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This dissertation presents my research covering the field of ultracold atoms loaded in optical lattices.

The static and dynamical properties of atoms in combined periodic and parabolic potentials are studied, with

a focus on the strongly interacting regimes. Because parabolic magnetic and optical potentials are routinely

used to confine atoms, the results of this research are directly relevant to ongoing experimental endeavours

in atomic physics.

After a review of the basic theory of atoms in homogeneous periodic potentials, the equilibrium and

non-equilibrium properties of non-interacting and interacting atoms in periodic plus parabolic potentials are

studied. The problem of the localization of the many-body wavefunction for systems with arbitrary peak

onsite density is presented in Chapters 3 and 4. The physics pertaining to the experimental realization of

Mott insulator states with one or more atoms per sites in inhomogeneous lattices is elucidated by introducing

an intuitive model for strongly interacting bosons in one dimension. This model is then utilized to study

the decay of the dipole oscillations of atomic ensembles subject to a small displacement of the parabolic

potential. Good agreement is found with results of recent experiments.

Chapters 5 and 6 are dedicated to the characterization of the Mott insulator state with unit filling,

which plays a central role in proposed schemes for neutral atom quantum computation. The usefulness of

Bragg spectroscopy to probe the excitation spectrum of the Mott state in homogeneous lattices is analyzed

in Chapter 5, where the limits of validity of linear response theory in this strongly correlated regime are



delimited. In Chapter 6 the effects of finite temperature on the confined Mott insulator state are studied,

and a scheme is devised for possibly estimating the system’s temperature, at energies of the order of the

inter-particle interaction energy.

Finally, in Chapter 7, a proposal is introduced to utilize the Mott state as a robust register for neutral

atom quantum computation. Unwanted residual quantum coherences inherent to the Mott insulator ground

state are eliminated by a judicious choice of the trapping potentials and a selective measurement on a

molecular photo-associative transition.
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Chapter 1

Introduction

This dissertation describes my research on the static and dynamical properties of atoms confined in com-

bined periodic and quadratic potentials, with a focus on the strongly correlated regimes which are experi-

mentally attainable.

In recent years tremendous progress has been made in coherent control and manipulation of quantum

systems in atomic, molecular, and optical physics. In order to improve on precision measurement and

noise reduction, a variety of new methods have been developed, including laser cooling of atoms [1],

atom interferometry [2], cavity QED [3], and optical lattices [4]. This thesis is concerned with the last of

these experimental breakthroughs, recognizing the pivotal role that optical lattice potentials are increasingly

playing in the study of strongly correlated systems.

Optical lattices are periodic conservative trapping potentials for atoms, and are created by the in-

terference of two or more traveling laser beams yielding standing laser waves. The laser light induces an

AC-Stark shift in the atoms, and acts largely as a conservative periodic potential. Although the motion of

atoms in an optical lattice is closely analogous to that of electrons in a solid crystal, optical lattices are

very different from natural crystals, in that they are essentially defect-free. Of particular appeal is the pos-

sibility of varying their depth and geometry, as well as creating state-dependent potentials that allow for

independent trapping of atoms with different spin states.

While the loading of ultracold atoms in the ground motional state of the lattice has been successfully

achieved by means of Raman cooling [5], the simple application of this technique allows only for a lattice

filling factor which is much less than one. A high phase-space density has been obtained by loading the

lattice with ultracold atoms originating from a Bose-Einstein condensate (BEC) [6, 7]. A BEC is the

macroscopic occupation of a single-particle wave-function by an ensemble of atoms obeying Bose statistics.

Such an occupation occurs below a certain temperature, which corresponds to the temperature at which de

Broglie wave-length is of the order of the mean interparticle spacing. The existence of a BEC was first

1



predicted by Einstein for ideal gases in 1924 [8], and its presence invoked by London to justify superfluidity

in liquid � He in 1938 [9], but a clear experimental realization of a condensate had to wait until 1995, when

a BEC was obtained for a dilute gas of alkali atoms trapped by magnetic fields [10]. In this system, about

�� =% # �� �� atoms are confined in a relatively small region of space, with densities in the range of
�  ! ! to

�� ! % cm  � and temperatures varying between a few tens of nK to about 50 " K. A BEC of alkali atoms

can be considered a dilute system, because under typical conditions the quantity b��() !�� � � � , the so-called

gas parameter, is at most of order
��  � . Here, b is proportional to the ratio between the interaction to

kinetic energies in three dimensions, � � is the
�
-wave scattering length, that parametrizes the collisional

properties of the atoms at very low temperatures, and ) is the particle density. Because of its diluteness, a

BEC in alkali atoms is nearly the opposite of a strongly correlated system. Nevertheless, when BEC atoms

are loaded in a lattice the ratio of the interaction to kinetic energies can be easily tuned and made very

large by varying the depth of the lattice. In fact, the tunneling of atoms between different sites, that is the

kinetic energy, decreases exponentially with increasing lattice depth, while the interaction energy can be

shown to slightly increase. A BEC in an optical lattice is therefore an ideal system for studying strongly

correlated regimes. This conceptual breakthrough was first suggested in a seminal paper by D. Jaksch and

coworkers [11]. In that paper it was shown that the relevant Hamiltonian for the atoms in the lattice is

the Bose-Hubbard (BH) Hamiltonian, which is known to display an interaction-induced phase transition at

zero temperature between a superfluid and a Mott insulator state [12]. The existence of such a transition

has been experimentally confirmed in a remarkable experiment by M. Greiner and coworkers [13], which

showed the loss of coherence of a BEC when the lattice depth was tuned above a certain threshold value.

The loss of coherence corresponded to the transition from a phase-coherent superfluid to a phase-incoherent

Mott insulator, in agreement with the transition expected in the BH model.

Since then, neutral atoms in optical lattices have been used in a series of impressive experiments to

explore strongly correlated regimes [14, 15, 16, 17, 18, 19]. These experiments mainly focused on systems

with reduced dimensionality, which allow for interaction-induced effects such as “fermionization” of the

bosonic wave-function not present in higher dimensions [14, 15, 16]. These systems have become a test-bed

for studying fundamental problems like the loss of superfluid current in bosonic systems and localization
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of the many-body wave-function [17, 18, 20].

While cross-fertilization between the atomic and the condensed matter communities promises to be

very fruitful in the advancement of our knowledge of basic properties of model Hamiltonians of intrinsic

interest, another field which has largely benefitted from the advancement of AMO techniques is the field

of Quantum Information and Computation. In this respect, the experiments on the superfluid to insulator

transition can be seen as an important step towards realizing theoretical ideas for controlled entanglement

creation in optical lattices by interactions between neutral atoms [21, 22, 23]. Together with single-particle

manipulations, such entanglement operations constitute the basic building block of a quantum computer as

proposed by D. DiVincenzo [24]. The first important experimental steps towards realizing multi-particle

entangled states have recently been achieved by Mandel and coworkers [25], and experiments are also under

way at NIST.

To date, many proposals for neutral atom quantum computation envision the Mott state with an or-

dered array of two-level atoms as the quantum register.

The overall goal of this thesis is to characterize the many-body states of interacting atoms in re-

alistic periodic plus quadratic potentials. While this study is theoretical, it intentionally ties to ongoing

experimental efforts in atomic physics, condensed matter, and quantum information processing.

1.1 Overview of research

Chapter 2 introduces the theory of optical potentials and reviews the basic theory of periodic lattices, single-

particle band-structure and the tight-binding approximation valid for deep enough lattices. To treat inter-

acting many-body systems, it is convenient to introduce the Bose-Hubbard Hamiltonian and show how it is

derived from the full second-quantized many-body Hamiltonian for bosons in periodic potentials, follow-

ing Ref. [11]. Chapter 2 concludes with a review of the phase diagram of the BH Hamiltonian, which is

characterized by superfluid and Mott insulating phases.

Chapter 3 reports on my thesis work on non-interacting and interacting atoms trapped in an optical
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lattice plus a parabolic potential in one dimension with a focus on systems where the on-site particle den-

sity is less than or equal to one. This regime has been recently obtained in a remarkable experiment by B.

Paredes and coworkers [15], where an array of quasi one dimensional tubes was created by loading a BEC

in a deep two-dimensional lattice, which confined the atomic dynamics to the third, or axial, direction. A

weaker optical lattice was then superimposed in the axial direction in order to increase the atoms’ effective

mass, and therefore the ratio b 	 3 � % of the interaction to kinetic energies. The latter measures the degree

of correlation of the system, so that for b�� �
the system is weakly interacting, and at zero temperature

most atoms occupy the single-particle wave-function, while for b�� �
, the system is highly correlated

and becomes ”fermionized”, in that repulsive interactions mimic the effects of the Pauli exclusion princi-

ple. Thus, the low energy excitation spectrum of a bosonic gas resembles that of a gas of non-interacting

fermions.

In Chapter 3 we show that, in the tight-binding approximation, the non-interacting problem is exactly

solvable in terms of Mathieu functions. Then, the exact solutions show the existence of two types of

behavior, according to whether the energy is dominated by site hopping or parabolic contributions. In

the site hopping dominated regime, where the trapping energy is smaller than the lattice band-width, the

single-particle eigenmodes are extended around the trap center and closely resemble harmonic oscillator

eigenstates. The lattice discretization produces modifications to the harmonic spectrum, which become

more and more severe with increasing quantum number. When the parabolic trapping potential is larger

than the lattice band-width, eigenstates become almost two-fold degenerate and localized far from the

trap center. Localization of the modes is linked to the appearance of non-classical turning points when

the quasimomentum reaches the end of the Brillouin zone, and can therefore be associated with Bragg

scattering induced by the lattice. This localization effect is interesting in its own, as it occurs in the absence

of disorder, and is connected to the so-called ”mobility edge” discussed in the context of quasi-periodic

potentials [26].

The analytic solutions are used to study the collective oscillations of ideal bosonic and fermionic

ensembles induced by small displacements of the parabolic potential. In contrast to the well-known case of

the displaced harmonic oscillator, a non-trivial modulation of the center of mass motion occurs due to the
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presence of the lattice potential. In particular, an initial decay of the amplitude of oscillations is observed

due to the dephasing of modes which are not harmonic in character. Because it occurs without dissipation,

we refer to this decay as effective damping.

The interacting boson problem is treated by numerical diagonalization of the Bose-Hubbard Hamil-

tonian. From analysis of the dependence upon lattice depth of the low-energy excitation spectrum of the

interacting system, we consider the problems of ”fermionization” of a Bose gas, and the superfluid-Mott

insulator transition in a trapped system. In this case, numerical DMRG and quantum Monte-Carlo simu-

lations have previously shown the coexistence of superfluid and Mott insulating phases [27, 28, 29]. We

state the conditions for fermionization to occur in the lattice plus quadratic potential and show that it takes

place for a large range of experimentally accessible parameters. We show in this case that the Mott state is a

particular case of a fermionized state with integer filling and explain this using the Bose-Fermi mapping. In

fact, when the Fermi energy of the corresponding Fermi system becomes larger than the lattice band-width,

single particle states are populated which are trapping-dominated and are therefore localized far from the

trap center. Then, the density in the many-body density profile approaches one in a few sites at the trap

center with reduced number fluctuations, corresponding to the realization of the Mott insulator.

Chapter 3 concludes with an analysis of the collective dipole dynamics of an interacting bosonic

gas obtained by exact numerical calculations. The dynamics is studied for two different scenarios that are

experimentally realizable. The first corresponds to experiments in which the trapping potentials are kept

fixed and the interatomic scattering length is varied (e.g. by use of a Feshbach resonance). In this situation,

parameters are chosen such that there is no Mott insulator at the center of the trap in the large b limit. It

is shown that while for very small b interactions actually slightly decrease the damping, for b � �
the

damping of oscillation for the bosonic system exponentially approaches that for ideal fermions. Here the

damping is dominated by the dephasing of the different modes during the time evolution. The second sce-

nario corresponds to experiments in which the lattice depth is increased while the frequency of the parabolic

potential is kept fixed. These results show a strong inhibition of the transport properties of the system if

localized single-particle states are populated as a result of the displacement. If the initial state was a unit

filled Mott insulator at the trap center the dynamics is completely overdamped. Remarkably, if after the
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trap displacement most atoms occupy localized single-particle modes far from the trap center, the center of

mass position of the atomic cloud remains localized far from the trap center, without relaxing towards the

bottom of the parabolic potential. This effect has been recently observed by Inguscio and coworkers [20]

in an experiment with trapped non-interacting fermions.

Chapter 4 presents a generalization of the Bose-Fermi mapping for bosons in one-dimensional op-

tical lattices to situations where the average number of atoms per site is larger than one. We call this

generalization ”extended-fermionization” (EF). This work is relevant to many current experiments with

ultracold bosons, where the peak on-site density is greater than one [17, 18, 19]. Because the standard

fermionization technique utilized in Chapter 3 is not applicable to these cases, the study of these regimes

beyond the use of mean-field theory has relied mainly on numerical simulations [27, 28, 29]. The goal of

this Chapter is to show that even when the on-site density is larger than one, single-particle solutions can

still be used to successfully describe strongly correlated regimes in many situations.

The EF idea is most easily explained for the homogenous case. When the number of atoms equals

the number of lattice sites and b � bHA , the ground state is a Mott insulator state with one atom per site

and reduced fluctuations. Here, bHA is the critical ratio for the superfluid-Mott insulator phase transition. If

some extra atoms are added to the system and b � !5bEA , the extra atoms are delocalized over the entire

lattice, and can be thought of as fermionized bosons with hopping energy !?% on top of a Mott insulator

core containing one atom per site. The lowest-energy eigenstates and eigenenergies can then be described

by means of the standard Bose-Fermi mapping with % replaced by !?% . This approach is referred to as

extended fermionization. The generalization to a Mott state with a generic number of atoms per site is then

straightforward. The extension of the EF model to the case in which a parabolic trap is present, although

less obvious, proved to be remarkably accurate in reproducing equilibrium and non-equilibrium properties

of one-dimensional systems in a large and experimentally relevant parameter regime.

When the parabolic trap is present, atoms tend to pile up at the trap center and, for zero hopping

energy, the many-body density profile shows a layered ”cake”-like structure. For small enough hopping

energy, the layered structure survives and we show that atoms in each layer can still be thought of as being
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fermionized in analogy to the homogenous system, if the appropriate hopping energy is considered in each

layer. Then, by independently applying fermionization techniques to each horizontal layer, it is possible to

obtain expressions for all many-body observables. The success and limitations of our approach are tested

by applying it to a system with the same parameters as the ones used in an experiment recently performed at

NIST. In the NIST experiment [17] approximately + 7 	C�M1 @ : �  3%���� Rb atoms were trapped in an array of

one-dimensional tubes with + 	�,M 
atoms in the central tube. An additional periodic potential was added

along the direction of the tubes and its depth was varied during the experiment. Center of mass oscillations

were induced by a sudden displacement of the harmonic potential by few lattice sites, and an unexpectedly

large damping of oscillations was observed for relatively small lattice depths. Similar results for the damp-

ing of the oscillations were also observed in an experiment performed by Esslinger and coworkers [19].

For equilibrium properties, we compare our EF model’s predictions for the density profile, the momentum

distribution, and the ground-state energy for atoms in the central tube to exact numerical quantum Monte-

Carlo simulations, performed by using the Worm Algorithm [30], and find very good agreement in the

deep-lattice limit. The model’s prediction for the non-equilibrium dipole oscillations are directly compared

to the experimental results, and good agreement is found. In particular, the experimentally observed over-

damping of the dipolar motion corresponds to the formation of a Mott insulator state in the lowest layer in

the EF model, that is, to a large population of localized single-particle states in the lowest layer. We notice

that in Chapter 3 it was shown that the same phenomenon is responsible for the damping of the oscillations

in systems with at most one atom per site.

Chapters 5 and 6 are dedicated to characterizing the Mott insulator state. The Mott state is not

only intrinsically interesting as an example of a strongly correlated state, but in recent years has received

increased attention because of its possible use in schemes for quantum information processing for neutral-

atom quantum computation. To use the Mott state for initializing a quantum register requires that the

Mott state be realized with near perfect fidelity. To date, a key piece of evidence for the realization of

the Mott state has been the loss of global phase coherence of the matter wave-function when the lattice

depth is increased beyond a critical value [13]. Unfortunately, this is not a clear-cut signature of the super-
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fluid/insulator transition. In fact, the loss of coherence could arise from many sources, such as quantum or

thermal depletion of the condensate during the loading process.

In Chapter 5 we propose to use Bragg spectroscopy as a method for probing the excitation spectrum

in the Mott insulator phase in homogeneous lattices, and therefore for fully characterizing the Mott insulator

state. Bragg spectroscopy is a well known high-precision experimental technique, which has already been

used to coherently split a BEC into two momentum components [31], to measure the excitation spectrum in

the superfluid regime [32], and even to measure the light-shifted energy levels of an atom in an optical lattice

[33]. Its use has been only recently suggested as a means to characterize the localized state of a BEC in an

optical lattice [34, 35]. The typical Bragg spectroscopic procedure is to gently scatter atoms with a moving

optical grating. We propose that a Bragg potential be generated independent of and much weaker than the

optical lattice potential. This allows us to treat the scattering process with linear response theory. Generating

the Bragg potential independently of the lattice potential also provides for considerable flexibility in the

range of momentum and frequency values that can be obtained. In contrast to earlier experiments that used

momentum as the response observable, here we choose to examine the imparted energy. In trapped systems

this allows long excitation duration that facilitates more precise spectral resolution. The use of energy

spectroscopy has been recently illustrated in the experiment by Esslinger et al. [19].

For atoms confined in a homogeneous lattice deep in the Mott regime, the lowest-energy excitations

are particle-hole excitations, whose energy is of the order of the interaction energy. Treating the hopping

energy % as a first-order perturbation, an expression is found for the eigenenergies and eigenfunctions of

these excitations, which is strictly valid when many atoms occupy each site of the lattice. The accuracy of

the solution for the interesting case of one atom per site is checked by comparing the analytical results with

exact diagonalizations of the BH Hamiltonian. We show that, deep in the Mott regime, Bragg peaks are

centered around the characteristic Mott gap and are contained in an interval whose width is proportional to

the hopping energy % . Most importantly, we discuss in detail the limit of validity of linear response, finding

that the correlated nature of the Mott state makes reaching the linear regime rather difficult. In fact, linear

response requires that the total excited state population at the conclusion of the Bragg perturbation be small

compared to unity. In turn, this implies that the maximum energy transfer possible is of the order of the
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interaction energy itself. For comparison, in the superfluid regime the only requirement is that at the end of

the perturbation the amount of excited atoms be small compared to the condensate population.

On the other hand, we show that, contrary to the superfluid case, Bragg spectroscopy in the Mott

regime is sensitive to temperature. In particular, low-frequency peaks are observed in the Bragg response

for temperatures of the order of the interaction energy. These thermally activated peaks are at frequencies

equal to the energy difference between two different particle-hole excitations. Because current experi-

mental techniques for estimating temperature do not provide any information on the scale of the interaction

energy, temperature dependence may turn out to be experimentally useful. Current experimental techniques

rely on the analysis of the atomic interference pattern after a certain time of flight after the release of the

atoms from the trapping potentials. The precision in the temperature measurements is of the order of the

level spacing to the second band, which is typically an order of magnitude larger than the interaction energy.

Chapter 6 reports on our study of temperature effects on a realistic Mott insulator state in the pres-

ence of a parabolic potential. As mentioned above, the problem of temperature determination in the Mott

state is crucial for the practical implementation of lattice-based quantum computation schemes. In fact, fi-

nite temperature can introduce errors in the register, such as empty or doubly occupied sites, and therefore a

decrease in overall gate fidelity. This must be corrected at the cost of overheads in computational resources

and gate times.

In this work we devise a scheme for estimating temperatures of order of the interaction energy for a

Mott state in a parabolic potential. The scheme is based on molecular photo-association of atomic pairs, and

because it is largely insensitive to the total number of atoms in the system, it should be suited for calibrating

experimental set-ups.

In Chapter 6 we begin by showing that the density of atomic pairs, which is proportional to the prob-

ability of atomic pair detection in an experiment, depends both on the mixing of particle-hole excitations at

zero temperature, and on finite-temperature population of high energy states. In particular, by comparing

our theory with exact numerical Monte-Carlo simulations, we show that the finite-temperature pair-density

distribution has a well defined Gaussian profile, whose width depends solely on the temperature and the
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known trap geometry. We therefore propose to use a position-dependent measurement of the atomic pair

density, in order to directly infer a bound for the system’s temperature. As a measurement, we propose

to utilize photoassociation of the atomic pair by means of an external laser beam, which is in resonance

between two atoms in a trap and an excited molecular state. Ionization of the molecule, and detection of the

ion would provide for an efficient measurement of the pair’s presence. Although this proposed experiment

is admittedly difficult, due to the problem of focusing the photoassociative laser on a region of the size of

the lattice wave-length, if realized it would provide for a bound on the system’s temperature, at tempera-

tures of order of the interaction energy.

Finally, Chapter 7 reports on our proposal to create a register for neutral atom quantum computation.

Several proposals indicated the Mott state as a candidate for the quantum register [21, 36]. In these propos-

als, each site of the lattice is exactly filled by one particle, and the qubit is stored in internal states of the

atom. Unfortunately, the Mott state corresponds to the state with exactly one atom per site only in the limit

of zero particle hopping. For any realistic finite hopping energy, the ground state of the BH Hamiltonian has

residual mixing of particle-hole pairs which inevitably degrades the fidelity of the register, defined as the

population in the unit-filled state. The same effect is also likely to be caused by finite temperature, as the

analysis of Chapter 6 suggests. The presence of unoccupied sites in the lattice at zero or finite temperature

also introduces unwanted errors in the register initialization.

Our study shows that it is possible to provide a robust register for quantum computation even from

an imperfect Mott state. Our proposed scheme is comprised of two parts. First we show that the spatial

inhomogeneity created by the quadratic magnetic potential can be used to isolate a subspace in the center

which is impervious to hole hopping. The problem of the presence of unoccupied sites in the register is

then naturally solved by defining the register in this physical subspace. Then, components of the many-

body wave-function with more than one atom per well can be projected out by selective measurement on a

molecular photo-associative transition. Maintaining the molecular coupling induces a quantum Zeno effect

that can sustain a commensurately filled register for the duration of a quantum computation. Finally, by

means of numerical diagonalizations of the BH Hamiltonian, we provide evidence that our proposal is
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robust against the effects of moderate finite temperatures.
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Chapter 2

A review of optical lattices and of atoms in periodic potentials

In this Chapter we review the basic theory of ultracold atoms in homogeneous optical lattices, where optical

lattices are periodic potentials created by standing waves of interfering laser light. After reviewing the basic

theory of optical potentials, in Sect.2.2 we analyze the energy spectrum of a single-particle in the optical

lattice and the tight-binding approximation to the single-particle Hamiltonian valid for deep enough lattices.

In order to treat interacting many-body systems, in Sect. 2.3 we introduce the Bose-Hubbard Hamiltonian

and show how the latter is derived from the full second-quantized many-body Hamiltonian for bosons in

periodic potentials. The phase diagram of the BH Hamiltonian, which is characterized by superfluid and

Mott insulating phases, is reviewed.

2.1 Optical potentials

The kinematic processes pertaining to an atom interacting with a traveling wave comprise stimulated ab-

sorption of a photon followed by stimulated emission, and stimulated absorption followed by spontaneous

emission. The first process corresponds to the conservative part of the atom-photon interaction and causes

a shift in the atomic energy levels, due to the interaction between the light field and the induced dipole

moment of the atom. This shift is known as light shift, or ac-Stark shift. The second process, that is stim-

ulated absorption followed by spontaneous emission, can induce a dissipative force on the atom, because

the momentum transferred back to the atom upon re-emission is on the average zero, while the photon is

always absorbed from the laser’s direction. In fact, by using a laser detuned below atomic resonance this

process is routinely used to cool atoms.

In the following, we review the theory of optical lattice potentials. For the sake of simplicity, we

focus on the case of a single two-level atom interacting with a classical monochromatic field, and we derive

the light shift for the atomic levels, neglecting spontaneous emission. At the end of this Section, we show

that our choice to neglect dissipative effects is in fact justified if the laser light is tuned far enough from the
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atomic resonance.

In the dipole approximation valid for light wavelengths much larger than the atomic dimensions, the

Hamiltonian of a two-level atom interacting with a classical electric field
� ��� � � � 	>� � ���]�����	� � 6 �8#�
 �
���

is

R 	 a.6 �
!
� � �9	���� �N# � � 	������ � #Za�' ���]��� � �9	�������� � � 	���� � �����	��� 6 � #�
 �

	 a.6 �
!���� #Za�' ���]�����	� � 6 �B#�
 � � � � (2.1)

where the bare atomic states � � 	 and � �
	 are separated in energy by a.6 � , ' ���]� 	-� �����]� ��� � � ����� � ��	 is the so-

called Rabi frequency,
� � ���]�

is the amplitude of the electric field,
���

is the electric field’s polarization, 6 is

the frequency of the laser light, 
 is a phase,
�

is the electric dipole of the atom, and � � � � � � �  # �  � � �
and � � � � � � � �  � are Pauli matrices, with

� � � � �9	������ 	 �  !  �
  

"�##$ � �  � � � 	���� � 	 �  !   
�  

"�##$ 1
Expanding Eq.(2.1) yields

R 	 a.6 �
!%��� # a�' ���]�! & �  (' /*) �  ,+ 2 � � �-� ' /*) �  .+ 2 �  �-� � ' /*) �  .+ 2 � � �-�  ,' /*) �  .+ 2 �  0/ 1 (2.2)

The first two terms inside the brackets describe processes where the atom rises from � � 	 to � �9	 by absorbing

a photon, and falls from � �
	 to � � 	 by emitting a photon, respectively. The last two terms inside the brackets

describe processes where the atom rises from � ��	 to � �9	 by emitting a photon, and falls from � �9	 to � � 	 by

absorbing a photon, respectively. In order to remove the time dependence from Eq.(2.2), it is useful to

choose a coordinate frame co-rotating with the laser. This is accomplished by the unitary transformation

�213 	 	 3  "! � � � � 3 	 , where 3 � � � 	 �  ('54 6 ��728 . This gives9 a 66 � �213 	 	 3  "! � � �;: 9 a 66 � � 3 	=<>� 9 a : 66 � 3  ! � � � < � 3 	
	 3  "! � � � R 3 � � � � 13 	8# a.6!?�@� � 13 	 1 (2.3)

14



Because 3  "! � � � � � 3 � � � 	 � � and 3  ! � � � � � 3 � � � 	 � � ' ) � � � , in the new coordinate frame Eq.(2.2) reads

R 	 # a��! � � # a�' ���]�! � � ' + � � �-�  ,' + �  ���  (' + � � ' ) � � � ��� ' + �  � ' ) � �  �� � (2.4)

where ���&6$#�6 � is the detuning from atomic resonance. For times much longer than
�5� 6 and provided

' � 6 � , the net time average effect of the last two terms of Eq.(2.4) is approximately zero, and such

processes can be therefore neglected. In this approximation, known as the Rotating Wave Approximation,

Eq.(2.4) reduces to

R /�# a��! ��� # a�' ���]�! � � ' + � � ���  ,' + �  � 	 # a��! ��� # a�' ���]�! � ��� ��� 
 � � � # �����]� 
 � �	��
 1 (2.5)

In the rotating frame the new Hamiltonian is therefore
R 	
������� � � , with

�������C	 1' � 1 and
� 1 a

unit vector along the direction ) . The energy eigenvalues of this Hamiltonian are readily given by
� 	

� 
 � a�� � ! � � � � a�' � ! � � . In the limit of large detuning, � � ' , where the excited state population

� 	 ' � � � !3� � � is negligible, the energy shift becomes

��� � a��
!

