

Technlcal Report TR-1519 July 1985

Quantltatlve Evaluation of Software Methodology

Victor R. Basilt

Department of Computer Sclence
Unlversity of Maryland
at College Park

Abstract

This paper presented a paradigm for evaluating software
development methods and tools. The basic idea is to generate a set of
goals which are refined into quantifiable questions which specify
metrics to be collected on the software development and maintenance
process and product. These metrics can be used to characterize,
evaluate, predict and motivate. They can be used in an active as well
as passive way by learning from analyzing the data and improving the
methods and tools based upon what is learned from that analysis.
Several examples were given representing each of the different
approaches to evaluation.

This study is funded by NASA grant NSG-5123 and Alr Force Research Grant AFOSR F49620-80-C-001. This paper
will be presented at the First Pan Pacific Computer Conference. Melbourne, Australla, September 10-13, 1985.

Quantltatlve Evaluation of Software Methodology
Victor R. Bastll

Department of Computer Sclence
Unlverslty of Maryland '

INTRODUCTION

One of the major problems In the development of software Is the lack of
management’'s abllity to (1) find criterla for selecting the appropriate methods and
tools to develop and malntaln software and (2) evaluate the goodness of the software
product or process. In a survey of the software development Industry, [Thayer and
Pyster 1980] listed the twenty major problems reported by software managers. Of
these twenty, over half (at least thirteen) dellneated the need for management to
find selectlon criterla for the cholce of technology or be able to Judge the quallty of ‘
the existing software development process or product. In some sense thls may have
been a surprise. Management's priorlty was not to ask for new technology but they
wanted to ind out how to use the éxlstlng technology. This Is in fact a majlor aspect
of the technology transfer problem.

For many cases, there does exist a falr amount of technology avallable for
software development. However, 1t Is not always apparent to the manager which of
these techniques or tools to Invest In, and whether or not they are working as
predicted for the partlcular proJect. What Is needed In almost all cases Is a quantita-
tlve approach to software management and engineering that uses models and metrics
for the software development process and product. There are such models and
metrics avallable. They cover everything from resource estimation and planning to
the complexity of the product. :

- Thils quantltative methodology 1s needed for understanding, comparlng, evaluat-
lng, predicting, motlvating, and good management practices. In many cases, It Is
stlll a primitive technology and should be used by management and engineering as a
tool to augment good Judgement, not to replace 1t. Typlcally, we need to establlsh
the valldity of the models and metrics In the Individual environments to be sure that
they capture the approprlate activities.

METHODOLOGY LEVELS

Before I discuss the avallable models and metrics for quantltative management
and englneering, I will begin with the issue of methodology. There are varlous levels
at which the software development process can be viewed. At the top most level, we
often wlll think about a particular technlque, some approach to solving a specific
aspect of the software development problem. For example, structured coding Is a
mechanism for developlng code In a particular programmling language uslng a select
set of control structures. It Is a loglecally sound approach to code development since
1t allows ease of testing, readabllity, and permlts the use of a checkable standard.

1

Unfortunately, 1t was thought of as the solution to the software development
problem back In the 1960's. That now appears rather nalve glven what we know
about software development. Structured codlng Is clearly only one part of the
software development process, attacking only one phase of the process and a single
product, the code. Taken In isolatlon It can even cause a problem. Glven an
unstructured deslgn, It would be very difficult for the coder to redesign at the code
level. If the project Is not performing lnspections or dolng reading or writing tests
based upon the structure of the code, then many of the beneflts of structured coding
are lost. Thus, the technlque of structured coding, used In Isolation can be a draw-
back and even Increase the cost of a project.

The problem Is that one cannot take a method or tool and place It Into a
forelgn environment and expect It to work. What Is needed, as we now understand,
Is an Integrated set of methods and tools that work together across the whole life
cycle. The use of structured coding In conjunction with structured deslgn, a struc-
tured process design language, and readlng technlques, have been shown to pay off
well. What we want Is an Integrated set of technlques that provide a methodology
for software development across the entire life cycle. Tools should be provided,
whenever possible to support the methods.

Unfortunately, this is stiil ﬁot ‘the solution’. -An Integrated set Qt‘ methods must
by definltlon be an abstractlon. These techniques must be engineered for a particu- ..

o lar environment. In this sense, software englneering Involves the application of an

Integrated set of technlques to a speclfic project, with 1ts unlque problems, con-
stralnts, and environment. This approach requires an understanding of the project
and the environment in which It is to be developed so that the right set of tech-
‘nlques can be (1) chosen from the Integrated set and (2) refined for the environment.

The followlng are examples of both choosing the appropriate techniques and ,
refining them. An Integrated set of technlques does not mean 2 standard fixed set.
An Integrated set should mean a set of technlques from which the manager may
choose the most appropriate given the project characterlstics, knowing that whatever
set Is chosen they will Interface well with one another. For example, suppose the
project Is one In which the developer has very little experlence, and the requirements
wlll be changing on a regular basls. Then one should choose a subset of technliques
that lend themselves to a changing environment. This calls for an evolutlonary
approach, such as Iteratlve enhancement [Baslll and Turner 1975}, In whlch the
developer bullds subset versions of the product, evaluating each of the subsets as It
Is completed. Clearly, the standard waterfall model would not be effectlve In thls
environment. However, many technlques, such as structured design and codlng
Wwlithin a verslon, are useful.

An example of the reflnement of a technlque milght be based upon the history of
errors. Knowing the error pattern In a particular environment, e.g. 40% of the
errors are errors of omlsslon and 609 errors of commission, then reading the design
without having the requirements document avallable milght mlss as much as 40% of
the errors. Thus the reading approach would requlire that conslstency checks
between documents always be done. The error pattern always warns about total

rellance on a structural testing technlque. If It were known that 109 of the errors
were due to fallure to Initlalize varlables, then the readers could be advised to check
for the Inltiallzatlon of varlables In thelr reading.

In elther case, it Is apparent that the more we know about our environment, the
better we can choose and tallor the approprlate technlques for development and
malntenance.

