearly, βj = 0 implies αj = 0, and the hypothesis

H0 : β1 = β2 = . . . = βq = 0 implies all the m samples come from a common

distribution with probability density gm(x) ≡ g(x). In this section we shall assume
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that function h(x) is p-dimensional; notice that p and q here are different from p

and q in the previous chapter.

An example of the exponential density ratio model (3.1) is provided by multi-

nomial logistic regression upon an appeal to Bayes theorem. Consider a categorical

random variable y such that P (y = j) = πj, where f(x|y = j) = gj(x), j =

1, . . . , m, and
∑n

i=1 πj = 1. If

P (y = j|x) =
exp{αj + β′jh(x)}

1 +
∑q

k=1 exp{αj + β′jh(x)} , j = 1, 2, ..., q, q = m− 1

then by Bayes rule, model (3.1) holds with αj = α∗j + log(πm/πj), j = 1, 2, ..., q

3.2.2 Choice of the Tilt Function

The semiparametric method requires choosing an appropriate tilt function

h(x). A clue of how to choose a satisfactory h(x) for a given situation can be derived

from common exponential families as we show in some examples with m = 2 below.

More examples can be found in Kay and Little (1987) [24].

Bernoulli distribution: For Bernoulli(p), the density ratio is

g1(x)

g2(x)
=

px
1(1− p1)

1−x

px
2(1− p2)1−x

= exp{log
1− p1

1− p2

+ (log
p1

p2

− log
1− p1

1− p2

) · x}.

So we obtain

α = log
1− p1

1− p2

, β = log
p1

p2

− log
1− p1

1− p2

, h(x) = x,

and p1 > p2 ⇔ β > 0.
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Poisson distribution: For Poisson(λ), similarly we have

α = −(λ1 − λ2), β = log
λ1

λ2

, h(x) = x

and λ1 > λ2 ⇔ β > 0.

Normal distribution: For N(µ, σ2), unequal means and variances,

α = ln(
σ2

σ1

) +
µ2

2

2σ2
2

− µ2
1

2σ2
1

,

β =




β11

β12


 =




(µ1σ
2
2 − µ2σ

2
1)

/
σ2

1σ
2
2

(σ2
1 − σ2

2)
/

2σ2
1σ

2
2


 ,

h(x) = (x, x2)′

If σ1 = σ2, then µ1 > µ2 ⇔ β > 0, and h(x) = x.

3.2.3 Parameter Estimation of the Model

Let t = (t1, t2, ..., tn)′ = (x′1,x
′
2, . . . , x

′
nm

)′ denote the combined data from the

m samples, and put pi = dG(ti), i = 1, 2, ..., n where n = n1 + · · ·+ nm. Then the

likelihood becomes

L(α,β, G) =
n∏

i=1

pi

n1∏
j=1

exp{α1 + β′1h(x1j)} . . .

nq∏
j=1

exp{αq + β′qh(xqj)}. (3.2)

Following a profiling procedure discussed in Fokianos et al. (2001), Qin and

Lawless (1994), and Qin and Zhang (1997) [13, 52, 53], first express each pi in terms

of α, β and then substitute the pi back into the likelihood to produce a function of

α, β only. When α, β are fixed, the likelihood (3.2) is maximized by maximizing
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only the product term
n∏

i=1

pi, subject to the m constraints,

n∑
i=1

pi = 1,

n∑
i=1

pi[wj(ti)− 1] = 0, j = 1, . . . , q

where α = (α1, α2, ..., αq)
′, β = (β′1, β

′
2, ..., β

′
q)
′, and ωj(t) = exp{αj + β′jh(t)} [51].

The maximization employs the method of Lagrange multipliers, the first of

which becomes λ0 = n, and the rest are expressed by construction as λj = νjn, j =

1, . . . , q, for some νj. It follows that

pi =
1

n
· 1

1 + ν1(ω1(ti)− 1) + · · ·+ νq(ωq(ti)− 1)
, (3.3)

which together with the constraints gives a set of equations

1

n
·

n∑
i=1

ωj(ti)− 1

1 + ν1(ω1(ti)− 1) + · · ·+ νq(ωq(ti)− 1)
= 0, j = 1, . . . , q. (3.4)

Substitute pi in L(α,β, G), the log-likelihood becomes up to a constant,

` ≡ log L(α,β, G)

= −
n∑

i=1

log[1 + ν1(ω1(ti)− 1) + . . . + νq(wq(ti)− 1)]

+

q∑
i=1

ni∑
j=1

(αi + β′ih(xij)). (3.5)

To get expressions for νj, we set ∂l/∂αj = 0, j = 1, . . . , q, and using equation

(3.4), we obtain

νj =
nj

n
, j = 1, . . . , q.

Substituting these values of νj in equation (3.3), we have

pi =
1

nm

· 1

1 + ρ1ω1(ti) + · · ·+ ρqωq(ti)
, (3.6)
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where ρj = nj/nm, j = 1, . . . , q, and the value of the profile log-likelihood up to a

constant as a function of α, β only is

`(α, β) = −
n∑

i=1

log[1 + ρ1w1(ti) + . . . + ρqwq(ti)]

+

q∑
i=1

ni∑
j=1

(αi + β′ih(xij)) . (3.7)

The term log[1 + · · ·] is due to the definition of the ρj and ωj(ti).

The score equation for j = 1, . . . , q are therefore,




∂l
∂αj

= −
n∑

i=1

ρjωj(ti)
1+ν1ω1(ti)+···+νqωq(ti)

+ nj = 0

∂l

∂βj

= −
n∑

i=1

ρjh(ti)ωj(ti)
1+ν1ω1(ti)+···+νqωq(ti)

+
nj∑
i=1

nj = 0

.

Solving the above score equation, we obtain the maximum likelihood estima-

tors of the parameters α and β, and consequently by substitution also

p̂i =
1

nm

· 1

1 + ρ1 exp{α̂1 + β̂
′
1h(ti)}+ · · ·+ ρq exp{α̂q + β̂

′
qh(ti)}

(3.8)

therefore the maximum likelihood estimator of the reference distribution function

G(x) is obtained by summing over p̂:

Ĝ(x) =
1

nm

·
n∑

i=1

I(ti ≤ x)

1 + ρ1 exp{α̂1 + β̂
′
1h(ti)}+ · · ·+ ρq exp{α̂q + β̂

′
qh(ti)}

. (3.9)

It is argued in the Appendix that the estimators α̂, β̂ are asymptotically nor-

mal as n →∞,

√
n




α̂−α0

β̂ − β0


 ⇒ N(0,Σ). (3.10)
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The vectors α0 and β0 denote the true parameters, and Σ = S−1V S−1, where the

matrices S, V extend the results in Fokianos et al. (2001) [13] to a vector tilt and

are also given in the Appendix. See Lu (2007) for a more detailed proof [40].

3.2.4 Hypothesis and Test Statistics

The null hypothesis H0 : β = 0 implies distributional homogeneity: g1(x) =

g2(x) = ... = gm(x) ≡ g(x). We can use several test statistics to test this hypothesis.

See Fokianos et al. (2001), Keziou and Leoni-Aubin (2005) and Fokianos (2006) for

details [13, 27, 14].

χ1 test statistic: Define a symmetric matrix A11 in terms of the relative sample

sizes ρj,

A11 =





ρj [1+
Pq

k 6=j ρk]

(1+
Pq

k=1 ρk)2
, if j = j′

−ρjρj′
(1+

Pq
k=1 ρk)2

, if j 6= j′
j = 1, 2, . . . , q (3.11)

Then A11 is nonsingular. Under H0, we deduce from the Appendix

S =




A11 A11 ⊗ E[h′(t)]

A11 ⊗ E[h(t)] A11 ⊗ E[h(t)h′(t)]




and

V =




0 0

0 A11 ⊗ V ar[h(t)]




where V ar[h(t)] is the covariance matrix of h(t) with respect to the reference dis-

tribution and all moments (E[h′(t)], E[h(t)h′(t)]) are evaluated with respect to the

reference distribution. See Appendix for the details. The sub-matrices defining S
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and V have dimensions q × q, q × qp, qp × q, qp × qp, respectively. Consider the

Wald-type statistic,

χ1 = nβ̂
′
(A11 ⊗ V ar[h(t)])β̂. (3.12)

This is an extension to a vector-valued h(t) of the χ1 test statistic reported in

Fokianos et al. (2001). It follows under H0 that χ1 is approximately distributed

as χ2 with qp degrees of freedom, and H0 can be rejected for large values. Here

q = m− 1 and p is the length of βj which depends on the choice of the tilt function

h. For example, if h(x) = x, then p = 1, and if h(x) = (x, x2)′, then p = 2, and so

on. The particular form of the χ1 statistic (3.12) is due to the great simplification

of V , S under the hypothesis.

χ2 test statistic: A general linear hypothesis Hθ = c can be tested by means of

χ2 = n(Hθ̂ − c)′(HΣH ′)−1(Hθ̂ − c) (3.13)

where θ = (α1, . . . , αq,β
′
1, . . . , β

′
q)
′, H is p′ × [(1 + p)q)] predetermined matrix of

rank p′, p′ < (1 + p)q, c is a vector in <p′ , and the variance-covariance matrix

Σ = S−1V S−1. It follows under H0 that χ2 is asymptotically distributed as χ2

with (p′) degrees of freedom provided the inverse exists (Sen and Singer, 1993, page

239) [56], and H0 is rejected for large values.

