
�����������	
������

����������������
���������
������
����������������
��
�����
�������
������
��������
�
�����
�����������������������
	���	��������� !���������!�����������
	�"���
���!�����#��$������

	�"���
������������%���������	
����������&�������'�������
��������������������
����
���������������
�������
��(������(��������#��$�������
	�"���
���'

�������������	
�����
���
���
����������

TECHNICAL RESEARCH REPORT

Distributed On-Line Schedule Adaptation for Balanced Slot
Allocation in Bluetooth Scatternets and other Wireless
Ad-Hoc Network Architectures

by Leandros Tassiulas and Theodoros Salonidis

CSHCN TR 2002-14
(ISR TR 2002-24)

 1

Distributed on-line schedule adaptation for balanced slot allocation in Bluetooth
scatternets and other wireless ad hoc network architectures

Theodoros Salonidis and Leandros Tassiulas
ECE department, University of Maryland at College Park

{thsalon,leandros}@eng.umd.edu

Abstract- In this paper we propose an algorithm for
design and on the fly modification of the schedule of an
ad-hoc wireless network in order to provide fair service
guarantees under topological changes. The primary
objective is to derive a distributed coordination method
for schedule construction and modification for any
wireless ad-hoc network that operates under a schedule
where the transmissions at each slot are explicitly
specified over a time period of length T.

First we introduce a fluid model of the system where
the conflict avoidance requirements of neighboring links
are relaxed while the aspect of local channel sharing is
captured. In that model we propose an algorithm where
the nodes asynchronously re-adjust the rates allocated to
their adjacent links based only on local information. We
prove that from any initial condition the algorithm finds
the max-min fair rate allocation in the fluid model. Hence
if the iteration is performed constantly the rate allocation
will track the optimal even in regimes of constant
topology changes.

Then we consider the slotted system and propose a
modification method that applies directly on the slotted
schedule, emulating the effect of the rate re-adjustment
iteration of the fluid model. Through extensive
experiments in networks with time varying topologies we
show that the latter algorithm achieves balanced rate
allocation in the actual slotted system that are very close
to the max-min fair rates. The experiments show also that
the algorithm is very robust on topology variations, with
very good tracking properties of the max-min fair rate
allocation.

1. INTRODUCTION

As wireless ad hoc networks evolve from the
experimental to the commercial domain, there is a need
for efficient bandwidth allocation of the scarce wireless
resources to users. A major obstacle in this quest is the
spatial contention of flows sharing the wireless
medium. Spatial contention can be addressed either in
the physical or MAC layer.

On one end, the physical layer uses only a single
channel and wireless nodes transmit using a broadcast
wireless medium. Then all flows in a vicinity contend
for use of this medium because a node’s transmission
reaches all others. This creates several versions of the
problem of unintended broadcast transmissions (the

most well known being the “hidden-terminal” and
“exposed terminal” problems) and a family of random
distributed MAC protocols ([20], [21]) to address them.
Despite their distributed nature and flexibility, random
access MAC protocols cannot offer a way of strict
bandwidth allocation and guarantees.

Multi-channel wireless technologies address spatial
contention of flows at the physical layer where each
channel is defined by a separate code or frequency. The
idea is that if the flows in a vicinity do not use the same
channel, then conflict-free transmissions can take place
at the same time. Even if this method eliminates1
collisions due to unintended broadcast transmissions,
contention of flows still exists because each wireless
node is usually equipped with a single transceiver and
cannot simultaneously transmit or receive in more than
one link flow. This form of contention necessitates
coordination of the node transmissions on channels and
flows by establishing conflict-free link schedules [1].
According to such a schedule two link flows that share
the same wireless node are not allowed to transmit
simultaneously. Also, nodes must be synchronized to
communicate on common flows at the same time. Any
violation of the above two rules, results to a conflict.
Conflict-free scheduling allows for explicit and
guaranteed bandwidth allocation: the fraction of time a
pair of nodes spends communicating conflict-free on a
flow determines the rate (bandwidth) allocated to this
flow.

Early work has indicated that finding perfectly
conflict-free link schedules that satisfy a certain global
optimal objective (such as minimum schedule length for
a given set of link bandwidth allocation requirements) is
a notoriously hard problem, even if global topology
information is available [1][3]. The first distributed
approach [2] started by flooding connectivity and traffic
requirements in the entire network and then each node
computed the conflict-free schedule by independently
executing a centralized algorithm. This is clearly not
efficient, especially when the network is dynamic.

