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 This study investigated and compared the effects of elevated temperature and 

elevated CO2 on the microbial biomass carbon (MBC) and nitrogen (MBN) of urban and 

rural forest soils.  Soils analyzed from Baltimore Long-Term Ecological Research forests 

in June and October, 2014 had greater MBC and MBN quantities in rural than urban 

forests.  A controlled environmental chamber study was conducted where June-collected 

soils were planted with hybrid poplars and exposed to ambient and elevated temperature 

and CO2 levels. After exposure for 49 days, MBC and MBN quantities were again greater 

in rural than urban soils.  Soil MBC was greater under elevated than ambient CO2, while 

soil MBN was greater under elevated than ambient CO2 and temperature. Results suggest 

that if temperature and CO2 levels increase in the Baltimore area as predicted, microbial 

C and N pools in the studied forests will increase, and will remain greater in rural than 

urban soils.   
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Rationale for Study 
 In a time of changing climate, the future of our global forests is a major concern.  

Forest community responses to changes in CO2 and temperature are complex.  Just as 

forest communities are altered by climate, local climate and nutrient cycles are altered by 

forests.  Soil fungal and bacterial communities play an important role in the carbon (C) 

storage and nitrogen (N) dynamics of soils within forest ecosystems (van der Heijden et 

al. 2008, Cox et al. 2010).  During the metabolism of both plant and microbially-derived 

compounds in the soil, microbes such as fungi and bacteria store soil C and N as biomass.  

Compounds from decayed microbial biomass (necromass) contribute a great deal to the 

recalcitrant soil organic C (SOC), which remains long-term in the soil (Schmidt et al. 

2011, Schimel and Schaeffer 2012).  By sequestering C, the recalcitrant SOC pool 

mitigates atmospheric CO2 increases and the effects of climate change.  Microbial 

biomass also constitutes a significant pool of soil N which, due to its high turnover rate, 

plays an important role in the nutrition of the plant and microbial community.  As climate 

conditions change, the accumulation of C and N by the soil community will change in 

response, due to the effects of elevated temperature and CO2.   

 Due to their significant role in long-term C storage and soil N pools, it is 

important to understand the interactions between forest soil microbes and climate change.  

Gradients of temperature and CO2 that positively correlate with urbanization have been 

observed in cities such as Baltimore and New York (Ziska et al. 2004, Savva et al. 2010).  

Due to the elevated CO2 and temperature levels in urban relative to rural forests, urban 

forests can be used as analogues for climate change (Carreiro and Tripler 2005).  

However, little is known about how climate change affects the MBC and MBN of forest 
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soils. This research investigated microbial biomass C (MBC) and microbial biomass N 

(MBN) differences between urban and rural forest soils, and the effects of elevated 

temperature and CO2 on soil MBC and MBN, using urban forest soils as analogues for 

changes in temperature and CO2.  As soil N limitation may reduce long-term C storage, 

this research also investigated the effects of elevated temperature and CO2 on soil 

ammonium and nitrate quantities in urban and rural forest soils. Through this research, 

we may be better able to predict how climate change will alter forest microbial N pools, 

as well as MBC production and storage in forest soils. 

Background 

Urban Forests, Urban Ecosystems, and Climate Change 
 Urban ecosystems are interacting networks of social, biological, and physical 

components, and are distinct from neighboring rural environments in many aspects 

(McKinney 2003).  These distinctions extend to urban forests, whose trees and soils are 

critical to the storage of atmospheric carbon (C) and the cycling of terrestrial nitrogen (N).  

In the United States, estimates of the total amount of C sequestered by forested areas 

range from 0.149 to 0.33 Pg C yr -1.  Urban trees alone, whose canopies cover 27% of the 

27.6 million square miles of urban land in the United States, are estimated to sequester 

0.0228 Pg C yr-1 (Nowak and Crane 2002, Woodbury et al. 2007, U.S. Department of 

Commerce 2010).  The quantity of N retained in forest soils over time, however, is 

generally much smaller than the C sequestration rates. For instance, the total soil N 

retention for the forested rural watershed of Pond Branch (Cockeysville, MD) was 

estimated to be 0.0107 Mt N  ha-1 yr-1, while the total soil N accumulation for the 
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suburban Glyndon watershed (Baltimore, MD) was estimated to be 0.0191 Mt N  ha-1 yr-1 

(Groffman et al. 2004).  

 The urbanization process is associated with environmental changes such as 

elevated temperatures, elevated CO2 concentrations, and altered precipitation patterns.  In 

most large cities, a combination of impervious heat-absorbing surfaces and heat trapping 

greenhouse gases creates an “urban heat island” (Carreiro and Tripler 2005).  The 

temperature difference between urban and non-urban areas is often greater at night, as 

concrete surfaces slowly absorb heat during the day and slowly radiate heat at night 

(Aitkenhead-Peterson and Volder 2010).  Large urban heat islands in the United States 

have been identified by satellite in Atlanta and Houston, and have been reported in New 

York and Baltimore (Bornstein and Lin 2000, Streutker 2003, Ziska et al. 2004, Carreiro 

and Tripler 2005, George et al. 2007).  Urban forests within urban heat islands are also 

exposed to higher air and soil temperatures than nearby rural forests (Brazel et al. 2000, 

Savva et al. 2010).  For the Baltimore area in particular, Savva et al. (2010) found that 

from 2000-2007, forest soils within Baltimore had an average annual temperature of 

12.6 °C at 10 cm depth, while rural forest soils had an average annual temperature of 

12.2 °C. The presence of a higher average temperature in urban relative to rural areas has 

been linked to phenological changes in urban trees, notably earlier bloom times and 

longer growing seasons relative to rural trees (Carreiro and Tripler 2005).  Gradients of 

CO2 have also been documented in urban environments such as Baltimore, MD and New 

York City, NY (Gregg et al. 2003, Ziska et al. 2004, George et al. 2007).  In particular, 

Ziska et al. (2004) found that in 2002 the average annual CO2 level at the Baltimore 

Science Center (urban) was 466 ppm, while the average annual CO2 level at an organic 
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farm in Buckeystown, MD (rural) was 385 ppm.  Elevated CO2 levels in urban areas are 

the result of a high concentration of fossil fuel consumers, including cars and factories.  

In fact, 75% of the world’s fossil fuel consumption occurs in cities (Newman and 

Jennings 2008).  It is no surprise then, that urban environments tend to have higher 

concentrations of atmospheric CO2 than their rural counterparts (Jacobson 2010).    

 Environmental factors like temperature and CO2 may affect the soil community, 

such that urban and rural soil microbial communities become structurally or functionally 

different over time (Allison and Martiny 2008).   As microbial community members can 

vary in their life strategies, C and N requirements, and metabolic rates, distinct soil 

microbial communities may develop differing soil and microbial C and N quantities. The 

Intergovernmental Panel on Climate Change (IPCC) has predicted that the heightened 

temperatures and CO2 amounts that cities currently experience will occur in non-urban 

areas in time due to climate change (IPCC 2007).  Thus, urban environments can serve as 

proxies for climate change by constituting ‘space-for-time’ experiments, in which a 

forest’s response to long-term elevated temperature and CO2 is predicted to occur in the 

future in the forests of surrounding comparable rural areas (Carreiro and Tripler 2005).  

Therefore when examining soil microbial C and N storage, urban areas can serve as 

analogues for the effects of climate change (as elevated temperature and CO2) on these 

variables.  This type of study, however, can and should be further supported through 

controlled laboratory studies where cause and effect can be more clearly distinguished.    

 Average global CO2 concentrations are currently around 400 ppm.  By 2090, they 

are expected to rise to 600 ppm.  Concurrently, temperatures in the Baltimore area are 

predicted to rise 2.5 °C (IPCC 2007, Earth System Research Laboratory: Global 
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Monitoring Division 2012). Few studies, however, have examined urbanization effects on 

forest soil microbial C and N (Pouyat and Carreiro 2003, Kaye et al. 2005, Pavao-

Zuckerman and Coleman 2007, Pouyat et al. 2008, Groffman et al. 2009).   Additional 

research is justified considering the significance of the microbial community to the long-

term storage of C and soil N availability, and the impacts that future climate may have on 

these functions.   

Soil Carbon Storage 
 Understanding how CO2 cycles between terrestrial and atmospheric C pools is of 

growing importance, as atmospheric CO2 is a key greenhouse gas that drives climate 

change.  Each year around 11 Pg of C are released into the atmosphere as CO2 from the 

burning of fossil fuels and vegetation (Woods Hole Research Center 2014). Deep ocean 

sediment and terrestrial soil are the two major carbon pools that store C and mitigate CO2 

accumulation in the atmosphere.   The terrestrial soil system accumulates around 2.8 Pg 

of C yr-1 ; more than half the amount accumulated per year in the atmosphere (Woods 

Hole Research Center 2014).  The accumulation and transformation rates of C in 

terrestrial C cycles are expected to be sensitive to changes in climate, particularly to 

temperature and CO2 (Cramer et al. 2001, Heimann and Reichstein 2008). 

 Plants, microbes, and animals all play a significant role in the breakdown, storage, 

and output of C from the soil.  Earthworms, for instance, help drive the C cycle of forest 

soils by breaking down leaf litter and providing high nitrogen casts that stimulate 

microbial activity (Szlavecz et al. 2006).  Fungi, on the other hand, actively break down 

complex soil organic matter (SOM), which facilitates the storage and respiration of C 

(Alberton et al. 2005).  Bacteria facilitate C cycling in the soil subsurface and are 

themselves important sources of C to the soil community (van der Heijden et al. 2008).  
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 SOM is composed of decaying biological matter from plants, microbes, and 

animals, and can be found in two different pools in the soil: labile (short-term storage) 

and recalcitrant (long-term storage) pools.  This research will specifically investigate soil 

organic carbon (SOC), which contributes to the SOM pool.  Labile C pools consist of 

compounds that are easily degraded by enzymes, either due to their structure or physical 

availability in the soil matrix.  Living microbial biomass is an example of labile SOC that 

is metabolized during microbial turnover, although it represents <4% of SOC (Liang et al. 

2010, Prescott 2010).  Microbial necromass, however, forms during the degradation of 

living microbial biomass and represents a much greater portion of the total SOC and the 

labile dissolved organic carbon (DOC) pool (Liang et al. 2010).  Recent studies have 

identified microbial C containing compounds, such as fatty acids, alkanes, alkenes, and 

amino sugars, within the recalcitrant SOC pool (Kindler et al. 2006, Simpson et al. 2007, 

Liang et al. 2010).  These studies determined that, in many soils, a significant portion of 

these compounds are derived from microbial necromass. This refutes the historical view 

that recalcitrant SOC was primarily plant-derived (Jiao et al. 2010, Miltner et al. 2011).  

Recalcitrant SOC compounds can have half-lives of hundreds to thousands of years in the 

soil, which was thought to be due solely to their structural complexity (Kiem and Kogel-

Knabner 2003).  Now the prevailing view is that their recalcitrance is due primarily to 

their interaction with the soil matrix (inaccessible within aggregates and bound tightly to 

minerals) rather than their structural complexity (Schmidt et al. 2011, Schimel and 

Schaeffer 2012).  In particular, the clay content of the soil seems to have a significant 

positive effect on the formation rate of recalcitrant soil C (Sulman et al. 2014).   
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 Studies that follow the fate of isotopically labeled microbial biomass have 

provided insight into the contribution of microbial biomass to recalcitrant SOC pools 

(Miltner et al. 2009).  A significant study done by Kindler et al. (2006) followed the 

decomposition of E. Coli in the soil and found that 40% of the original MBC remained in 

the soil as necromass after 224 days.  In addition, 75% of amino acids and 25% of fatty 

acids remained in the soil as necromass after 224 days. While these studies identify the 

contribution of only E. Coli, they indicate that these microbial compounds contribute a 

great deal to the recalcitrant SOC pool (Miltner et al. 2011).  

Soil Nitrogen Dynamics 
 Our atmosphere is 78% nitrogen gas and the largest global pool of N.  In forests, 

soil N is derived primarily from atmospheric N through the processes of N fixation and N 

deposition.  Nitrogen is a soil macronutrient critical to the growth and survival of the 

plant and microbial community.  While many mature temperate forests are N limited to 

some degree, forest in urban or near agricultural areas can experience an abundance of N 

due to chronic N deposition.  Elevated temperature and CO2 levels are expected to occur 

in the future, and may exacerbate soil N limitation in forests that do not experience 

chronic N deposition (Luo et al. 2004).  The N and C cycles of the soil are intertwined, 

such that N amounts in the soil may significantly affect the production of recalcitrant 

SOC (Wang et al. 2010, Zaehle et al. 2010).  It is therefore important to understand the 

dynamics of N in these soils, and how this impacts the long-term storage of C, under 

future climate conditions.   
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 A large pool of N can be found in SOM, of which microbial biomass is a major 

constituent (Simpson et al. 2007). N can occur in SOM as microbially-derived amino 

sugars and proteins (Kindler et al. 2006).  The C:N of SOM is a major factor determining 

its decomposition rate and whether its N will be immobilized or mineralized by the soil 

microbial community (Lambers et al. 2008).  Immobilization occurs at a C:N greater than 

20:1, where N limits the decomposer community.  At a C:N less than 20:1, mineralization 

occurs and N accumulates in the soil as ammonia or ammonium.  Ammonium is the 

preferred form of labile inorganic N assimilated by a majority of the plant and microbial 

community (Lambers et al. 2008).  Assimilated ammonium contributes to the production 

of important plant and microbial cell components such as amino acids, nucleic acids, and 

adenosine triphosphate (ATP).  Ammonium is also used by the soil microbial community 

during nitrification, where ammonium is converted to nitrite by ammonia oxidizing 

bacteria and archaea in the first step, and nitrite is converted to nitrate by the genera 

Nitrobacter and Nitrospira in the second step.  Nitrification occurs in aerobic forest soils, 

and is an important part of the soil nitrogen cycle.  Nitrate is the secondary source of 

labile inorganic N to the plant community.  Compared to ammonium, nitrate occurs in 

smaller quantities in the soil, is more mobile in the soil matrix, and requires more energy 

for plants to assimilate (Lambers et al. 2008).  In the microbial community, nitrate is 

primarily used by denitrifying bacteria as a source of energy during denitrification, 
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during which nitrogen gas is produced.  Denitrification, however, requires anaerobic 

conditions and is not a predominant process in temperate forest soils.  

