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ABSTRACT

The issue of controller tuning for setpoint tracking
versus disturbance rejection has been discussed in the pro-
cess control literature for many years. The purpose of this
paper is to review and explain the problem and to point
out solution procedures. We do not make any claims about
developing anything novel. We merely summarize what is
available at different places in the literature and put it in
perspective in a tutorial manner.

1. INTRODUCTION

In most papers on the subject of setpoint tracking
vs. disturbance rejection, it is assumed implicitly that the
setpoints have the form of steps and that the disturbances
are steps entering at the process input. For example, in
his book Smith (1972) provides two lists of tuning rules for
PID controllers for a first order process with deadtime; one
for step setpoint changes, the other one for disturbances
entering as steps at the process input.

More recently, a number of authors (Hwang &
Stephanopoulos, 1985; Wellons & Edgar, 1985; Svoronos,
1986; Yuan & Seborg, 1986) have criticized controller de-
sign techniques like IMC for what they perceived to be an
inability to deal with disturbances. It is interesting to note
that this topic of setpoints versus disturbances is almost
absent from the rest of the control literature. This might
seem surprising because the combined ability of command
following and disturbance rejection is probably even more
important in aerospace type applications than in process
control where setpoint changes are generally quite rare.

We hope that the presentation in this paper of a summary
of results available in the literature will put the subject to
rest once and for all.

2. ONE-DEGREE-OF-FREEDOM STRUCTURE

Consider the feedback structure shown in Fig. 1a with
the disturbance entering at the process output. The rela-
tionship between the disturbance and setpoint inputs and
the error is described by:

e=y-r=({I+PC)"Hd-r)2 E(d-r) (21)
i
Where E is referred to as the sensitivity function of

the closed loop system. It is clear from this relationship

that the response to disturbances and setpoint changes is
identical apart from the sign. Thus, if disturbances and
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setpoint changes have the same form (e.g., both steps or
both ramps), then the controller C can be designed “opti-
mally” for both disturbances and setpoints. If, on the other
hand, the disturbances have a very different form from the
setpoints {e.g., disturbances are ramp-like, setpoints are
steps) then it is generally not possible to design a con-
troller C which works well for the disturbances and the
setpoints. In those cases, with the structure shown in Fig.
la, a compromise must be made and either disturbance or
setpoint response must be sacrificed.

Let us study first how to design the controller for a
particular form of input. If we use the Integral Square
Error (ISE) as an objective function to optimize and re-
strict our attention to single-input single-output systems
then the optimal controller can be expressed analytically
the formulation of the problem is simpler in the Internal
Model Control framework (Garcia & Morari, 1982). The
IMC structure is shown in Fig. 1b. The two structures in
Fig. 1 are mathematically equivalent through

Q=C(I+FPC)™! (2.2)

C=Q1~PFQ (2.3)

where P is the process model. Details on the Inter-
nal Stability requirements can be found in the literature
(Vidyasagar, 1985; Zafiriou, 1987).

Factor P as:

P =P,Py (2.4)

where P, is an allpass containing all the nonminimum
phase elements of P and Py is minimum phase. Let b, be
an allpass with the poles of P in the open right half plane
(open RHP) as zero. Let v represent the external input,
le,v=dorv=r,and define V4,vps,b, in a similar way.

For a physical system, the set of poles of v in the open
RHP will~ generally be of a subset of the set of open RHP
poles of P. For the poles at s = 0, the assumption is made
that v has at least as many poles at 8 = 0 as P. This
assumption is not restrictive in the case of disturbances
but it may be for setpoints, in which case the Two-degree-
of- freedom structure has to be used (Section 3).

The ISE- optimal controller is given by



Q= bub Pl vi by b Pl uas ) (2-5)

where the operator {-}. denotes that after a partial frac-
tion expansion of the operand, all terms involving the poles
of P;l are omitted.

Note that in the case where P is open-loop unstable,
the control systemn has to be implemented in the feedback
structure of Fig. 1a. Equation (2.5) can still be used for
the design of Q. C can then be obtained from (2.3} and
the structure in Fig. la implemented. However special
care has to be taken in the construction of C so that all
the common RHP zeros of Q and (1 — PQ) are cancelled
in {2.3).

Note the following facts.

