
ABSTRACT

Title of dissertation: SECURITY AND TRUST
IN DISTRIBUTED COMPUTATION

Xiangyang Liu, Doctor of Philosophy, 2015

Dissertation directed by: Professor John S. Baras
Department of Electrical and Computer Engineering

We propose three research problems to explore the relations between trust

and security in the setting of distributed computation. In the first problem, we

study trust-based adversary detection in distributed consensus computation. The

adversaries we consider behave arbitrarily disobeying the consensus protocol. We

propose a trust-based consensus algorithm with local and global trust evaluations.

The algorithm can be abstracted using a two-layer structure with the top layer

running a trust-based consensus algorithm and the bottom layer as a subroutine

executing a global trust update scheme. We utilize a set of pre-trusted nodes,

headers, to propagate local trust opinions throughout the network. This two-layer

framework is flexible in that it can be easily extensible to contain more complicated

decision rules, and global trust schemes.

The first problem assumes that normal nodes are homogeneous, i.e. it is

guaranteed that a normal node always behaves as it is programmed. In the second

and third problems however, we assume that nodes are heterogeneous, i.e, given

a task, the probability that a node generates a correct answer varies from node

to node. The adversaries considered in these two problems are workers from the

open crowd who are either investing little efforts in the tasks assigned to them or

intentionally give wrong answers to questions.

In the second part of the thesis, we consider a typical crowdsourcing task that

aggregates input from multiple workers as a problem in information fusion. To cope

with the issue of noisy and sometimes malicious input from workers, trust is used

to model workers’ expertise. In a multi-domain knowledge learning task, however,

using scalar-valued trust to model a worker’s performance is not sufficient to re-

flect the worker’s trustworthiness in each of the domains. To address this issue,

we propose a probabilistic model to jointly infer multi-dimensional trust of work-

ers, multi-domain properties of questions, and true labels of questions. Our model

is very flexible and extensible to incorporate metadata associated with questions.

To show that, we further propose two extended models, one of which handles in-

put tasks with real-valued features and the other handles tasks with text features

by incorporating topic models. Our models can effectively recover trust vectors of

workers, which can be very useful in task assignment adaptive to workers’ trust in

the future. These results can be applied for fusion of information from multiple

data sources like sensors, human input, machine learning results, or a hybrid of

them. In the second subproblem, we address crowdsourcing with adversaries under

logical constraints. We observe that questions are often not independent in real life

applications. Instead, there are logical relations between them. Similarly, workers

that provide answers are not independent of each other either. Answers given by

workers with similar attributes tend to be correlated. Therefore, we propose a novel

unified graphical model consisting of two layers. The top layer encodes domain

knowledge which allows users to express logical relations using first-order logic rules

and the bottom layer encodes a traditional crowdsourcing graphical model. Our

model can be seen as a generalized probabilistic soft logic framework that encodes

both logical relations and probabilistic dependencies. To solve the collective infer-

ence problem efficiently, we have devised a scalable joint inference algorithm based

on the alternating direction method of multipliers.

The third part of the thesis considers the problem of optimal assignment under

budget constraints when workers are unreliable and sometimes malicious. In a real

crowdsourcing market, each answer obtained from a worker incurs cost. The cost

is associated with both the level of trustworthiness of workers and the difficulty of

tasks. Typically, access to expert-level (more trustworthy) workers is more expensive

than to average crowd and completion of a challenging task is more costly than a

click-away question. In this problem, we address the problem of optimal assignment

of heterogeneous tasks to workers of varying trust levels with budget constraints.

Specifically, we design a trust-aware task allocation algorithm that takes as inputs

the estimated trust of workers and pre-set budget, and outputs the optimal assign-

ment of tasks to workers. We derive the bound of total error probability that relates

to budget, trustworthiness of crowds, and costs of obtaining labels from crowds nat-

urally. Higher budget, more trustworthy crowds, and less costly jobs result in a

lower theoretical bound. Our allocation scheme does not depend on the specific de-

sign of the trust evaluation component. Therefore, it can be combined with generic

trust evaluation algorithms.

Security and Trust in Distributed Computation

by

Xiangyang Liu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor John S. Baras, Chair/Advisor
Professor Gang Qu
Professor Charalampos Papamanthou
Professor Tudor Dumitras
Professor Jennifer Golbeck

c© Copyright by
Xiangyang Liu

2015

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I would like to express my sincere gratitude to my advisor,

Professor John S. Baras for giving me an invaluable opportunity to broaden my

knowledge base and supporting me diving deep into some real-world problems. His

deep insight on amazingly broad areas of research, limitless energy and enthusiasm

on challenging problems has been the most important support for the past four

years and will continue to be for years that will come. I would also like to thank Dr.

Charalampos Papamanthou, Dr. Gang Qu, Dr. Tudor Dumitras, and Dr. Jennifer

Golbeck, for agreeing to serve on my thesis committee and for their invaluable

discussions and input.

Sincere thanks to Xiangnan Weng, Peixin Gao, Ren Mao, Wentao Luan, who

have enriched my graduate life in many ways and with whom I always had inspiring

and fruitful discussions. Also I would like to thank Mrs. Kim Edwards for her great

administrative support.

Lastly, I would like to acknowledge the support offered by AFOSR MURI

FA-9550-10-1-0573, NSF CNS-1035655, NSF CNS-1018346 and by Maryland Pro-

curement Office contract H98230-14-C-0127.

ii

Table of Contents

List of Figures v

1 Introduction 1
1.0.1 Security issues in distributed computation 1
1.0.2 Main contributions and thesis organization 3

1.0.2.1 Trust Models For Distributed Consensus With Ad-
versaries . 3

1.0.2.2 Worker Trust In Crowdsourcing With Adversaries . . 4
1.0.2.3 Trust-Aware Optimal Crowdsourcing With Budget

Constraint . 5

2 Trust Models For Distributed Consensus With Adversaries 6
2.1 Background on distributed consensus algorithms 6
2.2 Definitions of adversaries . 10
2.3 Trust model . 12

2.3.1 Local trust evaluation . 14
2.3.1.1 Clustering-based Decision Rule 15
2.3.1.2 Distance-based Decision Rule 16
2.3.1.3 Consistency-based Decision Rule 17

2.3.2 Global trust evaluation . 18
2.4 Trust-aware consensus algorithms . 22
2.5 Theoretical analysis on security guarantees 24

2.5.1 Single-dimension decision rules 25
2.5.2 Multi-dimensional decision rules 30
2.5.3 Security performance for general trust graphs 32

2.6 Case study and performance evaluation 36

3 Worker Trust In Crowdsourcing With Adversaries 47
3.1 Enhancing data fusion using multi-dimensional trust 47

3.1.1 Motivation . 47
3.1.2 Related work . 49
3.1.3 Definitions . 51

iii

3.1.4 Multi-domain crowdsourcing model 52
3.1.5 Integration with features . 56
3.1.6 Multi-domain crowdsourcing model with topic model 57
3.1.7 Experiments on real datasets 62

3.1.7.1 UCI datasets . 62
3.1.7.2 Text Data . 66

3.1.8 Proofs . 67
3.1.8.1 Updates in mdc . 69
3.1.8.2 Updates in mdfc . 71
3.1.8.3 Updates in mdtc . 72

3.1.9 Summary . 74
3.2 Trust-aware crowdsourcing with domain knowledge 75

3.2.1 Motivation . 75
3.2.2 Related work . 77
3.2.3 Graphical model framework for trust-aware crowdsourcng with

domain knowledge . 77
3.2.4 Scalable inference algorithm based on ADMM 80

3.2.4.1 Definitions in probabilistic soft logic 81
3.2.4.2 Scalable ADMM-based inference 82

3.2.5 Case studies and experiments on real datasets 84
3.2.5.1 Affective Text Evaluation 86
3.2.5.2 Fashion Social Dataset Evaluation 88

3.2.6 Summary . 91

4 Trust-Aware Optimal Crowdsourcing With Budget Constraint 93
4.1 Motivation . 93
4.2 Related work . 96
4.3 Problem setting . 96
4.4 Trust-aware task allocation . 100

4.4.1 Assumptions . 101
4.4.2 Optimization Problem . 102

4.5 Theoretical performance bound . 106
4.6 Experimental results . 109

4.6.1 Benchmark Algorithms . 109
4.6.2 Experiment Setup on Galaxy Zoo Dataset 110
4.6.3 Analysis . 112

4.7 Summary . 114

6 Conclusions 115

Bibliography 118

iv

List of Figures

1.1 Distributed computation without supervisors. 2
1.2 Distributed computation with supervisors. 2

2.1 The adversary takes random vibration strategy. 30
2.2 Trust-aware consensus algorithm in situations with or without trust

propagation when there are no adversaries in the network. 37
2.3 The adversary takes constant strategy. 38
2.4 The adversary takes randome vibration strategy. 38
2.5 The adversary takes random noise strategy. 38
2.6 The adversary takes fixed noise strategy. 39
2.7 Sensor network of 7 nodes (sensors) with the centering shaded node

as Byzantine adversary. 40
2.8 Network of 8 nodes (sensors) with the centering shaded node as

Byzantine adversary and triangle node as header. The dotted links
incident on the header node are not in the communication graph.
Instead, they belong to the trust graph. Nodes 1 to 7 form a com-
munication graph of connectivity 2. 41

2.9 Trust-aware consensus algorithm in sparse network Fig. 2.8 of con-
nectivity 2.. Constant strategy. 42

2.10 Trust-aware consensus algorithm in sparse network Fig. 2.8 of con-
nectivity 2.. Random vibration. 42

2.11 Trust-aware consensus algorithm in sparse network Fig. 2.8 of con-
nectivity 2.. Random noise. 43

2.12 Trust-aware consensus algorithm in sparse network Fig. 2.8 of con-
nectivity 2.. Fixed noise. 43

3.1 Multi-domain property of questions and workers in the test grading
example. Q represents a question with concept vector [0.7, 0.3] shown
on the edges. Several workers with different two-dimensional trust
vectors provide answers. 49

v

3.2 The graphical model for observed data provided by workers L, multi-
domain expertise β, true labels R, domain variables C, and concept
vectors λ. M is the total number of workers. N the number of
questions. α is the hyperparameter of the Dirichlet prior distribution
for λ and θ is the hyperparameter of the Beta prior distribution for β. 54

3.3 The graphical model for observed data provided by workers L, fea-
tures x, multi-domain expertise β, true labels R, domain variables C,
and parameter for domain distribution λ. µ, Σ, w, and δ are model
parameters. 56

3.4 The graphical model for mdtc. L are observed answers from workers,
wik is word k observed in question i, multi-domain expertise β, true
labels R, domain variables C, parameter for domain distribution λ,
topic distribution for word k in question i : zik, word distribution for
domain l : φl. 60

3.5 Estimated worker reliability under different simulation settings on
pima indians dataset. The estimated trust about workers’ knowledge
in Fig. 3.5(a), Fig. 3.5(b), and Fig. 3.5(c) are by mdfc and the results
in Fig. 3.5(d) are by mdc. 65

3.6 Trust matrix about workers’ knowledge over topics estimated by mdtc
model. 68

3.7 Graphical Model of Trust-aware Crowdsourcing with Domain Knowl-
edge (tcdk). zi’s are true label variables, βj’s are workers’ trust
variables, and lij’s are worker-provided answers. The black-dotted
lines in the bottom layer encode probabilistic dependencies between
variables and the red-dotted lines in the upper layer encode logical
dependencies. 80

3.8 Estimated true labels for ”cloth related” questions can be used for
prediction of ”fashion related” questions. 91

3.9 Estimated true labels for questions can be used for prediction of other
questions using image similarity. 91

4.1 Total error probability of algorithms uacqsacataataapon Galaxy
Zoo dataset with budget ranging from 50 to 1500. 112

4.2 Total error probability of algorithm taap on Galaxy Zoo dataset
under noise variance from 0 to 0.1 and the budget is from 50 to 1500. 113

vi

Chapter 1: Introduction

1.0.1 Security issues in distributed computation

Distributed computation plays an important role in solving many real-world

large-scale problems such as estimation of temperature using a network of sensors,

image annotation by a pool of human workers on Amazon Mechanical Turk.

In the temperature estimation example, a network of sensors collaborate by

executing a distributed consensus algorithm to reach an estimation of the average

temperature of all nodes using only local information. This type of distributed com-

putation does not have supervisors. Nodes in the network collaborate to accomplish

a common task with local communication as illustrated in Fig. 1.1. Another ap-

plication that fits these scenaria is a network of robots, each running a distributed

consensus algorithm, collaborating to reach consensus on where to go for a rescue

task. Each node in the network is supposed to run a local update algorithm by

exchanging local information with its neighbors within communication range. In

the existence of malicious nodes however, this is not the case. Communication

links might be jammed [1] and nodes in the network might be hacked and behave

arbitrarily [2, 3].

In the image annotation example, there is a supervisor that is responsible for

1

Cooperation
Cooperation

Cooperation

Agent

Agent Agent

Agent

Cooperation

C
o

o
p

e
ra

tio
n

Agent

Without
supervisor

Figure 1.1: Distributed computation without supervisors.

Cooperation
Cooperation

Cooperation

Agent

Agent

Agent

Cooperation

C
ooperation

Agent

supervisors supervisors supervisors Job
Request

Dispatch Collect

With
supervisor

Figure 1.2: Distributed computation with supervisors.

distributing tasks to a group of workers who collaborate to give annotations to given

images. Their answers are then sent back to the supervisor for information fusion.

This process is illustrated in Fig. 1.2. Data contributed by workers are noisy and

many times malicious. In real applications (crowdsourcing platforms), some workers

want to make easy money by investing little effort in understanding the task assigned

to them and giving random answers.

2

1.0.2 Main contributions and thesis organization

In this dissertation, we aim to answer the following questions: (1) How to

develop a trust model of nodes and integrate it within a distributed consensus algo-

rithm in the face of adversaries to effectively detect adversaries; (2) In distributed

computation without supervisors (crowdsourcing) with malicious workers, how to

develop a graphical model that estimates questions’ true labels more accurately by

taking into consideration workers’ trust values; (3) How to allocate tasks to workers

of different trust values in order to minimize error probability rate subject to a bud-

get constraint. The first question assumes that normal nodes are homogeneous, i.e.

it is guaranteed that a normal node always behaves as it is programmed. In the sec-

ond and third questions however, we assume that nodes are heterogeneous, i.e, given

a task, the probability that a node generates a correct answer varies from node to

node. The adversaries considered in this problem are workers from the open crowd

who are either investing little efforts in the tasks assigned to them or intentionally

give wrong answers to questions. The main contributions of this dissertation are

summarized below.

1.0.2.1 Trust Models For Distributed Consensus With Adversaries

To address the first question, we propose a trust model with various deci-

sion rules based on local evidences in the setting of Byzantine adversaries. Our

trust-aware algorithm is flexible and can be easily extended to incorporate more

complicated designs of trust models and decision rules. We provide theoretical se-

3

curity performance with respect to miss detection rate and false alarm rate under

a regular trust graph assumption and provide a security performance bound under

general trust graph assumptions. The therectical results indicate that both error

rates decreases exponentially with respect to the number of headers. Simulations

show that our proposed trust-aware consensus algorithm can effectively detect vari-

ous malicious strategies even in sparse networks where connectivity < 2f + 1, where

f is the number of adversaries.

1.0.2.2 Worker Trust In Crowdsourcing With Adversaries

To answer the second question, we formulate a probabilistic model of crowd-

sourcing tasks with multi-domain characteristics and propose a novel inference

method based on variational inference. Our model is very flexible and can be eas-

ily extended. In applications where each question comes with a feature vector, we

further develop an extended model that handles questions with continuously-valued

features. We further extend the model by combining a multi-domain crowdsourc-

ing model with topic discovery based on questions’ text descriptions and derive an

analytical solution to the collective variational inference.

We assumed the true labels of different questions and the trust values of work-

ers are independent. However, our domain knowledge tells us that there might be

logical constraints between the true labels of questions as well as between the trust

values of different workers. To incorporate domain knowledge, we formulate a novel

trust-aware crowdsourcing with domain knowledge framework that combines domain

4

knowledge with a traditional crowdsourcing graphical model. Users can express high

level domain knowledge without having to re-define the model and the framework

can be used to integrate multiple data sources. We also develop a scalable joint

inference algorithm for estimating true label variables and trust values of workers

based on alternating consensus optimization. The inference algorithm can be easily

scaled to multiple machines.

1.0.2.3 Trust-Aware Optimal Crowdsourcing With Budget Constraint

We answer the last question by formulating the problem of trust-aware task

allocation in crowdsourcing and provide a principled way to solve it. Our formulation

models the workers’ trustworthiness and the costs depend on both the question

and the worker group. Our method is ready to be extended to more complicated

aggregation methods other than the weighted majority vote as well. The trust-aware

task allocation scheme we propose can achieve total error probabilities bounded by

N
2
−O(

√
B), where N is the number of tasks and B is the total budget. Different

from [4], the exact performance bound of error probability also incorporates both

trustworthiness of crowds and cost. More trustworthy crowds and less costly jobs

result in lower guaranteed bound.

5

Chapter 2: Trust Models For Distributed Consensus With Adver-

saries

2.1 Background on distributed consensus algorithms

In distributed systems, nodes in the network are programmed to calculate given

functions of nodes’ values. However, due to message transmission delays, crashes,

value domain errors, or even Byzantine behavior of malicious nodes, different nodes

would probably have different views of the input vector of these parameters. Con-

sensus requires that every correct agent in the network reach an agreement on some

value. We will study the problem of consensus in the face of Byzantine adversaries.

The issue of consensus has been investigated for decades in the computer

science, communication and control communities. There are mainly two types of

failures discussed. One is crash failures and the other is Byzantine failures. A crash

failure refers to the case when a process stops working, while in a Byzantine failure,

a process may send arbitrary data to other processes. Byzantine failures are far

more disruptive since they allow arbitrary behaviors.

In the computer science community, the consensus problem is to design a

distributed protocol that allows processes to agree on a single decision value, which

6

should be one of the initial values. Based on different failure types, oracle-based

consensus protocols [5] and condition-based approaches [6] have been proposed to

achieve the goal. For asynchronous distributed systems, Chandra and Toeug [7]

introduced the concept of Failure Detector (FD) and showed that with FD, consensus

can be achieved and possible failure processes can be found. In [8] a probabilistic

solution was applied to solve the consensus problem under Byzantine failures with

the condition fb <
1
5
n, where n is the total number of processes and fb is the

number of Byzantine failures. The leader-based consensus developed by Mostefaoui

et al [5]. required fc <
1
2
n to reach consensus with crash failures, where fc is

the number of crash failures, and the time and message costs of the protocol can

be reduced when fc <
1
3
n. Later in [6], the leader oracle approach, the random

oracle approach and the condition-based approach are combined to provided a hybrid

consensus protocol. [9] connected Error-Correcting Codes (ECC) to the condition-

based approach and showed that consensus can be solved despite fc crash failures

if and only if the condition can be mapped to a code whose Hamming distance is

fc + 1, and Byzantine consensus can be solved despite fb Byzantine faults when the

Hamming distance of the code is 2fb + 1.

Different from the consensus problem discussed in the computer science com-

munity, consensus in a network of connected agents means reaching an agreement

regarding the states (or values of certain agent variables) of all (benign) agents that

are used in computing certain functions (or function). Without considering failures,

for a certain node, the consensus process can be as simple as using a weighted aver-

age of its neighbors’ states [10]. Ren [11,12] proposed update schemes for consensus

7

under dynamically changing directed interaction topologies, provided that the union

of the directed interaction graphs have a spanning tree frequently enough as the sys-

tem evolves. However the linear updating rules may not be resilient to misbehaving

nodes. It was shown in [13] that a single misbehaving node can cause all agents to

reach consensus on a wrong value, which potentially will result in a dangerous situa-

tion in physical systems. The framework for posing and solving consensus problems

for multi-agent networked systems was analyzed in [13, 14], where key results on

the theory and applications of consensus problems in networked systems are pre-

sented. [15] showed that the resilience of a partially connected network to Byzantine

adversaries is characterized by its network topology, and a well-behaving agent can

calculate any arbitrary function of all node values when the number of malicious

nodes (f) is less than 1/2 of the network connectivity, i.e the connectivity should be

at least 2f+1. [3] used system theory to reach a similar conclusion regarding network

connectivity, requiring that the number of disjoint paths between any two nodes in

the network should be greater than twice the number of adversaries. LeBlanc et

al. developed the Adversarial Robust Consensus Protocol (ARC-P) [16, 17], which

applied ideas from both the consensus algorithms resilient to Byzantine faults in

distributed computing and the linear consensus protocols used for coordination of

networked agents, and formulated the problem into a linear control problem where

consensus could be reached among cooperative agents via agreement and validation

conditions.

Applications of both kinds of consensus problems and formulations are appro-

priate for, and have been used in our earlier work, distributed filtering and estimation

8

in heterogeneous sensor networks networks with applications to power grids [18–20].

A Model-Based Systems Engineering framework for distributed heterogeneous sen-

sor networks was presented in [21].

Network connectivity conditions in most previous works are hard to satisfy

in reality. In addition, the robustness condition in [16] is itself hard to verify.

These facts motivate us to design a Byzantine adversary detection scheme based

on trust evaluation. We introduce the notion of trust in the context of consensus

algorithms with Byzantine adversaries. Works related to the application of trust to

distributed algorithms inlcude [18,20] who embedded trust evaluation in distributed

Kalman filtering (DKF) with applications to sensor networks in power grids, and [22]

who proposed the RoboTrust algorithm in consensus algorithms. Our work differs

from [22] in the following ways: 1) The trust model is different; and 2) Trust in [22] is

established only by local evidence while our trust model also depends on second-hand

evidence. 3) Trust propagation in evaluating global trust is resistant to malicious

voting. In addition to the empirical results reported in our previous work [23], we

provide a theoretical bound on the miss detection rate and false alarm rate for the

result of trust propagation for both a regular trust graph assumption and a general

trust graph assumption. Our contributions are as follows:

• We propose a trust model with various decision rules based on local evidences

in the setting of Byzantine adversaries.