� � � �
!
: ' ���]�� < ��� (2.6)

The last term in the square brackets is the so-called light shift, or ac-Stark shift. This is the shift to the

energies of the bare atomic levels due to the interaction with the light field. For a red detuning, ���  , the

minima of the potential are found at points where the intensity is maximum. For a blue detuning, � �  
,

the points of highest intensity correspond to maxima of the potential, and atoms are therefore attracted to

the points of lowest intensity.

The ac-Stark shift corresponds to the conservative part of the interaction between the atom and the

light field. The non-conservative part is due to spontaneous emission to the electromagnetic field. This

process can be taken into account by introducing a term proportional to the atom’s spontaneous emission

rate � in Eq.(2.1), # 9 � � ! � �9	���� � . In the limit of small population of the excited state
� 	 !M' �5����@ � � �.� ��� ,

the effective scattering rate is ��� 	 � � which leads to the following expression for the non-conservative

part of the potential in the limit � � � :
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a�' ���]� � �, � � 1
(2.7)

The fact that the conservative part of the potential depends on the detuning as �
�5� � (Eq.(2.6)) while the

non-conservative part depends on � as �
�N� � � shows that the choice of a sufficiently large detuning can

make the optical potential largely conservative.

2.1.1 Periodic lattices

Optical lattices are created by the superposition of two or more laser beams. In particular, a one dimensional

optical lattice is realized by the superposition of two laser beams counter-propagating in the
�

-direction with

amplitude
� � � ��� 	 � � � ��� � � 9 �?��� , wave-vector

�
and wavelength � 	 !�9 ��� . This lasers’ configuration

produces an optical potential
�(� � � � ����� 	 � � ���	� �M������� 	�� 6� ���	� �.���?���

, whose depth is determined by the

beams’ intensity. Such potential varies periodically in space with periodicity � 	 � � ! , where � is the lattice

spacing. The addition of pairs of beams in the orthogonal directions gives rise to two and three dimensional

lattices. The depth and geometry of the lattices can be easily varied by modifying the intensity of the lasers

and the angles between the beams, respectively [37]. Even the position of the lattice minima can be varied

by changing the laser polarizations. This flexibility together with the defect-free nature of the optical po-

tentials make the optical lattices almost perfect crystals.

2.2 Non interacting atoms in the optical lattice

2.2.1 Bloch functions and Wannier functions

Solutions of the Schrödinger equation for a particle of mass 8 in a lattice potential

R � 
 	 # a �!98 � � 
� � � � � � ��� � � & 9 � � / 
 (2.8)

are Bloch functions 
 /�1+2� ����� 	 � ��� � 9 G ���
	 /�1+2� � ���
, with G the lattice quasi-momentum and ) the band index.

The quasi-momentum G is restricted to the first Brillouin zone, or # 9 � � � G �`9 � � , and the function
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	 /�1+2� � ���
is periodic with period � . An atom in the periodic lattice therefore behaves like a plane-wave,

whose amplitude modulates with the period of the lattice.

Figure 2.1: Band structure of an optical lattice of the form
� � � ��� 	 � � �������.���?���

. Panels a), b), and c)
correspond to lattice depths

� � ��� � 	&������ 
, and ! � , respectively. (From Ref. [38])

Figure 2.1 shows the energy of a single particle in a periodic potential as a function of G , for different

values of the optical lattice depth
� �

. Here,
� � 	 a � ��� � !98 is the photon recoil energy, where

� 	 !�9 � � is

the wave-vector. For
� � ��� � �  

a gap is formed between the lowest two bands. For larger
� � ��� �

ratios,

this gap becomes larger than the width of the two bands, and gaps between higher bands are also formed.

For deep enough lattices, the gap between successive bands is approximately proportional to the oscillation

frequency 6 � � � � of a particle trapped at the potential minimum of a lattice site. Because the lattice potential

is well approximated by a parabolic potential around the minimum, the frequency of oscillation is roughly

6 � � � � 	 ) @?�E���
� � a .

For deep enough lattices, the amplitude of the single-particle wave-function is largely localized

around the minima of the lattice potential. In this case, a convenient choice of basis for describing the

particle’s dynamics is constituted by the so-called Wannier states, � 1 � ��� . For a proper choice of the phases

of the functions 
 /�132� � ���
, the Wannier states are defined as

� 1 � � # � � � 	 �
) :

�

�
�  ,' � ��� 
 / 1+2� � ��� 1

(2.9)
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where
� � is the position of the * � � minimum of the lattice potential, and : is the total number of lattice

sites. When the bands are not degenerate, Wannier states are localized at single lattice sites, and the wave-

function � 1 ����� tends to one of the ) � � excited state of a harmonic oscillator.

2.2.2 Single-band tight-binding approximation

In the following we focus on the case where atoms are loaded onto the lowest vibrational level of each

lattice site only, e.g. ) 	> . In this case the wave-function 
 � ��� of a particle in the lattice potential can be

expanded in terms of lowest-band Wannier states


 ����� 	 �

�
S ��� c � � # * � � � (2.10)

where � c � � # * � � is the first-band Wannier function centered at lattice site * , and � S ��� are complex ampli-

tudes. For a deep enough lattice, tunneling to next nearest neighbors can be ignored. This approximation

known as the tight binding approximation yields the following equations for the amplitudes � S � � :
�[S � 	 # % ��S � � ! � S �  ! ��� (2.11)

with

% 	 #
� 6.� � Wc ����� R � � c ��� # � � 6M� 1 (2.12)

where % is the tunneling matrix element between nearest neighboring lattice sites. In Eq.(2.11) the overall

energy shift � �0	�� 6M� �dWc � ��� R � � c�� ��� 6M� has been set to zero. The dispersion relation is here given by

� � 	 # !?% ���	��� G9� � , and the band width is therefore equal to
@ % .
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2.3 Interacting bosons in the optical lattice

2.3.1 The Bose-Hubbard Hamiltonian

When inter-particle interactions are taken into account, it is convenient to treat the many-body system in

a second quantized formalism. Then, the relevant Hamiltonian for interacting bosons in optical lattices

in the tight-binding limit is the so-called Bose-Hubbard (BH) Hamiltonian [11, 12]. In the absence of

external potentials, the latter is comprised of particle-hopping and inter-particle interaction terms. In the

following we derive the BH Hamiltonian from the full many-body Hamiltonian including local two-particle

interactions and external confining potentials, and summarize the basic properties of its zero-temperature

phase diagram, which shows both superfluid and insulating phases. In particular, the BH model predicts

the existence of a quantum phase transition from a superfluid to a Mott insulator due to the competition

of particle-hopping and inter-particle interaction energies, at commensurate fillings of the lattice. Since

its experimental realization in inhomogeneous lattices [13], this quantum phase transition has become a

paradigm for the study of strongly interacting systems.

Derivation of the BH Hamiltonian

The Hamiltonian for interacting atoms in an optical lattice in three dimensions is

R 	 � 6 � � �
�� ���]� : # a �!98 � �
� � � � � � � � � ���]� � � 7 ���]� < �
 ���]� � �! � 6 � �06 ��� �
�� ���]� �
�� ��� � � ' 1 � ��� # � � �
 ���]� �
 ��� �
�

(2.13)

where �
 ���]� is the bosonic field operator,
� � � � � ���]� is the sinusoidal lattice potential,

� 7 ���]� is an external

potential which varies slowly with respect to the lattice spacing (e.g., a magnetic parabolic potential), and

� ' 1 � ��� # � �
is a two-body short-range interaction potential. Because the thermal de-Broglie wave-length of

ultracold atoms is much larger than the
�
-wave scattering length � � , only

�
-wave scattering with a relative

wave vector bewteen the two particles
�

much larger than the inverse of the scattering length,
�N� � � � �

,

is important in interatomic collisions. Then, the full two-body interaction potential can be substituted by a

delta-function potential, whose strength is proportional to � � [42]
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� ' 1 � ��� # � �
�
@ 9 � � a �8 T ��� # � �
1

(2.14)

The last term of Eq.(2.13) then reads

!�9 � � a �8
� 6 � � �
�� ���]� �
�� ���]� �
 ���]� �
 ���]� (2.15)

Analogous to Eq. (2.10), if the lattice is loaded such that only the lowest vibrational level of each

lattice site is occupied, the field operator can be expanded in terms of lowest-band Wannier states only [11]

�
 ���]� 	 � � �� � � c ��� # � � �
� (2.16)

where �� � is the bosonic annihilation operator of a particle at site � 	 � * � � * � � * � � . Substitution of this

expansion into Eq. (2.13) yields the Bose-Hubbard Hamiltonian [11]

R < 	>	 # � � � � ��� % � � � �� �� �� � � � � � 3
! �) � � �) � # �5� ��� � �) �
	 1 (2.17)

Here % � � � 	 # � 6 � � �dWc ��� # � � � & #�� 6� ��
 6
�� 6 � �@� � � � ���]� / � c ��� # � � � is the hopping energy at site � , anal-

ogous to Eq. (2.12), � � ��� 	 restricts the sum to nearest-neighbors, and 3 is the on-site interaction energy

given by 3 	 ��� ��� � 6� � 6 � � � � c ���]� � � . The quantity 3 is the energy cost for having two atoms at the same

lattice site. The energy � � 	C� 7 ��� � � is due to the discretization of the external potential. In the remainder

of this thesis,
� 7 is an external magnetic parabolic potential.

The quantities % and 3 are both dependent on the depth
� � � � � ���]� of the optical lattice in each of the

three directions � � ���� � �� � �S � . In fact, a deepening of the lattices exponentially suppresses the tunneling

between neighboring sites, while the tighter confinement of atoms in the lattice wells increases the repulsive

energy 3 . The tunneling rate %�� in the direction � decreases with
�(� � � � � � � for sinusoidal lattices as

% � 	�� : �@� � � � � � �� � < < ����� �! #���� �@� � � � � � �� �
"$ �
� � (2.18)

where the numerically obtained constants are
� 	 �.1 K 4 = ,  	 �M1  .�2�

, and � 	 ! 1 � ! � . The interaction
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energy depends on the depth of the lattices as

3 	 !+� � a) !N9 � � : 6 �� � � � 6 �� ��� � 6 �� � � ����+� � � � <��� (2.19)

where 6 �� � � � 	 F @�� � ��� � � � � � � � a and ��� 	 F a ��� 8 6 �� � � � � . In the remainder of this thesis we will be con-

cerned with one-dimensional optical lattices. In current experiments, one-dimensional lattices are obtained

by tightly confining in two directions atoms loaded in three-dimensional lattices. Then, the interaction

energy increases with the lattice depth
� � � �@� � � � � ��� in the longitudinal direction �� as

3 	��]� � : � ��
� < !�� � � (2.20)

where
� 	 @ ) !N9 � � � � � �
� ���X�N�
� � !�� � , and

���
is the depth of the lattice in the transverse directions �� and �S

[71, 72].

We will be interested in systems with an additional continuous parabolic magnetic potentials that

can be modeled as the discrete potential

� � 	 ' * � � (2.21)

where ' 	 8 � � 6 �7 � ! , with 6 7 the frequency of the magnetic trap.

2.3.2 Phase diagram of the BH Hamiltonian

The physics of ultracold atoms in an optical lattice in the absence of external potentials is fully character-

ized by the average particle density ) 	 + � : and by the ratio b 	 3 � % between the onsite interaction

energy 3 and the hopping energy % . In fact, according to the values of ) and b , the system can be in either

one of the two following phases: a so-called “superfluid” phase, where single-particle wave-functions are

delocalized on a region which is of the order of the lattice size, and an insulator phase, known as “Mott”

phase, where single-particle wave-functions are localized at single lattice sites.
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Superfluid phase

The onset of superfluidity is a consequence of the competition between the kinetic energy, which tries to

delocalize the particles, and the interactions, which try to localize the particles and make the number fluc-

tuations small. The superfluid phase occurs both when ) is an integer and b is small, which corresponds

to the limit where the kinetic energy dominates over the interaction energy, and when the mean particle

density ) is non-integer, independent of the ratio b .

The nature of the superfluid phase is best understood in the limit of small interactions, in dimensions

larger than one. When the kinetic energy dominates over the repulsion of two particles sitting in the same

lattice site, nearly all atoms occupy the same single-particle state. This single-particle state corresponds to

the eigenstate of the single-particle density matrix , ' � 	 �-� �' �3��	 with the largest eigenvalue, and for very

small interaction energies is very close to the Bloch wave-function with quasi-momentum G 	  
of the

lowest Bloch band. The macroscopic occupation of one eigenstate of , ' � for small interactions corresponds

to the realization of a Bose-Einstein condensate (BEC). Because this state is delocalized over the whole

lattice, and has a well defined phase difference between the various sites, the system shows long-range off-

diagonal coherence, meaning that the value of , ' � is independent of the distance between the sites
9

and * ,
, ' � 	 + � : . Particle number fluctuations � ) ' 	�� ���) �' 	M# ���) ' 	 �5� !�� � are large, and scale as � ) ' 	 F + � : .

The energy spectrum in the superfluid regime is gapless. This is clear in the limit of zero interactions, where

the lowest energy excitations are Bloch waves with quasi-momentum G . Then, the energy of the first excited

state scales like % � : � , which tends to zero for large : .

The presence of BEC at zero temperature should be regarded as a signal of and not as a necessary

condition for superfluidity. In fact, the exact relation between BEC and superfluidity is still a subject of

active research [45, 46]. A simple example of the fact that BEC is not necessary for superfluidity is a

one-dimensional system of strongly interacting bosons. For large enough interactions, the energy spectrum

of strongly interacting bosons maps to that of non-interacting fermions, the correspondence being exact in

the limit of infinitely large interactions. This is the so-called Tonks-Girardeau (TG) limit [47]. In the TG
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limit the largest eigenvalue of the single-particle density matrix is of order ) + , and there is no BEC [39].

Nevertheless, the system is a superfluid, with the superfluid fraction , � being equal to , � 	���� � / � � � � 2� � � � 1

[40].

Mott insulating regime

When the interaction energy is much larger than the kinetic energy, b � �
, particles minimize their energy

by avoiding each other. When the average particle density ) is an integer and equal to one, the energy is

minimized when particles are localized each in a different site. In the limit of infinitely strong interactions,

or, equivalently of zero kinetic energy % , the ground state � 3 � 	 is then exactly the Fock state with one atom

per site, � 3 � 	 	 � V 	 � � ' � �' �  	 , where �  	 represents the vacuum. This state has exactly zero interaction

energy, � � � V � 3 � �) �� # �)�� � � ! � V 	 	` 
. The lowest lying excitations, known as particle-hole excitations,

are obtained by removing a particle from a site and putting it on top of an atom sitting in another site. The

energy required for this is 3 , independent of the lattice size, and therefore the system is characterized by a

finite gap 3 which is large compared to the small excitation energies of the superfluid limit.

For finite small % , perturbation theory readily shows that the ground state is a superposition of the

Fock state with one atom per site � V 	 and Fock-states � � 	 	 �N� ) @ + �
��
	 ! � � �� � ! �3��� � �� �3� � ! � � V 	 with zero

particles in one site and an extra particle in one of the nearest neighboring sites. This state is the so-called

Mott state

� 3 �+	 	 � & � V 	 �I! ) +�% � 3 � � 	 / � (2.22)

where the normalization constant is � 	 � � � @ + � % � 3 � � �  !�� � . The energy of the Mott state is approxi-

mately
� � 	 # @ +$% ��� 3 .

1This finite value of �
� is obtained by imposing a phase variation to the wave-function, and measuring the response of the system

to the perturbation. The difference in energy before and after the perturbation is proportional to the superfluid fraction [43, 44].
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Figure 2.2: Zero-temperature phase-diagram for the BH Hamiltonian in the " #O% plane in three dimensions,
in the absence of external confinement, ' 	  

. The lobe-like structures are Mott insulator phases with
average number of atoms ) per site.

Phase diagram

The phase diagram of the system in the absence of external potentials, ( ' 	  
), is given in the grand

canonical ensemble, where the mean particle number is fixed by a particle reservoir of chemical potential

" [12, 48]. The BH Hamiltonian reads

R <
	�	 �

�
�
# % � �� �� �� � � ! � �� �� � ! �� � � � 3 ! �) � � �) � # � � #�" �) 	 1 (2.23)

Figure 2.2 shows the phase diagram in the " #O% plane in three dimensions. The corresponding phase

diagram in one dimension shows the same qualitative features. In agreement with our previous discussion,

the phase diagram shows the presence of a large region of parameters where the system is superfluid, and

lobe-like structures where the mean particle density is integer. These lobes correspond to the Mott insulating

regions, where particle fluctuations, and therefore the compressibility
� ) � � " , vanish. For any point within

the Mott phase, the energy gap for the creation of an extra particle (hole) is the distance in the " direction

to the upper (lower) phase boundary. Thus, the energy gap to number-conserving particle-hole excitations

in the Mott phase is here represented by the width in " of the lobe, for any fixed value of % . At % 	� this
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Figure 2.3: On-site density, continuous(red) line, and number fluctations, dashed(blue) line, as a function of
the site index * , in one dimension. Here, + 	&,M 

, ' � % /  21  ! , and 3 � %4/ � � . The regions of integer and
non-integer density correspond to the Mott insulating and superfluid phases, respectively. The site * 	  
corresponds to the center of the parabolic potential.

gap is exactly 3 . Because the kinetic energies of the extra particle and the hole increase with increasing % ,

the width in " of the Mott phase decreases, determining the lobe-like structure.

The transition from a Mott insulating phase to the superfluid phase occurs either as the density moves

away from a commensurate (integer) value, or as the hopping energy is increased at fixed commensurate

density. This last transition occurs only at the tip of each Mott lobe, while the transition at a generic point

of the insulator/superfluid phase boundary is of the density-type. In Ref. [12] it is shown that these phase

transitions actually belong to two distinct universality classes. For the density-transition at a generic point

of the insulator/superfluid phase boundary, the parameter measuring the distance from the transition point

can be defined as " #P" A , where " A is the chemical potential at the transition point. Then, the compressibility

diverges near the transition as
� ) � � " � � " #4" A �  �� , with � �  

. Here, " #4" A and
� ) � � " are the analogs

of the reduced temperature
V # V A and the specific heat for finite temperature transitions, respectively. For

the special case of the constant-density transition at the tip of the Mott lobes, the parameter measuring the

distance from the transition point is
� % � 3 � # � % � 3 � A 	 b�# b2A , with b2A / @

for the Mott phase with

unit particle density in one dimension [48]. Here, differentiation with respect to
� % � 3 � # � % � 3 � A becomes

inequivalent to differentiation with respect to the chemical potential.

When the external parabolic potential is present, ' �  
, the density profile of the bosonic ensemble
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is determined by an interplay of ' , + , % , and 3 . Different from the homogeneous case, it has been found

numerically [11, 27, 28, 49] and investigated analytically [50] that Mott insulating and superfluid phases

can actually coexist for ' �  
. Figure 2.3 shows an example of the coexistence of superfluid and insulating

phases, for + 	-,. 
particles, ' � %4/  21  ! , 3 � %0/ � � , in one dimension. These results have been obtained

by utilizing a Quantum Monte-Carlo code, Worm Algorithm [30], with a temperature
VU	U 21  2� % ��� < ,

where
�=<

is the Boltzmann constant. In the figure, the continuous(red) and the dashed(blue) lines are the

on-site density and number fluctuations as a function of the lattice position * , respectively. Here, * 	  
corresponds to the bottom of the parabolic potential. The density profile decreases from a peak density

of about )�� 	 �M1 =
at * 	L to a value of one for !  �� � * � � KM , and then to zero. Here, the regions of

non-integer density correspond to superfluid phases, while the integer-valued plateaux correspond to a Mott

insulator with unit filling. This interpretation is confirmed by the behavior of the number fluctuations. In

fact, fluctuations are large where the density is non-integer, and drop to a small constant value when the

density becomes integer. This value is / ! ) !?% � 3 , and is due to the mixing of particle-hole excitations

in the Mott insulator at zero temperature, in analogy to the homogeneous system [51]. Qualitatively, the

coexistence of superfluid and insulating phases for ' small enough can be understood on the basis of the

phase diagram of the homogeneous system, by defining a local chemical potential " � 	 "_# ' * � . Then,

for any choice of 3 , % , and + , the density at site * is fixed by the value of " � , according to the diagram of

Fig. 2.2. Because of the coexistence of compressible and incompressible phases, in Ref. [28] it was shown

that the formation of the Mott region is actually not a true quantum critical phenomenon in the confined

case as it is in the unconfined case. In Chapters 3 and 4 we explain microscopically how the Mott insulating

regions are created in the parabolically confined systems of current experimental interest.
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Chapter 3

Ultracold atoms confined in an optical lattice plus parabolic potential: a closed-form

approach

We discuss interacting and non-interacting one dimensional atomic systems trapped in an optical lattice

plus a parabolic potential. We show that, in the tight-binding approximation, the non-interacting problem is

exactly solvable in terms of Mathieu functions. We use the analytic solutions to study the collective oscilla-

tions of ideal bosonic and fermionic ensembles induced by small displacements of the parabolic potential.

We treat the interacting boson problem by numerical diagonalization of the Bose-Hubbard Hamiltonian.

From analysis of the dependence upon lattice depth of the low-energy excitation spectrum of the interacting

system, we consider the problems of ”fermionization” of a Bose gas, and the superfluid-Mott insulator tran-

sition. The spectrum of the noninteracting system turns out to provide a useful guide to understanding the

collective oscillations of the interacting system, throughout a large and experimentally relevant parameter

regime.

3.1 Introduction

In recent experiments [14, 15, 16, 18, 19], quasi-one dimensional systems have been realized by tight

confinement of gases in two dimensions. Due to the enhanced importance of quantum correlations as

dimensionality is reduced, such systems exhibit physical phenomena not present in higher dimensions,

such as ”fermionization” of a Bose gas.

The degree of correlation is measured by the ratio of the interaction energy to the kinetic energy,

b . For b � �
the system is weakly interacting, and at zero temperature most atoms are Bose-condensed.

In this limit quantum correlations are negligible and the dynamics is governed by the mean-field Gross-

Pitaevski equation. For b � �
, the system is highly correlated and becomes fermionized, in that repulsive

interactions mimic the effects of the Pauli exclusion principle. In this ”Tonks-Girardeau” regime, [41, 47],

the low energy excitation spectrum of a bosonic gas resembles that of a gas of non-interacting fermions.
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To date, one dimensional systems have been obtained by loading a Bose-Einstein condensate into

a two-dimensional optical lattice which is deep enough to restrict the dynamics to one dimension. This

procedure creates an array of independent 1D tubes. In most experiments, a weak quadratic potential is

superimposed upon the lattice, in order to confine the atoms during the loading proccess. The combined

presence of the periodic and quadratic potentials substantially modifies the dynamics of the trapped atoms

compared to the cases when only one of the two potentials is present, as shown both experimentally and

theoretically [20, 49, 52, 53, 54, 55].

In this chapter we study both ideal and interacting bosonic systems in such potentials. In contrast to

previous studies of ideal systems, which used numerical[53] or approximate solutions [20, 49, 54, 55], here

we show that the single-particle problem is exactly solvable in terms of Mathieu functions[56, 57, 58]. We

use analytic solutions to fully characterize the energy spectrum and eigenfunctions in the various regimes of

the trapping potentials and to provide analytic expressions for the oscillations of the center of mass of both

ideal bosons and fermions that are induced by small displacements of the parabolic trap. These expressions

for the dipolar motion may be tested in experiments.

We further analyze the low-energy spectrum of interacting bosons by means of exact diagonaliza-

tions of the Bose-Hubbard Hamiltonian, and identify the conditions required for fermionization to occur.

Moreover, we show that specific changes in the spectrum of the fermionized system can be used to describe

the characteristics of a Mott insulator state with unit filling at the trap center.

Center-of-mass oscillations are also studied in the weakly interacting and fermionized regimes by

comparing exact numerical solutions for the interacting system to solutions for ideal bosons and fermions,

respectively. Because fermionization occurs over a large range of trap parameters, knowledge of the proper-

ties of the single-particle solutions turns out to provide useful insights in the understanding of the complex

many-body dynamics. In addition, we numerically analyze the distribution of frequencies pertaining the

modes excited during the collective dynamics, for different values of b . This helps us gain qualitative in-

sight in the dynamics even in the intermediate regime where interaction and kinetic energies are comparable

and no mapping to ideal gases is possible.
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The presentation of the results is organized as follows: In Sec. 3.2.1 we discuss the analytic solutions

that describe the single-particle physics. These show the existence of two types of behavior, according to

whether the energy is dominated by site hopping or parabolic contributions. Different asymptotic expan-

sions of the eigenfunctions and eigenvalues apply to these two regimes, and can be effectively combined to

describe the full spectrum.