1. For minimura phase systems, the optimal controller
Q is the inverse of the process transfer function. This
controller is independent of the particular type of in-
put to be controlled.

2. For nonminimum phase systems and step inputs, the
optimal controller Q is the inverse of the minimum
phase portion of the process defined in (2.4).

3. For nonminimum phase systems, the optimal con-
troller depends, in general, on the type of process in-
put. The optimal controller for step setpoint changes
and for step disturbances entering at the plant input
will generally have a different structure and different
parameters.

For multivariable systems the disturbance model, i.e.,
the differential equations describing the form of the dis-
turbance, can be augmented to the state space descrip-
tion of the plant. The resulting optimal control problem
can be solved in a standard manner by solving two Ric-
cati equations, one for the Kalman filter parameters and
one for the optima!l regulator parameters (Kwakernaak &
Sivan, 1972). In the multivariable case the same con-
clusions about minimum and nonminimum phase systems
made for SISO systems hold (Zafiriou & Morari, 1987). In
addition, the direction (in a geometric sense) of the input
vector determines the controller structure. For a certain
type of input a decoupler might be the optimal solution, for
other types of inputs decoupling might be detrimental to
the overall control performance. The construction of reg-
ulators with structural constraints is discussed by Zafiriou
and Morari (1986). Marino-Gallaraga, et al., 1987 also
observed that the desirability of decoupling depends very
much on the type of inputs and the input direction.

In summary, the design of ISE optimal controllers for
specific inputs is straightforward using techniques which
have been in the literature for more than two decades.
Next the tradeofl between setpoint tracking and distur-
bance rejection will be addressed.

3. TWO-DEGREE-OF-FREEDOM STRUCTURE

Consider the general feedback structure of Fig. 2a
with three controller blocks C,,C; and Cs. C3 is in
the feedback path, Cs is referred to as a prefilter in the
aerospace literature or as a setpoint compensator (Ray,
1081). The closed-loop transfer functions relating the dis-
turbance and setpoint input to the error are described by:

e=y—r=(1+PCC3) "d~ (14 PC,Cy)""

(I + PC,(C2 - Cs))r (3.1)

Hence when C; and C; are not equal to each other, the
response to disturbances is different from the response to
setpoint changes.

We shall proceed to show that the degrees of freedom
available in the structure of Fig. 2a are sufficient for de-
signing a control system that produces independent com-
pensation for setpoints and disturbances. Let us start from
the point where a C has been found for the structure in
Fig. la which produces satisfactory disturbance response
(e.g., through (2.5), (2.3) for v = d). We can then split C
into two blocks C; and Cy, such that C, is minimum phase
and C; is stable (Vidyasagar, 1985). For the disturbance
behaviour it is irrelevant if the controller is implemented
as one block C as in Fig. la, or as two blocks Cy,C; as
in Fig. 2a. Hence the achievable disturbance rejection is
restricted both by the RHP zeros and poles of P as the
quantitative results of Section 2 indicate, even when the
two-degree-of-freedom structure is used.

Let us now consider the design of Cs. Define

v 2 Cyr (3.2)

then
y= PCl(l + PC1C2)-'IH' (33)

Now consider the stabilized system as a new plant P':

P'£ PCi(1+ PC,C5)™} (3.4)

Since C; is minimum phase and C, stable, P’ is stable
and its only RHP zeros are the RHP zeros of P. Thus
Cs can be designed without regard for the RHP poles of
P and the achjevable setpoint tracking is restricted by the
RHP zeros of P only. Cs can actually be designed as the
IMC controller Q' for the plant P and for v = r. Indeed,
if we factor P’ as in (2.4) we have P, = P4 and since

b, = b, = 1 we get from (2.5):

7

Cs=Q = (Bu) ri B} (35)
then (3.2), (3.3), (3.5) yield
y = Parit {P{'ra}e (3.6)

which explicitly shows that the setpoint response is limited
only by the RHP geros of P.

In the case of open-loop stable plants, the two-degree-
of-freedom controller can be implemented in the IMC
structure of Fig. 2b, where

Q= (I +CCP)"'Cy (3.7)



4. CONCLUSIONS

When a one-degree-of-freedom control configuration
(Fig. 1) is used, the disturbance and setpoint responses
cannot be designed indcpendently and they are both re-
stricted by the plant RHP zeros and poles.