MODELS AND METRICS

In order to evaluate the methods belng used, we must first understand the
software development process and product. This requires hypotheslzing models. A
model Is simply an abstractlon of a real world process or product. It attempts to
explaln what Is golng on by makling assumptlons and simplifylng the environment.

It glves a viewpolnt of the software development process or product by classifying
various phenomena, abstracting from reallty, and Isolating the aspects of Interest.
There may be many models of the same thing, each attempting to analyze a different
aspect. The thing belng modeled may then be described as the sum of all the models
or viewpolnts. There are models which take the viewpolnt of resource use, complex-
1ty, rellabliity, change, etc. Based upon the models, there are metrics which are slm-
pPly quantitative measures of the extent or degree to which the software possesses
and exhlblts a certaln characterlstlice, quallty, property, or attribute. These metrics
provide us with measurements: numbers with an assoclated unit of measure which
describe some aspect of the software. '

Metrics can be viewed In many ways [Baslll 1981]. They can be thought of as
objective or subjective. Objective metrics are absolute measures taken on the
product or process, e.g. the time for development, the number of llnes of code, the
number of errors or changes. Subjectlve metrics are an estimate of the extent or
degree In the application of some technlque, or the classificatlon or qualification of a
problem or experlence, usually done on a relatlve scale. Here there Is no exact meas-
urement but an oplnlon or consensus of opinlons. Examples include a rating on the
use of a process design language (PDL) or a rating of the experlence of the program-
mers In an applicatlon. ’

Typlecally a silbjectlve metric Is used when we do not know how to quantify an
objective metrlec. For example, 1t Is difflcult to deflne an obJectlve metric for how
well a PDL was used I1n the development of a project. However, If we are to evalu-
ate the effect of the PDL we need to know whether the technique was used well or
not, so that Its effect can be Judged appropriately. "Even though we cannot come up
with an objectlve rating, we can ask two or three people to rate the use based npon

‘some ratlng scale, e.g.

O - wasn’t used at all,

1 - used only partiy and as a codlng speclification

2 - used almost everywhere but as a coding specification

3 - used at a higher level than as a coding specification

4 - used at multlple levels of speclfication with limlited success
5 - used effectlvely at multlple levels of deslgn

Although the rating wlll not be exact, It will provide reasonable sublective Infor-
matlion that could not be avallable otherwise. Sometimes there Is an objectlve
metric we can use, but It 1s less accurate than the subjective Information. For exam-
ple, to evaluate the experlence of a programmer In an applicatlon, an oblectlve
metric might be years of experlence. However, several studles have shown that years
of experlence Is not a rellable metric past two or three years. A subjective rating by
management and colleagues would probably be a more accurate measure.

Metrics can be measures of the product or the process. A product metric would
be a measure of the actual product developed, e.g. source code, object code, docu-
mentation, etc. Sample metrics are lines of code (an objectlve metric) and readabli-
1ty of the source code (a subjectlve metric). A process metric would be a measure of
the process model used for developing the product. Sample product metrics would
be the use of a methodology (a subjectlve metric) and the effort for development 1n
staff months (an objectlve metric).

~ Metrics can be used to measure cost or quallty. A cost measure ls some expen-
dlture of resources in dollars Including capltal Investment usually normalized accord-
Ing to some value component. For example, staff months, computer use, size per
tlme sllce. . A quallty measure represents some form of value of the product. For
example, rellabllity, ease of change, correctness, number of errors remalning, amount
of code reusable. Actually cost can be consldered a quality metrie since low cost
. might be thought of as a valuable quallty. However, we typically are trylng to max-
Imlze quality and minlmize cost so it Is Interesting to see them as separate types of
metrics useful In tradeoffs.

There are several general uses of metrics. First and most Important, metrics
can be used to characterize and understand. A characterizing metric Is one that
helps distingulsh the process or product or environment. For example, the use of a
methodology, the number of externally generated changes, or the size. Each of these
tell us something about the project so that we can better understand 1t. Character-
1zing metrics can be used for schedule tracking, providing Informatlon on where the
project stands with respect to percent of resource use, with respect to calendar time,
etc. They can be used to help define the model of the process or the product.

Metrlics can be used for evaluation. The metrlc Is a good evaluative measure If
It correlates with or shows dlrectly the quallty of the process or product, e.g. the
number of errors reported durlng acceptance testlng or work productivity. Where
almost all metrics can be used for characterlization, only a subset can be used for
evaluatlon. The schedule tracking metrics mentloned above can be used for evalua-
tlon, only If we know the planned schedule Is reasonable. If It ls, we can use confor-
mance to schedule as a means of evaluating the effect of the methods used.

Metrics can be used for prediction and estimation. A predictive metric Is one
that 1s estimable or calculable at some polnt In time and can be used to predict some
Informatlon at a later polnt In time. For example, estimating size as a predlctor of
effort Is a standard predlctive relationshlp. It becomes Interesting to try to establlsh
metrics such as the use of a particular methodology as a metric that predicts (corre-
lates) with varlous aspects of quallty, e.g. ease of modification.

4

Metrles can be used for motlvation. Lettlng the developers know what Is impor-
tant ln a quantltative way defines what 1t Is we are looking for. For example, one of
the major Issues In software productivity Is the need for reusablllty. However,
management does not motlvate reusabllity, 1t actually unknowlingly discourages 1t.
By uslng schedule and cost as the primary motlvators for success, 1t dlscourages a
manager from uslng extra tlme or money that mlght make parts of the product reus-
able. If reusabllity were llsted as one of the prime motlvators, to be traded off with
cost and schedule, we mlght see more reusablllty. For example, we can motivate a
projlect manager to try to develop reusable design or code by rewarding him/her for
all code that gets used In another project. Thls would help encourage the manager
to conslder tradeoffs of reuse with time and cost. Another manager mlght be
motlvated to reuse someone else's code by rewarding hlm/her by countlng any
reused code as part of thelr total source code count or even addling extra rewards for
reuse. Motlvational metrics need to be carefully thought out, l.e. we need to be sure
we want what we are asking for. But even the generation of such metrles helps us
better understand what we are telllng managers versus what we should be telllng
managers, l.e. what are the actual goals of the company and the project.