 Ammonium, nitrate, and MBN are all N sources that contribute significantly to 

the N cycle of forest soils.  The soil N cycle, however, is intertwined with the soil C cycle, 

such that a change in N accessibility can affect the long-term storage of C in the soil.  

Prolonged elevations in temperature and/or CO2 have been suggested to cause 

progressive nitrogen limitation (PNL), which reduces long-term soil C storage (Luo et al. 

2004).  The theory of PNL suggests that sustained elevated temperature and CO2 levels 

will stimulate the growth of the plant community, such that over time available soil N 

will be assimilated by plants at rates greater than can be replenished by microbial 

mineralization, N fixation, or N deposition.  Elevated temperature also stimulates 

nitrification, which converts ammonium to nitrite and nitrate.  Nitrite and nitrate are 

highly mobile in the soil, and easily removed from the soil environment through runoff.  

If N becomes limiting in the soil, the C:N ratio of organic matter will increase, slowing 

its decomposition by the microbial community, and reducing the rate at which inorganic 

N is made available to the soil community.  According to PNL, the growth of both plants 

and microorganisms will be reduced over time by the limited soil N availability, and the 

rate of microbial growth and storage of C and N will decrease (Luo et al. 2004).  

However, some forests ecosystems may not experience N limitation over time due 
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balanced inputs from N deposition.  Urban forests in particular have increased N 

deposition rates (as throughfall) relative to their rural counterparts (Bettez and Groffman 

2013). This is due primarily to fossil fuel combustion which produces oxidized N 

compounds.  Once released to the atmosphere, these compounds can return to the soil as 

dry/particulate deposition.  Ammonium and ammonia are also important components of 

wet and dry N deposition, but are more commonly associated with agricultural areas, as 

their predominant sources are the volatilization of urea from fertilizers and the gaseous 

byproducts of industrial fertilizer production.   In Baltimore in particular, Bettez and 

Groffman (2013) found that throughfall N deposition rates were 13.3 kg N ha−1  yr−1 at 

Ronel Heights, an urban site, and 9.1 kg N ha−1  yr−1 at Pond Branch, a rural site, and 13.6 

kg N ha−1  yr−1, an agricultural site.  In order to fully understand how climate change will 

impact forest soil carbon storage as MBC, it is therefore also important to investigate 

how soil nitrate, ammonium, and the forest soil microbial N pool are affected by elevated 

temperature and CO2.       

Effects of Climate Change on the Soil Microbial Community 

CO2 and the Microbial Community 

 The rhizosphere microbial community obtains its C from the external 

environment, where increasing atmospheric CO2 promotes the growth of above and 

belowground plant biomass by some species, and the release of exudates and 

photosynthates by plants to the soil (Treseder et al. 2005, Phillips et al. 2011, Wang et al. 
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2012).  Root exudates and photosynthates are important C sources for the rhizosphere 

microbial community, and positively affect MBC quantities (Ceulemans et al. 1999, 

White et al. 2002, Barron-Gafford et al. 2005, Lipson et al. 2005, Drigo et al. 2007, 

Phillips et al. 2011, Manna et al. 2013). For instance, Carrillo et al. (2014) found that soil 

MBC increased and the microbial respiration rate declined when a grass (Bouteloua 

gracilis) was exposed to increased CO2 over a ten week period.  This caused an increase 

in C use efficiency, which is defined as (MBC/(MBC + respired CO2) (Steinweg et al. 

2008).  Similarly, Lipson et al. (2005) found that long-term CO2 treatments increased soil 

MBC at chaparral sites containing more than 0.03 g organic matter per gram of soil. In 

forested ecosystems, while MBC generally increases with CO2, this can depend on the N 

levels in the soil (Hu et al. 2006, Dieleman et al. 2010, Phillips et al. 2011, Chen et al. 

2012).  Exudates, produced in greater quantities under elevated CO2, are high in C and 

low in N. Increased exudate production has been shown to initially stimulate organic 

matter mineralization by the microbial community, as microbes search for available N 

(Phillips et al. 2011).  This ‘priming effect’ can lead to large declines in the total SOC in 

the short-term, as CO2 is respired and lost from the soil system during decomposition.  

The priming effect is expected to be particularly strong in forests with recalcitrant leaf 

litter (e.g. pine needles), and is expected to increase microbial biomass and the 

recalcitrant C that is eventually formed from it (Sulman et al. 2014). In the short-term, 

MBC and MBN are also expected to increase with CO2 as long as accessible soil N is not 

limited. Under long-term elevated CO2 conditions, however, increased C inputs and labile 

N assimilation by the growing plant community are expected to limit soil N for the 

microbial community.  This in turn may reduce organic matter mineralization, N-fixation, 
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and N-deposition (Hu et al. 2001, Finzi et al. 2006).  A meta-analysis by Dieleman et al. 

(2010) found that long-term (≥ 1 year) elevated CO2 treatments had no overall effect on 

forest soil MBC, but a significant negative effect on N mineralization.  They attributed 

this outcome to microbial N limitation, caused by N competition between the plant and 

microbial community. 

 A majority of the literature regarding the effects of elevated CO2 on microbial 

biomass has focused on grasslands and agricultural sites, while none to my knowledge 

have examined urban forests.  Grasslands, agricultural sites, and forest ecosystems can 

differ greatly in terms of their soil N and the N requirements of their vegetation.  It is no 

wonder then that there are conflicting reports in the literature on the effect of elevated 

CO2 on microbial C and N, with some claiming a positive effect while others have found 

no significant effect (Hu et al. 2006). The chosen duration of the study further 

complicates the issue, as long-term studies or mature forests are more likely to experience 

N limitation, which in turn affects microbial C and N storage.  It is therefore important to 

keep in mind that the effect of CO2 on soil MBC and MBN, which is mediated by 

vegetation, will depend on the type of vegetation and the N availability in the soil over 

the duration of the study.  

Temperature and the Microbial Community 

 Temperature stimulates contrary processes in plants and the soil, which indirectly 

and directly influence MBC and MBN accumulation.  By promoting the growth of 

vegetation, elevated temperatures increase the plant root biomass and exudate C sources 

available to the microbial community (Pregitzer et al. 2000, Uselman et al. 2000, 

Bardgett et al. 2013). The growth rates of microbes are also directly affected by 

temperature, increasing to the average optima at 30 °C (Singh et al. 2010, Gray et al. 
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2011).  Therefore, the decay of organic compounds in the soil is also stimulated by 

elevated temperatures, with higher microbial turnover, decomposition of more complex 

compounds, soil N availability, and greater microbial respiration rates observed under 

these conditions (Davidson and Janssens 2006, Hagerty et al. 2014).  As organic 

compounds in the soil decay, more N is made available to the soil community, 

stimulating plant and microbial growth and storage of C and N (Belay-Tedla et al. 2009, 

Melillo et al. 2011).  This C and N is then returned to the soil as plant and microbial 

necromass.  

 The growth of any organism necessitates that some portion of their assimilated C 

or N is stored in biomass, some is released as a metabolic byproduct, and some is 

returned to the soil during decay.  One or more of these processes may dominate such 

that the effects of temperature on MBC or MBN under natural or experimental conditions 

may not be significant.  In many studies, temperature alone does not seem to significantly 

affect soil MBC amounts specifically (Zhang et al. 2005, Steinweg et al. 2008, Hagerty et 

al. 2014).  In a study by Steinweg et al. (2008), this outcome was attributed to decreased 

C use efficiency, where respiration increases were much greater than MBC increases 

under elevated temperature (Steinweg et al. 2008).  Additionally, Hagerty et al. (2014) 

found that elevated temperature greatly increased microbial respiration and turnover rates.  

In this case, while elevated temperature caused a significant increase in MBC production 

rate, the overall MBC concentration of the soil remained the same due to a microbial 

turnover rate that increased with temperature.  While the effect of temperature on MBN 

has not been investigated by many studies, it has been found that elevated temperatures 

increase the availability of labile N in the soil through both increased mineralization and 
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plant root turnover (Melillo et al. 2002).  This N can then be incorporated into the 

biomass of both microbes and plants.  As long as the competition between plants and the 

microbial community is not so strong that N is limiting to microbial growth, MBN should 

increase in response to temperature.  Belay-Tedla et al. (2009) found that labile C and N, 

along with MBC and MBN, both increased with temperature over a period of 2.5 years in 

prairie soils.  They attributed this increase to increased root turnover and exudate 

production rather than organic matter decomposition, as their observed soil respiration 

rates were not significantly affected by temperature.  

 In summary, climate change has the potential to alter the amount of C and N 

stored by the soil community, both in the short-term as microbial biomass and in the 

long-term as microbially-derived recalcitrant SOM.  The proposed study will investigate 

how the soil MBC and MBN of urban and rural forests is altered with elevated 

temperature and/or CO2.  Knowing this, we can better predict how soil C storage and the 

availability of microbial N pools may change in the future under elevated temperature 

and CO2 levels.  

Baltimore Field Study 

Goals and Objectives  
 As cities continue to grow in size and number, it is important to understand how 

urbanization can affect pools of microbial N as MBN and C storage as MBC in forest 

soils.  This study examined and compared soil MBC and MBN quantities in urban and 

rural forests in the Baltimore metropolitan area. These forests and their soils were similar 

except for their historical differences in temperature and CO2 (Brazel et al. 2000, Ziska et 

al. 2003, Ziska et al. 2004).  The study objectives were to investigate and compare: 1) the 
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storage of C as MBC in urban and rural forest sites during June and October, 2) an 

important pool of soil N as MBN in urban and rural forest soils during June and October, 

3) additional labile soil C and N pools as dissolved organic C (DOC) and total dissolved 

N (TDN) in urban and rural forest soils during June and October, and 4) soil 

characteristics of urban and rural forested sites. 

  Materials and Methods 

Site Description and Sampling Procedures  

 Six forested sites previously studied as Baltimore Long Term Ecological Research 

sites (BLTER), three urban and three rural, were selected for this research (Figure 1).  

The urban forest sites were: Leakin Park (LP), Cylburn Arboretum (CA), and Druid Hill 

(DH).  The rural forest sites were Gunpowder Falls at Jerusalem Mills (GF), Loch Raven 

Reservoir (LR), and Oregon Ridge Park (OR).  These BLTER sites were categorized as 

either urban or rural based on their distance from the city center (urban <9km and rural 

>19km), length of roads and highways, percent of urban land use, population density, and 

traffic volume on nearby major roads by Pouyat et al. (2008).  In addition, Pouyat et al. 

(2008) determined that the urban and rural sites had similar forest composition, age, and 

minimal human disturbance.  The soils within these sites were classified as Ultic 

hapludalf soils (United States Department of Agriculture 2013).   
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Figure 1. Six LTER sites in the Baltimore metropolitan area.  The blue and red markers 

indicate rural and urban forests respectively. 

Soil Sampling  

Soil Chemical Analysis 
 Soil samples for the chemical analysis were collected on October 9 and 18 of 

2013.  At each site, soils were sampled around six selected tulip poplar trees 

(Liriodendron tulipifera), with three trees in the forest interior and three trees at the forest 

edge.  Sampling locations were easily accessible, located on minimal slope, and located 

near other tulip poplar trees.  Soil samples were taken near trees of the same species to 

minimize soil microbial community variation between sites due to differences in tree 

species association.  Tulip poplar was chosen because it is the most common tree species 

in Baltimore area forests and was present at all sites. Tulip poplar trees grow in 

association with red maple (Acer rubrum), dogwood (Cornus sp.), black gum (Nyssa 

sylvatica), white oak (Quercus alba), sassafras (Sassafras albidum), black cherry (Prunus 

serotina), white hickory (Carya tomentosa), arrowwood viburnum (Viburnum dentatum), 
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and honeysuckle (Lonicera sp.) (Brush et al. 1997). Each tree around which the soil was 

sampled was marked with a small flag and geolocated.  Soils were sampled on days 

without rain, so that there was no water-induced stimulation of microbial activity.  Soil 

sampling methods followed Lilleskov et al. (2001).  Around each selected tree, four soil 

cores (2 cm in diameter) were taken to 10 cm soil depth (excluding the litter layer) at a 

distance of 1.5 m from four sides of the tree.  Soil samples taken within the interior or 

edge locations were separately composited, then homogenized, and refrigerated until 

analysis.  Thus 12 composite soil samples, one interior and one edge sample at each site, 

were analyzed for soil properties.       

Microbial Biomass, DOC, and TDN Analyses 
 Soil samples for the microbial biomass, DOC, and TDN analyses were collected 

on June 8 and 10 and October 11 of 2014.  At each site, soils were sampled around the 

same three interior tulip poplar trees as the soil chemical analysis samples, using the 

same collection protocol, and frozen at -20 °C until analysis. Thus, 18 soil samples, three 

interior trees for each site, were analyzed in the June and October for MBC, MBN, DOC, 

and TDN. 