When a two-degree-of-freedom control configuration
(Fig. 2) is used, the same restrictions apply to the dis-
turbance rejection. However the setpoint response can be
designed independently and it is limited only by the RHP
geros of the plant. In this case, the RHP poles of the plant
impose no restrictions on the achievable setpoint tracking.

All these arguments hold in the absence of model er-
ror. If the process model is inaccurate then the controllers
cannot be designed independently but have to be designed
simultaneously to achieve the proper tradeofl between per-
formance and robustness.
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Abstract

The Internal Model Control (IMC) structure has been
widely recognized as very useful in clarifying the issues re-
lated to the mismatch between the model used for con-
troller design and the actual process. The structure also
gives rise to a two step controller synthesis procedure, of
which the second step deals with the design of a low pass
filter such that robustness with respect to model-plant
mismatch is guaranteed. The Structured Singular Value
(SSV)} was introduced recently and it allowed the non-
conservative quantification of the concept of robust per-
formance. This paper deals with the design of the IMC
filter by using the SSV and it demonstrates how this ap-
proach can be used with either an H— or an Ho, — optimal
controller.

1. Internal Model Control

The IMC structure (Fig.1a), introduced by Garcia and
Morari (1982) is mathematically equivalent to the classical
feedback structure (Fig.1b). The IMC controller Q and the
feedback C are related through

Q=C{I+PC)! (1.1)

C=Q(I-PQ" (12)

where P is the process model.

The advantage of using IMC can be seen by examining
the structure for P = P and for P # P.

P=PpP.

In this case the overall transfer function connecting
the set-points r and disturbances d to theerrorse =y —r,
where y are the process outputs, is

e=y~r={I-PQ)d~-r)¥Ed-r) (1.3)

Hence the IMC stucture becomes effectively open-loop
(Fig.2a) and the design of Q is simplified. Note that the
IMC controller is identical to the parameter of the Q-para-
metrization (Zames, 1981). Also the addition of a diagonal

r Q
T CONTROLLER
(a)
d
r y
C P >
"~ CONTROLLER PLANT
(b)
Figure 1.
filter F' by writing
Q=0QF (1.4)

introduces parameters (the filter time constants) which can
be used for adjusting on-line the speed of response for each
process output.

P#P.

The model-plant mismatch generates a feedback sig-
nal in the IMC stucture which can cause performance de-
terioration or even instability. Since the relative modeling
error is larger at higher frequencies, intuitively the addi-
tion of the low-pass filter F (Fig.2b) also adds robustness
characteristics into the control system. In this case the
closed-loop transfer function is

e=y—r=(I-PQF)(I-(P-B)OF) (d-r)¥E@d-r)
(1.5)

Hence the IMC structure gives rise rather naturally
to a two step design procedure:

Step 1: Design Q, assuming P = P,
Step 2: Design F so that the closed-loop characteris-




(b)
Figure 2.

tics that Q produces in Step 1, are preserved in the pres-
ence of model-plant mismatch (P # P).

Finally note that the feedback controller C, given from
(1.2), includes integral action if and only if Q inverts at
steady-state the model P, i.e. iff

Qw=0)=Pw=0)"" (1.6)
Flw=0)=1I (1.7)

2. Structured Singular Value.

The SSV was introduced by Doyle (1982) and it allows
the derivation of conditions for robust performance and
stability for general structures of model uncertainty. For
a constant complex matrix M the definition of the SSV
1a{M) depends also on & certain set A. Each element A
of A is a block diagonal complex matrix with a specified
dirnension for each block, i.e.

A = {diag(A1,42,...,8,)]A; € C™ X7 } (2.1)

Then

1
——_ = min {5(A)|det(I ~ =0 2.2
PaD) - ER {o(a)|det(I — MA) = 0} (2.2)
and ua(M) = 0if det(I - MA) #0 VA € A. Note

that & is the maximum singular value of the corresponding
matrix.