Basically, the χ1 test and the χ2 test are both Wald type tests. The simulation

results show that the χ2 test is slightly more powerful than the χ1 test. But the χ1

test is easy to apply without inverting the S matrix, while the χ2 test can be easily

generalized to test any linear function of the parameter β.
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Likelihood ratio test statistic: A third possibility is to use the likelihood ratio

test (LR-test),

LR = −2[`(0, 0)− `(α̂, β̂)]

= −2
n∑

i=1

log[1 + ρ1ŵ1(ti) + . . . + ρqŵq(ti)]

+2

q∑
i=1

ni∑
j=1

[α̂i + β̂
′
ih(xij)] + 2n log

[
1 +

q∑
i=1

ρi

]
(3.14)

Under H0, LR is asymptotically approximately distributed as χ2 with qp degrees

of freedom, and H0 is rejected for large values. In a few certain circumstances,

this test is somewhat problematic since (α,β) = (0,0) is a boundary point, an

issue discussed rigorously in Keziou and Leoni-Aubin (2005) [27]. However, our

experience indicates that in testing β = 0, the LR-test works very well.

3.3 Semiparametric Cluster Detection

Since the null hypothesis H0 : β = 0 means equal distributions, and homoge-

nous distributions means no cluster in the cluster detection problem, the cluster

detection problem becomes a special case for semiparametric density model with

m = 2. Similar to Kulldorff’s scanning procedure, the semiparametric cluster de-

tection method applies the density ratio model to movable variable-size scanning

window to scan the whole study region and performs for each window a two-sample

test without assuming a specific probability model. The data can be either continu-

ous or discrete. Since the significance comes from the χ2-test, there is no need to do

the time consuming Monte Carlo hypothesis testing procedure, hence it is not nec-
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essary to know a priori the number of cases in the region. We use the same scanning

procedure as Kulldorff’s and select the primary cluster candidate corresponding to

the largest test statistic or the smallest p-value (or q-value in the case of multiple

testing) as the true cluster. The following is an illustration of semiparametric cluster

detection.

Consider the 5×5 region consisting of 25 cells shown in Figure 3.1(a). Within

each cell, numbered from 1 to 25, there are hundreds of binary observations gener-

ated randomly. The rate in one of the cells is higher than the rate in the rest of

the region. This is the true cluster to be detected. We applied to these simulated

data both Kulldorff’s scan statistic method with the Bernoulli model and the semi-

parametric density ratio method with scalar h(x) = x. Starting with the first cell,

the window size varied from a size roughly as large as a cell size to no more than

50% of the whole study region. This was repeated for each cell. Figure 3.1 (b)-(e)

shows some snapshots of the intermediate stages during scanning of the whole study

region. Both methods detected correctly the true cluster shown in Figure 3.1(f).

In addition, for the case of m = 2, the semiparametric χ1 test and likelihood

ratio test can be simplified to a simpler form as follows. A one-sided test can also

be obtained from χ1 test when h(x) is scalar function.

χ1 test statistic:

χ1 ≡ n β̂
′
1

(
ρ1

(1 + ρ1)2
V ar[h(t)]

)
β̂1 (3.15)

where ρ1 = n1/n2 and V ar[h(t)] is the covariance matrix of h(t) with respect to

the reference distribution. It follows under H0 that χ1 is approximately distributed
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Figure 3.1: (a) The whole study region. (b,c,d,e) Intermediate stages during the

scan. (f) The red region is the true cluster. The true cluster was detected by both

methods.
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as χ2 with p degrees of freedom, where p is the dimension of β1, which is the same

as that of the function h(x). The null hypothesis H0 : β1 = 0 is rejected for large

values of χ1. In practice, V ar[h(t)] is replaced by its estimator [13, 26]. Moreover,

if the data are 0-1 binary data, the χ1 statistic takes the direct form of equation

(A.21) in the Appendix.

Likelihood ratio test statistic:

LR ≡ −2
n∑

i=1

log[1 + ρ1 · exp{α1 + β′1h(ti)}] + 2

n1∑
j=1

[α̂1 + β̂
′
1h(x1j)]

+ 2n log(1 + ρ1) (3.16)

Under H0 : β1 = 0, LR is asymptotically approximately distributed as χ2 with

p degrees of freedom, and H0 is rejected for large values. Recall that p is the

dimension of β1 and it depends on the choice of the function h(x). Similarly, when

the data are 0-1 binary, the likelihood ratio statistic reduces to equation (A.22) in the

Appendix. Interestingly, this semiparametric likelihood ratio statistic is equivalent

to Kulldorff’s scan statistic under the Bernoulli model [70].

One-sided test statistic: The χ1, χ2 and LR test statistics are all two-sided tests

of H0 : β = 0. When m = 2 and h(x) takes a scalar form, such as h(x) = x or

h(x) = log x, the parameter β becomes a scalar, so it is possible to derive a one-sided

test as in equation (3.17):

Z1−sided =
β̂ − β0

σβ

→ N(0, 1) (3.17)

where β0 = 0 and σ2
β is the variance of β̂ obtained from the covariance matrix Σ. In

practice, under H0, this one-sided test statistic can be obtained by the square root

32



of the χ1 test statistic, keeping the same sign as β̂ − β0.

The semiparametric approach has several advantages as follows:

À The reference (or background) distribution, G(x), and all the parameters such

as β1 are estimated from the combined data t, not just from a single sample

either inside the window or outside the window.

Á For a properly chosen h(x), the above tests are quite powerful. Gagnon (2005)

shows that for m = 2 the χ1-test can be more powerful than the common t-

test for a known h(x) but unspecified distributions [16]. Moreover, simulation

results indicate that the χ1-test competes well with the corresponding F -test

(Fokianos et al., 2001) [13].

Â In testing equidistribution within exponential families, other than an assump-

tion regarding the tilt function h(t), the semiparametric density ratio method

does not require specific distributional assumptions.

Ã The semiparametric method can be applied to either continuous or discrete

distributions.

Ä Assuming sufficient large samples, since the asymptotic distributions of the

above mentioned test statistics are known, in principle there is no need for

the time consuming Monte-Carlo methods to compute the p-values. In case

of small sample size, then we can still bear with Monte-Carlo methods to get

p-values.
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Since each scan window is associated with a semiparametric statistic during

scanning, the method results in a large number of tests and test statistics. To

alleviate this multiple testing problem and reduce the possibility of false significance,

a control of false discovery rate (FDR) procedure is employed. The following section

gives a brief description of the FDR methodology and Storey’s q-value method we

used in this paper.

3.4 FDR Method and q-value

To account for the multiple-testing problem induced by the large set of over-

lapped scanning windows, we use Storey’s false discovery rate (FDR) method to

derive the significance of the detected cluster candidate. This FDR method replaces

the original p-value of each scan window by a q-value. We briefly describe in this

section the FDR methodology as well as the q-value method used in this research.

Controlling the false discovery rate (FDR) is a less conservative way to handle

multiple testing problems. It was first proposed by Benjamini and Hochberg (1995)

[3]. Since then, the FDR methodology has been further developed and applied

in many fields, especially in genomic research [66, 54]. FDR is defined to be the

expected proportion of falsely rejected hypotheses (false positives) as in equation

(3.18):

FDR = E

[
V

max(1, R)

]
= E

[
V

R
|R > 0

]
· Pr(R > 0). (3.18)

where V and R are defined in Table 3.1. From the table it is clear that if m = m0,

then all the null hypotheses are true, and FDR is equivalent to the family-wise
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error rate (FWER). To see that, recalling that FWER is defined as P (V ≥ 1),

m = m0 makes S = 0, and hence E[V/R|R > 0] = 1 for all R > 0, and therefore

FDR = 1 ∗ P (R > 0) = P (V ≥ 1) = FWER. If m0 < m, then FDR ≤ FWER,

which means a potential gain in power at the cost of increasing the likelihood of

making type I errors [3].

Table 3.1: Classification of m hypothesis tests

Hypothesis # Accepted # Rejected Total

# of true null Hypotheses U V m0

# of true alternatives T S m1

Total W R m

Storey (2002) and Storey et al. (2004) improved the original Benjamini and

Hochberg FDR methodology by estimating π0 = m0/m, the proportion of true null

hypotheses [60, 63]. In addition, Storey used pFDR as in equation (3.19) instead of

FDR (3.18):

pFDR = E

[
V

R
|R > 0

]
(3.19)

In many cases, when m, the total number of hypotheses, is large, there always are

significant ones, which makes Pr(R > 0) ≈ 1. Thus, pFDR (eq. 3.19) is close to

FDR (eq. 3.18) in numerical value, but pFDR has some conceptual advantages.

For instance, when the rejection region is smaller, namely α-level goes to 0, the

quantity of FDR goes to 0 as Pr(R > 0) goes to 0. It doesn’t mean the actual

chance of false positive decreases to 0. However the quantity of pFDR goes to the
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π0, which is what we would expected. Since when the rejection region is smaller

until only one p-value falls into the region, without any information about the null of

alternative hypotheses, it makes sense to use π0, the proportion of the nulls among

all hypotheses, as the estimation of the chance of the false positive. A thorough

motivation of using pFDR rather than FDR can be found in Storey (2003) [62].