1 Interference is never totally eliminated but tolerated up to a certain
degree that depends on the physical layer implementation of the reference
technology and the locality of transmissions. We assume elimination of this
kind of interference i.e. no channel errors during a conflict-free transmission.

 2

The emergence of the Bluetooth multi-channel
technology [19] has inspired more refined research on
distributed link scheduling schemes for Bluetooth ad
hoc networks (termed as scatternets). These distributed
techniques are divided in hard and soft coordination
schemes. Hard coordination schemes [8] attempt to
establish perfectly conflict-free link schedules. The
advantage is that they can provide strict bandwidth
allocation guarantees since no transmission conflicts
exist. However, maintenance of the conflict-free
property may come at the expense of significant
communication overhead when there are dynamic
changes in the network. On the other hand, soft
coordination schemes [9][10] trade-off perfectly
conflict-free transmissions for lower complexity and
better robustness in dynamic network operation. The
downside here is that this results to a lack of ability to
provide bandwidth allocation guarantees.

In this paper we introduce a low complexity “hard
cordination” distributed algorithm that aims in
establishing and maintaining maxmin fair bandwidth
allocations in any slotted multi channel wireless
network, including Bluetooth scatternets. Maxmin
fairness is an intuitive and desirable objective in
application scenarios where no explicit knowledge
exists about the bandwidth requirements of the users in
the network. A maxmin fair allocation tries to allocate
an equal amount of bandwidth to all flows. If a flow
cannot use all the bandwidth because of a constraint,
then the residual bandwidth is distributed to less
constrained ones. Among any feasible bandwidth
allocations, a maxmin fair one ensures that the most
constrained flows are allotted the maximum possible
bandwidth.

We first introduce a fluid model that captures only
the bandwidth allocation constraints without taking into
account the conflict-free requirement. In this model we
propose a distributed algorithm that starts from an
initial rate allocation and eventually converges to the
maxmin fair solution after a series of asynchronous link
rate adjustments. The slotted version of the algorithm
attempts to emulate the one of the fluid model with the
basic difference that whenever it adjusts the rate of a
link it does so by re-assigning transmission slots
directly on the network schedule without violating the
conflict constraints. Since the fluid algorithm converges
to the maxmin fair rates under asynchronous distributed
operation, the slotted one is expected to have similar
properties.

It should be noted that the maxmin fairness objective
in slotted multi-channel wireless systems was first

considered in [7]. The authors provide an on-line
scheduling policy and prove analytically that it
converges to the maxmin fair solution. However, the
policy uses global network information to compute the
conflict-free link schedule and therefore cannot be
implemented in practice. The slotted version of the
distributed algorithm proposed here is implementable
but there is no analytical proof for its convergence.
Through extensive simulations in dynamic networks we
show that the algorithm possesses very good tracking
properties of the max-min fair rate allocation.

The rest of the paper is organized as follows. Section
2 presents the network model and definition of max-min
fairness. Section 3 introduces the fluid part of the
asynchronous algorithm that computes the amount of
rate adjustments. Section 4 describes the scheduling
technique that enforces these rate adjustments by means
of conflict-free slot reallocations. Section 5 provides
experiments where the algorithm performance is
evaluated. Section 6 provides algorithm extensions,
section 7 discusses related work and finally, section 8
concludes the paper.

2. NETWORK MODEL AND MAX-MIN
FAIRNESS DEFINITION

2.1. Network and communication model

The wireless ad hoc network is represented by a
graph G(N,L) and a set of logical link flows F. Each
node is assumed to have a unique id (for example the
node’s MAC address). An edge signifies that nodes i
and j are within wireless range and they have
established a physical wireless link. Each physical link
is associated with a number of bi-idirectional logical
link flows of the set F. In this paper we assume that
there are no end-to-end flows spanning more than one
physical links in the network.

All nodes in the system are synchronized on a slot
basis. Synchronization can be achieved by using GPS
clocks or signaling techniques similar to those
employed in wired networks [11] modified for the
wireless ad hoc network setting2. Each system slot
supports bi-directional transfer of data or control
packets by means of a pair of equal duration half-duplex
mini-slots.