• Our trust-aware algorithm is flexible and can be easily extended to incorporate

more complicated designs of trust models and decision rules.

9

• We provide theoretical security performance with respect to miss detection

rate and false alarm rate under a regular trust graph assumption and provide

security performance bound under a general trust graph assumption. The

therectical results indicate that both error rates decrease exponentially with

respect to the number of headers.

• Simulations show that our proposed trust-aware consensus algorithm can ef-

fectively detect various malicious strategies even in sparse networks where

connectivity < 2f + 1, where f is the number of adversaries.

2.2 Definitions of adversaries

Consider a communication network modeled by a directed graph G(k) =

(V,E(k)), where V denotes the set of nodes in the network and E(k) the set of

edges at time k. If eij(k) ∈ E(k), it means node i can hear node j’s message at time

k, i.e. node j is a neighboring node of i at time k. Whether node i is able to receive

node j’s message depends on their relative distance and j’s transmission power. A

node can reach a larger portion of nodes in the network if it transmits messages with

higher power. Let Ni(k) = {j|eij(k) ∈ E(k), j 6= i} denote the set of neighbor nodes

that node i can hear from at time k, and N+
i (k) = Ni(k)

⋃
{i} denote the extended

neighbor set of node i at time k. We assume all nodes’ transmission power is fixed.

Therefore we have Ni(k) = Ni,∀k ≥ 0.

Let X(k) denote the N -dimensional vector of all nodes’ states at time k. The

10

nodes’ beliefs evolve in time according to the dynamics:

xi (k) =
∑
j∈Ni

wij (k)xj (k − 1) + wii (k)xi (k − 1) (2.1)

where X(k) = [x1(k), x2(k), · · · , xN(k)]T , and xi(k) denotes node i’s updated state

at time k and wij(k) > 0, j 6= i is the weight that node i puts on node j’s belief at

the previous time instant for the calculation of its state update. wii(k) > 0 is the

weight that node i puts on its own previous state. Coefficients are normalized and

satisfy
∑

j∈Ni(k)
wij(k) + wii(k) = 1. We denote by W (k) the N × N matrix with

elements Wij(k). Equation (2.1) is a standard module where all nodes are normal.

In a distributed environment, due to lack of central monitoring, nodes are

subject to various attacks. In the worst case, some nodes might be hacked and do

not function as they are originally programmed. We consider the following Byzantine

adversary model:

Definition 2.2.1. A Byzantine adversary may behave arbitrarily. It does not

follow the prescribed distributed consensus update rule, i.e. at some time instant

k > 0, a Byzantine adversary i sends incorrect message vi(k) other than xi(k)

in equation (2.1) to its neighbors. We assume a broadcast model here, meaning

adversaries send the same message to different neighbors. In addition, the adversary

is assumed to have complete knowledge of the network topology, the states of all other

nodes in the network, and the consensus update rule for all nodes.

Next, we define a normal node’s behavior and the information it can get access

to.

11

Definition 2.2.2. A normal node behaves according to the distributed consensus

specification, i.e. it updates its states by combining the messages received from its

neighbors using the specified coefficients. The normal node has access to just local

information such as from its neighborhood, the messages sent by them, the coeffi-

cients it uses for updating states. Moreover, it does not know whether a neighbor is

normal or malicious.

From the above definitions, we can see that a normal node i has no way of

determining whether one of its neighbors j is malicious or not since it can not get

access to all the messages sent by its 2-hop neighbors l ∈ Nj \ {i}. To detect mali-

cious nodes locally, we introduce the trust model and establish local trust between

nodes based on first-hand evidence and define several decision rules that map from

local evidence to local decisions. Often local evidence is not sufficient to reach use-

ful decisions. We therefore define global trust based on both first-hand evidence

and evidence of other nodes in the network. Our proposed trust-aware consensus

algorithm takes global trust values as input.

2.3 Trust model

There are two possible connections from node i to node j. One is communi-

cation connection. If j ∈ Ni(k), node j is said to be in the communication neigh-

borhood of node i at time instant k. The other is trust connection. Denote the set

of trust relations at time instant k as Ec(k). A directed edge from node i to node j,

denoted as ecij(k) ∈ Ec(k), represents the trust relation node i has towards node j.

12

We assume that if there is communication connection from node i to node j at time

k, there must exist a trust relation eci,j(l),∀l ≥ k since node i receives messages from

node j at time k which forms the direct evidence for i to evaluate j’s trustworthi-

ness at the current iteration k and future iterations. However, if there exists trust

relation ecij(k), the communication connection eij does not necessarily exist because

the trust relation is possibly derived from indirect observations of other nodes in

the network.

We associate a local trust value cij(k) ∈ [0, 1) with the trust connection

ecij(k) ∈ Ec(k). It represents the belief node i holds about j at time instant k

based on its local interactions with node j. The value cij(k) can be seen, in node

i’s perspective, as the probability of node j behaving normally at time instant k. It

depends on both the interaction between i and j at time k and history records i has

on node j. We utilize the Beta reputation system [24] to model local trust values.

Denote the probability that node j behaves normally at time instant k in node i’s

perspective as pij(k). pij(k) is assumed to have beta distribution with parameter

αij(k) and βij(k):

f (pij(k)|αij(k), βij(k))

=
Γ (αij(k) + βij(k))

Γ (αij(k)) Γ (βij(k))
pij(k)αij(k)−1 (1− pij(k))βij(k)−1

(2.2)

where Γ is Gamma distribution. Let rij(k) = αij(k)− 1 and sij(k) = βij(k)− 1, to

represent the number of events that node j is normal and the number of events j

is malicious up to time k in the perspective of node i respectively. The local trust

13

value cij(k) is defined to be the mean value of pij(k), i.e.

cij(k) = E [pij(k)] =
rij(k) + 1

rij(k) + sij(k) + 2
(2.3)

Considering the time-varying behavior of node j, old records are less important than

more recent observations. We introduce positive forgetting factors ρ1 and ρ2 such

that

rij(k + 1) = ρ1rij(k) + fij(k + 1)

sij(k + 1) = ρ2sij(k) + 1− fij(k + 1),

(2.4)

where the trust decision fij(k+ 1) equals to 1 if node i believes that node j behaves

normally at time k + 1 and equals 0 otherwise. In practice, we may choose ρ1 < ρ2

so that bad behaviors are remembered for longer period of time relative to good

behaviors. Note that fij(k + 1) can also take fractional values from [0, 1] which

allows us to encode the uncertainty of local decisions. We consider two realizations

of fij(k+ 1): the local trust decision Iij(k+ 1) and the global trust decision GIij(k).

Iij(k + 1) is obtained from direct local evidence while GIij(k + 1) is calculated by

propagating local trust decisions from other nodes in the network. We will discuss

each of them below.

2.3.1 Local trust evaluation

We now discuss the question of evaluating the local trust decision Iij(k) based

on node i’s local observation about node j at time instant k, which involves the

interplay of the consensus algorithm and the trust computation. To answer this

14

question, we have to examine what can be used as local evidence for node i to

determine whether a neighbor j behaves normally or maliciously at time instant

k. Essentially, we want to find a mapping from trust evidence to a binary decision.

There are many choices of evidences available and the mapping can also be arbitrary.

Denote the values vj(k) received from j ∈ Ni(k) as the vector ri(k). We discuss three

decision rules (mappings) below. One is based on clustering schemes, the second is

based on the distance of the messages, and the third on the consistency of 2-hop

messages.

2.3.1.1 Clustering-based Decision Rule

The motivation behind clustering-based decision rules is the observation that

the malicious node’s message tends to deviate from normal nodes’ messages. There-

fore the node whose message is far away from the rest is likely to be malicious.

Formally, we define the deviation of a message sent by node j from the all other

messages received by node i as

devij(k) =
∑
l∈N+

i

|vl(k)− vj(k)|2

|N+
i |

(2.5)

The ranking of the deviation in equation (2.5) itself can not indicate whether node

j is malicious or not because a normal node might be the one deviating the most

when convergence is almost reached and all nodes’ messages are close to each other.

15

Therefore we propose a decision rule based on relative ranking:

Iij(k) =


1 if devij(k) ≤ Thi ∗median ({devij(k)})

0 otherwise

(2.6)

where Thi is the threshold used by node i and median(·) denotes the median of

values within the bracket. The above decision rule reflects the heuristics that the

node whose message is too far away from the median is deemed to be malicious.

2.3.1.2 Distance-based Decision Rule

Denote the distance between node i’s state at time instant k, xi(k) and the

value vj(k) as

dij (xi(k − 1), vj(k − 1)) = ‖xi(k − 1)− vj(k − 1)‖2 (2.7)

dij (xi(k − 1), vj(k − 1)) measures the degree of disagreement of node j from node i

at time k − 1. We measure the degree of cooperation by ∆ij(k) defined as:

∆ij(k) = dij (xi(k − 1), vj(k − 1))− dij (xi(k − 1), vj(k)) (2.8)

∆ij(k) measures the degree of cooperation in the sense that if node j cooperates

(normal), its state is expected to be closer to the state of node i as the iteration

goes on and that if node j does not cooperate (Byzantine), it may sends value vj(k)

16

that are far away from xi(k − 1). The decision rule therefore can be specified as:

Iij(k) =


1 if ∆ij(k) ≥ 0

0 otherwise

(2.9)

2.3.1.3 Consistency-based Decision Rule

For node i, to verify the correctness of message vj(k), it needs more information

than vj(k). We propose to augment the message sent from node j as follows. Several

new notations will be introduced. The inner message of node j at time instant k

is defined as the messages that node j collects from its neighbors and we denote it

as X∗j (k) = {x∗jl(k− 1), l ∈ N+
j } with x∗jj(k− 1) = xcj(k− 1), the calculated state of

node j at super-step k−1. The caculated state is defined in Table 2.1. Similarly, we

define the outer message of node j at time instant k to be the messages broadcast

by node j and we denote it as Xj(k) = {xjl(k− 1), l ∈ N+
j }, where xjj(k− 1) might

not equal to xcj(k − 1) for malicious nodes. For normal nodes, the inner message

and the outer message are equal, i.e. Xj(k) = X∗j (k). However, for malicious

nodes, they can choose to broadcast messages different from the inner message, i.e.

Xj(k) 6= X∗j (k). The local decision node i makes about node j is not a scalar value.

Instead, it consists of a set of values I lij(k),∀l ∈ N+
j , where I lij(k) is node i’s local

17

decision about node j’s message xjl(k − 1). Therefore the decision rule becomes

I lij(k) =



1, x∗il(k − 1) = xjl(k − 1), l ∈ Ni

0, x∗il(k − 1) 6= xjl(k − 1), l ∈ Ni

0.5, l /∈ Ni

(2.10)

where x∗il(k − 1) denotes the inner message element acquired by node i about l’s

state if node l can be heard by node i. When l /∈ Ni, the local evidence available

to node i is not sufficient to reach any decision. Therefore I lij(k) = 0.5. We need

to specify a function that maps from these atomic decisions I lij(k) to a single scalar

decision about j. We choose the following mapping as in [25]:

Iij(k) =
∏
l∈Nj

I lij(k) (2.11)

Since I lij(k) ∈ [0, 1], it can be interpreted as the probability of node j behaving

maliciously regarding xjl. The mapping in equation (2.11) indicates that Iij is closer

to 1 only if all I lij(k)′s are closer to 1 and that Iij is closer to 0 if any I lij(k) is closer

to 0. The aggregated decision toward node j at super step k, Iij(k), is then used to

update node i’s local trust value toward node j, cij, according to equation (2.3).

2.3.2 Global trust evaluation

We utilize trust propagation in order to get global trust decisions for both the

case of single-dimension decision rules such as clustering-based and distance-based

18

decision rules and multi-dimensional decision rules like consistency-based decision

rule.

We first discuss the case of trust propagation for single-dimension decision

rules. Node i maintains its local trust opinion cij(k) about node j for j ∈ Ni and

the local trust decisions Iij(k)’s calculated using various decision rules mentioned

above. However, when node i wants to get a more accurate evaluation of Iij(k), it

needs to rely on the observations of other nodes in the network, i.e. node i needs

to aggregate local trust decisions Ilj(k), l ∈ Ni, l 6= j through trust propagation (we

use global trust evaluation and trust propagation interchangably from now on).

Denote the global trust of node j in the perspective of node i as tij. [26] suggests

to aggregate local trust values by weighing node i’s neighbors’ local trust opinions

about node j. Before the consensus algorithm advance to the next iteration, we

want to obtain the equilibrium global trust opinion through the trust propagation

subroutine, which is also an iterative process. Therefore, we assume cij,∀i, j remain

constant during the iterations to obtain global trust and use τ to denote the iteration

number of global trust values. It is a smaller time scale compared to consensus

iteration number k. Omitting the time instant k for convenience, we have

tτij =


1 if i = j

1
zi

∑
l∈Ni,l 6=j cilt

τ−1
lj if i 6= j

(2.12)

where the normalizing constant is zi =
∑

l∈Ni,l 6=j cil.

Note that in a distributed environment, only cil, l ∈ Ni are stored locally at

19

node i while tlj is sent by node i’s neighbor l. However, node l might be malicious

and lying about tlj. Specifically, if node j is normal, node l intentionally reports to

node i that tlj = 0. Similarly, if node j is Byzantine, node l protects its peer by

reporting tlj = 1. To cope with this concern, we introduce a set of pre-trusted nodes

in the network, called headers.

Definition 2.3.1. Headers are a set of pretrusted nodes besides V . They are

equipped with more security measures and therefore are more reliable. The header’s

identity remains anonymous, i.e. neither a normal node in V nor an adversary

knows if a given node is header or not. Therefore, a normal node can choose to

trust or distrust a header since it does not know which node is a header.

The introduction of anonymous headers induces costs since they come with

higher level of reliability. Therefore we might prefer to deploy headers in denser

areas instead of sparse areas in order to make the most use of them. The problem of

how to deploy headers optimally with fixed number of headers is beyond the scope

of this dissertation.

Denote the trust that node i places on a header h as pih. Node i aggregates

local trust from both its neighbors in Ni and headers that it can receive messages

from. The global trust vector ~ti evolves according to:

tτij =


1 if i = j

1
zi+bH

(∑
l∈Ni,l 6=j cilt

τ−1
lj +

∑
h∈H pihchj

)
if i 6= j

(2.13)

where H is the set of headers, bH =
∑

h∈H pih, zi =
∑

m∈Ni,m 6=j cil, and zi + bH as

20

a whole serves as normalizing constant. Since node i does not know which node is

a header, pih might be smaller than 1. When node i can not obtain messages from

header h, pih = 0. In both cases (with and without trust propagation), the initial

value of global trust t0ij takes the following form:

t0ij =


Iij if node i is normal

1 if both node i and j are malicious

0 if node i is malicious and node j is normal

(2.14)

The local trust decisions in equation (2.14) are propagated via subroutine equa-

tion (2.12) or equation (2.13) with the help of headers. The global trust decision

GIij is obtained by:

GIij =


1 if tij > η

0 if otherwise

(2.15)

where tij is the equilibrium global trust value when equation (2.13) converges and

the real positive η is the threshold used to calculate the global trust decision. Larger

value of η indicates that we are more likely to detect malicious nodes but at the

same time we tend to make more false alarms. Then GIij is used to update trust

values in equation (2.4).

Next we discuss the case of multi-dimensional decision rules. We get the global

trust value tij,l(k) for each dimension of the local trust decision I lij(k) via the same

trust propagation process described for the single-dimension case. The global trust

21

decision GI lij for dimension l is obtained by:

GI lij =


1 if tij,l > η

0 if otherwise

(2.16)

where tij,l is the global trust value at equilibrium for dimension l. The global trust

decision GIij is calculated by:

GIij =

Nj∏
l=1

GI lij (2.17)

The introduction of trust propagation (global trust evaluation) in the trust

model can incur high computational cost since it is an embedded iterative process.

Therefore, we can choose to either activate this part or mute it wisely in practice.

In this chapter, we give simulation results for both cases and leave the discussion of

when to activate trust propagation and when to mute it as future work.

2.4 Trust-aware consensus algorithms

Given the trust model above, we obtain either the local or global trust de-

cision fij(k) which will then be used to update the trust value cij(k) according to

equation (2.4). We are now in the position to propose our trust-aware consensus

algorithm. The state dynamics goes as follows:

xi(k) =
1

Ai(k)

∑
j∈Ni

cij(k)vj(k − 1) (2.18)

22

where Ai(k) =
∑

j∈Ni
cij(k) and vj(k − 1) is the message sent by node j. If j is

malicious, vj(k−1) is not necessarily xj(k−1). Using cij(k) as the linear coefficient

to combine message vj(k − 1) is just one way to do it. The local trust value cij(k)

incorporates both the trust value history of node j in the local view of node i and the

trust decisions made by other nodes in the network. There are other more complex

choices.

Note that the trust model as well as the decision rules defined in the previous

section become pluggable components to the trust-aware consensus algorithm be-

cause it only needs as input the trust dynamics given states, ignoring the details of

the trust model design and decision rules. This makes the algorithm highly exten-

sible to future developments of more complicated trust models and decision rules.

The full algorithm consisting of the trust-aware consensus algorithm and the trust

model based on cluster-based decision rule or distance-based decision rule is shown

in Algorithm 1.

The trust-aware consensus algorithm with consistency-based decision rule based

on augmented messages is shown in Algorithm 2. In practice, an ensemble of the

various choices of decision rules will be used. Note that the actions within the for

loops in Algorithm 1 and Algorithm 2 are executed in parallel instead of in a sequen-

tial way. Our trust-aware consensus algorithm is not restricted to the three decision

rules in Section 2.3. We can readily place more delicate decision rules into the al-

gorithm. Moreover, the model can incorporate more complex update schemes for

trust compared to equation (2.4). Therefore, the trust-aware consensus algorithm

is highly extensible. Table 2.1 shows the common notations used in this chapter.

23

2.5 Theoretical analysis on security guarantees

The trust propagation with the help of headers improves the accuracy of trust

evaluation since trust evidence of multiple nodes in the network are utilized for the

calculation of trust values in a distributed way. In what follows, we discuss how the

connectivity of the graph and the number of headers affect the accuracy of trust

evaluation within a specific iteration k.

The trust graph might be time varying and the edge weights cij may be hetero-

geneous, making the equilibrium decision values computationally difficult. There-

fore, we will focus on special cases when the trust graph is regular and give some

qualitative analysis on the cases when the trust graph is not regular. Therefore

we assume that the trust graph is regular, i.e. the weights are the same across all

edges, for the purpose of quantitative analysis. We use |Nh,j| to denote the number

of headers that have direct evidence of node j and can evaluate j’s trust with high

accuracy and |Nm| as the total number of adversaries in the network who collabo-

rate to revert the trust evaluation in the propagation process. Specifically, all the

adversaries will vote −1 for the target node at all times if it is honest and vote 1 if it

is malicious. We assume that adversaries do not have power constraints so that they

can reach the whole network to participate in every propagation process in order to

maximize their damage.

24

2.5.1 Single-dimension decision rules

We analyse security guarantees of decision rules based on scalar-valued mes-

sages vj(k)’s. Examples of such decision rules are previously-discussed clustering-

based and distance-based decision rules. As in equation (2.13), we denote the trust

opinion about node j by header h as chj ∈ {0, 1} where chj = 0 means the header h

considers node j to be malicious and evaluates its trust to be 0 and chj = 1 means

the header considers the node to be normal. We also denote the true type of node j

as uj ∈ {0, 1}. Headers, with their high security measures, can also make mistakes

in evaluating chj. Therefore we express the probability of making a wrong decision

of by header h as:

p (chj = uj) = 1− ε (2.19)

where uj is the true type of node j and ε is the probability of a header making a

wrong trust decision. We assume in the above equation that the error probability

is the same for all headers for simplicity. The problem of detecting whether node

j is malicious or not by node i is reduced to a hypothesis problem specified in

equation (2.15). In what follows, we derive the probability distribution of tij and

give analytical results on miss detection rate under the assumption of regular trust

graph.