In Sec. 3.3, we then apply the analytic solutions and asymptotic expansions to the description of the

collective dynamics of non-interacting ensembles of bosons and fermions subject to a sudden displacement

of the parabolic trap. In contrast to the well-known case of the displaced harmonic oscillator, a non-trivial

modulation of the center of mass motion occurs due to the presence of the lattice potential. We derive

explicit expressions for the initial decay of the amplitude of the oscillation, to which we refer as effective

damping.

In Sec. 3.4.1, the low-energy spectrum of interacting bosons is studied as a function of the lattice

depth. In particular, we follow the evolution of the spectrum from ideal bosonic to ideal fermionic as the

lattice deepens, by means of numerical diagonalization of the Hamiltonian for a moderate number of atoms

and wells. We specify the necessary conditions for the formation of a Mott state at the center of the trap,

and use the Fermi-Bose mapping to link its appearance and the reduction of number fluctuations to the

population of high-energy localized states at the Fermi level.

Section 3.5 is dedicated to the study of the collective dipole dynamics of an interacting bosonic

gas by numerical calculations of the exact quantal dynamics. The dynamics is studied for two different

scenarios that are experimentally realizable. The first corresponds to experiments in which the trapping

potentials are kept fixed and the interatomic scattering length is varied (e.g. by use of a Feshbach resonance),

Sec. 3.5.1 B1. Here, parameters have been chosen such that no Mott insulator at the center of the trap is

formed in the large b limit. The second scenario corresponds to experiments in which the lattice depth is

increased while the frequency of the parabolic potential is kept fixed, Sec. 3.5.2. In this case a unit filled

Mott insulator is formed at the trap center and the inhibition of the transport properties of the system is

observed as the lattice deepens.
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3.2 Single particle problem

3.2.1 Tight binding solution

The dynamics of a single atom in a one dimensional optical lattice plus a parabolic potential is described

by the Schrödinger equation

9 a ���� � 	 # a �!98 � � �
� � � � � � ����� � & 9 � � / � � 8 6 �7! � � � �

(3.1)

where
� � ���

is the atomic wave function, 6 7 is the trapping frequency of the external quadratic potential,

���
is the optical lattice depth which is determined by the intensity of the laser beams, � 	 � � ! is the lattice

spacing, � is the wavelength of the lasers and 8 is the atomic mass.

As shown in Sect. 2.3.1, if the atom is loaded into the lowest vibrational state of each lattice well and

the dynamics induced by external perturbations does not generate interband transitions, the wave function

� � ���
can be expanded in terms of first-band Wannier functions only [59, 60]

� ���]� � � 	 �

�
S � � � � � c?� � #0* � � � (3.2)

where � c.��� #$* � � is the first-band Wannier function centered at lattice site * , � is time, and � S � � � � � are

complex amplitudes. Numerical comparisons show that for a lattice depth
� ��� ! � � tunneling to next-to-

nearest-neighbors sites is almost one order of magnitude smaller than tunneling to nearest-neighboring sites

and therefore the former can be neglected [61]. Here
� � 	�� � ��� !98 � � � is the photon recoil energy, a useful

energy unit for atoms in optical lattices. The approximation of considering nearest-neighbor tunneling

only is known as the tight binding approximation, and yields the following equations of motion for the

amplitudes � S � � � � � :
9 a � S �� � 	 # % ��S � � ! � S �  ! � � ' * � S � � (3.3)

with
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' 	 �
! 8 � � 6 �7 � (3.4)

% 	 #
� 6.� � Wc ����� R � � c���� # � � 6M� � (3.5)

R � 	 # a
�
!98

� �
� � � � �E� ��� � � & 9 � � / (3.6)

where % is the tunneling matrix element between nearest neighboring lattice sites. In Eq.(3.3) the overall

energy shift � � given by

� � 	 � 6.� � Wc ����� R � � c ����� 6.�]� (3.7)

has been set to zero.

We notice that because we restrict our discussion to the lowest band only, our results are valid for

states whose wave function does not extend beyond the site * � ��� 	 F a�� � ' where a�� is the energy

difference between the first and the second bands. For lattices deep enough that the orbitals at the bottom

of each well can be approximated by those of an harmonic oscillator, a�� is given by a�� 	 ) @?� � � � . In the

following we provide specific examples for the range of applicability of our theory.

3.2.2 Stationary solutions

The stationary solutions of Eq.(3.3) are of the form
S /�1+2� � � � 	�� /�1+2� �= ('���� � � � , with

� 1 and
� / 1+2� the ) � �

eigenenergy and eigenstate, respectively. Substitution into Eq.(3.3) yields

� 1 � /�132� 	 # % & � /�1+2� � ! � � /�132�  ! / � ' * � � /�1+2� (3.8)

Equation (3.8) is formally equivalent to the recursion relation satisfied by the Fourier coefficients of

the periodic Mathieu functions with period 9 . Therefore the eigenvalue problem can be exactly solved by

identifying the amplitudes
� /�1+2� and eigenenergies

� 1 with the Fourier coefficients and characteristic values

of such functions, respectively [56]. In terms of Mathieu parameters the symmetric and antisymmetric

solutions are
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� /�1 	 ��� 2� 	 �
9
� � �c � � ��� ���]� #
G ����� ��� !�* ��� 6.�]� (3.9)

� / 1 	 ��� � ! 2� 	 �
9
� � �c � � ��� � � � #
G ����� �]� !�* ��� 6.�]� (3.10)

� 1 	 ��� 	 ' @ � ��� � G � � 1 	 ��� � ! 	 ' @ 5 ��� � G ��� (3.11)

with � 	  H���.� ! 1 1 1 and
� � ��� ���]� G � and

� � ��� ���]� G � the even and odd period 9 solutions of the Mathieu equa-

tion with parameter G 	 �
�
� and characteristic parameter � ��� � G � and

5 ��� � G � respectively:
� 6 A � 6��� � 6 � � � ��� � G � #

!�G ��� ��� ! ��� � � � ��� 	& and
� 6 � � 6��� � 6 � �-5 ��� � G � #$!MG ���	��� ! ��� � � � ��� 	& .

Solutions of the single particle problem are entirely determined by the parameter G 	 �
�
� , which is

proportional to the ratio of the nearest-neighbor hopping energy % to the energy cost ' for moving a particle

from the central site to its nearest-neighbor. The eigenvalues and eigenstates of the system are in general

complicated functions of G . However, asymptotic expansions exist in the literature which can help unveil

the underlying physics for different values of G . Most of the asymptotic expansions have been available for

almost 50 years due to the work of Meixner and Schäfke [57]. In the remainder of this section we introduce

such asymptotic expansions and use them to describe the physics of the system in the tunneling dominated

regime where G � �
, which we call high G regime, and the G � � , or low G regime.

High � regime ( 	�

��� )

Most experiments have been developed in the parameter regime where G � �
. For example for

� �
Rb

atoms trapped in a lattice with � 	 ,2�  
nm, a value of G�� �� 

is obtained for a lattice depth of 2
� �

if 6 7 �`!�9 : �MKM, Hz and for a lattice of 50 E
�

if 6 7 � !N9 : =?1 � Hz. Here
� �

is the photon recoil

energy
� �-	 �H�5��� !98 � � � , corresponding to a frequency

� � � ��	 K21 @?=
kHz. Throughout this chapter, in

our examples we use atoms with the mass of
���

Rb.

In the high G limit the periodic plus harmonic potential possesses two different classes of eigenstates

depending on their energy. In fact, as we will show, eigenmodes can be classified as low or high-energy
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depending on the quantum number ) being smaller or larger than !HD?F G � !HD , respectively, where D � D de-

notes the closest integer to
�

. Physically, this classification depends on which one of the two energy scales

in the system, the tunneling or the trapping energy, is dominant. To the energy classification corresponds a

classification based on localization of the modes in the potentials. In particular, the low-energy (LE) modes

are extended around the trap center and high-energy (HE) modes are localized on the sides of the potential.

The existence of localized and extended states has been tested experimentally [20, 52] and studied theoret-

ically [49, 53, 54, 55]. Here we show how the asymptotic expansions of the Mathieu solutions can be used

to characterize them quantitatively.

Low-energy modes ( ) � ) G ) in the high G regime

In the LE regime the average hopping energy % is larger than ' . In this regime the eigenmodes have

been shown to be approximately harmonic oscillator eigenstates [49, 53, 54, 55]. Asymptotic expansions

valid to describe LE eigenmodes in the high G limit have been studied in detail in Ref. [58], where the

eigenstates are described in terms of generalized Hermite polynomials. Here we simply outline the basic

results and refer the interested reader to [58] and references therein for further details.

The asymptotic expansions for the eigenmodes can be written as

� /�1 	 ��� 2� / � 1 ����� : #�� � : �! � ��K � !N) �� ; ) G <>� � �@�, ) G <� ��
� 	 c

� / � 2� � � � : � � ��K.� # � � � �� �� � �
! @ ) G < (3.12)

� /�1 	 ��� � ! 2� / � 1 ����� : #�� � : �! � ��K � !N) �� ; ) G < � � �@�, ) G <� ��
� 	 c 1� / � 2� � � � � ! : � � � =�� # ��� � �� .� � �

! @ ) G < (3.13)

with � 	 *��
 � � , � / � 2� 	 /  "! 2 ����� � 6�� ���
	/ � � 2 	 / �  � 2 	 , 1� / � 2� 	 /  "! 2 ����� � 6���� � / ��� � ! 2 	/ � � � ! 2 	 / �  � 2 	 and
� 1 a normalization constant.

Notice that the coefficients
� / � 2� and 1� / � 2� are related to the Hermite polynomial

R 1 � ��� by the relations

R ��� � ��� 	 � � � 	 c � / � 2� �E� � and
R ��� � ! � ��� 	 � � � 	 c 1� / � 2� ��� � � ! .

The eigenenergies are approximately given by
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� � ���1 / ' @
�
# !�G � @ ) G � ) � �

!
� #

� !N) � �5� � � �, #
� � !N) � � � � � KE� !N) � � � �

! � ) G ��� : �
G <�� (3.14)

If one neglects corrections of order
�5� ) G and higher in Eqs. (3.12) and (3.13) and keeps only the first two

terms in Eq. (3.14), the expressions for the eigenmodes and eigenenergies reduce to

� 1 	 # ' G � !;� ' ) G � ) � �
!
�

(3.15)

� /�1+2� / � ) !
! 1 )�� �F G59 � ����� : # � �

! < R 1 � � ��1 (3.16)

The above expressions correspond to the eigenvalues and eigenenergies (shifted by # ' G � ! ) of a harmonic

oscillator with an effective trapping frequency 6 W and an effective mass 8_W . The effective frequency and

mass are given by

a.6 W 	 ' ) G 	 a.6B7
	 88 W � (3.17)

8 W 	 a �
!?% � � � (3.18)

The harmonic oscillator character of the lowest energy modes in the combined lattice plus harmonic poten-

tial is consistent with the fact that near the bottom of the Bloch band the dispersion relation has the usual

free particle form with 8 replaced by 8_W . It is important to emphasize that the expressions for the effective

mass and frequency Eqs. (3.17) and (3.18) are only valid in the tight-binding approximation.

Higher order terms introduce corrections to these harmonic oscillator expressions, that become more

and more important as the quantum number ) increases. These corrections come from the discrete char-

acter of the tight-binding equation. They can be calculated by replacing
� /�1+2� with

� / 1+2 � � � and taking the

continuous limit of the hopping term proportional to % in Eq.(3.8). This procedure yields:

: # �! � �� � � # �
� !3� � � �

�
�� � � � � ��� � �

! �
� < � /�1+2 	��� 1 � /�1+2 (3.19)

where � 	 * �
 � � � ���
�� , � � � 	 
 ���� ) � 	\� G �5@?� !�� � is a characteristic length of the system in lattice units,

which can be understood as an effective harmonic oscillator length, and
�� 1 	\��� 1 �0!�% � ��� a.6XW � . To zeroth

order in
�5� ) G , ( ��� �����

), the differential equation (3.19) reduces to the harmonic oscillator Schrödinger
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equation. Higher order corrections given in Eqs.(3.12), (3.13) and (3.14), can be calculated by treating the

higher order derivatives in Eq.(3.19) as a perturbation.

High-energy modes ( ) � ) G ) in the high G regime

High energy modes are close to position eigenstates since for these states the kinetic energy required

for an atom to hop from one site to the next becomes insufficient to overcome the potential energy cost

[53, 54, 55, 49]. By using asymptotic expansions of the characteristic Mathieu values and functions, we

obtain the following expressions for the spectrum and eigenmodes

� � ' ���1 	 ��� / � � ' ���1 	 ���  ! / ' @�� � ! � � � � G �
! � � ! � � � # � � � G � � = � � � ! � � � �K ! � � ! � � � # � � � � � ! � � � # @�� � 1�1�1�� (3.20)

� / � ' �$� 2� 1 	 ��� / � / � ' ��� 2� 1 	 ���  "! / � 1 � T$� � � # G@ : T � � �  !! � # � #
T$� � ! � �� � ! � < �

G �K ! � T � � �  �� ! � #Z! �
� ! � # �5� #
! � � � @ � � � T � � �� ! � # �5� � � � � ! � � � � T � � � � �� � �I! � ��� !�� ! � � ��� ��� * � # *	� (3.21)

with
� 1 normalization constants. We note that the asymptotic expansions Eqs.(3.20) and (3.21) for the HE-

modes in the high G regime are identical to the asymptotic expansions for the modes in the low G regime

reported below. While the latter are well known in literature, to our knowledge they have never been used

to describe the high G regime. We actually found that as long as ) � ) G these asymptotic expansions

reproduce reasonably well the exact results, even for very large G . An example of this is given in Figs. 3.1

and 3.2, which are discussed at the end of this section.

The high energy eigenstates are almost two-fold degenerate with energy spacing mostly determined

by ' . In Ref. [55] the authors show that the localization of these modes can be understood by means

of a simple semiclassical analysis. By utilizing a WKB approximation, the localization of the modes can

be linked to the appearance of new turning points in addition to the classical harmonic oscillator ones for

energies greater than !�% . While classical harmonic oscillator turning points are reached at zero quasimo-

mentum, the new turning points appear when the quasimomentum reaches the end of the Brillouin zone and

can therefore be associated with Bragg scattering induced by the lattice.
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Finally, we mentioned above that for any given
� �

and 687 the one band approximation is only valid

for those states whose wave function does not extend beyond a maximum * � ��� 	 � ) @�� � � � � ' � !�� � . This

maximum value can vary widely. For example, for
� � 	 ! � � and 687 	 !N9Z: ��KM, Hz, * � � � is approxi-

mately 7, and it increases to 75 for 6 7 	 !�9Q: �� Hz. For
� � 	\�M M� �

and 687 	 !N9Q: =�1 � Hz, * � ��� is

approximately 1100.

Intermediate states ( ) � ) G ) in the high G regime

In order to reproduce accurately the energy spectrum in the intermediate regime one may expect that

many terms in the asymptotic expansions have to be kept. To estimate the energy range where the spectrum

changes character from low to high, we solve for the smallest quantum number ) A whose energy calculated

by using the low energy asymptotic expansion is higher than the one evaluated by using the high energy

expansion. That is

� � ���1��  ! � � � ' ���1�� �
(3.22)

where ) A is required to be even.

Solution of Eq. (3.22) gives

)]AX/-!HD F G � !2D � (3.23)

where D � D denotes the closest integer to
�

.

By comparison with the numerically obtained eigenvalues, we actually find that using Eq. (3.14) for

) �\) A # � and Eq. (3.20) for ) � ) A # � is enough to reproduce the entire spectrum quite accurately.

Moreover, since at ) A the energy is approximately given by
� 1 � /J!�% , our analytical findings for the

transition between harmonic oscillator-like and localized eigenstates are in agreement with the approximate

solutions found in [54, 55] by using a WKB analysis.

In Figs. 3.1 and 3.2 we compare the above asymptotic approximations to exact numerical results

for the eigenenergies and eigenfunctions. The parameters used for the plots are those of a system with

a lattice depth of
=?1 @.� �

and quadratic trap frequency 6 7 	 !N9-:I;  Hz. These values correspond to
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Figure 3.1: Upper panel (a): Spectrum of a particle in combined quadratic and periodic potentials as a
function of the quantum number ) . The quadratic trap frequency and the depth of the periodic potential are6 7 	 !�9I:_;  Hz and

���O	 =?1 @.�
�
, respectively. Points are numerically obtained values, while crosses

are asymptotic expansions of the Mathieu characteristic parameters. The arrow indicates the critical value) A /&!HDMF G � !HD . Lower panel (b): Energy difference between the numerically obtained eigenvalues and the
asymptotic expansions.

% 	> 21  MK��.=N� � , ' 	> 21  M . 4 � � and G 	 � �.= . Figure 3.1, upper panel, shows the lowest 35 eigenenergies

as a function of the quantum number ) . The value ) A , which is equal to
� ; in this case, is indicated by an

arrow. The crosses represent the asymptotic solutions, Eq. (3.14) and (3.20), and the dots the numerically

obtained eigenvalues. On the scale of the graph there is no appreciable difference between the two solutions

for the entire spectrum. The difference between the the numerically obtained energies and the asymptotic

expansions is plotted in the lower panel of Fig. 3.1. In the upper panel of Fig.3.2, asymptotic expressions

for the LE eigenvectors ) 	 ! (boxes) and ) 	 �
(crosses) are compared to the numerically obtained

eigenmodes (triangles and dots respectively). The modes clearly exhibit an harmonic oscillator character,

and the agreement between the asymptotic and numerical solutions is very good. In the lower panel, the

) 	�K�@ and ) 	&@ ! eigenstates belonging to the region ) � ) A are depicted. These states are localized far

from the trap center. While the overall shape of the modes is well reproduced by the asymptotic solutions,
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Figure 3.2: Eigenmodes of a particle in a combined quadratic and periodic potentials as a function of the
lattice site * . The quadratic trap frequency and the depth of the periodic potential are 6 7 	 !�9 :^;  Hz and� � 	\=�1 @�� �

, respectively. Triangles and dots are numerically obtained values (”ex” in the legend), while
boxes and crosses are asymptotic expansions of the Fourier coefficients of the periodic Mathieu functions
(”as” in the legend). In the upper panel, triangles and boxes refer to the ) 	 ! mode, while dots and crosses
refer to ) 	 � . In the lower panel, triangles and boxes refer to the ) 	 KM@ mode, while dots and crosses
refer to ) 	 @ ! .
for the chosen values of ) small differences between the asymptotic (boxes and crosses respectively) and

numerical solutions (triangles and dots respectively) can be observed. As expected, the convergence of the

asymptotic expansion to the exact solution is better for ) 	�@ ! than for ) 	>KM@ , as the former has a larger

value of ) than the latter.

Low � regime ( 	�
 � � )

This parameter regime is relevant for deep lattices. When
@ % ��' the kinetic energy required for an atom

to hop from one site to the next one is insufficient to overcome the trapping energy even at the trap center

and all the modes are localized. This is consistent with the previous analysis, because when
@ %���' , ) A is

less than one. The asymptotic expressions that describe this regime are [56]
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Figure 3.3: Upper panel (a): Spectrum of a particle in combined quadratic and periodic potentials as a
function of the quantum number ) . The quadratic trap frequency and the depth of the periodic potential are6B7 	 !N9Q:4;  Hz and

� � 	��M 21  M� �
, respectively. Points are numerically obtained values, while crosses

are asymptotic expansions of the Mathieu characteristic parameters in the low G limit. Lower panel (b):
Energy difference between the numerically obtained eigenvalues and the asymptotic expansions.

������� �1 	 c / ' @ : #
G � �! �QG � =� ! , � 1�1�1 <
������� �1 	 ! / ' @ :2@ #�G � �� ! �QG � �

��K., ! @ � 1�1�1 <
������� �1 	 � / ' @ : @ �QG � �� ! #�G � = ; K��K., ! @ � 1�1�1 <
������� �1 	 � / ' @ : � ; �QG � �KM #$G � K2�5=

, ; @. . M � 1�1�1 <
������� �1 	 � / ' @ : � ; �QG � �KM �IG � @.KMK

, ; @. . M � 1�1�1 <������� �1�� % / � � ' ���1�� % (3.24)

and

39



� � / ����� 2 1 	 c / �
c � T � � c) , � G) , T � � ! � G �K !
T � � � #�T � � c) ! � � � * � # * �

� � / ����� 2 1 	 ! / � ! � T$� � ! � G� ! T$� � � �IG � : T � � �K.,�@ # T � � !! ,M, < � # � * � # * �
� � / ����� 2 1 	 � / � � � T � � ! � G� !

: T � � � # K ! T � � c < �IG � : T � � �K.,�@0# � 4 T � � !! ,., < � � � * � # * �
� � / ����� 2 1�� � 	 � / � ' �$� 2� 1�� �

(3.25)

with
� 1 normalization constants. In Fig. 3.3 the above expansions for the energies are compared with

the numerically calculated spectrum. Here the lattice is
�� M� �

deep and the external trap frequency is

6 7 	 !�9 :$;  MR4S . These lead to values of % � ' and G given by % 	 ! 1 40: �   %��
� , ' 	  21  M . 4 � �
and G 	  H1 � K

. The asymptotic and numerical solutions perfectly agree on the scale of the graph. The

energy difference between the numerically obtained eigenvalues and the asymptotic expansions is plotted

in Fig. 3.3, lower panel.

3.3 Center of mass evolution of a displaced system

In recent experiments, the transport properties of one dimensional Bose-Einstein condensates loaded in an

optical lattice have been studied after a sudden displacement of the quadratic trap [17]. A strong dissipative

dynamics was observed even for very small displacements and shallow depths of the optical lattice. This

should be contrasted with previous experiments performed with weakly interacting 3D gases where very

small damping of the center of mass motion was observed for small trap displacements [62, 63]. Recent

theoretical studies have demonstrated that the strongly damped oscillations observed in one dimensional

systems reflect the importance of quantum fluctuations as the dimensionality is reduced [64, 65, 66, 67].

In this section we study the dipolar motion of ideal bosonic and fermionic gases trapped in the

combined lattice and harmonic potentials. We start by writing an expression for the evolution of the center

of mass of an ideal gas with general quantum statistics, and then we use this expression to study the dipole

oscillations for bosonic and fermionic systems. The simplicity of the noninteracting treatment allows us to

derive analytic equations for the dipole dynamics for both statistics.

Later on, in section 3.4, we show how the knowledge of the bosonic and fermionic ideal gas dy-
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namics can be useful in describing the dynamics of the interacting bosonic system for a large range of

parameters of the trapping potentials.

3.3.1 Ideal gas dynamics

Consider an ideal gas of + atoms at zero temperature loaded in the ground state of an optical lattice plus a

quadratic potential initially displaced from the trap center by T lattice sites. The initial state of the gas is

S � � � 	- �� 	 �
+

�

1 ) 1 � /�1+2�  � (3.26)

where ) 1 is the mean occupation number determined by the appropriate quantum statistics, and * is the site

index.

The time evolution of the center of mass of the gas is given by

� � � � � 	 	 �
+

�

1 ) 1 �
� 1 � � � 	 (3.27)

with

� � 1 � � � 	 	 � �

� � �
�! � /�1+2 W� � /�1+2� �  ,' / � �  ��� 2 � � � � � * � / � 2� � / � 2 W�

"$
� /�1+2� 	 �

�
� / 1+2�  � � / � 2 W� �

(3.28)

where the quantities
� /�1+2� and the energies

� 1 correspond to eigenfunctions and eigenenergies of the undis-

placed system. The coefficients
� /�1+2� are given by the projection of the ) excited displaced eigenstate onto

the
�

excited undisplaced one.

Once the
� 1 and

� / 1+2� are known, the center of mass evolution can be calculated. In the following

we discuss the zero temperature dynamics for the ideal bosonic and fermionic systems.
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Bosonic system

At zero temperature the bosons are Bose condensed and ) 1 	 +4T 1 c , where T 1 c is the Kronecker delta

function. The center of mass motion is then given by

� � � � � 	 	 � �

� � �
�! � / c 2 W� � / c 2� �  ,' / � �  � � 2 � � � � � * � / � 2� � / � 2 W�

"$
� / c 2� 	 �

�
� / c 2�  � � / � 2 W� 1

(3.29)

If the initial displacement of the atomic cloud is small, !�T � )BA , and the lattice is not very deep

( G � �
), localized eigenstates are initially not populated. Then, only low-energy states are relevant for

the dynamics and the latter can be modeled by utilizing the asymptotic expansions derived in Sec. 3.2.2.

To simplify the calculations, we use the harmonic oscillator approximation for the eigenmodes (Eq.(3.16)),

and include up to the quadratic corrections in ) in the eigenenergies, which corresponds to keep the first

three terms of Eq.(3.14). Even though this treatment is not exact, we found that it properly accounts for the

period and amplitudes of the center of mass oscillations for small trap displacement. After some algebra it

is possible to show that the time evolution of the center of mass is given by

� � 	 	 �?T �  ��� 6� 6 
 � � � � 6 ������
	 ��� ���	� : 6 W� �B# T �
!3� � � � ����� : ' �@ a < < (3.30)

with a.6 W� 	 a.6XW #$' �N@ .
In Fig. 3.4 we plot the average center of mass position in units of the lattice spacing � as a function

of time for an ideal bosonic system of atoms with
���

Rb mass. The solid line is obtained by numerically

solving the tight binding Schrödinger equation, Eq.(3.3), while the dotted line is the analytical solution

Eq.(3.30). For the plot we used
� � 	 =?1 @.� �

, 6B7 	 !N9I: ;  MR_S and T 	 K . The time is shown in units

of
V � 	 !N9 � 6XW , a characteristic time scale. The two solutions exhibit very good agreement for the times

shown.

The modulation of the dipole oscillations predicted by Eq.(3.30) can be observed in the plot. At

early times, � � a � ' , the amplitude decreases exponentially as
�����]� # � � � ��� , with � � 	 & � �

� � � 
 � / � , and

the frequency is shifted from 6 W by
�
� � � � # � 6� � 6 
�� � . The initial decay does not correspond to real damping

in a dissipative sense, as in a closed system the energy is conserved. The decay is just an initial modulation
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and after some time revivals must be observed. Because in the large G limit 6
Wc � ' � a , the revival time is

approximately given by
@ ��� ' .

