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Abstract- In this paper we propose an algorithm for 
design and on the fly modification of the schedule of an 
ad-hoc wireless network in order to provide fair service 
guarantees under topological changes. The primary 
objective is to derive a distributed coordination method 
for schedule construction and modification for any 
wireless ad-hoc network that operates under a schedule 
where the transmissions at each slot are explicitly 
specified over a time period of length T.  

First we introduce a fluid model of the system where 
the conflict avoidance requirements of neighboring links 
are relaxed while the aspect of local channel sharing is 
captured. In that model we propose an algorithm where 
the nodes asynchronously re-adjust the rates allocated to 
their adjacent links based only on local information. We 
prove that from any initial condition the algorithm finds 
the max-min fair rate allocation in the fluid model. Hence 
if the iteration is performed constantly the rate allocation 
will track the optimal even in regimes of constant 
topology changes.  

Then we consider the slotted system and propose a 
modification method that applies directly on the slotted 
schedule, emulating the effect of the rate re-adjustment 
iteration of the fluid model. Through extensive 
experiments in networks with time varying topologies we 
show that the latter algorithm achieves balanced rate 
allocation in the actual slotted system that are very close 
to the max-min fair rates. The experiments show also that 
the algorithm is very robust on topology variations, with 
very good tracking properties of the max-min fair rate 
allocation. 

1. INTRODUCTION 

As wireless ad hoc networks evolve from the 
experimental to the commercial domain, there is a need 
for efficient bandwidth allocation of the scarce wireless 
resources to users. A major obstacle in this quest is the 
spatial contention of flows sharing the wireless 
medium. Spatial contention can be addressed either in 
the physical or MAC layer. 

On one end, the physical layer uses only a single 
channel and wireless nodes transmit using a broadcast 
wireless medium. Then all flows in a vicinity contend 
for use of this medium because a node’s transmission 
reaches all others. This creates several versions of the 
problem of unintended broadcast transmissions (the 

most well known being the “hidden-terminal” and 
“exposed terminal” problems) and a family of random 
distributed MAC protocols ([20], [21]) to address them. 
Despite their distributed nature and flexibility, random 
access MAC protocols cannot offer a way of strict 
bandwidth allocation and guarantees. 

Multi-channel wireless technologies address spatial 
contention of flows at the physical layer where each 
channel is defined by a separate code or frequency. The 
idea is that if the flows in a vicinity do not use the same 
channel, then conflict-free transmissions can take place 
at the same time. Even if this method eliminates1 
collisions due to unintended broadcast transmissions, 
contention of flows still exists because each wireless 
node is usually equipped with a single transceiver and 
cannot simultaneously transmit or receive in more than 
one link flow. This form of contention necessitates 
coordination of the node transmissions on channels and 
flows by establishing conflict-free link schedules [1]. 
According to such a schedule two link flows that share 
the same wireless node are not allowed to transmit 
simultaneously. Also, nodes must be synchronized to 
communicate on common flows at the same time. Any 
violation of the above two rules, results to a conflict. 
Conflict-free scheduling allows for explicit and 
guaranteed bandwidth allocation: the fraction of time a 
pair of nodes spends communicating conflict-free on a 
flow determines the rate (bandwidth) allocated to this 
flow.  

Early work has indicated that finding perfectly 
conflict-free link schedules that satisfy a certain global 
optimal objective (such as minimum schedule length for 
a given set of link bandwidth allocation requirements) is 
a notoriously hard problem, even if global topology 
information is available [1][3]. The first distributed 
approach [2] started by flooding connectivity and traffic 
requirements in the entire network and then each node 
computed the conflict-free schedule by independently 
executing a centralized algorithm. This is clearly not 
efficient, especially when the network is dynamic. 
                                                      

1 Interference is never totally eliminated but tolerated up to a certain 
degree that depends on the physical layer implementation of the reference 
technology and the locality of transmissions. We assume elimination of this 
kind of interference i.e. no channel errors during a conflict-free transmission. 
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The emergence of the Bluetooth multi-channel 
technology [19] has inspired more refined research on 
distributed link scheduling schemes for Bluetooth ad 
hoc networks (termed as scatternets). These distributed 
techniques are divided in hard and soft coordination 
schemes. Hard coordination schemes [8] attempt to 
establish perfectly conflict-free link schedules. The 
advantage is that they can provide strict bandwidth 
allocation guarantees since no transmission conflicts 
exist. However, maintenance of the conflict-free 
property may come at the expense of significant 
communication overhead when there are dynamic 
changes in the network. On the other hand, soft 
coordination schemes [9][10] trade-off perfectly 
conflict-free transmissions for lower complexity and 
better robustness in dynamic network operation. The 
downside here is that this results to a lack of ability to 
provide bandwidth allocation guarantees. 

In this paper we introduce a low complexity “hard 
cordination” distributed algorithm that aims in 
establishing and maintaining maxmin fair bandwidth 
allocations in any slotted multi channel wireless 
network, including Bluetooth scatternets. Maxmin 
fairness is an intuitive and desirable objective in 
application scenarios where no explicit knowledge 
exists about the bandwidth requirements of the users in 
the network. A maxmin fair allocation tries to allocate 
an equal amount of bandwidth to all flows. If a flow 
cannot use all the bandwidth because of a constraint, 
then the residual bandwidth is distributed to less 
constrained ones. Among any feasible bandwidth 
allocations, a maxmin fair one ensures that the most 
constrained flows are allotted the maximum possible 
bandwidth. 

We first introduce a fluid model that captures only 
the bandwidth allocation constraints without taking into 
account the conflict-free requirement. In this model we 
propose a distributed algorithm that starts from an 
initial rate allocation and eventually converges to the 
maxmin fair solution after a series of asynchronous link 
rate adjustments. The slotted version of the algorithm 
attempts to emulate the one of the fluid model with the 
basic difference that whenever it adjusts the rate of a 
link it does so by re-assigning transmission slots 
directly on the network schedule without violating the 
conflict constraints. Since the fluid algorithm converges 
to the maxmin fair rates under asynchronous distributed 
operation, the slotted one is expected to have similar 
properties. 

It should be noted that the maxmin fairness objective 
in slotted multi-channel wireless systems was first 

considered in [7]. The authors provide an on-line 
scheduling policy and prove analytically that it 
converges to the maxmin fair solution. However, the 
policy uses global network information to compute the 
conflict-free link schedule and therefore cannot be 
implemented in practice. The slotted version of the 
distributed algorithm proposed here is implementable 
but there is no analytical proof for its convergence. 
Through extensive simulations in dynamic networks we 
show that the algorithm possesses very good tracking 
properties of the max-min fair rate allocation.  

The rest of the paper is organized as follows. Section 
2 presents the network model and definition of max-min 
fairness. Section 3 introduces the fluid part of the 
asynchronous algorithm that computes the amount of 
rate adjustments. Section 4 describes the scheduling 
technique that enforces these rate adjustments by means 
of conflict-free slot reallocations. Section 5 provides 
experiments where the algorithm performance is 
evaluated. Section 6 provides algorithm extensions, 
section 7 discusses related work and finally, section 8 
concludes the paper. 