The problem of flow contention due to unintended
broadcast transmissions is avoided by means of a

2 Certain slotted systems such as Bluetooth may not support such a

synchronization mechanism. As will be evident and explained later, the
algorithm does not rely on system-wide synchronization for correct
operation.

 3

distributed channel code assignment scheme running at
the physical layer [13][12]. In Bluetooth this function is
provided by scatternet formation protocols [14][15][16].
Still, contention of flows exists because each wireless
node cannot simultaneously communicate in more than
one physical link. To implement conflict-free
communications, each node n maintains a local link
schedule

nS of period T. In every slot of
nS , node n can

either communicate on a single flow or remain idle.
Transmission on a flow f is conflict-free, only if both
ends agree to communicate on f on the same slots of
their local link schedules.

Figure 1: Dotted lines denote wireless proximity but no
established physical link. Flows F1 and F5 can transmit

simultaneously without conflict even if nodes 1 and 4 are
within transmission range. Still every node can transmit to or
receive from only one flow at a time. For example, flows F4
and F5 sharing node 3 and Flows F1 and F2 sharing physical

link (1,2) cannot transmit simultaneously.

We use two models to represent bandwidth
allocation. In the slot model the bandwidth allocated to
a flow f is expressed as the number of slots

f� in a T-

slot periodic conflict-free link schedule. The fluid
model does not refer to a slotted system. The bandwidth

fr allocated to a flow f is the long-term fraction of time

a link spends communicating conflict-free on this flow.
The two models serve different purposes. The fluid
model is more general and intuitive and can be used to
describe notions such as feasibility and max-min
fairness. However a real system will always work in the
discrete domain on a finite T-periodic schedule.

2.2. Feasibility and maxmin fairness definition

Under the fluid model, the effective capacity Cn of a
node n, is defined as the maximum bandwidth that a
node provides its flows for communication. If Cn is less
than unity, then the node is always partially utilized by
the flows sharing it and remains idle for the rest of the
time.

A bandwidth allocation of flows � �nf rrrR ,,,,1 ���

is called feasible if there exists a conflict-free (not

necessarily periodic) schedule that allocates to every
flow f, a long-term rate equal to nfrf ��1, . The set

of all feasible bandwidth allocation vectors defines the
feasibility region, which can be characterized by a set of
constraints. Since a node cannot communicate on
different flows simultaneously, it is obvious that one
constraint would be that the sum of the rates of all flows
sharing a node must be less than the node capacity.
Interestingly, a node capacity of unity guarantees
feasible bandwidth allocations only when the network
topology is bipartite [1]. For a more general topology
the characterization of the feasible region is not as
straightforward. Still, [1] proves that a node capacity
equal to 2/3 provides with a sufficient (albeit not
necessary) characterization of feasibility. We therefore
reach the following node capacity constraint for
feasibility:

NnCr
ntoadjacentf

nf ���� , ,where

�
	

�
otherwise

bipartiteisGgraphnetworkif
Cn ,3/2

,1 (1)

If a flow f has a long-term arrival rate f� then we also

need a demand constraint on the maximum allowable
rate for this flow:

 ffr �� (2)

A feasible rate allocation is said to be maxmin fair
(MMF) if the rate allocated to a flow cannot be
increased without hurting other flows having equal or
less rate. In Figure 1 the MMF allocation of flows is
(r1,r2,r3,r4,r5,r6,r7)=(1/3,1/3,1/3,1/4,1/4,1/4,1/4). We see
that because node 3 is fully utilized, the rate of ¼
allocated to flow 4 cannot be increased without hurting
the rates of the flows 5,6 and 7 that share node 3 and
have been assigned an equal rate.

More formally a rate allocation vector r is defined to
be maxmin fair if:

1. It is feasible i.e. satisfies the capacity and demand
constraints given by eq. (1) and (2).

2. It is lexicographically greater than any other
feasible rate allocation vector b. This means that if
we sort both r and b by increasing order of their
rates and we start comparing one by one the rates of
the corresponding permuted vectors r~ and
b
~ starting from the lowest index (which is 1), then
after a possible set of equal rates there will be an
index j such that

jj rb ~~
� where nj ��1

Given a feasible rate allocation on a network it is very
useful to have a distributed criterion to test if this

1 2 3

4

5

F1

F2
F4

F5

F6 F7F3

1 2 3

4

5

F1

F2
F4

F5

F6 F7F3

 4

allocation is maxmin fair or not. A node n is defined as
a bottleneck node of flow f if the sum of the rates of all
flows equals the node effective capacity Cn and the rate
of flow f is greater than or equal to the rate of all other
link flows of node n.