MEASUREMENT AND EVALUATION PARADIGM

The measurement and evaluation process requires a mechanlsm for determining
what data Is to be collected; why 1t Is to be collected; and how the collected data is
to be Interpreted [Baslll & Welss 1084]. The process requires an organized mechan-
Ism for determining the purpose of the measurement; definlng that purpose in a
traceable way Into a quantitatlve set of questlons that deflne a specific set of data for
collectlon. The purpose of the measurement and evaluation flows from the needs of
the organlzation. These may Include: the need to evaluate some particular technol-
ogy; the need to better understand resource utlllzatlon In order to Improve cost estl-
matlion; the need to evaluate the quallty of the product In order to determline when
to release 1t; or the need to evaluate the benefits and drawbacks of a research pro-
Ject.

The goals tend to be vague and amblguous, often expressed at an Imprecise
level of abstraction. For example, the words understand, evaluate, quallty, beneflts,
and drawbacks carry different meanlngs to different people or vary with different
environments. The need to better understand resource utlilzation In order to
Ilmprove the cost estimation process explalns what I want to do but leaves many
questlons about what Kind of data needs to be collected. The need to evaluate the
use of a technology, like design Inspectlons, requires the perspectlve of the expecta-
tlons from the methodology as does the evaluatlion of a research project. The goals
need to be carefully artlculated but also refined In a quantitatlve way In order to
glve preclslon and to clarify thelr meaning with respect to the particular environ-
ment.

The data collectlon process Itself requlres a basic paradigm that traces the goals
of the collection process, l.e. the reasons the data are belng collected, to the actual
data. It Is Important to make clear at least In general terms the organlization's needs
and concerns, the focus of the current proJect and what Is expected from it. The

5

formulation of these expectatlons can go a long way towards focusing the work on
the project and evaluating whether the project has achleved those expectatlons. The
need for Information must be quantified whenever possible and the quantificatlion
analyzed as to whether or not it satisfies the needs. Thls quantification of the goals
should then be mapped Into a set of data that can be collected on the product and
the process. The data should then be valldated with respect to how accurate 1t Is
and then analyzed and the results Interpreted with respect to the goals.

The actual data collectlon paradigm can be visualized by a dlagram:

Goall Goal?2 Goaln

. Questlons8

Questlonl . Questlon3 Questlon4d . .
. Questlons . ;
. Questlon2 . . Questions . Questlion?
di . . . mg d2 . e . .« .+ . mb
.mlom2 m3. m4 m2 d3 ms ml me v

Here there are n goals shown and each goal genérates a set of Quest,lon's that attempt

to define and quantify the speclfic goal which Is at the root of Its goal tree. The goal
Is only as well defined as the questlons that It generates. Each question generates a
set of metrics (ml) or distributions of data (di). Agaln, the question can only be
answered relative to and as completely as the avallable metrics and distributions
allow. As s shown In the above dlagram, the same questions can be used to deflne
different goals (e.g. Questlons8) and metrics and distributlons can be used to answer : .
more that one questlon. Thus questlons and metrlcs are used In several contexts.

The paradigm s Important not Just for focusing management, engineering, and
quallty assurance Interests but also for Interpreting the questions and the metrics.
For example, m6 Is collected In two contexts and possibly for two different reasons.
Questlon8 may ask for the size of the product (m8) as part of the goal to model pro-
ductlvity (Goal2). But m6 (size of the product) may also be used as part of a ques-
tlon about the complexity of the prbduct (e.z. Question7) related to a goal on ease of
modlficatlon (e.g. Goaln). ' ’ '

If a measure cannot be taken but Is part of the definltlon of the questlion, it Is
Important that 1t be Included In the goal/question/metric paradlgm. This Is so that
the other metrics that answer the questlon can be viewed In the proper context and
the questlon Interpreted with the approprilate llmlitations. The same Is true for ques-
tlons belng asked that may not be answerable with the data avallable. For example,
to determine the effectiveness of a method In reduclng errors, I need to know the
total number of faults over the system life time. I cannot know this number durlng
the development phase. I should stlll Include the metric In the paradigm so that I
know the Information Is Incomplete.

It could then be assumed that although there may be many goals and even
many questlons, the metrlcs do not grow as the same rate as the goals and questlons.
Thus a set of metrlcs could be collected for characterlzing the software process and
product that will allow many questions generated by different goals to be answered.

Glven the above paradlgm, the data collectlon process conslsts of slx steps:
1. Generate a set of goals based upon the needs of the organlzation.

The first step of the process Is to determlne what It Is you want to know. This
focuses the work to be done and allows a framework for determining whether or not
you have accomplished what you set out to do. For example, the organlzation may
wish to know whether the use of a speclfic method or tool Improves the productivity
of the projec¢t personnel or the quallty of the product. It may wish to define a set of
~ goals for a research project and then determline whether that projJect has achleved
those goals. The goal may be slmpler. It may be to characterlze the resource usage
across the project. In any case the goals should be clearly stated. The goals do not
have to be quantiflable. It Is the next step In the process to take the goal and make
It measurable.

It Is difficult to provide an organlzation with a set of guldellnes for generating
goals. These should be based upon the particular needs and concerns of the organl-
zatlon and 1ts purpose for beglnning a data collectlon actlvity. The goals can be
management orlented, englneering orlented, quallty assurance orlented or even

- research orlented. As stated above, many of the questions or metrics may be the
same for the different orlentations but they may be comblned in different ways and
the Interpretation will have a different focus and !mpact.

Management orlented goals will typlcally deal with resource allocatlon and mon-
Itoring for the purpose of predlctlon and estimatlon. For example managers may
wish to estimate cost, track resource expendltures, and predlet the quallty of the
project. An engineering orlentation may be to evaluate the technology belng used in
the development of the project, discover the problems In terms of errors and resource
use In order to Improve the quallty of the process or the product. A quallty
assurance orlentatlon may be to characterize the product or even the process to
Judge adherence to standards, Isolate parts of the product that require rework, or
evaluate the product for dellvery. A research orlentation may be to focus on the
beneflts and drawbacks of the development of a new technology and demonstrate Its
effectlveness. Each of these orlentations have goals In common. It Is the Interpreta~
tlon that may be different. Many of the questions and metrles (e.g. about resource
allocatlon) will be replicated for different goals so that the same data can answer
many questlons and allow for the achlevement of many goals.