2. NETWORK MODEL AND MAX-MIN 
FAIRNESS DEFINITION 

2.1. Network and communication model 

The wireless ad hoc network is represented by a 
graph G(N,L) and a set of  logical link flows F. Each 
node is assumed to have a unique id (for example the 
node’s MAC address). An edge signifies that nodes i 
and j are within wireless range and they have 
established a physical wireless link. Each physical link 
is associated with a number of bi-idirectional logical 
link flows of the set F. In this paper we assume that 
there are no end-to-end flows spanning more than one 
physical links in the network.   

All nodes in the system are synchronized on a slot 
basis. Synchronization can be achieved by using GPS 
clocks or signaling techniques similar to those 
employed in wired networks [11] modified for the 
wireless ad hoc network setting2. Each system slot 
supports bi-directional transfer of data or control 
packets by means of a pair of equal duration half-duplex 
mini-slots.   

The problem of flow contention due to unintended 
broadcast transmissions is avoided by means of a 

                                                      
2 Certain slotted systems such as Bluetooth may not support such a 

synchronization mechanism. As will be evident and explained later, the 
algorithm does not rely on system-wide synchronization for correct 
operation. 
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distributed channel code assignment scheme running at 
the physical layer [13][12]. In Bluetooth this function is 
provided by scatternet formation protocols [14][15][16]. 
Still, contention of flows exists because each wireless 
node cannot simultaneously communicate in more than 
one physical link. To implement conflict-free 
communications, each node n maintains a local link 
schedule 

nS of period T. In every slot of 
nS , node n can 

either communicate on a single flow or remain idle. 
Transmission on a flow f is conflict-free, only if both 
ends agree to communicate on f on the same slots of 
their local link schedules. 

 
 
 
 
 
 
 

 

 

Figure 1: Dotted lines denote wireless proximity but no 
established physical link. Flows F1 and F5 can transmit 

simultaneously without conflict even if nodes 1 and 4 are 
within transmission range. Still every node can transmit to or 
receive from only one flow at a time. For example, flows F4 
and F5 sharing node 3 and Flows F1 and F2 sharing physical 

link (1,2) cannot transmit simultaneously.  

We use two models to represent bandwidth 
allocation. In the slot model the bandwidth allocated to 
a flow f is expressed as the number of slots 

f�  in a T-

slot periodic conflict-free link schedule. The fluid 
model does not refer to a slotted system. The bandwidth 

fr allocated to a flow f is the long-term fraction of time 

a link spends communicating conflict-free on this flow. 
The two models serve different purposes. The fluid 
model is more general and intuitive and can be used to 
describe notions such as feasibility and max-min 
fairness. However a real system will always work in the 
discrete domain on a finite T-periodic schedule. 

2.2. Feasibility and maxmin fairness definition 

Under the fluid model, the effective capacity Cn of a 
node n, is defined as the maximum bandwidth that a 
node provides its flows for communication. If Cn is less 
than unity, then the node is always partially utilized by 
the flows sharing it and remains idle for the rest of the 
time.  

A bandwidth allocation of flows � �nf rrrR ,,,,1 ���  

is called feasible if there exists a conflict-free (not 

necessarily periodic) schedule that allocates to every 
flow f, a long-term rate equal to nfrf ��1, . The set 

of all feasible bandwidth allocation vectors defines the 
feasibility region, which can be characterized by a set of 
constraints. Since a node cannot communicate on 
different flows simultaneously, it is obvious that one 
constraint would be that the sum of the rates of all flows 
sharing a node must be less than the node capacity. 
Interestingly, a node capacity of unity guarantees 
feasible bandwidth allocations only when the network 
topology is bipartite [1]. For a more general topology 
the characterization of the feasible region is not as 
straightforward. Still, [1] proves that a node capacity 
equal to 2/3 provides with a sufficient (albeit not 
necessary) characterization of feasibility. We therefore 
reach the following node capacity constraint for 
feasibility: 

NnCr
ntoadjacentf

nf ���� , ,where 

�
	



�
otherwise

bipartiteisGgraphnetworkif
Cn ,3/2

,1     (1) 

If a flow f has a long-term arrival rate f� then we also 

need a demand constraint on the maximum allowable 
rate for this flow: 

      ffr ��       (2) 

A feasible rate allocation is said to be maxmin fair 
(MMF) if the rate allocated to a flow cannot be 
increased without hurting other flows having equal or 
less rate. In Figure 1 the MMF allocation of flows is 
(r1,r2,r3,r4,r5,r6,r7)=(1/3,1/3,1/3,1/4,1/4,1/4,1/4). We see 
that because node 3 is fully utilized, the rate of ¼ 
allocated to flow 4 cannot be increased without hurting 
the rates of the flows 5,6 and 7 that share node 3 and 
have been assigned an equal rate.  

More formally a rate allocation vector r is defined to 
be maxmin fair if: 

1. It is feasible i.e. satisfies the capacity and demand 
constraints given by eq. (1) and (2). 

2. It is lexicographically greater than any other 
feasible rate allocation vector b. This means that if 
we sort both r and b by increasing order of their 
rates and we start comparing one by one the rates of 
the corresponding permuted vectors r~ and 
b
~ starting from the lowest index (which is 1), then 
after a possible set of equal rates there will be an 
index j such that 

jj rb ~~
� where nj ��1  

Given a feasible rate allocation on a network it is very 
useful to have a distributed criterion to test if this 

1 2 3

4

5

F1

F2
F4

F5

F6 F7F3

1 2 3

4

5

F1

F2
F4

F5

F6 F7F3
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allocation is maxmin fair or not. A node n is defined as 
a bottleneck node of flow f if the sum of the rates of all 
flows equals the node effective capacity Cn and the rate 
of flow f is greater than or equal to the rate of all other 
link flows of node n. 

MMF criterion: A bandwidth allocation is maxmin 
fair (MMF) if and only if every flow f satisfies at least 
one of the following conditions: 

�
 The bandwidth allocated to the flow equals its long-
term arrival rate 

f� . 

�
 The flow f  has at least one bottleneck node. 

For example in Figure 1 we can easily verify that 
nodes 1 and 3 are the bottleneck nodes for the flow sets 
{F1,F2,F3} and {F4,F5,F6,F7} respectively. 

3. A DISTRIBUTED ALGORITHM FOR THE 
FLUID MODEL 

3.1. Fairness deficit 

In this section we introduce an asynchronous 
distributed algorithm for the fluid model that works in 
the feasible rates region and eventually converges to the 
maxmin fair solution. For clarity we will consider the 
simplest version of the algorithm for the case when 
there is only one logical flow per physical link in the 
network. The extensions of multiple logical flows per 
physical link are discussed in section 6. In this case the 
rate rf of logical flow f on physical link (i,j) is denoted 
as rij.  If � �iN  is the set of one-hop neighbors3 of node i, 
then the link rate allocation 

ir  for node i is defined as 

the set � �� �iNjriji ���� ,0r . The capacity feasibility 

constraint for node i can then be expressed as: 

� �
i

iNj
ij Cr ��

�

.      (3) 

The available node bandwidth according to link rate 
allocation ir is then defined as: 

� �
� �

�
�

��
iNj

ijiei rCr      (4)         

Initially, the algorithm starts from an arbitrary 
feasible rate allocation R in the network. At 
asynchronous points in time a link flow is activated4 for 
a possible rate adjustment. The adjustment is such that 
at least one of the link endpoints becomes a bottleneck 

                                                      
3 By “one-hop neighbors” we refer to the nodes in range of node i for 

which a physical link has been established. 
4 We use the term “link activation” with respect to the rate adjustment 

process. The link is always active to be used for communication according to 
the local link schedules of its endpoints. 

node for the link. A bottleneck node can be created if 
the link rate increases so that it gets a rate greater than 
or equal to the rate of the other links adjacent to that 
node. The amount of this rate increase is called the link 
fairness deficit. 