It is a general result that the dipole oscillations of a harmonically confined gas in absence of the

lattice are undamped. The undamped behavior holds independently of the temperature, quantum statistics

and interaction effects (generalized Kohn theorem [68]). Equation (3.30) shows how this result does not

apply when the optical lattice is present even for an ideal Bose gas.
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Figure 3.4: Center of mass motion in lattice units as a function of time for an ideal bosonic gas. In the plot,� � 	L=?1 @.� �
, 6B7 	 !�9Q:_;  MR4S and T 	 K . The time has been rescaled by

V � 	 !�9 � 6XW . The solid and
dotted lines are the numerical and analytical solution Eq. (3.30), respectively.

Recent experimental developments have opened the possibility to create a non-interacting gas for

any given strength of the trapping potentials [69, 70]. The techniques use Feshbach resonances for tuning

the atomic scattering length to zero. These developments should allow for the experimental observation of

the modulation of the dipole oscillations of an ideal gas predicted in this section.

Fermionic system

At zero temperature the Pauli exclusion principle forces fermions to occupy the lowest + eigenmodes,

and therefore �) 1 	 �
for
 � ) � +U# � and zero elsewhere. The occupation of the first + displaced

modes makes the condition of occupying only low-energy eigenstates of the undisplaced potentials more

restrictive than in the bosonic case. Nevertheless, if the initial displacement, lattice depth and atom number

are chosen such that only LE eigenstates are initially populated, � �1 	 1 �  "! � � / �  ! 21 � � � �
, it is possible

to derive simple analytic expressions for the dipole dynamics. This is the focus of the remainder of this

43



section. Population of localized states considerably complicates the system’s dynamics and a numerical

analysis is therefore required. This is postponed to Sec.3.5.2.
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Figure 3.5: Center of mass motion in lattice units as a function of time for + 	 �5�
fermions. Here6 7 	 !N9$:4!  .R4S and

���d	C=�1 @��
�
and T 	>K . The time is in units of

V]�d	 !N9 � 6XW . The solid and dotted
lines are the numerical and analytical solution Eq. (3.33), respectively.

When only LE undisplaced eigenstates are occupied, as explained for the bosonic system, to a

good approximation the eigenmodes can be assumed to be the harmonic oscillator eigenstates and only

corrections quadratic in the quantum number ) are relevant in Eq.(3.14). After some algebra, the above

approximations yield the following expression for the time evolution of the center of mass:

� � � � � 	 	 �
+

�  "!�

1 	 c �
� 1 � � � 	 (3.31)

� � 1 � � � 	 � �?T � � : ����� � 9 6 W� �8# : T �M� � #�� � � � �
!+� � � � < � 1� 1 � � � < (3.32)

1� 1 � � � � 1  !�

� 	 c � : T��� � < � � � � � � � # �5� � � � � � � 1  "!$ � � � ) � � � � � � � � � #�) �� ! �H� � � � � � �5� � ��
� 	 !
� ) � � # �5� �

� & ���
�� / � 1 � � #�� � � � � � 1� !N) � � � (3.33)

where � � � � 	 ����� /  (' � � � / � � 2 2 and a.6 ���P	 a.6XWX#Z' �5@ .
The parameter � � � � takes into account the quadratic corrections to the harmonic oscillator energies.

The corrections are proportional to ' �N@ , and due to the presence of the lattice. In the limit � � � � � �
,1� 1 � � � � ��� ) and therefore the amplitude of the dipole oscillations remains constant in time, � � 	 	

�?T ���	��� 6XW � � , as predicted by Kohn theorem. The corrections that are quadratic in ) cause the modulation
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Figure 3.6: Center of mass motion in lattice units as a function of time for some initially occupied modes.
The modes are labeled by the quantum number ) . As in Fig. 3.5, the parameters are 6 7 	 !N9Q:�!  MR_S ,� � 	Y=�1 @�� �

, + 	 � �
, T 	 K

and the time is in units of
V � 	 !�9 � 6XW . The solid line corresponds to

the numerical solution and the dotted line to the solution given by Eq. (3.33). When the center of mass
evolution of all the different modes is added, from ) 	L to ) 	 + # � one recovers the total center of
mass evolution shown in Fig. 3.5.

of center of mass oscillations.

The modulation is caused not only by the overall envelope generated by the exponential term

����� � #
T �M� � #�� � � � � ��� ! 1� � � � � � , which was also present in the bosonic case, but mainly from the interfer-

ence created by the different evolution of the + average positions � � 1 	 in the sum Eq.(3.31). The latter

induces a fast initial decay of the amplitude of the dipole oscillations.

In Fig.3.5 we plot the center of mass motion of the fermionic gas composed of + 	 � �
atoms

with the mass of
� �

Rb. The solid and dotted lines correspond to the numerical and analytic solutions,

respectively. Here the depth of the optical lattice is
=�1 @�� �

, and 6B7 	 !�9 :I!  MR_S . The amplitude of

oscillation shows a rapid decay in time. The analytic solution captures the overall qualitative behavior of

the numerical curve. Nevertheless, only at short times the agreement is quantitatively good. Population

of eigenstates which are not fully harmonic in character is responsible for the disagreement at later times.

45



This effect is particularly relevant for the evolution of the displaced states with larger quantum number, as

explicitly shown in Fig. 3.6 where the time evolution of some displaced modes is plotted. Again, the solid

line is the numerical solution and the dotted line is the analytic one. For the lowest energy modes, ) 	\ 
and ) 	 K , the agreement between the two curves is almost perfect. For the higher energy modes ) 	 ;
and ) 	 4 the analytic solution is underdamped and overestimates the collapse time.

Interestingly, the dynamics of the displaced excited modes exhibits an initial growth of the ampli-

tude. This behavior is a pure quantum mechanical phenomenon due to the constructive interference between

the different phases of the undisplaced eigenmodes during the evolution. We explicitly checked for energy

conservation during the time evolution. The amplitude increase is captured by the analytic solution and it

allowed us to show that the growth happens only when the ratio between the initial displacement T and � � �
is less than one. While such a behavior is not observable in the evolution of a fermionic cloud, as the ob-

servable is the center of mass position summed over all initially populated modes � � � � � 	 , the experimental

observation of growth for an individual mode may be possible if an ideal bosonic gas is initially loaded in

a particular excited state, and then suddenly displaced.

As described above, the evolution of LE modes can be handled analytically. On the other hand,

when high-energy eigenmodes are populated the dynamics is much more complicated. Nevertheless, there

is another simple limiting case that can be solved. This corresponds to the case when the displacement is

large enough or the lattice deep enough that the displaced cloud has non-vanishing projection amplitudes

only onto high-energy undisplaced modes which can be roughly approximated by position eigenstates,

� ��� � ���  "!� / � T � � � � T  � � � � � ) ! . Then, one finds that � � 1 	 / ��T for all ) and thus � � 	 / �?T . That is, when

only high-energy eigenmodes are populated the dynamics is completely overdamped and the cloud tends

to remain frozen at the initial displaced position. We show later on in Sec. 3.5.2 where we treat interacting

atoms, that in the so-called Mott insulator regime most populated modes are actually localized, and this

kind of overdamped behavior characterizes the dipole dynamics.
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3.4 Many-body system

3.4.1 Spectrum of the BH-Hamiltonian in the presence of an external quadratic potential

In Sec. 2.3.1 it was shown that the Bose-Hubbard (BH) Hamiltonian describes the system’s dynamics when

the lattice is loaded such that only the lowest vibrational level of each lattice site is occupied [11]

R <
	 	 �

�
�
' * � �)�� # % � �� �� ��3� � ! � �� �� � ! ��3� � � 3 ! �)�� � �)��
# � � 	 1 (3.34)

Here ' , % and 3 are defined as in Eqs.(2.21), (2.18) and (2.20), respectively. There it was shown that the

tunneling rate decreases for sinusoidal lattices with the axial lattice depth
� �

as

% 	�� : � ��
� < < ����� � #�� 	 � �
� � �Q� � � (3.35)

where the numerically obtained constants are
� 	Y�.1 K 4 = ,  	Y�M1  .���

and � 	 ! 1 � ! � . The interaction

energy increases with
���

as

3 	��]� � : � ��
� < !�� � � (3.36)

where
�

is a dimensionless constant proportional to � � . In current experiments, the one-dimensional lattice

is obtained by tightly confining in two directions atoms loaded in a three-dimensional lattice. In this case

�-	 @ ) !N9 � � � � � �
� � � �N� � � !�� � , where
� �

is the depth of the lattice in the transverse directions [71, 72].

The parameter b 	 3 � % therefore increases as a function of the axial lattice depth as

b ��� � � 	
�� : � ��
� < !�� �� < ����� � � 	 � �

�
� �(1 (3.37)

In the absence of the external quadratic potential, the bosonic spectrum is fully characterized by the

ratio between the interaction and kinetic energies b and the filling factor + � : , where : is the number of

lattice sites [12]. For b � �
and any + � : ratio the system is weakly interacting and superfluid. For b � �

and : � + the system fermionizes to minimize the inter-particle repulsion. In this regime the bosonic

energy spectrum mimics the fermionic one, the correspondence being exact in the limit of infinitely strong

interactions. In particular, in a lattice model the onset of fermionization is characterized by suppression of

multiple particle occupancy of single sites. This implies that fermionization occurs for eigenstates whose

energy is lower than the interaction energy 3 . If : � + there are : � ��� + � � : #&+ � � � fermionized
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eigenmodes and the dynamics at energies much lower than 3 can be accounted for by using these states

only. On the other hand, if the lattice is commensurately filled, + 	 : , there is only one fermionized

eigenstate, and it corresponds to the ground state. All excited states have at least one multiply occupied

site, and therefore excitations are not fermionized. The ground state corresponds to the Mott state with a

single particle per site and reduced number fluctuations. The transition from the superfluid to the Mott state

is the quantum phase transition studied in Chapter 2.3.2, and the critical point for one-dimensional unit

filled lattices is b A �(@E1 ; � [12, 73].

In the presence of the quadratic trap the spectrum is determined by an interplay of 3 , % , ' and

+ . In trapped systems the notion of lattice commensurability becomes meaningless because the size of

the wave-function is explicitly determined by these parameters. As a consequence, for any value of + the

ground state can be made to be a Mott insulator with one atom per site at the trap center by an appropriate

choice of 3 , % and ' [51], and the lowest energy modes can always be made to be fermionized in the large

3 limit. The purpose of this section is to characterize fermionization and localization of the many-body

wave-function when both the quadratic and periodic potentials are present, by relating the occurrence of the

different regimes to changes in the spectrum at low energies.

We performed exact diagonalizations of the BH-Hamiltonian for + 	&�
particles and : 	C� 4 sites

in presence of a quadratic trap of frequency 6 7 	 !N9<: �5�� Hz. For the calculations, we chose
���

Rb atoms

with scattering length � � 	 ��1 K2� nm, a lattice constant � 	L@. �� nm, and therefore ' �  21  M �@ ; � � . We

fixed the transverse lattice confinement to
� � � ! �21 � � � and varied the depth of the optical lattice

���
in

the parallel direction from 2
� �

to about 17
� �

. For these lattice and parabolic potentials, the single-band

approximation is always valid because * � ��� 	 ! ��� @.K for
� � ��� � 	 ! and 17, respectively, and therefore

* � ��� is always larger than * / : � ! . For the given lattice depths, the energies 3 and % both vary so that

their ratio b increases from
K21 K

to about
� �� 

. Due to the changes in % , the ratio G 	�@ % � ' characterizing

the single-particle solutions decreases from 130 to 4 with increasing
� �

. The effective harmonic-oscillator

energy spacing a.6 W decreases approximately from 0.0525
�d�

to 0.0092
� �

. We used these parameters

because they are experimentally attainable and fulfill the condition 3�#Z' � � + # �5� � ! � � �  
for the entire
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Figure 3.7: Energy spectra as a function of the depth of the axial optical lattice
�]�

. The continuous,
dotted and dashed lines correspond to + 	 �

interacting bosons, non-interacting bosons and fermions,
respectively. The dashed-dotted line corresponds to a.6
W . The horizontal axis on the top of the figure isb 	 3 � % , and is only meaningful for interacting bosons. For each energy spectrum, the corresponding
ground-state energy

� c
has been subtracted.

range of the trapping potentials. Later on we discuss that, for deep enough lattices, fulfillment of the last

inequality ensures the existence of an energy range in which eigenmodes are fermionized.

Figure 3.7 shows the lowest eigenergies of the BH-Hamiltonian as a function of
� �

. The continuous

line is the exact solution for + 	��
interacting bosons. The dotted and dashed lines are the exact spectra for

5 non-interacting bosons and fermions, respectively. They have the same mass and are trapped in the same

potentials as the interacting bosons. Their spectra are shown for comparison purposes. For each spectrum

the energy
�
c

of the ground state has been subtracted.

In the absence of the optical lattice,
��� 	  

, the energy difference � � c_	 � ! # � c , or energy

spacing, between the first excited and ground state equals the harmonic oscillator level spacing a.6 7 , inde-

pendent of statistics and interaction strength. Figure 3.7 shows that this is no longer the case in the presence

of the lattice.

The dependence of � � c on statistics is evident in the plot, as the level spacing is different for ideal

bosons and fermions. In particular, the energy spacing for bosons is only shifted from a.6 W 	 ) @ ' %
(dashed-dotted line) by an amount which is almost constant for all lattice depths, while � �dc for fermions

clearly deviates from a.6 W , especially for deep lattices. The behavior of � � c in the two cases can be
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understood by using the asymptotic solutions of the single-particle problem. For ideal bosons � � c is equal

to the energy difference between the first-excited and ground single-particle eigenenergies. The ratio G used

for the plots is such that the critical value )BA of Eq. (3.23) is always larger than 2, and therefore the ground

and first-excited eigenenergies are well described by Eq. (3.14). The calculation of the energy difference

using this equation yields � �
c / a.6XW
# ' �5@ . For fermions, � �
c is equal to the difference between the

energies of the ) 	 + and ) 	 + # � single-particle excited states. For
��� � 4 1 ; �
� , the critical value

) A is larger than + , and therefore the energies of the ) 	 + and ) 	 + # � single-particle excited states

are also well described by Eq. (3.14). Then, � � c for fermions is smaller than for bosons because lattice

corrections are more important for higher quantum numbers, and have all negative sign. On the other hand,

for
� � � 4 1 ; � � , )]A is smaller than + # � and the energies of the ) 	 + and ) 	 + # � single-particle

excited states are described by Eq. (3.20). The transition of the single-particle eigenmodes at the Fermi

level from LE to HE around
�Ec 	 4 1 ; �
� is signaled by the minimum of � � c for fermions. In general, an

estimate for the value of % at which the minimum takes place is

%��-' � � + # �5� � ! � � � ! 1 (3.38)

This value is obtained by equating the Fermi energy
� �  "! , which is of order ' � � + # � � � ! � � from

Eq. (3.20), to
� 1�� , which is approximately !?% . The transition of the single-particle eigenmode at the

Fermi level from LE to HE is also connected to the formation of a region of particle localization at the

trap center in the many-body density profile. As explained in [49], when
� �  ! is equal to

� 1 � the on-site

density in the central site of the trap approaches 1 with reduced fluctuations. For
��c � 4 1 ; �
� , Fig. 3.7

shows that � � c approaches an asymptotic value ' + , value that can be derived from Eq. (3.20). When the

asymptotic value ' + is reached, most single-particle states below the Fermi level are localized, and this

yields a many-body density profile with + unit-filled lattice sites at the trap center.

The dependence of the first excitation energy on interactions can also be seen in Fig. 3.7. In fact,

by comparing � �
c for the interacting bosons to the value of � � c for ideal bosons and fermions, three

different regimes can be considered:
� ��b � �  , �� �Cb � KM and b � K. 

. These regimes correspond

to the intermediate, fermionized-non-localized and fermionized-Mott regimes, respectively. The weakly
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interacting regime b � � is only reached for
� �
� ! � � for our choice of atoms and trapping potentials.

For such lattice depths the tight-binding approximation is not valid, and therefore we do not show the

spectra for this regime in Fig. 3.7. In the following we discuss the main features of the different regimes

focusing on the connection to the ideal bosonic and fermionic systems.

� For b �J�
the interacting bosonic system is in the weakly interacting regime. In this regime

the first excitation energy is almost the same as the ideal bosonic one. Most atoms are Bose-condensed,

interaction-induced correlations can be treated as a small perturbation, and the spectrum can be shown to

be well reproduced by utilizing Bogoliubov theory [74].

� For
� � b � �  

, the system is in the intermediate regime, where � � c for interacting bosons

deviates from the ideal bosonic energy spacing and approaches the ideal fermionic one. Indeed, Fig.3.7

shows that for
� c � @.� � , � � c for the interacting bosons lies closer to the ideal bosonic energy spacing,

while for
�Hc � @

it lies closer to the ideal fermionic one. In the presence of the optical lattice b increases

exponentially with
���

, and therefore the intermediate regime occurs for a relatively small range of accessible

trapping potentials, here for
� � � � ��� � � ��1 � .

� For b � �� the interacting spectrum approaches the ideal Fermi spectrum and the system is in the

fermionized regime. The numerical solutions show that the energy difference between the energy spectra

of interacting bosons and fermions is of the order of % �5� 3 and slightly increases for larger frequencies of

the quadratic trap.

In general, fermionization in the presence of the external quadratic potential occurs for + � :
when the two following inequalities are satisfied

b 	 3 � % � �M� 3 � ' � � + # �5� � ! � � 1 (3.39)

While the first inequality is the same as for homogeneous lattices and relates to the building of particle

correlations, the second inequality is specific to the trapped case and relates to suppression of double particle

occupancy of single sites. If the interaction energy 3 is larger than the largest trapping energy, which

corresponds to trapping an atom at position
� +U# � � � ! , it is energetically favorable to have at most one

atom per well. The average on-site occupation is therefore less than or equal to one.

The second inequality in Eq. (6.3) poses some limitations on the choice of possible ' and 3 for a
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given number of trapped particles. For our choice of the trapping potentials, this inequality is satisfied for

any
� �

. Indeed, this is not an unrealistic assumption. In recent experiments with
� �

Rb atoms, an array of

fermionized gases has been created with at most 18 atoms per tube [15]. For such + , the condition 3 �

' � � + # �5� � ! � � can be fulfilled for many different choices of experimentally feasible trapping potentials.
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Figure 3.8: Density profiles ) � � ���) � 	 as a function of the lattice site * for different lattice depths. The
dash-dotted, dashed and dotted lines correspond to interacting bosons, while the boxes, dots and triangles
correspond to ideal fermions for

� � ��� � 	>=?��� ! and
�5�

lattice depths, respectively.
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Figure 3.9: Number fluctuations � )"� � 
 ���) �� 	8# ���)���	 � as a function of the lattice site * for different

lattice depths. Conventions and parameters are the same as in Fig.3.8

� For b � K. 
the system enters the fermionized-Mott regime. In fact, Fig. 3.7 shows that for b � KM 

the energy spacing for the interacting bosons (and also for ideal fermions) begins to increase until it reaches

an asymptotic value at b0/ �5�� .
The approaching of the asymptotic value signals the formation of a localized many-body state for the

interacting bosons, the so-called Mott insulator state, Where atoms occupy each a different site around the

trap center, with reduced particle fluctuations. The relevant relation between + , ' and % for the formation
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of an extended core of unit-filled sites at the trap center with fluctuations mainly at the outermost occupied

sites is

' + �&% 1 (3.40)

This is explained as ' + is the energy cost for moving a particle from position � � + # �5� � ! � to

position � � + � �5� � ! � at the borders of the occupied lattice and it is the lowest excitation energy deep in the

Mott state.

Figure 3.7 shows that for b / �5�� 
the energies of the first four excited states become degenerate.

This degeneracy occurs because deep in the Mott regime the energy required to shift all the atoms of one

lattice site to the right or left is the same as the energy required for moving an atom from site
� � +`# � � � !

to site
� � + � � � � ! . For bC/ � �M 

, % is approximately ' , and therefore the tunneling energy is barely

sufficient to overcome the potential energy cost ' for moving a particle from the central site of the trap to

one of its neighbors. In the single-particle picture,when % / ' all the single-particle states below
� �  !

are localized.

In order to better understand the formation of the Mott insulator, in Figs. 3.8 and 3.9 the on-site

particle number )�� 	 ���)���	 and fluctuations � )�� 	 
 ���) �� 	8# ���)���	 � are plotted as a function of the lattice

site * , for different lattice depths
���

. The lines and symbols are the results for interacting bosons and ideal

fermions, respectively. All the
���

-values are such that the interacting bosonic system is fermionized. This

is mirrored by the overall good agreement between lines and symbols for all the curves. The plots show

that for
� � 	L=�� � � b 	 � �

, dashed-dotted line), the largest average particle occupation is ) c /  21 = , and

number fluctuations are of the order of
 21 �

in the central 9 sites, while for
� � 	 � ! � � � b 	`�N@

, dashed

line), ) c approaches 1 in the central 3 sites, and fluctuations at the trap center drop to a value � ) �[/  21 � .
The sharp drop in particle fluctuations clearly signals the localization at the trap center, and is in agreement

with % ��' + for b 	 �N@ . For
���^	 �5���
� � b 	 �� M@ , dotted line), the Mott state is formed, as the mean

particle number in the five central sites is one, with nearly no fluctuations. Fluctuations are larger at lattice

sites far from the center, and due to the tunneling of particles to unoccupied sites.
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Because of the small number of atoms that we use in the calculations, ' � � +U# �5� � ! � ��� ! and ' + are of

the same order of magnitude. It is therefore not possible to clearly distinguish the value of % for which

the on-site density at the trap center approaches one from the value of % for which the Mott state is fully

formed at the trap center, with reduced number fluctuations in the central + sites. Preliminary results

obtained with a Quantum Monte-Carlo code, Worm Algorithm [30], confirm the existence of these two

distinct parameter regions when more atoms are considered, and therefore the usefulness of both the energy

scales ' � � + # � � � ! � ��� ! and ' + for interacting bosons. As an example, for the parameters of the central

tube of the experiment of Ref. [15], the relations % ��' � � + # � � � ! � � � ! and %��>' + are satisfied for the

lattice depths
� � �N� � / , and 12, respectively. Accordingly, the many-body density profiles show that for

� � �N� � 	\,
some sites at the trap center begin to have unit filling, while for

� � ��� � 	 � ! a Mott state is

fully extended in all the central sites of the lattice. In all these Monte-Carlo simulations + 	�� 4 , : 	C�  2�
,

and the temperature is
V 	  21  2� % �M�=< , with

�=<
the Boltzmann constant. These results will be published

elsewhere.

Finally, in order to get an estimate of the dependency of our exact diagonalization results for 5

particles and 19 wells on the system size, we calculated the ground-state energy for increasing : by means

of numerical Monte-Carlo simulations. By increasing the lattice size of an order of magnitude we found

that the ground-state energy varies of only 2 percent. We consider this as a strong indication of the fact that

the results above are not significantly affected by the limited number of sites considered.

3.5 Many-body dynamics

In this section we study the temporal dipole dynamics of an interacting bosonic system composed of 5

atoms trapped in a combined quadratic plus periodic confinement. The role of interactions on the effective

damping of the dipole oscillations is studied by means of exact diagonalization of the Hamiltonian. As

discussed when dealing with the ideal gas dynamics, such damping is effective because it is due to dephasing

and does not have a dissipative character.

Assuming the system is initially at
V-	- 

, the evolution of the center of mass is given by:
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� � � � � 	 	 �

� � �
� ��� � ' ) � � � (3.41)� � � � � �

� *�� 
 � �-�)�� � 
 � 	 � W� � � � (3.42)

with a.6 ��� � � � # � � and where
� � and � 
 � 	 are eigenvalues and eigenmodes of the BH-Hamiltonian. The

coefficients � � are the projections of the initial displaced ground state � �
�� �� 	 onto the eigenfunctions ��� 
�	 � �

of the undisplaced Hamiltonian, � � 	 � 
 � � �
�� .� 	 .

For the exact evolution, the ground-state � �
�� .� 	 is calculated by shifting the center of the quadratic

trap by T lattice sites. The number of wells : is 19 for all simulations, which fixes the size of the Hilbert

space to 33649. In the time propagation we only keep those eigenstates whose coefficients � � are such that

� � � � � � �   � . The typical number of states that fulfil this requirement is about 100. The accuracy of the

truncation of the Hilbert space during the time propagation has been checked by increasing the number of

retained states, finding no appreciable changes in the dynamics.

We are interested in the dynamics both when a Mott insulator state is not and is present at the trap

center. These two cases are discussed in Secs.3.5.1 and 3.5.2, respectively. In particular, in Sec. 3.5.1 the

interaction strength 3 is varied, while the ratio G , specifying the ideal gas dynamics, is large and constant.

For the chosen values of G and + , % � ' + and for increasing 3 the system fermionizes without forming a

Mott insulator at the trap center. In Sec. 3.5.2, the dynamics of systems that do exhibit a Mott insulator in

the large 3 limit is analyzed. In this case, % and 3 are simultaneously varied by increasing the axial optical

lattice depth.

3.5.1 Non-localized dynamics

In the absence of the optical lattice, the equations of motion for the center of mass are decoupled from

those of the relative coordinates. As only the latter are affected by interactions, all modes excited dur-

ing the collective oscillations have the harmonic oscillator energy spacing a.6 7 , and therefore � � � � � 	 	
� �B�� �� 	 ���	� � 6B7 � � .

When the lattice is present, the equations of motion for the center of mass and relative coordi-
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nates are coupled, and thus the many-body dynamics is interaction dependent. In this section we fix

6B7 	 !�9(: �� . MR4S and
� � 	 =N� �

, and study the role of interactions in the many-atom dynamics by

varying b from
 

to !  M , for constant G 	C=.= . This can be experimentally realized by tuning the scattering

length of the system by means of Feshbach resonances 1. In the following, we analyze the weakly interact-

ing, intermediate and strongly interacting regimes separately.