The goals to characterize, evaluate and predlct aspects of the software process
and product cover a large area. We can set goals to characterize the eflort expended,
the changes generated, the errors commltted, the dimenslons of the products such as
size and complexity at varlous polnts In time, the methods and tools, the documenta-
tlon, the applicatlon, the experlence of the developers, the computer and the con-
stralnts set on the project, and the various executlon tlme Issues such as perfor-
mance, space utillzation, and test coverage. We can set goals to evaluate the

7

eﬁectlvéness of the tools and methods used, the environment In which the product Is
developed, and even the models for the process and product. We can set goals to
predlct the cost, rellabllity or quallty of the product.

2. Derlve a set of questlons of Interest or hypotheses which quantify those
goals.

The goals must now be formallzed by making them quantifiable. This Is the
most difficult step in the process because 1t often requires the Interpretation of fuzzy
terms llke quallty or productivity within the context of the development environ-
ment. These questlons define the goals of step 1. The alm Is to satisfy the Intuitive
notlon of the goal as completely and consistently as possible. For example with the
above goal of characterizing resource usage across the project, questions of interest
mlght be: How much time (In mlnutes, hours, weeks, months or years) was spent by
all personnel! of Interest (programmer, librarlan, support staff, managers, reviewers,
etc.) In total and across subcategorles, In each phase (requlrements, spectfication,
deslgn, code, test, and operatlon) or activity (tralning, reviewlng, making changes,
ete.) for each product part (module, subsystem, full system)? How much computer
time was spent by all personnel of Interest In total and across all subcategorles, for
each phase or activity, for each product part? These questions actually generate sets
of questions parameterized by each of the subcategorles above.

After all possible resource usages have been defined and transposed Into ques-
tlons, the questlons posed must be evaluated as to whether they provide a complete
deflnition of the goal. This process Is a heuristic one and the Judgement of whether
or not the goal Is satlsfled by the questlons will be subjective. The process Is often
lteratlve and after collecting resource characterization data the collector may dls-
cover new questlons that were missed. These could then be added to the question
list for later projects. It mlght even be possible that the data has been collected to
answer these questions because 1t was collected to answer another question. However
before applylng the data directly, the questlon/metric paradigm should be developed
to assure proper Interpretation of the questlon.

It will often be the case that the set of questlons do not fully satisfy the goal.
Thls may be because we do not know how to phrase a questlon In a quantifiable way
or because we cannot Interpret the fuzzy terms of the goal in a well defined way or
the cost for collectlng the data may not be worth 1t for the achlevement of the goal.
In these cases the mlissing aspects of the goals should be noted so that later Interpre-
tatlons of the results can be qualified appropriately.

3. Develop a set of data metrics and distributions which provide the Informa-
tion needed to answer the questions of Interest.

In thls step, the actual data needed to answer the questions are ldentlfied and
assoclated with each of the questions. In the above example thls Is a slmple count of
people and computer time by the varlous subcategories. However, the ldentification
of the data categorles Is not always so easy. Sometlmes new metrlcs or data distri-
butlons must be defilned. Other times data items can be defined to answer only part
of a question. In this case, the answer to the questlon must be qualifled and Inter-
preted In the context of the missing Information. As the data ltems are ldentifled,

8

thought should be glven to how valld the data ltem wlll be with respect to accuracy
and how well 1t captures the speclfic questlion.

These data ltems may be objectlve or subjectlve. If they are subjective, some
mechanlsm must be defined for quantlfylng the evaluatlon, e.g. an Integer scale of O
to 5, and ellminating varlations in Judgement, e.g. a consensus of three people.

4. Deflne a mechanlsm for collecting the data as accurately as possible

The data can be collected via forms, Interviews, or automat!ically by the com-
puter. If the data Is to be collected via forms, they must be carefully defined for
ease of understanding by the person filllng out the form and clear Interpretation by
the analyst. An Instructlon sheet and glossary of terms should accompany the
forms. Care should be given to characterizing the accuracy of the data and defining
the allowable error bounds.

5. Perform a valldatlon of the data

The data should always be checked for accuracy. Forms should be reviewed as
they are handed in. They should be read by a data analyst and checked with the
person fllling out the form when questions arlse. Sample sets should be set to deter-
mine accuracy the data as a whole. As data Is entered Into the data base, valldity
. checks should be made by the entering program. Redundant data should be col-

.lected so checks can be made.

The valldity of the data Is a critical Issue. Interpretations wlll be made that
wlill effect the entlre organlization. One should not assume accuracy without
Justificatlion.

8. Analyze the data collected to answer the questions posed

The data should be analyzed In the context of the questlons and goals with
which they are assoclated. Missing data and missing questlions should be accounted
for In the Interpretation. - o

The process Is top down, l.e before we know what data to collect we must first
define the reason for the data collectlon process and make sure the right data Is
belng collected, and It can be Interpreted In the right context. To start with a set of
metrics 1s working bottom up and does not provide the collector with the right con-
text for analysls or Interpretation.

EXAMPLE TECHNIQUE EVALUATION

As an example conslder the goal of evaluating the effectiveness of a method such’
as design lnspectlons. This appears to be a clearly stated goal at first but the goal
does not say with respect to what are we to evaluate the technology. Let us help
define thls better by asking a set of questlons.

Question 1: How well were the Inspections performed? Use a subjectlve ratlng O
10 S.

Thls questlon provides us with a basls for evaluation. We would not llke to

-evaluate the technlcal benefits of the method If It was not applied well. We may
even wish to rate how well different aspects of the technlque were applled. This

ratlng might be done by the moderator, a project person and the lnstructor of the
technlque.