Theorem 2.5.1. For a regular trust graph, the miss detection rate and the false

25

alarm rate are

p(GIij = 1|uj = 0) =

|Nhj |∑
x=yhj

Cx
|Nhj |ε

x (1− ε)|Nhj |−x

p(GIij = 0|uj = 1) =

|Nhj |∑
x=|Nhj |−zhj

Cx
|Nhj |ε

x (1− ε)|Nhj |−x

(2.20)

where GIij is the node i’s global trust decision about node j after trust propagation,

uj is the hidden true type of node j, Cx
|Nhj | is the number of x-combinations from a

set of |Nhj| distinct nodes and

yhj = dη|Nhj| − (1− η) (|Nm| − 1)e

zhj = bη (|Nhj|+ |Nm|)c
(2.21)

Proof. The absorption probability 1 is the same for every pair of nodes consisting

of a node and the target node. Similar to [27], when the target node j is malicious,

we have

tij = q
∑
h∈Nh,j

chj + q(|Nm| − 1) (2.22)

where q is the absorption probability from all nodes to the target node j and takes

the following form:

q =
1

|Nhj|+ |Nm| − 1
(2.23)

And chj is the header h’s trust value on node j. Headers h ∈ Nh,j estimates target

1Absorption probability: in a Markov chain, the probability of being absorbed in one of the
absorbing states when starting from a transient state

26

j’s type correctly with 1− ε. We have:

p(GIij = 1|uj = 0) = p(tij > η|uj = 0)

= p

q
∑
h∈Nhj

chj + |Nm| − 1

 > η | uj = 0


= p

∑
h∈Nhj

chj >
η

q
− |Nm|+ 1 | uj = 0


= p

(
x >

η

q
− |Nm|+ 1 | uj = 0

)
= p (x > η (|Nm|+ |Nhj| − 1)− |Nm|+ 1 | uj = 0)

= p (x ∈ {yhj, yhj + 1, . . . , |Nhj|} | uj = 0)

=

|Nhj |∑
x=yhj

Cx
|Nhj |ε

x (1− ε)|Nhj |−x

(2.24)

Similarly, when the target node j is normal node, we have

tij = q
∑
h∈Nh,j

chj (2.25)

And the absorption probability now becomes:

q =
1

|Nhj|+ |Nm|
(2.26)

27

Then the false alarm rate can be derived as follows:

p(GIij = 0|uj = 1) = p(tij < η|uj = 1)

= p

(
x <

η

q
|uj = 1

)
= p (x < η (|Nm|+ |Nhj|) | uj = 0)

= p (x ∈ {0, 1, . . . , zhj}|uj = 1)

=

|zhj |∑
x=0

Cx
|Nhj | (1− ε)

x ε|Nhj |−x

=

|Nhj |∑
x=|Nhj |−zhj

Cx
|Nhj |ε

x (1− ε)|Nhj |−x

(2.27)

Corollary 2.5.1.1. For a regular trust graph, the single-dimensional decision rule

in equation (2.15) should satisfy the following:

|Nhj|2 > |Nm|(|Nm| − 1)

|Nm| − 1

|Nhj|+ |Nm| − 1
< η <

|Nhj|
|Nhj|+ |Nm|

(2.28)

Otherwise, the miss detection rate and the false alarm rate will both deteriorate to

1.0.

Proof. For the miss detection rate to take a value strictly less than 1, we need to

28

have yhj > 0 which is equivalent to:

η|Nhj| − (1− η)(|Nm| − 1) > 0⇔

η >
|Nm| − 1

|Nhj|+ |Nm| − 1

(2.29)

Similarly, for the false alarm rate to take a value strictly less than 1, we need to

have zhj < |Nhj| which is equivalent to:

η (|Nhj|+ |Nm|) < |Nhj| ⇔

η <
|Nhj|

|Nhj|+ |Nm|

(2.30)

Combining equation (2.29) and equation (2.30), we get:

|Nm| − 1

|Nhj|+ |Nm| − 1
< η <

|Nhj|
|Nhj|+ |Nm|

Letting |Nm|−1
|Nhj |+|Nm|−1 <

|Nhj |
|Nhj |+|Nm| , we get the first inequality in equation (2.28).

Fig. 2.1(a) shows that with increasing number of headers, the miss detection

rate decreases. When the number of headers is six and the number of adversaries

is more than three, increasing the number of headers further will not bring much

gain however. This is practically beneficial because by deploying a small number of

expensive headers, we already have low enough miss detection rate (lower than 0.05

as shown in the figure). Also, when the number of adversaries increases, we need

more headers for the same miss detection rate. Next we examine the false alarm

rate in Fig. 2.1(b). We observe that for the same number headers and adversaries,

29

5 6 7 8 9

Number of headers

0.0

0.1

0.2

0.3

0.4

M
is

s
d
e
te

ct
io

n
 r

a
te

3 adversaries
4 adversaries
5 adversaries

(a) the decision threshold is η = 0.5, the proba-
bility of making a wrong decision by a header is
ε = 0.05.

5 6 7 8 9

Number of headers

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
 a

la
rm

 r
a
te

3 adversaries
4 adversaries
5 adversaries

(b) η = 0.5, ε = 0.05.

Figure 2.1: The adversary takes random vibration strategy.

the false alarm rate is always worse than the miss detection. This is because when

evaluating the trust of a normal node, one more adversaries participate in the trust

propagation than when evaluating a malicious node. The figures in Fig. 2.1 serve as

a guidance on how many headers we need to deploy given targeted miss detection

rate and false alarm rate.

2.5.2 Multi-dimensional decision rules

We analyse the security guarantee of multi-dimensional decision rules. Exam-

ple rules are consistency-based decision rule. At each iteration k, node i needs to

give trust decision on node j’s true type zj. We have the following theorem regarding

the miss detection rate and the false alarm rate:

Theorem 2.5.2. For a regular trust graph, the miss detection rate and the false

30

alarm rate of multi-dimensional decision rules are:

p(GIij = 1|uj = 0) =
∏
l∈Nj

|Nhjl|∑
x=yhjl

Cx
|Nhjl|ε

x (1− ε)|Nhjl|−x

p(GIij = 0|uj = 1) =
∏
l∈Nj

|Nhjl|∑
x=|Nhjl|−zhjl

Cx
|Nhjl|ε

x (1− ε)|Nhjl|−x

(2.31)

where |Nhjl| is the number of headers that have direct evidence of node j’s l-th

dimension message and can evaluate node j’s trust regarding dimension l. And we

have:

yhjl = dη|Nhjl| − (1− η) (|Nm| − 1)e

zhjl = bη (|Nhjl|+ |Nm|)c
(2.32)

Proof. We have:

p(GIij = 1|uj = 0) = p(GIij,l = 1,∀l ∈ Nj|uj = 0)

=
∏
l∈Nj

p(GIij,l = 1|uj = 0)

=
∏
l∈Nj

|Nhjl|∑
x=yhjl

Cx
|Nhjl|ε

x (1− ε)|Nhjl|−x

(2.33)

The first equality holds because different dimensions of augmented messages are

evaluated independently. The same derivation process applies to the false alarm

rate.

31

2.5.3 Security performance for general trust graphs

The previous discussions assume that the trust graph is regular which makes

the absorption probability uniform across all headers. This makes the decision rules

equivalent to majority vote with uniform weights. In a general trust graph however,

the absorption probability qik should be different for different source node i and

node k pairs. Therefore at equilibrium, the absorption probabilities satisfy:

∑
h∈Nhj

qih +
∑
k∈Nm

qik = 1 (2.34)

where qih is the absorption probability from source node i to a header node h and

qik is the absorption probability from source node i to a malicious node k.

Theorem 2.5.3. For a general trust graph, the miss detection rate for evaluating

whether target node j is malicious by source node i to is upper bounded by:

p(GIij = 1|uj = 0) ≤ exp

−2
(
η − ε

∑
h∈Nhj

qih −
∑

k∈Nm−{j} qik

)2∑
h q

2
ih


p(GIij = 0|uj = 1) ≤ exp

−2
(
η − ε

∑
h∈Nhj

qih

)2∑
h q

2
ih


(2.35)

where η is the decision threshold used in equation (2.15), ε is the probability of

making a mistake by a header in evaluating target node j.

Proof. When the target node j’s true type is uj = 0, malicious nodes in Nm − {j}

collude to vote 1 for j in the trust propagation. Therefore the equilibrium global

32

trust becomes:

tij =
∑
h∈Nhj

qihchj +
∑
k∈Nm

qik (2.36)

According to the Hoeffding-Azuma concentration bound in [28], we have:

p(GIij = 1|uj = 0) = p (tij ≥ η|uj = 0)

= p

∑
h∈Nhj

qihchj +
∑
k∈Nm

qik ≥ η|uj = 0


= p

∑
h∈Nhj

qihchj ≥ η −
∑
k∈Nm

qik|uj = 0


= p

∑
h∈Nhj

qihchj −
∑
h∈Nhj

qih E chj ≥ η −
∑
k∈Nm

qik −
∑
h∈Nhj

qih E chj|uj = 0


= p

∑
h∈Nhj

qihchj − ε
∑
h∈Nhj

qih ≥ η −
∑
k∈Nm

qik − ε
∑
h∈Nhj

qih|uj = 0


≤ exp

−2
(
η − ε

∑
h∈Nhj

qih −
∑

k∈Nm−{j} qik

)2∑
h q

2
ih


(2.37)

Similarly, when the target node j’s true type is uj = 1, malicious nodes in Nm collude

to vote 0 for j in the trust propagation. The equilibrium global trust becomes:

tij =
∑
h∈Nhj

qihchj (2.38)

33

And we have:

p(GIij = 0|uj = 1) = p (tij ≤ η|uj = 1)

= p

∑
h∈Nhj

qihchj ≤ η|uj = 1


= p

∑
h∈Nhj

qihchj −
∑
h∈Nhj

qih E chj ≤ η −
∑
h∈Nhj

qih E chj|uj = 1


= p

∑
h∈Nhj

qihchj − (1− ε)
∑
h∈Nhj

qih ≤ η − (1− ε)
∑
h∈Nhj

qih|uj = 1


= p

(1− ε)
∑
h∈Nhj

qih −
∑
h∈Nhj

qihchj ≥ (1− ε)
∑
h∈Nhj

qih − η|uj = 1


≤ exp

−2
(
η − (1− ε)

∑
h∈Nhj

qih

)2∑
h q

2
ih


(2.39)

To get an intuitive idea of how the error rates vary in equation (2.35) with

respect to different absorption probabilities corresponding to different trust graphs,

we derive the miss detection rates under some assumptions about the trust graph.

We omit the discussion of false alarm rates because the derivation is similar to that

of the miss detection rates.

Corollary 2.5.3.1. If in the ideal case the absorption probabilities from source node

i to any malicious node k ∈ Nm satisfy qik = 0 and that qih = qih′ ,∀h, h′ ∈ Nhj,

then the miss detection rate is upper bounded by:

p(GIij = 1|uj = 0) ≤ exp
(
−2|Nhj| (η − ε)2

)
(2.40)

34

Proof. If qik = 0,∀k ∈ Nm, we have
∑

h∈Nhj
qih = 1. Plugging this into the first

equation in equation (2.35):

p(GIij = 1|uj = 0) ≤ exp

(
− 2 (η − ε)2∑

h∈Nhj
q2ih

)

= exp

(
− 2 (η − ε)2∑

h∈Nhj

1
|Nhj |2

)

= exp
(
−2|Nhj| (η − ε)2

)
(2.41)

The second equality holds because qih =
1−
∑

k∈Nm
qik

|Nhj |
= 1
|Nhj |

Corollary (2.5.3.1) gives us a straightforward conclusion that the upper bound

of the miss detection rate decreases exponentially with respect to the increase of the

number of headers |Nhj|. We generalize corollary (2.5.3.1) by the following corollary:

Corollary 2.5.3.2. If the absorption probabilities from source node i to any mali-

cious node k ∈ Nm satisfies
∑

k∈Nm
qik ≤ σ where σ is a positive real number such

that σ < η−ε
1−ε and that qih = qih′ , ∀h, h′ ∈ Nhj, then the upper bound of the miss

detection rate becomes:

p(GIij = 1|uj = 0) ≤ exp

(
−2|Nhj|

(
1− ε− 1− η

1− σ

)2
)

(2.42)

Proof. If
∑

k∈Nm
qik ≤ σ, we have

∑
h∈Nhj

qih ≥ 1 − σ. Plugging this into the first

35

equation in equation (2.35):

p(GIij = 1|uj = 0) ≤ exp

−2
(
η − ε

∑
h∈Nhj

qih −
(
1−

∑
k∈Nm

qik
))2∑

h∈Nhj
q2ih


= exp

−2
(
η − 1 + (1− ε)

∑
h∈Nhj

qih

)2∑
h∈Nhj

q2ih


= exp

−2|Nhj|

(
η − 1 + (1− ε)

∑
h∈Nhj

qih

)2
(∑

h∈Nhj
qih

)2


= exp

−2|Nhj|

(
1− ε− 1− η∑

h∈Nhj
qih

)2


(2.43)

Since
∑

h∈Nhj
qih ≥ 1−σ > 1− η−ε

1−ε = 1−η
1−ε , we have 1−ε− 1−η∑

h∈Nhj
qih

> 1−ε− 1−η
1−σ > 0.

By plugging in the inequality
∑

h∈Nhj
qih ≥ 1 − σ, we obtain the upper bound in

corollary (2.5.3.2).

From the above corollary, we not only know that the miss detection rate de-

creases exponentially as the number of headers increases, but also observe that when

σ decreases, the miss detection rate also decreases. This result is very intuitive in

that lower absorption probabilities on malicious nodes results in lower miss detection

rate.

2.6 Case study and performance evaluation

We consider a sensor network with 7 nodes (sensors) shown in Fig. 2.7. The

shaded node is a Byzantine adversary and all the other nodes are normal nodes. In

the simulation, each normal node uses both cluster-based decision rule and distance-

36

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(a) No trust propagation and no adversaries.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(b) No adversary. Use trust propagation.

Figure 2.2: Trust-aware consensus algorithm in situations with or without trust
propagation when there are no adversaries in the network.

based decision rule to generate local decisions. The consistency-based decision rule

is evaluated theorectically in [25]. We assume the probability of choosing either

one is set to 0.5. In practice, each node (sensor) can have its own parameters for

the probabilities of randomly choosing decision rules. For simulation purposes, we

consider the following 4 malicious strategies adopted by the Byzantine adversary:

1. Remain constant : the adversary, disregarding the update rule in equation (2.18),

holds a constant value.

2. Random vibration: the adversary switches between several values randomly at

each iteration.

3. Random noise: the adversary adds a random noise to the state calculted if it

is a normal node.

4. Fixed noise: the adversary adds a fixed input to the state calculated if it is a

normal node.

37

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(a) Node 7 is adversary. No
trust and adversary adopts re-
main constant strategy.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(b) Node 7 is adversary. No
trust propagation and adver-
sary adopts remain constant
strategy.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(c) Node 7 is adversary. Use
trust propagation. Adversary
adopts remain constant strat-
egy.

Figure 2.3: The adversary takes constant strategy.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(a) Node7 is adversary. No
trust and adversary adopts
random vibration strategy.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(b) Node7 is adversary. No
trust propagation and adver-
sary adopts random vibration
strategy.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(c) Node 7 is adversary. Use
trust propagation. Adversary
adopts random vibration strat-
egy.

Figure 2.4: The adversary takes randome vibration strategy.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(a) Node 7 is adversary. No
trust. Adversary adopts ran-
dom noise strategy.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(b) Node 7 is adversary. No
trust propagation. Adversary
adopts random noise strategy.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(c) Node 7 is adversary. Use
trust propagation. Adversary
adopts random noise strategy.

Figure 2.5: The adversary takes random noise strategy.

38

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(a) Node 7 is adversary. No
trust. Adversary adopts fixed
noise strategy.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(b) Node 7 is adversary. No
trust propagation. Adversary
adopts fixed noise strategy.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(c) Node 7 is adversary. Use
trust propagation. Adversary
adopts fixed noise strategy.

Figure 2.6: The adversary takes fixed noise strategy.

The simulation results are shown in Fig. 2.2, Fig. 2.3, Fig. 2.4, Fig. 2.5, and-

Fig. 2.6. First look at Fig. 2.2(a) and Fig. 2.2(b). When no adversaries exist, the

use of global trust (trust propagation) can speed up convergence. When node 7 is

set to be adversary and it adopts remain constant strategy, all nodes can still reach

convergence as shown in Fig. 2.3(b). However, all nodes are dragged to closer to the

constant input of node 7 because local evidence of nodes are not sufficient to reach

good decision at the beginning of the consensus iterations and it takes a period of

time before all other nodes can detect the adversary and exclude it from consensus

updates. This problem is mitigated when we invoke global trust and take advan-

tage of trust decisions made by other nodes in the network as shown in Fig. 2.3(c).

Nodes can detect an adversary much faster than in Fig. 2.3(b) and all normal nodes

remain relatively unaffected by node 7. The effects of earlier detection also happens

for use of trust propagation when the adversary adopts random vibration strategy

as in Fig. 2.4(b) and Fig. 2.4(c). Detection of an adversary with random noise and

fixed noise is similar. Local evidences are still sufficient to detect this malicious

behavior as shown in Fig. 2.5(b) and Fig. 2.6(b). And with global trust, adversaries

39

1

2

3

4

5

6

7

Good	
 Node	
 Malicious	
 Node	

Figure 2.7: Sensor network of 7 nodes (sensors) with the centering shaded node as
Byzantine adversary.

are detected at an earlier stage as shown in Fig. 2.5(c) and Fig. 2.6(c).

Next we present the performance of trust-aware consensus algorithm in an

even sparser sensor network shown in Fig. 2.8. The communication graph contains

seven nodes numbering from 1 to 7 plus a triangle node. The triangle node is a

header node and the links connecting the header node and others are not part of the

communication graph. However, the dotted links are in the trust graph. Therefore

network connectivity of the communication graph in this example network is 2,

rendering connectivity-based approaches in most of previous works invalid because

connectivity < 2f +1. The header node does not participate in consensus iterations

but is involved in the global trust evaluation process in equation (2.13). The dotted

lines indicate that node 5 and node 6 can obtain trust decisions from header. We

assume header node can provide trust decisions about node 1 and 4 and since header

is anonymous in the eye of normal nodes, normal nodes do not necessarily trust

40

1

2

3

4

5

6

7

Good Node Malicious Node Header

Figure 2.8: Network of 8 nodes (sensors) with the centering shaded node as Byzan-
tine adversary and triangle node as header. The dotted links incident on the header
node are not in the communication graph. Instead, they belong to the trust graph.
Nodes 1 to 7 form a communication graph of connectivity 2.

headers. Therefore we set the local trust value from node 5 and 6 toward header to

be 0.5. The results are shown in Fig. 2.9, Fig. 2.10, Fig. 2.11, and Fig. 2.12. We

observe that even in this sparse network, normal nodes can still detect node 7 and

reach consensus eventually under each of the adversary strategies.

41

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(a) Adversary takes constant strategy. No Trust.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(b) Adversary takes constant strategy.

Figure 2.9: Trust-aware consensus algorithm in sparse network Fig. 2.8 of connec-
tivity 2.. Constant strategy.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(a) Adversary takes random vibration strategy.
No trust.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(b) Adversary takes random vibration strategy.

Figure 2.10: Trust-aware consensus algorithm in sparse network Fig. 2.8 of connec-
tivity 2.. Random vibration.

42

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(a) Adversary takes random noise strategy. No
trust.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(b) Adversary takes random noise strategy.

Figure 2.11: Trust-aware consensus algorithm in sparse network Fig. 2.8 of connec-
tivity 2.. Random noise.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(a) Adversary takes fixed noise strategy. No trust.

0 5 10 15 20 25 30

time
0

2

4

6

8

10

st
a
te

node 1

node 2

node 3

node 4

node 5

node 6

node 7

(b) Adversary takes fixed noise strategy.

Figure 2.12: Trust-aware consensus algorithm in sparse network Fig. 2.8 of connec-
tivity 2.. Fixed noise.

43

Algorithm 1: Trust-Aware Consensus Algorithm

Input: initial states xi(0),∀i ∈ V and initial local trust

cij(0),∀i ∈ V \ F , ∀j ∈ V ∪H, η

Receive messages from neighbors

// Calculate local trust decisions Iij(k + 1)

for ∀i ∈ V \ F do

for ∀j ∈ Ni do
calculate Iij(k + 1)

end

end

// Trust decision propagation

repeat

for ∀i ∈ V \ F do

for ∀j ∈ Ni do

// The local trust values cij(k) remain constant within

trust iterations.

update tτij(k) according to equation (2.13)

end

end

until |tτij(k)− tτ−1ij (k)| < ε;

Calculate global trust decisions GIij(k + 1) using equation (2.15)

// Update trust values cij

for ∀i ∈ V \ F do

for ∀j ∈ Ni do
rij(k + 1) = ρ1rij(k) +GIij(k + 1)

sij(k + 1) = ρ2sij(k) + 1−GIij(k + 1)

cij(k) = E [pij(k)] =
rij(k)+1

rij(k)+sij(k)+2

end

end

Update state xi based on updated cij according to equation (2.18)

Repeat until convergence

44

Algorithm 2: Trust-Aware Consensus Algorithm Based on Consistency

Input: initial states xi(0),∀i ∈ V and initial local trust
cij(0),∀i ∈ V \ F , ∀j ∈ V ∪H, η

Receive augmented message vectors from neighbors
for ∀i ∈ V \ F do

for ∀j ∈ Ni do
compute I lij(k + 1) according to equation (2.10)

end

end
// Trust decision propagation

repeat
for ∀i ∈ V \ F do

for ∀j ∈ Ni do
for ∀l ∈ N+

j do
// The local trust values cij(k) remain constant

within trust iterations.

update tτij,l(k) according to equation (2.13)

end

end

end

until |tτij,l(k)− tτ−1ij,l (k)| < ε;
Calculate global trust decisions GIij,l(k + 1) using equation (2.16)
Calculate global trust decisions GIij(k + 1) =

∏
l∈N+

j
GIij,l(k + 1) using

equation (2.17)
// Update trust values cij
for ∀i ∈ V \ F do

for ∀j ∈ Ni do
rij(k + 1) = ρ1rij(k) +GIij(k + 1)
sij(k + 1) = ρ2sij(k) + 1−GIij(k + 1)

cij(k) = E [pij(k)] =
rij(k)+1

rij(k)+sij(k)+2

end

end
Update state xi based on updated cij according to equation (2.18)
Repeat until convergence

45

Table 2.1: Commonly Used Notations
Notation Definition

k the time step at the top layer (communication graph)
τ the time step at the bottom layer (trust graph) which is a

smaller time scale compared to k
V set of nodes in the network (nodes are the same in both layers)

xcj (k) the calculated state of node j according to equation (2.18)
xj(0) the initial state of node j
X∗j (k) the messages that node j hears from its neighbors N+

j (k − 1)
Xj (k) the messages that node j broadcast about what it hears and

what it calculates
fij(k) the trust decision about node j by node i. It takes values from

{0, 1}. It is calculated either from purely local evidence or from
both local and second-hand evidence

Iij(k) the local trust decision about node j by node i
GIij(k) the global trust decision about node j by node i through trust

propagation
tτij(k) the global trust value held by node i toward j at iteration τ for

kth round of consensus algorithm
tij(k) the equilibrium global trust value held by node i toward j at

iteration k for consensus algorithm. It is used to calculate global
trust decision GIij(k)

cij (k) the local trust value node i has about node j at iteration k for
consensus algorithm. Either Iij(k) or GIij(k) is used to update
it. It incorporates both the trust value history of node j and
the trust decisions from other nodes

46

Chapter 3: Worker Trust In Crowdsourcing With Adversaries

3.1 Enhancing data fusion using multi-dimensional trust

3.1.1 Motivation

In a crowdsourcing task, in order to estimate the true labels of questions, each

question is distributed to the open crowd and is answered by a subset of workers.