Details on how the SSV can be used for studying
the robustness of a control system can be found in Doyle

(1985), where a discussion of the computational problems
is also given. For three or fewer blocks in each element of
A, the S5V can be computed from

pa(M) = gxé% &(DMD™1) (2.3)
where

D = {diag(dilm,,d2]my» s @nlm.)ld; € Ry} (2.4)

and I, is the identity matrix of dimension m; x m,. For
more than three blocks, (2.3) still gives an upper bound
for the SSV.

. 3. Filter Design
3.1. Block Structure

In order to effectively use the SSV for designing F,
some rearrangement of the block structure is necessary.
The IMC structure of Fig.la can be written as that of
Fig.3a, wherev=d—-r,e=y—r and

o 0o @
G=|1 1 PO (3.1.1)
I -I o0

where the blocks 0 and I have appropriate dimensions.

The structure in Fig.3a can always be transformed
into that in Fig.3b, where A is a block diagonal matrix
with the additional property that

() <1 Vw (3.1.2)

The superscript u in G* denotes the dependance of G¥ not
only on G but also on the specific uncertainty description
available for the model P. Only some of the more com-
mon types will be covered here to demonstrate how this is
done, but it is straightforward to apply the same concepts

to other types of uncertainty descriptions, like parametric
uncertainty.

i) Multivariable Additive Uncertainty.

The information on the model uncertainty is of the
form

&(P - P) < lg(w) (3.1.3)
where [; is a known function of frequency. In this case

we can easily write P — P = laA where §(A) < 1 and so
obtain

I,I 0 0
G'=6*=|0 1 ofc (3.1.4)
0 o0 I

ii) Multivariable Input Multiplicative Uncertainty.

(PP - P)) < li(w) (3.1.5)

where [; is known. Then

(P 0 0
G'=G'=Gl 0 I 0 (3.1.6)
0 01

iii) Multivariable Output Multiplicative Uncertainty.

(P~ P)PY) < lo(w) (3.1.7)
ILP 00

G*'=G°= 0 I oG (3.1.8)
6 o0 I

iv} Element by Element Additive Uncertainty.
For each element p;; of P we have
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Dy — Bay| < Ly (W), i=1,.,n; j=1,.,n (3.1.9)
Then i
P-P=JiALJ, (3.1.10)
where
L:diag(lll,llz,...,I]n,lgl,...,lnn) (3111)
1 ... 10 ... O ... ... 0 ... 0
0 ... 01 T ... ... 0 ... 0
=1, . - .o ) .. .
0 0 0 0 1 ... 1
(3.1.12)
I,
In
Jy = : (3.1.13)
I,
From (3.1.10) it follows that
LJ; 0 O Ji 0 0
G'=G*=| 0 I o|G|lo I o} (31.14)
0 0 I 0 o0 I

Note that all the above relations yield a G* already

partitioned as
Giy Gl GYs
G = 5 G3, Gis

u u
Ggl G32 G33

(3.1.15)

Then Fig.3b can be written as Fig.4 with

or = (G o)+ (S ) u-rewrien o)

Ty u
21 22 23
def (G{', Gi,)
G5, Gh
3.2. Robustness Conditions
3.2.1. Robust Stability
The system is stable for any of the plants in the set

defined from the bounds on the model uncertainty, if and
only if (Doyle,1985)

(3.1.16)

pa(Gh) <1 Vuw (3.2.1)

3.2.2. Robust Performance

For performance, two cases will be examined; the
Ho— and the Hy—optimal. First the definitions of the
Ly—norm of a vector and of the L—norm of a matrix .,
will be given:

+o0 1/2
iollz = (/_m v (iw)v(iw) dw) (3.2.2)
liGlloo = s lGvll2 = supa(Giw)) (3.2.3)

where the superscript * indicates complex conjugate trans-
pose.
i} Ho—optimal.

In this case, the IMC controller Q designed in the
first step, can be obtained by solving (Zames and Fran-
¢is,1983,1984; Chang and Pearson, 1684; Doyle et 21,1984):

min ||wE||eo (3.2.4)
Q

where E was defined in (1.3) and w is a weight reflect-
ing the frequency range of interest for the external system
input v (v =d for r = 0; v = —r for d = 0).