Starting from 
ir , the fairness deficit computation 

(FDC) algorithm for link (i,j) works iteratively and 
finds a new allocation ’

ir  such that eventually the rate 
’

ijr  belongs to the maximum link rate set of ’
ir . Then 

ijfd is by definition equal to 
ijij rr �’ . Figure 2 is a 

representative example of the algorithm operation, 
while Figure 3 (see Appendix) contains the detailed 
algorithm pseudocode, which includes the case when 
there is a upper demand constraint 

ij�  on the flow of 

link (i,j). 
   
 
 
 
 
 
 
 
 

 
 
 
 

 

 

Figure 2: The FDC algorithm for link (1,2) by node 1. At 
each step we consider the maximum rate set M (denoted by 
the shaded entries). If r’12 does not belong in M, the total 
bandwidth of the links in M and link (1,2) is equally 
distributed to them. This process continues until link (1,2) is 
in M. The last row is the new rate allocation ’

1r  and the 

fairness deficit is 165.005.0215.021 ���
�

fd . 

3.2. The fluid model algorithm 

When a link (i,j) is asynchronously activated for rate 
adjustment, the following actions are performed: 

1. Nodes i and j compute their fairness deficits 

jifd
�

and 
ijfd

�
on link (i,j) and exchange their 

deficit values. The link fairness deficit is defined 
as � �ijjiij fdfdfd

��
� ,min . 

1

3

4 2

5 6

� � 05.01 �er

0.05

0.17

0.25

0.25 0.23

1

3

4 2

5 6

� � 05.01 �er

0.05

0.17

0.25

0.25 0.23

 
   
step# 

’
12r  

’
13r  

’
14r  

’
15r  ’

16r  � �
’

1 er  max_ 
rate 

0 0.05 0.17 0.25 0.25 0.23 0.05 0.25 

1 0.1 0.17 0.25 0.25 0.23 0 0.25 

2 0.20 0.17 0.20 0.20 0.23 0 0.23 

3 0.215 0.17 0.20 0.20 0.215 0 0.215 
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2. If the link fairness deficit is zero, then no rate 
adjustment takes place, steps 3 and 4 are not 
executed and no further action is taken. 

3. If both deficits are non-zero, then the rate of link 
(i,j) is increased by 

ijfd  .  

4. Nodes i and j adjust the rates of the rest of their 
adjacent links accordingly. If i is the minimum 
deficit node then its new link rate allocation ’

ir is the 

one given by the FDC algorithm of
jifd

�
in step 1. 

The maximum deficit node j reaches its new link 
rate allocation ’

jr  by applying again the FDC on 

link (i,j) with an upper bound constraint of 
ijij fdr � .  

Note that in order to do the above adjustments we 
only need to reduce the rates of certain links adjacent to 
nodes i and j except link (i,j) the rate of which is 
increased by 

ijfd .  

Theorem 1: Given a static topology and an arbitrary 
initial feasible network rate allocation R, the above 
algrotihm converges to the network max-min fair 
solution after a finite number of link activations for rate 
adjustment.  

Proof: see Appendix. 
The algorithm termination is totally distributed and 

no explicit message needs to be sent to the entire 
network to signal convergence: when a link is activated 
for possible rate adjustment, its rate is adjusted only if 
the link fairness deficit is non-zero.  

4. THE ALGORITHM FOR THE SLOTTED 
SYSTEM 

4.1. Fairness deficit computation and slot 
assignment algorithm 

The fluid algorithm guarantees convergence to the 
network max-min fair rates but does not yield a 
conflict-free schedule that realizes these rates. This is 
because the fluid model does not refer to a slotted 
system. 

The slotted algorithm emulates the one of the fluid 
model with the basic difference that whenever it adjusts 
the rate of a link it does so by re-assigning transmission 
slots directly on the schedule S without violating the 
conflict constraints. Since the fluid algorithm converges 
to the maxmin fair rates under asynchronous distributed 
operation, the slotted one will have similar properties 
provided it yields a conflict-free schedule after each rate 
adjustment. 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4 and Table 4: A wireless ad hoc network using the 
T=14 periodic conflict-free schedule of Table 4. Each slot 

entry j in the local schedule Si means communication of node 
i on link (i,j). 

The slotted fairness deficit computation algorithm for 
node i, uses the one of the fluid model to reach from 
discrete slot allocation i�  to ’

i� , and outputs the rate 

difference vector iii �� �� ’x . An example of the 

detailed operation of the slotted FDC is shown below:  
 
 
 
 
 
 

 

 

 

Table 5: The slotted FDC for node 1 on link (1,2) in the 
network of Fig. 4: (1) slots are converted to normalized rates 
(2)  fluid model FDC is applied to rates. (3) resulting rates are 
“quantized” to slots. (4) The excess slots due to the 
quantization of step 3 are given to link (1,2). (5) The resulting 
rate difference vector x1. The fairness deficit is 4 slots. 

 Given xi, a positive (negative) element 
ikx  means 

that the rate of link (i,k) must be increased (decreased) 
by 

ikx slots. A zero element indicates no change in the 

rate of the corresponding link.  The set of surplus links 
(i.e. the links affected by the rate adjustment on link 
(i,j)) is � �0:),( ���

iki xkiX . Also
ijx is positive and equal 

to the fairness deficit amount of slots that must be 
assigned to link (i,j). 

The slot assignment algorithm decides for each 
surplus link (i,k) which 

ikx out of the current 
ik� slot 

1

3

4

2
� � 01 �e�

2

6

6
5

6

14�T

8

5

� � 42 �e� � � 15 �e�

� � 36 �e�� � 83 �e�

� � 84 �e�

1

3

4

2
� � 01 �e�

2

6

6
5

6

14�T

8

5

� � 42 �e� � � 15 �e�

� � 36 �e�� � 83 �e�

� � 84 �e�

 slot# 
id 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

S1 4 3 3 4 3 4 3 4 2 3 2 4 3 4 
S2 - 5 5 5 5 5 5 5 1 5 1 - - - 
S3 - 1 1 - 1 - 1 - - 1 - - 1 - 
S4 1 - - 1 - 1 - 1 - - - 1 - 1 
S5 6 2 2 2 2 2 2 2 6 2 - 6 6 6 
S6 5 - - - - - - - 5 - - 5 5 5 

 

 

step  (1,2) (1,3) (1,4) rem Actions 

0 1�  2 6 6 0 T=14 

1 1r  2/14 6/14 6/14 0.0000 Tr jj /11 ��  

2 ’
1r  0.3333 0.3333 0.3333 0.0000 FDC algorithm 

3 ’
1�  4 4 4 2 � �Tr jj �� ’

1
’
1�  

4 ’
1�  6 4 4 0 

Randomly distribute remainder 
slots to last  maximum rate set 

5 1x  +4 -2 -2 0 jjjx 1
’
11 �� ��  
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positions will be assigned to link (i,j). To maintain the 
conflict-free property, both endpoint nodes must 
eventually assign to (i,j) the same slot positions in their 
link schedules.  