The answers from workers are then aggregated, taking into account the reliability

of workers, to produce final estimates of true labels. Example questions are image

label inference with multiple annotators’ input, topic-document pair relevance infer-

ence with crowd’s judgements, Bayesian network structure learning given experts’

partial knowledge, and test grading without knowing answers. Most past research

ignores the multi-domain property present in the questions above. For example

in test grading without golden truth, bio-chemistry questions require knowledge in

both biology and chemistry. Some are more related to biology while others are more

related to chemistry. Similarly, workers also exhibit such multi-domain character-

istics: people are good at different subjects. The above observations motivate our

modeling of multi-domain characteristics for both questions and trust in workers’

knowledge and the design of principled methods for aggregating knowledge input

47

from various unreliable sources with different expertise in each domain.

In this problem, we propose to model each question by a concept vector, which

is a real random vector where the value in a particular dimension indicates its asso-

ciation in that dimension [29]. Back to the test grading example, each bio-chemistry

question is represented by a two-dimensional hidden concept vector with the first

dimension being chemistry and the second dimension being biology. So a concept

vector [0.7, 0.3] means the question is more associated with chemistry. Note that

the concept vector can be far more general than this. In the case of identifying

causal relationships between entities, reasoning ability and past experience are two

dimensions of the concept vector. Each worker is modeled also by a trust vector,

which is a real random vector with each dimension representing the trustworthiness

of the worker in that dimension. The multi-domain property of questions and work-

ers for the biology-chemistry example is illustrated in Fig. 3.1. Our goal is to better

estimate the true labels of question Q by fusing answers from multiple unreliable

workers with varying trust values in each of the domains. Note that the concept

vectors of questions and the trust vectors of workers are both hidden. We therefore

propose a probabilistic model that incorporates questions’ concept vectors, workers’

trust vectors, answers submitted by workers and design an inference algorithm that

jointly estimates the true label of questions along with concept vectors and trust

vectors. The inference algorithm is based on a variational approximation of poste-

rior distributions using a factorial distribution family. In addition, we extend the

model by incorporating continuously-valued features. In applications where each

question is associated with a short text description, each dimension of the concept

48

Q	

Chemistry
worker [0.95, 0.95]

worker

worker [0.95, 0.5]

[0.5, 0.95]

worker [0.5, 0.5]

0.7

0.3 Biology

Figure 3.1: Multi-domain property of questions and workers in the test grading
example. Q represents a question with concept vector [0.7, 0.3] shown on the edges.
Several workers with different two-dimensional trust vectors provide answers.

vector corresponds to a topic. Therefore we further propose an extended model that

integrates topic discovery.

Our contributions are as follows:

• We formulate a probabilistic model of crowdsourcing tasks with multi-domain

characteristics and propose a novel inference method based on variational in-

ference.

• Our model is very flexible and can be easily extended. In applications where

each question comes with a feature vector, we further develop an extended

model that handles questions with continuously-valued features.

• We further extend the model by combining a multi-domain crowdsourcing

model with topic discovery based on questions’ text descriptions and derive

an analytical solution to the collective variational inference.

3.1.2 Related work

There are a lot of works on how to leverage trust models to better aggre-

gate information from multiple sources. Conflicts between information provided by

49

different sources were used to revise trust in the information [30]. Trust was also

used as weights of edges in the sensor network and was integrated into distributed

Kalman filtering to more accurately estimate the state of a linear dynamical sys-

tem in a distributed setting [20]. Local evidence was leveraged to establish local

trust bewteen agents in a network and those local trusts were then used to isolate

untrustworthy agents during sensor fusion [23].

In the context of crowdsourcing tasks to the open crowd, many works develop

models for aggregating unreliable input from multiple sources to more accurately

estimate true labels of questions. [31] combined multiple weak workers’ input for

constructing a Bayesian network structure assuming each worker is equally trust-

worthy. Workers’ trust was considered to improve accuracy in aggregating answers

in [32–35].

A model that jointly infers label of image, trust of each labeler and difficulty of

image is proposed in [36]. However, they model questions and workers using scalar

variables and they use the Expectation-Maximization inference algorithm, which has

long been known to suffer from many local optima difficulties. Another work that

went a step further based on signal detection theory is [37], where they assume each

question comes with a feature set and models each worker by a multidimensional

classifier in an abstract feature space. Our model can handle more general cases

without such an assumption and when text information is available for each question,

each dimension of a question becomes interpretable. Moreover, it is difficult to

find analytical solutions to posterior distributions of hidden variables in [37]. An

approach in the spirit of test theory and item-response theory (IRT) was proposed

50

in [38] and they relied on approximate message-passing for inference. Their model

is not as flexible and extensivle as our model because they have to redesign their

model to incorporate rich metadata associated with each question.

3.1.3 Definitions

We assume there are M workers available and N questions whose true labels

need to be estimated. We use Ri to denote the true label variable of question i,

where Ri ∈ {0, 1}. Each question is answered by a subset of workers Mi and we

denote the answer of question i given by worker j by lij ∈ {0, 1}. The set of questions

answered by worker j is denoted by Nj.

The multi-domain characteristics of question i are represented by a concept

vector λi, a D-dimensional real-valued random vector, where D is the total number

of domains. To simulate a probability distribution, we further require λil ∈ [0, 1], l =

1, . . . , D and
∑D

l=1 λil = 1, where λil denotes the lth dimension of the concept vector.

We impose a Dirichlet prior distribution for concept vector λi with hyperparameter

α = {αl}Dl=1, where αl denotes the soft counts that specify which domain a question

falls into a priori.

Workers contribute to the estimation of the true label of questions by providing

their own guesses. However, workers’ inputs may not be reliable and sometimes even

malicious. In multi-domain crowdsourcing tasks, different workers may be good at

different domains. The multi-dimensional characteristics of a worker is described

by a D-dimensional trust vector βj = {βj1, . . . , βjl, . . . , βjD}, where βjl denotes j-th

51

worker’s trust value in domain l and it takes either a continuous or a discrete value.

In the discrete case, the inference is generally NP-hard and message-passing style

algorithms are used. We consider the continuous case only where βj ∈ [0, 1]D,∀j.

Higher value of βjl indicates that worker j is more trustworthy in domain l. The

true value of βjl is usually unknown to the crowdsourcing platform. It has to be

estimated from answers provided by workers. We assume a Beta prior distribution

for βil with hyper-parameter θ = {θ0, θ1}, where θ0 > 0 is the soft count for worker

j to behave maliciously and θ1 > 0 is the soft count for worker j to behave reliably.

This interpretation resembles the Beta reputation system [24] that models beliefs of

workers.

We aim to estimate the true labels of questions and trust vectors of workers

from answers provided by workers.

3.1.4 Multi-domain crowdsourcing model

We describe the generating process for the Multi-Domain Crowdsourcing (mdc)

Model in this section.

1. For each question i ∈ {1, . . . , N},

(a) draw the domain distribution λi|α ∼ Dir(α);

(b) draw domain Ci|λi ∼ Discrete(λi);

2. For each question i, draw the true label Ri ∼ Uniform(0, 1);

3. For each worker j ∈ {1, . . . ,M} and domain l ∈ {1, . . . , D}, draw the trust

52

value βjl ∼ Beta(θ);

4. For each question-worker pair (i, j), draw observed answer lij ∼ F (Ri, βj, Ci)

In step 1, the domain for question i is then drawn according to a discrete distribution

with parameter λi, i.e. generating Ci = l with probability λil. In step 3, we profile

each worker by a vector βj with βjl drawn from a Beta distribution. In step 4, the

observed answer of question i provided by worker j is drawn according to an output

distribution F, a Bernoulli distribution. We will specify the form of this output

distribution in the following paragraph.

The generating process is illustrated in Fig. 3.2. The joint probability distri-

bution is

p (L,R, β, C, λ) =
N∏
i=1

p (ri) p (λi|α) p (Ci|λi) ·

M∏
j=1

p (βj)
D∏
l=1

p (lij|ri, Ci = l, βj)

(3.1)

where N is the total number of questions, M is the total workers, and D is the

total number of domains. p (lij|ri, Ci = l, βj) is the output distribution F in Fig. 3.2

and is the likelihood of worker j′s answer given its expertise vector and the domain

variable of question i, and the true label. p (ri), and p (βj) are prior distributions.

F can be compactly expressed as:

p (lij|ri, Ci = l, βj) = β
1{lij=ri}
jl (1− βjl)1{lij 6=ri} (3.2)

where 1{lij = ri} is an indicator function taking the value of 1 if the observed label

given by worker j to question i is equal to the ground truth. We assume a non-

53

α λ C

R L β

M

N θ

Figure 3.2: The graphical model for observed data provided by workers L, multi-
domain expertise β, true labels R, domain variables C, and concept vectors λ. M is
the total number of workers. N the number of questions. α is the hyperparameter
of the Dirichlet prior distribution for λ and θ is the hyperparameter of the Beta
prior distribution for β.

informative prior for true label p(ri = 1) = p(ri = 0) = 1
2
.

In order to estimate the questions’ true labels ri, i = 1, . . . , N and workers’

trust vectors βj, j = 1, . . . ,M , their posterior distributions need to be computed.

However, the computation of posterior distributions involves integrating out a large

number of variables, making the computation intractable. We propose to use a

variational approximation of the posterior distribution of variables in equation (3.1)

with a factorized distribution family:

q (R, β, C, λ) =
∏
i

q(ri)
∏
i

q (λi|α̃i)
∏
i

q(Ci)
∏
j,l

q
(
βjl|θ̃jl

)
(3.3)

The optimal forms of these factors are obtained by maximizing the following lower

bound of the log likelihood of observed labels ln p(L):

ln p(L) ≥ E
q

ln p (L,R, β, C, λ)− E
q

ln q (R, β, C, λ) (3.4)

We show inference details in Algorithm (3). Updates for each factor are derived

in the Appendix. Upon convergence of Algorithm (3), we obtain the approximate

54

posterior distributions of the questions’ true labels {ri}′s and of the workers’ trust

vectors {βj}’s.

Algorithm 3: Multi-Domain Crowdsourcing

Input: initial values of hyperparameters α, θ
Output: approximate posterior q (R, β, C, λ)
Do the following updates repeatedly until convergence.
1) First update q(βj),∀j = 1, . . . ,M, l = 1, . . . , D, sequentially, in the
following way:

βjl ∼ Beta
(
θ̃jl0, θ̃jl1

)
(3.5)

where θ̃jl0 = θjl0 +
∑

i∈Nj
q(Ci = l)q(Ri 6= lij) and

θ̃jl1 = θjl1 +
∑

i∈Nj
q(Ci = l)q(Ri = lij).

2) Then update q(ri), ∀i = 1, . . . , N, sequentially, in the following way:

ln q(ri) ∝ ln p(ri)+∑
j∈Mi

D∑
l=1

q(Ci = l)
[
δij

(
ψ(θ̃jl1)− ψ(θ̃jl1 + θ̃jl0)

)
+ (1− δij)

(
ψ(θ̃jl0)− ψ(θ̃jl1 + θ̃jl0)

)]
(3.6)

where ψ(·) is digamma function. Then normalize q(ri), ri ∈ {0, 1} to make
them valid probabilities.
3) Then update q(λi):

q(λi) ∼ Dir
(
{α̃il}Dl=1

)
(3.7)

where Dir(·) is Dirichlet distribution and α̃il = αl + q(Ci = l).
4) Then update q(Ci = l):

ln q(Ci) ∝ ψ(α̃il)− ψ

(
D∑
k=1

α̃ik

)
+
∑
j∈Mi

[
q(ri = lij)

(
ψ(θ̃jl1)− ψ(θ̃jl1 + θ̃jl0)

)
+ q(ri 6= lij)

(
ψ(θ̃jl0)− ψ(θ̃jl1 + θ̃jl0)

)]
(3.8)

55

α λ C x

R L β

M

N θ

µ Σ

x

w δ

Figure 3.3: The graphical model for observed data provided by workers L, features
x, multi-domain expertise β, true labels R, domain variables C, and parameter for
domain distribution λ. µ, Σ, w, and δ are model parameters.

3.1.5 Integration with features

Algorithm (3) ignores features of questions. In most cases we do have features

associated with questions. These features help us better estimate both the questions’

true labels and the workers’ trust vectors. Our proposed model mdc can be easily

extended to incorporate question features. The extended graphical model is shown

in Fig. 3.3, where x denotes the features observed. We call this extended model

mdfc. Intuitively, the features associated with questions allow us to better estimate

the questions’ concept vectors and the workers’ trust vectors so that true labels of

questions can be more accurately inferred.

Let’s assume question i’s feature vector xi is a K-dimensional real-valued vec-

tor. The likelihood of feature xi, given domain variable Ci, is modeled by a multi-

variate Gaussian distribution with µl’ as the K-dimensional mean vector of the l-th

domain and Σl as the K ×K covariance matrix:

ln p(xi|Ci = l) ∝ −1

2
(xi − µl)>Σ−1l (xi − µl)−

1

2
ln |Σl|, (3.9)

56

where |Σl| denotes the determinant of the covariance matrix of the l-th domain. The

conditional distribution of the true label variable Ri, given feature variable xi, can

take various forms. We use the logistic regression model:

p(ri = 1|xi) =
(
1 + exp

(
−w>xi − δ

))−1
(3.10)

where w is the regression coefficient and δ is the intercept for the regression model.

The inference and parameter estimation of mdfc differs from Algorithm (3) in

three ways: first, the update of q(Ci) includes an extra term ln p(xi|Ci = l); second,

the update of q(ri) includes an additional term p(ri|xi); third, there is an additional

M-step to estimate model parameters µl’s, Σl’s, w, and δ given current approximate

posteriors. The details of variational inference and model parameter estimation of

mdfc is similar to that of mdtc and are shown in the Appendix.

3.1.6 Multi-domain crowdsourcing model with topic model

In many crowdsourcing applications, we can often get access to questions’ text

descriptions. Given the text description, we can use the latent Dirichlet allocation

to extract topic distribution of a question [39]. The advantage of topic models over

the Gaussian mixture model in Section 3.1.5 is that the domains (topics) are of low

dimensions and are easier to interpret. For example, using topic models, a question

might be assigned to the domain of sports while another question assgined to music

domain. For a crowdsourcing platform, it needs to profile a worker’s trust in all

these interpretable topics instead of some latent unexplainable domain. We call this

57

Algorithm 4: Multi-Domain Crowdsourcing With Features

Input: initial values of hyperparameters α, θ
Output: approximate posterior q (R, β, C, λ)
E-step and M-step are repeated until convergence
E-step: Given current estimation of model parameters µl’s, Σl’s, w, and δ:
Do the following updates repeatedly until convergence.
1) First update q(βj),∀j = 1, . . . ,M, l = 1, . . . , D, sequentially, in the
following way:

βjl ∼ Beta
(
θ̃jl0, θ̃jl1

)
(3.11)

where θ̃jl0 = θjl0 +
∑

i∈Nj
q(Ci = l)q(Ri 6= lij) and

θ̃jl1 = θjl1 +
∑

i∈Nj
q(Ci = l)q(Ri = lij).

2) Then update q(ri), ∀i = 1, . . . , N, sequentially, in the following way:

ln q(ri) ∝ ln p(ri)

+
∑
j∈Mi

D∑
l=1

q(Ci = l)
[
δij

(
ψ(θ̃jl1)− ψ(θ̃jl1 + θ̃jl0)

)
+ (1− δij)

(
ψ(θ̃jl0)− ψ(θ̃jl1 + θ̃jl0)

)]
− log

(
1 + exp

(
−wTx− δ

))
(3.12)

where ψ(·) is digamma function. Then normalize q(ri), ri ∈ {0, 1} to make
them valid probabilities.
3) Then update q(λi):

q(λi) ∼ Dir
(
{α̃il}Dl=1

)
(3.13)

where Dir(·) is Dirichlet distribution and α̃il = αl + q(Ci = l).
4) Then update q(Ci = l):

ln q(Ci = l) ∝ ψ(α̃il)− ψ

(
D∑
k=1

α̃ik

)
+
∑
j∈Mi

[
q(ri = lij)

(
ψ(θ̃jl1)− ψ(θ̃jl1 + θ̃jl0)

)
+ q(ri 6= lij)

(
ψ(θ̃jl0)− ψ(θ̃jl1 + θ̃jl0)

)]
− 1

2
(xi − µl)T Σ−1l (xi − µl)−

1

2
ln |Σl| (xi − µl)

(3.14)

58

Algorithm 4: Multi-Domain Crowdsourcing With Features (Continued)

M-step: Given current approximate posterior distributions, obtain the
estimates of µl’s, Σl’s, w, and δ by maximizing the expectation of the
logarithm of the posterior:

µnewl =

∑N
i=1 q(Ci = l)xi∑N
i=1 q(Ci = l)

Σnew
l =

∑
i q(Ci = l) (xi − µnewl) (xi − µnewl)T∑N

i=1 q(Ci = l)

∂Q

∂w
=

N∑
i=1

[
q(ri = 1)σ(wTxi + δ)− q(ri = 0)σ(−wTxi − δ)

]
xi

∂Q

∂δ
=

N∑
i=1

[
q(ri = 1)σ(wTxi + δ)− q(ri = 0)σ(−wTxi − δ)

]
wnew, δnew = arg max

w,δ
E
q

ln p
(
L,R, β, C, λ|{µnewl }Dl=1, {Σnew

l }Dl=1, w, δ
)

using L-BFGS quasi-Newton method

(3.15)

extended model with topic discovery mdtc and we will exploit the topic discovery

of questions in the experiments section.

Each topic corresponds to one domain of a question. The learned topic dis-

tribution can then be used as a damping prior for domain variable C. We show

that our mdc is flexible to incorporate topics models and it is an easy extension

to jointly infer topic distribution and the true labels of quesitons and the workers’

trust vectors in equation (3.1).

In addition to obtaining posterior probability distributions for R, β, C, λ, we

can also obtain the posterior distribution for the topic distribution for the k-th word

in the i-th question zik, and the word distribution for l-th topic φl simultaneously.

Denote niw as the number of occurances of word w in question i and ηiwl as the

probability that the word w in question i is associated with domain l. The variational

59

α λi Ci

Ri Lij β j

 j = 1,…M

 i = 1,…N
θ

zik wik φl ρ
i,k l = 1,…D

Figure 3.4: The graphical model for mdtc. L are observed answers from workers,
wik is word k observed in question i, multi-domain expertise β, true labels R, domain
variables C, parameter for domain distribution λ, topic distribution for word k in
question i : zik, word distribution for domain l : φl.

inference process differs from Algorithm (3) in the following ways:

1. The λ′is have a Dirichlet posterior distribution with parameter αl + q(Ci =

l) +
∑

w niwηiwl where
∑

w niwηiwl is the additional term introduced by topic

discovery.

2. The update of q(ziw = l) = ηiwl follows:

ln ηiwl ∝ E
q

ln p(ziw = l|λi) + E
q

lnφlw (3.16)

where φlw = p (wik = w|φ, zik = l) .

3. The φ′ls have a Diricilet posterior distribution with parameter Υ̃l as follows:

Υ̃lw = Υ +
∑
i

niwηiwl (3.17)

where Υ is the hyper-parameter of the Dirichlet prior distribution.

60

Algorithm 5: Multi-Domain Crowdsourcing With Topic Model

Input: initial values of hyperparameters α, θ
Output: approximate posterior q (R, β, C, λ)
Do the following updates repeatedly until convergence.
1) First update q(βj),∀j = 1, . . . ,M, l = 1, . . . , D, sequentially, in the
following way:

βjl ∼ Beta
(
θ̃jl0, θ̃jl1

)
(3.18)

where θ̃jl0 = θjl0 +
∑

i∈Nj
q(Ci = l)q(Ri 6= lij) and

θ̃jl1 = θjl1 +
∑

i∈Nj
q(Ci = l)q(Ri = lij).