Questlon 2: How many errors were uncovered? Characterize the errors by
different classification categories.

Thls mlght tell us whether the technique Is better at finding certaln kinds of
errors and If we have any history of other projects as a basis, It can tell us whether
we are dolng better or worse than the norm.

Questlon 3: How much calendar time was spent?

This question addresses the cost of applying the technique. For example we
mlght wish to analyze the effect on the schedule.

Questlon 4: How many staff hours were spent?

Thls question addresses the cost and resources spent. We can compare the
number of hours spent finding errors In this way to the varlous testing techniques
used.

Questlon 5: What percent of the errors were found?

We willl not fully be able to answer this question unt!l the product has been in
the fleld for several years but at each mllestone, e.g. acceptance test, one year in the
fleld, etc. 'We will be better able to understand the effectlveness of the technlque.

Question 6: What was the cost of error Isolatlon? error fix?

This questlon allows us to analyze the cost of discovering and fixing errors dur-
Ing lnspectlons as opposed to durlng testing.

ete.

There are many more questlons we mlght ask based upon what It Is we want to
know. As stated above, these questlons permlt us to better define the goals, help us
to specify what data needs to be collected (e.g. subjectlve ratings on how well the
method was applled, error counts and distributions, effort In Inspection by person by
actlvity), and how the data should be Interpreted (e.g. we may not be able to Judge
the total effectlveness untll the project has been out In the field for a while).

METHODOLOGY IMPROVEMENT PARADIGM

All thls leads us to the following basle paradlgm for evaluating and Improving
the methodology used In the software development and malntenance process.

1. Characterize the approach/environment.

Thls step requires an understanding of the various factors that will influence the
project development. This Includes the problem factors, e.g. the type of problem,
the newness to the state of the art, the susceptlbillty to change, the people factors,
e.g. the number of people working on the project, thelr level of expertlse, expert-
ence, the product factors, e.g. the size, the dellverables, the rellablilty requlrements,
portablllty requlrements, reusability requirements, the resource factors, e.g. target
and development machine systems, avallablllty, budget, deadlines, the process and
tool factors, e.g. what technlques and tools are avallable, tralning in them,

10

programming languages, code analyzers.

2. Set up the goals, questlons, data for successful project development and
lmprovement over previous project developments.

It Is at this polnt the organlzatlon and the proJect manager must determline
what the goals are for the project development. Some of these may be specified from
step 1. Others may be chosen based upon the needs of the organlzatlon, e.g. reusa-
blllty of the code on another project, Improvement of the quallty, lower cost.

3. Choose the approprlate methods and tools for the project.

Once 1t Is clear what Is required and avallable, methods and tools should be
chosen and reflned that will maximize the chances of satlsfylng the goals lald out for
the project. Tools may be chosen because they facllitate the collection of the data
necessary for evaluatlon, e.g. configuration management tools not only help project
control but also help with the collectlon and valldation of error and change data.

4. Perform the software development and malntenance, collecting the
prescribed data and valldating 1t.

Automated data collection 1Is rellable and unobtruslve and can be gathered from pro-
gram development Iibrarles, program analyzers, etc. However, the type of data that
can be collected In this way Is typlcally not very Insightful and one level removed
from the issue belng studled.

3. Analyze the data to evaluate the current practices, determlne problems,
record the findings and make recommendations for improvement.

This Is the key to the mechanlism. It requires a POst mortem on the project.
Project data should be analyzed to determine how well the project satlsfled Its goals,
" where the methods were effectlve, where they were not effectlve, whether they should
be modlifled and refined for better appllcation, whether more tralning or different

of the methods, or whether the methods or tools should be discarded and new
methods or tools applled on the next project. :

8. Proceed to Step 1 to start the nexg project, armed with the knowledge galned
from this and the previous projects. ’

11

CASE STUDIES OF METHODOLOGY EVALUATION

WIth all the different methods and tools avallable, we need to better quantita-
tively understand and evaluate the benefits and drawbacks of each of them. There
are several different approaches to quantitatively evaluating methods and tools:
blocked subject-project, replicated prolect, multl-project varlaticn, and single project
case study [Baslll & Selby 84]. The approaches can be characterized by the number
of teams replicating each project and number of different projects analyzed as shown
In Table 1.

3 3 3k 3K ok ok ok ok ok ok ok sk ok %k %k ok sk K KK K K sk Kk K K K K 3K ok %k sk ok ok oK K K ok k

* # of projects *

* one more than *

* one *
**
* * _ ‘ *

of * one * slngie prolect muitl-project
teams * * varlatlon *
* * . *

per * more than x replicated . blocked *
project x - - ome " x 7 project .~ ‘subjlect-project x
* * S - ' *
’************

TABLE 1

The approaches vary in cost and the level of confldence one can have In the result of
the study. Clearly, an analysls of several repllcated projects costs more money but
wlll generate stronger confldence in the conclusion. Unfortunately, since a blocked
subject-project experiment 1s so expenslve, the projects studled tend to be smali.
The size of the projects Increase the costs g0 down so Is possible to study very large
single project experiments and even multl-project varlation experiments If the right
environment can be found. In what follows, at least one example of each of these
approaches wlll be given as performed by the Laboratory for Software Engineering
Research (LASER) at the Unlversity of Maryland.

METHODOLOGY EVALUATION USING BLOCKED SUBJECT-
PROJECT ANALYSIS -

This type of analysls allows the examlnation of several factors within the frame-
work of one study. Each of the technologles to be studled can be applled to a set of
projects by several subjects and each subject applles each of the technologles under
study. It permlts the experimenter to control for differences ln the subject popula-
tlon as well as study the effect of the particular projects.

The sample study discussed here Is a testing strategles comparison [Basili &
Selby 85]. The goal was to compare the eflfects of code reading, functional and struc-
tural testing with respect to 1) fault detection eflectlveness, 2) fault detection cost,

12

and 3) classes of faults detected. A secondary goal was to compare the performance
of software type and expertise level bug only the first goal wlll be discussed here.