Recall that the p-value gives an error measurement of an observed statistic

with respect to type-I error. In a general setting, the p-value of an observed statistic

T = t is defined to be

p-value(t) = min
Γα: t∈Γα

{Pr(T ∈ Γα|H = 0)}

where H = 0 means under the null hypothesis and Γα is a nested rejection region

parameterized with α and, for α ≤ α′, Γα ⊆ Γα′ holds.

The q-value is defined to be the pFDR analogue of the p-value. It gives the

error measurement with respect to pFDR for each observed test statistic of each

particular hypothesis. More precisely, the q-value of one particular observed test

statistic T = t from a set of tests can be defined to be

q-value(t) = inf
{Γα: t∈Γα}

{pFDR(Γα)}. (3.20)

In this way, the q-value is the minimum pFDR that can occur when rejecting a

statistic with value t for the set of nested rejection regions. In addition, for a

set of hypothesis tests conducted with independent p-values, the q-value of the

corresponding observed p-value can be simplified to

q-value(t) = inf
γ≥p
{pFDR(γ)} = inf

γ≥p
{ π0γ

Pr(P ≤ γ)
} (3.21)
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where the rejection region is denoted by the p-value interval [0, γ] for some γ ≥ 0

instead of the more abstract rejection regions Γ. Storey J.D. and Tibshirani R.

(2001, 2003) shows that the q-value method holds similar properties under either

independence or dependence cases [59, 61].

In our semiparametric scan situation, we generate a lot of overlapping scan

windows, and each window associates to a hypothesis test and a test statistic, so m

here is usually large. Because of the large m, we adopted the algorithm in Storey

and Tibshirani (2003) [61] to estimated the q-value for each scan window as follows:

1. Obtain the p-value for each scan window, and sort:

p(1) ≤ p(2) ≤ . . . ≤ p(m).

2. Estimate π0 using a cubic spline function. First, for a range of λ, say λ =

0, 0.01, . . . , 0.95, calculate

π̂0(λ) =
#{p(j) ≥ λ}
m(1− λ)

for each λ.

Then let f̂(λ) be the natural cubic spline fit to π̂0(λ). Finally, set the estimate

of π0 to be π̂0 = f̂(1).

3. Calculate

q̂(p(m)) = min
t≥p(m)

(
π̂0 mt

#{p(j) ≤ t)}
)

= π̂0 p(m), where 0 < t < 1.

4. For i = m − 1,m − 2, . . . , 1, calculate the estimated q-value for the ith most

significant one as

q̂(p(i)) = min
t≥p(i)

(
π̂0 mt

#{pj ≤ t)}
)

= min

(
π̂0 mp(i)

i
, q̂(p(i+1))

)
.
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5. Choose the region with the largest test statistic, for example, the largest like-

lihood ratio test statistic, as the primary cluster candidate, and its q-value is

q(p(1)), the smallest q-value among all the tests. If q(p(1)) is less than a pre-

decided false discovery rate, say q(p(1)) < 0.05, we claim there is clustering

and the located primary candidate is a true cluster region.
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Chapter 4

Power Study

In this chapter, we study the power of the semiparametric cluster detection

method compared with Kulldorff’s method through Monte Carlo simulations. One

type of study is a limited power study where the location and the size of the clus-

ters are already known without scanning. This limited power study generated power

curves for semiparametric method, Kulldorff’s method, and the focused test for data

under different probability distributions. Another type of study is a comprehensive

power study comparing the semiparametric method and Kulldorff’s method with-

out knowing any information about the clusters. In this study one must scan the

whole study region to locate the cluster candidate. Since both Kulldorff’s and the

semiparametric scan statistics methods are suitable for both binary and non-binary

data, we use both types of data to perform the comprehensive power study.

Both the limited and comprehensive power studies show that for binary data,

the semiparametric cluster detection method and its competitor, Kulldorff’s cele-

brated scan statistics method, both achieve similar high power in detecting unknown

hot-spot clusters. When the data are not binary, the semiparametric methodology is

still applicable, but Kulldorff’s method may not be as it requires the choice of a cor-

rect probability model, namely the correct scan statistic, in order to achieve power

comparable to that achieved by the semiparametric method. Kulldorff’s method
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with an inappropriate probability model may lose power.

4.1 Limited Power Study

The main purpose of the limited power study is to compare the performance

of the semiparametric and Kulldorff’s method in determining the significance of a

known cluster candidate. This can be criticized on the grounds that we do not

scan the area for clusters without the prior knowledge of where those clusters are

located. When the cluster location is known, it is more appropriate to compare the

semiparametric method with what is known as focused tests described in Waller and

Lawson (1995) and Lawson et al. (1999) [68, 38]. So we first briefly introduce the

Lawson-Waller focused test in the following subsection.

4.1.1 Focused Tests

Focused tests detect clusters with increased risk of disease relative to a source

of exposure or focus. Since the problem of multiple testing in cluster detection is

avoided, focused tests tend to have higher power than cluster detection tests.

A well known focused test is the Lawson-Waller score test applied in disease

surveillance [68]. Accordingly, the study area is divided into I subregions where the

population size in subregion i is ni, i = 1, . . . , I. Denote the number of cases in

region i by Ci. The null hypothesis is that the Ci are independent Poisson with

mean E(Ci) = λni, i = 1, . . . , I, against the (hot spot) alternative

H1 : E(Ci) = λni(1 + giε), i = 1, . . . , I (4.1)
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where gi is a measure of exposure to a focus, and ε > 0 controls the increase in risk.

A reasonable test statistic is the Lawson-Waller score statistic

U =
I∑

i=1

gi · (Ci − E(Ci)) (4.2)

which under the null hypothesis has mean 0 and variance
∑I

i=1 g2
i λni, and U/

√
V ar(U)

is asymptotically standard normal. This statistic can be used in testing for trend in

Poisson random variables.

4.1.2 Data and Simulation plan

We consider two regions, A and B, where A consists of 100 subregions or cells,

and B of 1000 cells (except that in the Bernoulli case below the number of cells

were 200 and 5000, respectively). The population size in every cell is identical.

The smaller region can be thought of as a cluster candidate, whereas the larger

region could represent the rest of the area, or some reference or baseline region. The

incidence rates in every cell in A, represented by either a case probability, mean, or

occurrence rate, are identical. The same holds for B. Thus, in terms of occurrence

rate, it is λA in every cell in A, and it is λB in every cell in B. Independent count

data were generated in an identical manner in every cell in A, one count observation

per cell, and likewise, independent count data were generated in the same way in

every cell in B, a single count observation per cell. In the Bernoulli case every cell

contains either 0 or 1. The parameters for B never change, but those for A change

relative to B.
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In this way two samples were generated repeatedly from “within the window”

(from A) and “outside the window” (from B), respectively, with the same or different

parameters, as needed. In our study, the sample size “within the window” is smaller

than the sample size “outside the window” since in practice the size of a true cluster

tends to be small relative to the whole study region.

In this setup, the Lawson-Waller focused test assumes independent Poisson

cell counts with λA = λB under H0, versus λA = λB(1 + giε) under H1, and we let

gi =





1 if cell i is in A

0 if cell i is in B

When β is a scalar, we use the Z test statistic of equation (3.17) to compare

the detecting power with Kulldorff’s scan statistic. When β is not a scalar, we use

the χ1, χ2 and LR test statistics in two-sided tests, and adjust the original Kulldorff

test into a two-sided test. Similar remarks hold for focused tests. In this way we

compare one-sided with one-sided and two-sided with two-sided tests.

The following series of figures shows the results of the power simulation. Each

power curve was obtained from 300 runs, and the size of all the tests was controlled

at the same level of 5%. For Kulldorff’s Monte-Carlo hypothesis test we used 10000

replications.
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4.1.3 Results for Various Probability Distributions

Bernoulli: Figure 4.1 shows the estimated power curves in the Bernoulli case

for one-sided tests. The null probability is p0 = 0.03 and p ranges in the inter-

val [0.03, 0.13]. Kulldorff’s method is applied under the assumption the data are

Bernoulli, whereas the semiparametric method is applied with h(x) = x. Evidently,

the Lawson-Waller score test, designed for count data, dominates both Kulldorff’s

and the semiparametric tests, and the latter two exhibit very close power curves.
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Figure 4.1: Power curves for one-sided tests in the Bernoulli case. Scalar β, h(x) = x.

The focused test dominates the two other tests.
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Poisson: Figure 4.2 shows the power curves for one-sided tests and Poisson data.

The Poisson parameter ranges from the null intensity of 5.0 to 6.5. Kulldorff’s

method is applied under a Poisson model, and the semiparametric method is applied

with h(x) = x. The power curves of the semiparametric and focused tests are fairly

close, and both dominate Kulldorff’s.
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Figure 4.2: Power curves for one-sided tests in the Poisson case. Scalar β, h(x) = x.

The power curves from the semiparametric and focused tests are fairly close.
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Clipped Poisson: Figure 4.3 shows the power curves for one-sided tests and data

generated from clipped Poisson observations. The parameters are the same as in

the previous Poisson case. Equation 4.3 describes the clipping operation,

z =





2 (x <= 2)

x (2 < x <= 10)

10 (x > 10)

(4.3)

Kulldorff’s method is applied under the Poisson model, and the semiparametric

method still uses h(x) = x. The semiparametric method gives relatively higher

power, apparently due to hard limiting.
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Figure 4.3: Power curves for one-sided tests in a clipped Poisson case. Scalar β,

h(x) = x. The semiparametric method gives relatively higher power.
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Quantized Normal I : In this and the next two examples we turn to count data

generated by quantizing normal observations. This is motivated by real situations

when the data are non-Poisson count data, but not knowing the true distribution the

Poisson assumption is made nonetheless. In the present case the Poisson assumption

is sensible up to a point as our simulation shows. The semiparametric method

obviates this assumption.