MMF criterion: A bandwidth allocation is maxmin
fair (MMF) if and only if every flow f satisfies at least
one of the following conditions:

�
 The bandwidth allocated to the flow equals its long-
term arrival rate

f� .

�
 The flow f has at least one bottleneck node.

For example in Figure 1 we can easily verify that
nodes 1 and 3 are the bottleneck nodes for the flow sets
{F1,F2,F3} and {F4,F5,F6,F7} respectively.

3. A DISTRIBUTED ALGORITHM FOR THE
FLUID MODEL

3.1. Fairness deficit

In this section we introduce an asynchronous
distributed algorithm for the fluid model that works in
the feasible rates region and eventually converges to the
maxmin fair solution. For clarity we will consider the
simplest version of the algorithm for the case when
there is only one logical flow per physical link in the
network. The extensions of multiple logical flows per
physical link are discussed in section 6. In this case the
rate rf of logical flow f on physical link (i,j) is denoted
as rij. If � �iN is the set of one-hop neighbors3 of node i,
then the link rate allocation

ir for node i is defined as

the set � �� �iNjriji ���� ,0r . The capacity feasibility

constraint for node i can then be expressed as:

� �
i

iNj
ij Cr ��

�

. (3)

The available node bandwidth according to link rate
allocation ir is then defined as:

� �
� �

�
�

��
iNj

ijiei rCr (4)

Initially, the algorithm starts from an arbitrary
feasible rate allocation R in the network. At
asynchronous points in time a link flow is activated4 for
a possible rate adjustment. The adjustment is such that
at least one of the link endpoints becomes a bottleneck

3 By “one-hop neighbors” we refer to the nodes in range of node i for

which a physical link has been established.
4 We use the term “link activation” with respect to the rate adjustment

process. The link is always active to be used for communication according to
the local link schedules of its endpoints.

node for the link. A bottleneck node can be created if
the link rate increases so that it gets a rate greater than
or equal to the rate of the other links adjacent to that
node. The amount of this rate increase is called the link
fairness deficit.

Starting from
ir , the fairness deficit computation

(FDC) algorithm for link (i,j) works iteratively and
finds a new allocation ’

ir such that eventually the rate
’

ijr belongs to the maximum link rate set of ’
ir . Then

ijfd is by definition equal to
ijij rr �’ . Figure 2 is a

representative example of the algorithm operation,
while Figure 3 (see Appendix) contains the detailed
algorithm pseudocode, which includes the case when
there is a upper demand constraint

ij� on the flow of

link (i,j).

Figure 2: The FDC algorithm for link (1,2) by node 1. At
each step we consider the maximum rate set M (denoted by
the shaded entries). If r’12 does not belong in M, the total
bandwidth of the links in M and link (1,2) is equally
distributed to them. This process continues until link (1,2) is
in M. The last row is the new rate allocation ’

1r and the

fairness deficit is 165.005.0215.021 ���
�

fd .

3.2. The fluid model algorithm

When a link (i,j) is asynchronously activated for rate
adjustment, the following actions are performed:

1. Nodes i and j compute their fairness deficits

jifd
�

and
ijfd

�
on link (i,j) and exchange their

deficit values. The link fairness deficit is defined
as � �ijjiij fdfdfd

��
� ,min .

1

3

4 2

5 6

� � 05.01 �er

0.05

0.17

0.25

0.25 0.23

1

3

4 2

5 6

� � 05.01 �er

0.05

0.17

0.25

0.25 0.23

step#

’
12r

’
13r

’
14r

’
15r ’

16r � �
’

1 er max_
rate

0 0.05 0.17 0.25 0.25 0.23 0.05 0.25

1 0.1 0.17 0.25 0.25 0.23 0 0.25

2 0.20 0.17 0.20 0.20 0.23 0 0.23

3 0.215 0.17 0.20 0.20 0.215 0 0.215

 5

2. If the link fairness deficit is zero, then no rate
adjustment takes place, steps 3 and 4 are not
executed and no further action is taken.