The slot assignment algorithm consists of two phases. 
In Phase I, node i takes into account the link schedule 
of j and assigns slot positions to link (i,j) in the 
following prioritized way:  

1. First, link (i,j) is assigned slot positions that are 
currently idle in both link schedules Sj and Si, if 
such positions exist.  

2. If step 1 did not find enough matching slot 
positions, link (i,j) is assigned slot positions where j 
is idle and i currently uses for a surplus link (i,k), if 
such positions exist. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 5: The slot assignment algorithm 

The number of slot positions that matched during 
phase I may still be less than the required deficit for link 
(i,j). For each surplus link (i,k) that Phase I selected 
only 

ikm out of 
ikx  slots, Phase II randomly selects 

extra 
ikik mx � slot positions that are still assigned to 

(i,k) in Si and reassigns them to link (i,j). The algorithm 
outputs the new link schedule of i, and a list indicating 
the (extra) slot positions that should be assigned to link 
(i,j). 

In Table 6 node 1 is called to decide on the extra slot 
positions that will be assigned to link (1,2). 
 
Slot# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

S1 4 3 3 4 3 4 3 3 2 3 2 4 3 4 
S2 - 5 5 5 5 5 5 - 1 5 1 - - - 

 
Table 6: Idle slot positions {7,12} and {0,11,13} of S2  

match with ones assigned to links (1,3) and (1,4) in S1 
respectively. Link (1,2) is finally assigned slot positions 

{7,11,12,13} .   

The rate difference vector (row 5 in Table 5) 
indicates that links (1,3) and (1,4) must give away two 
slots each and link (1,2) should be assigned four extra 
slots. By matching the idle slots of S2, node 1 reassigns 
slot positions {7,12} from (1,3) and {11,13} (selected 
randomly from {0,11,13}) from (1,4) to link (1,2).  

4.2. Signaling schedule updates 

After the slot assignment algorithm, the rate increase 
on a link decreases the rates of some of the other links 
adjacent to both endpoint nodes. To maintain the 
conflict-free schedule property, the affected one-hop 
neighbors must be notified to update their own local 
link schedules to reflect this change. A schedule 
update control packets (SC packet) sent from node i to 
node j contains the following information:  

�
 A field specifying if the packet is an “increase” 
(SC_inc) or “decrease” (SC_dec) SC packet. 

�
 A list of slot positions that need to be modified in 
the receiver’s local schedule (Represented by a T-
bit vector). For an SC_inc packet the indicated 
positions will be assigned to link (i,j) in the receiver 
j’s updated schedule, while for an SC_dec packet 
they will be assigned as idle.  

�
 The number of slots the receiver should wait before 
applying the above schedule update. 

Starting from slot s where the link was activated for 
rate adjustment, the commit slot offset � �s

ijcoff  is the 

number of slots needed for the schedule update to be 
propagated to all the affected nodes in the one-hop 
neighborhood of link (i,j). The commit slot offset is 
locally computed on slot s and is appropriately included 
in the SC control packets to let each node know when it 
should apply the update. After � �s

ijcoff  slots, the last node 

receives an SC packet and all affected nodes (including 
nodes i and j) apply the schedule update starting on the 
next slot. 

 

Procedure AssignSlots( i , xi , Si , j, Sj , T, , Si’ , di) 
Input: i , xi, Si , j, Sj , T       Output: Si’, di 
Initialization: Si’ = Si  , di = 0 
begin /*Phase I: Match the idle slots of the other end j and assign on link (i,j)*/ 

1. Slot position set I0 = {s: Si’(s) = idle AND Sj’(s) = idle, 10 ��� Ts } 
  1.1.repeat /*First match the slots that are idle in both Si and Sj*/      
         Randomly select a slot position s from I0 

          Si’(s)=j, di (s)=1  /*Assign slot position s to link (i,j) in Si
’ */  

          xij = xij – 1,  I0 = I0 - {s}  
        until (xij == 0   OR   I0  is empty) /*end for loop 2.3.*/ 

  1.2. If ( xij == 0 ) stop and exit procedure. 

2. Form set  of surplus links Xi
-- = {(i,k): xik < 0} from xi. 

 2.1. for every link (i,k) in Xi
— begin  

          Slot position set Ik = {s: Si’(s) = k AND Sj’(s) = idle, 10 ��� Ts } 
          repeat /*Match idle slots in Sj and ones of surplus link (i,k) in Si */      
            Randomly select a slot position s from Ik  

            Si’(s)=j, di (s)=1  /*Assign slot position s to link (i,j) in Si
’ */  

            xij = xij – 1, xik = xik + 1,  Ik = Ik - {s}  
          until (xik == 0   OR   Ik  is empty)  
          If ( xij == 0 ) stop and exit procedure. 
       end/*end for loop 2.1.*/ 

/*Phase II starts here*/ 
3. for every link (i,k) in Xi

—  begin   
       if (xik < 0) begin /*If this link has still slots to give after Phase I*/ 

           Form set  Ik by randomly selecting |xik| slot positions s : Si
’(s) = k 

       for every slot position s in Ik   

          Si
’(s) = j , di

 (s) = 1 /*Assign slot s to link (i,j) in Si
’ */                                                

    end /*end for loop 3.*/ 
end /*Procedure AssignSlots*/ 
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4.3. The commit slot offset computation 

Given a node i and a slot s in its current periodic 
schedule, the multicast slot offset � � � �� �iMb s

i
 on the 

neighbor subset M(i) of N(i), is the number of slots 
needed by i to communicate with all nodes in M(i) 
starting from slot s.  

After node i performs the slot assignment algorithm, 
it needs � � � � � �� �iNbA s

i
s

i �  slots to send the schedule 

update to all its neighbors. The other end node j 
receives the update after � � � �� �jba s

i�  slots and according 

to its own schedule Sj, it needs � � � � ��� �ijNb as
j ��  additional 

slots to update the rest of its neighbors. Therefore 
starting from slot s, node j will need a total of 

� � � � � � ��� �ijNbaB as
j

s
j ��� �  slots to propagate the schedule 

update. The commit slot offset is the number of slots 
until both i and j reach all their neighbors: 

� � � � � �� �s
j

s
i

s
ij BAcoff ,max� .  

Referring to Table 6, assume that node 1 has just 
performed the slot assignment algorithm at slot s=8. 
Given S1, node 1 will need � � � � � �� �4,3,28

1
8

1 bA � =3 slots to 
send the schedule update. Node 2 will receive the 
schedule update at slot 10, and according to S2 it will 
need � � � �� �510

2b =5 additional slots to reach node 5 (on slot 
1 of its periodic schedule). Thus, starting from slot s=8 
node 2 will need � � 7528

2 ���B slots for the schedule 
update propagation and finally the commit slot offset is 

� � � � � �� � 7,max 8
2

8
1

8
12 �� BAcoff slots. 

4.4.The complete algorithm 

When a link (i,j) is activated for rate adjustment at 
slot s, the following actions are performed: 
1. Nodes i and j compute their (discrete) fairness 

deficits 
jifd

�
and 

ijfd
�

on link (i,j) and exchange 

two fairness deficit control packets (termed as FD 
packets). The FD packet sent by each node x 
contains the following information: 
�
 The node’s calculated discrete fairness deficit 

with respect to link (i,j). 
�
 The number of slots � �s

xB  node x needs to 

propagate the schedule update to all its 
neighbors in case it turns out to be the 
maximum deficit node.  