In the second step of the IMC design we wish to keep
o(wE) bounded by a known boung b(w) in spite of mod-
eling error, i.e.

b 'wE||eo < 1

YAEA (3.2.5)

Note that E = £ when P = P. The value of 3(wE) for the

optimal Q obtained from (3.2.4) can serve as a guideline
for the selection of the shape of b(w). Then (Doyle,1985)

I 'wE||e < 1 VA €A <= supuao(Gt) <1
o

(3.2.6)
where
b (1 0 F
G’ = (0 b-lwl G (3.2.7)
A° = {diag(A,A% A € A,A% e C™X ) (3.2.8)

ii) Hy—optimal.
In the first step of the IMC design procedure, Q is



obtained by solving (Youla et al, 1976; Frank,1974; also
see Morari et 2],1986)

min ||W Evlls (3.2.9)
Q

for a specified input v, which can be either a set-point r or
a disturbance d. Note that ||W Ev||; is actually the Inte-
gral Squared Error (ISE), {|We||2 for this particular input
v, where W is a diagonal matrix weighting each element of
the error vector e differently. Also note that if one wishes
the control system to behave well with both set-points and
disturbances of different frequency content, then one has
to implement & two-degree of freedom controller (see e.g.
Morari et al,1986), each part of which is designed as pre-
sented here and in the corresponding references.

In the second step, the IMC filter F is designed so that
the ISE (/W Ev|l;) remains small even in the presence of
model-plant mismatch. The following Theorem quantifies
this objective.

Theorem 1:

For a specified v define

xdef I 0 F I 0
el 8Ver(19) pam

where z is a scalar function of w and the blocks O have the
appropriate dimensions (in general non-square). Augment
G*, which is in general a “tall” matrix, to obtain a square
matrix:

G;u” = (Gz 0) (3211)
Then
Hac(Giau(iv)) =1 &= z{(w) = zo(w) Yw (3.2.12)
defines a function zp of frequency and

sup (W Evllz = [l5|la (3.2.13)
A€EA

Proof: For a matrix K partitioned as

Kll K12
K= 3.2.14
(Km Kzz) ( )

define

R(K,A) d———e—f K22+K21A(I'—K11A)—1K12 (3.2.15)

Then the transfer function relating v to ¢ in Fig.4 is
R(GF,A) and since Fig.1a and Fig.4 are equivalent, we
get by using (1.5)

E = R(GF,4) (3.2.16)

The properties of the SSV and (3.2.12) imply (Doyle,1985)
that

sup 6{R(G%2,,4)) =1 (3.2.17)
aga

From (3.2.10), (3.2.11), (3.2.15), (3.2.16), it follows after

some algebra that
R(Gjo ) = (2oWEv 0) (3.2.18)

Then from (3.2.17),(3.2.18) and the definition of the sin-
gular values, it follows, since oW Ev is a vector:

sup (230 E*W*WEv) =1 Vo
r-Y=7-Y

+ 00 + o0
= snp/ vV'E*‘W'WEv dw =/ z5? dw
LeA o0

<= (3.2.13) QED

-0

Note that as it turned out z;! = supsea (W Ev),
but the only way to compute it is through (3.2.12). Also
without loss of generality z can be assumed to be positive
since the value of pao(G%,;) depends only on |z|.

An alternative to the above objective for designing F
would be to design F with an H, type of objective, even
though Q was obtained as an Hz—optimal controller in the
first step of the IMC procedure. This is an interesting pos-
sibility that became available because of the two step IMC
procedure and which experience showed to be of practical
value. The idea behind it is that although one may expect
inputs v of & particular type for which Q is designed, one
may still want to add some robustness characteristics not
only with respect to model-plant mismatch but also with
respect to different external inputs v entering the system.
In this case one can select in {3.2.5) w = 1 and use as a
guideline for selecting b(w) the value of &(E) for the op-
timal Q obtained from (3.2.9). From that point on, the
procedure for designing F is the same as that described in
the rest of this paper for the H, type design.