2) Then update q(ri), ∀i = 1, . . . , N, sequentially, in the following way:

ln q(ri) ∝ ln p(ri)+∑
j∈Mi

D∑
l=1

q(Ci = l)
[
δij

(
ψ(θ̃jl1)− ψ(θ̃jl1 + θ̃jl0)

)
+ (1− δij)

(
ψ(θ̃jl0)− ψ(θ̃jl1 + θ̃jl0)

)]
(3.19)

where ψ(·) is digamma function. Then normalize q(ri), ri ∈ {0, 1} to make
them valid probabilities.
3) Then update q(λi):

q(λi) ∼ Dir
(
{α̃il}Dl=1

)
(3.20)

where Dir(·) is Dirichlet distribution and α̃il = αl + q(Ci = l) +
∑

w niwηiwl.
αl.
4) Then update q(Ci = l):

ln q(Ci) ∝ ψ(α̃il)− ψ

(
D∑
k=1

α̃ik

)
+
∑
j∈Mi

[
q(ri = lij)

(
ψ(θ̃jl1)− ψ(θ̃jl1 + θ̃jl0)

)
+ q(ri 6= lij)

(
ψ(θ̃jl0)− ψ(θ̃jl1 + θ̃jl0)

)]
(3.21)

5) Then update q(φl):

q(φl) ∼ Dir
(
{Υ̃lw}

)
(3.22)

where Υ̃lw = Υ +
∑

i niwηiwl.
6) Then update q(ziw):

ln p (ziw = l) = ln ηiwl = ψ(α̃il)− ψ

(
D∑
k=1

α̃ik

)
+ ψ(Υ̃lw)− ψ(

∑
w′

Υ̃lw′)

(3.23)
For each i, w, normalize {ηiwl}Dl=1 to make them valid probabilities.61

3.1.7 Experiments on real datasets

In this section, we compare our proposed models mdc, mdfc, and mdtc with

crowdsourcing models with single dimensional trust (sdc) and show that our models

have superior performance on both the UCI dataset and scientific text dataset. In

addition, our models can effectively recover the workers’ trust vectors which can

be used to match the right workers to a given task in the future. The models we

consider for comparison are listed as follows:

1. mdc: our proposed multi-domain crowdsourcing model without features.

2. mdfc: extended model of mdc with continuously-valued features.

3. mdtc: another extended model of mdc that combines topic model given text

descriptions associated with questions.

4. mv: the majority vote as the baseline algorithm.

5. sdc: the state-of-the-art in [35]. We call this algorithm sdc because it is

equivalent to mdc when each worker is represented by only a scalar variable

(single domain in our case)

3.1.7.1 UCI datasets

We conducted experiments on the pima dataset from UCI Machine Learn-

ing Repository1 [40]. Each data instance corresponds to a 8-dimensional feature

of an anonymous patient. The dataset consists of 768 data intances and we ask

1http://archive.ics.uci.edu/ml/datasets.html?sort=nameUp&view=list

62

http://archive.ics.uci.edu/ml/datasets.html?sort=nameUp&view=list

the following question for each instance: should the patient be tested positive for

diabetes. Since there are no worker-provided labels in this dataset, we simulate

workers with varying reliability in different domains. We adopt k-means clustering

to cluster the data into two clusters (domains). Therefore, each worker is profiled

by a two-dimensional random vector. Details of the simulated workers are shown

in Table 3.1. Type 1 workers are malicious in both domains, answering questions

correctly with probability 0.5, type 2 workers answer questions in domain 0 correctly

with probability 0.95 and answer those in domain 1 correctly with probability 0.5

while type 3 workers answer questions in domain 0 correctly with probability 0.5 and

answer questions in domain 1 correctly with probability 0.95, and type 4 workers are

good at questions in both domains and answer questions correctly with probability

0.95. In order to show that our model mdc and mdfc works with increasing number

of workers that are not trustworthy, we simulated several groups of worker settings

with increasing number of type 1 workers.

We compare mdc with mv and sdc when no features are included and compare

mdfc with mv and sdc when features are incorporated. We use accuracy as the

evaluation criterion and report results in Table 3.2, where the first column denotes

worker settings.

When features are used, mdfc results in lowest error rates. When features

are omitted, mdc and sdc perform nearly equally well. This could be explained

by that when features are not utilized to infer domain distributions for questions,

the estimated domain distributions by mdc might be inconsistent with the truth.

However, mdc is still very attractive because it can still effectively estimate the

63

Table 3.1: Worker settings for UCI datasets

worker type domain 0 domain 1

type 1 0.5 0.5
type 2 0.95 0.5
type 3 0.5 0.95
type 4 0.95 0.95

workers’ reliability in different domains as shown in Fig. 3.5(d). This can be useful

for task assignment adaptive to workers’ trust in the future. Specifically, upon

arrival of a new task, we can use the estimated profile of workers to match the

question belonging to a particular domain to a worker that is trustworthy in that

domain. For example, consider the case when we need to know the true label of a

new question that belongs to a certain domain. Then we can match the question

with workers that have the highest reliability in that domain.

In Fig. 3.5, we show that both mdc and mdfc can effectively estimate workers’

trust values in both domains considered. Each triangle stands for a worker’s trust

profile (a two-dimensional real-valuded trust vector) and the dotted circle is used

to cluster workers whose estimated trust values are close to each other. Taking a

closer look at Fig. 3.5(a), we see that one worker is clustered close to (0.51, 0.51),

two workes close to (0.95, 0.5), two workers close to (0.5, 0.96), and one worker close

to (0.95, 0.95). This estimation of trust vectors is consistent with the worker setting

(1, 2, 2, 1). Workers’ trust vectors can also be effectively estimated in other worker

settings in Fig. 3.5(b), Fig. 3.5(c), and Fig. 3.5(d).

64

Table 3.2: Error rates of various methods on UCI dataset Pima Indians.

pima dataset mv sdc mdfc mdc

(1, 2, 2, 1) 0.098 0.040 0.009 ×
(2, 2, 2, 1) 0.103 0.042 0.009 ×
(3, 2, 2, 1) 0.150 0.042 0.008 ×

(1, 2, 2, 1),NF 0.098 0.040 × 0.039
(2, 2, 2, 1),NF 0.103 0.042 × 0.043
(3, 2, 2, 1),NF 0.150 0.042 × 0.041

In the expression (1, 2, 2, 1), the four numbers from left to right mean: there are 1
worker of type 1, 2 workers of type 2, 2 workers type 3, and 1 worker of type 4. NF

means omitting the features in pima dataset.

(a) Estimated mean value of trust about workers’
knowledge given worker setting (1,2,2,1).

(b) worker setting (2,2,2,1)

(c) worker setting (3,2,2,1) (d) worker setting (3,2,2,1) and no features avail-
able

Figure 3.5: Estimated worker reliability under different simulation settings on pima
indians dataset. The estimated trust about workers’ knowledge in Fig. 3.5(a),
Fig. 3.5(b), and Fig. 3.5(c) are by mdfc and the results in Fig. 3.5(d) are by mdc.

65

3.1.7.2 Text Data

To evaluate mdtc, we tested our model on 1000 sentences from the corpus

of biomedical text with each sentence annotated by 5 workers [41]. Each worker

answers whether a given sentence contains contradicting statements (Polarity). Each

sentence has the scientific text along with the labels provided by 5 experts. However,

since the labels provided by experts are almost consensus and the naive majority

vote algorithm gives ground truth answers, we need to simulate workers of varying

trust of knowledge in different topics. When the number of topics (domains) is D,

we simulate D workers in total, where worker j answers topic j close to perfectly

(probabililty of right guess 0.97) and answers questions in topics other than j nearly

randomly (probability of right guess 0.64). For each simulation setting, we repeat

30 times and report the mean error rate.

To the best of our knowledge, there is no comparative model that integrates

topics models into a probabilistic crowdsourcing framework in the literature, there-

fore we compare the performance of mdtc with mdc that ignores topic information

and with the baseline majority vote algorithm. The mean error rates are reported

in Table 3.3. We can see that in all experiments with the number of topics ranging

from 4 to 14, mdtc gives the lowest error rate, outperforming mdc by over 50%.

This strongly demonstrates the power of mdtc over other models that do not take

into account text information.

To further show that mdtc can effectively recover the reliability of workers in

different topics, we plot, for each worker, the mean value of trust for each worker

66

Table 3.3: Error rates of various methods on Text:Polarity. T4 denotes the assump-
tion of 4 topics.

scientific text mv mdc mdtc

T4 0.181 0.095 0.044
T6 0.160 0.089 0.037
T8 0.141 0.082 0.034
T10 0.125 0.074 0.032
T12 0.116 0.069 0.032
T14 0.100 0.064 0.032

in each of the eight topics (T8) as a heatmap in Fig. 3.6. The x-axis denotes topic

index and the y-axis denotes worker index. The intensity of the color in the j-th

row and l-th column denotes the trust value of worker j in l-th dimension. We can

see that the diagonal blocks have more intense color than others, which is consistent

with the simulation setting where each worker j ∈ {0, 1, ..., 7} is trustworthy in topic

j and is not reliable in topics other than j. The estimated trust vectors of workers

in all eight topics can be very useful in the following scenario: if for example a new

question with concept vector [0.93, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01] is added, we

probably want to match this question with a worker whose trust vector has high

value in the first dimension. The representative words (top 10 words with the highest

probability in a particular topic) in all eight topics are shown in Table 3.4.

3.1.8 Proofs

This section derives the approximate posteriors in mdc, mdfc and mdtc using

variational inference.

67

0 1 2 3 4 5 6 7

topics

0

1

2

3

4

5

6

7

w
o
rk

e
r

ID
s

random

good

expert

Figure 3.6: Trust matrix about workers’ knowledge over topics estimated by mdtc
model.

Table 3.4: representative words in topics on scientific text

topic0 ins, protein, cells, express, activity, mutant, re-
sulted, similar, human, rna

topic1 ins, cells, binding, two, presence, day, method,
study, acids, reporter

topic2 ins, binding, process, protein, cells, quot, factor,
structure, dna, splice

topic3 ins, cells, blotting, protein, using, analysis, west-
ern, express, antibodies, demonstrate

topic4 ins, signal, wnt, cells, activity, resulted, using, pro-
tein, pathway, regulation

topic5 ins, system, two, sequences, suggest, cloning, data,
effects, transcripts, different

topic6 ins, activity, cells, dna, binding, forms, gene, re-
quired, phosphorylation, receptor

topic7 ins, min, cells, containing, activity, described, in-
cubated, protein, mms, buffer

68

3.1.8.1 Updates in mdc

Update each factor q(βjl) by variational approach, q(βjl) has the following form:

ln q(βjl) ∝ ln p(βjl|θjl0, θjl1) +
∑
i∈Nj

E
q

ln p (lij|ri, Ci = l, βj)

=

θjl1 +
∑
i∈Nj

q(Ci = l)q(Ri = lij)

 ln βjl

+

θjl0 +
∑
i∈Nj

q(Ci = l)q(Ri 6= lij)

 ln (1− βjl)

(3.24)

We can see that the above posterior of q(βjl) has Beta distribution Beta(θ̃jl) with

parameter θ̃jl = [θ̃jl0, θ̃jl1], where θ̃jl0 = θjl0 +
∑

i∈Nj
q(Ci = l)q(Ri 6= lij) and

θ̃jl1 = θjl1 +
∑

i∈Nj
q(Ci = l)q(Ri = lij).

Update each factor q(ri) the optimal approximate posterior of q(ri) takes the

form:

ln q(ri) ∝ ln p(ri) +
∑
j∈Mi

E
q

ln p (lij|ri, Ci, βj)

= ln p(ri) +
∑
j∈Mi

D∑
l=1

qil

[
δij E

q
ln βjl + (1− δij)E

q
ln (1− βjl)

] (3.25)

where qil = q(Ci = l). The expectation of logarithmic beta variables

E
q

ln βjl = ψ(θ̃jl1)− ψ(θ̃jl1 + θ̃jl0)

69

and

E
q

ln (1− βjl) = ψ(θ̃jl0)− ψ(θ̃jl1 + θ̃jl0)

where ψ(·) is digamma function. Then q(ri) is normalized in order to be a valid

probability.

Update each factor q(λi) assume λi takes a Dirichlet prior with parameter

{αl}Dl=1. We have

ln q(λi) ∝ ln p(λi) + E
q

ln p(Ci|λi)

= ln p(λi) +
D∑
l=1

q(Ci = l) lnλil = ln
D∏
l=1

λα̃il−1
il

(3.26)

where α̃il = αl + q(Ci = l). It is evident that the posterior q(λi) also has a Dirichlet

distribution with parameters {α̃il}Dl=1.

Update each factor q(Ci) We have

ln q(Ci = l) ∝ E
q(λi)

ln p(Ci = l|λi) + E
q

ln p (lij|ri, Ci = l, βj)

= E
q(λi)

lnλil

+
∑
j∈Mi

[
q(ri = lij)E

q
ln βjl + q(ri 6= lij)E

q
ln (1− βjl)

] (3.27)

where

E
q(λi)

lnλil = ψ(α̃il)− ψ

(
D∑
k=1

α̃ik

)

70

3.1.8.2 Updates in mdfc

The updates in mdc are divided into two steps: E-step and M-step. In E-step,

we obtain the approximate posterior distributions for different random variables in

our model given current estimates of model parameters µl’s, Σl’s, w, and δ. In

M-step, the model parameters are obtained given current posterior approximations.

E-step and M-step are iterated until convergence.

E-step Since the updates of posterior distributions of βj’s and λi’s are the same

as those in mdc, we just show the updates of q(Ci)’s and q(ri)’s below:

For q(Ci), besides the terms in equation (3.27), it has an extra term:

ln p (xi|Ci = l, µl,Σl) =− 1

2
(xi − µl)T Σ−1l (xi − µl)−

1

2
ln |Σl| (xi − µl)

(3.28)

where (∗)T denotes the transpose of the term inside the parenthesis. For q(ri),

besides the terms in equation (3.25), it has an additional term:

p(ri|xi) = σ(wTxi + δ)1{ri=1} (1− σ(wTxi + δ)
)1{ri=0}

= σ(wTxi + δ)1{ri=1}σ(−wTxi − δ)1{ri=0}

(3.29)

where σ(∗) denotes the sigmoid function and 1{ri = 1} denotes the indicator func-

tion that equals to 1 if ri = 1 and equals to 0 if not. The second equality in

equation (3.29) holds because for the sigmoid function we have σ(−z) = 1− σ(z).

71

M-step In order to estimate the model parameters µl’s, Σl’s, w, and δ, we adopt

alternating optimization by optimizing one set of the parameters while fixing the

others. The objective function is the expectation of the logarithm of the likelihood

function Q = Eq ln p (L,R, β, C, λ|µ,Σ, w, δ) given current approximate posteriors

q. Then we have:

µnewl =

∑N
i=1 q(Ci = l)xi∑N
i=1 q(Ci = l)

Σnew
l =

∑
i q(Ci = l) (xi − µnewl) (xi − µnewl)T∑N

i=1 q(Ci = l)

∂Q

∂w
=

N∑
i=1

[
q(ri = 1)σ(wTxi + δ)− q(ri = 0)σ(−wTxi − δ)

]
xi

∂Q

∂δ
=

N∑
i=1

[
q(ri = 1)σ(wTxi + δ)− q(ri = 0)σ(−wTxi − δ)

]
(3.30)

To obtain the optimal values of w and δ, we derive the first order derivatives ∂Q
∂w

and ∂Q
∂δ

and use the L-BFGS quasi-Newton method [42].

3.1.8.3 Updates in mdtc

The updates for the parameters of the variational posterior distribution for

Ci, βjl, and ri remain the same since no additional dependencies for those variables

are introduced as shown in Fig. 3.4. We derive the posteriors for λi, ziw, and φl.

72

Update each factor q(λi) We have

ln q(λi) ∝ exp

{
ln p(λi) + E

q
ln p(Ci|λi) +

∑
w

E
q

ln p(ziw|λi)

}

∝
D∏
l=1

λil
α̃il−1

(3.31)

where α̃il = αl + q(Ci = l) +
∑

w niwηiwl. αl is the parameter of the prior Dirichlet

distribution of λ.

Update each factor q(φl) We have

ln q(φl) ∝ ln p(φl) +
∑
i,k

E
q

ln p (wik|φl, zik)

= ln p(φl) +
∑
i,k

q (zik = l) lnφlwik

(3.32)

It is evident that φl has a Dirichlet posterior distribution with parameter:

Υ̃lw = Υ +
∑
i

niwηiwl

Update each factor q(ziw) We have

ln ηiwl ∝ E
q

ln p(ziw = l|λi) + E
q

lnφlw

= E
q

lnλil + E
q

lnφlw

(3.33)

where Eq lnφlw = ψ(Υ̃lw) − ψ(
∑

w′ Υ̃lw′). Then we need to normalize ηiwl, l =

1, . . . , D to form valid probabilities.

73

3.1.9 Summary

In this problem, we propose a probabilistic model (mdc) that captures multi-

domain characteristics of crowdsourcing questions and multi-dimensional trust of

workers’ knowledge. To show that our model mdc is very flexible and extensible to

incorporate additional metadata associated with questions, we propose an extended

model mdfc that incorporates continuously-valued features of questions and mdtc

that also combines topic discovery. mdtc has the advantage that the domains

are interpretable. We show that our proposed models have superior performance

compared to state-of-the-art on two real datasets and can effectively recover the

trust vectors of workers. This can be very useful in task assignment adaptive to

workers’ trust values in different dimensions in the future. We assume answers from

workers are collected first and are then fed to models for inference. For future work,

we will investigate the problem of choosing which question to be labeled next by

which worker based on the trust vectors of workers.

The results in this chapter can be applied for fusion of information from mul-

tiple unreliable data sources instead of just workers in the open crowd. Examples

of data sources are sensors, human input, and inference results given by another

system backed by a different set of machine learning algorithms. Each of the data

sources can be treated as a ”worker” in this chapter and we can thereafter use mod-

els to estimate the multi-domain trust values of the data sources and true labels of

questions.

74

3.2 Trust-aware crowdsourcing with domain knowledge

3.2.1 Motivation

In a typical crowdsourcing setting, multiple workers are solicited to provided

answers for each of the questions. For example, Facebook users volunteer to perform

various annotation tasks on Facebook edit page2, or workers on Amazon Mechanical

Turk 3 get paid for solving various tasks uploaded by task requesters. An example

task is to determine whether a given plaintext headline expresses one or more of the

emotions anger, disgust, fear, joy, sadness, and surprise. So there are six questions

associated with a single headline. Our observation is that these questions are not

independent. If the system is more confident that a headline exhibits anger emotion,

then the headline is not likely to express joy. In addition, workers that provide

answers for these questions tend to give similar answers if they share same attributes.

These observations motivate us to ultilize these logical constraints, which we call

domain knowledge, to more accurately estimate true labels of questions as well as

trust values of workers.

In this problem, we propose a trust-aware crowdsourcing with domain knowl-

edge framework (tcdk) [43]. It is a two-layered probabilistic graphical model, where

the top layer encodes the logical relationships using first-order logic rules and the

bottom layer encodes the probabilistic dependencies between random variables in

traditional crowdsourcing graphical models. We show that the dependency between

2https://www.facebook.com/editor
3https://www.mturk.com/mturk/welcome

75

https://www.facebook.com/editor
https://www.mturk.com/mturk/welcome

of the top and bottom layers is equivalent to a special rule, called cost-function rule

with a fixed weight of 1.0. This two-layered framework can be seen as a general-

ized probabilistic soft logic framework that contains both logical and probabilistic

relations while the probabilistic soft logic in [44] only contains logical relations.

tcdk allows users to integrate high level domain knowledge easily into traditional

crowdsourcing graphical models without having to derive a whole new model from

scratch. More importantly, the leverage of domain knowledge can help the system

better estimate true labels of questions and at the same time more accurately esti-

mate the trust values of workers. To jointly infer the true labels of questions and

trust values of workers, we develop an inference algorithm based on the alternating

direction method of multipliers. More specifically, the algorithm alternates between

optimizing variables in the lower layer while fixing variables in the upper layer and

optimizing variables in the upper layer while fixing variables in the bottom layer.

Our contributions are the following:

1. We formulate a novel trust-aware crowdsourcing with domain knowledge frame-

work that combines domain knowledge with a traditional crowdsourcing graph-

ical model. Users can express high level domain knowledge without having to

re-define the model and the framework can be used to integrate multiple data

sources.

2. We develop a scalable joint inference algorithm for estimating true label vari-

ables and trust values of workers based on alternating consensus optimization.

The inference algorithm can be easily scaled to multiple machines.

76

3.2.2 Related work

To address the issue of noisy and malicious workers in crowdsourcing systems,

many models are developed to jointly estimate true labels of questions and trust of

workers [33–35,45]. All these works are based on the assumption that questions’ true

label variables are independent and the trusts of different workers are independent

too. However, the assumption is shown to be invalid in the annotation of headline

emotion example in Section 3.2.1.

[46] did consider dependency between workers by revealing the latent group

structure among dependent workers and aggregated information at the group level

rather than from individual workers. Still, their model did not capture the logical

dependencies among questions as in our work. In the natural language process-

ing literature, a framework called Fold·All [47] was proposed to integrate domain

knowledge into Latent Dirichlet Allocation (LDA). Their framework can be seen as

an extension of the Markov Logic Network while the top layer of our framework can

be seen as the generalized probabilistic soft logic [44].

3.2.3 Graphical model framework for trust-aware crowdsourcng with

domain knowledge

We consider a crowdsourcing task with N questions and M workers available

in total. Each question is answered by a subset of M workers. Each worker j is

modeled by a random variable βj ∈ [0, 1] that has a Dirichlet prior with parameter

77

θ. Higher value of βj indicates that the worker is more trustworthy. The variable

zi ∈ {0, 1} is used to denote question i’s true label. The answer to question i given

by worker j is denoted by lij ∈ {0, 1}.

We first review the graphical model used in [35]:

p (L, z, β|θ) ∝
N∏
i=1

∏
j∈Mi

p (βj|θ) p (lij|zi, βj) (3.34)

where Mi is the set of workers that give answers to question i. The task is to infer

questions’ true labels zi’s and estimate workers’ trust values βj’s.