The quantized data were obtained from the integer part of the original normal

data. The original normal samples share the same variance (σ2 = 16), but the mean

µ of the A samples ranges from the null µ0 = 9 to µ = 12. Kulldorff’s method is

applied under the Poisson model, the semiparametric method uses h(x) = x, and the

tests are one-sided. Figure 4.4 shows the resulting power curves. The focused test

dominates both Kulldorff’s and the semiparametric tests, and the last two perform

very similarly. However, from Figure 4.5, the situation changes dramatically for

the same variance 16 but much higher means ranging from 50 to 53. This time

the semiparametric test clearly dominates the two other tests. The situation here

resembles that of the doubly truncated Poisson case depicted in Figure 4.3 since

the quantized data stay away from very small and very large values with a high

probability.

46



mean

P
ow

er

9.0 9.5 10.0 10.5 11.0 11.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kulldorff
Semi-1sd
LWfocus1sd

Quantized Normal I (Low)

Figure 4.4: Power curves for one-sided tests applied to Quantized normal samples

with the same variance 16 but different means. Scalar β, h(x) = x. The focused

test gives higher power.
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Figure 4.5: Power curves for one-sided tests applied to Quantized normal samples

with the same variance 16 but different relatively high means. Scalar β, h(x) = x.

The semiparametric test clearly dominates the other two tests.
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Quantized Normal II : Figure 4.6 shows the power resulting from two-sided tests

applied to integer quantized normal data as in the previous example. The quantized

samples are derived from normal data with the same mean µ = 13 but different

variances, respectively, where the variance ranges from 4 (null) to 10. Kulldorff’s

method is applied under the Poisson model, and the semiparametric method uses

h(x) = (x, x2)′, a model suggested by the normal distribution. In this case the three

semiparametric tests are much more powerful than the other two tests whose power

is almost identical. Kulldorff’s method with the Poisson model and the focused

count model seem not appropriate for the present case.
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Figure 4.6: Power curves for two-sided tests applied to quantized normal sam-

ples with the same mean but different variances. The semiparametric method uses

h(x) = (x, x2)′, χ1, χ2, LR. The semiparametric tests markedly dominate the two

other tests.
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Quantized Normal III : This case is the same as the previous one except that

both the means and the variances are different. Recall that here and elsewhere,

the null hypothesis is equidistribution. The mean ranges from the null of µ = 20

to µ = 21, and the corresponding variance is σ2 = 4 when µ = 20, and is σ2 = 7

otherwise. From Figure 4.7 we see again that the three semiparametric tests are

much more powerful than Kulldorff’s and the focused test. This and the previous

examples give an indication that Kulldorff’s test and the Lawson-Waller focused

test may not be suitable for integer samples with substantially different variances.
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Figure 4.7: Quantized normal case as in Figure 4.6 but with different means and

different variances. The semiparametric tests clearly dominate the two other tests.

From the above power results we find that Kulldorff’s method and the Lawson-

Waller focused test perform well for some types of count data but may lose power for

count data with non-homogeneous variance, as well as count data which are far from
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being Poisson. In contrast, the semiparametric method seems to perform relatively

well under very different settings, without specifying any distribution except for

the choice of the tilt function. In particular, our simulation results indicate that

this semiparametric method is potentially useful across different types of data with

changing regional means and/or variances. With a properly chosen tilt function

h(x), the method can detect changes in both the mean and the variance.

4.2 Comprehensive Power Study: Overview

We compared the power of Kulldorff’s and the semiparametric scan statistics

methods in detecting potential clusters. Because there are various cluster patterns,

with a single or multiple clusters, each cluster region may contain one or more

counties or states. For simplicity, in our power comparison, exact accuracy is not

required, we focus more on the existence instead of precise delineation of the cluster

region . For instance, for a data set with a pattern of multiple cluster regions and

multiple counties in each cluster region, we deem the detection successful whenever

a significant q-value is obtained. We do not strictly require the detected cluster

region to be exactly the same as originally simulated. The detected cluster region

could fully or only partially cover the desired area.
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4.3 Comprehensive Power Study: Binary Data

4.3.1 Binary Data Set and Simulation Plan

For binary data scans, we use the Northeastern U.S.A. purely spatial bench-

mark data consisting of 245 counties in northeastern United States, from Maine,

New York, Rhode Island, Pennsylvania, Maryland, Washington DC, among others

(Kulldorff et al., 2003) [32]. Each county is graphically represented by its centroid

coordinates. The case data, the numbers of people who have breast cancer, are ag-

gregated to county level with the total number of cases in northeastern states being

fixed. The population data of each county are based on the female population of the

1990 census. The benchmark data set contains two types of data, hot-spot clusters

and global clustering data. Figure 4.8 is a map of the northeastern U.S. states. The

following briefly describes the simulated data and data sets. See Kulldorff et al.

(2003) for details [32].

Hot-spot clusters: Data are generated by a first-order clustering model, where

cases are located independently of each other and the relative risk is different in

different geographical areas. In this US northeastern states benchmark data set,

the cluster region can be either a single region containing one or more counties,

or a collection of multiple regions, where the risk of breast cancer is much higher

than in the rest of the area. Three types of cluster, rural, urban, and mixed, are

generated depending on the location of the cluster. A rural cluster is a region which

has a small population relative to a large graphical area, such as Grand Isle County
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Figure 4.8: sketch map of the US northeastern states.

in northern Vermont close to the Canadian border. An urban cluster is a region

which has a large population relative to a small graphical area, such as New York

County which includes Manhattan. A mixed cluster is a region where a big city is

surrounded by rural areas, such as Allegheny county in western Pennsylvania where

Pittsburgh is located.

Global clustering: Data are generated by purely second-order clustering model,

where any one particular case is randomly located, so that the relative risk is con-

stant throughout the whole study region, but the location of cases are dependent

on each other. Thus, under the alternative hypothesis of global clustering, cases

are clustered wherever they occur in the region. In this benchmark data set, a

certain number of cases are first generated to be randomly located throughout the

whole northeastern states. These original cases then generate other new cases close
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by. If each original case generates one additional case, we call them twins; if two

additional cases are generated, we call them triplets. The case generation is based

on a global chain rN -nearest neighbor rule. The global chain is constructed by

a Hamiltonian cycle chain which passes through as many counties as possible ex-

actly once, and any two counties next to each other on the chain always border

each other graphically. For twins, the additional case is assigned to county j if

∑
k I(dik < dij)nk < rN ≤ ∑

k I(dik ≤ dij)nk, where nk is the population size of

county k, N =
∑

k nk is the total population size, r is some constant in the interval

(0, 0.5), and dij is the distance in one particular direction along the chain connect-

ing county i and county j. For triplets, the two new cases are assigned in opposite

directions along the chain. Data sets corresponding to different r were generated,

where r is either deterministic or randomly selected from a probability distribution.

Notice that although the first- and the second-order clustering models are very

different in generating the cases, the resulting point patterns may look quite similar,

and hence indistinguishable.

This benchmark data set includes two groups of data with a total of 600 and

6000 simulated cases, respectively, for both hot-spot and global clustering data sets.

The same null hypothesis of no cluster is used throughout where the relative risk for

each county is equal, and the cases as well as their locations are independent of each

other. In order to perform power comparison, 100000 random data sets with a total

of 600 and 6000 cases were generated under the null hypothesis, respectively. These

are used to estimate the critical cut-off point of significance. For each alternative
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hypothesis of clusters which are called scenarios in this paper, 10000 random data

sets were generated to estimate the power using the previous determined cut-off

points.

For each group of fixed total cases, Kulldorff generated 35 hot-spot clustering

scenarios and 26 global clustering scenarios for his power comparison. For instance, a

scenario of “rural and urban 600, size 4” means a total of 600 cases were generated

under the alternative hypothesis that the study region has two hot-spot clusters.

One cluster is in a rural region including four counties, and the other one is in

an urban region including four counties as well. A scenario of “global clustering

twin 6000, exponential 0.02” means a total of 6000 cases were generated under the

alternative hypothesis of global clustering. The value r is randomly generated from

an exponential distribution with parameter 0.02.