3.3. Filter Parameter Optimization

The filter parameters can now be computed so that
the robustness conditions that were discussed in §3.2 are
satisfled. To do so, some structure will have to be assumed
for F, which can be of any general type that the designer
wishes. However in order to keep the number of variables in
the optimization problem small, a rather simple structure
like a diagonal F with first or second order terms would
be recommended. In most cases this is not restrictive be-
cause the potentially higher orders of the mode! P have
been included in the controller Q that was designed in the
first step of the IMC procedure and which is in general a
full matrix. The use of a full matrix F may be necessary
in cases of extremely ill-conditioned systems ((P)/¢(P)
very large}, but as mentioned the designer can specify such
a structure for F if he so wishes. Note that F should still
satisfy (1.7) for integral action. Also some additional re-
strictions on the filter exist in the case of an open-loop
unstable plant (see Morari et al, 1986). Hence

F ¥ F(s;4) (3.3.1)
where A is an array with the flter parameters. For example
if an F of the form

-



C(1/(Aas? 4+ Ais+1) s/(Aas+1)2
F= < s/z()qs +11)2 1/(dss +1) )

were selected, then A = (A; Az Az A Ag)’

3.3.1. Problem Formulation

The problems can now be formulated as minimization
problems over the elements of the array A. A constraint is
that A should be such that F is a stable transfer function.
HBowever the problem can be turned into an unconstrained
one by writing the denominator of each element of F as a
product of polynomials of degree 2 and one of degree 1 if
the order is odd, with the constant terms of the polynomi-
als equal to 1. Then the stability requirement translates
into the requirement that the coefficients (elements of A)
are positive, which is a constraint that can be eliminated
by writing A2 instead of Ax for the corresponding filter
parameters.

i) Heo.

In this case the goal if to satisfy (3.2.6). The filter
parameters can be obtained by solving

minsup g a0 (G?) (3.3.2)
AW

It may be however that the optimum values for (3.3.2), still
do not manage to satisfy {3.2.6). The reason may be that
an F with more parameters is required, but more often that
the performance requirements set by the selection of b(w)
in (3.2.5) are too tight to satisfy in the presence of model-
plant mismatch. In this case one should choose a less tight
bound b and resolve (3.3.2). Note that satisfaction of the
Robust Performance condition (3.2.6) implies satisfaction
of the Robust Stability condition (3.2.1) as well.

i) H,.

The objective is to minimize {3.2.13) for a specified v
(set-point or disturbance). Hence the filter parameters are
obtained by solving

min llzg |2 (3.3.3)
An additional problem here is the computation of zo(w) for
a given A. This computation will be made through {3.2.12)
and (2.3) will be used for computing p. The following

Theorem simplifies the problem.
Theorem 2:

Let -
M? = < M My )

My zMa (3.3.4)

where z a positive scalar.

Then infpep 6(DM*D™1) is a non-decreasing func-
tion of z, where D = {diag(D;, D2)}.

Proof: Let 0 < z9 < z;. Then we can write z2 = 0,
where 0 < § < 1. From (3.3.4) we have

wamea_ (Dr ON(I O I
DM™*D _(0 Dz)(o M)M D

= (’ 0 )DM"D“

o BI (3.3.5)

Then the properties of the singular values yield

I 0

o Bl

= g(DM* DY) <e(DM*D"') VDeD

— inf 3(DM**D~}) < inf 3(DM*D'QED
DeD beD

(3.3.5) = 6(DM* D" ') <& ( ) 5(DM* D7)

Note that G}, is a special case of M in the Theorem
and so Theorem 2 applies to (3.2.12).

3.3.2. Computational Issues

i) Hoo.

The computation of u in (3.3.2) is made through (2.3);
details can be found in Doyle (1982). As it was pointed out
in Doyle (1985), the minimization of the Frobenious norm
instead of the maximum singular value yields D’s which
are very close to the optimal ones for (2.3). Note that
the minimization of the Frobenious norm is a very simple
task. In the computation of the supremum in (3.3.2) only
a finite number of frequencies is considered. Hence (3.3.2)
is transformed into

minmax inf 8(DG*D™Y) (3.3.6)

A w€Q DED
where {1 is a set containing & finite number of frequencies

and DO is the set corresponding to A° according to (2.1)
and (2.4). Define

Boo(h) X mex inf &(DG*D™Y)

The analytic computation of the gradient of ®oo with re-
spect to A is in general possible. This is not the case when
the two or more largest singular values of DG®D-! are
equal. However this is quite uncommon and although the
computation of a generalized gradient is possible, experi-
ence has shown the use of a mean direction to be satis-
factory. A similar problem appears when the maxuen is
attained at more than one frequencies, but again the use
of a mean direction seems to be sufficient. We shall now
proceed to obtain the expression for the gradient of 2..(4)
in the general case.