The experimental approach Involved three replicatlons of the experiment using
74 subjects on four different projects. The projects were a text formatter, a plotter,
an abstract data type, and a .database program varylng In length between 145 and
365 llnes of code. The programs each contalned software faults (9, 8, 7, 12 respec-
tively) that were elther made durlng the actual development of the program or were
seeded based upon characteristic faults found In the local environment. The experl-
mental deslgn was a fractional factorial deslgn blocked according to experience level
and the program tested. Each subject used each technlque and tested each program.

Two of the questions generated from this study were:

Questlon 1: Which of the valldation technlques detects the greatest number of
faults In the programs? :

The data collected for this questlon Is the number of faults found In each pro-
Ject by each subject. The results of the study were that 4 faults were found on the
average and that code reading was more effectlve than both testing technlques but
functlonal testing was more effectlve than structural testlng. Reading found 5.1
faults on the average, functlonal testing found 4.5 faults on the average and struc-
tural testlng found 3.3 faults on the average.

Question 2: Which of the technlques has the hlghest fault detectl'on rate
(number of faults detected per hour)?

The data collected to answer this question was the number of faults found and
the time spent by the subject In detecting faults. The results were that code reading
was more cost effectlve than functlonal and structural testing. Code reading found
3.3 faults per hour on the average whlle each of the testing technlques found 1.8
faults on the average.

Because of the experimental design of this type of analysls there were many
other questlons that were posed and answered by thls experiment, e.g. Is the fault
detectlon rate dependent on the type of software? Is the number of faults observed
dependent on the type of software? Do the methods tend to capture different classes
of faults? What classes of faults are observable but go unreported?

The experlmental deslgn for this study permlits a great amount of statlstical
analysls and provide the experimenter with a falr amount of latitude In studylng the
~ dlfferent aspects of the project. The drawbacks to the study are that the projects
studled are small module size projects and the results do not necessarlly scale up to
the acceptance test phase of very large proJects. The Interpretation Is more accurate
for the unit test phase. The study does not provide sufficlent Insight Into how the
technlques mlght work on larger projects. Thls drawback Is of necessity because the
cost of repllcatlon Is too expensive.

METHODOLOGY EVALUATION USING REPLICATED PROJECT
ANALYSIS

13

The replicated project analysls Involves several replications of the same prolect
by dlfferent subjects. Each of the technologles to be studled Is applled to the project
by several subjects but each subject applles only one of the technologles. It permits
the experlmenter to establlsh control groups.

The goal of the sample study was to quantltatlvely evaluate the effect of a dls-
cipilned approach to software development [Baslll & Relter 81]. The dlsciplined
approach Included the use of an Integrated set of technlques that Included top down
deslgn, a process deslgn language, walk-throughs, chlef programmer teams, and the
use of a llbrarlan.

The experimental approach lnvolved the replicatlon of the same project by 19
teams, Including 7 three person disciplined teams (DT), 6 three-person ad hoc teams
(AT), and 6 ad hoc Indlviduals (AI). The project was to bulld 2 compller for a small
language, anticipating about 1200 source lines of code In a high level language. All
the data was collected automatlcally so that the subjects did not know what was
belng measured. The drawback to this Is that the Informatlon was typlcally one
level removed from what we really wanted to know. The statlstical analysls per-
formed were the non-parametric Mann-Whltney U and Kruskal-Wallls H tests.

Specific questions Included:

Question 1: Does a dlsclpllned approach reduce the average cost; and complexity
of the process?

The data collected was a count of the (1) number of Job steps, l.e. any aspect of
computer access such as module compllatlons and program executlons, and (2) pro-
gram changes, l.e. the number of changes to a program that Indlcated an error or
omlission. Job steps were used to represent effort and program changes were used to
represent errors.

The results of the study showed that for all categorles of Job steps and program
changes, the disclpllned teams had statistically less of both than elther the ad hoc
teams or the ad hoc Individuals.

Questlon 2: Does a discipllned team behave more llke an Indlvidual programmer
than a team In terms of the resulting product? This was an attempt 10 measure con-
ceptual Integrity.

The data collected here was varlous product measures such as size (number of
segments, number of llnes of code, number of declslons) and complexlity, e.g. a com-
parison of cyclomatlc complexity [McCabe] for the top quartlles of modules.

The results of this study showed that the ad hoc Indlviduals had a smaller
number of segments than elther the disciplined teams or the ad hoc teams. The ad
hoc Individuals had less llnes of code than the disciplined teams which had less llnes
of code than the ad hoc teams, and the ad hoe Individuals and dlsciplined teams had
less declslon than the ad hoc teams. Comparing the cyclomatlc complexity of the
modules In the upper quartlles, the results were that the dlsclplined teams created
the least complex projects and the ad hoe Indlviduals the most complex project Wwith
the ad hoc teams lylng In between, depending upon the mechanlsm for countling
declslons.

14

Thus 1t was felt that the questions were both answerable In the affirmative.
The beneflt of the study Is that the results were soundly supported statistlically
because of the number of replications and the projects were of a more reasonable slze
than the modules studled in the testing experlment. The drawback to this study
agaln Is that the projects were still smaller than many projects one mlight encounter
and 1t Is not clear that the results would still hold if the prolect slzes were lncreased
by an order of magnitude.

METHODOLOGY EVALUATION USING MULTI-PROJECT VARIA-
TION ANALYSIS

Multl-project variation analysls Involves the measurement of several projects
where controlled factors such as methodology can be varled across simllar projects.
This Is not a controlled experiment as the previous two approaches were, but allows
the experlmenter to study the effect of various methods and tools to the extent that
the organlzatlon allows them to vary on different projects.

The goal of thls sample study was to examine the relatlonshlp between metho-
dology and vartous factors such as productivity and quallty. [Balley & Baslll 1981],
(Baslll & Balley 1080], [Baslll 1881]. The study was conducted In the Software
Engineering Laboratory, at jolnt project between NASA Goddard Space Flight
Center, the Unlversity of Maryland, and Computer Sciences Corporation.