In this paper, we did not use all the scenarios in the Northeastern US bench-

mark data. Instead, we randomly chose one or two scenarios from each clustering

pattern. Finally, 9 hot-spot clustering scenarios and 6 global clustering scenarios

are used in our power study for the binary data. After selecting these scenarios, the

same data sets in each scenario were used for Kulldorff’s method with the Poisson

model (the Bernoulli model is also appropriate) and the semiparametric method was

applied with the tilt function h(x) = x. In addition, the simplified semiparametric

likelihood ratio test statistic (eq. 3.16) is used to accelerate the computation. All

the tests are two-sided to detect for either high or low valued clusters.
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4.3.2 Results for Binary Data

The results of power comparison for the binary case-population data using

the northeastern US benchmark data set are shown in Figures 4.9 and 4.10 for a

total number of 600 and 6000 cases, respectively. All tests are two-sided tests. In

each figure, scenario 0 is under the null hypothesis of no cluster, scenarios 1 to 9

are hot-spot clustering scenarios, and scenarios 10 to 15 are global clustering sce-

narios. Each scenario contains five quantities. They are “Kull.paper”, “Kull.me”,

“SemiwFDR=0.1”, “SemiwFDR=0.05”, and “Bonferroni”. “Kull.paper” is the cor-

responding power copied from Kulldorff et al. (2003) paper. “Kull.me” is the cor-

responding power computed by us based on Kulldorff Poisson model. The purpose

of including “Kull.paper” here is to make sure our programming and computation

are correct. If we are correct, the results of ”Kull.me” should be similar to those

in “Kull.paper”. From Figures 4.9 and 4.10, we can see that they are almost equal,

which confirm the validity of our computation. So in the latter of this section,

we will use “Kulldorff’s method” without distinguishing these two power results.

“SemiwFDR=0.1” is the corresponding power computed based on a q-value signif-

icance level 0.1. “SemiwFDR=0.0.5” is the corresponding power computed based

on a q-value significance level 0.05. The smaller the q-value significance level is,

the harder it is to reject the null hypothesis, hence the lower the power to detect

the cluster. “Bonferroni” is the corresponding power computed based on Bonferroni

correction with the family-wise error rate 5%. Because Bonferroni correction is a

popular but a conservative approach to handle multiple testing problems, we also
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included it here to compare with the FDR methodology. We expect “Bonferroni”

to have the lowest power among the five.

For scenario 0, both Figures 4.9 and 4.10 show that the type I errors of Kull-

dorff’s method are all exactly 0.05 for both 600 cases and 6000 cases. This is

expected since Kulldorff’s method uses a Monte Carlo procedure to derive the cut-

off point for the corresponding significance level. Since the significance level for

Kulldorff’s method in our power study is 0.05, the power computed from Kulldorff’s

method under the null hypothesis, which is the type I error, must be 0.05. The

power from semiparametric method under the q-value significance level of 0.1 is

0.052 for the 600 cases, and 0.054 for the 6000 cases. It means that, if we allow a

higher false discovery rate such as 10%, which is in favor of the alternative, the type

I error of semiparametric method is slightly higher than Kulldorff’s. If the q-value

significance level is chosen as 0.05, the type I error of the semiparametric method

reduced to 0.027 for both cases. This is also expected since lower q-value significance

level works in favor of the null hypothesis. It shows that if one wants to make the

power comparison under exactly the same type I error level, say 0.05, the q-value

significance level must be set in the interval between 0.05 to 0.1. In addition, the

type I error of the semiparametric method with Bonferroni correction is the lowest,

which is not a surprise since Bonferroni correction is the most conservative.

For scenarios No. 1 to 9, both figures show that the two methods work very

well in detecting hot-spot clusters, but Kulldorff’s method seems to be slightly

more powerful. When the study area has a stronger pattern of clustering, such
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Figure 4.9: Power comparison between Kulldorff’s and the Semiparametric with

likelihood ratio test methods for binary type data using the northeastern US bench-

mark data with 600 simulated cases.
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Figure 4.10: Power comparison between Kulldorff’s and the Semiparametric with

likelihood ratio test methods for binary type data using the northeastern US bench-

mark data with 6000 simulated cases.
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as containing more cluster regions, the power of both methods increases, which

demonstrates the validity of the two methods. For instance, scenario No. 6 in

figure 4.9 has a total of 600 cases and two cluster regions where each cluster region

contains 16 counties. The power of Kulldorff’s method is 0.996, whereas the power

of semiparametric method with q-value significance level of 0.1 and 0.05 obtain the

power 0.996 and 0.993, respectively, which is quite close to the power of Kulldorff’s.

The semiparametric method with Bonferroni correction is 0.968, which is expected

to be the lowest, but still is quite reasonable.

For scenarios No. 10 to 15, both figures show that the two methods do not do

very well compared with the results in hot-spot detection. This is so because both

Kulldorff’s and the semiparametric methods are not designed to detect global clus-

tering pattern. The figures show that Kulldorff’s method is slightly more powerful

than semiparametric method with an exception of scenario No. 14. It is also shown

that for both methods, the larger the r is, the lower is the detection power.

4.4 Comprehensive Power Study: Non-binary Data

4.4.1 Non-binary Data Set and Simulation Plan

For non-binary data scan, we use the simulated ordinal categorical data with

one data point corresponding to one observation. The data are aggregated to state

levels distributed in 18 states. Most of them are middle south states, including

Alabama (AL), Arkansas (AR), Texas (TX), Virginia (VA), etc. Each state is

59



graphically represented by its centroid coordinate. Figure 4.11 shows the map of

the states included in our simulated study.

Figure 4.11: Map showing the states included in the simulation denoted with color

and the abbreviation of state names. The state Illinois with red color is illustrated

as one possible cluster region in our simulated data.

The ordinal categorical data are integer data generated from quantized nor-

mal data obtained from the integer part of the original normal data. We refer to

quantized normal II and quantized normal III data as described in the limited power

study section. Also see Kedem and Wen (2007) [26]. The quantized normal II data

are derived from normal data with the same mean but different variance inside and

outside the cluster region, whereas the quantized normal III data are derived from

normal data with both different mean and variance inside and outside the cluster

region. To see how Kulldorff’s and the semiparametric methods perform when the
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difference between the cluster and the non-cluster region is small, namely a more

difficult cluster detection problem, the data set “Quantized Normal III (small)” was

generated. Table 4.1 lists the mean and variance parameters used to generate the

quantized normal data.

Table 4.1: Parameters for Simulating the Ordinal Categorical Data from Quantized

Normal

Data Type Inside the cluster Outside the cluster

Quantized Normal II µ = 13, σ2 = 8 µ = 13, σ2 = 4

Quantized Normal III µ = 7.2, σ2 = 13 µ = 6, σ2 = 9

Quantized Normal III (small) µ = 6.5, σ2 = 13 µ = 6, σ2 = 9

Figure 4.12: Box Plots of the Simulated the Ordinal Categorical Data
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For each type of data, the average sample size within each state is around

130, hence there is a total of 130 × 18 = 2340 observations in each generated data

set. To perform power comparison within a reasonable time scale, we generated 100

random data sets with a single cluster and also multiple clusters for both Quantized

Normal II and Quantized Normal III data, respectively. The single clusters means

only one state was randomly chosen as the cluster region. By multiple clusters we

mean four states were randomly chosen as the cluster region, where the four states

are not necessarily contiguous. Notice that multiple clusters constitute a stronger

clustering pattern which in general is easier to detect.

In our power comparison using these non-binary ordinal categorical data,

the same data sets were used for both methods. Kulldorff’s method was applied

with the Poisson model (inappropriate model) and with the ordinal model (correct

model), while the semiparametric method was applied with the vector tilt function

h(x) = (x, x2). We used Kulldorff’s SaTScan v7.0.1 software to conduct the cluster

detection by the ordinal model. The results of the power comparison for the ordinal

categorical data are shown is Figures 4.13 and 4.14. Observe that it is appropriate

to choose h(x) = (x, x2) for binary data as well, because in that case the coefficient

of x2 term is 0. See more details in the discussion section.

4.4.2 Results for Ordinal Categorical Data

The results of power comparison for non-binary ordinal categorical data using

the generated middle south US data set are shown in Figures 4.13, 4.14 and 4.15.
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All the tests are two-sided tests. The significance level for Kulldorff’s method is still

0.05, and the q-value significance level for the tests in semiparametric method is also

set at 0.05. This means the true type I error level of the semiparametric method is

lower than Kulldorff’s as explained above.

For ordinal categorical data which are generated from the quantized normal

II type, figure 4.13 shows that semiparametric method with the likelihood ratio

test has the highest power of detecting potential clusters among all the tests. The

semiparametric method with the χ1 test works well but not as well as the likelihood

ratio test. This is in line with the limited power study in Kedem and Wen (2007)

[26] who showed the likelihood ratio test was the most powerful tests among three

tests from the semiparametric density ratio model. Moreover, when the clustering

pattern is stronger, in this case, when the study region contains multiple clusters,

the power of χ1 test increase to 0.94, which is almost close to the power of the

likelihood ratio test. The power of Kulldorff’s method with Poisson model is very

low, because the Poisson model is inappropriate when the variance is not constant

Kulldorff’s method with ordinal model is comparable to the semiparametric method

with the χ1 test in detecting potential clusters.
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Figure 4.13: Power comparison between Kulldorff’s and the Semiparametric meth-

ods for ordinal categorical data generated from quantized normal II data, where the

means are the same but the variances are different, between the cluster region and

the rest of the area.
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For ordinal categorical data which are generated from the quantized normal

III type, figure 4.14 shows that semiparametric method performs in the same way as

in the quantized normal II case. The likelihood ratio test still has the highest power

in both single and multiple clusters situation. The power of all tests increases as

the clustering pattern becomes stronger. Kulldorff’s method with the ordinal model

works as well as the semiparametric method. Kulldorff’s method with the Poisson

model works but less powerful as compared with the other tests. This is because for

the quantized normal III data, Kulldorff’s Poisson model can detect changes in the

mean while ignoring changes in variances.