�
 A T-bit vector Ix indicating the idle slot 
positions in its own link schedule xS .  

2. If any of the two fairness deficits is zero, then no 
rate adjustment takes place, the rest of the steps are 
not executed and no further action is taken. 

3. If both deficits are non-zero, then the rate of link 
(i,j) must be increased by the minimum of the two 
fairness deficits. The minimum deficit node is the 
one with the smaller deficit or in the case of equal 
deficits the one with smaller id.  

If i is the minimum deficit node, then based on the 
FD packet received by j:  
�
 Given Ij, it executes the slot assignment algorithm 

to determine the list of extra slot positions that will 
be assigned to link (i,j).  

�
 It computes the number of slots � � � � � �� �iNbA s
i

s
i �  it 

needs to propagate the schedule update to all its 
neighbors. The commit slot offset is then 

� � � � � �� �s
j

s
i

s
ij BAcoff ,max� . 

4. Then i sends j an SC_inc packet with the list of slot 
positions decided by the slot assignment algorithm 
for link (i,j), and an SC_dec packet to the rest of its 
neighbors to notify them when and which slots of 
their schedule they should set as idle. As soon as j 
receives the SC_inc packet, it sends an SC_dec 
packet to all its neighbors similar to node i. 

5. At (global) time instant � �s
ijcoffs � , node i, node j and 

all their one-hop neighbors apply the change they 
received earlier in the SC packets and the schedule 
adjustment is complete. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 6: Actions performed after activation of link (1,2) at 
slot 8 of the schedule in Table 4. 

Figure 6 illustrates the system evolution after the 
activation of link (1,2) during slot 8 of the schedule in 
Table 4.  

Links can be asynchronously and independently 
activated for rate adjustment on the slots assigned to 
them for communication by the current network 

 Slot 8: (1->2): FD[fd1->2 = 2, [B1 = 4], S1] 
           (2->1): FD[fd2->1 = 5, [B2 = 7], S2] 
 

��
fd1->2  < fd2->1: Node 1 is the minimum deficit node. 

�
Node 1 executes the slot assignment algorithm with inputs 1x (4th row 
of Table 4), S1 and S2 (Table 5) and decides on slot positions 
{7,11,12,13} to be assigned to link (1,2) in S1. 

� Node 1 computes A1 =3 and coff12
(8) = max(A1, B2) = 7 and sets a 

commit timer to expire after 7 slots. 
 
Slot 9:   (1->3): SC[decrease_rate, slot_pos_list = {7,12}, commit_after = 6 slots] 
                          Node 3 sets a commit timer to expire after 6 slots. 
Slot 10: (1->2): SC[increase_rate, slot_pos_list = {7,11,12,13}, commit_after = 5 
slots] 
                          Node 2 sets a commit timer to expire after 5 slots. 
Slot 11:   (1->4): SC[decrease_rate, slot_pos_list = {11,13}, commit_after = 4 slots] 
                          Node 4 sets a commit timer to expire after 4 slots. 
Slot 15:   (2->5): SC[decrease_rate, slot_pos_list = {NIL}, commit_after = 0 slots] 
     

�
All commit timers expire, and nodes 1,2,3,4,5 update their local 
link schedules. 
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conflict-free schedule S. If multiple links happen to be 
activated for a rate increase at the same slot, the slot 
reassignment is conflict-free because the additional 
slots are given to links that do not have common node 
endpoints. This follows from the conflict-free property 
of the current schedule that activates links that 
constitute a matching in the network topology graph. 
Also a node applies the following rules for updating its 
local schedule during the schedule adjustment process: 
1. When a node j receives an SC_inc packet from i, it 

modifies its local schedule by unconditionally 
assigning to link (i,j) all the slot positions seen in 
the packet list.  

2. When a node j receives an SC_dec packet from i, it 
reassigns to idle only the positions that are currently 
assigned to link (i,j) and ignores the rest. 

If node j updated unconditionally in rule (2) then, if it 
received an SC_inc packet from i and then an SC_dec 
packet from k, and also these packets happened to have 
common positions to be modified in j’s schedule, then j 
would first give these slots to link (i,j) and then set them 
idle. Then i would not know about the second change in 
j’s schedule and there would be a conflict on these slots 
between them. An example of this situation can be seen 
in Figure 4, for the rate adjustment of links (1,2) and 
(5,6) where node 2 may receive an SC_inc from 1, then 
an SC_dec from 2 and both packets contain slot position 
7 to be modified in 2’s local schedule. By applying the 
above rule, node 2 will ignore slot position 7 in the 
SC_dec packet, yielding the proper assignment. It is 
easy to verify that the rule maintains the conflict-free 
property regardless of the ordering and type of control 
packets and the indicated slot positions in them.  

4.5.  Protocol communication Requirements 

The amount of control information needed by the 
protocol depends only in the system period T and not on 
the network dimensions such as size or density. The FD 
and SC packets consist of � � TT �2log2 bits and 

� �TT 2log1 ��  bits respectively. Thus the protocol 

requirement in bits per control packet is: 
 � � TTBcontrol �� 2log2  bits   (5)  

Since the control and data packets share the same 
slots, this sets the minimum (excluding FEC, headers 
etc) half-duplex mini-slot size in the system. If the radio 
transmission rate is Rtx bits/sec, the minimum duration 
of a single slot system packet is � �� � txRTT /2log2 2 �� sec. 

Higher transmission rates allow for shorter slot 
durations for a fixed T or larger schedule periods T for a 
fixed slot size. 

5. PERFORMANCE EVALUATION 

5.1. Experimental setting 

Topology dynamics are modeled by having links 
going up and down in a static baseline topology [26].  
This simplified model captures the way mobility is 
manifested in multi-channel systems without delving 
into the details of the complex hand-off and link 
establishment protocols that should be used by a multi-
channel system when nodes actually move. While 
important, such protocols are out of the scope of this 
paper. Also this model allows for explicit control of 
parameters that affect the protocol performance such as 
topology density and frequency of topology changes. 

Each link in the baseline topology cycles 
independently between an ACTIVE (link “up”) and 
INACTIVE (“link down”) state. A link remains 
ACTIVE for a geometrically distributed number of slots 
with mean activeT . Since all links alternate between the 

two states independently, the long-term fraction of time 
p a link is ACTIVE equals the average percentage of 
active links in the baseline topology at any time. In 
addition, certain multi-channel technologies impose a 
limit on the number of physical links a wireless node 
can maintain simultaneously. This restricts the 
maximum node degree to Dmax (e.g. in Bluetooth Dmax is 
7). The parameter Tactive is used to tune the rate of 
topology changes while p and Dmax affect the average 
network density. The frequency of rate adjustments is 
controlled by the protocol parameter Tadjust. After a link 
rate adjustment, the endpoint nodes agree on a random 
rate adjustment timer chosen uniformly between 0 and 
Tadjust slots. The timer decreases on each future time slot 
the link is used for transmissions. When the timer 
expires, the link is activated for rate adjustment.  