Weakly interacting regime: b �&�
In order to study the role of interactions in the weakly interacting regime, in Fig. 3.10 the effective

damping constant of dipole oscillations � is shown as a function of b . The damping constant was calculated

by fitting the first 10 center of mass oscillations to the ansatz � �B� � � 	 	 �?T �����[� # � � � ����� ��� 6 � � , where �
and 6 are fitting parameters. This ansatz is chosen in analogy to the non-interacting model. The effective

damping � is in units of � � 	 T � ' �N����, a���� �
� � , which is the damping constant predicted by Eq. 3.30. The

solid and dotted lines correspond to � as calculated by means of exact diagonalizations and by numerically

evolving the following Discrete Non-Linear Schrödinger Equation (DNLSE) for the amplitudes � S ���9 a � S �� � 	 # % ��S � � ! � S �  ! � � ' * � S � � 3 � S � � � S � � (3.43)

respectively. Eq.(3.43) has been obtained by replacing the field operator ���� with the c-number
S � � � � in

the Heisenberg equation of motion for ��=� . Such replacement is justified for b � �
as the many-body

state is almost a product over identical single-particle wave-functions. The amplitudes � S � � satisfy the

normalization condition � � � S � � � 	 + . The initial state used in the evolution of the DNLSE was found by

numerically solving for the ground state of Eq. (3.43), displaced by T 	 ! lattice sites.

In Fig. 3.10, the continuous and dotted lines overlap for b �  21  .�
, and show a decrease in the

damping constant with increasing interaction strength in the whole range b �- H1 ! . For values of b �  H1  ��
the mean field and exact solutions start to disagree. While the exact solution has a minimum around b /  21 ! ,

1In an atomic gas near a Feshbach resonance, the energy of two colliding atoms is close to the energy of a bound state, i.e. a

molecular state, in a closed channel that is coupled to the incoming open channel. Due to the different arrangement of the atoms in

the open channel and the atoms in the molecular state, the energy difference between the bound state and the two-atom continuum

threshold may be experimentally accessible by means of the Zeeman interaction of the atomic spins with a magnetic field. As a result,

it is in principle possible to vary the scattering length to any value by detuning the magnetic field.
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Figure 3.10: Effective damping constant of the dipole oscillations as a function of b for a system in the
weakly interacting regime. Here, GP/ =M= , 6 7 	��� . Hz and � � 	\� T�' �N, a�� � � � � .
and then grows for larger b values, the mean field curve decreases monotonically to zero.

The fact that the mean-field solution decreases to zero for increasing interactions is explained by

noting that when interaction effects become important the density profile acquires the form of an inverted

parabola, or Thomas-Fermi profile, � S 7��� � � � � � / ' � � *P# � � �� .� 	 � � � � # �d�
��� � � 3 , � �B�� �� 	 	 �?T . Substi-

tution of the Thomas-Fermi profile in Eq. (3.43) leads to the exact cancellation of the quadratic potential,

and thus, in the frame co-moving with the atomic cloud, the atoms feel an effective linear potential. The

spectrum of a linear plus periodic potential is known to be equally spaced [75], and therefore no damping

due to dephasing is expected.

It is important to note that the mean-field undamped oscillation occurs only in a parameter regime far

from dynamical instabilities. In fact, as shown in previous theoretical and experimental studies [76, 77, 78],

when the initial displacement is large enough to populate states above half of the lattice band-width, mean-

field dynamical instabilities induce a chaotic dipole dynamics. In the framework of this work, this critical

displacement corresponds to T[/() A � ! . For T � ) A � ! , the initial ground-state has a significant overlap with

localized eigenmodes of the undisplaced system, which are therefore populated during the dipolar dynam-

ics, causing damping. The importance of the population of these modes is enhanced by the non-linear term,

which causes an abrupt suppression of the center of mass oscillations at the critical point in the mean-field

solution.

While the mean-field anaysis accounts for the decrease in the damping constant, Fig. 3.10 shows
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Figure 3.11: Probability distribution of frequencies for different values of b , with G / =.= and 6 7 	 �� . 
Hz. The frequencies 6 ��� are in units of 6XW .
that it is not accurate for b �  H1 ! . This is due to the fact that the mean-field analysis completely neglects

interaction-induced correlations. These correlations are responsible for the quantum depletion of the con-

densate, which causes some atoms to be excited to higher-energy single-particle eigenmodes which are

more affected by the lattice. To show this effect in a quantitative manner, in Fig.3.11 we plot the probability

distribution of the frequencies 6 � � , Eq. (3.41), for some values of b . In the histograms, the height of a bar-

chart centered at a given frequency 6 is the occurrence probability of 6 ��� . The probability is proportional

to the normalized sum over all the weight factors � � ��� � whose frequency lies between 6 ��� #  21  M ! � and

6 � � �  H1  . ! � . The frequencies are in units of the effective harmonic oscillator frequency 6 W of Eq. (3.17).

This approach is similar to the one used in Ref. [79], where the strength function is used to study the
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collective dynamics induced by mono- and dipolar excitations.

The histogram for the case b 	  
shows a frequency distribution with most frequencies in the

interval
 H1 ,�� 6 W � 6 ��� �� 21 4M;�6XW . In particular, two large peaks are observed in the range

 21 4N6
W � 6 � � �
 21 4M;�6XW . This is to be compared to the case where the lattice is not present, and a single peak at 6 W is

expected. The observed frequency spread is due to the modification of the harmonic oscillator spectrum

introduced by the lattice and is responsible for the observed damping in the ideal bosonic gas, as explained

in detail in Sec. 3.3.1.

Figure 3.11 also shows that for b 	& 21 K the system has a narrower frequency distribution. In this case

approximately
�� M ��

of the frequencies lie in the interval
 21 4N6
W � 6 � � �  21 4M;�6XW . The frequency narrowing

from b 	L to b 	  H1 K is consistent with the decrease in the damping constant shown in Fig. 3.10. For

larger values of b , b 	U�
and ! , some modes with frequency smaller than

 21 = 6
W and larger than
�.1 � 6 W

start to contribute to the collective dynamics. Population of such modes is related to the depletion of the

condensate and signal the increased importance of quantum fluctuations in the system.

Finally, we note that for our choice of ' , + and % , ' � � + # � � � ! � ��� % is approximately
 21 ! , which

is the value of b 	 3 � % at which the mean-field and exact solutions begin to disagree. This suggests that

the fulfillment of the second inequality in Eq. (6.3), 3 � ' � � +U# �5� � ! � � , is related to the failure of the

mean-field approach, even for b � � .

Intermediate Regime:
� �Qb � �� 

In Fig. 3.12 the numerically obtained damping constant is shown for b � �
. In this parameter regime

we find that the function �?T �����]� # � � �������	� � 6 � � does not provide a good fit to the center of mass evolution.

Instead, we find that a better fitting ansatz is given by �?T �����]� # � � ����� ��� 6 � � . In the plot, the damping

constant is normalized to � ! , which is the damping rate at b 	C� .
We observe that for ! � b � �

the damping is almost constant. This is consistent with the fact

that by inspection the spectrum of excited frequencies has a similar shape and width in the entire transition

region. An example of such a frequency distribution is given in Fig. 3.11 for b 	 @ . The dominant peak

is around 6 ���O/  21 4N6XW , while multiple peaks are noticeable between
 21 = 6 W � 6 ��� �� H1 4�!56XW . The overall
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Figure 3.12: Effective damping rate of the dipole oscillations � as a function of b in the intermediate and
strongly correlated regimes. Here, G&/ =M=

and 6 7 	 �� . 
Hz. The damping rate has been rescaled

such that � � b 	 � �-	 �
. The large and small dots are for interacting bosons and non-interacting

fermions, respectively. The continuous line is a guide for the eye. The dashed line is the best-fit curve� 	��� 21 ��K ������� # � ; 1 @ b  ! # � % � to the exact damping rate for interacting bosons.

envelope of the distribution has a long tail, as opposed to the case b 	 �
where all the weight is roughly

concentrated in just two frequencies.

The increased importance of the tails of the distribution for b � �
qualitatively accounts for the

transition from an exponential decay quadratic in time towards an exponential decay which is linear in

time. In fact, for b � � the probability distribution of frequencies may be fitted by a Gaussian, while for

b � �
a better fit is provided by a Lorentzian-like profile. The Fourier transforms of such distributions give

precisely the observed functional form of the decay of the dipole oscillations.

Strongly interacting regime b � �� 
In Fig. 3.12 for b � �� 

, the damping rate is shown to rapidly increase and approach a finite

asymptotic value which is depicted in the plot by a dotted line. This asymptotic value � � corresponds to

the damping rate calculated for an ideal fermionic gas. The fermionic damping rate is constant because

here % and ' are kept constant while 3 increases. The tendency to approach the fermionic damping rate

as b increases is a consequence of fermionization of the bosonic wave-functions for b�� �
, Eq. (6.3).

Numerically we find that the damping rate approaches � � exponentially, � � b �
	 � �
�����]� # �.b � � , with a

best-fit exponent � of order # � . The fitting curve is shown in the plot with a dashed line.
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Figure 3.13: Center of mass position in lattice units as a function of time for interacting bosons, for b 	��KH1 ; (dashed line) and b 	 �  M 
(dots). The solid line is the center of mass position for ideal fermions,

while the crosses are the analytical approximation to the fermionic solution Eq.(3.33). Here, G / =M= and6 7 	 !N9�: �� M Hz and
V �
	 !N9 � 6XW .

The dipole dynamics of the bosonic and fermionic systems are explicitly compared in Fig. 3.13,

where we plot the first 10 oscillations of the center of mass after the sudden displacement of the trap. In

the figure, the dashed line and the dots are the bosonic dynamics for b 	 ��KH1 ; and 100, the solid line is the

fermionic evolution, and the crosses are the analytical approximation to the fermionic evolution Eq. (3.33),

respectively. Consistent with Fig. 3.12, we observe that for increasing b the decrease of the amplitude of

oscillation for the bosons resembles more and more the one for fermions. In particular, for b 	 �� . 
, the

curves for the interacting bosons and ideal fermions nearly overlap. The distribution of excited frequencies

for b 	 �� M is shown in Fig. 3.11. The frequency distribution is broad and centered around 6&/  21 =�� 6 W .
Also in the inset small peaks are shown to appear in the range

�M1 ;N6
W � 6 � K 6XW (notice the different scale

in the inset). The broad distribution is due to the population of single-particle states that are not harmonic

in character. For the value of G used for the calculations no single-particle localized modes are occupied

in the ground state before the trap displacement. After the displacement about 90 percent of the atoms

occupy non localized single-particle modes. The phase mixing between these modes accounts for most

of the observed damping. The remaining 10 percent occupy localized states and the population of these

modes is responsible for the shift of the peak of the distribution to lower frequency. In fact we show below,

Sec. 3.5.2, that a large population of localized states with ) � ) A yields a distribution which is peaked at

6I/  .
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Figure 3.14: Center of mass position (in lattice sites) as a function of time calculated for different lattice
depths and a fixed 6 7 	 !N9&: � �� Hz. The dash-dotted, dashed and small-dotted lines are the exact
solutions for interacting bosons (e in the legend) and the boxes, large-dots and triangles are the solutions
for ideal fermions (F in the legend ) for

� � �N� � 	>=?��� ! and
� �

, respectively.
V � 	 !N9 � 6XW .

Finally, we note that the small population of localized modes after the displacement also explains

why the analytic solution Eq.(3.33) reproduces the exact fermionic evolution in Fig. 3.13 only qualitatively.

In fact, Eq.(3.33) was derived under the condition � 1 	 1 �  "! � � / �  ! 21 � � � �
, while here )]A 	 � ! and

� 1 	 ! ! � � / �  "! 21 � � /  21 � .

3.5.2 Localized dynamics

In analogy to recent experiments [17], in this section we study the dipole dynamics when the depth
� �

of

the optical lattice is varied, while the parabolic confinement is kept constant. Then, both % and 3 change as

a function of the lattice depth, as explained in Sec. 3.4. The parabolic confinement 6 7 	 !N9�: �5�� MR_S has

been chosen to be the same as in Sec. 3.4, so that the energy spectrum exactly matches the one discussed

there, when
� �

is varied.

In Fig. 3.14 lines and symbols correspond to the time evolution of the interacting bosons and ideal

fermions, respectively. In particular, the dashed-dotted, dashed and small-dotted lines are for bosons, while

boxes, large-dots and triangles are for fermions with
� ���N� � 	C=?��� ! and

� �
, respectively. For such lattice

depths b 	 ��@E� �M 
and 100, respectively, and the system is fermionized, as discussed in Sec. 3.4.1. As

expected, the agreement between the bosonic and fermionic solutions improves for larger b -values, and is

almost perfect for b 	 �� . .
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Notably, for all the b -values, no complete oscillation are observed, as the amplitudes of oscillations

are strongly damped at very early times. The inhibition of the transport properties in the experiment here

envisioned is a direct consequence of the large population of single-particle states which are localized

in character. For the case
� � 	 =�� �

( ' + � % /  21 ��,
, b 	 ��KH1 ; , G 	 � K�@E1 ! and )]AZ/ ,

) before

the displacement the system is fermionized but non-localized. On the other hand, after the displacement

about 20 percent of the atoms occupy localized modes of the undisplaced potential. The population of the

localized modes with ) � ) A can be directly linked to the presence of low-frequency peaks ( 6 ��� /  ) in

the distribution of frequencies, Fig. 3.15. Because 80 percent of the atoms occupy non-localized modes the

center of mass position can still relax to zero as shown in Fig.3.14. For the cases
� � 	 � ! � � and

� �M� �
the Fermi energy is larger than

� 1�� , and even before the displacement most states are localized. After the

displacement has taken place, about 60 and 90 percent of the atoms occupy localized modes respectively,

and the dynamics is overdamped. This is mirrored by the appearance of a large peak at 6 ��� /  
in the

probability distribution, Fig.3.15, and by the fact that the center of mass position does not relax to zero as

shown in Fig.3.14.

3.6 Conclusions

We studied the spectrum and dipolar motion of interacting and non-interacting one-dimensional atomic

gases trapped in an optical lattice plus a parabolic potential using the tight-binding approximation. We

showed that the single-atom tight-binding Schrödinger equation can be exactly solved by mapping it onto

the recurrence relation satisfied by the Fourier coefficients of periodic Mathieu functions. We used asymp-

totic expansions of such functions to fully characterize the eigenenergies and eigenmodes of the system. Our

analytic approach is complementary to previous numerical and semiclassical analysis for single-atom sys-

tems. The advantage is that we can explicitly calculate the corrections to the harmonic oscillator spectrum

introduced by the lattice. The knowledge of these corrections allow us also to provide analytic expressions

for the modulations of the center of mass motion induced by the periodic potential when trapped ideal

bosonic and fermionic gases are suddenly displaced from the trap center.

By means of numerical diagonalizations of the Bose-Hubbard Hamiltonian we studied the interact-
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ing many-body bosonic problem. First, we characterized the changes in the low-energy excitation spectrum

as a function of lattice depth, by comparing it with the ideal Bose and Fermi spectra. Then, we stated the

necessary conditions for fermionization to occur and showed that it takes place for a large range of exper-

imentally accessible parameters. We clarified the required conditions for the formation of a Mott insulator

at the trap center and linked its appearance to the population of localized states at the Fermi level of the

correspondent ideal fermionic system. We then studied the many-body dipole dynamics and showed that, in

the parameter regime where the system is expected to be fermionized, the knowledge of the single-particle

solutions is a powerful tool for the understanding of the strongly correlated dynamics. By studying the

distribution of the frequencies pertaining the many-body modes excited during the dipole dynamics, we ex-

plicitly showed the connection between the population of single-particle localized states with the inhibition

of the transport properties of the system. These spectral analysis allowed us also to gain some insight into

the dynamics in the weakly-interacting regime, where an analysis beyond mean-field is required, and in the

complex intermediate regime, where no mapping to single-particle solution is possible.
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Figure 3.15: Probability distribution of frequencies for
�������
� 	�=���� ! and

� �
(see text). The frequencies6 � � are given in units of 6 W . Because 6 W ' ) % , 6XW decreases with increasing lattice depth.
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Chapter 4

Extended fermionization of 1-D bosons in optical lattices

We present a model that generalizes the Bose-Fermi mapping for strongly correlated 1D bosons in an

optical lattice, to cases in which the average number of atoms per site is larger than one. This model gives

an accurate account of equilibrium properties of such systems, in parameter regimes relevant to current

experiments. The application of this model to non-equilibrium phenomena is explored by a study of the

dynamics of an atom cloud subject to a sudden displacement of the confining potential. Good agreement is

found with results of recent experiments. The simplicity and intuitive appeal of this model make it attractive

as a general tool for understanding bosonic systems in the strongly correlated regime.

4.1 Introduction

Cold bosonic atoms in optical lattices have recently been used to create quasi-one dimensional systems [14,

15, 16, 17, 18, 19]. In such experiments, arrays of one dimensional tubes are realized by first magnetically

trapping a Bose-Einstein condensate (BEC) in a parabolic potential, and then imposing upon it a deep 2D

optical lattice, which restricts atomic motions to 1D. These defect-free highly controllable atomic systems

offer an excellent opportunity to directly study strongly correlated regimes.

For low densities or large interaction strengths, a 1D gas of ultracold bosons behaves as a gas of

impenetrable particles, known as a Tonks-Girardeau (TG) gas. Ref. [47] shows there is a one to one map-

ping between the eigenenergies and eigenfunctions of TG bosons and the ones of non-interacting fermions,

known as fermionization. Two recent experiments [15, 16] successfully reached this parameter regime. In

Ref.[15] the TG regime was achieved by adding an optical lattice in the tubes’ direction which increases the

effective mass and therefore the ratio between interaction and kinetic energy. When the lattice is present

and for large enough interactions a commensurate homogenous system not only fermionizes but also un-

dergoes the superfluid to Mott insulator (MI) transition [12]. In the presence of a parabolic trap the MI can

be realized for any number of particles [49, 50].
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In the TG regime where there is at most one particle per site, single-particle solutions of the periodic

plus parabolic potential have been successfully used to describe equilibrium and non-equilibrium proper-

ties of the system, both in the presence and in the absence of the MI [49, 50]. However, 1D experiments

have been realized in a parameter regime where on-site particle densities are larger than one and standard

fermionization is inapplicable [17, 19]. The study of these regimes beyond mean-field has relied mainly on

numerical simulations, such as quantum Monte-Carlo or density matrix renormalization group techniques

[27, 28, 29, 81]. Here we show that even when the on-site density is larger than one, for a wide range of con-

ditions single-particle solutions can still describe strongly correlated regimes. We call this single-particle

approach extended fermionization (EF). Comparison with exact Monte-Carlo simulations shows that in the

appropriate parameter regimes EF can be used to accurately reproduce equilibrium properties such as the

density profile, the momentum distribution, and the ground-state energy. In the final section we extend our

model to treat the non-equilibrium dipole oscillations of atoms subject to a displaced potential, as has been

realized in recent experiments [17, 19]. The accuracy and simplicity of the EF method suggest that it is a

useful tool for understanding strongly correlated bosonic systems.

Bose-Hubbard Hamiltonian

As shown in Chapter 2, the Bose-Hubbard (BH) Hamiltonian describes the system’s dynamics when the

lattice is loaded such that only the lowest vibrational level of each lattice site is occupied and tunneling

occurs only between nearest-neighbors [11]

R 	 # % �� ' � � � �� �' ��+� � 3 ! �

� �)�� � �)�� # � � � ' �

� *
� �)�� 1 (4.1)

Here �� � is the bosonic annihilation operator of a particle at site * , �) � 	 �� �� �� � , and the sum � 9 � *�	 is over

nearest neighbors. In Eq.(5.1) the hopping parameter % , and the on-site interaction energy 3 are functions

of the lattice depth
���

. ' is proportional to the curvature of the parabolic potential.
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4.2 Homogeneous system

For a homogeneous system ( ' 	  ) with + atoms and : sites, the spectrum is fully characterized by the

ratio, b 	 3 � % , and the filling factor, + � : 	`� ) # � � � �^+ � : . Here ) is the smallest integer larger

than + � : and � + ��: . If the lattice is commensurately filled ( �^+ 	L 
), the ground state is a Mott

insulator for b � b2A � )<# � � , where b2A / @ [48]. For the incommensurate case, �^+ �  
, if b � ) �UbEA , the

population of states with more than ) atoms per site is suppressed by a factor of / % � 3 , so the BH system

may be treated as one with two states per lattice site (containing )4# � and ) atoms respectively). In this

case, it is well known [82] that the BH model maps to the XX quantum spin model. Thus, the standard

Bose-Fermi mapping techniques derived for systems with ) 	 �
can be applied, if % is replaced by )8% .

Here we present a generalization of standard fermionization ideas, to treat the systems that are of greatest

interest in current experiments: those for which ) is greater than 1 and varies across the system.

4.3 Inhomogeneous system

When the parabolic trap is present ( ' �  
), the density profile of the atomic cloud is determined by an

interplay of 3 , % , ' and + . The system is fermionized (with at most one atom per site) if [50]

b � b A � 3 � ' � � + # �5� � ! � � 1 (4.2)

The first inequality is the same as for a homogeneous lattice, but the second is specific to trapped systems:

it suppresses multiple occupancy of single sites. In this fermionized regime, the density at the trap center

increases as % decreases and, when the condition !?%��-' � � + # � � � ! � � is satisfied, central trap sites begin

to have unit filling [49, 50]. If the inequality

% � ' + � (4.3)

is also satisfied, the ground state is a unit-filled Mott state in all + sites. In this case, number fluctuations

occur mainly at the edge of the density distribution, due to tunneling of atoms to empty sites. Such fluctua-

tions are proportional to ' + , which is the trap gradient at the site
� + # �5� � ! . Number fluctuations at the

trap center are due to a small admixture of particle-hole excitations in the ground state for finite % [51]. By

using perturbation theory, it can be shown that this admixture is proportional to ! ) ! � % � 3 � .
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For ' � � + # �5� � ! � � � 3 it is energetically favorable for atoms to pile up at the trap center. In fact,

superfluid and Mott insulator phases with different filling factors can coexist, due to the interplay between

on-site interactions and the external potential [11, 28, 83]. In the trivial case % 	  
, Fock states with a

definite number of atoms in each site are eigenstates of the Hamiltonian. The density profile becomes a

“cake” structure with maximal occupation ) � ��� at the trap center if

! R / !�� � 21�� ���  "! � � � +`# ) � ��� � F ' � 3 
 �(! R / !�� � 21 � ��� � (4.4)

where
R / !�� � 21 � � 1' 	 c ) 9 [83]. In fact, this profile is most conveniently viewed as a ”layer cake” structure

of ) � ��� stacked horizontal layers. The number of atoms in the ) horizontal layer, + 1 , can be shown to

satisfy
� + ! #I+ 1 �
� + ! � + 1 # ! �d	L@ 3 � )4# �5� � ' subject to � 1 � ���1 	 ! + 1 	 + . In the limiting case of

% 	  , atoms are frozen within each layer (an ice-cream cake). Each layer can then be thought of as an

independent Mott state with unit filling. For % �  
, atoms are no longer frozen, and it is not obvious that

the layers should remain distinct. However, if the number fluctuations in adjacent horizontal layers do not

overlap in space, all layers can still be thought of as independent. This situation pertains to many cases of

experimental interest in the strong coupling regime, in particular when

b � b A � ) � ��� # �5� � ' + 1�� �����
�

� % � ) � � � # �5� 1 (4.5)

In this case, all layers except the top can be viewed as Mott states with unit filling factor. In analogy to Eq.

(4.2), the first inequality insures that within those layers, the average kinetic energy required for one atom

to hop between sites is insufficient to overcome the potential energy cost; thus particle-hole excitations

are suppressed by a factor of /Y)8% � 3 . The second inequality guarantees that in those layers, number

fluctuations are localized at the outer edge of the layer, much like frosting. In addition, if

b � b A ) � � � � (4.6)

then, to a very good approximation, atoms in all layers can be treated as TG bosons with an effective hop-

ping energy )8% . Under these conditions, single-particle solutions can be successfully used to obtain expres-

sions for all many-body observables. We refer to this generalization of the Bose-Fermi mapping to spatially

varying density distributions as extended fermionization. The top layer is governed by %�) � ��� � + 1�� ��� � and

69



0

0.5

1

1.5

2

A
to

m
 n

um
be

r
0.5

1

1.5

A
to

m
 n

um
be

r

-40 -20 0 20 40
j

0

0.5

1

1.5

A
to

m
 n

um
be

r

-40 -20 0 20 40
j

(a) (b)

(c) (d)

(e) (f)

V
o
/E

R
=11 V

o
/E

R
=9

V
o
/E

R
=7 V

o
/E

R
=5

V
o
/E

R
=3 V

o
/E

R
=2

ΩN
1
/J=3.04 ΩN

1
/J=1.86

ΩN
1
/J=1.14 ΩN

1
/J=0.64

ΩN
1
/J=0.33 ΩN

1
/J=0.23

N
1
=63 N

1
=61

N
1
=61 N

1
=57

N
1
=51 N

1
=46

U/J=42.9 U/J=25.7

U/J=14.8 U/J=8.2

U/J=4.2 U/J=2.9

Figure 4.1: Local densities �+�, � 	 and fluctuations �-� �,0/ 1+2� 	 as a function of the site index * . Dotted(black) and
dashed(red) lines are the numerical and analytical densities, respectively. The dashed-dotted(black) line is
the numerical fluctuation, while solid-black(blue) and solid-grey(green) lines are the analytical fluctuations
for the lower( ) 	C� ) and upper( ) 	 ! ) layers, respectively. The shaded(red) area in panel (a) is the density
in the ) 	 ! layer of the EF model.

' ; these determine whether it is a Mott state or not.

In the following we show the success and the limitations of this approach, by applying it to a system

with the same parameters as the ones used in an experiment recently performed at NIST [17].

4.4 Numerical comparisons

In the NIST experiment [17] approximately +^7 	 �M1 @ : �  % � � Rb atoms were trapped in an array of

one-dimensional tubes with + ��,M 
atoms in the central tube. An additional periodic potential was added

along the direction of the tubes and its depth
� �

was varied for different experiments. The periodicity

of the parabolic potential in the tubes’ direction was such that ' 	 =�1 @ : �   � �
� , with
�
�

the photon

recoil energy. Here we focus on the central tube only and consider
� � � ! � � , where the tight-binding

Hamiltonian Eq.(5.1) is expected to be valid. For these parameters, Eq. (4.4) yields ) � ��� 	 ! .
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In Fig. 4.1 we show comparisons between the density and number fluctuations for the central tube

calculated by using the EF approximation and quantum Monte-Carlo numerical simulations based on the

Worm algorithm [30], for lattice depths
� � �N� � 	 �M��� � � , 4 �-5�� , =������ , �2�76?� , KE� � � , ! � ��� . In the numerical simu-

lations the temperature is
 H1  H� % . In the plots the dotted(black) and dash-dotted(black) lines correspond to

the density and number fluctuations as numerically calculated by using the Monte-Carlo code, respectively.