Soil Chemical Analysis 

 Soils were analyzed for organic matter content (%OM), total N, total C, pH, 

cation exchange capacity (CEC), P, K, Ca, Mg, Mn, Zn, Cu, Fe, B, S, Al, and Pb at the 

University of Delaware Soil Testing Laboratory using an Intrepid II XSP Duo View 

inductively coupled plasma spectrometer (Thermo Fisher Scientific, Waltham, MA).  
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Laboratory Analysis 

Chloroform Fumigation Extraction  

 MBC and MBN were quantified before and after chloroform fumigation and 

extraction based on the methods of Howarth and Paul (1994). Two sets (fumigated and 

non-fumigated) of 10 g dry weight equivalent subsamples were taken from the 18 

composite soil samples and placed in 25 mL beakers.  The wet weights of the 10 g dry 

weight equivalent subsamples were determined by drying 10 g of each soil sample at 

65 °C for two days and calculated as g of wet weight soil/g of dry weight soil. The 

average 10 g dry weight equivalents were 12.8 g and 12.5 g for soils collected in June 

and October, respectively. The non-fumigated set of subsamples were incubated at room 

temperature in the dark for five days. The other set was fumigated with chloroform 

before incubating in the dark for five days. The fumigated soils were placed in a vacuum 

desiccator containing a beaker with 50 mL of ethanol-free chloroform, which was 

evacuated until the chloroform boiled.  After the fourth evacuation, the desiccator was 

sealed without venting.  After the five day incubation period, the vacuum was released, 

the beaker of chloroform removed, and the desiccator evacuated and vented five times to 

remove excess chloroform in the soil.  The microbial biomass of fumigated and non-

fumigated soil samples was extracted with 50 mL of .5 M K2SO4, filtered through 

Whatman GF-C filter paper (1.2 μm pores), and frozen at -20 °C.  Extracts were sent to 

the University of Delaware Soil Laboratory for analysis of total organic and inorganic C, 

and total bound N, using simultaneous electrochemical sensing and high temperature 

catalytic oxidation on a Vario TOC cube (elementar Americas Inc., NJ).  Total dissolved 

organic C (DOC) and total dissolved N (TDN) were quantified from the extracts of 

unfumigated soils and excluded particles, such as living microbial biomass, that were 
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to large to pass through the 1.2 μm filter during extraction.  

Statistical Analysis 

 The data were analyzed using JMP Pro, Version 11 (SAS Institute Inc., Cary, NC).  

Analysis of variance was used to determine the significance of the effects of site for 

MBC, DOC, TDN, MBN, and all soil characteristics.  Means were compared using an 

LSD procedure at the 0.05 level of significance and were done in each case regardless of 

ANOVA results (Saville 2013).  Planned comparisons were used to test for significant 

differences between rural and urban sites.  

Results  

Soil Characteristics  

 Forest soil characteristics impact the growth and activity of the plant and 

microbial community.  When investigating and comparing MBC and MBN in urban and 

rural soils, it is important to take into account soil characteristics that may influence site 

differences in MBC and MBN.  The soils of urban and rural forested sites were 

characterized by measuring soil nutrients (C, N, P, K, S, Ca, B, Mg), metals (Pb, Mg, Mn, 

Cu, Al, Fe, Zn), and properties (Total C, total N, C:N, %OM, pH, CEC).   

 Copper was the only soil characteristic to differ significantly among sites, while 

planned comparisons showed that Cu, Mg, Pb, Fe, and C:N were significantly greater in 

urban than rural forest soils (Table 2).  The means of other soil characteristics ranged 

widely but not significantly between sites or urban/rural locations. Organic matter, an 

important source of C and N to the microbial community, ranged from 6.5±0.3 to 

9.0±0.6%, and was highest at Oregon Ridge (Rural (R)).  Soil pH, which affects the 

activity and structure of the microbial community, ranged from 5.2 to 6.2±0.1 and was 



 

 20 

least acidic at Gunpowder Falls (R) (Table 1). Sulphur, Mn, and Al did not differ between 

urban and rural locations (Table 2). 
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  Table 1. Means of major forest soil characteristics by site and location. Urban and rural comparisons are   

  included.   

Type Site 

Total C 

(%) 

Total N 

(%) C:N 

OM 

(%) pH 

P 

(kg/ha) 

K 

(kg/ha) 

Rural 
Gunpowder 

Falls 
4.1 0.32 12.9B 8.6AB 6.2 24.7 334 

Rural Loch Raven 4.0 0.30 13.2B 6.5B 5.8 51.6 363 

Rural 
Oregon 

Ridge 
4.3 0.33 13.1B 9.0A 5.8 35.9 334 

Urban 
Cylburn 

Arboretum 
6.2‡ 0.31 15.6A 7.2AB 5.2 42.6 236 

Urban Druid Hill 4.7 0.33 14.4AB 6.8AB 5.6 53.8 267 

Urban Leakin Park 4.8 0.35 14.0AB 7.9AB 5.6 63.9 328 

 LSD 1.7 0.12 1.7 2.3 1.2 67.0 268 

Rural Mean 4.2 0.32 13.1* 8.0 5.9 37.3 344 

Urban Mean 4.8 0.33 14.4 7.3 5.5 55.6 285 

 LSD 1.0 0.07 1.0 1.4 0.73 40.4 161 
  Means with the same letter are not significantly different.  Means without letters indicate no significant difference between sites.  

  ‡ Cylburn Arboretum has no replication due to the exclusion of an outlier sample. 

  * Indicates significance at α=0.05 probability level.   
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Table 2. Means of minor forest soil characteristics by site and location. Urban and rural comparisons are included.   

Type Site 
Ca 

(kg/ha) 

Mg 

(kg/ha) 

Pb 

(mg/kg)  

Mn 

(kg/ha) 

Cu 

(kg/ha) 

Al 

(kg/ha) 

Fe 

(kg/ha) 

Zn 

(kg/ha) 

S 

(kg/ha) 

B 

(kg/ha) CEC 

Rural 
Gunpowder 

Falls 
4349 667A 38B 253AB 6.3BC 1279AB 337AB 20 30B 2.8 14 

Rural Loch Raven 2959 417B 49B 217AB 6.4BC 1643A 298B 16 46A 2.9 10 

Rural Oregon Ridge 3183 499AB 53B 229AB 5.0C 1022B 317AB 22 35AB 2.6 10 

Urban 
Cylburn 

Arboretum 
2576‡ 725A 65AB 236AB 11.3AB 1267AB 376AB 22 41AB 1.68 12 

Urban Druid Hill 4035 669A 98A 92B 14.9A 1512AB 402AB 41 38AB 2.1 14 

Urban Leakin Park 3632 673A 62AB 267A 11.3A 1496AB 421A 34 39AB 2.5 13 

 LSD 2567 248 40 173 4.8* 585 114 40 12 2.2 5.3 

Rural Mean 3487 526* 47* 233 5.9** 1314 318* 19 37 2.7 12 

Urban Mean 3575 681 77 191 12.7 1456 405 34 39 2.2 13 

 LSD 1548 150 24 104 2.9 353 69 24 7.1 1.3 3.2 

Means with the same letter are not significantly different.  Means without letters indicate no significant difference between sites.  

* Indicates significance at α=0.05 probability level, ** Indicates significance at α=0.01 probability level.      

‡ Cylburn Arboretum has no replication due to the exclusion of an outlier sample. 
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Microbial Biomass Carbon and Dissolved Organic Carbon 
 The MBC of the soil sampled in June did not differ significantly among sites or 

between urban and rural sites (Table 3).  In June, soil MBC site means ranged from 

337±15 to 495±54 μg C/g dry soil, with MBC significantly greater at Gunpowder Falls 

(R) than Cylburn Arboretum (Urban (U)) (Table 4).  In contrast, MBC from soil collected 

in October differed among sites and between urban/rural locations (Table 3, Table 4).  In 

October, soil MBC means ranged from 320±14 to 476±42 μg C/g dry soil, similar to the 

June range, with all rural sites and Cylburn Arboretum (U) having significantly higher 

MBC than Druid Hill (U) (Table 4).  The error variance (variation within a site), however, 

was much smaller in October than June (Table 3), resulting in statistically different 

significances.  

 The DOC of soil sampled in June did not differ significantly by site or between 

urban and rural locations (Table 3).  In June, DOC ranged from 15.2±2.7 to 22.2±4.1 

mg/L, with the greatest DOC levels at Leakin Park (U) and the lowest levels at 

Gunpowder Falls (R).  Soil DOC collected in October was significantly greater in urban 

than rural locations (Table 3, Table 5).  Soil DOC means ranged from 14.1±0.28 to 

21.4±5.5 mg/L, similar to the June range. 
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Table 3.  ANOVA for the effect of site on soil microbial biomass carbon (MBC) and nitrogen (MBN), dissolved organic carbon 

(DOC), and total dissolved nitrogen (TDN), for June and October.  An urban and rural contrast is included. 

Source of 

Variation df 

F-value and significance level of fixed effects 

MS of random error terms 

  MBC DOC MBN TDN 

  June October June October June October June October 

Site 5 2.0 3.5* 1.24 1.13 3.2* 3.3* 0.43 2.54 

Error 11† 5731 2538 20.1 19.3 82.2 33.1 0.27 6.33 

Contrast          

Urban vs 

Rural 
1 1.9 6.2* 2.68 5.12* 8.3* 7.2* 0.78 6.35* 

* Indicates significance at α=0.05 probability level. 

† One sample was lost from Loch Raven in June and one Cylburn Arboretum sample from October was removed as an outlier. 
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Table 4. Microbial biomass carbon (MBC) (μg C/g dry soil) and nitrogen (MBN) (μg 

N/g dry soil) means for June and October by site and location. Urban and rural 

comparisons are included.     

  MBC MBN 

Type Site June  October  June October 

Rural Gunpowder Falls 495A 435A 66.0A 38.9A 

Rural Loch Raven 348AB 431A 48.4AB 34.6AB 

Rural Oregon Ridge 463AB 476A 54.7AB 37.4AB 

Urban 
Cylburn 

Arboretum 
337B 446A 39.5B 27.0BC 

Urban Druid Hill 385AB 320B 42.6B 23.8C 

Urban Leakin Park 430AB 392AB 48.4B 37.4AB 

 LSD 141 94* 16.8* 10.6* 

Rural Mean 446 447* 57.3* 37.0* 

Urban Mean 384 378 43.5 29.7 

 LSD 81 54 9.7 6.1 
In each column, means with the same letter are not significantly different.  

* Indicates significance at α=0.05 probability level. 
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Table 5. Dissolved organic carbon (DOC) (mg/L) and total dissolved nitrogen (TDN) 

(mg/L) means for June and October by site and location. Urban and rural comparisons are 

included.     

 
 DOC TDN 

Type Site June  October  June October 

Rural Gunpowder Falls 15.2 14.1 2.67 9.81A 

Rural Loch Raven 19.0 15.1 2.88 10.3A 

Rural Oregon Ridge 15.5 16.2 2.42 8.02AB 

Urban 
Cylburn 

Arboretum 
17.3 21.4 2.94 8.81AB 

Urban Druid Hill 21.0 20.1 2.93 5.11B 

Urban Leakin Park 22.2 18.6 2.78 4.88B 

 LSD 8.3 8.1 0.96 2.07 

Rural Mean 16.2 15.1* 2.63 9.38* 

Urban Mean 20.2 19.9 2.88 5.95 

 LSD 4.8 4.7 0.56 1.20 
In each column, means with the same letter are not significantly different. Means without letters indicate no significant 

difference between sites.  

* Indicates significance at α=0.05 probability level. 

Microbial Biomass Nitrogen and Total Dissolved Nitrogen 

 The MBN of the soils sampled in June and October differed significantly among 

sites and between urban and rural locations (Table 3). MBN means ranged from 39.5±5.0 

to 66.0±5.8 μg N/g dry soil in June, and from 23.8±2.1 to 38.9±0.3 μg N/g dry soil in 

October (Table 4). While the MBN ranges in June and October are similar, the error 

variance was much small in October than in June (Table 3). In June, Gunpowder Falls 

(R) had a mean MBN of 66.0±5.8 μg N/g dry soil that was significantly higher than all 

urban sites. In October, Druid Hill (U) had a mean MBN of 23.8±2.1 μg N/g dry soil that 

was significantly lower than all rural sites.  

 The TDN of soils sampled in June did not significantly differ between sites or 

urban and rural locations (Table 3).  In June, TDN means had a small range from 

2.42±0.33 to 2.94±0.51 mg/L (Table 5).  The TDN of soils sampled in October was 

significantly greater in rural than urban locations (Table 3, Table 5).  Site TDN means 
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ranged from 4.88±1.89 to 10.3±1.70 mg/L, with Loch Raven (R) and Gunpowder Falls 

(R) having significantly greater soil TDN than Druid Hill (U) and Leakin Park (U) (Table 

5). 

Discussion 

Soil Characteristics 
 Of the soil characteristics measured, pH, C:N, %OM, and the soil metals are 

arguably the most relevant to plant and/or soil microbial function.  A soil pH of 7 is 

considered optimal for the growth of most microbes (Rosso et al. 1995).  However, 

specific pH preferences of members within a community can results in large community 

shifts with changes in pH, with higher diversity at neutral pH levels (Fierer and Jackson 

2006).  The differences in the mean pH of individual soils, or mean pH of urban and rural 

soils, were not statistically significant. However, Gunpowder Falls (R) soil had the most 

neutral pH overall and among the highest quantities of MBC and MBN in both June and 

October. Thus, the more neutral pH of the soil possibly contributed to enhanced growth 

and activity of the microbial community at Gunpowder Falls, and the increased MBC and 

MBN at this site relative to other sites with lower average pH soils.  Soil C:N is an 

important indicator of soil fertility.  A low C:N suggests that more N is available in the 

soil for the growth of the plant and microbial community.  The higher mean C:N of the 

urban soils relative to the rural soils may have reduced microbial growth and biomass 

accumulation, as plants compete more strongly with soil microbes for available soil N.  In 

addition, microbial C:N was greater in urban (9.0±0.37) than rural soils (7.8±0.28) in 

June (F1,11= 6.1, p=0.03).  Both microbial and soil C:N could have been affected by 

earthworm quantities.  In particular, earthworms break down recalcitrant leaf litter and 

release high N castes in the soil, thereby increasing the N available to the microbial 
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community.  Also, their castes can be favorable to bacterial growth by providing greater 

organic matter, moisture, and extractable inorganic N than the bulk soil, and detrimental 

to fungal growth by physically disrupting their structure (Zhu and Carreiro 1999).  In a 

study of forest soils along an urban to rural gradient in New York City, Steinberg et al. 