In the above model, the true labels zi’s are assumed to be independent. In

tcdk, we incorporate the logical relations between questions using first-order logic

rule syntax. Example rules are:

ContainsHappiness(i)⇒ ContainsAnger(i)

Trust(j1) ∧ SimilarBackground(j1, j2)⇒ Trust(j2)

(3.35)

The first rule states that if text clip i expresses emotion happiness, then it is un-

likely that the text expresses anger and the second rule states that if the worker j1

is trustworthy and he has similar background with another worker j2, the worker

j2 tends to be trustworthy too. For each first-order logic rule ` as defined in equa-

tion (3.35), we represent the weight of the rule as λ` and the set of groundings of rule

r as R`. Higher value of λ` indicates that the rule ` is more important compared to

other rules. For each grounded rule r, we associate a non-negative potential function

φr(z, β). We will discuss the specific definition of φr(z, β) later.

78

Putting together the domain knowledge expressed using first-order logic rules

as in equation (3.35) and the traditional crowdsourcing model in equation (3.34),

our proposed model Crowdsourcing with Domain Knowledge (tcdk) defines a gen-

erative model expressed as follows:

p (L, z, β|θ) ∝ exp

[
−

R∑
r=1

λrφr(z, β)

]

×
N∏
i=1

∏
j∈Mi

p (βj|θ) p (lij|zi, βj)
(3.36)

where R is the number of grounded first-order logic rules. The graphical model

in equation (3.36) consists of two terms with the first term encoding the logical

relations among variables z, β and the second encoding probabilistic dependencies

among observed answers L and hidden variables z and β. The logical dependency

encoded in φr(z, β) is very general and is determined by the specific grounded rule

r. For example, it can be defined over true label variables zi’s or over trust variables

βj’s or over a mixture of both as in equation (3.35). Fig. 3.7 shows an example causal

structure of tcdk when φr’s are defined over z only. In Fig. 3.7, the statistical layer

corresponds to the first term in equation (3.36) and the logical layer corresponds

to the second term. The red dotted lines represent logical dependencies among z

indicated by φr(z).

Note that βj’s are continuously-valued variables and zi’s are discrete variables.

If φr(z, β)’s depend on βj’s only, the first part in equation (3.36) is equivalent to

a continuous Markov random field [44]. If φr(z, β)’s also depend on zi’s, the first

part combined with the second part in equation (3.36) can be viewed as a Hybrid

79

z1 z2 z3 zN
Upper
Layer

z1 z2 z3 zN

L11 L12 L21 L22

β1 β2 β3 βM

Bottom
Layer

Figure 3.7: Graphical Model of Trust-aware Crowdsourcing with Domain Knowledge
(tcdk). zi’s are true label variables, βj’s are workers’ trust variables, and lij’s
are worker-provided answers. The black-dotted lines in the bottom layer encode
probabilistic dependencies between variables and the red-dotted lines in the upper
layer encode logical dependencies.

Markov Logic Network (HMLN) [48]. However, HMLN relies solely on first-order

logic to express causal structure among variables, therefore it falls short of expressing

general dependencies as in the second term in equation (3.36).

3.2.4 Scalable inference algorithm based on ADMM

We are interested in the maximum a posteriori probability (MAP) estimates

of true label variables zi’s and trust variables βj’s given answers L in tcdk. The

MAP estimates are the solution to the following optimization problem:

arg min
z,β

R∑
r=1

λrφr(z, β)−

N∑
i=1

∑
j∈Mi

log p (lij|zi, βj)−
M∑
j=1

log p (βj|θ)
(3.37)

It is challenging to solve the above optimization problem due to the large data size

and possibly exponential groundings of first-order logic rules. One can relax the

80

discrete variables to take continuous values and resort to Alternating Optimization

with Mirror Descent to avoid fully grounding first-order logic rules [47]. However,

their algorithm still can not scale because a single machine is processing all the

sampled groundings and the algorithm is not easily scaled to multiple machines. [49]

proposed a scalable solution to constrained continuous Markov random fields based

on the consensus optimization framework. However, it can not be directly applied

to our problem because their optimization objective is based on hinge loss only.

In what follows, we propose a scalable inference algorithm based on the alter-

nating direction method of multipliers (admm). First, we relax true label variables

zi’s to the interval [0, 1] so that the potential functions φr(z, β)’s are defined over

continuous variables taking values from interval [0, 1]. The algorithm can be seen as

generalized probabilistic soft logic (gpsl) because it contains special cost-function

rules besides first-order logic rules. We briefly review the basics of probabilistic soft

logic (psl) below.

3.2.4.1 Definitions in probabilistic soft logic

Probabilistic soft logic declares first-order logic rules:

λ : A(i, j) ∧B(j, k)⇒ C(i, k) (3.38)

where A, B and C are predicates and i, j, k are variables. Each ground predicate

is an instantiation of predicates with instatiated values for i, j, k and takes a soft-

truth value from [0, 1]. The logical connectives (AND, OR, NOT) are relaxed using

81

Lukasiewicz t-norm and its corresponding co-norm:

p ∧ q = max (0, p+ q − 1) ,

p ∨ q = min (1, p+ q) ,

¬p = 1− p

(3.39)

Any grounded first-order logic rule has the form rbody → rhead. An interpretation

I is defined as an assignment of soft truth values to a set of ground predicates.

PSL calculates a potential function for any grounded rule r under interpretation I

through the following:

φr(I) = max{0, I(rbody)− I(rhead)} (3.40)

3.2.4.2 Scalable ADMM-based inference

admm is utilized to optimize objectives by iteratively solving local subproblems

and finding consensus to the global objective [50]. We observe that zi’s and βj’s are

coupled through the term log p (lij|zi, βj). Therefore we can iteratively optimize

equation (3.37) while fixing zi’s and vice versa. When βj’s are fixed, equation (3.37)

becomes:

arg min
z

R∑
r=1

λrφr(z, β)−
N∑
i=1

∑
j∈Mi

log p (lij|zi, βj) (3.41)

The first term in equation (3.41) corresponds to weighted summation of potential

functions of grounded first-order logic rules while the second term is the summation

of logarithms of conditional probabilities. We show next that we can put the two

82

parts into a unified framework gpsl.

ϕ(zi, βj) = − log p (lij|zi, βj)

= −1{lij = zi} log βj − 1{lij 6= zi} log(1− βj)

= − (zilij + (1− zi)(1− lij)) log βj

− (1− zilij − (1− zi)(1− lij)) log(1− βj)

(3.42)

Substituting equation (3.42) into equation (3.41), we have:

arg min
z

R∑
r=1

λrφr(z, β) +
N∑
i=1

∑
j∈Mi

ϕ(zi, βj) (3.43)

The second term in equation (3.43) is equivalent to the summation of potential

functions introduced by N grounded special cost-function rules with weight 1.0.

They encode the dependency between upper and bottom layer shown in Fig. 3.7.

Next we present how to optimize βj’s while fixing zi’s. equation (3.37) becomes:

arg min
β

R∑
r=1

λrφr(z, β) +
M∑
j=1

∑
i∈Nj

ϕ(zi, βj)− log p (βj|θ)

 (3.44)

where the first term corresponds to the summation of potential functions for grounded

first-order logic rules that involve β while the second term can be viewed as the sum-

mation of potential functions introduced by M grounded special cost-function rules

with weight 1.0.

Let zr, r = 1, . . . , R be a local copy of the variables in Z that are used in

potential function φr(z, β) and zi+R be a local copy of the variables in Z that are

83

used in potential function
∑

j∈Mi
ϕ(zi, βj). Let Zi, i = 1, . . . , R + N be the global

version of the local copies in zi. Similarly, we define br, r = 1, . . . , R as a local copy

of the global variables in B that are used in φr(z, β) and bj+R, j = 1, . . . ,M as a

local copy of the variables in B used in
∑

i∈Nj
ϕ(zi, βj)− log p (βj|θ) , j = 1, . . . ,M.

The admm-based inference algorithm is shown in Algorithm (6). It is scalable in

nature because each grounded rule is a subproblem and can be run in parallel over

multiple machines.

3.2.5 Case studies and experiments on real datasets

In order to evaluate the performance of our proposed tcdk framework, we

performed experiments on two real datasets. In what follows, we describe each of

the datasets, define first-order logic rules and special cost-function rules, and present

experimental results. For each of the two datasets, we consider the following models

for comparison:

1. tcdk: our proposed trust-aware crowdsourcing with domain knowledge.

2. tc (trust-aware crowdsourcing without domain knowledge): same as tcdk

except that we omit domain knowledge by setting zero weights to first-order

logic rules and special cost-function rules defined for each dataset.

3. mv (majority vote): a true value variable is estimated to be 1 if more than

half workers answer 1 and is estimated to be 0 if less than half workers answer

0. Ties are broken randomly.

84

Algorithm 6: Consensus optimization for z and β

Input: φ, λ, L, Z, B, θ, ϕ, ρ > 0
Output: MAP estimates for zi’s and βj’s
while not converged do

/* Optimize zi’s while fixing βj’s */

Initialize zi as a copy of the variables in Z that appear in φr, r = 1, . . . , R
Initialize zi+R as a copy of the variables in Z that appear in∑

j∈Mi
ϕ(zi, βj), i = 1, . . . , N

Initialize dual variable yk = 0, k = 1, . . . , |R|+N
while not converged do

for k = 1, 2, . . . , R,R + 1, . . . , R +N do
yk = yk + ρ (zk − Zk)

end
for r = 1, 2, . . . , R do

zr ← arg min
zr∈[0,1]nr

λrφr(z, β) + ρ
2

∥∥∥zr − Zr + 1
ρ
yr

∥∥∥2
2

end
for i = 1, 2, . . . , N do

zi+R ← arg min
zi+R∈[0,1]

ni+|R|

∑
j∈Mi

ϕ(zi, βj) + ρ
2

∥∥∥zi+R − Zi+R + 1
ρ
yi+R

∥∥∥2
2

end
Set each entry zi in Z to the average of the all the local copies.

end
/* Optimize βj’s while fixing zi’s */

Initialize br as a copy of the variables in B that appear in φr, r = 1, . . . , R
Initialize bj+R as a copy of the variables in B that appear in∑

i∈Nj
ϕ(zi, βj)− log p (βj|θ) , j = 1, . . . ,M

Initialize dual variables vk = 0, k = 1, . . . ,M,M + 1, R +M
while not converged do

for k = 1, . . . , R,R + 1, R +M do
vk = vk + ρ(bk −Bk)

end
for r = 1, 2, . . . , R do

br ← arg min
br∈[0,1]nr

λrφr(z, β) + ρ
2

∥∥∥br −Br + 1
ρ
vr

∥∥∥2
2

end
for j = 1, 2, . . . ,M do

bj+R ← arg min
bj+R∈[0,1]

nj+|R|

∑
i∈Nj

ϕ(zi, βj)− log p (βj|θ) +

ρ
2

∥∥∥bj+R −Bj+R + 1
ρ
vi+R

∥∥∥2
2

end
Set each entry bj in B to the average of the all the local copies.

end

end

85

3.2.5.1 Affective Text Evaluation

This dataset was produced by crowdsourcing task [51] where each worker was

given a headline and asked to give a rating (ranging from 0 to 100) about the

degree of emotions that the headline expresses. Six emotions were considered: anger,

disgust, fear, joy, sadness and surprise. We use the dataset provided by [32], where

100 pieces of headlines were selected and 10 answers were solicited for each of the

six emotions from workers on Amazon Mechanical Turk. Note that each headline-

emotion pair might be answered by a different group of workers.

We represent a headline Q expressing emotion X as predicate tl(Q,X), where

Q = 1, . . . , N and

X ∈ {Anger,Disgust, Fear, Joy, Sadness, Surprise}. The grounded predicate tl(Q,X)

takes value from [0, 1]. Our domain knowledge tells us that among those six emo-

tions, there exists two types of relations between emotions X and Y , one is similar

relation which we define as predicate simRel(X, Y) and the other is opposite relation

which we define as predicate oppRel(X, Y). Y takes values from the six emotions

as X does. We define the following first-order logic rules to represent our domain

knowledge:

tl(Q,X) ∧ oppRel(X, Y)→ ¬tl(Q, Y), w : 5.0

tl(Q,X) ∧ simRel(X, Y)→ tl(Q, Y), w : 1.0

(3.45)

The first rule states that if a headline expresses emotion X and the two emotions

X and Y are opposite, it is unlikely that the headline expresses emotion Y whereas

the second rule states that if X and Y are similar, there is a chance that a headline

86

Table 3.5: Emotions relations

Relations Emotion pairs

Opposite (Anger, Joy), (Anger, Fear),
(Anger, Sadness),(Anger, Sur-
prise) (Disgust, Joy), (Disgust,
Sadness), (Fear, Joy), (Sadness,
Joy), (Surprise, Joy), (Surprise,
Sadness)

Similar (Fear, Sadness)

expresses emotion Y if it expresses emotion X. The weights for the two first-order

logic rules are assumed to be known and set to 5.0 and 1.0 respectively. Higher

weight of the first rule indicates it is a more important rule than the second. The

values of grounded predicates oppRel(X, Y) and simRel(X, Y) are assumed to be

part of our domain knowledge. The details of these two grounded predicates are

shown in Table 3.5. For example, we believe that a headline can not express Anger

and Joy at the same time. In addition to the first-order logic rules, we define the

cost-function rules:

LinearLoss(β, tl(Q,X)), w : 1.0 (3.46)

The rule corresponds to the second term in equation (3.43). The predicate is called

LinearLoss because the potential function associated with this rule is linear in

tl(Q,X) as can be observed from equation (3.42) and equation (3.43).

We conducted coarse-grained experiments on Affective Text dataset, i.e. each

rating is mapped to 0 if the original value is smaller than 50 and 1 if larger or equal

to 50. We calculate the precision, recall, F-measure and accuracy of all emotions for

the tcdk model. The results are reported in Table 3.6. The highest scores in all the

87

Table 3.6: Performance of algorithms on affective text

Model precision recall F1 accuracy

tcdk 31.91 75.00 44.48 93.83%
tc 34.04 51.61 41.03 92.33%
mv 34.04 47.06 39.51 91.83%

measures are in bold format. We observe that our model tcdk obtained best results

with respect to recall, F1 score, and accuracy. This demonstrates the advantage of

taking into consideration domain knowledge compared to tc that ignores it.

3.2.5.2 Fashion Social Dataset Evaluation

The dataset [52] contains 4711 images crawled from Flickr and along with each

image, metadata are available such as the fashion topic used to query the image,

title of the image, tags and comments made by Flickr users, etc. In this annotation

task, a worker is presented with two questions for each image: Is the image fashion

related? Is the image showing a specialty clothing item? Therefore we have in total

9422 questions. For each image, a number of workers from Amazon Mechanical Turk

(AMT) provide their answers. Each answer takes values from {Y es,No,NotSure}.

If a worker answers NotSure, we treat it as if the worker does not provide an answer

for this question. We filter out questions that receive less than three answers and

we are left with N = 8538 questions, each of which receives equal to or more than

three answers from workers. We have in total M = 201 workers available for this

annotation task. To generate ground truth, three trusted experts were recruited to

give high-quality annotations. We take the majority vote from the three trusted

experts as the ground truth and use it for evaluation of our models.

88

The question ”Is the image related to fashion?” for image Q is denoted by

predicate fashion(Q), where Q ∈ {1, . . . , N} and the question ”Is the image related

to cloth?” for image Q by predicate cloth(Q). One piece of the domain knowledge

we have is that if an image is related to cloth, the image is more likely to be related

to fashion. This is illustrated in Fig. 3.8. Knowing that the probability of the image

being cloth-related is conducive to estimating whether the image is fashion-related.

This observation is captured in the following rule:

cloth(Q)→ fashion(Q), w : 5.0 (3.47)

Another observation, as shown in Fig. 3.9, is that if two questions are similar in

terms of the metadata, then the true labels of the two questions are likely to be the

same. The following rules capture the observation:

sim(Q1, Q2) ∧ fashion(Q1)→ fashion(Q2), w : 1.0

sim(Q1, Q2) ∧ cloth(Q1)→ cloth(Q2), w : 1.0

(3.48)

where Q denotes an image and the predicate sim(Q1, Q2) represents a question-

question similarity metric. Each specific similarity metric creates an instance of the

two rules in equation (3.48).

We propose to use a context-based similarity metric. An image context refers

to a group photo pool or a photoset. One of the example contexts is Artistic Pho-

tography. An image can be associated with one or more contexts. The intuition is

that if two pictures are more likely to be in the same context, then they tend to

89

Table 3.7: Performance of algorithms on Fashion Dataset

Model precision recall F1 accuracy

tcdk 87.83 89.84 88.82 89.27%
tc 86.79 83.6 85.20 85.39%
mv 86.55 83.73 85.11 85.32%

have the same label as well. We denote C1 as the context set for Q1 and C2 as the

context set for Q2. The context-based similarity score sim(Q1, Q2) is defined as:

sim(Q1, Q2) =
|C1 ∩ C2|
|C1 ∪ C2|

(3.49)

To avoid quadratic groundings of sim(Q1, Q2), for each question Q1 we only keep

pairs (Q1, Q2)’s whose similarity scores in equation (3.49) rank at the top 10 as

in [53]. Similar to the model for the Affective Text dataset, the special cost-function

rules that bridge the gap between the top and the bottom layers are:

LinearLoss(β, fashion(Q)), w : 1.0

LinearLoss(β, cloth(Q)), w : 1.0

(3.50)

We perform ten-fold cross validation with each fold leaving out 10% of data.

We estimate values of fashion(Q) and cloth(Q) on the held-out fold and then map

them to 0 or 1 using threshold 0.5. The results are shown in Table 3.7. Again,

results show that tcdk achieves better performance in all criteria with integrated

domain knowledge than tc alone (without the leverage of domain knowledge).

The weights of first-order logic rules defined for both datasets in Section 3.2.5.1

and Section 3.2.5.2 are assumed to be known and given as part of domain knowledge.

90

Fashion	

related	

1.0 Cloth	

related	

?

Figure 3.8: Estimated true labels for ”cloth related” questions can be used for
prediction of ”fashion related” questions.

Fashion	

related	

0.86

?

1.0

Cloth	

related	

0.95

?

Figure 3.9: Estimated true labels for questions can be used for prediction of other
questions using image similarity.

Though weights can be auto-tuned using maximum-likelihood estimation [44], we

leave this problem for future work and aim to demonstrate the power of our model

with fixed yet not fine-tuned values set by users of our model.

3.2.6 Summary

We presented trust-aware crowdsourcing with domain knowledge (tcdk), a

unifying framework that combines the power of domain knowledge and traditional

crowdsourcing graphical model. It allows users to express domain knowledge using

first-order logic rules without redefining the model. To estimate questions’ true

labels and workers’ trust values, we develop a scalable inference algorithm based on

alternating consensus optimization. We demonstrate that our model is superior to

91

the state-of-the-art by testing it on two real datasets.

92

Chapter 4: Trust-Aware Optimal Crowdsourcing With Budget Con-

straint

4.1 Motivation

Crowdsourcing provides a convenient and efficient way for data collection with-

out having to acquire costly labels from domain experts. In a typical crowdsourcing

task, a requester distributes small jobs to non-expert workers and provides a small

amount of payment upon job completion. Such a small job can be translating a

sentence [54], annotating an image [55], classifying search queries [56], etc. Answers

(or labels) obtained from workers are usually noisy due to workers’ lack of expertise,

carelessness, or malicious labeling. To mitigate the noise, one question is redun-

dantly distributed to multiple workers and the answers are aggregated to produce

a single answer, expected to be more accurate. Many crowdsourcing platforms are

available, for example, Amazon Mechanical Turk, ESP game and reCaptcha.

One typical goal in crowdsourcing tasks is to infer the ground truth from

collected answers. Much work [32, 36, 37] in crowdsourcing has been devoted to

making aggregated decisions to predict true labels given noisy and even malicious

input from workers. However, these algorithms do not consider the cost incurred

93

from obtaining a label from a worker; while in practice, the number of answers we

can get is restricted by the budget coming with requesters. Under this constraint, a

natural question to ask is how to allocate tasks to workers adaptively with limited

budget.

Past approaches to crowdsourcing with budget constraint have assumed that

all questions and workers are homogeneous – questions do not differ in difficulty

level, and all workers are as capable as each other and get the same payment for

answering any question. This can be an over-simplified setting for real problems. In

practice, the cost depends on both the question and the worker. For example, fine

category classification of different kinds of birds requires more domain knowledge

than simply telling if there is a bird in an image; summarizing a paragraph needs

more work than deciding if a tweet is positive or negative. Requesters generally

pay more to workers for difficult tasks. On the other hand, skillful workers ask for

higher payment than ordinary workers, and have a larger chance of providing the

ground truth. For example, for the same task, consulting a domain expert is more

costly than asking a random worker on Mechanical Turk; however, on average more

Turks are required to infer the correct answer. Thus there is a trade-off between

cost and answer quality. A more cost-efficient way to task distribution than blind

random assignment would be to assign easy tasks to cheap workers and hard tasks

to workers with more expertise. The answers given by workers are then combined

with estimated trustworthiness of workers. We consider the trustworthiness of a

worker as equivalent to the worker’s reliability. Therefore use trust and reliability

interchangably in this chapter. Specifically, expert level crowd has higher trust value

94

while common non-expert crowd has lower trust value.

In this chapter, we address the problem of trust-aware task allocation by

considering cost and expertise variation among workers. We propose an easy-to-

implement allocation algorithm in the setting of weighted majority vote with the-

oretical guarantee. We formulate the assignment problem as a nonlinear integer

programming problem with budget constraint, and relax it to a convex optimiza-

tion problem that has an analytical solution. We also give a theoretical error bound

for the performance of our algorithm [57]

Our contributions are as follows:

• We formulate the problem of trust-aware task allocation in crowdsourcing and

provide a principled way to solve it.