The dashed(red), the solid-black(blue) and solid-grey(green) lines correspond to the density �+�, � 	 , and to the

number fluctuations for the atoms in the first �-� �,�/ ! 2� 	 and second layer �-�.�,0/ � 2� 	 , as calculated with the EF

model respectively. In particular, the density is given by �+�, ��	 	 �
�
�  "!� 	 c � � !� / � 2 � � � �

� 6  "!� 	 c � ���� / � 2 � � where

� � 1 	 ! � �� / � 2 � are the
� � � single-particle eigenmodes of Eq.(5.1) with hopping energies )8% respectively and *

is the lattice site index. The fluctuations are given by �-� �, /�132� 	 	 	 �
�
�� !� 	 c � � 1� / � 2 � � # & � �

�  !� 	 c � � 1� / � 2 � � / � .
The conditions for EF to be applicable, Eqs.(4.5) and (4.6), are strictly valid for

� � � ��� �
. Con-

sistently, Fig. 4.1
� �^# ��� shows that for

���5�N�
�(	 �M�M� 4 � = the density profile and number fluctuations are

very well reproduced by the model, except for the finite value of the fluctuations in the flat region of the

density profile. These small fluctuations of order ! ) !?% � 3 are due to the particle-hole excitations which

are neglected in the model. The model predicts that some sites at the trap center have exactly a filling factor

of two when ! � !?% � �-' � � + � # �5� � ! � � . This condition is fulfilled for
� � 	C�.��� �

, and in fact a flat density

distribution with two atoms per site is observed in Fig.1-(a) at the trap center, both in the analytical and

numerical results. This confirms the validity of the idea of thinking of the atoms in the second layer as

TG-bosons with effective hopping energy !�% .

For
��� 	&���
�

, b is barely !5b A , and ' + ! �&% so that fluctuations at the edge of the first layer extend

far enough to overlap with the ones of the second layer. We only expect EF to give qualitative predictions

in this regime. For
� � 	 KH� ! � � the conditions Eqs.(4.5) and (4.6) are not satisfied, and the model fails

to reproduce the exact results. Nevertheless, we notice that the EF model predicts the formation of a Mott

state in the lowest layer for
� ��� K.� �

because b � b2A and ' � + ! # � � �5�5@ � !?% at
KM� �

. The numerically

obtained fluctuations show the appearance of a flat region at the cloud’s edge for
�]� 	 KM�
�

. Such flat

region signals the formation of a Mott state as it evolves for deeper lattices into the observed dip in the

fluctuations and disappears for shallower lattices (Fig 4.1-(e)).
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Figure 4.2: Momentum profiles , � �2� as a function of the momentum
�

, for lattice depths
� � �N� � 	\�M�.� � � ,4 � 5
� , =2����� , and

�H�76?�
. The solid(black) and dashed(red) lines are the exact momentum distibutions and the

model momentum distributions, respectively.

In Fig.2 we compare the momentum distribution , ���2� for the many-body system, solid(black) line,

with the one predicted by the EF model, dashed(red) line, for
� � 	 �.�.� � � , 4 � 5
� , =2����� , and

�H�76?�
. The model

curves are given by , ���2� 	 , ���2� / ! 2 � ! , � �2� / � 2 #^+ � � : , where , ���2� /�1 	 ! � � 2 are the momentum distributions

for + 1 TG bosons with effective hopping rate )8% , calculated numerically with the Monte-Carlo code. For

all curves, the height of the central peak is larger and the width at half maximum is smaller for the exact

than for the model solutions. This is expected because the model neglects correlations between atoms in the

first and second layers. However, the agreement is at least qualitative for all displayed lattice depths where

EF applies. On the other hand the agreement for the deepest lattice in consideration is worse than the one

found for the local observables �+�, ��	 and � �.�, �
	 , (Fig 1). This is consistent with previous observations for

standard fermionization [84].

In Fig. 4.3 ground state energies are compared as a function of lattice depth. The solid(black) line

is calculated numerically using the Monte-Carlo algorithm and the dashed(red) line using the EF model

� 	 �
� !  !� 	 c � / � 2! � �

� �  "!� 	 c � 3 � � / � 2� � . Here,
� / � 2! � � are the

� � � single-particle eigenenergies of systems

with hopping energies % and !�% , respectively. At
���_	 �M�
�

the model predicts a ground-state energy

which is
�  �

larger than the numerical solution while at
���$	 �M� �
�

the difference decreases to only

 21 @��
. This also confirms the validity of the EF model as the lattice deepens.
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4.5 Center of mass oscillations

In the NIST experiment [17], center of mass oscillations were induced by a sudden displacement of the

harmonic potential by T 	`,
lattice sites. An overdamped motion was observed for lattice depths

� � �
KM� �

. The damping rate
5

was obtained by fitting to the formula 8 W �� 	 # 5��� # 8 6 �7 � , where 8 and 8_W are

the atomic and effective masses and 6 7 is the magnetic trapping frequency. Previous theoretical analysis of

the damping did not use real experimental parameters [50, 64, 66, 85] or were not applicable in the strongly

correlated regime [67, 86]. Here we show that the EF approach reproduces the experimental results well in

the overdamped regime. In Fig.4 the experimental data (black squares) are compared to the predictions of

the EF model. In the model, the center of mass position of the atoms in the central tube (red dots) is given

by
� � + � 	 � � + �

�
�
�  "!� 	 c � / � 2! � � � + � � �

� 6  "!� 	 c � / � 2� � � � + ��� , where

� / � 21 � � � + � 	 �

� � � � � *
� 1� / � 2 � 1 � / � 2 �  ,' / ��� �	��  ��� � �� 2 � � � � 1� / � 2 � 1� / � 2 1 (4.7)

Here, + is the number of atoms in the central tube, � is the lattice spacing and the coefficients
� 1 � / � 2 	

� � � 1� / � 2 � 1�  � / � 2 are the projection of the
� � � excited state of the displaced potential onto the

� � � excited

eigenstate of the undisplaced potential for atoms in the ) 	 �.� ! layer, respectively. The EF model is

expected to give an accurate description of the center of mass oscillations if, during the dynamics, the

atoms in the first and second layer can still be treated as independent objects, i.e. when number fluctuations

in the two layers do not overlap during the evolution. Because in the experiment the measured damping rate

5 10 15 20
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E
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Figure 4.3: Energy as function of
� � �N� �

. The solid(black) and dashed(red) lines are the numerical and
analytical energies, respectively.
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Figure 4.4: Damping rate of dipole oscillations
5

as a function of
� � �N� �

.
5

is in units of
5 � 	 !98 6B7 . The

squares are the NIST experimental results. The circles(red) are the model results for the central tube, and
the triangles(blue) are the model results averaged over all the tubes. Inset: center of mass position after 90
ms.

was an average over all the tubes, in Fig.4 we also plot the model’s prediction for the average damping rate

(blue triangles). The latter was calculated assuming that all tubes evolve independently and therefore that

� � � � 	 �
�
�

� 	 ! � � � � � � � � � � � � � � �
� 	 ! � � � � �

is the average center of mass position. Here, � � � �
is

the probability of having a tube with
�

atoms. Assuming an initial Thomas-Fermi distribution of the 3D

system, � � � � /&! �NKH� + � � �  / !�� � 2 [15].

When there is at most one atom per site, atoms in the Mott state have been shown to be responsible

for the overdamped dynamics [50, 85]. Here, the two-layer model predicts that a Mott state is created in the

lowest layer for
��� � K.�
�

, Fig.1, and therefore atoms in this layer are almost frozen. However, atoms in

the second layer are not necessarily localized, and their dynamics can be underdamped. Because there are

always more atoms in the lowest layer than in the upper one, the overall dynamics is overdamped, and this

explains the large damping observed in the experiment for
� � � KM� �

. This is also in agreement with the

qualitative explanation of the damping given in Ref.[19].

Strictly speaking, the fluctuations in the two layers do not overlap during the dynamics only for

� � � =N� �
, thus we expect the model to be valid for the deepest lattice depths only. Nevertheless, Fig.4

shows that the theoretical calculations are within the experimental error bars already for
�]� � @

. Figure 4

also shows that the damping rates for the central tube and the average are very similar, and this is because

tubes with about + 	 ,M 
atoms have the largest weight. The average shows a larger damping because it
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takes into account contributions from tubes that do not have extra atoms in the second layer. In the inset

we also compare the experimental center of mass position of the atomic cloud after 4  8 � with the model

solutions. The agreement between experiment and theory is consistent with the one found for the damping

rate.

4.6 Summary

We have developed a simple model that generalizes the Bose-Fermi mapping to regimes where the filling

factor is larger than one. The model is relevant for 1D trapped gases where the co-existence of Mott-

insulating regions with different occupation numbers is permitted. We presented the necessary conditions

for the model to be valid and showed the uselfuness and limitations of the method by comparing its pre-

dictions for some physical observables with numerical Monte-Carlo simulations. Very good agreement

between the model and the numerical solutions was found in the parameter regime where the model is

valid. Finally we used the EF model to study the overdamped dynamics of the center of mass after a sudden

displacement of the trapping potential, and found good agreement with recent experiments. In particular,

the overdamped motion was linked to the presence of a Mott state in the lowest atomic layer.
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Chapter 5

Bragg Spectroscopy of ultracold atoms loaded in an optical lattice

We study Bragg spectroscopy of ultra-cold atoms in one-dimensional optical lattices as a method for prob-

ing the excitation spectrum in the Mott insulator phase, in particular the one particle-hole excitation band.

Within the framework of perturbation theory we obtain an analytical expression for the dynamic structure

factor � � G � 6 � and use it to calculate the imparted energy which has shown to be a relevant observable in

recent experiments. We test the accuracy of our approximations by comparing them with numerically exact

solutions of the Bose-Hubbard model in restricted cases and establish the limits of validity of our linear

response analysis. Finally we show that when the system is deep in the Mott insulator regime, its response

to the Bragg perturbation is temperature dependent. We suggest that this dependence might be used as a

tool to probe temperatures of the order of the Mott gap.

5.1 Introduction

Recently, there has been a lot of experimental progress studying cold atoms confined in optical lattices.

The defect free nature of the lattice potential, the long coherence times of the constituent atoms, and the

experimental control of the lattice parameters [87, 88] make this a unique system for precisely studying

many-body physics. In particular, the experimental observation of the superfluid to Mott insulator quantum

phase transition [13] has stimulated much interest in this area of research.

Perhaps one of the most important potential applications of the Mott insulator transition is to use it

as a means to initialize a quantum computer register[89, 90, 91, 92]. In this case, it is important to have

tools for thoroughly characterizing the experimentally obtained Mott insulator states. The usual procedure

for entering the Mott insulator regime is to begin with a magnetically trapped BEC (with almost all the

atoms in the condensate), and then slowly load it into an optical lattice by increasing the lattice depth.

One key piece of evidence for the quantum phase transition is the loss of global phase coherence of the

matter wavefunction when the lattice depth increases beyond a critical value [13]. However, the loss of
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coherence could arise from many other sources, such as the decoherence induced by quantum or thermal

depletion of the condensate during the loading process [74] and therefore decoherence is not a sufficient

signature that the system is in the Mott insulator state. For this reason, in the experiments by Greiner et

al.[13], complementary evidence for the Mott insulator transition was provided by applying a potential

gradient to the lattice to show the presence of a gap in the excitation spectrum. In this chapter we show

that Bragg spectroscopy, done by applying additional laser beams independent from the lattice beams, is

an experimental technique with the potential to thoroughly characterize the Mott phase. In addition to

determining the energy gap, we show that Bragg spectroscopy provides detailed information about the

excitation spectrum, information unavailable using other techniques. Moreover, in contrast to applying a

potential across the lattice, Bragg spectroscopy is not susceptible to effects like Bloch oscillations and Zener

tunneling. Furthermore, we show that different from the superfluid regime, the system’s response to Bragg

perturbation in the Mott regime is sensitive to finite temperature. This property might be used as a tool to

probe temperatures of order of the Mott gap.

Our analysis is based on a perturbative treatment, which we show to be applicable in the strong Mott

regime that has been reached in current experiments [15]. Although our approach is applicable only in the

range of validity of first order perturbation theory, it has the advantage of properly including one-particle-

hole correlations. Such correlations have dominant influence on the spectrum of the system and are not

accounted for in mean-field treatments [35].

The organization of this Chapter is the following. In Sec. 5.2 we introduce the basic formalism that

describes Bragg spectroscopy in an optical lattice and use a linear response approach to calculate the energy

imparted to the system. In Sec. 5.3 we derive the zero temperature response to the Bragg spectroscopy of

a translationally invariant lattice deep in the Mott regime and in Sec. 5.4 we discuss the conditions required

for our linear response analysis to be valid. In Sec. 5.5 we extend the zero temperature analysis to finite

temperature and finally in Sec. 5.6 we conclude.
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5.2 Formalism

The typical Bragg spectroscopic procedure is to gently scatter atoms in an ultra-cold gas system with a

moving potential of the form
� c ���	��� G � #<6 � � . This type of experiment was first demonstrated by the NIST

and MIT groups [31, 32]. In contrast to earlier experiments that used momentum as the response observable,

here we choose to examine the imparted energy. In trapped systems this allows long excitation duration that

facilitates more precise spectral resolution. Energy-spectroscopy is not so well developed as momentum

spectroscopy but recent experiments have demonstrated the use of this technique [19]. The Bragg potential

is formed by the ac-Stark shift arising from a pair of interfering light fields (e.g. see [93]). In this chapter

we will always assume that the Bragg potential is generated independently of and is much weaker than the

lattice potential. We therefore treat the scattering process with linear response theory. Using an independent

set of beams to generate the Bragg potential also provides considerable flexibility in the range of G and 6
values that can be obtained.

In this work we consider one-dimensional bosons loaded in an optical lattice. Effective 1D systems

have been realized in recent experiments by loading a Bose-Einstein condensate into a three-dimensional

optical lattice, which is very deep in two directions. The dynamics is then restricted to the third, or axial,

direction only. In this work we study the response of the system to Bragg perturbation in the axial direction,

assuming that the dynamics in the transverse directions is frozen. We consider a one-dimensional optical

lattice which is sufficiently deep that the tight binding approximation is valid and assume that we can

restrict the dynamics of the atoms to the lowest vibrational band. This applies when changing the lattice

potential does not induce band excitations. This condition is fulfilled when the frequency, 6 , of the Bragg

perturbation is less than the gap between the first and second bands, and when the momentum transfer G is

contained within the first Brillioun zone. A detailed analysis of the validity of this first-band approximation

to study Bragg scattering of a dilute weakly-interacting gas in an optical lattice is found in [94] where the

authors used a mean field approach combined with Bogoliubov analysis. In the single-band approximation

and in absence of external potentials, the system is described by the Bose-Hubbard Hamiltonian (BHH)
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[11]

�R 	 #�% �� 1 � � � �� �1 ��=��� 3 ! �

1 �� �1 �� �1 �� 1 �� 1 1 (5.1)

Here �� 1 is the annihilation operator at site ) which obeys the canonical commutation relations for bosons,

% is the hopping matrix element between nearest neighbors, and 3 is the on-site repulsion energy. The sum

� ) ��� 	 is taken over nearest neighbors. We use + for the total number of atoms and : for the total number

of wells. In the tight binding approximation the Hamiltonian describing the Bragg perturbation reads

�R <I	 �
!
�Hc�� �, �� �  ,' ) � � �, � � ' ) � �
� (5.2)

where the density fluctuation operator �, �� is defined as �, �� 	 �
�  "!1�� � 	 c�� 1  �� �� �� �� 1 �2' � � � , where � 1� 	

� 6M� � ' � � 
�Wc � ��� 
 c�� � # 6 ) � is a geometrical factor that involves integration over Wannier functions 
 c.����� ,
and

6
is the lattice constant. For deep lattices � 1� '-T 1�� c [94].

To analyze the Bragg spectrum of the system we study the energy transfer, which can be measured

by time-of-flight techniques[19]. Under linear response theory, the energy transfer is related to the so called

dynamic structure factor, � � G � 6 � , which is given by

� � G � 6 � 	 �
� � ' � �  �� ��� � � � 6 ' � � � (5.3)

where
� � � 6 ' � � � ��� 9 ���, � � * 	 � � T � 6 #Q6 ' � � , � 9 	 and

� ' are eigenstates and eigenenergies of the unperturbed

Hamiltonian (5.1), �  	� �
� is the usual Boltzmann factor with
�(	`�5�M� < V

where
� <

is Boltzmann’s con-

stant and
V

the temperature,
�

is the canonical partition function, and a.6 ' � 	 � � # � ' . Because of the

factor
� � � 6 ' � � , the system’s response shows peaks whenever the frequency of perturbation matches the en-

ergy difference between two eigenstates of the BHH. The peak height is proportional to the the transition

probability between the two eigenstates, ��� 9 ���, � � *�	 � � .
The total energy transfer after applying the Bragg perturbation can be shown to be given by [95]:

T � 	 �[�c
!.a
� 7��c 6 � � �

 �

6 6 � 6 � � � G � 6 � � �����B� � 6$# 6 � � � �� 6$#_6 � � �
(5.4)

where
V



is the duration of the perturbation and � � G � 6 � 	 � � G � 6 � # � � #
G � # 6 � . Here we derive analytic

expressions for the dynamic structure factor assuming we are deep in the Mott insulator regime, where

treating the hopping term in the Hamiltonian as a perturbation is justified.
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5.3 Zero temperature response

In this work we assume a commensurately filled lattice with no external confinement, filling factor + � : 	
� and periodic boundary conditions. The unperturbed Hamiltonian includes only the on-site interaction

term, which is diagonal in a number Fock-state basis. To zeroth order the ground state � � / c 2c 	 is the Fock

state with � atoms in every lattice site. The lowest lying excitations correspond to the one-particle-hole

(1-ph) states � 
 � 1 	 with � � �
particles at site 8 , �0# � particles at site ) , and exactly � particles in

every other site. There are : � : # �5� 1-ph excitations and, because of the translational symmetry, they

are degenerate at zeroth order with excitation energy 3 . To zeroth order the dynamic structure factor

vanishes. At first order the ground state wave-function is � � / ! 2c 	 	 � � / c 2c 	 � % � 3 F !=: � � � � �5� � � 	 , where

� � 	 � �
�1 	 ! � � 
 131 � ! 	;� � 
 1+1  "! 	 � � ) !=: is the normalized translationally invariant state of adjacent

particle-hole excitations. In order for perturbation theory to be valid, the parameter %,� ) : � 3 has to be

small [92]. This could be a significant restriction for systems with a large number of filled sites but can be

perfectly realized in experiments such as Ref.[15] where the system has only 20 occupied sites in the central

tube. To find first order corrections to the : � :L# � � low lying excited states we must diagonalize the kinetic

energy Hamiltonian within the 1-ph subspace. If we expand the eigenstates as a linear combinations of 1-ph

excitations � � / ! 2' 	 	 � 1�� ���	 1 � '1 � � 
 1 � 	 the necessary and sufficient conditions that the coefficients
� '1 �

have to fulfill are

� � � � �
��� '1 � ! � � � '1  ! � � ��� ��� '1 � � ! � � '1 �  "! � 	 �� ' � '1 � � (5.5)

with
� / ! 2' 	 3 #I% �� ' . Besides Eq. (5.5), the amplitudes

� '1 � have to satisfy periodic boundary conditions

� '1 � � � 	 � '1 � � � 	 � '1 � and the constraint
� '1+1 	  

(which prevents particle and hole excitations

occurring at the same site). Eq. (5.5) is analogous to the tight binding Schrödinger equation of a two

dimensional square lattice in the
� �

-plane. The
�

direction is associated with the position of the extra

particle and the
�

direction with the position of the hole. The different weights � � � and � can be understood

in the 2D-lattice model as different effective masses in the two directions and the constraint
� '131 	\ as a

hard wall along the
�<	 �

line. The solutions are not straightforward due to the fact that the effective mass

difference breaks the lattice symmetry around the
�I	 �

axis and makes the hard wall constraint hard to

fulfill. However, in the limiting case of high filling factor, � � �
the solutions of Eq. (5.5) (including the
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constraints) are

� / ! 2� � 	 3&#$!�% � ! � � � �����	� & 9 �: / ��� � : 9 �: < � (5.6)

� � � � �	 c1 � 	
���� ��� �� ��� �]� � �� � ) #�8 � ����� � � � ���� � ) � 8 � � � � � � �
�� ��� �]� � �� � ) #�8 � ������� � � ��� �� � ) � 8 � � � � � � � (5.7)

� � � c1 � 	
���� ����� �� ��� � � � �� � ) #�8 � � � � �
	�	
� �� ��� � � � �� � ) #�8 � � � � �
�=� � (5.8)

Where we used
9 	�� � � �P� , with � 	 �.��1�1�1 : # � and

�>	- 2��1�1�1 : # � . The notation
� � restricts the values

of
�

to the ones where
� � � is an odd number and

� � � to the values where
� � � is even. The constants� � �$	 9 � � # � � � � �5@ and

� � ��	 9 � � � � # � � : � �5@ guarantee the orthogonality of the eigenmodes.

Using Eqs. (5.6) and (5.8) we get an expression for the zero temperature dynamic structure factor

given by

� c � G � 6 � 	 % �
3 � � � � � �5� � � � � T & 6$# � / ! 2� � � a / �

�
�
� 	 ! � ' � � � R � �� � �

	&K ! %
�
3 � � � � � �5������� � : G 6! < �

�
� ��� � � & 9 �: / T � 6$# � / ! 2����a �
1

(5.9)

Where
R � �� 	(� � �� � � ! � � � �� �  "! # � � �� � ! � # � � ��  "! � , G 6^	 !N9 �G � : , and �G an integer between

 
and : # � .

The prime in the sum imposes the constraint �G � � is even. It is important to emphasize that only the states

with
�L	� 

have a dispersion relation which agrees to first order in % to the mean-field solution found in

Ref. [35]. However, for these states
R � c� 	& 

.

In Fig. 5.1 we compare the energy transfer as a function of the Bragg frequency calculated from Eq.

(5.9) to results obtained by the exact diagonalization of the BHH for four values of Bragg momenta G . In

contrast to the superfluid regime [94], where Bragg spectroscopy excites only the quasiparticle state with

quasimomentum G , in the Mott regime we observe :Y# � peaks pertaining to the two dimensional character

of the 1-ph dispersion relation. The Bragg momentum G fixes one quantum number
�

but the other can

take : # � different values. In the analytic solution due to the constraint in Eq. (5.9), �G � � even, only

� : # � � � ! of the possible : # � peaks are present. The constraint is a consequence of the extra symmetry

introduced in the high filling factor approximation where similar ”effective masses” are assumed.
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Figure 5.1: Energy transfer for a homogeneous system at zero temperature. Solid line exact solution.
crosses perturbative solution (envelope: dashed line). Other parameters: : 	 + 	 4 , %"; � a 	 !  ,3 � % 	 @?� .

In the analytic solution, Bragg peaks have an overall envelope of the form of an inverted parabola

centered at the gap energy 3 , with a maximum height proportional to
��� � � � G 6�� ! � and extended over an

interval with an approximated width of
@ % � ! � � � �����	�
� G 6?� ! � . The

���	��� G 6?� ! � dependence of the width and����� � � G 6�� ! � dependence of the height indicate that as G approaches 9 �+6 the energy transfer is highly peaked

around 3 . This behavior is observed in Fig. 5.1, where the overall width decreases as G approaches 9 �96 ,

while the peak height increases. In spite of the fact that the analytic solution uses the high filling factor

approximation, the dependence on G of the width and peak height of the envelope is in agreement with the� 	C� exact energy response as shown in Fig. 5.1.

We found no structure around a.6 	 !�3 in the exact numerical results. This is consistent with

the fact that the parameters used in this chapter lie within the regime of validity of first-order perturbation

theory.

For the form of energy spectroscopy we consider here, there is no fundamental limit to Bragg pulsed
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durations in contrast to momentum-spectroscopy 1. However, practical considerations will likely inhibit

the resolution of the individual excitation peaks in current experiments (see discussion below). In this case

the envelope shown in Fig. 5.1 will provide a more realistic depiction of the experimentally observable

spectrum.

5.4 Validity conditions

The treatment we present here is based on linear response. In this section we indicate its strict validity

conditions in terms of the Bragg strength
��c

which is the relevant experimental parameter.

After the Bragg perturbation is applied, the many-body state is no longer in the BHH ground state,

�  	 . The transition probability to an excited state � 9 	 , � � ' � � � � � , according to first order perturbation theory is

given by

� � ' � � � � � 	 � �c � � 9 � �, �� �  	 � � ��� � � � ��� ' � aP# 6 � � � ! �a � ��� ' � a # 6 � � �
(5.10)

where the eigenenergies
� ' of the states are measured with respect to the ground state energy. The validity

of linear response requires the total excited state population at the conclusion of the Bragg perturbation to

be small compared to unity:

� ' �	 c � � ' ��V�
M� � � � �M1
(5.11)

Deep in the Mott regime the response of the system is dominated by the : excited states � � / ! 2' 	 . Because

all these states have energies
� / ! 2' approximately given by 3 , the maximum transfer energy possible is of

order 3 . The validity of linear response constrains the total imparted energy to be much less than 3 and

the heating rate T � � T � 	 3 � ' �	 c � � ' � � � � �N� � due to the Bragg perturbation to be much less than 3 �5V 
 .

It was previously shown that the : excited states � � / ! 2' 	 , have an energy spread given by
@ % � ! � �

� �����	��� G 6�� ! � (Eq. (5.6)), and matrix elements given by: � � � / ! 2' � �, �� � � / ! 2c 	 ��'\% �����]� G 6?� ! � F K ! � � � � � � � 3 ,

(Eq. (5.9)). The average separation between two consecutive states is of order � � �
@ % � ! ��� � �����	�
� G 6?� ! � � : .