3. If both deficits are non-zero, then the rate of link
(i,j) is increased by

ijfd .

4. Nodes i and j adjust the rates of the rest of their
adjacent links accordingly. If i is the minimum
deficit node then its new link rate allocation ’

ir is the

one given by the FDC algorithm of
jifd

�
in step 1.

The maximum deficit node j reaches its new link
rate allocation ’

jr by applying again the FDC on

link (i,j) with an upper bound constraint of
ijij fdr � .

Note that in order to do the above adjustments we
only need to reduce the rates of certain links adjacent to
nodes i and j except link (i,j) the rate of which is
increased by

ijfd .

Theorem 1: Given a static topology and an arbitrary
initial feasible network rate allocation R, the above
algrotihm converges to the network max-min fair
solution after a finite number of link activations for rate
adjustment.

Proof: see Appendix.
The algorithm termination is totally distributed and

no explicit message needs to be sent to the entire
network to signal convergence: when a link is activated
for possible rate adjustment, its rate is adjusted only if
the link fairness deficit is non-zero.

4. THE ALGORITHM FOR THE SLOTTED
SYSTEM

4.1. Fairness deficit computation and slot
assignment algorithm

The fluid algorithm guarantees convergence to the
network max-min fair rates but does not yield a
conflict-free schedule that realizes these rates. This is
because the fluid model does not refer to a slotted
system.

The slotted algorithm emulates the one of the fluid
model with the basic difference that whenever it adjusts
the rate of a link it does so by re-assigning transmission
slots directly on the schedule S without violating the
conflict constraints. Since the fluid algorithm converges
to the maxmin fair rates under asynchronous distributed
operation, the slotted one will have similar properties
provided it yields a conflict-free schedule after each rate
adjustment.

Figure 4 and Table 4: A wireless ad hoc network using the
T=14 periodic conflict-free schedule of Table 4. Each slot

entry j in the local schedule Si means communication of node
i on link (i,j).

The slotted fairness deficit computation algorithm for
node i, uses the one of the fluid model to reach from
discrete slot allocation i� to ’

i� , and outputs the rate

difference vector iii �� �� ’x . An example of the

detailed operation of the slotted FDC is shown below:

Table 5: The slotted FDC for node 1 on link (1,2) in the
network of Fig. 4: (1) slots are converted to normalized rates
(2) fluid model FDC is applied to rates. (3) resulting rates are
“quantized” to slots. (4) The excess slots due to the
quantization of step 3 are given to link (1,2). (5) The resulting
rate difference vector x1. The fairness deficit is 4 slots.

 Given xi, a positive (negative) element
ikx means

that the rate of link (i,k) must be increased (decreased)
by

ikx slots. A zero element indicates no change in the

rate of the corresponding link. The set of surplus links
(i.e. the links affected by the rate adjustment on link
(i,j)) is � �0:),(���

iki xkiX . Also
ijx is positive and equal

to the fairness deficit amount of slots that must be
assigned to link (i,j).

The slot assignment algorithm decides for each
surplus link (i,k) which

ikx out of the current
ik� slot

1

3

4

2
� � 01 �e�

2

6

6
5

6

14�T

8

5

� � 42 �e� � � 15 �e�

� � 36 �e�� � 83 �e�

� � 84 �e�

1

3

4

2
� � 01 �e�

2

6

6
5

6

14�T

8

5

� � 42 �e� � � 15 �e�

� � 36 �e�� � 83 �e�

� � 84 �e�

 slot#
id

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S1 4 3 3 4 3 4 3 4 2 3 2 4 3 4
S2 - 5 5 5 5 5 5 5 1 5 1 - - -
S3 - 1 1 - 1 - 1 - - 1 - - 1 -
S4 1 - - 1 - 1 - 1 - - - 1 - 1
S5 6 2 2 2 2 2 2 2 6 2 - 6 6 6
S6 5 - - - - - - - 5 - - 5 5 5

step (1,2) (1,3) (1,4) rem Actions

0 1� 2 6 6 0 T=14

1 1r 2/14 6/14 6/14 0.0000 Tr jj /11 ��

2 ’
1r 0.3333 0.3333 0.3333 0.0000 FDC algorithm

3 ’
1� 4 4 4 2 � �Tr jj �� ’

1
’
1�

4 ’
1� 6 4 4 0

Randomly distribute remainder
slots to last maximum rate set

5 1x +4 -2 -2 0 jjjx 1
’
11 �� ��

 6

positions will be assigned to link (i,j). To maintain the
conflict-free property, both endpoint nodes must
eventually assign to (i,j) the same slot positions in their
link schedules.