• Our formulation models the workers’ trustworthiness and the costs depend on

both the question and the worker group. Our method is ready to be extended

to more complicated aggregation method other than the weighted majority

vote as well.

• The trust-aware task allocation scheme we propose can achieve total error

probabilities bounded by N
2
−O(

√
B), where N is the number of tasks and B

is the total budget. Different from [4], the exact performance bound of error

probability also incorporates both trustworthiness of crowds and cost. More

trustworthy crowds and less costly jobs result in lower guaranteed bound.

95

4.2 Related work

Most previous works focus on aggregating labels from multiple workers. None

of them address a practical issue: the job requester has a budget constraint and he

wants to make the best use of the requester’s budget. A closely related work along

this line is Crowdscreen [58] that developed algorithms for minimizing expected cost

regarding number of questions asked and the estimation accuracy. However, the cost

of assigning different questions is assumed to be uniform and the heuristics-based

algorithms have no theoretical guarantee of performance. This guarantee is given

in [59] where all questions are homogeneous and the upper bound they derived is

valid only when the number of questions assigned approaches infinity, rendering

it impractical. Works that further investigate the problem of task assignment for

heterogeneous tasks include [4,60]. The former is focused on minimizing cost subject

to a quality constraint when workers arrive online while the latter is in the direction

of minimizing estimation error under budget constraint and the cost associated with

questions varies w.r.t difficulty. In particular, in [4], cost is determined by only the

difficulty of questions and they can not choose explicitly which experts to choose

for the completion of the task.

4.3 Problem setting

We consider classification tasks where the wisdom of crowds is utilized to es-

timate the ground truth of each instance. We assume that there are N tasks and

96

the difficulty of task i can be mapped to a real number di. We consider binary

classification and denote the unknown true label of task i by ri ∈ {−1, 1}. How-

ever, our algorithm can be applied to general classification tasks as well. We further

assume that there are M crowds available for the job requesters. As can be ex-

pected, in real life, some crowds behave professionally and provide reliable answers,

while other crowds are not as trustworthy, either because they have lower expertise

level or because they want to get the payment without investing enough effort. We

denote the answer given by a worker k from crowd j for task i as `jki ∈ {−1, 1}.

The job requester comes to the crowdsourcing market with a fixed budget B and

he/she expects to get the highest performance out of the given budget. The crowd-

sourcing platform has a scheduler that distributes tasks to its pool of workers. Each

assignment of task i to a worker from crowd j is associated with a cost cij.

We adopt a 1-coin model to describe the worker’s stochastic behavior when

answering a specific question. The 1-coin model assumes the probability of labeling a

question with 1 given ri = 0 equals the probability of labeling it with 0 given ri = 1.

We denote the probability of getting a correct answer of task i given by worker k

from crowd j by uijk . A higher value of uijk indicates higher trust value. Extension

of our work to a 2-coin model (a worker is modeled by two parameters when the

truth label is binary, i.e. the probability of giving correct label when truth label is 0

and the probability of giving correct label when truth label is 1) is straightforward.

Given the symmetry present in the definition of the 1-coin model, without loss of

generality, we assume that the true label ri of task i is 1. Thus the answer given

by worker k from crowd j follows the Bernoulli distribution: `ijk ∼ Bin(1, uijk). For

97

each task i, a user from crowd j is sampled according to some unknown distribution

and we denote the expected trust value of crowd j toward task i E[uijk] as uij. Note

that the random variables uij and uijk are unknown.

We assume that there is a separate trust evaluation component that assesses

each worker’s trustworthiness and outputs estimates of a crowd’s trust value, de-

noted by wj ∈ [0, 1], which represents the trust evaluation component’s belief about

the probability that workers from crowd j’s answer a question correctly. We choose

to estimate the trust value of a whole crowd instead of individual workers. In re-

ality, companies like CrowdFlower1 provides hierarchies of workers ranging from

domain experts to average open crowd, thus it is more reasonable to keep track of

the performance of each crowd than that of individuals.

A common approach to ground truth inference in crowdsourcing is weighted

majority vote:

r̂i = sign

(
M∑
j=1

nij∑
k=1

wj`jki

)
(4.1)

where wj is the estimated trust value of crowd j, `jki is the answer to question i

provided by worker j who belongs to crowd j, and nij is the number of workers from

crowd j allocated for question i. The above estimation is a very basic algorithm

in crowdsourcing and is usually used as the baseline or a preprocessing step for

more sophisticated methods. Therefore, we use the error probability based on the

weighted majority vote as an upper bound of the error probability we can achieve.

Given the fixed budget provided by the job requester, the scheduler has two options.

1http://www.crowdflower.com/

98

It either assigns a set of budget constraints Bi for each task i since we don’t want

to allocate all the budget to a single question or the scheduler just has a budget

constraint on the total expense for completing all the tasks. For each task i, multiple

workers are assigned to provide answers for it. The number of workers from crowd

j assigned to task i is denoted by nij and the set of workers assigned to task i can

be compactly expressed as ni = {nij}Mj=1. In the setting of fixed total budget across

all tasks, the optimal crowdsourcing problem becomes:

minimize
nij

N∑
i=1

Pr
(
r̂i
(
{nij}Mj=1, w

)
6= ri

)
subject to

∑
i,j

cijnij ≤ B

nij ∈ N

(4.2)

which is generally a non-deterministic nonlinear integer programming problem. When

we substitute question i’s true label ri with the estimated label r̂i using the weighted

majority vote equation (4.1), equation (4.2) is relaxed.

There is a trust evaluation component that gives estimation of crowds’ trust-

worthiness wj. Note that sometimes we might need trustworthiness of a crowd with

respect to different types of questions, which is questions of varying difficulty in our

case. For simplicity, in Algorithm (7) and Algorithm (8) that follow in Section 4.4,

just a scalar parameter wj is assumed for each crowd. Extension to trustworthiness

with respect to each type of questions is straighforward. The design of the trust

evaluation algorithm is beyond the scope of this dissertation. Interested readers are

referred to [24, 61] for basics on trust models. We assume we can get access to the

99

estimation of trustworthiness given by this component and our allocation scheme

goes from there. Our allocation scheme works with a general trust estimation com-

ponent. Note that trust estimation is usually not given and incurs further cost.

However, practical crowdsourcing platforms use a pipeline model, where separate

components are dedicated to trust estimation, task allocation and answer inference.

We intend to keep our job (task allocation) as independent from others as possible,

yet flexible enough to join with any algorithm of other components. The output of

our allocation scheme is a set of assignments nij. Note that we are considering task

assignment before tasks are deployed in the crowdsourcing market, i.e., trust values

are static in this case. This is justified by the observation that most crowdsourcing

marketplaces like Amazon Mechanical Turk require preset numbers of workers to

questions before deployment. That said, given time-varying trust estimates, our

method can be easily made online – do partial assignment, wait for answers, update

trust estimates and do another batch of assignment.

4.4 Trust-aware task allocation

Our proposed budget allocation strategy is trust-aware in the sense that it

utilizes the estimated trustworthiness of crowds given by trust evaluation component

and allocation decision is partially influenced by the estimation. The process works

as follows. We present the optimal budget allocation scheme with total budget

constraint. The job allocator selectively assigns multiple workers from each crowd

j to each task i given the estimated trustworthiness wj and cost cij.

100

4.4.1 Assumptions

For question i, we assume that the user k from crowd j samples his/her answer

`jki from a Bernoulli distribution, i.e., `jki ∼ Bin(1, uijk). The expected answer

EBin(1,uijk)
[`jki] is µijk . We assume that a user k is picked from a crowd j uniformly

and Ek∼Uj
[µijk] = µij, where µij denotes expected trust value of crowd j. For

an allocation {nij}, i = 1, . . . , N, j = 1, . . . ,M , we define the expected answer for

question i averaged over workers from crowd j as

µi =

∑M
j=1 nijwjµij∑M

j=1 nij
=

M∑
j=1

ρijwjµij (4.3)

where ρij =
nij∑M
j=1 nij

and is fully determined by the allocation {nij}. We assume

that the weighted majority voting aggregating scheme yields a somewhat reasonable

performance for the given task i under uniform allocation, i.e. ρij = ρi,∀j:


µi ≥ 0 if ri = 1

µi < 0 if ri = −1

(4.4)

This means that if our assignment for question i is at least as good as uniformly

random assignment, the expected answer for question i in equation (4.3) has the

same sign as the ground truth.

101

4.4.2 Optimization Problem

Let Yi =
∑M

j=1

∑nij

k=1wj`jki. The error probability of task i in equation (4.2)

can be relaxed by using the Hoeffding concentration bound:

Pr (r̂i 6= ri) ≤ exp

−
(∑M

j=1 nijwj(2uij − 1)
)2

2
∑M

j=1 nijw
2
j

 (4.5)

where uij denotes the expected trust value of crowd j and wj denotes the estimated

trust value for crowd j. equation (4.5) makes the problem in equation (4.2) a

deterministic optimization problem. However, this is not convex in general.

Next we discuss how to relax the deterministic objective function on the right

hand side of equation (4.5) by probably approximately correct learning framework

(PAC) [62]. We consider the situation where the actual obtained answer deviates

from the expected answer by εi. Using the Hoeffding Inequality, we can get

Pr

(∣∣∣∣ 1∑M
j=1 nij

∑M
j=1

∑nij

k=1wj`jki − µi
∣∣∣∣ ≥ εi

)
≤

2 exp

{
− ε2i (

∑M
j=1 nij)

2

2
∑M

j=1 nijw2
j

}

Now let 2 exp

{
− ε2i (

∑M
j=1 nij)

2

2
∑M

j=1 nijw2
j

}
= β, where β is a chosen real number from 0 to

1. This means that with probability at least (1 − β)N , the following holds: r̂i ∈

[µi − εi, µi + εi] ∀i. We express εi as:

εi =

√√√√√−2 ln β
2

∑M
j=1 nijw

2
j(∑M

j=1 nij

)2 (4.6)

102

In practice, the value of β depends on the required confidence level. Usually

β is small, thus the above interval for r̂i is of high probability. In the following

argument we will only consider the case where r̂i lies in the interval [µi− εi, µi + εi].

If µi − εi ≥ 0, then r̂i = sign
(∑M

j=1

∑nij

k=1wj`jki

)
≥ 0, the answer will always be

correct. If µi − εi < 0, then we will get the wrong answer with probability εi−µi
2εi

.

Therefore, in the interval we are considering, we have

Pr(r̂i 6= ri) = max{0, εi − µi
εi
} ≤ 1

2
− µmin

1

2εi
(4.7)

where µmin = minµij.

We would like to minimize the error probability summing over the N tasks,

and our optimization objective is

minimize
nij

−
N∑
i=1

√√√√√(∑M
j=1 nij

)2
∑M

j=1 nijw
2
j

This is not necessarily a convex function, however, notice that
∑M

j=1 nij ≥
∑M

j=1 nijw
2
j

since wj ∈ [0, 1], and we can relax −
∑N

i=1

√
(
∑M

j=1 nij)
2∑M

j=1 nijw2
j

to its upperbound

−
N∑
i=1

√√√√√(∑M
j=1 nijw

2
j

)2
∑M

j=1 nijw
2
j

. This relaxation results in a convex optimization problem given by:

103

minimize
nij

−
N∑
i=1

√√√√ M∑
j=1

nijw2
j

subject to
∑
ij

cijnij ≤ B

nij ≥ 0, i = 1, . . . , N, j = 1, . . . ,M

(4.8)

The optimal solution for the above problem can be expressed as:

nij =


B

c2
ij∗
i

w2
j∗
i

∑N
l=1

w2
j∗
l

clj∗
l

if j = j∗i

0 if j 6= j∗i

, (4.9)

where j∗i = arg max
j

w2
j

cij
and i = 1, 2, . . . , N.

From the optimal allocation scheme we can see that our model prefers the most cost-

efficient crowd in terms of the ratio of its level of trust over cost. Since nij might

be fractional, we set it to be bnijc. The full algorithm is shown in Algorithm 7 and

we call it taa for short.

The solution in equation (4.9) exhibits sparsity features since: 1) for any

question, budget is allocated to only one of the crowds; and 2) when taking the

floor, difficult questions tend to get 0 budget while easy questions get the whole

share of the budget. We propose to address this problem by introducing an extra

regularization term which penalizes the sparse behavior of allocation in Algorithm 7.

For the sake of convenience, we relax the objective function in equation (4.8) by

−
∑N

i=1

√∑M
j=1 nijw

2
j ≥ −

∑N
i=1

∑M
j=1 nijw

2
j . Therefore the optimization problem

104

Algorithm 7: Trust-Aware Assignment

Input: N tasks, budget B, worker cost cij(i = 1, . . . , N, j = 1, . . . ,M
Output: job allocations nij, predicted answer r̂i
Br = B;
for i = 1 : N do

j∗i = arg max
j

w2
j

cij

for j = 1 : M do
if j = j∗i then

nij =

 B
c2
ij∗
i

w2
j∗
i

∑N
l=1

w2
j∗
l

clj∗
l


Br ← Br −

∑M
j=1 niji∗ciji∗

else
nij = 0

end

end

end
while Br > 0 and i ≤ N do

niji∗ = niji∗ + 1, Br = Br − ciji∗ , i = i+ 1
end
Use weighted majority voting to estimate answers

becomes:

minimize
nij

−
N∑
i=1

M∑
j=1

nijw
2
j +

ξ

2
‖n‖22

subject to
∑
ij

cijnij ≤ B

nij ≥ 0, i = 1, . . . , N, j = 1, . . . ,M

(4.10)

The optimal solution of this problem is

nij =
1

ξ

(
w2
j − cij

∑
kl cklw

2
l∑

kl c
2
kl

)
+

Bcij∑
kl c

2
kl

,∀i, j

where ξ should be chosen such that nij is positive. We can see from this solution

structure that for each question, budget will be allocated to multiple crowds instead

105

of just one. The penalty term in equation (4.10) gives credits to allocations that are

more spread out, which makes the bound closer to equation (4.8). The full algorithm

is shown in Algorithm 8 and we call it taap for short.

Algorithm 8: Trust-Aware Assignment With Penalty

Input: N tasks, budget B, worker cost cij(i = 1, . . . , N, j = 1, . . . ,M
Output: job allocations nij, predicted answer r̂i
Br = B;
for i = 1 : N do

for j = 1 : M do

nij =
⌊
1
ξ

(
w2
j − cij

∑
kl cklw

2
l∑

kl c
2
kl

)
+

Bcij∑
kl c

2
kl

⌋
Br ← Br −

∑M
j=1 nijcij

end

end
while Br > 0 do

for i = 1 : N do
if Br > 0 then

Randomly choose jth crowd
nij = nij + 1, Br = Br − cij

else
Break

end

end

end
Use weighted majority voting to estimate answers

4.5 Theoretical performance bound

In this section, we discuss the performance of the allocation solution given by

our proposed trust-aware allocation by providing the guaranteed upper bound of

the error probability of the original optimization problem of equation (4.2).

Theorem 4.5.1. For any
∑

ij cijnij ≤ B, the total error probability is less than or

equal to
∑N

i=1 exp

−Bw2
j∗
i

(
2uij∗

i
−1
)2

2c2
ij∗
i

∑N
l=1

w2
j∗
l

clj∗
l

 , where j∗i = arg max
j

w2
j

cij
.

106

Proof. We first derive the solution structure for equation (4.8). The Lagrangian

function is

L({nij}, λ, ν) =−
N∑
i=1

√√√√ M∑
j=1

nijw2
j

+ λ

(
N∑
i=1

M∑
j=1

nijcij −B

)
−
∑
i,j

νijnij

(4.11)

where {λ} and {νij} are the set of dual variables. According to the KKT conditions,

suppose for task i, the number of workers we assign to crowd j is positive, i.e. nij > 0,

then the following equation holds:

M∑
j=1

nijw
2
j =

1

4λ2
w4
j

c2ij
(4.12)

If there exists no two crowds j1 and j2 that are equally efficient, i.e.
w2

j1

cij1
6= w2

j2

cij2
, ∀j1 6=

j2, which is usually the case, the optimal budget allocation strategy for task i is to

allocate partial budget to one and only one of the crowds j∗i . Therefore the opti-

mal allocation becomes nij = 1
4λ2

w2
j∗
i

c2
ij∗
i

. The dual variable λ is obtained by solving∑N
i=1

∑M
j=1 nijcij − B = 0. To see what value j∗i takes, we plug nij back to equa-

tion (4.8) and the objective function becomes:

−

√√√√B
∑
i,j

w2
j∗i

cij∗i
,

which can be minimized by letting j∗i = arg max
j

w2
j

cij
. Therefore the optimal solution

107

is:

nij =


B

c2
ij∗
i

w2
j∗
i

∑N
l=1

w2
j∗
l

clj∗
l

if j = j∗i

0 if j 6= j∗i

, where j∗i = arg max
j

w2
j

cij
(4.13)

where i = 1, 2, . . . , N .

Note that there might be multiple crowds that maximize the reliability-cost

ratio, in which case we can randomly choose from those crowds. However, the

performance bound is the same. We can pluggin nij back to equation (4.8) and

summing over tasks gets us the result in Theorem 4.5.1.

This result is intuitive in that the larger the budget we have, the lower the

error probability bound we can obtain. The bound improves exponentially with

respect to budget increase. In addition, lower cost of cij and higher trust value uij∗i

lead to lower error bound.

We can actually obtain an improved upper bound that holds with high prob-

ability from the perspective of PAC, like the work in [4].

Theorem 4.5.2. For any
∑

j=1 cijnij ≤ B, with probability (1−β)N , the total error

probability satisfies:

N∑
i=1

Pr (r̂i 6= ri) ≤

max

0,
N

2
−

N∑
i=1

µmin

√√√√√ 1

−8 ln β
2

Bw4
j∗i

c2ij∗i
∑N

l=1

w2
j∗
l

clj∗
l


, where j∗i = arg max

j

w2
j

cij
.

(4.14)

108

Proof. The error probability in equation (4.7) holds with probability (1 − β)N . εi

can be determined by the solution in equation (4.9) through its relation with εi in

equation (4.6). Therefore, with probability (1−β)N , the following error probability

upper bound holds:

Pr (r̂i 6= ri) ≤
1

2
− µmin

1

2ε∗i

≤ 1

2
− µmin

√
1

−2 ln β
2

nij∗i w
2
j∗i

≤ 1

2
− µmin

√√√√√ 1

−8 ln β
2

Bw4
j∗i

c2ij∗i
∑N

l=1

w2
j∗
l

clj∗
l

(4.15)

Summing over tasks i, we get the PAC upper bound for total error probability in

Theorem 4.5.2.

4.6 Experimental results

Besides the theoretical results given in Section 4.5, we also evaluate the perfor-

mance of our proposed trust-aware assignment (taa) and trust-aware assignment

with penalty (taap) on a real dataset and compared them against benchmark al-

gorithms such as uniform assignment (ua) and algorithms from [4] adjusted to our

setting, i.e. crowd-quality-seeking assignment (cqsa) and cheap assignment (ca).

We show that our algorithms outperform state-of-the-art.

4.6.1 Benchmark Algorithms

The set of benchmark algorithms we use for comparison are:

109

1. ua: the algorithm tends to allocate the same number of people to answer a

question from each available crowd. If the budget is not used up, for each

question, it randomly chooses an expert from the set of crowds.

2. cqsa: for each question, the algorithm only chooses people from the most

trustworthy crowd to assign to that question according to niji =

⌊
B

c2iji

∑N
i=1

1
ciji

⌋
,

where ji = arg max
j

wj If budget is not consumed, it iterates the question set

again and randomly chooses an expert from the set of crowds for each question.

3. ca: the algorithm only chooses the cheapest crowd (the least trustworthy

crowd) for questions according to niji =

⌊
B

c2iji

∑N
i=1

1
ciji

⌋
, where ji = arg min

j
wj.

The same procedure is done as in crowd-quality-seeking assignment when bud-

get is not used up.

After the assignment stage, weighted majority vote, as in equation (4.1), is applied

to the algorithms.

4.6.2 Experiment Setup on Galaxy Zoo Dataset

The real dataset we use is Galaxy Zoo [63], a set of galaxy annotations con-

tributed by a crowd of volunteers who are non-experts. The dataset contains statis-

tics about votes of these volunteers for over 900,000 galaxies. The images of these

galaxies are classified as elliptical (E), combined spiral (CS), or unknown by volun-

teers. The dataset from Galaxy Zoo used in this dissertation is SDSS image release

7. A subset of 700 galaxies that are classified as class elliptical or combined spiral

is randomly chosen. These classified galaxies have more than 80% agreement and

110

the class agreed upon can be treated as truth label.

Classification of galaxy images from Galaxy Zoo does not have explicit dif-

ficulty levels and volunteers that participate in giving classifications do not have

explicit level of trust either. However, we first divide the 700 galaxies into 2 groups

based on the level of agreement. The first group is considered easy questions and

the second group is considered difficult questions. The level of agreement in the first

group is higher than that in the second. Then we simulate three kinds of crowds

with increasing level of trustworthiness. Let αt denote the difficulty parameter of

type t question and βj denote the trust parameter of type crowd j. Specifically αt

is scaled to [5.0, 1.0] for easy and difficult questions respectively and the β scaled

to [0.65, 0.85, 0.98]. Then we choose the trust value of crowd j toward question i

as a sigmoid function of αti and βj: uij = 1

1+exp(−αtiβj)
, where ti is the type of the

ith question, which is easy or difficult in our case. Next we assume the input from

the trust evaluation component is wij = 2uij − 1. In practice, this might not be the

case. However, any good design of trust evaluation algorithm should output higher

trust value for more reliable crowd and lower trust value for less reliable crowd and

the assumption that wij = 2uij − 1 also exhibits such behavior.