Individually resolving the different lines will require one to apply the Bragg pulse for a time of order

1Momentum spectroscopy requires that the pulse length does not exceed a quarter of the period of the magnetic trap used to

experimentally confine the atoms[?]
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V / � 2
 � : ���2� @ % � ! � � � �����	��� G 6?� ! � � . The validity of linear response, Eq. (5.11), therefore requires that

�Hc
�
3: ����� : G 6

! < 1 (5.12)

For the parameters of Ref.[15], where
� �

Rb atoms are trapped in a lattice of depth
� ,21 ��� �

, the tunneling

time
��� % is about

 H1 �5�
. The number of occupied wells is : �&!  , with a filling factor � � � . Resolving a

single peak would require a Bragg pulse of duration
V / � 2


�
 21 ! � . With these conditions linear response is

valid if
�Hc
�
 H1  H� � ������� G 6�� ! � �
� . The acceptable heating rate is much less than

�M1 ,M� � �M�
.

If the duration of the applied perturbation is
V�
 �YV / � 2


, excited states will not be individually

discernible. Near resonance ( a.6Q/>3 ), for pulse durations smaller than the inverse bandwidth:
V 
 � V / � 2


,

V / � 2
 	 ������@ % � ! � � �5����� ��� G 6?� ! � � , all states will be resonantly excited. If
V�

�
V / � 2


the validity of linear

response requires

�2c
�

3) : ����� : G 6
! < 1 (5.13)

where the factor of ) : , accounts for the contribution from all : excited states. For the parameters given

above this inequality implies
�Ec
�
 21  �= ������� G 6�� ! � �
� . Here, the acceptable heating rate is much less than

K ; � � ��� .

We note that in the superfluid regime the uncorrelated nature of the system allows for a less stringent

validity condition to hold: it is only required the amount of excited atoms to be small compared to the

condensate population.

5.5 Finite temperature case

It is well known in the literature (see for example [95]) that in the superfluid regime, Bragg spectroscopy is

not an appropriate tool for probing the temperature of the system. The reason is that even though � � G � 6 �
is temperature dependent, experimental observables such as the energy transfer depend on � � G � 6 � which is

very weakly temperature dependent. This is not the case deep in the Mott insulator regime. In a translation-

ally invariant lattice all the 1-ph excitations have an energy separation of order 3 from the ground state and

a splitting between them of order % . If the temperature is
��< V ��3 ��K , it is still valid to restrict the Hilbert
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Figure 5.2: Energy transfer for a system at finite temperature. Solid line
��< V � 3 	  H1  . �=

, crosses�=< V
� 3 	- H1 ! � . The other parameters are the same as those in Fig.5.1

space to the one spanned by the 1-ph excitations. In this regime � � G � 6 � (see Eq. (5.4)) can be written as:

� � G � 6 � 	
� � #?�= 	� � �� � � G � 6 � � 7 	 c � �

� �

 � � G � 6 ' � � (5.14)

�

 � � G � 6 ' � � � �' � ��� ' � �  �� � � � �� #?�  �� � � � �� �
� � � � 6 ' � � # �  � � # 6 ' � � � (5.15)

where the sum runs over the states in the one particle-hole band, and
� / � � : � : � � � �� 	� � . The

first term in Eq.(5.14), proportional to � � � 6 � � 7 	 c , causes a thermal reduction of the zero temperature

response. The second term, which scales like �  	� � � % � � 2, makes the system sensitive to low energy

Bragg perturbations at frequencies resonant with the energy difference between two 1-ph excitations. The

factor �= 	� � suppresses the observability of these thermal effects for
� < V �(3 �M� .

In Fig. 5.2 we plot the energy transfer as a function of the Bragg frequency, as calculated from

exact diagonalization of the BHH for two different temperatures. The figure shows that for temperatures

� < V
� 3 � �N��� the height of the zero temperature peaks around 3 decreases, while low frequency peaks

appear. The presence of these low-frequency peaks is therefore a signature of finite temperature. In partic-

ular, if peaks around 3 are observed in absence of low frequency response, the temperature is lower than

3 �2���M�=< � . While this analysis does not provide a precise determination of the temperature, it is still useful

2Notice that due to the the zeroth order degeneracy of the �����	� subspace, 
 �
��
������
 ����
 �������
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because it shows that Bragg spectroscopy is sensitive to temperatures of order of the interaction energy.

Current experimental techniques do not provide any information on the scale of 3 . In fact, in current exper-

iments temperature measurements rely on the analysis of atomic interference patterns after a certain time of

flight following the release of atoms, and the measurement precision is of the order of the energy spacing

to the second lattice band, which is typically one order of magnitude larger than 3 .

5.6 Final Remarks

In recent experiments [19], Bragg spectroscopy was performed using a setup where the Bragg momentum

equals the lattice momentum and response was observed. Our present analysis, in agreement with previous

ones ([35],[94]), predicts no response for G 	 !N9 �+6 . Using similar perturbative techniques as the ones

described here, we extended our calculation to inhomogeneous systems with a strong harmonic magnetic

confinement. We also found no scattering for G 	 !�9 �96 in these systems. The fact that neither the inho-

mogeneity nor the finite size of the system are responsible for the observed signal suggests that nonlinear

effects are the most plausible explanation for the experimental results.

In summary, we have shown that Bragg spectroscopy can be a suitable experimental tool for charac-

terizing the Mott insulator phase. By measuring the transfer energy at different Bragg momenta we proved it

is possible to get information about the excitation spectrum: Bragg peaks are centered around the character-

istic Mott excitation gap and are contained in an interval whose width is proportional to the 1-ph excitation

band width. Their average height is maximized when the Bragg momentum approaches 9 �96 . Finally look-

ing at the low frequency response we showed that Bragg spectroscopy is sensitive to temperatures of order

of the Mott gap.
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Chapter 6

Finite temperature effects in the Mott insulator state.

We study the effects of finite temperature on ultracold atoms confined in an optical lattice plus a parabolic

potential in the Mott insulator state, and we propose a novel method to estimate the system’s temperature.

The measurement we propose is based on molecular photo-association of atomic pairs, and is sensitive to

finite temperature population of high energy states as well as zero-temperature mixing of high energy basis

states into the ground state. Therefore, the measurement may be used both to determine temperature and to

characterize the ground state of the system [15]. The temperature measurement is largely insensitive to the

total number of atoms and may therefore be suited to calibrate experimental setups. Additional information

on the total number of atoms can be extracted at sufficiently low temperatures.

6.1 Introduction

Great progress has been achieved in the coherent control and manipulation of ultracold atoms and molecules.

In a series of recent experiments, several groups demonstrated the loading of an atomic Bose-Einstein con-

densate into the lowest vibrational level of single wells of an optical lattice [13, 19, 88]. In a remarkable

experiment, M. Greiner et al., [13], demonstrated a reversible quantum phase transition between a super-

fluid and an insulator state for bosonic atoms induced by varying the intensity of the trapping laser beams

and therefore the depth of single potential wells. In a very recent experiment, the same group demonstrated

an effective one dimensional superfluid/insulator transition, with on-site peak density equal to one [15] in

an array of quasi one dimensional tubes. Several proposals suggest this system has potentially fundamental

applications in the field of quantum computation, as the realized array of atoms in the insulating regime

can be used to create an ideal register for qubits [21, 36, 51, 92, 96]. One of these proposals suggests

a scheme which is robust at moderate finite temperatures, and is therefore potentially viable for practical

implementations [51] .

Despite the achieved extreme system control, so far no in-situ techniques have been developed to
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determine the temperature of an atomic ensemble loaded into the lattice. From the point of view of quantum

computation, finite temperature can introduce errors in the register, that is empty or multiply occupied sites,

and therefore a decrease in overall gate fidelities that must be corrected for only at the cost of overheads

in computational resources and gate times. Current schemes for temperature measurements rely on the

analysis of atomic interference patterns after a certain time of flight following the release of atoms from

external confinements, in absence of the lattice. These schemes are highly unsatisfactory, as they require

the destruction of the sample, provide no information on temperature changes due to loading of the lattice,

do not work in-situ, and the measurement precision is on the order of the level spacing to the second lattice

band, while the relevant energy scale in the lattice is the onsite interaction energy. The latter is typically at

least one order of magnitude smaller than the lattice level spacing [11].

In this Chapter we analyze the effects of finite temperature on the Mott insulator state in presence

of an external quadratic potential, and propose a method for estimating this temperature. In typical ex-

periments, the quadratic potential is provided by a magnetic potential and is used to collect atoms at the

center of the trap. The scheme requires the engineering of magnetic and optical potentials in such a way

that multiple particle occupancy of single wells is suppressed and a certain number of sites at the center of

the lattice has unitary filling [15, 92]. Under these conditions, multiple site occupancy is related to residual

mixing of high energy basis states into the ground state at zero temperature [97, 98], and finite temperature

population of high energy eigenstates. Below we show that molecular photo-association and statistics of

ionization of atomic pairs can provide information on the creation of a zero temperature Mott state, while

simultaneously they may be used to estimate the temperature of atoms in the trap for energies of the order

of the onsite interaction energy. While we focus our attention on bosons in one dimensional lattices, results

can be readily extended to higher dimensions.
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6.2 The Mott insulator state

The Bose-Hubbard Hamiltonian describes the system’s dynamics when the lattice is loaded such that only

the lowest vibrational level of each lattice site is occupied [11]

R <
	 	 �

�
� � � * � )�� # % � � �� �3� � ! �.� �� � ! �3� � � 3 ! )�� � )�� # � � 	 1 (6.1)

Here � � is the bosonic annihilation operator of a particle at site * and ) � 	 � �� � � . The site-dependent � � * �
models an external magnetic quadratic potential, while % and 3 are the tunneling and on-site interaction

energies respectively. For deep lattices with potential energy
� � ��� 	 �[�
�����M� �?���

, the tunneling energy

is approximated by % 	 @?�2� ) 9 � � � ��� ��� � � � � �2�  � ) � � ��� , where
� � 	`� a �2� �N� !+8 is the recoil energy,

�
the light wave vector, and 8 the atomic mass. The on-site interaction energy is due to ground state

collisions between atoms each in the motional state 
 ���]� and is given by 3 	 ��� � � � 6� � 6	� � 
 ���]� � � , with � �
the s-wave scattering length and 
 ���]� a Wannier state. % and 3 are assumed to be site independent [11].

For a homogeneous lattice ( � � * � 	  , � * ) of : sites at zero temperature
V

, an insulating state, the

Mott state, occurs only if the number of particles + equals : and the interaction energy dominates over

the tunneling energy. If ) +$% � 3 � �
the ground state has approximately energy

� � 	 # @ +$% ��� 3 and is

given by

� 
 � 	 	 � � � V 	 �I! ) +Z% � 3 � � 	 �
� (6.2)

where the normalization constant is � 	\� � � @ + � % � 3 � � �  "!�� � . The Fock state � V 	 	�� ��
	 ! � �� �  	 has one

particle per site and zero energy, and the symmetrized state � � 	 	 �5� ) !�+ �
��
	 ! � � �� �+� � ! � � �� � ! �+� � � V 	

has energy 3 . Indeed, in the homogeneous system all Fock states with an empty site and an atomic pair

in another site are degenerate with energy 3 . The latter is roughly the lowest excitation energy for the

many-body system in the homogenous commensurately filled case [12].

The probability of creating exactly + 	 : particles in an experiment is negligible. An in-

sulator state can be recovered if an external quadratic potential is present. Then, � � * �Q	 ' * � where

' 	 8 � ! � 9 ���H� � 6 �7 is a characteristic energy scale for a trap of frequency 6 7 . At
V(	& 

, a Mott state with

average occupation one in the center of the trap can be realized for ) +$% � 3 � �
if

+ ��: � 3 � � � � + # � � � ! � � ' + � % 1 (6.3)
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The last two inequalities insure that multiple particle occupancy and tunneling of holes from the borders

to the center of the lattice are suppressed, respectively [92]. The first inequality in Eq. 6.3 simply states

the number of wells be larger than the number of atoms. As a consequence, there are : � �2� � : #$+ � � + � �
Fock states with maximal on-site occupation one, at variance with the single state of the case + 	 : . In

presence of the trap these states are not degenerate, spanning an energy range which may be larger than 3 .

We redefine as � V 	 	 � / �  ! 2 � ��
	  / �  "! 2 � � � �� �  	 the lowest energy state and set its energy to zero [99]. The state

� V 	 is the ground state of the system to zeroth order in % , while the true ground state has coherences due to

tunneling of a hole in either one of sites
� � + # � � � ! and mixing of Fock states � � 1 � � 	 	 � �1 � � � V 	 � ) !

with an atomic pair and a hole at sites ) and 8 respectively, with ) � 8 � � � + # �5� � ! � , in analogy to

the homogeneous case. States � � 1�� � 	 are not degenerate, due to the trap presence. States � � 1�� � 	 with

8 	 ) � � dominate the mixing into the ground state, and for ' � 3 the amplitude of mixing approaches

the homogeneous system’s one ) ! � % � 3 .

In general, the � V 	 -state is coupled via the  R -Hamiltonian to � � 1�� � 	 -states with a matrix element

of order
� % � 3 � � 1  � �

, which is negligible for � ) # 8 � large enough in the insulating regime. On the

other hand, a temperature of the order of the energy difference between � V 	 and � � 1�� � 	 -states allows for

population of the latters. In particular, the lowest energy Fock state � � 1 � � 	 has two particles in the central

site of the lattice and a hole at site � � +`# �5� � ! � . Its energy is � 	 3�# � � � +`# �5� � ! � .
We propose to utilize a measurement scheme which is selectively sensitive to the presence of atomic

pairs in the lattice and to determine the temperature through statistics of positive detection of atomic pairs.

While in principle any measurements sensitive to atomic pairs may be used, we propose to collect statistics

of atomic pairs through resonant photo-association of two atoms in a single well to a molecular excited

state, followed by ionization of the formed molecules and detection of the emitted ions, as the latter can be

performed with high efficiency. The molecular excited state should be chosen to be far from atomic dissoci-

ation, meaning that the atomic probability of spontaneous emission is not enhanced by the photo-associative

laser. We show that in the appropriate parameter regime the density distribution of atomic pairs, which is

proportional to the experimental probability of pair detection, has a Gaussian profile as a function of the

position in the lattice. The width of the profile solely depends on the temperature and on the known trap
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geometry. Moreover, the height of the distribution peak at low temperatures provides direct information on

the energy � and therefore on the number of particles + .

6.3 Effective single-particle spectrum

Neglecting for a moment mixing of � � 1�� � 	 -states in low lying modes, a Gaussian profile for the density

distribution of an atomic pair as a function of the position in the lattice at finite temperature
V

can be

expected for the following argument. Given a lattice with : wells, + 	 : � � particles and 3 � % ,

the ground state has roughly one particle per site and an extra particle at the center of the trap, forming an

atomic pair. For weak enough quadratic traps, ' � % , tunneling of the extra particle is not suppressed

over a certain number of lattice sites at the center of the trap where the external potential is essentially

flat, meaning that the atomic pair acts approximately as a conventional harmonic oscillator with effective

mass 8 W 	 �5����@ % � and trapping frequency 6 W 	 !=) !M' % . Here lattice constant 9 �M� and a 	 ��� !�9 have

been set to unity, where
�

is Planck constant. The tight binding spectrum is therefore approximated by an

harmonic oscillator spectrum whose level spacing is 6 W with an error of order � � ' � % � . If
V � 6 W ��� < , it

can be shown that the quantum density distribution � � * � for the atomic pair, which is proportional to the

probability for pair detection at site * , becomes equivalent to the classical distribution which is proportional

to

� � * � ' �  �� � � ) 6� � 6 � � 	 �  	� � � 6 (6.4)

where
� 	L�N��� �=< V �

, and
�=<

is Boltzmann constant. The distribution � � * � as a function of lattice site * ,
Eq. 6.4, is therefore a Gaussian whose width is

��cd	 F �N��� ! � ' � .

Harmonic oscillator states actually approximate the incomplete basis set defined on the central +
sites of the lattice in the energy range � � � � K 3C# ! � � � + # � � � ! � , where

K 3 # ! � � � + # � � � ! � is

a characteristic energy for population of states with two extra particles in one of the the central + #(!
sites. Apart of a normalization factor, we therefore expect that the density distribution as a function of the

position * in the lattice has the same Gaussian profile as in Eq. 6.4 with an exponential suppression due to
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the energy shift �
� � * � ' �  	� � �  	� � � 6 1 (6.5)

The width
� c

of the density distribution can be therefore directly related to the temperature of the sample,

while the height of the peak is an indication of � , and therefore of the number of particles + . We expect

the width to be an accurate measure of temperature for
��< V � � . In fact, while for a temperature of order

� states are populated with more than one pair in the central sites, the various pairs approximately behave

like non-overlapping harmonic oscillators, meaning that the probability of finding two extra particles in the

same site is strongly suppressed. In the language of Chapters 3 and 4, these extra particles are fermionized.

Therefore, the density distribution at a single site should still approximately maintain a Gaussian profile of

width
� c

. On the other hand, the height of the Gaussian depends on the normalization. We expect Eq. 6.5

to well approximate the value of the density peak for
� < V

� � , where the overall normalization is ap-

proximately one.

6.4 Numerical simulations

We perform numerical simulations of the density distribution of atomic pairs in the lattice as a function of

temperature for some realistic experimental parameters. We employ a quantum Monte-Carlo code based

on the continuous-time Worm algorithm [30]. A sample of + 	 �  2�
atoms of

��� ��5
is trapped in a lattice

with wavelength � 	 =N,.�
nm and parallel and transverse confinements

��� 	 �5���
�
and

��� 	 @� 21 ���
�
respectively. Using � � 	J�21 ; nm, the interaction energy in frequency units is 3 � ��	 K21 K�@� 

kHz and

3 � % 	 � !  . The external magnetic trapping frequency is 6 7 /`!�9 : @. Hz and therefore the number

of atoms + fixes � � +`# �5� � !Z/  21 , 3 , � /Y! @ % . We have chosen these parameters because they are

experimentally feasible and satisfy Eq. 6.3, so that at zero temperature a Mott state is formed with one

particle occupying each one of the central + sites of the lattice. In particular, zero temperature mixing

of basis states with an empty site in one of the central + sites of the lattice is suppressed, the largest

amplitude of mixing corresponding to the outer most trapped particle tunneling to the adjacent empty site.

Calculations have been performed for : � + , so that atoms never reach the border of the lattice.
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Figure 6.1: Density distribution of atomic pairs � as a function of lattice index * . Continuous and dashed
lines are numerical results for

V-	-K % ��� < and
V-	&� % ��� < respectively. Dotted lines are analytical curves

for the same temperatures. The arrow indicates the zero-temperature mixing of � � 1�� 1�� ! 	 -states. Here+ 	 �  2�
, 3 � % 	�� !  , ' � % 	- H1  .K�=5@ !M!M; , and � � % 	 ! @ .

In Fig. 6.1 the atomic pair density distribution � is plotted as a function of site index * for
Vd��<X� % 	

K
and
�
. Continuous and dashed lines are numerical results, while dotted lines are analytical curves. For

V � < � % 	 K , lower curves, the numerical solution shows essentially a flat density distribution throughout

the central + sites, with a shallow gaussian peak at the center. The flat distribution corresponds to the zero

temperature residual mixing of � � 1�� 1 � ! 	 -states into the ground state, characteristics of the Mott state. As

' � 3 , corrections to the density distribution due to the external trapping potential are not distinguishable

on the scale of the graph, and the on-site density matches the homogeneous system’s value ! : ! � % � 3 � � /
 21  M . ! =N, . The factor of two in front of last expression is due to the fact that the extra atom can tunnel from

the left or right. The latter constant has been added to the analytic curves, and is indicated by an arrow in

Fig. 6.1. Finite atomic pair density due to zero-temperature mixing of � � 1�� 1 � ! 	 -states is a direct signature of

the creation of a Mott state. For sufficiently low temperatures, selective probe of the density distribution in

lattice sites * with * � � c
can give direct in situ evidence of the formation of the Mott plateau in the center

of the trap, while the shallow peak around * 	- measures finite temperature population of � � 1�� � 	 -states.

For
V �=< � % 	 �

the Gaussian peak is more evident on the scale of the graph. We observe that
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Figure 6.2: Density distribution of atomic pairs � as a function of lattice index * , for
V 	 � !?% ��� < .

Dashed and dotted lines are numerical and analytical results respectively. Here + 	Y�� H�
, 3 � % 	Y� !  ,' � % 	( H1  .K�=5@ !M!M; , and � � % 	 ! @ .

numerical and analytical curves nearly overlap. In particular, the widths of the Gaussians perfectly match,

while the height of the peak is slightly underestimated by the analytic curve. This is due to the fact that

3_# � � � +># � � � ! � is only approximately � for the chosen parameters, and the difference is amplified by the

exponential function. Moreover, the Monte-Carlo code fixes the chemical potential, meaning + is actually

an average value in the numerics. A larger disagreement in the peak height is observable for
� < V
� % 	�� !

in Fig. 6.2, where the analytic curve largely overestimates the exact result. This is expected, as for higher

temperatures the normalization constant differs more and more from one, therefore suppressing the peak

height in the exact solution.

In Fig. 6.3 the width
� c

is plotted against the temperature, up to
V�	 � �M� < . Circles are numerical

results, while the continuous line is the analytic solution F � < V
��� !M' � . The plot shows a good agreement

between numerics and analytical results for
� < V � � �N@ . Deviation for higher temperatures is due to pop-

ulation of states with a large number of atomic pairs.

Provided inequalities in Eq. 6.3 are satisfied for each experiment given the uncertainties on the

number of atoms, accurate calibration of average system’s temperatures may be performed by accumulating

statistics of pair detection on successive experiments with the same trapping potentials, as
� c

is insensitive
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Figure 6.3: Width
� c

of the density distribution of atomic pairs as a function of
� < V � � . The width

� c
is

in units of the lattice constant. Circles(red) are numerical values, while the continuous line is the analytic
curve

� � < V
� !.' � !�� � . Here + 	C�  2�
, 3 � % 	 � !  , ' � % 	- H1  .K�=N@ !M!M; , and � � % 	 ! @ .

to + . Information on temperature in a single experiment may be extracted by taking ratios � � * � � � �� .� of

molecular photoassociation probabilities on different lattice locations.

In typical experimental setups it is not possible to focus a photoassociative laser onto a single site. In

fact, the intensity of the photoassociative laser has a Gaussian profile whose width is typically on the order

of the light’s wavelength, meaning the laser intensity may not be negligible on few lattice sites, depending

on the ratio between the wavelength of the photoassociative laser and the lattice spacing. The collected

stastistics of atomic pair detection should then be appropriately averaged over a few lattice sites.

6.5 Summary

In summary, we have studied the effects of temperature on the Mott insulator state, and proposed a method

to estimate the temperature of ultracold bosons trapped in deep lattices. The proposed method is largely

insensitive to total particle numbers, possibly making it a viable tool for the calibration of experimental

setups. While we focused on one dimensional systems, the above treatment can be readily generalized to

higher dimensions.
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Chapter 7

Scalable register initialization for quantum computing in an optical lattice

The Mott insulator state created by loading an atomic Bose-Einstein condensate (BEC) into an optical

lattice may be used as a means to prepare a register of atomic qubits in a quantum computer. Such archi-

tecture requires a lattice commensurately filled with atoms, which corresponds to the insulator state only

in the limit of zero inter-well tunneling. We show that a lattice with spatial inhomogeneity created by a

quadratic magnetic trapping potential can be used to isolate a subspace in the center which is impervious

to hole-hoping. Components of the wavefunction with more than one atom in any well can be projected

out by selective measurement on a molecular photo-associative transition. Maintaining the molecular cou-

pling induces a quantum Zeno effect that can sustain a commensurately filled register for the duration of a

quantum computation.

7.1 Introduction

In the past decade, tremendous progress has been made creating and manipulating macroscopic quantum

states of atoms in Bose-Einstein condensates [100]. Concurrently, experiments have achieved precise con-

trol of a small number ( � �  ) of interacting atoms and demonstrated entangling operations between them

[101]. A potential application that marries atomic control on the large and small scale is the implementation

of quantum computation with neutral atoms. Building a scalable quantum computer requires the initializa-

tion of a many body system to a simple fiducial state with well characterized qubits [24]. Ultimately, this

must be done by either allowing the system to naturally cool to its ground state, or performing a suitable

projective measurement of the system.

Several years ago the loading of an optical lattice from an atomic BEC was proposed [11]. If one

begins with a superfluid-like BEC and adiabatically turns on a lattice potential, the system experiences a

phase transition to the Mott insulator (MI) state. This many body state is characterized by the same number

of atoms in each lattice well and is the ground state when the intra-well interaction energy is much greater
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than the inter-well tunneling [12]. Recent experiments [13] have demonstrated the Mott insulator phase

transition in a magnetically confined optical lattice, with an average filling factor of two atoms per well. In

this chapter we demonstrate that the many body ground state of atoms in an optical lattice contains intrinsic

number fluctuations that make it an imperfect register. We show how this can be corrected in two steps, first

by introducing an inhomogeneity to the lattice using a quadratic trapping potential and second by selective

measurement of atomic pairs. This strategy allows the MI transition to become a robust mechanism for

register initialization.

Homogeneous system

A key advantage of loading an optical lattice from a BEC is the availability of an initially high phase space

density which can be frozen to the MI state with atoms occupying every lattice site. When the lattice

is loaded such that only the lowest vibrational state of each lattice well is occupied, the system is well

described by the Bose-Hubbard Hamiltonian:

R <
	 	 �

� � � * � )��
#I% � � �� �3� � ! � � �� � ! �+� � � 3 ! )�� � )�� # � � (7.1)

Here � � are the bosonic annihilation operators and ) � 	 � �� � � the number operators for an atom in the lowest

vibrational state of lattice well * . The energy offset at each lattice site is � � * � which models a continuously

varying external potential. The energies % and 3 are the tunneling and on-site interaction energies respec-

tively. In the tight-binding model, the nearest neighbor tunneling energy % is defined as one fourth the band

width of the lowest occupied band. For tunneling through a potential barrier given by
� � ��� 	-�����	�
�M� �?���

,

the tunneling rate is closely approximated by [57] % � a 	 @���� ) 9Ba � �
� � � �N� � � � � �2�  � ) � � ��� , where the

recoil energy is
� � 	 � a �H� � � !98 (m

	
atomic mass). The on-site interaction is a result of the ground state

collisions described by the s-wave scattering length � � between two atoms each in the motional state 
 ���]�
and is given by 3 	 ��� ��� � 6� � 6 � � 
 ���]� � � .