(1997) found that the presence of earthworms increased microbial N mineralization and 

nitrification rates. Therefore, the low soil and microbial C:N of rural forest soils in this 

study may have been influenced by high earthworm quantities.  Earthworm quantities 

were not measured, but should be considered in future research.  Pouyat et al. (2008) also 

found higher metal concentrations in urban forest soils, where Cu and Pb correlated 

significantly and positively with urbanization along an urban-rural gradient in Baltimore, 

MD.  In the present study, the soil metals Cu, Pb, and Fe were significantly greater in the 

urban than rural forest soils.  Metals such as Cu, Pb, and Fe inhibit the activity of the soil 

microbial community, and may have played a part in reducing the microbial biomass 

quantities observed in urban relative to rural sites in this study (Kao et al. 2006, Khan et 

al. 2010).   

Microbial Biomass Carbon and Dissolved Organic Carbon  
 The rural forest soils in this study had greater mean MBC quantities than the 

urban forest soils.  However, due to higher error variance in June, the difference between 

the means of urban and rural sites was only statistically significant in October. This 

implies that the long-term soil C stored in microbial biomass is greater in the rural than 

the urban forest soils.  This was unexpected, as previous studies have indicated that 

elevated CO2 stimulated the metabolism and storage of C as MBC by the microbial 

community through increased production of plant root exudates (Lipson et al. 2005, 

Phillips et al. 2011). If CO2 were the main factor influencing the MBC levels of these 
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forest soils, then urban forest soils, which have experienced higher levels of CO2 than 

rural forests, should have had a greater mean MBC than rural forest soils.  In this study, 

although the MBC was greater in rural soils, the soil DOC was greater in urban soils, 

suggesting that increased CO2 increased labile C from plant root exudates in urban 

environments (Table 5) but factors other than temperature and CO2 influence soil MBC.  

 A similar study by Groffman et al. (1995), investigating urban to rural forest 

gradients in and around New York City, found that the MBC of rural forest soil was 

significantly greater than urban forest soil.  They attributed this difference to earthworm 

activity and leaf litter lignin content, both of which increased with urbanization.  While 

neither of these factors were measured in the present study, MBC was found to be 

significantly negatively correlated with Cu (R=-0.85, p=0.03) and Pb (R=-0.87, p=0.02), 

both of which were significantly greater in urban than rural forest soils (Table 2).  

Previous studies by Kao et al. (2006) and Khan et al. (2010) have found that the 

application of Cu and Pb to the soil negatively affect the respiration, enzymatic activity, 

and (to a lesser extent) the MBC of the soil microbial community.  In a study where 

biosolids spiked with either Cu, Pb, or Zn were mixed with Typic Udorthent soil (16 

mg/kg Cu; 18 mg/kg Pb) from Taiwan, Kao et al. (2006) found that elevated Cu and Pb 

reduced microbial respiration rates and MBC quantities relative to the untreated biosolid 

application.  Microbial respiration rates in metal amended biosolid applications were 

significantly decreased from the untreated biosolid application at soil metal 

concentrations of 100 mg/kg Cu, 400 mg/kg Cu, 250 mg/kg Pb, and 1000 mg/kg Pb.  Soil 

MBC also declined, although not significantly, with increasing metal concentration.  

Similarly, in a 12 week study of agricultural soil (1.79 mg/kg Pb) amended with varying 
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concentrations of Pb and Cd, Khan et al. (2010) found that MBC and enzyme activity 

declined with increasing Pb concentrations.  For soil MBC, this general decline was not 

significant, while enzyme activity (acid phosphatase and urease) was significantly lower 

than the untreated soil at 150, 300, and 500 mg/kg Pb.  These studies suggest that while 

MBC does decline with increasing soil Cu and Pb concentration, this decline is not 

significantly great for concentrations up to 400 mg/kg Cu and 1000 mg/kg Pb over a 12 

week period.  In the present study, average soil Pb amounts were 47±7.4 mg/kg (Rural) 

and 77±8.1 mg/kg (Urban), while average Cu amounts were 5.9±0.8 mg/kg (Rural) and 

12.7±0.9 mg/kg (Urban). Therefore, while it is likely that Cu and Pb had some negative 

impact on the MBC of urban relative to rural soils, it is not likely that they were the 

only/primary environmental factors driving these differences.  

Microbial Biomass Nitrogen and Total Dissolved Nitrogen 
 The rural forest soils in this study had greater mean MBN quantities than the 

urban forest soils in both June and October, and greater TDN quantities in October.  The 

greater soil MBN in the urban compared to the rural sites could be related to the higher 

average C:N in urban (C:N 14.4±0.4) versus rural (13.1±0.1) sites. Also, the lower 

average October TDN of rural (9.38±0.48 mg/L) compared to urban (TDN 5.95±1.22 

mg/L) sites may have also affected the MBN in October.  Greater C:N and lower labile 

TDN in urban soil could have led to greater competition between plant roots and 

microbes for available N.  High C:N, in turn, may have been driven by either the urban 

climate (elevated temperature and CO2) or local tree species composition (Pouyat and 

Carreiro 2003).  While tree species composition at each site was not evaluated in detail, 

the presence of high C:N tree species, such as oak, in the leaf litter may have reduced the 

MBN in urban forest soil samples relative to rural soils. Earthworms were another 
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unmeasured soil factor that could have affected C:N and TDN between urban and rural 

soils.  Earthworm activity strongly affects the N cycle of the soil as earthworms break 

down leaf litter and increase available soil N more quickly than either fungi or bacteria 

(Pouyat and Carreiro 2003, Bohlen et al. 2004).  Earthworms also disrupt soil fungal 

structures as they move through the soil profile, which reduces bacteria:fungi in the soil.  

This can cause subsequent increases in the microbial C:N, as bacterial biomass typically 

has a lower C:N than fungal biomass.  In a similar study of deciduous forests along an 

urban to rural gradient in and around New York City, Zhu and Carreiro (2004) found that 

soil MBN was greater in rural than urban sites.  They attributed this difference to %OM, 

which positively correlated with MBN and was 1.7 times greater on average in rural than 

urban forest soils.  In the present study, %OM was not significantly different between 

urban and rural forest soils.  More likely causes of reduced MBN in urban relative to 

rural soils in this study are metal concentration and C:N.  Soil MBN was significantly 

negatively correlated with Pb (R=-0.89, p=0.02), Cu (R=-0.85, p=0.03), and C:N (R=-

0.81, p=0.049), all of which were significantly greater in urban than rural site soils (Table 

1, Table 2).  A study by Kao et al. (2006) found that over twelve weeks, biosolids treated 

with both Pb and Cu and applied to soils had reduced soil MBN relative to the untreated 

biosolid applications.  This decline in soil MBN was significant for Cu, but not 

significant for Pb.  Soil application amounts ranged from 100-400 mg/kg (Cu) and 250-

1000 mg/kg Pb, and the effects of Cu on MBN were significant at 100 mg/kg.  In the 

present study, mean Pb concentrations at the urban and rurals sites were 47±7.4 and 

12.7±0.9 mg/kg, respectively.  Mean Cu concentrations at  the urban and rural sites were 

77±8.1 mg/kg and 5.9±0.8 mg/kg, respectively. As with MBC, it is not likely that Pb and 
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Cu were the only environmental factors driving MBN differences between urban and 

rural soils. Although unmeasured environmental factors, such as leaf litter lignin content, 

soil texture, and earthworm activity may have contributed to the site variation in MBC, 

MBN, and TDN, sites were specifically chosen to have similar tree species composition 

and soil type and are not expected to be strongly impacted by these factors.  

 Finally, the residual error for both MBC and MBN in June was approximately 

twice as great as in October.  The difference in residual error between June and October 

precluded the analysis of month effects on the combined dataset. High between- and 

within-site variation is typical for studies of forest soils. In order to minimize the residual 

error and type-II errors, future studies of this kind should have a greater within-site 

sample size and encompass a greater sample area.     

Controlled Environmental Chamber Study 

Goals and Objectives 
 In the Baltimore area, urban forests have historically experienced higher levels of 

temperature and CO2 than rural forests (Brazel et al. 2000, Ziska et al. 2003, Ziska et al. 

2004).  The soil microbial communities of urban and rural forests may have adapted to 

these temperature and CO2 differences, as the structure and function of soil microbial 

communities can be sensitive to CO2 and temperature (Allison and Martiny 2008).  

Combined gradients of temperature, CO2, and urbanization have been investigated in 

‘space-for-time’ experiments, in which current urban ecosystem functions represent the 

future function of rural ecosystems along the gradient (Carreiro and Tripler 2005). 

However, few studies have examined the effects of elevated temperature and CO2 on soil 
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MBC or MBN in both urban and rural forest soils (Groffman et al. 1995, Zhu and 

Carreiro 2004).  

 The study objectives were to investigate and compare the effects of elevated 

temperature and/or CO2 on the soil microbial C storage and soil N pools of urban and 

rural forests.  A controlled environmental chamber study was conducted to determine the 

effects of short-term exposure to elevated levels of CO2 and temperature on C storage and 

N pools of urban and rural forest soils by quantifying C stored in soil MBC and soil N 

pools primarily as MBN, soil ammonium, and soil nitrate.  The effects of elevated CO2 

and temperature on soil dissolved organic carbon (DOC), microbial C:N, 

above/belowground biomass of hybrid poplar trees (OP-367 (Populus x canadensis)) and 

tulip poplar (Liriodendron tulipifera) trees were also measured.  

 Environmental chambers were used to expose soils and trees to a 2x2 factorial 

combination of ambient and elevated levels of CO2 and air temperature. Soils collected 

from three urban and three rural forest sites were placed in the chambers for seven weeks.  

During the experiment, hybrid poplars were grown in pots containing field soils to mimic 

field conditions and serve as an intermediate between CO2 and the soil microbial 

community.  

Materials and Methods 

Controlled Environmental Chamber Treatments 
 Soils collected at the six sites were put in pots and placed in one of four controlled 

environments from July 8 To August 26. Four controlled environmental chambers (two 

growth chambers at the University of Maryland and two climate-controlled greenhouses 

at the USDA/BARC in Beltsville, MD) were randomly assigned a temperature/CO2 

treatment, which consisted of a factorial combination of ambient and elevated levels of 
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temperature and CO2.  The treatments were: ACAT = ambient CO2 and ambient 

temperature, ACET = ambient CO2 and elevated temperature, ECAT= elevated CO2 and 

ambient temperature, and ECET= elevated CO2 and elevated temperature. The ambient 

air temperature was set to 23 °C, the average of the minimum and maximum daily air 

temperatures in June 2010 at two urban and four rural weather stations in the Baltimore 

area based on weather records obtained from the National Oceanic and Atmospheric 

Administration (Appendix A1) (National Oceanic and Atmospheric Administration 2014).  

The elevated air temperature was set to 25.5 °C, which is a 2.5 °C increase from the 

ambient temperature as predicted for 2090 (IPCC 2007).  Ambient CO2 levels were 

approximately 450 ppm in the University of Maryland growth chambers and 

approximately 405 ppm in the USDA greenhouses. In both locations, the ambient CO2 

treatment was not regulated, but was continuously measured and recorded using an 

infrared gas analyzer and datalogger equipment.  The elevated CO2 level was set to 600 

ppm, which is the 2013 global average atmospheric CO2 concentration and the amount 

predicted for 2090 according to emission scenario A1B (IPCC 2007, Earth System 

Research Laboratory: Global Monitoring Division 2012).  

 The growth chambers were 3.7 m2  and were illuminated with 16 400-watt T-15 

clear (Metal Halide) lamps and 16 100-watt MB frosted (Tungsten Halogen) lamps from 

6:00-20:00 UT each day.  Both chambers were programmed for the ambient temperature 

treatments at a constant temperature of 23 °C.  One chamber was maintained at ambient 

CO2 levels (ACAT treatment), which ranged from 400 to 500 ppm over the 7-week 

experiment.  The other chamber received supplemental CO2 to maintain an elevated level 

of 600 ppm CO2 (ECAT treatment).  
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 The climate-controlled greenhouses received only natural sunlight, and the 

average within-greenhouse irradiance was 196±8.1 W/m2 per day over the course of the 

study.  At the start of the experiment (July 8), daylight was from 5:48-20:35 UT.  At the 

end of the experiment (August 26), daylight was from 6:30-19:46 UT (Time and Date AS 

2015). Both greenhouses were programmed to receive elevated temperature treatments at 

a constant temperature of 25.5 °C, and maintained an average temperature of 25.3 °C 

throughout the study.  One greenhouse was maintained at ambient CO2 levels (ACET 

treatment), which averaged 416 ppm over the 7-week experiment.  The other greenhouse 

received supplemental CO2 to maintain a programmed elevated level of 600 ppm CO2 

(ECET treatment). Average CO2 levels for the ECET treatment were 596 ppm over the 

course of the study. Although temperatures decrease at night in the field, this was not 

replicated in the controlled chambers/greenhouses due to technical difficulties.  

 Due to the limited availability of chamber/greenhouses able to provide 

supplemental CO2  and time to repeat the experiment, the treatments were not replicated.  