The approach was to study a serles of projects that Involve ground support
software for satellltes. Each project was rated with respect to a large set of factors,
coverlng environment, methodology, experlence, performance, etc. When the metrics
were sublective they were glven on a six polnt scale, e.g. rating on the basls of the
use of a methodology.

The methodology factors used In the study were very simllar to the methodol-
ogy factors used In the replicated project study discussed above. Thls allowed us to
see If the methods could work on larger projects than In the controlled study. Thls

" has been a common mechanism In the Laboratory for Software Englneering

Research. We run both controlled experiments on small projects and case studles or
multl-project analysls on large projects to verify t}le eflects of the technologles. The
comblnation of both approaches provides us with a deeper confidence that the tech-
nologles are effective as well as allowlng us to understand thelr effects In different
environments.

The three major questlons asked In this study were:

Questlon 1: Did the projects with a high methodology use come from a different
populatlon than those projects with a low or medlum methodology use?

Questlon 2: Do any other factors or sets of factors show a signlficant effect on
productlivity?

Data used to answer these questlons were lines of source code per staff month
for productlvity and such factors as customer Interface complexity; customer orl-
glnated program deslgn changes; the complex!ty of such things as the application,
the program flow, the Internal communlcation, the external communlcation, the data

15

base; constralnts such as I/O capabllity, timing, maln storage; programming group
experlence such as machine famlillarity, language famlliarlity, application experience;
hardware changes durlng development.

The approach to answerlng these first two questions was based upon a simllar
tvpe of study at IBM/FSD [Brooks 1981]. A statlstlcal test was performed to see If
projects with high methodology came from a different environment wlith respect to
productlvity than projects with a low methodology use. The data used was based
upon a relative ranklng rather than an absolute ratlng. The approach was to divide
the ratlngs for each technlque Into 3 categorles: low (-1), medium (0), high (1). This .
was done to offset differences In scales. The ratings were added to get a cumulative
methodology ratlng. The projects were then dlvided Into groups based upon thelr
rating and analyzed using the Mann-Whitney U test.

In analyzing the relatlonship between productlvity and varlous factors, no
signlficant relatlonshlp was found between productivity and slze. However there
were statlstically signlficant results In demonstrating that those projects with high
methodology use came from a different (and much higher) productlvity population
than those projects with low or even medium methodology use. So the answer to the
first questlon was yes. The answer to thls questlon was no.

Questlon 3: What are the-factors that predlct_quallty? :

The metrics were compressed Into three factors: quallty, methodology and com-
plexlty. Methodology and complex!ity were not significantly correlated. Quallty was
significantly correlated with methodology (r = .67) and complexity (r == -.84) at less
than quallty, we got an R**2 of .45. Using the methodology and complexity metrics
to predlct quality we got an R*%2 of .85. Based upon thls study, 1t was clear that
quallty can be predlcted from the use of methodology.

The benefit to thls approach Is that It does not requlre speclal experimental pro-
Jects but allows for the evaluation of methodology In the normal development
environment. The Improvement algorithm discussed earller can be applled to the
environment In order to Improve both the productlvity and the quallty of the
software.

However, there are several drawbacks to the approach. Flrst, it requires that
there Is enough differences In the projects use of methodology and there are enough
proJects using each of the methods, l.e. there must be enough of 2 sampling to gen-
erate a statistical result. Second, since the experiment is not controlled, there is
always the possibllity of making mistakes In the Interpretation, l.e. other factors that
have not been controlled for may be causing the differences In productivity or qual-
Ity. Thlrd, If the methodology Improvement paradigm Is belng used, we are losing
our control group of projects where lttle or no methodology Is belng used.

METHODOLOGY EVALUATION USING SINGLE PROJECT/CASE
STUDY ANALYSIS

Unfortunately, thls Is where most methodology evaluation begins. There Is a
project and the management has declded to make use of some new method or set of
methods and wants to know whether or not the method generatves any lmprovement

16

In the productlvity or quallty. A great deal depends upon the tndividual factors
Involved In the project and the methods applled.

Thls sample study had a set of goals that dealt with the effectiveness of certaln
development technlques; Information hidlng, abstract Interfaces, and formal
specifications, as well as the effectiveness of the data collectlon process [Baslll &
Welss 1981]. The project lnvolved was the redevelopment of the on-board opera-
tlonal flight program for the A-7 alrcraft. The development was done at the Naval
Research Laboratorles In Washington D.C. The analysis reported here was done
after the requirements document was basellned with the subgoal of trylng to Judge
the effectlveness of the requirements document which was developed using a formal
speclficatlon technlque, a state machline model and abstract Interfaces.

One of the subgoals was that the requirements document should be easy to
change. Based upon that goal the followlng questions were generated.

Questlon 1: Is the document easy to change?

Questlon 2: Is 1t clear where a change has to be made?

Question 3: Are the changes that are llkely to occur, predicted correctly?
Questlon 4: Are changes confilned to a single sectlon?

The data collected to answer these questlons consisted of various distributions
of data such as the types of changes, effort to change, confilnement of changes and
changes by sectlon. Given the data distributlons: :

Types of Changes:

85% were original error corrections

8% were to complete or correct a previous change

2% were to reorganlze

7% were other changes (none of which were more than 1%)

Eflort to Change:

88% were trivial (less than 1 hour)

26% were easy (1 hour to 1 day)

5% were medlum (1 day to 1 week)

0% were hard (1 week to 1 month)

1% were formldable (more than 1 month)

Conflnement of Changes:
85% were to one sectlon
15% were to more than one sectlon

The followlng conclusions were drawn:

The document was not very hard to change silnce most of the changes were
trivial or easy. The only formidable change Involved the change of a coordinate Sys-
tem that the developers did not know and the time for the change included the
learning of that coordlnate system. It should be noted that that change was
confined to one sectlion.

Slnce most of the changes were confined to a single sectlon of the report one
milght argue that the document was organlzed In a way that the likely changes were

17

predlicted correctly, that 1t was clear where a change had to be made, and that the
changes were confined to a single sectlon.