For the homogeneous system
� � � * �
	C � * � of fixed extent, the behavior of the system is uniquely

described by the ratio 3 � % which decreases exponentially with the trap depth
�

. While our results are

applicable to higher dimensions, henceforth we assume a three dimensional lattice with tight transverse

confinement and tunneling dynamics along one dimension only. For the homogeneous system, only com-
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mensurate fillings give rise to a MI transition. For the homogeneous lattice with : lattice sites, which is

filled with a number of atoms whose variance is �^+ � : , the ground state of the system has a probability

of approximately
�5� : of being commensurately filled. Therefore this is not a robust mechanism for ini-

tializing a quantum computer. However, one should note that an adiabatic transfer mechanism between two

sublevels of each atom may be used to fix nonuniform filling [36]. A caveat is that even with unit filling,

the MI state still carries small but non-zero number fluctuations which provide a small residual coherence

across the system that scales as the number of trapped atoms [97, 98]. Applying first order perturbation

theory in
R <
	

, the ground state for + atoms in : wells in one dimension with + 	 : is approximately

� 
 � 	 	 � � � V 	 � ! ) +$% � 3 � � 	 � � (7.2)

where the normalization constant is � 	`� � � @ + � % � 3 � ���  !�� � . Here the unit filled target state is � V 	 	
� ��
	 ! � �� �  	 and the symmetrized state, assuming periodic boundary conditions

� * � : �L* � , is � � 	 	
�5� ) @ + �

��
	 ! � � �� � ! �3� � � �� �3� � ! � � V 	 . The energy of the ground state is approximately
� � 	 # @ +Z% � � 3 .

7.1.1 The protocol

We propose to use an inhomogeneous lattice with open boundaries created by a weak quadratic magnetic

trap that acts to collect atoms near the center of the trap and leaves empty wells (holes) at the edges. For

our analysis we assume a one dimensional optical lattice, with + � : [102], in the presence of a weak

magnetic trap with oscillation frequency 6 7 . The characteristic trap energy scale ' 	 8 � ! � 9 ���H� � 6 �7 is

defined so that � � * � 	 ' * � . We stipulate that the on site interaction energy be larger than the trapping energy

of the most externally trapped atom, or 3 � � � � + # � � � ! � , in order to inhibit multiple atom occupation

in any well. The register is defined by a physical subspace � comprising a number of wells � � + in

the center region of the trap. The barrier space flanking � will act to suppress percolation of holes from

the edges to the center. The estimated probability for holes in � due to tunneling through the barrier is

� � / � / � � ! 2 � ��
	 /��  ! 2 � � � % � ' � !�* � �5� � � 	�� % � !.' � �  � � � � � � � � ! 
 � � � + � ! � � 
 � � , which is negligible provided

the barrier region is sufficiently large and % � ��' � � .
When expanded in the Fock state basis, the ground state of the register has amplitude in those

states with holes neighboring atomic pairs, analogous to the homogeneous case. We describe a protocol
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which projects out these components by a null result from selective measurement of atomic pairs within

any lattice site. This measurement detects population on an excited molecular state and can be made with

high efficiency. Once the unit filled state is reached with high confidence, continuing the measurement will

maintain this state.

The measurement will map the register from the ground state � 
 �
	 to the unit filled target state

which is not an eigenstate of
R <
	

. To describe the dynamics in the register during the measurement, it is

convenient to use the following incomplete basis over � :

� V 	 	 / �  "! 2 � ��

�
	  /��  "! 2 � � �
�� �  	 � � � �� 	 	 � �� � � � !) ! � V 	 � � �  � 	 	 � �� � ! � �) ! � V 	 1 (7.3)

For each * the states � � �� 	 are distinguished by the two energetically distinct orientations of an atomic pair

and its neighboring hole with energies,
� � � �� � 	 3 � � � � � � !�*P# � � � . The target state � V 	 defines the zero

of energy. The � V 	 and the � � �� 	 states are coupled to first order in
R <
	

and they span the reduced state in

� of the ground state of the total system.

In the limit of large � , the dynamics of the register is restricted to the basis of Eq. 7.3. This

argument is understood by comparison to the dynamics in the homogeneous system. In the latter, the

state with the largest coupling from the target state is the symmetrized � � 	 with coupling matrix element

� V � R <
	 � � 	 	 # !=) �Z% . The state � � 	 itself couples to a symmetrized state � � � 	 of all Fock states with a

one site separation between the atomic pair and the hole: � � � 	 	 �5� ) @ � � � � � �� � � � � ��� �� � � � � � � V 	 . The

coupling between these states is � � � � R <
	 � � 	 	 # K % . The dynamics on time scales � � �N� % are therefore

constrained to the subspace ��� V 	 � � � 	 � when � � �
. In the inhomogeneous case, the degeneracy is absent

between states with neighboring pairs and holes, ��� � �� 	 � and states where pairs and holes are separated.

Hence, the coupling to states outside the restricted subspace can only be smaller than in the homogeneous

case.

7.1.2 The measurement

For the measurement, we choose a catalysis laser that is on resonance from the ground state of two

atoms in a single well to a bound state � of a dipole-dipole coupled molecular ��� � state. The bound

state is chosen such that the catalysis laser is far off resonance from other bound states and repulsive
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Figure 7.1: Schematic of the relevant couplings in the problem. The unit filled state � V 	 describing a target
quantum register and the states � � �� 	 having one doubly occupied lattice site and a neighboring hole are
coupled to first order in

R <
	
. A catalysis laser resonantly couples the ground states � � �� 	 to the excited

states � : �� 	 describing a bound molecule at the doubly occupied site. The bound states quickly decay and
give the possibility of monitoring population in the “faulty” register states � � �� 	 .

potentials, see Fig.7.1. For our many body system, we adopt the set of many body states ��� : �� 	 	
� �N� ) ! �&5 �� � / !�� ! 2 � � � �� � / !�� ! 2 � � � � �� 	 � , where

5 � is the creation operator for a molecule in the bound state

� . These states describe �Y# ! atoms trapped in the lattice and a single molecule at site * � � � � � � � ! ,
with dipole-dipole coupling energy �-: �� � R ��� � : �� 	 	 a.6�� . The free atomic Hamiltonian for � atoms is

R���	 � � a.6 � � � � � 	�� � � � where � � � 	 � � � � 	 � denotes the excited(ground) state for an atom at site * . The “bare”

energy Hamiltonian
ROc

including coupling in the restricted basis of
R <
	

is then:

R c 	 R � � R ��� � R <
	
	 a.6 � � � � � � � 	���� � �2� � � � � � � � �� � � � �� 	�� � �� �� � a.6 � � � � � �� � #Q3 � � : �� 	��-: �� ��# ) !?% � � � � � � � �� 	�� V � � � V 	�� � �� � � �

(7.4)

Under the atom laser interaction,
R � �

, the ground and excited state of each atom is coupled as is

each many body state � : �� 	 and its corresponding ground state � � �� 	 . In the rotating wave approximation,

the interaction is:

R � � 	 a�' �
!

�

�
� �  (' )�� � � ����	����
� ��� � 1 �N1 � � a�' �! �

� � �
� �  ,' )	� � � : �� 	�� � �� �2� �]1 ��1 �
� (7.5)

where ' � / � 2 are the atomic (molecular) Rabi frequencies, related by ' � 	 ) �
��' � , and �
� is the

Franck-Condon factor equaling the spatial overlap between the relative coördinate wavefunction describing

100



two ground electronic state atoms trapped in a single lattice well and the molecular bound state � . For bound

states of interest, such as the long range bound states of the
  � � � � � � � potential [103], the catalysis detuning

from atomic resonance, � 	 6 � #Z6 � � , is several thousands linewidths meaning the atomic saturation is

low
� � 	 � ' �� � !3� ��� � �

. In this case, the excited atomic states can be adiabatically eliminated and each

atom in a singly occupied well experiences a light shift equal to
� A 	 � � � � ! . There are � singly occupied

wells in the � V 	 state and the total single atom light shift is therefore equal to � � A . The � � �� 	 states have

� #Q! singly occupied wells giving a corresponding light shift of
� � #Z! � � A . The differential single atom

light shift between these states is then ! � � A � . The total Hamiltonian
R c � R � � in the rotating frame is,

R � 	 � � � � � � ! � � A ��� � � � �� � � � � �� 	�� � �� � � � � ! � � A ��� � � � �� � #Z3 � � : �� 	�� : �� �
# ) !?% � � � �� 	�� V � � � V 	�� � �� � � � � ���� � � : �� 	�� � �� ��� � � �� 	�� : �� � � � 1

(7.6)

Any population in the bound molecular states will decay at a rate b � / !3� , where � is the single atom

decay rate. For molecular photo-association by red detuned light, the decay products are typically ground

state molecular species or “hot” atoms meaning the atoms escape the trapped ground states described by

Eq. 7.3. We therefore model the system according to a trace non-preserving master equation:

�, 	 # 9 � R � � , 
 � a #_b � � ! � � � � � � : �� 	��-: �� � , � , � : �� 	�� : �� � � 1 (7.7)

We have ignored spontaneous emission due to decay from the single atom excited states at a rate

� � � � � per atom. For time scales
�5� b � � � � a �2� 3 �&! � � A � � , the excited state coherences can be

solved for. To second order in 3 � a.b � � ! � � A � � a.b � they are

, ���� � 7 � � � 	 # 9 ������� � �� / � �
� �

� �
� /
	 �� 2  � 2 � � 
 6 � / � � � � 2 6 , 	 �� � 7 � � �, � �� � � �� � � � 	 � 6 � � �/ � � � 2 6 � / � � � � 2 6 , 	 �� � 	 �� � � �, � �� � 	 �� � � � 	 # 9 � � � � �/ � � � 2 6 � / � � � � 2 6 , 	 �� � 	 �� � � � 1

(7.8)

Inserting these expressions back into the equations for the dynamics in the ground state we have

�,
	 �� � 7 	 # 9 ��� � � �� � � ! � � A � � , 	 �� � 7 � a � 9 ) !?% � , 7 � 7 # , 	 �� � 	 �� � � a

# � 6 � � � � �� / � �
� �

� �
� /
	 �� 2  � 2 � � 
 6 � / � � � � 2 6 , 	 �� � 7�, 7 � 7 	 9 ) !?% � � � � � , 	 �� � 7 # , 7 � 	 �� � � a

�,
	 �� � 	 �� 	 # 9 ) !�% � , 	 �� � 7 # , 7 � 	 �� � � a # � 6 � ��� � �/ � � � 2 6 � / � � � � 2 6 , 	 �� � 	 �� 1

(7.9)
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These equations describe the Bose-Hubbard coupled states with a decay in population of each state with an

atomic pair at a rate ! � 	 ' � � b � ��� @�� � 3 � a � � � � b � � ! � ��� , and decay of coherences between each of these

states and state � V 	 at a rate
�

.

This type of evolution characterized by measurement induced phase damping was studied exten-

sively by Gagen and Milburn [104]. We now show that our system can satisfy the conditions for this effect

and in particular can be driven to the � V 	 state by monitoring the environment for a signature of decay from

the molecular bound state.

For the inhomogeneous system, the state � V 	 couples to !�� distinguishable states � � �� 	 . However,

we can define an effective Rabi frequency between the state � V 	 and the subspace spanned by ��� � �� 	 � . This

frequency is close to the coupling matrix element between the state � V 	 and the state � � 	 in the homogeneous

system, namely ! ) �$% . The coherences between the two subspaces decay at a rate
�

, and the population

in the subspace ��� � �� 	 � decays at a rate ! � . The “good” measurement regime as derived in [104] is then:

' � � b � � � � a ��� ! ) �Z% 1 (7.10)

The left side inequality ensures that the excited states � : �� 	 are weakly populated (equivalent to the con-

dition for adiabatic elimination of these states). The right side inequality ensures that measurement is

sufficiently strong to damp coherences on the time scale that they develop due to tunneling.

The limiting quantity that determines the decay rate of the weakly saturated molecular states and

hence the measurement strength is the Franck-Condon factor � � . It is calculated for bound-bound tran-

sitions using the reflection approximation of Julienne [105] where we solve for the ground state rela-

tive coördinate wavefunction for two atoms in a lattice well using a pseudo potential appropriate for

��� ��5
. We choose to couple to the �

	U�N=
bound state of the

  � � � � � � � potential which is at an energy

� 	 #
; 1 ,�� : �� ��� from dissociation. For a lattice with wavelength
=N,��

nm and transverse and parallel

confinements
� � 	 KM,21 ��� �

,
� � � 	 !.! � � , the result is �
�Z/ � : ��  � . Given this confinement, the

on-site interaction using � � 	���1 ; nm is 3 � � 	-KH1 ��=5@ kHz. Choosing an experimentally reasonable atomic

Rabi frequency ' � 	 ! � � , where � 	 !�9 : ; 1  ; � MHz, we find
� /  21 ��K 3 � � . Here the atomic scattering

due to the catalysis laser is
� � �_/&; 1 = : �   � � per atom and the off resonant light shift is � � A � 	-KH1 ,?= 3 .

By way of example we define a one dimensional register � with
�� H�

atoms that resides inside a
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Figure 7.2: Population in the unit filled register state � V 	 � during continuous measurement of the register
beginning in the Bose-Hubbard ground state � 
 � 	 . The plots show dynamics appropriate to tunneling in
one dimension with 3 � % 	C�M M . (a) Quantum trajectories corresponding to a null measurement result for
three different register sizes � . The time scale to saturate the target state is independent of the number of
qubits: � ��� � / �5���

. (b) Long time dynamics for � 	 �M 2�
, + 	`�M�2�

and finite detector efficiencies � .
The population in � V 	�� for � 	C� is indistinguishable from one. Also shown is the oscillatory dynamics at
fundamental frequency 3 � a described by Eq. 7.13 if the measurement is turned off after the target state is
reached. The arrow indicates , 7 � 7 �� .� .

lattice filled with + 	 �M�2�
atoms. An external magnetic trapping frequency of 6 7 	 !N9Q: , Hz ensures

that the last occupied well has an energy � � � +`# �5� � ! � 	- H1 4?3 . We note that the probability for tunneling

of holes from the edges is negligible as % �2� � ' � 	� 21 K�@ . In practice it is not important to know the exact

number of atoms in the lattice as long as the trap strength is chosen such that, given the uncertainty in the

number of atoms, the constraint � � � +J# � � � ! � � 3 is always satisfied. These parameters fix the ratio

3 � % 	-�M M and the measurement strength is therefore a ��� !�) �$% / �M1 � .
When the environment is monitored, for instance by looking for photon scattering from the bound

molecular state, the evolution of ground states can be modeled using quantum trajectories. For our simu-

lation, the ground state wavefunction � 3 � � � 	 	 � 7 � � � � V 	0� � � � � � 	 �� � � � � � �� 	 is updated according to the

non-Hermitian Hamiltonian
R 	 R � # 9 a.b � � ! � � � � � : �� 	�� : �� � . A quantum trajectory corresponding

to a null measurement result converges to the target state � V 	 and freezes the state there as demonstrated in

Fig. 7.2 (for a similar effect with ions see [106]). The preparation time scale is � 
 � � 
O	 �N� � . The success

or failure of the preparation is conclusive with failure probability
� � � ' � 	�� # , 7 � 7 �� �� .

Real experiments will be constrained to finite detector efficiencies � . For � 	  , corresponding to
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nonselective measurement, the system dynamics evolve according to Eq. 7.9. If we represent the dynamics

of the system as a pseudo two state system � V 	 and � � 	 , with an average energy splitting 3 �-! � � A � , the

equations of motion for the pseudo Bloch vector are:

�	 	 � 3 �I! � � A � ����� a[# � 	
�� 	 # ��� # � 3 � ! � � A � �
	 � a # ) !��$% �
�� 	 # �]��� � � � � @ ) !��$% ��� a
�� 	 # �]��� � � �
�

(7.11)

where
	 	

Re � , 	 � 7 
 , �O	 Im � , 	 � 7 
 , � 	 ,
	 � 	 # , 7 � 7 , and the decreasing norm is

�<	
Tr � , 
 . After a period

�5� ! � � A � , the coherences approach steady state, and the target state population, assuming , 7 � 7 �� .� / � and

a ��� !=) �$% � �
, is

, 1 �7 � 7 � � � 	 , 7 � 7 �� �������� � # ��, �Z% � � � � ��� � 3 � ! � � A � � � � � a ��� � � 
 1 (7.12)

As shown in Fig. 7.2, if the initial state is close to the target state then the decay time is long compared

to a � 3 . For our parameters, the decay of population from the target state is predominately suppressed due

to the single atom light shift
� A which shifts the coupled states � � V 	 � � � �� 	 � out of resonance. This shift

is dependent on the molecular state coupled to (through the detuning) and is therefore system dependent.

However, in the strong measurement limit a ��� ! ) �Z% � �
, the system dynamics are frozen by virtue of

the continuous quantum Zeno effect. In the case of finite detector efficiencies, we can express the approx-

imate fidelity to be in the target state. Assuming a null measurement result, for times � � � 
 � � 
 � a � ! � � A � ,
it is: � � � � � �[	 , 7 � 7 � � � 	 � � � � # � � , 1 �7 � 7 � � � . In practice, high detection efficiencies may be obtained

by applying a second photo ionizing laser on resonance with the molecular bound state and monitoring the

emission of ions.

It is necessary to keep the measurement on during a computation to maintain high fidelity in the unit

filled state. If instead, the catalysis field is turned off after the target state is reached, the system will freely

evolve according to
R < 	

. For ' � 3 � �
and for times � �\a � % the fidelity can be calculated using the

restricted basis set:

� � � � 	�� # ,E� % � 3 � � � � # ���	��� 3 � � a �
� � � �����]� ' � � # � � � � a � � ��� ��� ' � � a � � �
1 (7.13)
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This solution compares well with exact numerical simulations. Note that the time averaged deviation from

perfect fidelity is
� # � � � � � 	 	C, � � % � 3 � � ; which is twice as bad as the deviation if the system were left

in the ground state � 
 � 	 . This result shows that other dissipative techniques for initializing a register in a

lattice such as Raman side-band cooling [107], and phase space compression [108], if not corrected, will

suffer from the same loss of fidelity as described by Eq. 7.13.

7.1.3 Measurement at finite temperature

Up to now we have been focusing on dynamics of pure states of the many body system. In the remainder

of this Section we show that the protocol for register initialization may be made robust against the effects

of moderate finite temperatures. In fact, the selective measurement is an entropy decreasing map, because

it damps amplitude in multiple occupied wells, and it can therefore be effective even for mixed states at

finite temperature. We hereby assume a thermal distribution of the eigenstates of the BH-Hamiltonian.

The overall effect of finite temperature is to increase the weight of reduced Fock states other than the

target state and therefore to decrease the fidelity. For a temperature
V �5�=< / � 3&# � / �  ! 2 � � 2 � states are

populated which have more than one particle in one or more sites in the register.
� <

is the Boltzmann

constant. The projective measurement is effective on these states and the primary consequence of their

presence is to reduce the initial fidelity of the system. We can identify another temperature,
V � � < /

� � / � � ! 2 � � # � / /��  "! 2 � � 2 � corresponding to the energy of the Fock state with a hole at site
� � # �5� � ! . For

V
�
V � there is appreciable population in eigenstates which have holes in the register. The measurement is

insensitive to population of states with holes in the register, and the probability that the measurement does

not project the system into the target state, given a null measurement result, is then at least
�5� � when the

temperature is greater than
V � . As a low initial fidelity can cause quantum jumps during the meaurement,

large population of states with multiple occupancy in the central sites should also be avoided. This leads to

the rough estimate
V � � �P/ 8 9 ) � V � � V � � .

The exponential growth of the Hilbert space with particle number makes the computation laborious.

We have obtained numerical results for a model system consisting of 11 sites and 9 particles by exact

diagonalization of
R <
	

in a Hilbert space of dimension 4�! K?=N, . The fidelity is shown in Fig. 7.3. The
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Figure 7.3: Equilibrium fidelity to be in the unit filled register state � V 	�� as a function of temperature in
presence of the trap for : 	 �M�

, + 	 4 , � 	>�
. The relevant energies are 3 � % 	 ;  and ' � % 	>KH1 K?=�� .

Here
V�� / ; 1  % ���=< and

V �(/ =N % ���=< . The dashed line indicates the scaled energy
V �5�=<X� % where

� � V�� ��� � /  21 KMK 4 ,., . The fidelity at
V(	- 

is � ��V(	& .� /  21 434�!  M, .

coupling ratio is chosen to be 3 � % 	 ;  and the register is defined by the central 5 sites. In order to

suppress tunneling of holes into the register, the ratio ' � % has been chosen to be very large, ' � % /
K21 K�=M�

. This does not correspond to a typical experimental situation, as it implies that the number of sites

in the register for which � � * � � 3 is small (9, in this case). The fidelity drops to values lower than

� � �N� � at
V�� / ; 1  % �M�3<C	 8 9 ) � V��N� V � � , see caption of Fig. 7.3. For different setups

V �
and

V � can

assume approximately the same value. In the experimentally relevant setup discussed in relation to the

measurements, where + 	&�.���
and � 	��� 2�

,
V � / �� % �M� < , and

V � / ,. % ��� < .

7.1.4 Conclusions

In summary, we have shown that efforts to prepare a register of atomic qubits in an optical lattice suffer

from errors inherent in the underlying many body dynamics. We have introduced a protocol that addresses

this issue to make the MI transition a robust mechanism for initialization. While the discussion has focused

on one dimensional dynamics, the method is also applicable to higher dimensions, which is the relevant

regime for scalability. Numerical studies on small sized systems indicate that this protocol can be made

robust even at finite temperature which is appropriate to real experimental implementations.
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Chapter 8

Conclusions

A comprehensive theoretical study of the properties of atoms confined in realistic periodic and quadratic

potentials was presented, with the goal of supporting ongoing experimental efforts in the field of atomic

physics. The following summarizes the main results presented in this thesis:

� We solved exactly the problem of a particle in the periodic plus parabolic potentials in the tight-

binding limit. The existence of both harmonic-oscillator-like modes extended around the center of the

parabolic potential and of modes which are localized far from the trap center was shown. Localization

of the modes occurs for energies larger than the lattice band-width, and is linked to the appearance of

lattice-induced non-classical turning points for the atoms.

� We studied the interacting bosonic problem in the case where the onsite particle density is smaller

than or equal to one by means of numerical diagonalizations of the Bose-Hubbard Hamiltonian. We

explored the applicability of fermionization techniques when the parabolic trap is present and used

these techniques to explain microscopically the formation of a Mott insulator state with one atom per

site at the center of the parabolic potential.

� We explored the dynamical properties of bosons in periodic potentials, by studying the dipole os-

cillations of an atomic cloud subject to a sudden displacement of the parabolic potential. In the

non-interacting system, damping of the center of mass motion was observed due to the dephasing of

single-particle states which are not fully harmonic in character. In the strongly interacting system, a

strong inhibition of the transport properties was observed for deep enough lattices. We explained this

suppression of the oscillations by means of fermionization techniques with the population of local-

ized single-particle states in the corresponding fermionic system during the dynamics. In particular,

the dynamics was shown to be completely overdamped when a unit filled Mott insulator was formed

at the trap center.
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� We introduced a simple model that generalizes the Bose-Fermi mapping to cases where the onsite

density is larger than one and varies spatially across the lattice. We showed the model’s accuracy

in reproducing the equilibrium properties of confined strongly interacting bosons by comparing its

predictions with exact quantum Monte-Carlo results. We applied the model to study the decay of the

center of mass oscillations of an atomic cloud after a sudden displacement of the parabolic potential,

finding good quantitative agreement with recent experiments. The model provides an intuitive insight

into the physical mechanisms responsible for the decay of the oscillations.

� We studied Bragg spectroscopy as a means for probing the excitation spectrum and for estimating the

system’s temperature in the Mott insulator phase for homogeneous lattices. We delimited the regime

of validity of linear response theory, finding that the correlated nature of the Mott state may make

reaching this regime experimentally challenging. Contrary to the superfluid case, we showed that

Bragg spectroscopy in the Mott regime is sensitive to temperature. This sensitivity may be used to

provide information on the system’s temperature at energies of the order of the interaction energy,

which are out of reach for current experimental techniques based on the analysis of time-of-flight

images of expanding clouds after the release of atoms from all trapping potentials.

� We analyzed the effects of temperature on the Mott insulator state in the presence of the quadratic

potential and suggested an experiment to estimate the system’s temperature at energies of the order

of the interaction energy. In particular, we introduced a simple model for describing the dependence

upon lattice position of the finite-temperature atomic-pair density distribution. This dependence is

then utilized to infer the system’s temperature, by devising a position-dependent measurement of the

atomic pair density.

� We devised a protocol for using the Mott state with one atom per site as a robust register for quantum

computation. We showed that errors in the register initialization such as population of states with

empty or doubly-occupied sites can be eliminated by a proper choice of the parabolic confining po-

tential, which inhibits the presence of unoccupied sites in the register, and by selective measurement

on a molecular photo-associative transition. The latter projects out components of the many-body
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wavefunction with more than one atom per well. This proposal was shown to be robust against the

effects of moderate finite temperatures.

The results above, although significant, are a fraction of the total amount of theoretical work pro-

duced in the last few years, as a result of the interest generated by the tremendous progress achieved in

the coherent manipulation of ultracold atoms. Yet, many areas of research remain to be explored. As

concerns single-component bosons, a detailed study of the spectrum of confined atoms in two and three

dimensions in the strongly correlated regime will be certainly a subject of future research, in analogy to

the one dimensional case. The hope is to gain further insight into the physics of quantum phase transitions,

by studying both theoretically and experimentally the defect free, highly controllable systems offered by

bosons in optical lattices.

More generally, atomic gases offer an alternative approach to traditional theoretical tools for the

study of strongly correlated regimes, through the design of quantum simulators, where a microscopic

Hamiltonian is implemented in a quantum gas and its phase diagram is studied experimentally by con-

trolling the strength of the interaction terms. The simulation of Hamiltonians with atoms in optical lattices

is particularly attractive for fermionic systems, where the presence of the well known sign problem largely

reduces the utility of numerical Monte-Carlo methods, which are to date the most succesful tools for ex-

ploring strongly correlated regimes. In this respect, it will be of crucial importance to develop schemes

for the read-out of the results of the quantum simulations. Spectroscopic techniques like the Bragg spec-

troscopy presented in this thesis are likely to play an important role in extracting useful information out of

the simulations’ results.
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