Thus, the effects of temperature on the soils and plants were confounded with the 

differences between the growth chambers and the greenhouses, most notably the light 

intensity.  Since the light intensity was higher in the greenhouses than the growth 

chambers, the increases between ambient and elevated temperatures were most likely 

caused by the combination of both increased temperature and light.    

Soils  

 Soils used in this study were collected on June 28 and 30, 2014 at the same urban 

and rural forested sites analyzed in the field study.  At each site, two and a half gallons of 

soil were collected to a depth of 10 cm (excluding the litter layer) near the same three 
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interior tulip poplar trees as in the field study.  Soils at each site were homogenized and 

refrigerated for one week prior to their addition to pots. 

 Eighteen pots were filled with soil from each field site, with three pots per site 

were randomized in each controlled environment. A hybrid poplar cutting was planted in 

two of the three replicate pots in each chamber.  The third replicate pot was left as an 

unplanted control to test whether or not the effects of elevated temperature and elevated 

CO2 on soil MBC were significant without the hybrid poplar intermediate.  Thus, there 

were 12 pots (6 sites x 2 reps) with a plant and six pots (6 sites x 1 rep) without a plant 

exposed to each CO2/temperature treatment.  Each controlled environment also contained 

two (USDA Beltsville) or three (University of Maryland) tulip poplar seedlings planted in 

potting soil. All pots were watered to soil saturation once every two days.  
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Trees 

Hybrid Poplar  
 Trees were planted in the soils to mediate the effects of CO2 on the soil 

community, as would occur at the forest sites.  Hybrid poplar cuttings (genotype OP-367) 

(hybridpoplars.com, Glenmoore, PA) were used because they were genetically identical, 

of uniform size (approximately 7.6 cm), and lacked an initial root system.  Prior to the 

start of the experiment, cuttings were grown in potting soil and misted every 15 minutes 

in the University of Maryland greenhouse.  After three weeks, the rooted cuttings were 

rinsed and planted in 500 cm3 pots containing soils collected from the forest sites. 

Initially, the roots were approximately 3.8 cm long.  After seven weeks, the hybrid poplar 

roots grew to have contact with a majority of the soil but were not observed to be root-

bound. 

Tulip Poplar 
 Tulip poplar seedlings (Cold Stream Farm LLC, Free Soil, MI) were planted in 

each controlled environment to help reduce the CO2
 build-up that may have occurred in 

the chambers due to the respiration of the soil microbial community.  Each controlled 

environment contained two (USDA Beltsville) or three (University of Maryland) tulip 

poplar seedlings growing in potting soil. Tulip poplar seedlings were 76 cm tall and 

dormant when planted in potting soil, and were placed in controlled environments on July 

8, 2014. 

Laboratory Analyses   

Woody Biomass  

 After seven weeks, the hybrid poplars and tulip poplars were harvested and 

separated into above and belowground woody biomass.  Above and belowground 
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components were placed in separate paper bags and dried in drying ovens at the 

University of Maryland greenhouse at 40 °C for one week, and then weighed.  

Soils 

 The protocol for MBC and MBN extraction and quantification was the same as 

detailed in the laboratory analysis section of the field study.  DOC represents the total 

organic C quantified from the extracts of unfumigated soils.  DOC excludes all C 

containing particles, such as living MBC, unable to pass through the 1.2 μm glass fiber 

filter. 

 Ammonium and nitrate were extracted from planted soils based on the methods of 

Baxter et al. (2002). The 10 g dry weight equivalent (13.5 g) was extracted with 30 mL of 

2M KCl, then filtered through Whatman GF-C filter paper.  Extracts were stored at          

-20 °C until analysis by Kreshnik Bejleri of the Environmental Science and Technology 

Department at the University of Maryland.  Ammonium and nitrate were quantified from 

the soil extracts using a QuikChem® 8500 Autoanalyzer (Hach Company, Loveland, 

CO). 

Statistical Analysis 

 The data were analyzed using JMP Pro, Version 11 (SAS Institute Inc., Cary, NC).  

Analysis of variance was used to determine the significance of the effects of site, 

temperature, CO2, and their interactions on MBC, DOC, MBN, microbial C:N, nitrate, 

and ammonium quantities for the soils in pots with hybrid poplar cuttings.  Analysis of 

variance was also conducted to determine the significance of these effects on hybrid 

poplar above/belowground woody biomass.  For tulip poplar above/belowground woody 

biomass and the MBC of unplanted soils, ANOVAs were conducted to determine the 
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significance of the effects of site, temperature, CO2, and all interactions except for site x 

temperature x CO2 (Appendix A3).  Means were compared using an LSD procedure at the 

0.05 level of significance.  Planned comparisons were used to test for significant 

differences between rural and urban sites. 

Results  

Microbial Biomass Carbon and Dissolved Organic Carbon 

 Soil MBC quantities differed significantly due to the main effects of CO2 and site, 

but not temperature or the interactions of the main effects (Table 6). The mean MBC 

quantities of the main effects of temperature and CO2 are given in Table 7.  Overall, the 

mean MBC was 10% greater under elevated than ambient CO2 levels (Table 7).  However, 

at Oregon Ridge (rural (R)) and Cylburn Arboretum (urban (U)), the mean MBC of the 

elevated CO2 treatments was not greater than the mean of the ambient CO2 treatments 

(Table 7). Table 8 gives the MBC means for each treatment at each site. Overall, the 

mean MBC of rural sites (415±14 μg C/g dry soil) was significantly greater than urban 

sites (303±14 μg C/g dry soil) (Table 8). The difference between rural and urban mean 

MBC was also significant for ambient and elevated CO2 treatments.  Overall, Oregon 

Ridge (R) had the highest, and Cylburn Arboretum (U) and Druid Hill (U) had the lowest, 

mean MBC (Table 8).   

 Soil DOC quantities did not differ significantly due to the main effects of site, 

temperature, CO2, or their interaction, and did not differ significantly between urban and 

rural locations (Table 6). The mean DOC quantities of the main effects of temperature 

and CO2 are given in Table 7.  Table 8 gives the DOC means for each treatment at each 

site.    
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Table 6. ANOVA for the effects of site, temperature, CO2, and their interactions on the microbial biomass carbon 

(MBC), dissolved organic carbon (DOC), microbial biomass nitrogen (MBN), microbial C:N, ammonium, and nitrate 

of planted soils.  Contrasts between urban and rural groups are included. 

Source of Variation df F-value and significance level 

MBC DOC MBN Microbial C:N Ammonium Nitrate 

Site 5 18.7*** 0.58 3.7* 0.85 18.4*** 3.3* 

CO2 1 5.8* 0.01 7.4* 3.1 0.03 6.1* 

Temperature 1 2.5 0.47 4.8* 5.2* 0.92 19.1*** 

Temperature x CO2 1 0.02 0.10 1.1 2.8 2.6 0.44 

Site x CO2 5 1.6 2.0 1.0 0.72 0.82 0.66 

Site x Temperature 5 0.54 0.24 0.20 0.77 0.29 0.48 

Site x CO2 x 

Temperature 
5 2.3 0.61 0.86 0.96 2.6 1.1 

Error 24 -- -- -- -- -- -- 

Contrast 

Urban vs Rural 1 61.7*** 0.55 8.3** 0.03 15.8*** 2.8 

* Indicates significance at α=0.05 probability level, ** Indicates significance at α=0.01 probability level ***Indicates significance at α=0.001 probability level.
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Table 7. Mean soil microbial biomass carbon (MBC) (μg C/g dry soil) and dissolved organic carbon (DOC) (mg/L) 

for temperature and CO2 levels at each site.  Soils were planted with hybrid poplar. A contrast between urban and rural 

groups is included.  For all treatment level comparisons, the LSD was 72 for MBC and 5.9 for DOC.  For all urban and 

rural contrasts, the LSD was 42 for MBC and 3.4 for DOC. 

MBC 

Temperature Level GF† LR OR CA DH LP 

Rural 

Average 

Urban 

Average 

Overall 

Average 

Ambient 422 395 463 267 272 401 427*** 313 370 

Elevated 374 383 452 263 273 340 403*** 292 348 

CO2 Level 

Ambient 341** 375 456 272 260 346 390*** 293 342 

Elevated 455 403 460 259 284 395 439*** 313 376 

DOC 

Temperature Level GF LR OR CA DH LP 

Rural 

Average 

Urban 

Average 

Overall 

Average 

Ambient 17.8 16.1 15.4 17.0 17.1 

Elevated 19.4 18.2 19.1 17.2 17.9 

CO2 Level    

Ambient 15.6* 21.1* 16.5 18.4 17.4 

Elevated 21.6 15.3 18.5 17.8 17.3 17.6 

† GF= Gunpowder Falls, LR= Loch Raven, OR= Oregon Ridge, CA= Cylburn Arboretum, DH= Druid Hill, and LP= Leakin Park. 

* Indicates significance at α=0.05 probability level,  ** Indicates significance at α=0.01 probability level, *** Indicates significance at α=0.001 probability level.

17.1 18.2 17.8 

16.7 15.6 18.4
17.1 

18.6 

17.8 

16.1 

16.0 

15.7 

15.6 

18.2 

18.3 
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Table 8.  Treatment means of soil microbial biomass carbon (MBC) (μg C/g dry soil) and dissolved organic carbon (DOC) (mg/L) by 

site and location.  Urban and rural comparisons are included.   

MBC DOC 

Type Site ACAT†  ACET  ECAT  ECET 

Site 

Mean ACAT†  ACET ECAT ECET 

Site 

Mean 

Rural 
Gunpowder 

Falls 
344 338 500 410 398B 16.5 14.7 19.1 24.1 18.6A 

Rural Loch Raven 391 359 399 406 389B 18.0 17.6 16.3 15.9 16.9A 

Rural Oregon Ridge 492 419 434 485 458A 17.1 15.0 15.1 16.3 15.9A 

Urban 
Cylburn 

Arboretum 
298 245 236 282 265C 20.0 22.3 16.3 14.2 18.2A 

Urban Druid Hill 259 262 285 283 272C 14.8 16.4 15.9 20.4 16.9A 

Urban Leakin Park 339 354 464 327 371B 16.7 20.0 18.9 18.1 18.4A 

LSD 102 102 51 8.3 8.3 4.1 

Rural Mean 409** 372** 445* 434*** 415*** 17.2 15.7 16.8 18.7 17.1 

Urban Mean 299 287 328 297 303 17.2 19.6 17.1 17.6 17.8 

LSD 59 29 4.8 2.4 
Means with the same letter are not significantly different according to an LSD at 0.05 probability. 

†ACAT = ambient CO2 and temperature, ACET = ambient CO2 and elevated temperature, ECAT=elevated CO2 and ambient temperature, and ECET= elevated CO2 and 

temperature. 

* Indicates significance at α=0.05 probability level, ** Indicates significance at α=0.01 probability level, *** Indicates significance at α=0.001 probability level.

102 102 

59 59 59 4.8 4.8 4.8 

8.3 8.3 
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Microbial Biomass Nitrogen and the Microbial C:N 

 Soil MBN differed significantly due to the main effects of temperature, CO2, and 

site, but not their interactions (Table 6).  The MBN temperature and CO2 means for each 

site are given in Table 9.  Mean MBN was 28% greater under elevated than ambient 

temperature levels and was 36% greater under elevated than ambient CO2 levels.  For all 

sites, MBN was consistently greater under elevated than ambient temperature levels.  For 

all sites except for Cylburn Arboretum (U), MBN was consistently greater under elevated 

than ambient CO2 levels (Table 9). Table 10 gives the MBN means for each treatment at 

each site.  Overall, the mean MBN of rural soils (38.3±3.3) was significantly greater than 

urban soils (27.9±2.3) (Table 10).  The difference between rural and urban mean MBN 

was also significant for the elevated CO2 treatment (Table 9).  There was also a 

significant location x CO2 interaction (F1,24= 4.8, p=0.04), in which the MBN of rural 

sites was significantly greater under elevated than ambient CO2 levels (F1,22=9.7, p=0.01), 

while the MBN of urban sites did not significantly differ between ambient and elevated 

CO2 levels (F1,22=0.17, p=0.68).  Overall, Oregon Ridge (R) had a mean MBN that was 

significantly greater than those of Cylburn Arboretum (U), Druid Hill (U), and Loch 

Raven (R) soils (Table 10).   

 Soil microbial C:N differed significantly due to temperature, but not CO2, site, or 

the interactions of the main effects (Table 6).  The microbial C:N temperature and CO2 

means for each site are given in Table 11.  Mean microbial C:N was 45.1% lower under 

elevated than ambient temperatures.  For all sites, microbial C:N was lower under 

elevated than ambient temperatures.  Table 12 gives the microbial C:N means for each 
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treatment at each site.  Overall, the mean microbial C:N of urban and rural soils were not 

significantly different.       
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Table 9. Mean soil microbial biomass nitrogen (MBN) (μg N/g dry soil) for temperature and CO2 levels at each site.  Soils 

were planted with hybrid poplar.  A contrast between urban and rural groups is included.  For treatment level comparisons, the 

LSD was 18.2.  For all urban and rural contrasts, the LSD was 10.5.

† GF= Gunpowder Falls, LR= Loch Raven, OR= Oregon Ridge, CA= Cylburn Arboretum, DH= Druid Hill, and LP= Leakin Park. 

* Indicates significance at α=0.05 probability level, ** Indicates significance at α=0.01 probability level.