Figure 4.14: Power comparison between Kulldorff’s and the Semiparametric meth-

ods for ordinal categorical data generated from quantized normal III data, where

both means and variances are different inside and outside the cluster region.
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Figure 4.15(a) shows the power results when the difference between the cluster

and non-cluster regions is small. The data are still ordinal categorical data generated

from the quantized normal III data. However, this time the difference of the mean

in the cluster region is set to be very close to the the non-cluster region, while the

variance inside and outside the cluster region is kept the same as in the previous

case (refer to Table 4.1 for the simulation parameters). In this way, the cluster is

more difficult to detect. Not surprisingly, for the single cluster case, the detection

power of both Kulldorff’s and the semiparametric method significantly decreases

due to the weaker cluster pattern. The power for the likelihood ratio test from the

semiparametric method and Kulldorff’s method with the ordinal model continue

achieving the highest power, although it is much lower than in the previous case

where the differences inside and outside the cluster region are substantial. The

power of the χ1 test of the semiparametric method also decreases, and Kulldorff’s

method with the Poisson model continues yielding the lowest power which is almost

0. The multiple cluster case is similar to the single cluster case but with a higher

power.

Interestingly, if we look at the accuracy, which means detecting the true clus-

ter region correctly with its exact size, it is shown as in figure 4.15(b) that the most

accurate method is the semiparametric method with the likelihood ratio test statis-

tic, which has a more than 50% higher accuracy rate than Kulldorff’s method with

the ordinal model.
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Figure 4.15: Power comparison between Kulldorff’s and the Semiparametric meth-

ods for ordinal categorical data with small differences. The data are in quantized

normal III small type. (a) Existence. (b) Accuracy.
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Chapter 5

Data Analysis examples

Chapter 3 illustrates the Semiparametric cluster detection method using sim-

ulated data. In Chapter 4, it is shown that the Semiparametric method achieves

comparable power to that of the celebrated Kulldorff’s method. In some cases, the

Semiparametric method has a higher power. In this chapter, I apply the Semipara-

metric cluster detection method to real data.

5.1 North Humberside Childhood Leukemia Data

Both the Semiparametric method with the likelihood ratio test using tilt func-

tion h(x) = x and Kulldorff’s method with the Bernoulli model are applied to a real

data set from Kulldorff’s satscan website http : //www.satscan.org/. It gives the

spatial location of 62 cases of childhood leukemia and lymphoma in North Hum-

berside, England, between 1974 and 1986, as well as 141 controls (Alexander et al.,

1990) [1]. The scientific question is to see if there is some region with a higher

disease rate. A snapshot of part of the data set is shown in Figure 5.1, and the

spatial locations of the region’s postal zones are shown in Figure 5.2(a).

A circular scanning window was used and moved across all postal zones with

a variable size ranging from roughly the size of a postal zone to no more than 20%

of the study region. Both Kulldorff’s scan statistics and the Semiparametric density
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Figure 5.1: Snapshot of part of the North Humberside childhood leukemia and

lymphoma data set
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ratio method point to the same cluster shown in Figure 5.2(b), consisting of postal

zones (14, 18, 19, 26), as the primary cluster candidate. However, from the software

SatScan version 7.0.1 described at http : //www.satscan.org/, Kulldorff’s method

gives a p-value of 0.674, nonsignificant, whereas the Semiparametric p-value without

adjusting for multiple testing is 0.002. The Semiparametric method coupled with

the FDR control gives a q-value of 0.073, which is on the boundary, suggesting that

the detected cluster could be a true cluster. Thus, the two approaches lead to very

different conclusions as expressed by very different p-values. Which one is correct?

Working with the same data, Cuzick et al. (1990) found that the true cluster

is likely to consist of 4 postal zones [1]. Moreover, environmental studies by Colt

and Blair (1998) and Mckinney et. al. (1991) reported that the association be-

tween childhood leukemia and paternal exposure to solvents was quite strong, and

that a global cluster was located in North Humberside [5, 41]. Thus, the results

from the Semiparametric method are more in line with the medical and environ-

mental studies, and the located cluster candidate as well as its significance given by

the Semiparametric method seems more credible. More conclusive results may be

obtained by increasing the sample size.

5.2 Maryland-DC-Virginia Crime Data

Besides cancer research and epidemiology studies, another important applica-

tion area of cluster detection is in crime mapping [12, 37]. Actually criminology has

a long history of using mapping techniques, such as “colored pin maps”, to help
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Figure 5.2: (a.) The geographical map. (b). The detected cluster candidate in red.
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police officers improve public safety. For instance, through mapping crime occur-

rences, police officers or investigators can determine regions with high crime rate, or

figure out the route of drug flow, and so on. This helps the criminal justice or law

enforcement specialists to optimize the allocation of resources. In recently years, the

advance of computer technology as well as geographic information systems (GIS)

make crime mapping widely available [55, 39, 69].

In this section, we apply our Semiparametric cluster detection method with

both the χ1 test and likelihood ratio test to detect crime clusters (both hot-spot

and cold-spot), if any, using the the 2001 - 2004 data set of the annual number of

arrests in Maryland-DC-Virginia since it is believed that high arrest rates indicates

high crime rates. The data are from National Consortium on Violence Research

(NCOVR) website, which is a research, training, and data resource specializing

in violence research. NCOVR was funded in 1995 by a grant from the National

Science Foundation in cooperation with the National Institute of Justice. For more

information of NCOVR, see its website at (http://www.ncovr.heinz.cmu.edu/).

The annual number of arrests data I used in this case study are aggregated

to county level (159 counties in total). To adjust the population, I used the 2002

Population data and assume it is fixed throughout the period 2001 to 2004. The

spatial coordinates are the longitude and latitude of the center of each county.

In reality, there were minor changes in the population during four years, but the

changes were small relative to the total population, and it doesn’t hurt to regard the

population as constant in a short period. Figure 5.3 gives a snapshot of the crime
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data in year 2001.

Figure 5.3: Snapshot of part of the Maryland-DC-Virginia Crime data set

A circular window is used to scan the whole region aiming to detect both

high and low risk clusters. The window size is varied ranging from roughly the size

of including one county to a maximum of 50% of the study region. The results

from the Semiparametric cluster detection method are listed in Table 5.1. It shows

that from year 2001 to 2004, although the arrest rate (number of arrests divided

by the population) is changing, the primary high crime risk cluster always includes

Baltimore county and Baltimore city centered at Baltimore county. The average

arrest rate in this Baltimore cluster is four to five times higher than the rest of

region. The p-value and q-value are both less than 0.001 showing significant high
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crime risk. The primary low risk cluster includes Montgomery county, Howard

county, Fairfax county, District of Columbia, Falls Church (City), Arlington county,

Fairfax City, Alexandria City, Prince George’s county, Loudoun county, centered at

Montgomery county. The p-value and q-value are also both less than 0.001 showing

significant low crime risk. Figure 5.4 shows the primary high and low crime risk

clusters.

Table 5.1: Results of High and Low Crime Risk Cluster from Yr 2001∼2004

Primary Cluster High Risk Low Risk

Cluster center Baltimore County Montgomery county

Cluster size 2 counties and cities 12 ∼ 15 counties and cities

Relative arrest rate Ratio 4.31 ∼ 5.05 0.31 ∼ 0.36

p-value (from χ1 and LR) < 0.001 < 0.001

q-value (from χ1 and LR) < 0.001 < 0.001

Figures 5.5 to 5.8 show the arrest rates of each county for each year. The

figures also demonstrate the constancy of the primary high and low risk clusters.

The results are not surprising. They are all consistent with the economic

and demographic factors. Throughout 2001 to 2005, on average, the arrest rate

of Baltimore is four to five times higher than the average of the rest of the three

states. Moreover, this ratio appears to be increasing. According to crime statistics

there were 269 homicides in Baltimore in 2005, giving it the highest homicide rate

per 100,000 of all U.S. cities of 250,000 or bigger population [7]. The homicide
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Figure 5.4: Maryland-DC-Virginia High and Low Risk Crime Cluster. Red means

high crime risk cluster, Navy means low crime risk cluster.

rate in Baltimore is nearly seven times the national rate, six times the rate of New

York City, and three times the rate of Los Angeles. In 2007, the CNN/Morgan

Quitno “Most Dangerous City” Rankings (2007) ranks Baltimore as the 12th most

dangerous American city. Baltimore is second only to Detroit among cities with a

population over 500,000 [8, 9]. The high risk of crime has troubled Baltimore for

years. The main reasons for the high crime rate in the Baltimore area are illegal

drug trade, dreadful public schools, and lack of jobs. Besides strengthening the

police force, it is essential to improve the education level of the school system, cut

off drug trade lines, and provide more jobs.

On the other hand, the Montgomery County cluster as well as its nearby coun-

ties including Fairfax County, etc. have a national reputation for their public educa-
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Figure 5.5: Maryland-DC-Virginia Arrest Rate by County in Year 2001
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Figure 5.6: Maryland-DC-Virginia Arrest Rate by County in Year 2002
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Figure 5.7: Maryland-DC-Virginia Arrest Rate by County in Year 2003
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Figure 5.8: Maryland-DC-Virginia ArrestRate by County in Year 2004
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tion system. Students in Montgomery county public schools score among the top in

the United States on Advanced Placement Examinations [71]. The Fairfax County

government spends more than half of its fiscal budget on its education system. Its

county public school system contains the Thomas Jefferson High School for Science

and Technology (TJHSST), a Virginia Governor’s School. TJHSST consistently

ranks at or near the top of all United States high schools due to the extraordi-

nary number of National Merit Semi-Finalists and Finalists, the high average SAT

scores of its students, and the number of students who annually perform nationally

recognized research in the sciences and engineering [72]. In addition, Montgomery

County has a very lucrative business climate. It is the epicenter for biotechnology

in the Mid-Atlantic region, the third largest biotechnology cluster in the nation.