So the concluslon was drawn that the document was easy to change. However,
that concluslon Is based on comparing the data with experlence and Intultlon. Most
experlenced people who have seen the data agree that the requlirements document
was a successful development but there Is no statistlcal evidence and there Is no solld
basls for comparison. If simllar data had been collected from other simllar projects,
and we were able to do a comparlson, as we dld with the multl-project analysis, our
confidence level In the results might have been higher.

SUMMARY AND CONCLUSION

This paper has presented a set of quantitatlve approaches to evaluating
software development methods and tools. The basic ldea Is to generate a set of goals
which are reflned Into quantiflable questlons which speclfy metrics to be collected on
the software development and malntenance process and product., These metrics can
be used to characterlze, evaluate, predlet and motivate. They can be used !n an
actlve as well as passlve way by learning from analyzing the data and Improving the
methods and tools based upon what Is learned from that analysls. Several examples
were glven representlng each of the different approaches to evaluation. The cost of
the approaches varied Inversely with the level of confidence In the lnterpreuatlon of
the results.

It 1s hoped that this paper has demonstrated that there are quantitative
mechanlsms for evaluating methodologies. These mechanlsms can be used In indus-
try and In the research laboratorles to provide better Insights Into the benefits and
weaknesses of technology.

ACKNOWLEDGEMENT

This research was supported In part by the Natlonal Aeronautlcs and Space
Admlnistration Grant NSG-5123 and by the Alr Force Office of Sclentific Research .
under Contract AFOSR-F49620-80-C-001 to the Unlversity of Maryland.

REFERENCES

[Balley & Baslll 1981]
John W. Balley and Vlictor R. Baslll, A Meta-Model for Software Deveiopment
Resource Expendltures, Proceedings of the Fifth International Conference on
Software Englneering, San Dlego, Callfornla, pp 107-116, 1981.

[Bastll 1981]
Vlictor R. Baslli, Evaluat;lng Software Development Characterlstlcs: Assessment
of Software Measures In the Software Englneering Laboratory, Proceedings of
the SIxth Annual Software Englneering Workshop, December 1981.

[Basllt & Balley 1980]
Victor R. Baslll and John W. Balley, The Software Englneering Laboratory:
Measuring the Effects of Software Methodologles within the Software Engineer-
Ing Laboratory, Proceedings of the Fifth Annual Software Englneering

18

Workshop, November 1980.

(Baslll & Relter 1981]
Victor R. Baslll and Robert W. Relter, Jr., A Controlled Experiment Quantlta-
tlvely Comparlng Software Development Approaches, IEEE Transactlons on
Software Englneering, Vol. SE-7, No. 3, PP 299-320, May 1981.

(Baslll & Selby 1984]
Victor R. Baslll and Richard W. Selby, Jr., Data Collectlon and Analysls in
Software Research and Management, Proceedings of the American Statistical
Assoclatlon, pp 21-30, 1084.

[Basill & Selby 1985]
Vliector R. Baslll and Richard W. Selby, Jr., Comparing the Effectiveness of
Software Testing Strategles, Unlversity of Maryland Technlecal Report TR-1501,
May 1985.

(Basllt & Turner 1975]
Victor R. Baslll and Albert J. Turner, Iterative Enhancement: A Practical Tech-
nlque for Software Development, IEEE Transactlons on Software Engineering,
pp 390-396, December, 1975.

(Basill & Welss 1981]
Victor R. Baslll and David M. Welss, Evaluatlon of a Software Requlrements
Document by Analysis of Change Data, Proceedings of the Fifth International
Conference on Software Englneering, San Diego Callfornla, pp 314-323, March
9-12, 1981. ’

[Baslll & Welss 1984] :
Victor R. Baslll and Davld M. Welss, A Methodology for Collecting Valid
Software Englneering Data, IEEE Transactlons on Software Englineering, Vol.
SE-10, No. 3, pp 728-738, November 1984.

[Brooks 1981]
W. Douglas Brooks, Software Technology Payoff: Some Statlstlcal Evidence,
Journal of Systems and Software, Volume 2, Number 1, pp 3-10, February 1981.

[McCabe 1978]
Thomas J. McCabe, A Complexity Measure, IEEE Transactlons on Software
Engineering, pp 308-320, December 1978.

[Thayer & Pyster 1980]
Richard H. Thayer, Arthur Pyster, and Roger C. Wood, The Challenge of
Software Engineering Project Mahagement, IEEE Computer Magazine, pp 51-
59, August 1980.

19

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When DllllEﬂf'l’.d)'

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
TR-1519
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
QUANTITATIVE EVALUATION OF SOFTWARE METHODOLOGY Technical Report

6. PERFORMING O3G. REPORT NUMBER
TR-1501,

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)
Victor R. Basili AFOSR-F49620~80-C—-001
NSG-5123
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK

. ' AREA & WORK UNIT NUMBERS
Department of Computer Science

University of Maryland
College Park, MD 20742

1. CONTROLLING OFFICE NAME AND ADORESS . 12. REPORT DATE
Math. & Info. Sciences, AFOSR, Bolling AFB July 1985
NASA/Goddard Space Flight Centedash- D-C. 13. NUMBER OF PAGES

Greenbelt, Maryland 19
14. MONITORING AGENCY NAME & ADORESS3(if diiterant from Controlling Office) IS, SECURITY CLASS. (of this report)

UNCLASSIFIED

t5a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distributioh unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if ditferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and ldentify by block number)

software evaluation, software measurement \
software methodology, data collection

20. ABSTRACT (Continue on reverse side If necesaary and Identity by block number) Thig paper presents a
paradigm for evaluating software development methods and tools. The basic idea
is to generate a set of goals which are refined into quantifiable questions which
specify metrics to be collected on the software development and maintenance
process and product. These metrics can be used to characterize, evaluate, pre-
dict and motivate. They can be used in an active as well as passive way by
learning from analyzing the data and improving the methods and tools based upon
what is learned from that analysis. Several examples were given representing
each of the different approaches to evaluation.

DD ,797"™ 14 EDITION OF 1 NOV 65 IS OBSOLETE .
tian 73 1473 unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entured)

S ———————————