We use two metrics for the algorithm performance 
evaluation: 

1. Relative computation error: If the MMF rate of a 
link (i,j) at time t is � �tr m

ij
 and the computed rate is 

� �trij
, the relative computation error for link (i,j) is 

� � � �trtr m
ijij /1� at time t. For each slot t, we consider 

the average relative computation error over all 
currently ACTIVE links. After each topology 
change, the reference MMF rates � �tr m

ij
 are 

computed off-line using a centralized algorithm 
similar to the one of [27] for wireline networks 
appropriately adapted to our wireless setting. The 
detailed algorithm can be found in Appendix C.  
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2. Control Overhead: During network operation, a 
slot can be idle, used for transmission of a DATA 
packet or exchange of control information conveyed 
by the FD and SC packets. The control overhead is 
the ratio of control packets over the total number of 
packets transmitted during a simulation run. 

In the following experiments we consider bipartite 
topologies because the rate feasibility region is defined 
exactly in this case. Such topologies arise in clustered 
architectures [17] [18] [19] where each cluster (channel) 
is defined and controlled by a master node and the rest 
of the cluster members are slaves. Inter-cluster 
communication is performed by slave gateway nodes 
that participate in more than one clusters. In the non-
bipartite case nodes can set their effective capacity to 
2/3 to guarantee feasible rate allocations and the 
algorithm will still yield MMF rates but with respect to 
this fractional capacity.  

 

We used an N=100 node bipartite baseline topology 
with 50 nodes per set. This yields 2500 links in the 
baseline topology. As system technology parameters we 
use the ones of Bluetooth. Bluetooth supports a raw 
transmission rate of Rtx =1Mbps and a maximum 
number of simultaneously active physical links Dmax=7. 
The system slot duration is 1.25ms. We use a period of 
is T=200 slots, which is the maximum that could be 
supported by the current Bluetooth specification5. In 
terms of traffic demands, all link flows are assumed 
backlogged (no demand constraints) when ACTIVE.  

5.2. Experiments in Static Networks 

All simulations in static topologies were run for 
100000 slots. In the first experiment every node has a 
degree of Dmax (p=1.0) and the target MMF rate every 
link in the network must reach is 1/Dmax (approximated 
by T/Dmax slots in each case). 

Figure 7 shows the effect of the schedule period T 
and maximum degree constraint Dmax on the average 
and maximum relative errors. For a fixed Dmax, both 
errors decrease as T increases. One reason is that a 
larger period provides a better approximation to the 
reference (continuous) MMF rates. 

 

                                                      
5 Half duplex mini-slots in our model correspond to single-slot Bluetooth 

baseband ACL packets. The payload size of these packets is limited to 240 
bits. If we exclude the higher layer headers and the CRC, only 216 bits are 
left for the protocol information (DH1 packets). When FEC is added (DM1 
packets), the available space goes down to 136 bits. Using equation (5), we 
can see that the maximum period T for DH1 packets is 200 slots and for 
DM1 packets 122 slots.  

 
 
 
 
 
 
 
 
Figure 7: Average and Relative Errors for a static network 

of N=100 p=1.0 and Tadjust=512 slots for various choices of T 
and Dmax. The average and maximum relative errors are 

computed over all active links at the last slot of the 
simulation. 

For example a period of T=64 cannot provide enough 
granularity for a Dmax=14 and the resulting errors are 
very high. The other reason is that a larger T offers 
more transmission slots to a link per period. This incurs 
more frequent expirations of the rate adjustment timer, 
and hence more overall activations for link rate 
adjustment. This is also the explanation for the increase 
in the control overhead in Figure 8 as the period T 
increases. 

 
 
 
 
 
 
 

 

 

Figure 8: Control Overhead for a static network of N=100, 
p = 1.0 and Tadjust=512 slots for various choices of T and Dmax.  

The maximum node degree Dmax has a more 
pronounced effect both in errors and control overhead. 
This is illustrated by the distance between the curves in 
both Figures 7 and 8. In the error curves, the effect of 
Dmax decreases as the period T increases. After T=1024 
slots, the average relative error becomes less than 3% 
and the maximum error less than 20% for all cases. 
However, in terms of control overhead, the difference 
between the curves does not decrease with T. Thus for 
T=1024, a Dmax=7 spends only 3% of transmissions in 
exchange of control packets while a Dmax=14 spends 
17%. To keep the control overhead low, we need to 
reduce the frequency of rate adjustments that is 
controlled by the Tadjust parameter.  

Figure 9 illustrates the effect of Tadjust on a (T=1024, 
Dmax=14) system. By increasing Tadjust (hence 
decreasing the frequency of link rate adjustments) the 
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control overhead decreases without any noticeable 
effect in the resulting maximum and average 
discrepancy from the MMF solution. At Tadjust = 16384 
slots the control overhead becomes negligible. Still, 
decreasing the frequency of link activations leads to a 
slower convergence. This will become obvious in the 
experiments of the dynamic topologies. 

 
 
 
 
 
 
 
 
 
 

Figure 9: Effect of reduction in the frequency of link rate 
adjustments. 

 
Figure 10, shows the effect of the topology density 

parameter p on the three metrics of interest. As the 
density decreases, less nodes need to establish the 
maximum number of links Dmax and this leads to a 
reduction of both errors and control overhead in the 
network. 

 
 
 

 

 
 
 

 

 

Figure 10: Effect of the density topology parameter p. 

5.2. Experiments in dynamic networks 

For dynamic networks, all simulations run for 500000 
slots. We study the distribution (pdf) of the average 
relative error during the last 100000 slots. 

Figure 11 illustrates the effect of mobility and 
network density on the error distribution. The bell-
shaped curves indicate that the MMF rate discrepancy 
experienced by an “average” link generally oscillates 
around a mean value. In Figure11a, we let a link spend 
an equal average amount of time in the “ACTIVE” or 
“INACTIVE” state, by setting p=0.5. The average time 
Tactive a link alternates between the two states varies 
from 32min (1536000slots) to 1min (48000slots). As 

the rate of topology changes increases, both error mean 
and variance increase. This is illustrated by a right-shift 
and “spreading” of the error distribution curves as the 
parameter Tactive decreases. For a quasi-static network 
(Tactive=32min), the MMF discrepancy of an “average” 
link is centered at 0.7% and varies between 0.2% and 
4%. For Tactive=1min the peak consists of a range of 
error values (4%-6%) and the overall error dynamic 
range is 2%-10%. 

 
  
 
 
 
 
 
 

 

 

Figure 11: Effect of (a) rate of topology changes and (b) 
topology density in the distribution of the average relative 

error.  

For the same rate of topology changes, the mean and 
variance of the average relative error increase with 
topology density (Figure 11b). The reason is that a 
denser topology allows for less simultaneous conflict-
free transmissions per period and hence less frequent 
expirations of the rate adjustment timer per link. 
Therefore rate adjustments are happening at a slower 
rate and this affects the ability of the algorithm to track 
topology changes. Still, even in the most dense 
topology (p=0.9) and high rate of topology changes of 
Tactive=1min (48000 slots), an average link will achieve 
above 80% of its target MMF rate. 

 
 
 
 
 
 
 
 
 

 

 

Figure 12: Effect of frequency of link activations on (a) the 
average relative error and (b) control overhead. 