Temperature 

Level GF† LR OR CA DH 

Rural 

Average 

Urban 

Average 
Overall 

Average 

Ambient 34.2 27.1 43.7 16.4 22.0 31.5 35.0* 23.3 29.1 

Elevated 35.5 38.9 50.4 27.8 31.7 37.9 41.6 32.5 37.1 

CO2 Level 

Ambient 24.0* 24.6 39.6 22.1 25.5 33.1 29.4 26.9 28.2 

Elevated 45.7 41.4 54.4 22.1 28.2 36.4 47.2** 28.9 38.0 

LP 
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Table 10. Treatment means of soil microbial biomass nitrogen (MBN) (μg N/g dry soil) 

by site and location.  Urban and rural comparisons are included.   

Type Site ACAT†  ACET  ECAT  ECET Site Mean 

Rural 
Gunpowder 

Falls 
19.3 28.7 49.0 42.4 34.8AB 

Rural Loch Raven 12.4 36.8 41.7 41.1 33.0B 

Rural Oregon Ridge 41.8 37.5 45.6 63.2 47.0A 

Urban 
Cylburn 

Arboretum 
12.5 31.8 20.4 23.9 22.1B 

Urban Druid Hill 20.3 30.8 23.7 32.6 26.9B 

Urban Leakin Park 28.0 38.2 35.1 37.7 34.7AB 

LSD 25.7 25.7 25.7 25.7 12.9 

Rural Mean 24.5 34.4 45.4** 48.9* 38.3** 

Urban Mean 20.3 33.6 26.4 31.4 27.9 

LSD 14.9 7.4 
Means with the same letter are not significantly different according to an LSD at 0.05 probability. 

† ACAT = ambient CO2 and temperature, ACET = ambient CO2 and elevated temperature, ECAT=elevated CO2 and 

ambient temperature, and ECET= elevated CO2 and temperature. 

* Indicates significance at α=0.05 probability level, ** Indicates significance at α=0.01 probability level.

14.9 14.9 14.9 
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Table 11. Mean soil microbial C:N for temperature and CO2 levels at each site.  Soils were planted with hybrid poplar.  A 

contrast between urban and rural groups is included.  For treatment level comparisons, the LSD was 18.2.  For all urban and rural 

contrasts, the LSD was 10.5.

† GF= Gunpowder Falls, LR= Loch Raven, OR= Oregon Ridge, CA= Cylburn Arboretum, DH= Druid Hill, and LP= Leakin Park. 

* Indicates significance at α=0.05 probability level.

Temperature 

Level GF† LR OR CA DH 

Rural 

Average 

Urban 

Average 
Overall 

Average 

Ambient 14.9 30.6* 13.9 17.3 18.2 

Elevated 11.0 9.90 10.5 9.95 10.4 10.0 

CO2 Level 

Ambient 15.3 28.6 10.7 11.6 17.7 17.3 

Elevated 10.6 12.6 12.3 9.93 12.0 11.0 

LP 

25.7 11.2 13.1 

10.2 8.72 

19.2 

9.73 

16.9 

10.2 9.03 11.2 

25.4 12.4
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Table 12. Treatment means of soil microbial C:N by site and location.  Urban and rural 

comparisons are included.  

Type Site ACAT†  ACET  ECAT  ECET Site Mean 

Rural 
Gunpowder 

Falls 
19.0 11.7 10.9 10.2 13.0A 

Rural Loch Raven 41.0 9.82 10.4 9.98 17.8A 

Rural Oregon Ridge 12.5 12.3 9.90 8.16 10.7A 

Urban 
Cylburn 

Arboretum 
48.0 9.20 13.3 11.8 20.6A 

Urban Druid Hill 12.7 8.61 13.5 8.83 10.9A 

Urban Leakin Park 13.7 9.50 14.1 10.4 11.9A 

LSD 25.7 25.7 25.7 25.7 12.9 

Rural Mean 24.2 11.3 10.4 9.46 13.8 

Urban Mean 24.8 9.10 13.6 10.4 14.5 

LSD 14.9 14.9 14.9 14.9 
Means with the same letter are not significantly different according to an LSD at 0.05 probability. 

† ACAT = ambient CO2 and temperature , ACET = ambient CO2 and elevated temperature, ECAT=elevated CO2 and 

ambient temperature, and ECET= elevated CO2 and temperature. 

7.43 
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Ammonium and Nitrate 

 Soil ammonium and nitrate are important sources of N for plant and microbial 

communities.  Quantifying their concentration in the soil after temperature and CO2 

treatments provided insight into the nutrient status of the soil, the use of ammonium and 

nitrate by the plant and microbial communities, and their relationship to MBC, MBN, and 

hybrid poplar biomass.  

 Soil ammonium concentration differed significantly among sites, but did not 

differ due to temperature, CO2, or the interactions of the main effects (Table 6). The 

ammonium temperature and CO2 mean concentrations for each site are given in Table 13. 

Table 14 gives the mean ammonium concentrations for each treatment at each site. The 

ammonium concentrations of the rural soils (11.1±1.1 mg/kg) were significantly greater 

than those of the urban soils (7.4±1.1 mg/kg) (Table 14).  Of the six sites, the mean soil 

ammonium concentration of Gunpowder Falls (R) was largest, while the mean 

ammonium level of Druid Hill (U) was smallest (Table 14).  

 Soil nitrate concentration differed significantly due to the main effects of 

temperature, CO2, and site, but not their interactions (Table 6). The nitrate temperature 

and CO2 mean concentrations for each site are given in Table 13.  The mean soil nitrate 

concentration was 46% lower under elevated than ambient temperatures and 29% lower 

under elevated than ambient CO2 levels. For all sites, mean soil nitrate was lower under 

elevated than ambient temperature and CO2 levels (Table 13).  Table 14 gives the mean 

nitrate concentrations for each treatment at each site. The difference in mean soil nitrate 



 

 50 

concentration between urban and rural soils was not significant. Overall, the mean soil 

nitrate concentration at Druid Hill (U) was lower than at all other sites (Table 14).   
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Table 13. Mean soil ammonium and nitrate (mg/kg dry soil) for temperature and CO2 levels at each site.  Soils were planted 

with hybrid poplar. A contrast between urban and rural groups is included.  For treatment level comparisons, the LSD was 4.7 

for ammonium and 7.6 for nitrate.  For all urban and rural contrasts, the LSD was 2.7 for ammonium and 4.4 for nitrate. 

† GF= Gunpowder Falls, LR= Loch Raven, OR= Oregon Ridge, CA= Cylburn Arboretum, DH= Druid Hill, and LP= Leakin Park. 

* Indicates significance at α=0.05 probability level, ** Indicates significance at α=0.01 probability level, *** Indicates significance at α=0.001 probability level.

Ammonium 

Temperature 

Level GF† LR OR CA DH 

Rural 

Average 

Urban 

Average 

Overall 

Average 

Ambient 17.4 4.1 3.8 11.6 11.1** 6.5 8.8 

Elevated 17.0 6.3 4.6 14.0 11.1* 8.3 9.7 

CO2 Level 

Ambient 15.7 6.6 4.3 13.8 10.5 8.2 9.3 

Elevated 18.7 3.7 4.2 11.8 11.8*** 6.7 9.2 

Nitrate 

Temperature 

Level GF† LR OR CA DH 

Rural 

Average 

Urban 

Average 
Overall 

Average 

Ambient 11.9 18.5** 16.9 15.7* 6.3 16.2 15.8 12.7 14.2 

Elevated 7.3 8.3 10.4 7.4 3.3 9.3 8.7 6.6 7.7 

CO2 Level 

Ambient 9.8 17.2* 16.0 14.8 5.7 13.4 14.3 11.3 12.8 

Elevated 9.4 9.5 11.3 8.3 3.9 12.1 10.1 8.1 9.1 

7.7
7.8 8.6 

8.2 

8.0

8.3 

7.7 

8.3

LP 

LP
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Table 14.  Treatment means of soil ammonium and nitrate (mg/kg dry soil) by site and location.  Urban and rural comparisons 

are included.  

       Ammonium Nitrate 

Type Site ACAT† ACET ECAT ECET Site Mean ACAT ACET ECAT ECET Site Mean 

Rural 
Gunpowder 

Falls 
15.1 16.4 19.8 17.6 17.2A 11.0 8.7 12.8 6.0 9.6AB 

Rural Loch Raven 8.7 7.2 6.7 10.0 8.2C 24.2 10.2 12.8 6.32 13.4A 

Rural Oregon Ridge 8.2 7.3 8.3 8.3 8.0C 16.8 15.2 17.0 5.6 13.6A 

Urban 
Cylburn 

Arboretum 
4.6 8.7 3.6 3.90 5.2CD 20.2 9.5 11.2 5.3 11.5A 

Urban Druid Hill 3.9 4.6 3.75 4.6 4.2D 7.9 3.5 4.72 3.1 4.8B 

Urban Leakin Park 8.4 19.2 14.8 8.9 12.8B 19.7 7.1 12.8 11.5 12.7A 

LSD 6.7 3.3 10.8 5.4 

Rural Mean 10.7** 10.3 11.6* 12.0** 11.1*** 17.3 11.4 14.2 6.0 12.2 

Urban Mean 5.6 10.8 7.4 5.8 7.4 15.9 6.7 9.6 6.6 9.7 

LSD 3.9 3.9 3.9 3.9 1.9 6.2 3.1 
Means with the same letter are not significantly different according to an LSD at 0.05 probability.   

†ACAT = ambient CO2 and temperature , ACET = ambient CO2 and elevated temperature, ECAT=elevated CO2 and ambient temperature, and ECET= elevated CO2 and 

temperature. 

* Indicates significance at α=0.05 probability level, ** Indicates significance at α=0.01 probability level, *** Indicates significance at α=0.001 probability level.

6.7 6.7 6.7 10.8 10.8 10.8 

6.2 6.2 6.2 
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Woody Biomass 

 Hybrid Poplar 

 CO2 indirectly affects the soil microbial community through its effects on the 

plant production of root exudates and photosynthates, which are metabolized by the 

rhizosphere community (Treseder et al. 2005). In the present study, soils were planted 

with hybrid poplars to simulate natural forest conditions in which trees mediate the 

interaction of CO2 with the microbial community. The role of trees as mediators between 

CO2 and the soil microbial community is an important component of the soil C and N 

cycles. The above and belowground biomass of hybrid poplar was measured to gain 

insight into relationships between tree biomass and soil MBC, DOC, MBN, microbial 

C:N, ammonium, and nitrate, as affected by elevated temperature and CO2.  

 The hybrid poplar aboveground woody biomass differed significantly due to the 

main effects of temperature, site, and the site x temperature interaction (Table 15).  The 

mean aboveground woody biomass for the main effects of temperature and CO2 are given 

in Table 16. Overall, the mean aboveground woody biomass was 49% greater under 

elevated than ambient temperature levels.  For all sites, aboveground woody biomass was 

consistently greater under elevated than ambient temperature levels, although this 

difference was only significant for Gunpowder Falls (R), Cylburn Arboretum (U), and 

Druid Hill (U) (Table 16, Figure 2).  Table 17 gives the aboveground biomass means for 

each treatment at each site. Overall, hybrid poplars planted in urban soils had 

significantly greater mean aboveground woody biomass (1.87±0.16 g) than hybrid 

poplars planted in rural soils (1.52±0.11 g) (Table 17).  The mean aboveground woody 

biomass of hybrid poplars planted in urban soils was significantly greater than those in 

rural soils only when exposed to elevated temperature treatments (Table 16).  Overall, 
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aboveground woody biomass grown in Druid Hill (U) soil was significantly greater than 

all other sites regardless of temperature treatment.  Conversely, Loch Raven (R) and 

Leakin Park (U) had the lowest aboveground woody biomass for ambient and elevated 

temperature levels, respectively (Table 16).  

 In contrast to aboveground biomass, hybrid poplar belowground woody biomass 

was not significantly affected by any of the main effects or their interactions, or between 

urban and rural soils (Table 15).  The mean belowground woody biomass for the main 

effects of temperature and CO2 are given in Table 16.  Table 17 gives the belowground 

biomass means for each treatment at each site.
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  Table 15.  ANOVA for the effects of site, CO2, temperature and their interactions on the above and    

  belowground biomass of hybrid poplar.  Contrasts between urban and rural groups are included. 

Source of Variation df F-value and significance level  

  Aboveground Woody 

Biomass 

Belowground Woody 

Biomass 

Site 5 11.4*** 1.1 

CO2 1 3.0 3.9 

Temperature 1 35.3*** 0.0004 

Temperature x CO2 1 1.3 0.81 

Site x CO2 5 0.88 0.57 

Site x Temperature 5 2.9* 0.49 

Site x CO2 x 

Temperature 
5 0.51 0.18 

Error 24† -- -- 

Contrast    

Urban vs Rural 1 11.1** 3.7 
  

* Indicates significance at α=0.05 probability level, ** Indicates significance at α=0.01 probability level ***Indicates significance at α=0.001 probability level.  

  † Df for aboveground woody biomass is 23 due to a lost sample from treatment ACET at Cylburn Arboretum. 
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Table 16. Mean hybrid poplar above- and belowground woody biomass (g) for temperature and CO2 levels at each site.  A 

contrast between urban and rural groups is included.  For treatment level comparisons, the LSD was 0.57 for aboveground 

biomass and 2.2 for belowground biomass.  For all urban and rural contrasts, the LSD was 0.33 for aboveground biomass and 

1.3 for belowground biomass.  

† GF= Gunpowder Falls, LR= Loch Raven, OR= Oregon Ridge, CA= Cylburn Arboretum, DH= Druid Hill, and LP= Leakin Park. 

* Indicates significance at α=0.05 probability level, ** Indicates significance at α=0.01 probability level ***Indicates significance at α=0.001 probability level.