The slot assignment algorithm consists of two phases.
In Phase I, node i takes into account the link schedule
of j and assigns slot positions to link (i,j) in the
following prioritized way:

1. First, link (i,j) is assigned slot positions that are
currently idle in both link schedules Sj and Si, if
such positions exist.

2. If step 1 did not find enough matching slot
positions, link (i,j) is assigned slot positions where j
is idle and i currently uses for a surplus link (i,k), if
such positions exist.

Figure 5: The slot assignment algorithm

The number of slot positions that matched during
phase I may still be less than the required deficit for link
(i,j). For each surplus link (i,k) that Phase I selected
only

ikm out of
ikx slots, Phase II randomly selects

extra
ikik mx � slot positions that are still assigned to

(i,k) in Si and reassigns them to link (i,j). The algorithm
outputs the new link schedule of i, and a list indicating
the (extra) slot positions that should be assigned to link
(i,j).

In Table 6 node 1 is called to decide on the extra slot
positions that will be assigned to link (1,2).

Slot# 0 1 2 3 4 5 6 7 8 9 10 11 12 13

S1 4 3 3 4 3 4 3 3 2 3 2 4 3 4
S2 - 5 5 5 5 5 5 - 1 5 1 - - -

Table 6: Idle slot positions {7,12} and {0,11,13} of S2

match with ones assigned to links (1,3) and (1,4) in S1
respectively. Link (1,2) is finally assigned slot positions

{7,11,12,13} .

The rate difference vector (row 5 in Table 5)
indicates that links (1,3) and (1,4) must give away two
slots each and link (1,2) should be assigned four extra
slots. By matching the idle slots of S2, node 1 reassigns
slot positions {7,12} from (1,3) and {11,13} (selected
randomly from {0,11,13}) from (1,4) to link (1,2).

4.2. Signaling schedule updates

After the slot assignment algorithm, the rate increase
on a link decreases the rates of some of the other links
adjacent to both endpoint nodes. To maintain the
conflict-free schedule property, the affected one-hop
neighbors must be notified to update their own local
link schedules to reflect this change. A schedule
update control packets (SC packet) sent from node i to
node j contains the following information:

�
 A field specifying if the packet is an “increase”
(SC_inc) or “decrease” (SC_dec) SC packet.

�
 A list of slot positions that need to be modified in
the receiver’s local schedule (Represented by a T-
bit vector). For an SC_inc packet the indicated
positions will be assigned to link (i,j) in the receiver
j’s updated schedule, while for an SC_dec packet
they will be assigned as idle.

�
 The number of slots the receiver should wait before
applying the above schedule update.

Starting from slot s where the link was activated for
rate adjustment, the commit slot offset � �s

ijcoff is the

number of slots needed for the schedule update to be
propagated to all the affected nodes in the one-hop
neighborhood of link (i,j). The commit slot offset is
locally computed on slot s and is appropriately included
in the SC control packets to let each node know when it
should apply the update. After � �s

ijcoff slots, the last node

receives an SC packet and all affected nodes (including
nodes i and j) apply the schedule update starting on the
next slot.

Procedure AssignSlots(i , xi , Si , j, Sj , T, , Si’ , di)
Input: i , xi, Si , j, Sj , T Output: Si’, di
Initialization: Si’ = Si , di = 0
begin /*Phase I: Match the idle slots of the other end j and assign on link (i,j)*/

1. Slot position set I0 = {s: Si’(s) = idle AND Sj’(s) = idle, 10 ��� Ts }
 1.1.repeat /*First match the slots that are idle in both Si and Sj*/
 Randomly select a slot position s from I0

 Si’(s)=j, di (s)=1 /*Assign slot position s to link (i,j) in Si
’ */

 xij = xij – 1, I0 = I0 - {s}
 until (xij == 0 OR I0 is empty) /*end for loop 2.3.*/