Assume that for the value of A where the gradient of
®oo(A) is computed, the max,eqn is attained at w = wp and
that the inf pepo &(DG®(iwo) D) is obtained at D = Dy,
where only one singular value o is equal to &. Let the
singular value decomposition (SVD) be

DoGb(iwo) D3 = (w1 U)(‘:)l g) ("jl) (3.3.8)

Then for the element of the gradient vector correspond-
ing to the filter parameter A\x we have under the above
assumptions:

d
o =
3

(3.3.7)

(DoG®(iwo) D5’ t) (3.3.9)

9 o
)V
because Vp,(01) = O since we are at an optimum with
respect to the D’s. To simplify the notation use



A = DoG($wo)Dg ' = UaZaV, (3.3.10)

By using the properties of the SVD we obtain from (3.3.8)

] . ] .
AA* = U, ZiU, = ula)‘ (AA )y, = u,UAaA (E2)U vy
] ]
=u (a,\ (4)4° +Aa—/\:(A ))ul—ulUA(zzA (2:,4))U,,ul

» . a . - a
bula—/\k(A)vlal + olvlb—)‘:(A )u1 = 20, 3y (01)

3 . 0 . -
3_87; (01) = Re {ulm(Docb(’WO)Do 1)"l} (3.3.11)

Use of (3.3.9), (3.1.16), (3.2.7), (3.3.11), and of the prop-
erty

d —1y _ -1
£ (m()) = 2 (ME@)M0)

where M(z) is a matrix, yields after some algebra

~M(2)7? (3.3.12)

) . Gy,
QO = RG{UIDO <b 1

(I - Fa)~ (G4, cgz)na*vl] (3.3.19)

where F, G}, ,b,w are computed at w = wg. The derivatives
of F with respect to its parameters (elements of A) depend
on the particular form that the designer selected and they
can be easily computed.

if) Hs.

e The first issue in this case is the computation of zo.
Note that this computation has to be made at every fre-
quency w. In practice only a set {1 with a finite number
of frequencies is used, from which ||z '||2 can be com-
puted approximately. Theorem 2 indicates that any basic
descent method should be sufficient. The fact that it is
possible to obtain an analytic expression for the gradient
of pac(G%,y(1w)) with respect to z, simplifies the prob-
lem even further. This is possible when (2.3} is used for

the computation of u and the two largest singular values of

DG%,,;D™! for the optimal D’s at the value of z where the
gradient is computed, are not equal to each other. If this
not the case a mean direction can be used as mentioned in
the H, case above.

Let the infpepo 6(DG;u,1(z'w)D‘15 be attained for
Do = Do(w;z) and let 0; be the maximum singular value
and u;,v; the corresponding singular vectors. Then the
same steps for obtaining (3.3.11) are valid. Hence by using
(3.2.10) and (3.2.11) we get after some algebra

P 2 (MY = el 0 0. 0
o (ka0 (GFuu(iw))) =Re [“1D° (WG{I WG 0)
a]

¢ The second computational issue is the solution of

(3.3.14)

d z . *
oW (1ao (Gju”(u‘)))) = Re [u,Do (chga

., ) - Fo3)™ S (Fl)

(3.3.3). To obtain the gradient of llzg'|l2 with respect to
the filter parameters, we need to compute the gradient of
zo(w) with respect to these parameters for every frequency
w € (1. From the definition of zo in (3.2.12) we see that as
some filter parameter A changes, zo(w) will also change so

that g ao (G’!‘u'”(iw)) remains constantly equal to 1. Hence
we can write

ou _(?EP_ ou Oz

ol = £ (3.3.15)
8zp Ok 0

Ok Ak a)\k / T
where p is computed through (2.3). The denominator in
the right hand side of (3.3.15) is given from (3.3.14). As
for the numerator, it can be computed in the same way as
(3.3.11) and (3.3.13) but with G, instead of G?:

o, ) U -Fex)

G} . -
EA'—k(F(w)))(I - FGga)—l (051 ngv 0) DO 1!)1:\ (331@)

Hence 8zo/8Ax can be computed from (3.3.14), (3.3.15),
(3.3.16).
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