Figure 12 shows the effect of the rate adjustment 
parameter Tadjust in the most dynamic case where links 
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form and fail every 1minute (48000 slots) on the 
average.  As Tadjust varies from 5.12s (4096slots) to 
160ms (128 slots), the error mean and variance decrease 
slightly (Figure 12a) but the control overhead increases 
(Figure 12b). For Tadjust =160ms (128slots), the error is 
centered at 2% of the MMF rate but the control 
overhead needed to sustain it amounts to 27% of the 
overall number of transmissions. A Tadjust greater than 
640ms (512 slots) keeps the overhead below 9% but the 
error mean and variance will gracefully increase 
according to Figure 12a. 

Figure 13 illustrates how topology dynamics and 
density affect the algorithm performance had the 
reference technology specification allowed for a larger 
Dmax. The curve trends are the same as in Figure 11 but 
the error means and variances increase with Dmax. This 
shows the performance degradation of the algorithm for 
technologies using a certain radio transmission rate and 
wish to support a larger maximum number of MMF 
flows per node in a dynamic network. 

 
  
 

 

 

 

 

 

 

Figure 13: Dmax=14: Effect of (a) rate of topology changes 
and (b) topology density in the distribution of the average 

relative error. 

Technologies supporting higher transmission rates 
result in a better performance because they can use a 
shorter slot duration. For example if Rtx = 2Mbps in the 
reference system, the system slot duration is 0.625ms 
instead of 1.25ms and therefore “Tactive=2min” in Figure 
11a will now correspond to the error distribution of 
Tactive=192000 instead of the one of 96000 slots. As we 
double the transmission rate, we can see the 
corresponding performance improvement by “moving” 
one error distribution curve to the left in Figures 11a, 
12a, 13a and one point to the left in Figure 12b for the 
control overhead. 

6. EXTENSIONS 

6.1. Multiple logical flows per physical link 

In the case of multiple logical flows per physical link, 
each time a link (i,j) is activated for rate adjustment, the 

link endpoint nodes compute a per-flow fairness deficit 
for each flow of link (i,j). The deficit calculation 
algorithm for a flow will change only in that instead of 
link rates a node considers the rates of all its adjacent 
flows. If all flow fairness deficits for link (i,j) are zero, 
no adjustment needs to take place. If more than one 
flow deficits are non-zero then only one flow rate will 
be adjusted during this link activation (because each 
flow fairness deficit is computed independently of the 
others). Which one to adjust can be decided in a round 
robin fashion. 

6.2. The case of Bluetooth 

Throughout the paper we assumed a mechanism that 
keeps the system synchronized on a slot basis. Such a 
mechanism is not supported in Bluetooth. Each 
Bluetooth device has its own “native” hardware clock, 
but different native clocks are not necessarily 
synchronized. During link formation the endpoint nodes 
acquire the phase between their native clocks and one 
node assumes the role of master and the other acts as 
slave. Masters provide their native clock as the time 
reference for communication within their channel. Each 
slave uses the phases with respect to its masters to know 
the slot boundaries where communication happens in 
each channel.  

Our protocol can operate properly even in this setting. 
The local schedule of a node is with respect to its native 
clock tick and the node uses it to know which link it can 
communicate conflict-free at any time (either as a 
master or slave). Also according to the protocol a node 
is informed by FD packets about other nodes’ local 
schedules and is instructed by SC packets to modify its 
own. Therefore slot positions in an FD packet refer to 
the native clock reference of the sender node, while slot 
positions in an SC packet refer to the native reference of 
the receiver node. Each time a control packet is sent on 
a link, the receiver of an FD packet (or sender of an SC 
packet), perform the time reference translation on the 
slot positions in the packet using the corresponding link 
phase. 

7. RELATED WORK  

Maxmin fairness has been addressed in both single 
channel and multi-channel wireless networks. Single 
channel systems are considered in [4][5][6]. The work 
in [4] uses a weighted fairness scheme to first allocate a 
minimum fair bandwidth to the network flows and then 
maximize the system utilization subject to this 
allocation. This approach could also reach maxmin 
allocation via the appropriate flow weights. However, 
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the weight computation requires knowledge of the 
maxmin fair rates. This requires a global network MMF 
rate pre-computation phase, something not efficient in a 
large dynamic network. Nandagopal et al. [6] define 
fairness in terms of maximizing total logarithmic user 
utility functions and the resulting allocation is 
proportionally fair. Maxmin fairness is mentioned as a 
limiting case of the general utility fairness model. A 
centralized and a distributed algorithm targeted 
specifically for maxmin fairness are proposed in [5]. 
The centralized algorithm reaches an approximate 
solution for large networks because it relies on the 
computation of the clique corpus of a graph, which is an 
NP-complete problem. In the distributed algorithm a 
node maintains a subset of the contention graph and 
heuristically computes a coarser allocation.  

It should be noted that in [4][5][6], the distributed 
algorithms that approximate the fairness models are 
implemented using a random access MAC protocol and 
attempt to achieve the desired bandwidth allocations by 
setting a per-flow back-off timer according to the fair 
weight of the flow. Since random access cannot support 
strict bandwidth allocation guarantees, fairness can be 
achieved only in a probabilistic sense (only long-term 
fairness).  

The work in [7] defines the maxmin fairness 
objective in a slotted multi-channel system using 
scheduled access and provides a scheduling policy that 
achieves maxmin fair allocation of flows. At each slot, a 
node first assigns appropriate weights to each of its 
adjacent flows by using a round robin token generation 
scheme. Then the flows that constitute a maximum 
weighted matching on the network are scheduled to 
transmit conflict-free. This step makes this approach 
unsuitable for distributed implementation because it 
requires global topology information for computing the 
maximum weighted matching. 

DSSA [8] is a distributed scheduling algorithm for 
Bluetooth scatternets but it cannot apply to the maxmin 
fairness objective. In DSSA every node starts with an 
assumption of local link traffic demands and 
heuristically tries to reach a conflict-free schedule of 
short length that satisfies them. However maxmin 
fairness is a global objective. Hence to use this 
algorithm one must first pre-compute the network 
maxmin fair shares and then provide them as local 
traffic demands to every node in the network, 
something not practical.  

Finally, distributed algorithms for maxmin fair end-
to-end session rate computation have also been studied 
extensively in the wireline networks context [22][23].  

Our algorithm is similar by being asynchronous, 
distributed and targeting the MMF rates. The difference 
is that these algorithms perform only the fluid model 
part: they only compute the MMF rates but do not 
specify how to enforce them. The problem of enforcing 
the rates is treated separately by using end-to-end or 
hop-by-hop link schedulers and traffic shapers [24][25]. 
This separation is perfectly justified in the wireline 
networks context due to the link scheduling 
independence. In the wireless case, a rate adjustment on 
a link has an effect on the rates of links adjacent to both 
endpoint nodes and the problems of rate computation 
(fairness deficit computation) and rate enforcement 
(conflict-free slot assignment) must be addressed 
jointly. 

8. CONCLUSIONS/FUTURE WORK 

Future deployment of wireless ad hoc networks calls 
for decentralized techniques that allocate efficiently the 
scarce wireless medium to users. In this paper we 
present an asynchronous distributed algorithm that aims 
for maxmin fair bandwidth allocation of flows in a 
wireless ad hoc network. The algorithm is of low 
complexity and applies to any slotted wireless ad hoc 
network using multiple channels at the physical layer. 
Bandwidth allocations are realized by perfectly conflict-
free periodic link schedules. This implies that the 
algorithm possesses both short-term (to the extend of 
the period T) and long-term fairness properties. 