Aboveground Woody Biomass 

Temperature 

Level GF† LR OR CA DH 

Rural 

Average 

Urban 

Average 

Overall 

Average 

Ambient 1.50* 0.85** 1.40 1.33** 1.83*** 1.25 1.25 1.36 

Elevated 2.10 1.63 1.58 2.30 3.23 1.43 1.77** 2.03 

CO2 Level 

Ambient 1.85 1.28 1.20* 1.73 2.35 1.20 1.44 1.57 

Elevated 1.75 1.20 1.78 1.90 2.70 1.48 1.58** 1.80 

Belowground Woody Biomass 

Temperature 

Level GF† LR OR CA DH 

Rural 

Average 

Urban 

Average 

Overall 

Average 

Ambient 2.48 1.53 2.05 2.13 3.88 2.60 2.02 2.87 2.44 

Elevated 2.35 1.78 1.95 3.15 2.60 2.78 2.03 2.84 2.43 

CO2 Level 

Ambient 2.00 1.95 2.83 1.54 2.48 2.01 

Elevated 2.83 1.73 2.95 3.33 3.83 2.55 2.50 2.87 

LP 

LP 

1.47 

2.31 

1.70 

2.03 

3.23 

2.65 1.58 1.05 
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  Figure 2.  Site by temperature interaction shown for hybrid poplar   

  aboveground woody biomass (g).  Standard error bars are included.
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Table 17.  Treatment means of hybrid poplar above and belowground woody biomass (g) by site and location.  Urban and rural 

comparisons are included. 

Aboveground Woody Biomass Belowground Woody Biomass 

Type Site ACAT† ACET ECAT ECET 

Site 

Mean ACAT ACET ECAT ECET Site Mean 

Rural 
Gunpowder 

Falls 
1.4 2.35 1.65 1.85 1.80B 1.45 2.55 3.5 2.15 2.41AB 

Rural 
Loch 

Raven 
0.85 1.70 0.85 1.55 1.24C 1.35 1.80 1.7 1.75 1.65B 

Rural 
Oregon 

Ridge 
1.10 1.30 1.70 1.85 1.49BC 1.15 0.95 3.0 2.95 2.00AB 

Urban 
Cylburn 

Arboretum 
1.05 2.40 1.60 2.20 1.81B 1.20 2.70 3.1 3.60 2.64AB 

Urban Druid Hill 1.65 3.05 2.00 3.40 2.53A 3.20 2.10 4.6 3.10 3.24A 

Urban 
Leakin 

Park 
1.15 1.25 1.35 1.60 1.34C 2.55 3.10 2.7 2.45 2.69AB 

LSD 0.81 0.40 3.1 1.6 

Rural Mean 1.10 1.78 1.40 1.75** 1.51** 1.32 1.77 2.72 2.28 2.02 

Urban Mean 1.28 2.20 1.65 2.40 1.87 2.32 2.63 3.42 3.03 2.85 

LSD 0.47 0.23 1.8 0.90 

Means with the same letter are not significantly different according to an LSD at 0.05 probability.  

†ACAT = ambient CO2 and temperature , ACET = ambient CO2 and elevated temperature, ECAT=elevated CO2 and ambient temperature, and ECET= elevated CO2 and 

temperature.  

** Indicates significance at α=0.01 probability level. 

0.81 0.81 0.81 3.1 3.1 3.1 

1.8 1.8 1.8 0.47 0.47 0.47 
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Discussion 

Microbial Biomass Carbon and Dissolved Organic Carbon 
 In this study, MBC quantities in planted soils were greater under elevated than 

ambient CO2 levels, suggesting that as CO2 levels increase in the Baltimore metropolitan 

area, the amount of C stored in the forest soil as MBC will also increase. As MBC 

increases, the long-term storage of C as microbial necromass will likely increase, which 

would prevent this C from returning to the pool of greenhouse gases. In unplanted soils, 

however, MBC quantities were not greater under elevated than ambient CO2 levels (Table 

18). This suggests that the effect of elevated CO2 on the microbial community was 

mediated by the hybrid poplars. Some similar studies have suggested that either enhanced 

root biomass or exudate production were responsible for observed MBC quantities, which 

were greater under elevated than ambient CO2. In a four-year study of soils from a 

subtropical forest in China, Chen et al. (2012) found that soils exposed to elevated CO2 

(700 ppm) in open-top chambers had significantly larger quantities of MBC than soils 

exposed to ambient CO2 treatments.  Chen et al. (2012) attributed this increase to an 

increase in new C inputs from plant root biomass.  As part of the Duke Forest Free Air 

CO2 Enrichment (FACE) experiment, Phillips et al. (2011) found that mature forest plots 

exposed to elevated CO2 (585 ppm) had significantly greater soil MBC than forest plots 

exposed to ambient CO2 treatments (385 ppm).  They, however, attributed this increase in 

MBC to tree root exudate production, which also significantly increased in soils exposed 

to elevated CO2.  In the present study, soil DOC, which is primarily composed of small 

organic compounds from root exudates and plant/microbial necromass, was not 

significantly affected by temperature, CO2, or their interaction.  It is likely that the 

elevated CO2 levels significantly increased MBC but not DOC because the increase in 
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these easily degraded C sources was balanced by increased C uptake by the living plant 

and microbial community. 

 In the literature overall, the effects of CO2 on soil MBC in mature forest soils 

have been equally divided between positive and neutral responses, while mostly positive 

responses were observed in grassland ecosystems (Zak et al. 2000).  A meta-analysis by 

Hu et al. (2006) found that 19 studies of mature forests observed positive effects, while 

21 studies observed non-significant effects, of elevated CO2 on soil MBC.  The 

difference in response to CO2 between mature forests and grasslands can be directly 

related to soil N availability, which is typically more limiting in mature forest than 

grassland ecosystems.  When C additions (as exudates and root growth) increase soil C:N 

under elevated CO2, N increasingly limits plant and microbial activity and growth to 

some degree.  The present study involved a short-term (49 day) exposure of soils to 

elevated and ambient CO2 and temperature levels.  The observed effects of CO2 on MBC 

and MBN may not hold with a longer exposure time, as N limitation becomes more 

prevalent.  

 The results of this study also suggest that rural forest soils in the Baltimore 

metropolitan area are larger microbial C stores on a per hectare basis than urban soils, 

and that this difference may persist in the future under elevated CO2 and elevated 

temperature. The persistence of rural and urban MBC differences regardless of 

temperature and CO2 exposure levels indicates that either 1) the soil microbial 

communities have adapted structurally to environmental differences between urban and 

rural forests such that, in the short-term, elevated temperature and CO2 did not cause the 

MBC quantities from these communities to converge, or 2) soil factors unaffected by 
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short-term temperature and CO2 treatments persisted from the field study to drive urban 

and rural soil MBC differences throughout the controlled chamber study.  

 The structure of microbial communities can be sensitive to changes in 

temperature and CO2.  A meta-analysis by Allison and Martiny (2008) found that 

microbial community structure was significantly altered by elevated CO2 in 60%, and 

elevated temperature in 82%, of studies.  Differences in average temperature and CO2 

levels between urban and rural forests can therefore result in divergent soil microbial 

communities.  Microbial phyla vary in their metabolic requirements and changes in the 

structure of these communities (the fungi:bacteria for instance) in the present study could 

have caused the differences in microbial C storage (MBC) between urban and rural sites.  

In the present study, the microbial C:N was lower under elevated than ambient 

temperature treatments, and may have been influenced by a more predominant bacterial 

(lower biomass C:N than fungi) community under the elevated temperature treatment.  

Soil factors unaffected by short-term temperature and CO2 treatments, but which affect 

soil MBC, could also have differentiated the MBC of urban and rural forest soils in this 

study, and include soil texture and metal content.  While soil sampling locations in this 

study were all broadly designated as containing Ultic hapludalf soils through the USDA 

soil survey, soil texture may have varied across microsites in the forest soil. Soil texture 

was not measured in this study, but soils high in clay may have lower MBC due to the 

increased binding of, and aggregate formation around, organic matter used as C and N 

sources by the microbial community (Sulman et al. 2014).  Soil metal content can also 

negatively affect soil MBC.  In the field study, Cu and Pb were greater in urban than rural 

forest soils and were negatively correlated with MBC (Cu (R=-0.85, p=0.03) and Pb (R=-
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0.87, p=0.02)). Some previous studies have also found that urban soils had greater Pb and 

Cu concentrations than rural soils, and that MBC was negatively correlated with these 

metals (Kao et al. 2006, Khan et al. 2010, Zhao et al. 2013). The levels of Cu and Pb in 

the soils of the present study (Cu 8.9±1.2 mg/kg; Pb 60.3±7.0 mg/kg), however, were 

much lower than soil concentrations in the aforementioned studies. Therefore, while Cu 

and Pb may have inhibited microbial activity in the urban soils to some degree, it is not 

likely that they were the only/primary environmental factors driving the rural-urban 

differences in MBC.  

Microbial Biomass Nitrogen and Microbial C:N   
 Microbial biomass has a short turnover time, and is an important source of 

organic N (such as amino acids) to the plant and living microbial community.  The 

present study found that MBN was greater under elevated than ambient temperatures.  

However due to the design of the controlled environmental chamber study, the 

temperature effect may have become intertwined with the light effect, as irradiance was 

not likely identical between environment types (growth chambers versus greenhouses). 

The greater MBN observed in elevated than ambient temperature levels in the present 

study was consistent with previous studies showing that decomposition by the microbial 

community, and the general availability of N in the soil, increased with temperature 

(Melillo et al. 2002).  However, observed MBN differences between ambient and 

elevated temperature treatments may be influenced by differences in irradiance.  For 

instance, photosynthesis increases with irradiance until the carboxylation rate step 

becomes limiting (Lambers et al. 2008).  As photosynthesis increases, more C is allocated 

to areas such as root growth and exudate production, two important sources of C for the 

microbial community.  Root exudates, in particular, can stimulate the mineralization rates 
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of organic matter, and the assimilation of N, by the microbial community through 

priming effects.  This in turn can increase the N taken up by the microbial community 

and stored as MBN.  Therefore, while temperature has direct effects on the metabolic 

rates of the microbial community, light can have indirect effects through the stimulation 

of photosynthesis, and subsequent plant growth and exudate production.  

 In the present study, MBN was also greater under elevated than ambient CO2 

levels suggesting that as CO2 levels increase in the Baltimore metropolitan area, available 

N as MBN in forest soils will increase as well. The positive effect of elevated CO2 on 

MBN observed in the present study, however, conflicts with many studies of mature 

forest soils, which found no significant effect of CO2 on soil MBN (Zak et al. 2003, Finzi 

et al. 2006).  This contradiction could be due in part to competition for N between the 

plant and microbial community, which can be relatively strong in mature forest 

ecosystems that do not receive significant N input from deposition.  As part of the Duke 

FACE experiment, Finzi et al. (2006) found that over six years, MBN did not differ due 

to elevated CO2.  There was, however, an interaction between CO2 and time for the N 

content of tree woody biomass, such that N content was greater under elevated than 

ambient CO2 treatments over time.  This suggests that, in a mature forest setting, N 

uptake over time is much greater for trees than for the microbial community when 

exposed to elevated CO2. The present study was conducted on hybrid poplar rooted 

cuttings over a seven week period. Over this time period, N competition between the 

small trees and the soil microbial community may not have become as severe as occurs in 

some mature forests, resulting in greater microbial N under elevated than ambient CO2 in 

the present study.  In a meta-analysis of studies investigating the C and N pools of forest 
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trees and soil over time, Yang et al. (2011) also found that while all studies observed 

positive increases in plant woody biomass N and 50% of studies observed increases in 

total litter and forest floor N, the magnitude of these N increases declined with forest age.  

This suggests that progressive N limitation may occur as some forests age and 

emphasizes the importance of tree age on the N dynamics of forest soils.  In some forests, 

however, the N limitation that would occur with time in the soil is counterbalanced by N 

inputs from atmospheric deposition.  In particular, chronic N deposition has been 

observed in forest near and within urban and agricultural areas, where large amounts of 

fossil fuel combustion and fertilizer production occurs (Bettez and Groffman 2013).  

 The soil microbial C:N was also smaller under elevated than ambient temperature 

levels.  This smaller C:N was mainly due to significantly greater microbial N quantities, 

rather than smaller microbial C quantities, under elevated than ambient temperatures.  As 

with the soil MBN, however, lower microbial C:N in elevated than ambient temperature 

treatments could have been influenced by either the effects of temperature or light.  A 

smaller total microbial C:N under elevated compared to ambient temperatures may 

suggest that there was a greater bacterial:fungal in the soil, as soil bacteria typically have 

lower biomass C:N than fungi.  

 The results of this study also suggest that rural forest soils in the Baltimore 

metropolitan area have greater microbial N pools than urban soils, and that these 

differences will persist under elevated temperature and elevated CO2 levels. As with 

MBC, observed urban and rural differences regardless of treatment may be explained 

either by the persistence of a microbial community structurally adapted to urban or rural 

soils, or the persistence of urban- or rural-defining soil factors unaffected by short-term 
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temperature and CO2 treatments.  In terms of soil factors, organic matter and soil metals 

affect MBN and have been found to differ between urban and rural forest soils.  In a 

similar study by Zhu and Carreiro (2004), forest soil MBN along an urban-to-rural 

gradient in and around New York City decreased with urbanization.  They attributed the 

elevated MBN in rural forest soils to increased organic matter, which is an important 

source of N for the microbial community.  In the present study, there was no difference in 

organic matter between urban and rural forest soils before the experimental treatments 

began.  Soil metal content can negatively affect soil MBN by negatively affecting 

microbial functions, such as N mineralization.  In the present study, Cu and Pb were 

greater in urban than rural forest soils, and were also negatively correlated with MBN, in 

soils analyzed in the field study.  As study by Kao et al. (2006) found that over twelve 

weeks, biosolids treated with either 250 mg/kg Pb or 100 mg/kg Cu and applied to soils 

had reduced N mineralization rates compared to untreated biosolid applications. As with 

MBC, the Cu and Pb concentrations at which significant effects on MBN are found in the 

literature, are much greater than found in the soil of the present study (Kao et al. 2006, 

Khan et al. 2010).  Therefore it is not likely that Pb and Cu were the only environmental 

factors driving the observed rural-urban differences in MBN.  