 1.2. If (xij == 0) stop and exit procedure.

2. Form set of surplus links Xi
-- = {(i,k): xik < 0} from xi.

 2.1. for every link (i,k) in Xi
— begin

 Slot position set Ik = {s: Si’(s) = k AND Sj’(s) = idle, 10 ��� Ts }
 repeat /*Match idle slots in Sj and ones of surplus link (i,k) in Si */
 Randomly select a slot position s from Ik

 Si’(s)=j, di (s)=1 /*Assign slot position s to link (i,j) in Si
’ */

 xij = xij – 1, xik = xik + 1, Ik = Ik - {s}
 until (xik == 0 OR Ik is empty)
 If (xij == 0) stop and exit procedure.
 end/*end for loop 2.1.*/

/*Phase II starts here*/
3. for every link (i,k) in Xi

— begin
 if (xik < 0) begin /*If this link has still slots to give after Phase I*/

 Form set Ik by randomly selecting |xik| slot positions s : Si
’(s) = k

 for every slot position s in Ik

 Si
’(s) = j , di

 (s) = 1 /*Assign slot s to link (i,j) in Si
’ */

 end /*end for loop 3.*/
end /*Procedure AssignSlots*/

 7

4.3. The commit slot offset computation

Given a node i and a slot s in its current periodic
schedule, the multicast slot offset � � � �� �iMb s

i
 on the

neighbor subset M(i) of N(i), is the number of slots
needed by i to communicate with all nodes in M(i)
starting from slot s.

After node i performs the slot assignment algorithm,
it needs � � � � � �� �iNbA s

i
s

i � slots to send the schedule

update to all its neighbors. The other end node j
receives the update after � � � �� �jba s

i� slots and according

to its own schedule Sj, it needs � � � � ��� �ijNb as
j �� additional

slots to update the rest of its neighbors. Therefore
starting from slot s, node j will need a total of

� � � � � � ��� �ijNbaB as
j

s
j ��� � slots to propagate the schedule

update. The commit slot offset is the number of slots
until both i and j reach all their neighbors:

� � � � � �� �s
j

s
i

s
ij BAcoff ,max� .

Referring to Table 6, assume that node 1 has just
performed the slot assignment algorithm at slot s=8.
Given S1, node 1 will need � � � � � �� �4,3,28

1
8

1 bA � =3 slots to
send the schedule update. Node 2 will receive the
schedule update at slot 10, and according to S2 it will
need � � � �� �510

2b =5 additional slots to reach node 5 (on slot
1 of its periodic schedule). Thus, starting from slot s=8
node 2 will need � � 7528

2 ���B slots for the schedule
update propagation and finally the commit slot offset is

� � � � � �� � 7,max 8
2

8
1

8
12 �� BAcoff slots.

4.4.The complete algorithm

When a link (i,j) is activated for rate adjustment at
slot s, the following actions are performed:
1. Nodes i and j compute their (discrete) fairness

deficits
jifd

�
and

ijfd
�

on link (i,j) and exchange

two fairness deficit control packets (termed as FD
packets). The FD packet sent by each node x
contains the following information:
�
 The node’s calculated discrete fairness deficit

with respect to link (i,j).
�
 The number of slots � �s

xB node x needs to

propagate the schedule update to all its
neighbors in case it turns out to be the
maximum deficit node.

�
 A T-bit vector Ix indicating the idle slot
positions in its own link schedule xS .

2. If any of the two fairness deficits is zero, then no
rate adjustment takes place, the rest of the steps are
not executed and no further action is taken.

3. If both deficits are non-zero, then the rate of link
(i,j) must be increased by the minimum of the two
fairness deficits. The minimum deficit node is the
one with the smaller deficit or in the case of equal
deficits the one with smaller id.

If i is the minimum deficit node, then based on the
FD packet received by j:
�
 Given Ij, it executes the slot assignment algorithm

to determine the list of extra slot positions that will
be assigned to link (i,j).

�
 It computes the number of slots � � � � � �� �iNbA s
i

s
i � it

needs to propagate the schedule update to all its
neighbors. The commit slot offset is then

� � � � � �� �s
j

s
i

s
ij BAcoff ,max� .

4. Then i sends j an SC_inc packet with the list of slot
positions decided by the slot assignment algorithm
for link (i,j), and an SC_dec packet to the rest of its
neighbors to notify them when and which slots of
their schedule they should set as idle. As soon as j
receives the SC_inc packet, it sends an SC_dec
packet to all its neighbors similar to node i.