The distributed scheduling mechanism is driven by 
the rate calculation algorithm, which converges to the 
maxmin fair solution under the fluid model. Still, when 
emulating the fluid algorithm in the slotted world the 
convergence is not exact and there are certain 
restrictions and trade-offs a designer has to take into 
account. To this end we provide a simple analysis of the 
algorithm communication requirements and how they 
affect the spectrum of design choices of a multi-channel 
technology wishing to support maxmin fair bandwidth 
allocation of flows. As a rule of thumb, higher radio 
transmission rates give room for larger number of slots 
per period and shorter slot durations. More slots per 
period provide a better support for larger number of 
MMF flows per node while smaller slot durations yield 
a better performance in the face of network dynamics.  

The algorithm was extensively tested under various 
technology choices and topology dynamics. For static 
networks it demonstrated excellent convergence 
properties especially as the schedule period T increases. 
For dynamic scenarios an average flow typically 
experiences a certain mean MMF discrepancy with a 
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finite variance. Performance gracefully degrades with 
the increase in the rate of topology changes, network 
density and desired maximum number of simultaneous 
flows supported by a wireless node. In highly dynamic 
scenarios and stringent technology constraints (modest 
Rtx and high Dmax), the incremental nature of the 
algorithm allows the network to be reasonably close to 
the maxmin fair solution most of the time. In addition, 
the frequency of link rate adjustments can be fine-tuned 
to get acceptable performance for low control overhead. 

The low algorithm communication and computation 
requirements make it attractive for Bluetooth, a 
technology not supporting system-wide slot 
synchronization. While the protocol can still operate 
properly in this case, the convergence to the MMF rates 
will not be as accurate as in a synchronized system 
because when a slave switches channel, a slot is always 
wasted for aligning to the time reference and local 
schedule of the new channel master. Another source of 
overhead is the fact that the time a node spends in 
topology discovery using the inquiry protocol is at the 
expense of communication slots. We are currently 
engaged in an implementation that takes into account 
these challenges and integrates them in a complete 
solution. 
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10. APPENDIX: 

 
Appendix A: Fairness Deficit Computation 

Algorithm (Figure3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The fairness deficit computation algorithm 

 
Appendix B: Proof of Theorem 1 

We assume that every link in the network will be 
asynchronously activated for rate adjustment infinitely 
often. This means that the links do not stop attempting 
to perform rate adjustments and intervals in-between 
consecutive rate adjustments of a specific link are finite. 
The proof is for backlogged single link flows. The case 
of constrained flows and multiple flows per physical 
link is similar.  

Let the link rate adjustment process start at time 
0t . 

Consider the set of most constrained nodes � �0F , for 
which the capacity/degree ratio is equal and minimum: 

� �
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minarg:0 . 

When a rate of a link (i,j) adjacent to a node i in � �0F  
is activated for rate adjustment:  

�
 Node i is always the bottleneck node for this link 
because it offers the minimum deficit.  

�
 According to the deficit calculation algorithm of i, 
link (i,j) will belong to the maximum rate set of the 
new rate allocation ’

ir . Also, the cardinality of the 

new maximum rate set of node i increases by one 
link.  

When all adjacent links of i have been activated for 
rate adjustment the maximum rate set will have � �iN  
links, each link allocated a rate of � �iNCi / . From that 

point on, when a link (i,j) is activated for link rate 
adjustment, i will be giving it a fairness deficit of zero, 
and no further rate adjustment will take place on this 
link. Since every link in � �0F will be activated infinitely 
often, there will be a point in time 

01 tt � where all 

adjacent links to all nodes i in � �0F  will have been 
allocated a rate of � �iNCi / . 

After time 
1t , consider the set � �1F of the next most 

constrained nodes in the network: 
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When a rate of a link (i,j) adjacent to a node i in � �1F  
is activated for a rate adjustment: 
�
 If node j is in � �0F , no rate reallocation takes place 

because the fairness deficit on link (i,j) is zero. 
�
 Otherwise node i is the bottleneck node for this 

link. Now if there is another link (i,k) for which 
node k is in � �0F  then its rate cannot be decreased 
further by the deficit calculation calculation 
algorithm of i because it has already established the 
minimum possible fair share in the network 

� �kNCk / .  

�
 The cardinality of the new maximum rate set of 
node i increases by one link. 

Now let time instant 
12 tt � be the point in time where 

all adjacent links to all nodes i in � �1F  (except the links 
(i,k)  for which k is in � �0F  ) will have been allocated a 
rate of � �iNCi / . We can easily show by induction that 

there will be a finite time instant 
1�kt until every set of 

constrained nodes � �

� � � � � � �
�
�
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will 

saturate its remaining links. Therefore the algorithm 
converges in a finite number of steps.  

 
Appendix C: Centralized algorithm for calculation 

of the MMF rates of a static topology. 

 Procedure ComputeRatesAndDeficit(i , ir , j, ij� , ’
ir , jifd

�
) 

Input: i , ir , j, ij�        Output: ’
ir , jifd

�
 

Initialization: t=0, ii rr �

’ , � �
� �

�
�

��

iNj
ijiei rCr ,    

� � � �� �� �eiM ,0
� ,  1�m  

begin 

1. � �eiijij rrr ��
’  /*Increase by the available node bandwidth*/ 

2. 
� �

’maxmax_ ik
iNk

rrate
�

�  

3. while ( raterij max_’
�  AND ijijr ��

’  ) 

    begin 

     3.1.   t = t + 1 

     3.2. � � � � � �
� � � �

� �’’’
1 max:,,,,

1 ik
jiNk

ijijm
t rrrjijiM

m
��

���� ��         

      3.3.  
� � � �

’maxmax_ ik
jiNk

rrate
��

�      ,   � �tMm �  

      3.4.  
1

’’’
’’’ 1

1
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���

����

m

rrr
rrr

ijijij

ijijij
m

m

�
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     end 

4. If ( ijijr ��
’ ) /*rate constraint is less than the fair share*/ 

      4.1. ijijr ��
’  

      4.2. 
m

r
rr ijij

ijij kk

��
��

’
’’  for every � �kji,  in � �tM . 

5. ijijji rrfd ��
�

’  

end 
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The algorithm works iteratively and at each iteration, 
we consider all “bottleneck” nodes, which are defined 
as the nodes with the smallest capacity available per 
flow. We share the remaining capacity of these nodes 
between all flows adjacent to them. Then we “remove” 
these flows from the network and reduce all node 
capacities by the bandwidth consumed by the removed 
flows. In the next iteration, we identify the “next level” 
bottleneck nodes of the reduced network and repeat the 
procedure. The process continues until all flows are 
assigned their fair bandwidth. The details of the 
algorithm are given in the following pseudocode 
fragment, which also includes the case of constrained 
flows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Procedure GlobalComputeMMF  
 
Input: � �LNG , ,  F , � �FfP f ����� :0 �  

Output: maxmin rate vector ! "FfrR m
fmmf �� :  where m 

               is the number of iterations for the algorithm to 
converge. 
 
Initialization:  
i=1, NnU n ��� 00 , Ffrf ��� 00 , FF �
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10. i=i+1 
until ( iF is empty) 