With these models, we choose the cost function that maps the question dif-

ficulty and crowd’s trust value to money in the following way: for easy questions,

the cost of different crowds is [0.1, 0.5, 0.9] and the cost for difficult questions is

[0.3, 0.6, 1.0]. The cost function along with the trustworthiness values captures the

following intuitive ideas: 1) for each question type, more trustworthy crowd incurs

higher cost; and 2) for a particular crowd, answering difficult questions incurs higher

111

0 200 400 600 800 1000 1200 1400 1600
Budget

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

A
ve

ra
ge

 E
rr

or
 R

at
e

Uniform Assignment

Crowd Quality-Seeking Assignment

Cheap Assignments

Trust-Aware Assignment

Trust-Aware Assignment with Penalty

Figure 4.1: Total error probability of algorithms uacqsacataataapon Galaxy
Zoo dataset with budget ranging from 50 to 1500.

cost than answering easy ones.

4.6.3 Analysis

To test the performance of our proposed algorithm, we plot the total proba-

bility of error as the budget increases from 50 to 1500. The result is depicted in

Fig. 4.1. It is easy to see that our proposed taap outperforms all other algorithms

across the span of budget. In particular, when the budget is relative small, i.e.

B ≤ 200, both taa and taap improve over cqsa and ua by up to 30%. This

indicates that our algorithms excel in efficient allocation when budget is not abun-

dant. Also, the cheap assignment algorithm does equally well when budget is small

since there is not enough budget for answering difficult questions and people from

a cheap crowd can answer easy questions equally well compared to an expensive

crowd. When the budget is abundant, however, taa behaves poorly compared to

other algorithms except for ca. This is due to two reasons: 1) taking the floor in

equation (4.9) makes many of the assignments 0, greatly deteriorating performance;

112

0 200 400 600 800 1000 1200 1400 1600
Budget

0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

 E
rr

or
 R

at
e

noise=0

noise=0.02

noise=0.05

noise=0.1

Figure 4.2: Total error probability of algorithm taap on Galaxy Zoo dataset under
noise variance from 0 to 0.1 and the budget is from 50 to 1500.

and 2) the sparsity feature of equation (4.9), as mentioned earlier, did not switch to

most trustworthy crowd even if budget is very high. taap addresses this problem

and we can see that when budget is high, the algorithm does equally well compared

to cqsa and ua.

The result in Fig. 4.1 assumes the trustworthiness can be perfectly estimated.

Next we investigate the performance of taap when wij can not be perfectly esti-

mated. By adding a Gaussian noise ε to uij, we have wij = 2 (uij + ε)− 1. We test

taap with increasing variance of the noise ε ranging from 0 (perfectly estimated) to

0.1. Since uij takes value from [0.5, 1] in our case, 0.1 is a significant noise variance.

In Fig. 4.2, when budget is low, taap is to some extend affected by increasing noise

variance. However, the error rate never increases by more than 5%, which is accept-

able. When budget is sufficient, the algorithm is robust to varying noise variance

levels and performs equally well compared to the case when trust can be perfectly

estimated.

113

4.7 Summary

In this chapter, we considered the practical problem of budget allocation with

trust estimation of different crowds. We would like to maximize the prediction

accuracy within a given budget. In our setting, costs depend on both the question

and the crowds grouped by level of expertise. We relaxed this accuracy-cost trade-

off problem to a convex optimization problem by a PAC bound. We showed that

there is a simple and intuitive closed-form solution to the convex problem. taa

always selects the most cost-efficient group for a given question and has at most

N
2
−O

(√
B
)

prediction error. In addition, to address the problem of flooring and

sparsity feature exhibited in taa, we proposed taap and showed its outstanding

performance through experiments on a real dataset across budget span.

Note that though we experimentally investigated the effect of trustworthiness

estimation error, we did not theoretically explore the effect of it on the total error

probability. We plan to further analyze this in the future. Additionally, the truth

label is assumed to be discrete and binary. We also would like to investigate the

continuous values.

114

Chapter 6: Conclusions

In this dissertation, we proposed a trust model with various decision rules

based on local evidence in the setting of distributed consensus with adversaries.

The global trust evaluation (trust propagation) can be used to obtain more accu-

rate trust evaluation results if local evidences alone are not sufficient. The design of

the trust-aware consensus algorithm is flexible in that it can incorporate more deli-

cate decision rules and trust models. To evaluate the performance of the trust-aware

consensus algorithm, we provided both novel theoretical analysis on the security per-

formance in terms of miss detection rate and false alarm rate and emperical results

through simulations. For the theoretical performance, we analysed miss detection

rate and false alarm rate under regular trust graph assumption and more interest-

ingly, we provided the upper bound of the miss detection rate under general trust

graph assumption using probably approximately correct learning (PAC) techniques.

The theoretical results show that the rate decreases exponentially with respect to

the number of headers deployed and that smaller absorption probablities on ma-

licious nodes results in lower miss detection rate. These theoretical results serve

as useful guideline for practical design of distributed computation network and the

deployment of expensive headers in the network. For the emperical side, we ran sim-

115

ulations and we showed that our proposed trust-aware consensus algorithm could

effectively detect various malicious strategies even in network with very low con-

nectivity. The results can be applied to distributed collaborative sensor networks,

sensor fusion and collaborative control.

In the distributed computation with supervisors setting, we investigated the

model of trust in crowdsourcing problems in face of adversaries. We proposed a prob-

abilistic model (mdc) that captures multi-domain characteristics of crowdsourcing

questions and multi-dimensional trust of workers’ knowledge. To show that our

model mdc is very flexible and extensible to incorporate additional metadata as-

sociated with questions, we proposed an extended model mdfc that incorporates

continuously-valued features of questions and mdtc that also combines topic dis-

covery. mdtc has the advantage that the domains are interpretable. We showed

that our proposed models have superior performance compared to state-of-the-art

on two real datasets and can effectively recover the trust vectors of workers. This

can be very useful in task assignment adaptive to workers’ trust values in different

dimensions in the future. We assume answers from workers are collected first and

are then fed to models for inference. The results in this problem can be applied for

fusion of information from multiple unreliable data sources instead of just workers

in the open crowd. Examples of data sources are sensors, human input, and infer-

ence results given by another system backed by a different set of machine learning

algorithms. Each of the data sources can be treated as a ”worker” in this disser-

tation and we can thereafter use models to estimate the multi-domain trust values

of the data sources and true labels of questions. Logical constraints between true

116

label of questions and worker trusts can be utilized to enhance the performance of

trust estimation and true label estimation. We presented trust-aware crowdsourcing

with domain knowledge (tcdk), a unifying framework that combines the power of

domain knowledge and traditional crowdsourcing graphical model. It allows users to

express domain knowledge using first-order logic rules without redefining the model.

To estimate questions’ true labels and workers’ trust values, we develop a scalable

inference algorithm based on alternating consensus optimization. We demonstrate

that our model is superior to the state-of-the-art by testing it on two real datasets.

We also explored the problem of task allocation in crowdsourcing with ad-

versaries. We aimed maximize the prediction accuracy within a given budget. In

our setting, costs depend on both the question and the crowds grouped by level of

expertise. We relaxed this accuracy-cost trade-off problem to a convex optimization

problem by a PAC bound. We showed that there is a simple and intuitive closed-

form solution to the convex problem. taa always selects the most cost-efficient

group for a given question and has at most N
2
− O

(√
B
)

prediction error. In ad-

dition, to address the problem of flooring and sparsity feature exhibited in taa, we

proposed taap and showed its outstanding performance through experiments on a

real dataset across budget span.

117

Bibliography

[1] Ali Khanafer, Behrouz Touri, and Tamer Basar. Consensus in the presence of
an adversary. In 3rd IFAC Workshop on Distributed Estimation and Control
in Networked Systems (NecSys), pages 276–281, 2012.

[2] Juan A. Garay and Rafail Ostrovsky. Almost-everywhere secure computation.
In Proceedings of the theory and applications of cryptographic techniques 27th
annual international conference on Advances in cryptology, EUROCRYPT’08,
pages 307–323, Berlin, Heidelberg, 2008. Springer-Verlag.

[3] Fabio Pasqualetti, A. Bicchi, and F. Bullo. Consensus computation in unreliable
networks: A system theoretic approach. Automatic Control, IEEE Transactions
on, 57(1):90–104, 2012.

[4] L. Tran-Thanh, M. Venanzi, A. Rogers, and N. R. Jennings. Efficient bud-
get allocation with accuracy guarantees for crowdsourcing classification tasks.
In International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2013.

[5] A. MOSTEFAOUI and M. RAYNAL. Leader-based consensus. Parallel Pro-
cessing Letters, 11(01):95–107, 2001.

[6] Achour Mostéfaoui, Sergio Rajsbaum, and Michel Raynal. A versatile and mod-
ular consensus protoco. In Proceedings of the 2002 International Conference on
Dependable Systems and Networks, DSN ’02, pages 364–373, Washington, DC,
USA, 2002. IEEE Computer Society.

[7] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reli-
able distributed systems. J. ACM, 43(2):225–267, March 1996.

[8] Michael Ben-Or. Another advantage of free choice (extended abstract): Com-
pletely asynchronous agreement protocols. In Proceedings of the second annual
ACM symposium on Principles of distributed computing, PODC ’83, pages 27–
30, New York, NY, USA, 1983. ACM.

118

[9] Roy Friedman, Achour Mostefaoui, Sergio Rajsbaum, and Michel Raynal.
Asynchronous agreement and its relation with error-correcting codes. IEEE
Trans. Comput., 56(7):865–875, July 2007.

[10] A. Jadbabaie, Jie Lin, and A.S. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules. Automatic Control, IEEE
Transactions on, 48(6):988–1001, 2003.

[11] Wei Ren, R.W. Beard, and E.M. Atkins. A survey of consensus problems in
multi-agent coordination. In American Control Conference, 2005. Proceedings
of the 2005, pages 1859–1864 vol. 3, 2005.

[12] Wei Ren and R.W. Beard. Consensus seeking in multiagent systems under
dynamically changing interaction topologies. Automatic Control, IEEE Trans-
actions on, 50(5):655–661, 2005.

[13] R. Olfati-Saber and R.M. Murray. Consensus problems in networks of agents
with switching topology and time-delays. Automatic Control, IEEE Transac-
tions on, 49(9):1520–1533, 2004.

[14] Reza Olfati-saber, J. Alex Fax, and Richard M. Murray. Consensus and co-
operation in networked multi-agent systems. In Proceedings of the IEEE, page
2007, 2007.

[15] S. Sundaram and C.N. Hadjicostis. Distributed function calculation via linear
iterative strategies in the presence of malicious agents. Automatic Control,
IEEE Transactions on, 56(7):1495–1508, 2011.

[16] Heath J. LeBlanc, Haotian Zhang, Shreyas Sundaram, and Xenofon Kout-
soukos. Consensus of multi-agent networks in the presence of adversaries using
only local information. In Proceedings of the 1st international conference on
High Confidence Networked Systems, HiCoNS ’12, pages 1–10, New York, NY,
USA, 2012. ACM.

[17] Heath J. LeBlanc and Xenofon D. Koutsoukos. Low complexity resilient con-
sensus in networked multi-agent systems with adversaries. In Proceedings of
the 15th ACM international conference on Hybrid Systems: Computation and
Control, HSCC ’12, pages 5–14, New York, NY, USA, 2012. ACM.

[18] Kiran K Somasundaram and John S Baras. Performance improvements in
distributed estimation and fusion induced by a trusted core. In Information
Fusion, 2009. FUSION’09. 12th International Conference on, pages 1942–1949.
IEEE, 2009.

[19] John S Baras, Tao Jiang, and Punyaslok Purkayastha. Constrained coalitional
games and networks of autonomous agents. In Communications, Control and
Signal Processing, 2008. ISCCSP 2008. 3rd International Symposium on, pages
972–979. IEEE, 2008.

119

[20] Ion Matei, John S Baras, and Tao Jiang. A composite trust model and its
application to collaborative distributed information fusion. In Information Fu-
sion, 2009. FUSION’09. 12th International Conference on, pages 1950–1957.
IEEE, 2009.

[21] Baobing Wang and John S Baras. Integrated modeling and simulation frame-
work for wireless sensor networks. In Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), 2012 IEEE 21st International Workshop
on, pages 268–273. IEEE, 2012.

[22] Dariusz G Mikulski, Frank L Lewis, Edward Y Gu, and Greg R Hudas. Trust
method for multi-agent consensus. In Proc. of SPIE Vol, volume 8387, pages
83870E–1, 2012.

[23] Xiangyang Liu and John S Baras. Using trust in distributed consensus with
adversaries in sensor and other networks. In Information Fusion (FUSION),
2014 17th International Conference on, pages 1–7. IEEE, 2014.

[24] Audun Jsang and Roslan Ismail. The beta reputation system. In Proceedings
of the 15th bled electronic commerce conference, pages 41–55, 2002.

[25] Xiangyang Liu, Peixin Gao, and John S Baras. Trust aware consensus with
adversaries. Submitted for publication, 2014.

[26] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. The eigen-
trust algorithm for reputation management in p2p networks. In Proceedings of
the 12th international conference on World Wide Web, pages 640–651. ACM,
2003.

[27] Tao Jiang and John S. Baras. Graph algebraic interpretation of trust estab-
lishment in autonomic networks. Wiley Journal of Networks, 2009.

[28] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American statistical association, 58(301):13–30, 1963.

[29] Xiangyang Liu, He He, and John S Baras. Crowdsourcing with multi-
dimensional trust. In Information Fusion (Fusion), 2015 18th International
Conference on, pages 574–581. IEEE, 2015.

[30] Murat Sensoy, Geeth de Mel, Lance Kaplan, Tien Pham, and Timothy J Nor-
man. Tribe: Trust revision for information based on evidence. In Informa-
tion Fusion (FUSION), 2013 16th International Conference on, pages 914–921.
IEEE, 2013.

[31] M. Richardson and P. Domingos. Learning with knowledge from multiple ex-
perts. In Proceedings of the 20th International Conference on Machine Learning
(ICML 2003), pages 624–631, 2003.

120

[32] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast - but
is it good? evaluating non-expert annotations for natural language tasks. In
Empirical Methods on Natural Language Processing (EMNLP), pages 254–263,
2008.

[33] V. C. Raykar, S. Yu, L. H. Zhao, A. Jerebko, C. Florin, G. H. Valadez, L. Bo-
goni, and L. Moy. Supervised learning from multiple experts: Whom to trust
when everyone lies a bit. In Proceedings of the 26th International Conference
on Machine Learning (ICML 2009), pages 889–896, 2009.

[34] Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation
of observer error-rates using the em algorithm. Applied statistics, pages 20–28,
1979.

[35] Q. Liu, J. Peng, and A. Ihler. Variational inference for crowdsourcing. In
Advances in Neural Information Processing Systems (NIPS), pages 701–709,
2012.

[36] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan. Whose vote
should count more: Optimal integration of labels from labelers of unknown
expertise. In Advances in Neural Information Processing Systems, pages 1207–
1216, 2009.

[37] P. Welinder, S. Branson, S. Belongie, and P. Perona. The multidimensional wis-
dom of crowds. In Advances in Neural Information Processing Systems (NIPS),
pages 2424–2432, 2010.

[38] Y. Bachrach, T. Minka, J. Guiver, and T. Graepel. How to grade a test without
knowing the answers - a bayesian graphical model for adaptive crowdsourcing
and aptitude testing. In Proceedings of the 29th International Conference on
Machine Learning (ICML-12), pages 1183–1190, 2012.

[39] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
the Journal of machine Learning research, 3:993–1022, 2003.

[40] David J Newman, Seth Hettich, Cason L Blake, and Christopher J Merz. {UCI}
repository of machine learning databases. 1998.

[41] Andrey Rzhetsky, Hagit Shatkay, and W John Wilbur. How to get the most
out of your curation effort. PLoS computational biology, 5(5):e1000391, 2009.

[42] Stephen J Wright and Jorge Nocedal. Numerical optimization, volume 2.
Springer New York, 1999.

[43] Xiangyang Liu and John S Baras. Trust-aware crowdsourcing with domain
knowledge. In 54th IEEE Conference on Decision and Control (CDC). IEEE,
2015.

121

[44] Angelika Kimmig, Stephen Bach, Matthias Broecheler, Bert Huang, and Lise
Getoor. A short introduction to probabilistic soft logic. In Proceedings of the
NIPS Workshop on Probabilistic Programming: Foundations and Applications,
pages 1–4, 2012.

[45] Xiangyang Liu, He He, and John S Baras. Crowdsourcing with multi-
dimensional trust. In Information Fusion (FUSION), 2015 18th International
Conference on, pages 574–581. IEEE, 2015.

[46] Guo-Jun Qi, Charu C Aggarwal, Jiawei Han, and Thomas Huang. Mining
collective intelligence in diverse groups. In Proceedings of the 22nd international
conference on World Wide Web, pages 1041–1052. International World Wide
Web Conferences Steering Committee, 2013.

[47] David Andrzejewski, Xiaojin Zhu, Mark Craven, and Benjamin Recht. A frame-
work for incorporating general domain knowledge into latent dirichlet allocation
using first-order logic. In IJCAI Proceedings-International Joint Conference on
Artificial Intelligence, volume 22, page 1171, 2011.

[48] Jue Wang and Pedro Domingos. Hybrid markov logic networks. In AAAI,
volume 8, pages 1106–1111, 2008.

[49] Stephen Bach, Matthias Broecheler, Lise Getoor, and Dianne O’leary. Scaling
mpe inference for constrained continuous markov random fields with consensus
optimization. In Advances in Neural Information Processing Systems, pages
2654–2662, 2012.

[50] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–
122, 2011.

[51] Carlo Strapparava and Rada Mihalcea. Semeval-2007 task 14: Affective text. In
Proceedings of the 4th International Workshop on Semantic Evaluations, pages
70–74. Association for Computational Linguistics, 2007.

[52] Babak Loni, Maria Menendez, Mihai Georgescu, Luca Galli, Claudio Mas-
sari, Ismail Sengor Altingovde, Davide Martinenghi, Mark Melenhorst, Raynor
Vliegendhart, and Martha Larson. Fashion-focused creative commons social
dataset. In Proceedings of the 4th ACM Multimedia Systems Conference, pages
72–77. ACM, 2013.

[53] Shobeir Fakhraei, Bert Huang, Louiqa Raschid, and Lise Getoor. Network-
based drug-target interaction prediction with probabilistic soft logic. 2014.

[54] Omar F. Zaidan and Chris Callison-BurchRichard. Crowdsourcing translation:
Professional quality from non-professionals. 2011.

122

[55] Catherine Wah, Steve Branson, Pietro Perona, and Serge Belongie. Multiclass
recognition and part localization with humans in the loop. 2011.

[56] Richard M. C. McCreadie, Craig Macdonald, and Iadh Ounis. 2010.

[57] Xiangyang Liu, He He, and John S Baras. Trust-aware optimal crowdsourcing
with budget constraint. In Communications (ICC), 2015 IEEE International
Conference on, pages 1176–1181. IEEE, 2015.

[58] A. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and
J. Widom. Crowdscreen: Algorithms for itering data with humans. In Inter-
national Conference on Management of Data (SIGMOD), 2012.

[59] D. Karger, S. Oh, and D. Shah. Iterative learning for reliable crowdsourcing sys-
tems. neural information processing systems. In Neural Information Processing
Systems (NIPS), 2011.

[60] C. Ho, S. Jabbari, and J. W. Vaughan. Adaptive task assignment for
crowdsourced classification. In International Conference on Machine Learn-
ing (ICML), 2013.

[61] G. Theodorakopoulos and J.S. Baras. On trust models and trust evaluation
metrics for ad hoc networks. Selected Areas in Communications, IEEE Journal
on, 24(2):318–328, 2006.

[62] Leslie G Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[63] Chris Lintott, Kevin Schawinski, Steven Bamford, Anze Slosar, Kate Land,
et al. Galaxy Zoo 1 : Data Release of Morphological Classifications for nearly
900,000 galaxies. 2010.

123

	List of Figures
	Introduction
	Security issues in distributed computation
	Main contributions and thesis organization

	Trust Models For Distributed Consensus With Adversaries
	Background on distributed consensus algorithms
	Definitions of adversaries
	Trust model
	Local trust evaluation
	Global trust evaluation

	Trust-aware consensus algorithms
	Theoretical analysis on security guarantees
	Single-dimension decision rules
	Multi-dimensional decision rules
	Security performance for general trust graphs

	Case study and performance evaluation

	Worker Trust In Crowdsourcing With Adversaries
	Enhancing data fusion using multi-dimensional trust
	Motivation
	Related work
	Definitions
	Multi-domain crowdsourcing model
	Integration with features
	Multi-domain crowdsourcing model with topic model
	Experiments on real datasets
	Proofs
	Summary

	Trust-aware crowdsourcing with domain knowledge
	Motivation
	Related work
	Graphical model framework for trust-aware crowdsourcng with domain knowledge
	Scalable inference algorithm based on ADMM
	Case studies and experiments on real datasets
	Summary

	Trust-Aware Optimal Crowdsourcing With Budget Constraint
	Motivation
	Related work
	Problem setting
	Trust-aware task allocation
	Assumptions
	Optimization Problem

	Theoretical performance bound
	Experimental results
	Benchmark Algorithms
	Experiment Setup on Galaxy Zoo Dataset
	Analysis

	Summary

	Conclusions
	Bibliography