Ammonium and Nitrate 
 Soil ammonium is an important N source for the plant and microbial community. 

While soil ammonium was not affected by elevated temperature or elevated CO2 during 

this study, the greater MBN quantities seen under elevated than ambient temperature and 

CO2 levels indicates that there was microbial immobilization of soil N.  In aerobic forest 

soils, the microbial community primarily uses ammonium as their source of inorganic N.  

A non-significant decrease in ammonium in response to microbial uptake may be due in 
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part to a counterbalance of ammonium input from increased mineralization.  Greater 

mineralization rates occur with elevated temperature as the activity rate of microbial 

enzymes increases. In a long-term forest warming study by Melillo et al. (2011), a 

deciduous forest in Massachusetts was subjected to soil warming at levels consistently 

5 °C above the ambient control.  Over seven years they found that warmed soils 

maintained significantly higher net N mineralization rates than the ambient control.  

Studies have also found that mineralization rates increase under elevated CO2 levels in 

the short-term due to priming, during which labile C inputs from plant roots stimulate 

microbial mineralization of organic matter (Treseder et al. 2005).  However in the long-

term, mineralization rates declined when N became more limiting in the soil due to plant 

uptake (Treseder et al. 2005, Dieleman et al. 2010).  In the present controlled chamber 

study, a balance between mineralization and N uptake by the microbial and plant 

community may have resulted in no detected change of soil ammonium levels under 

elevated CO2 treatments.  While this is only speculative, the results imply that soil 

ammonium was not lower under elevated than ambient CO2 and temperature treatments 

and was not limited in these soils.  

 Ammonium was greater in rural than urban forest soils overall.  This difference 

likely persisted from the field study, where C:N was lower and June MBN was higher in 

rural than urban forest soils.  Soil ammonium uptake by plants, however, is highly 

dependent on soil temperature and varies between seasons.  In their study of beech and 

spruce dominated forests in Germany, Gessler et al. (1998) found that ammonium uptake 

for both spruce and beech dominated forests were highest in mid-summer, and correlated 

strongly with soil temperature.  Forest soil temperatures increase with urbanization in the 
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Baltimore area (George et al. 2007, Savva et al. 2010). In the present study, therefore, the 

ammonium uptake by urban trees may have been greater than rural trees, causing urban 

soils to display lower MBN quantities in the field study and lower ammonium 

concentrations in the controlled chamber study. 

 Soil nitrate is an important source of inorganic N to the plant community, and is 

highly mobile in forest soils.  In the present study, soil nitrate was lower under elevated 

than ambient temperature and CO2.  The microbial community of forest soils primarily 

uses ammonium as their inorganic nitrogen source, and smaller nitrate amounts in 

elevated relative to the ambient temperature and CO2 treatments were not likely due 

greater microbial activity.  However reduced activity by nitrifying bacteria, which 

convert ammonium to nitrite and nitrite to nitrate, may be partly responsible.  The PNL 

theory suggests that under elevated temperature and CO2, plant and microbial 

communities may compete more strongly for available N, as their N requirements 

increase with their growth and activity (Luo et al. 2004). If the plant community is able to 

outcompete the microbial community, nitrifying bacteria may reduce their activity, and 

the production of nitrate, as ammonium becomes more limiting.  Soil N limitation, 

however, may not be as critical in forests near urban or agricultural areas, which typically 

experience greater N inputs into the soil through atmospheric deposition (Bettez and 

Groffman 2013).  In addition, soil nitrate losses were not likely due to leaching.  As all 

soils were given roughly the same amount of water during the study, soil nitrate losses 

from leaching would have occurred for all soils regardless of temperature or CO2 

treatment.  These results imply that under a future climate of elevated temperature and 

CO2, less nitrate may be mobilized from forest soils to pollute waterways, as plant nitrate 
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uptake increases.  As previously stated, however, temperature and light effects were 

potentially intertwined, such that nitrate uptake due to plant growth could have been 

influenced by both elevated temperature and light.     

 While soil ammonium and nitrate are both important components of the forest N 

cycle, they differ critically in regards to: uptake preference by the plant community, soil 

temperature optima for plant uptake, and mobility in the soil. Nitrate is more mobile in 

the soil matrix than ammonium due primarily to its charge.  Soils particles are generally 

negatively charged and bind to cations such as ammonium.  Nitrate on the other hand has 

a negative charge and can be transported easily by water throughout the soil matrix.  Due 

to the ease of its diffusion through the soil, nitrate can be more highly concentrated in the 

rhizosphere, relative to ammonium.  Despite this, ammonium is more easily assimilated 

by plant roots than nitrate, as ammonium assimilation requires fewer steps (and thus less 

energy) to be converted to organic N in plant roots or leaves than nitrate assimilation.  

During assimilation, nitrate must first be reduced to ammonium before it can be 

converted to an amino acid (Lambers et al. 2008).  The temperature optima for plant 

assimilation also differs between ammonium and nitrate.  Several studies have shown that 

as soil temperatures increase from 10 °C, the ammonium:nitrate uptake of plant roots 

slowly decreases (Bassirirad 2000).  While the mechanisms underpinning this change are 

not well understood, it has been suggested that greater uptake of nitrate under elevated 

temperature is related to increased N demand from aboveground plant growth, and the 

mobility of nitrate in the soil matrix.  In the present study, greater hybrid poplar 

aboveground biomass, and corresponding lower quantities of soil nitrate, under elevated 
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than ambient CO2 and temperature treatments may support this claim (Table 13, Table 

16).  

Above and Belowground Woody Biomass 
 Hybrid poplar aboveground woody biomass was greater under elevated than 

ambient temperatures, while belowground biomass did not differ between temperature 

levels.  Hybrid poplar roots, however, were observed to grow throughout the study, 

filling the 500 cm3 pot after seven weeks. In the present study, less soil nitrate occurred 

under elevated than ambient temperature and CO2 treatments, and were likely caused by 

hybrid poplar uptake during aboveground biomass growth.  While plants in general 

provide C and N sources as above and belowground biomass for microbial growth, they 

are also in constant competition with the microbial community for soil nutrients.  This 

competition, especially for N, increases as plants mature and their N demand becomes 

greater.  Under elevated CO2 and temperature levels, plants of all ages compete more 

strongly with the microbial community for soil N.  Under these same conditions, however, 

more N may be accessible to plants and microbes due to increased microbial 

mineralization and turnover.  Therefore, while most mature forests are N limited, plants 

and microbes may avoid the negative effects of PNL under elevated CO2 and temperature 

levels through the replenishment of available soil N by the soil microbial community. 

The growth of the plant community is therefore necessarily intertwined with the 

microbial community, and the knowledge of one is necessary for the understanding of the 

other.  

 In addition, as with MBN, microbial C:N, and nitrate, aboveground woody 

biomass differences between temperature treatments could have been influenced by light 

differences between environmental chamber types.  As irradiance positively affects plant 
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growth, up to the point where carboxylation rates are limiting, greater irradiance in the 

environments exposed to elevated temperature could have caused greater aboveground 

woody biomass growth there relative to the ambient temperature environments. 
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Table 18. ANOVA for the main effects of site, temperature, CO2, and their 

interactions on the microbial biomass carbon of unplanted soils.  A contrast 

between urban and rural groups is included. 

** Indicates significance at α=0.01 probability level ***Indicates significance at α=0.001 probability level.

Source of Variation Df F-value and significance level 

Site 5 10.5** 

CO2 1 0.21 

Temperature 1 0.10 

Temperature x CO2 1 1.8 

Site x CO2 5 1.6 

Site x Temperature 5 0.73 

Error 5 -- 

Contrast 

Urban vs Rural 1 46.5*** 
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Conclusion  
 The results of this research are preliminary, and replications of the controlled 

environmental chamber study need to be conducted to support these findings.  Results 

from this study suggest that if CO2 levels continue to increase, the soil C storage and 

microbial N availability of forests in the Baltimore metropolitan area will increase, while 

soil nitrate levels will decrease.  Results also suggest that if temperature levels continue 

to increase, the microbial N availability of these forests will increase, while the microbial 

C:N and soil nitrate availability will decrease.  However, observed effects of elevated 

temperature on MBN, microbial C:N, and nitrate in the controlled environmental 

chamber study may have been enhanced with light effects.  Thus irradiance may be 

equally important in driving MBN, microbial C:N, and soil nitrate differences between 

ambient and elevated temperature treatments.  This research also suggests that for the 

sites studied, rural forest soils have larger microbial C and N stores than urban forest soils, 

which may persist under elevated temperatures and CO2 levels.   

 Some previous studies have found that MBC and MBN increase with elevated 

temperature and/or CO2 levels (Lipson et al. 2005, Belay-Tedla et al. 2009, Melillo et al. 

2011, Carrillo et al. 2014).  As temperature and CO2 levels have been shown to increase 

with urbanization in the Baltimore metropolitan area, it was thought that the studied 

urban forest soils would have had greater MBC and MBN quantities than rural soils.  

However, during the field study the opposite was found to occur.  In the environmental 

chamber study, where CO2 and temperature were carefully controlled, MBC was greater 

under elevated than ambient CO2 levels and MBN was greater under elevated than 

ambient temperature/light and CO2 levels.  This could imply that there were unmeasured 
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environmental factors in the studied urban and rural forests that interacted with 

temperature and CO2.  This interaction may have effected microbial biomass C and N in a 

way that was contrary to expectations.  In the present study, while Pb and Cu were 

greater in urban than rural soils, and negatively correlated with MBC and MBN, they 

were not likely primary factors in differentiating urban and rural forest soils in this study, 

as their levels are relatively low (Banu et al. 2004, Khan et al. 2010).  Other factors that 

potentially influenced urban and rural microbial biomass differences, but were not 

measured in this study, include earthworm activity and leaf litter lignin content, as 

suggested by Groffman et al. (1995) and Pouyat and Carreiro (2003), and soil clay 

content, as suggested by Sulman et al. (2014).  In addition, the controlled environmental 

chamber study was a short-term (49-day) experiment.  If temperature and CO2 treatments 

had been applied to soils for a longer period of time, their effects on MBC and MBN may 

have been non-significant, as is seen in many long-term forest studies (Zak et al. 2000, 

Hu et al. 2006).  

 Overall, this project illustrates the importance of temperature, CO2, and urban 

versus rural forest location in determining the potential C storage and microbial N pools 

of forest soils.  In recent years, soil C models have taken significant steps towards 

incorporating microbial processes and urban ecosystems (Pataki et al. 2006, Allison et al. 

2010, Wieder et al. 2013). The present study suggests that there is clearly an 

environmental difference between urban and rural forests that influences soil microbial C 

and N quantities, and that is causing these differences to be maintained under elevated 

temperature and CO2 conditions.  The next step towards improving the accuracy of these 

models will involve distinguishing the C and N cycles of urban and rural forests, and the 



 

 74 

environmental factors that differentiate them. Before this can occur, however, further 

research on the microbial components of these cycles under present and future climate 

conditions is critical.  
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Appendix 

 
 

 
A1. The mean minimum and maximum daily temperatures of six locations in Maryland (four rural and two urban) in June 2010.  

Locations included Bel Air, Clarksville, Westminster, and Woodstock (rural), Cylburn Arboretum and the Maryland Science Center 

(urban).  Averaged across sites, the daily temperature for June 2010 was 23.4°C.  This was rounded to 23.0°C for the ambient 

temperature treatment of the environmental chamber study.  
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Tulip Poplar 

 Tulip poplars were planted and placed in environmental chambers to regulate any 

CO2 build-up that may have occurred during the study due to the lack of CO2 scrubbing 

equipment.  The above and belowground woody biomass was measured to examine the 

effects of elevated temperature and CO2 on this native tree species.    

 After 49 days of exposure to temperature and CO2 treatments, tulip poplar 

aboveground woody biomass was not significantly affected by temperature, CO2, or their 

interaction (Appendix A3).  This likely occurred because the tulip poplar seedlings were 

around 76 cm and had a substantial root system when exposed to the treatments.  Their 

growth under most conditions would likely be slower than the small and young hybrid 

poplar cuttings.   

 Tulip poplar belowground woody biomass differed significantly due to 

temperature, but was not significantly affected by CO2, or the temperature x CO2 

interaction (Appendix A3).  Tulip poplar belowground woody biomass was 46% lower 

under elevated than ambient temperature, which was likely a result of water stress 

(Appendix A4).  The watering frequency under elevated temperature treatments was 

likely insubstantial for the tulip poplars, due to their large root system and well drained 

potting soil medium.
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 A2.  ANOVA for the effects of CO2, temperature, and their interaction on the above and belowground biomass of tulip poplar.   

Source of Variation Df F-value and significance level  

  Aboveground Woody 

Biomass 

Belowground Woody 

Biomass 

CO2 1 0.61 0.08 

Temperature 1 1.8 6.4* 

Temperature x CO2 1 0.78 0.14 

Error 6 -- -- 

   * Indicates significance at α=0.05 probability level. 
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  A3. Tulip poplar above and belowground woody biomass (g) means for  

  temperature and CO2 levels.  

Temperature Level 

Aboveground 

Biomass 

Belowground 

Biomass 

Ambient 9.1 8.7 

Elevated 7.4 4.7 

LSD 3.2 3.8* 

CO2 Level   

Ambient 8.8 6.5 

Elevated 7.7 6.9 

LSD 3.2 3.8 

Mean 8.4 7.1 
  * Indicates significance at α=0.05 probability level. 
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