There are many large firms and federal agencies located in Montgomery County,

including Lockheed Martin, Marriott International, BAE Systems Inc, Genentech,

National Institutes of Health (NIH), Food and Drug Administration (FDA), Na-

tional Institute of Standards and Technology (NIST), and so on. Those companies

and organizations attract a lot of highly educated work force and provide tremen-

dous work opportunities. Thus, it makes the crime rate here remains consistently

low.

Interestingly, DC and Prince George’s county are also included in this low

crime risk cluster. It seems a little different than what you expect because these

two regions are known as violent areas. But the data show that the arrest rates in

DC and PG county are 0.9% and 3%, respectively. Both of them are less than 4.7%,
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the overall arrest rate of the three states. This may be due to a large population,

although the absolute number of arrests are high. Another reason could be that it

is hard for the circular scanning window also to delineate the exact boundary of the

cluster.

It is also noticed that Worcester County of Maryland where Ocean City is

located is a region with a second highest arrest rate, which is almost three times than

the overall average. However, the results from the Semiparametric cluster detection

method doesn’t show that Worcester County is a secondary cluster candidate. The

high arrest rate in Worcester County may due to its small population.
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Chapter 6

Summary and Discussion

In this dissertation, I develop a cluster detection approach by using a Semi-

parametric method applied to moving windows of variable size as suggested by

Kulldorff’s method. The only assumption needed regards the exponential tilt func-

tion h(x), but unlike Kulldorff’s method, no specific distributional assumptions are

necessary, and the testing procedure with m = 2 is quite simple. Likewise, there is

no need to know the number of cases a priori. The practical potential of the method

was demonstrated with real and artificial data. It successfully detects potentially

high risk clusters (hot-spot) as well as low risk clusters (cold-spot). In addition, the

significant tests of the Semiparametric method use χ2 test to obtain the p-value di-

rectly, so there is no need to run the time consuming Monte Carlo testing procedure.

As an example, for the Maryland-DC-Virginia crime data set in Chapter 5, using

my acer laptop, Intel Centrino 1.6GHz CPU, 512M memory, the Semiparametric

method in the Splus environment costed around 8 seconds to get the final results.

But Kulldorff’s SatScan v7.0.1 software costed around 50 seconds to get the results.

The results of the power study show that when detecting localized clusters,

both the Semiparametric and Kulldorff’s method achieve comparably good power.

For binary population-case data, Kulldorff’s method with the Poisson model may

have a slightly higher power than the Semiparametric method with tilt function
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h(x) = x. For non-binary data, such as ordinal categorical data, the Semipara-

metric method with tilt function h(x) = (x, x2)′ is slightly more powerful than

Kulldorff’s method with an ordinal model. If Kulldorff’s method is applied with an

inappropriate model, that is using the Poisson model to analyze ordinal categorical

data, it may fail to detect any potential clusters. For instance, Kulldorff’s method

with the Poisson model obtains a very low power for quantized normal II data,

while it still works for quantized normal III data, but with a relatively lower power

compared with the ordinal model. We also find that in our Semiparametric method

the likelihood ratio test seems to have a higher power than the χ1 test in detecting

potential clusters. When the localized clustering pattern is strong, for instance, mul-

tiple cluster regions or the difference inside and outside the cluster region is large,

both tests obtain good power. When the clustering pattern is weak, that is, the

difference is not that large, the likelihood ratio test seems to be more acuminous,

while the χ1 test could be insensitive to undesired fluctuations. On the other hand,

the Likelihood ratio test only can test ”either high or low values”, but χ1 test can

be easily transformed into a one-sided test if the tilt function has a scalar form. In

practice, it is prudent to use both tests whenever possible for potential clusters.

In the power study for non-binary data, we only used the ordinal categorical

data, which are integer data, to compare the power of the two methods. However,

Kulldorff’s method also offers the exponential model to analyze survival time data

and a normal model to analyze continuous data. A future study could compare the

power of the Semiparametric method and Kulldorff’s method for continuous data.
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We expect the Semiparametric method to work well, since the Semiparametric den-

sity ratio model was originated designed for continuous data. In addition, Semipara-

metric model provides a more consistent setup than Kulldorff’s method. Kullorff’s

method requires different models, namely different scan statistics, for different types

of data, whereas the Semiparametric method requires no specific distributional as-

sumptions except for the exponential tilt function h(x). In practice, the choice of

h(x) = (x, x2)′ is appropriate for many types of continuous and discrete data.

If the underlying distribution is known exactly, we choose the true tilt function

h(x) to get the best performance. For instance, if the data are from Bernoulli

or Poisson distribution, we use the tilt function h(x) = x; if the data are from

normal, we use h(x) = (x, x2)′; if the data are from Gamma distribution, we can

use h(x) = (x, log x)′. We may choose the tilt function as h(x) = (x, x2)′ for binary

data as well although the x2 term is not necessary. Appendix A.2 shows that the

power of the Semiparametric method does not change since the parameter associated

with x2 is 0. Simulation studies have demonstrated that if a term in the tilt function

is not necessary, the parameter associated with that term is close to 0 also. A clue of

how to choose a satisfactory h(x) for a given situation can be derived from common

exponential families (recall Chapter 3). If the underlying distribution is not known,

there could be a problem of a misspecified tilt function. Fokianos and Kaimi (2006)

demonstrates that a misspecified h(x) could decrease the power of the corresponding

tests [14, 15]. Yet, there are examples where very different choices of h could lead to

similar test results. For instance, in an application to meteorological data in Kedem
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et al. (2004), the choice of h(x) as x or log x led to very similar test results [25].

To check whether the assumption of the exponential tilt density ratio model holds,

Qin and Zhang (1997) [53] propose a Kolmogorov-Smirnov type statistic to test the

goodness of fit of the density ratio model for two-sample case, which also gives a

guidance of an appropriate choice of h(x). Lu (2007) extend this goodness of fit

test to m-sample case [40].

Interestingly, Kulldorff’s method and the Lawson-Waller focused score test

may still perform well even for non-Poisson count data as long as the variance

of the observations over the study region does not change much. However, these

two methods seem to lose power when the variance changes appreciably over the

region. As for the Semiparametric method, it seems that for a non-homogeneous

regional variance the choice of h(x) = (x, x2)′ suggested by the normal distribution

is sensible. Shmueli et al. (2006) [57] revive the Conway-Maxwell-Poisson (CMP)

distribution to fit discrete data. The CMP distribution is a two-parameter extension

of the Poisson distribution that generalizes some well-known discrete distributions

(Poisson, Bernoulli and geometric). In this sense, h(x) = (x, logx!) derived from the

CMP distribution could also be used as an alternative to h(x) = (x, x2) for discrete

data.

The Semiparametric density ratio model essentially tests the homogeneity or

equidistribution of two or more samples, therefore, besides Kulldorff’s circular scan

window, the Semiparametric method may also adapt to other shapes of the scanning

window or scanning schemes, such as the elliptic window scan, Patil and Taillie’s up-
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per level set scan and Tango’s flexible scan mentioned in Chapter 1. More precisely,

in scanning for clusters, and regardless of regular or irregular shapes of the scanning

window, as long as the window separates the whole study region into two samples,

one inside the window and one outside the window, the Semiparametric method can

be applied. However, the Semiparametric method ignores the information about the

location of a cases except whether a case is inside or outside the current window.

Thus the Semiparametric method may not have good power for global type clus-

tering clusters as shown in scenarios 10 to 15 in Figure 4.9 and Figure 4.10 where

clustering occurs throughout the study region.

It is also important to keep in mind that whatever the shape of the most likely

cluster, it only indicates the general area of the true underlying cluster, and that

the exact boundary of the detected clusters is uncertain. This is sufficient for most

practical purposes, as the Semiparametric cluster detection method’s main purpose

is to generate a signal with a general idea of where an outbreak or higher than

normal activity has occurred. More detailed information about the outbreak, its

cause, nature and extent, can only be obtained through detailed investigations by

specialists in corresponding areas, who should not only focus on the area within the

most likely cluster, but also on neighboring localities. The exact choice of shapes

is not of critical importance. If computing resources allow, better results may be

obtained using an irregular rather than a circular scan window, depending on the

shape of the true underlying cluster. For valid statistical inference, it is important

that the choice of the scan window is made a priori though, before analyzing the
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data, in order to avoid pre-selection bias.

A limiting factor of the complete power study in this dissertation is that for

non-binary type data we only used 100 runs at one point for each power compar-

ison. That is because it is tedious and time consuming to run SatScan software

and document the results manually. In addition, the Semiparametric method also

takes longer time to numerically estimate the parameters α and β especially when

the combined sample size is large, while for binary scan the MLEs of α and β are

available in a closed form. However, although 100 doesn’t sound like a large num-

ber in simulation, the results are reasonable. From Figures 4.13 and 4.14, it is

already clear that the Semiparametric method achieves comparable good power as

Kulldorff’s method with the correct model. If Kulldorff’s method is applied with

an inappropriate model, the power may decrease a lot. Figure 4.15 demonstrates

that when the difference between the cluster and non-cluster region is small, the

detecting power for both methods decreases, but the likelihood ratio test of the

Semiparametric method seems better in term of accuracy.

A last note is about the π0 in Storey’s q-value method which is used to take

into account the multiple testing problem. The critical part of q-value method of

controlling the false discovery rate is to give a good estimate of π0, the proportion

of the true null hypotheses among all the tests. The current method we used in this

study is based on the algorithm suggested by Storey et al. (2003) which assumes the

distribution of p-value from each test is uniform over the (0,1) interval. However,

Yang (2004) pointed out that if the p-values were not uniformly distributed, the
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power of the q-value method may decrease [73]. He suggested to compute a weighted

average of π0 from the distribution of the raw p-values which are greater than a

threshold (say 0.4). Thus, it gives a better control and more robust estimate of π0.

It is also worthwhile to try some other good multiple-testing methods as well.
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Chapter A

Appendix

A.1 Derivation of S, V

The entries of the matrices S, V are derived by repeated differentiation of the

equation (3.7) based on the fact that
∫

dG(t) = 1 and
∫

ωj(t)dG(t) = 1, j = 1, . . . , q.

This is an extension of Fokianos et al. (2001) [13] to the vector case of the tilt

function h(x).

First define

∇ ≡
(

∂

∂α1

, ...,
∂

∂αq

,
∂

∂β1

...,
∂

∂βq

)′
(A.1)

Then E[∇l(α1, ..., αq,β1, .., βq)] = 0. To obtain the score second moments it is

convenient to define ρm ≡ 1, wm(t) ≡ 1,

Ej[h(t)] ≡
∫

h(t)wj(t)dG(t) (A.2)

and,

A0(j, j
′) ≡

∫
wj(t)wj′(t)dG(t)

1 +
∑q

k=1 ρkwk(t)
(A.3)

A1(j, j
′) ≡

∫
h(t)wj(t)wj′(t)dG(t)

1 +
∑q

k=1 ρkwk(t)
(A.4)

A2(j, j
′) ≡

∫
h(t)h′(t)wj(t)wj′(t)dG(t)

1 +
∑q

k=1 ρkwk(t)
(A.5)

for j, j′ = 1, ..., q. Then, the entries in

V ≡ V ar

[
1√
n
∇l(α1, ..., αq,β1, ..., βq)

]
(A.6)
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are,

1

n
V ar

(
∂l

∂αj

)
=

ρ2
j

1 +
∑q

k=1 ρk

{A0(j, j)−
m∑

r=1

ρrA
2
0(j, r)} (A.7)

1

n
Cov

(
∂l

∂αj

,
∂l

∂αj′

)
=

ρjρj′

1 +
∑q

k=1 ρk

{A0(j, j
′)

−
m∑

r=1

ρrA0(j, r)A0(j
′, r)} (A.8)

1

n
Cov

(
∂l

∂αj

,
∂l

∂βj

)
=

ρ2
j

1 +
∑q

k=1 ρk

{A0(j, j)Ej[h
′(t)]

−
m∑

r=1

ρrA0(j, r)A
′
1(j, r)} (A.9)

1

n
Cov

(
∂l

∂αj

,
∂l

∂βj′

)
=

ρjρj′

1 +
∑q

k=1 ρk

{A0(j, j
′)Ej′ [h

′(t)]

−
m∑

r=1

ρrA0(j, r)A
′
1(j

′, r)} (A.10)

1

n
Cov

(
∂l

∂βj

,
∂l

∂βj′

)
=

ρjρj′

1 +
∑q

k=1 ρk

{−A2(j, j
′) + Ej[h(t)]A′

1(j, j
′)

+ A1(j, j
′)Ej′ [h

′(t)]

−
m∑

r=1

ρrA1(j, r)A
′
1(j

′, r)}

+
1

n

nj∑
i=1

nj′∑

k=1

Cov[h(εji), h(εj′k)] (A.11)

The last term is 0 for j 6= j′ and (nj/n)V ar[h(εj1)] for j = j′.

Next, as n →∞,

− 1

n
∇∇′l(α1, ..., αq,β1, ..., βq) → S (A.12)

where S is a q(1 + p)× q(1 + p) matrix with entries corresponding to j, j′ = 1, ..., q,

− 1

n

∂2l

∂α2
j

→ ρj

1 +
∑q

k=1 ρk

∫
[1 +

∑q
k 6=j ρkwk(t)]wj(t)

1 +
∑q

k=1 ρkwk(t)
dG(t) (A.13)

− 1

n

∂2l

∂αjαj′
→ −ρjρj′

1 +
∑q

k=1 ρk

∫
wj(t)wj′(t)

1 +
∑q

k=1 ρkwk(t)
dG(t) (A.14)
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− 1

n

∂2l

∂αj∂β′j
→ ρj

1 +
∑q

k=1 ρk

∫
[1 +

∑q
k 6=j ρkwk(t)]wj(t)h

′(t)

1 +
∑q

k=1 ρkwk(t)
dG(t) (A.15)

− 1

n

∂2l

∂αj∂β′j′
→ −ρjρj′

1 +
∑q

k=1 ρk

∫
wj(t)wj′(t)h

′(t)
1 +

∑q
k=1 ρkwk(t)

dG(t) (A.16)

− 1

n

∂2l

∂βj∂β′j
→ ρj

1 +
∑q

k=1 ρk

∫
[1 +

∑q
k 6=j ρkwk(t)]wj(t)h(t)h′(t)

1 +
∑q

k=1 ρkwk(t)
dG(t)

(A.17)

− 1

n

∂2l

∂βj∂β′j′
→ −ρjρj′

1 +
∑q

k=1 ρk

∫
wj(t)wj′(t)h(t)h′(t)
1 +

∑q
k=1 ρkwk(t)

dG(t) (A.18)

It should be noted that, due to profiling, the matrix S is not the usual infor-

mation matrix although it plays a similar rote.

Thus when the density ratio model (3.1) holds for the true parameters α0 and

β0, it follows under the regularity condition that α̂ and β̂ are both consistent and

asymptotically normal as in (3.10) (see Sen and Singer 1993, chapter 5) [56],

√
n




α̂−α0

β̂ − β0


 ⇒ N(0,Σ)

where Σ = S−1V S−1
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A.2 Simplified Semiparametric Test Statistics for Binary Data

If the data are 0-1 binary data, such as cancer or no cancer, we can simplify

the likelihood and obtain closed forms for the parameter estimates. Recall:

NG: The combined sample size for the whole study region.

nG: The number of cases in the whole study region.

NZ : The sample size within the scan window.

nG: The number of cases within the scan window.

ti: The ith observation from the combined sample in the whole study region,

i = 1, . . . , NG.

ρ1: The relative sample size, which is equal to NZ/(NG −NZ).

xZj: The jth observation within the scan window Z, j = 1, . . . , NZ .

For binary data, choose the tilt function h(x) = x. Then the profile log-

likelihood with parameters α1 and β1 is

`(α1, β1) = −
NG∑
i=1

log[1 + ρ1e
α1+β1ti ] +

NZ∑
j=1

(α1 + β1 xZj)

= −(NG − nG) · log

[
1 +

NZ

NG −NZ

eα1

]

−nG · log

[
1 +

NZ

NG −NZ

eα1+β1

]
+ NZ · α1 + nZ · β1 (A.19)

The resulting maximum likelihood estimators are,





α̂1 = log
(

NZ−nZ

NZ

)
− log

(
(NG−NZ)−(nG−nZ)

NG−NZ

)

β̂1 = log
(

nZ

NZ−nZ

)
− log

(
nG−nZ

(NG−NZ)−(nG−nZ)

)

eα̂1+β̂1 = nZ/NZ

(nG−nZ)/(NG−NZ)

(A.20)
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Apparently, β1 = 0 implies α1 = 0 and eα1+β1 = 1, which means the relative rates

inside and outside the scan window are equal.

By equation (3.15), the χ1 test statistic can be simplified to

χ1 = NG · β̂1 ·
{

ρ1

(1 + ρ1)2
·
[

nG − nZ

NG −NZ

· (1− nG − nZ

NG −NZ

)

]}
· β̂1 (A.21)

where ρ1 = NZ

NG−NZ
and β̂1 is as in equation (A.20).

By equation (3.16), the likelihood ratio test statistic can be simplified to

LR = 2 log

[
(
nZ

NZ

)nZ · ( nG − nZ

NG −NZ

)nG−nZ · (NZ − nZ

NZ

)NZ−nZ

]

+ 2 log

[
(
(NG −NZ)− (nG − nZ)

NG −NZ

)(NG−NZ)−(nG−nZ)

]

− 2 log

[
(
nG

NG

)nG · (NG − nG

NG

)NG−nG

]

= 2 log [Kulldoff’s Bernoulli scan stat. as in equation (2.1)] (A.22)

If the tilt function h(x) is chosen as (x, x2), the parameter β12, which is as-

sociated with the x2 term, is actually 0. Notice that the normal equation of the

likelihood for β11, which is corresponding to the x term, is identical with the nor-

mal equation for β12. Thus the x2 term is confounded with the x, and β12 is not

estimable. Therefore, only α1 and β11 are estimated, and the final results are still

the same as in the situation where h(x) = x.
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