5. At (global) time instant � �s
ijcoffs � , node i, node j and

all their one-hop neighbors apply the change they
received earlier in the SC packets and the schedule
adjustment is complete.

Figure 6: Actions performed after activation of link (1,2) at
slot 8 of the schedule in Table 4.

Figure 6 illustrates the system evolution after the
activation of link (1,2) during slot 8 of the schedule in
Table 4.

Links can be asynchronously and independently
activated for rate adjustment on the slots assigned to
them for communication by the current network

 Slot 8: (1->2): FD[fd1->2 = 2, [B1 = 4], S1]
 (2->1): FD[fd2->1 = 5, [B2 = 7], S2]

��
fd1->2 < fd2->1: Node 1 is the minimum deficit node.

�
Node 1 executes the slot assignment algorithm with inputs 1x (4th row
of Table 4), S1 and S2 (Table 5) and decides on slot positions
{7,11,12,13} to be assigned to link (1,2) in S1.

� Node 1 computes A1 =3 and coff12
(8) = max(A1, B2) = 7 and sets a

commit timer to expire after 7 slots.

Slot 9: (1->3): SC[decrease_rate, slot_pos_list = {7,12}, commit_after = 6 slots]
 Node 3 sets a commit timer to expire after 6 slots.
Slot 10: (1->2): SC[increase_rate, slot_pos_list = {7,11,12,13}, commit_after = 5
slots]
 Node 2 sets a commit timer to expire after 5 slots.
Slot 11: (1->4): SC[decrease_rate, slot_pos_list = {11,13}, commit_after = 4 slots]
 Node 4 sets a commit timer to expire after 4 slots.
Slot 15: (2->5): SC[decrease_rate, slot_pos_list = {NIL}, commit_after = 0 slots]

�
All commit timers expire, and nodes 1,2,3,4,5 update their local
link schedules.

 8

conflict-free schedule S. If multiple links happen to be
activated for a rate increase at the same slot, the slot
reassignment is conflict-free because the additional
slots are given to links that do not have common node
endpoints. This follows from the conflict-free property
of the current schedule that activates links that
constitute a matching in the network topology graph.
Also a node applies the following rules for updating its
local schedule during the schedule adjustment process:
1. When a node j receives an SC_inc packet from i, it

modifies its local schedule by unconditionally
assigning to link (i,j) all the slot positions seen in
the packet list.

2. When a node j receives an SC_dec packet from i, it
reassigns to idle only the positions that are currently
assigned to link (i,j) and ignores the rest.

If node j updated unconditionally in rule (2) then, if it
received an SC_inc packet from i and then an SC_dec
packet from k, and also these packets happened to have
common positions to be modified in j’s schedule, then j
would first give these slots to link (i,j) and then set them
idle. Then i would not know about the second change in
j’s schedule and there would be a conflict on these slots
between them. An example of this situation can be seen
in Figure 4, for the rate adjustment of links (1,2) and
(5,6) where node 2 may receive an SC_inc from 1, then
an SC_dec from 2 and both packets contain slot position
7 to be modified in 2’s local schedule. By applying the
above rule, node 2 will ignore slot position 7 in the
SC_dec packet, yielding the proper assignment. It is
easy to verify that the rule maintains the conflict-free
property regardless of the ordering and type of control
packets and the indicated slot positions in them.

4.5. Protocol communication Requirements

The amount of control information needed by the
protocol depends only in the system period T and not on
the network dimensions such as size or density. The FD
and SC packets consist of � � TT �2log2 bits and

� �TT 2log1 �� bits respectively. Thus the protocol

requirement in bits per control packet is:
 � � TTBcontrol �� 2log2 bits (5)

Since the control and data packets share the same
slots, this sets the minimum (excluding FEC, headers
etc) half-duplex mini-slot size in the system. If the radio
transmission rate is Rtx bits/sec, the minimum duration
of a single slot system packet is � �� � txRTT /2log2 2 �� sec.

Higher transmission rates allow for shorter slot
durations for a fixed T or larger schedule periods T for a
fixed slot size.

5. PERFORMANCE EVALUATION

5.1. Experimental setting

Topology dynamics are modeled by having links
going up and down in a static baseline topology [26].
This simplified model captures the way mobility is
manifested in multi-channel systems without delving
into the details of the complex hand-off and link
establishment protocols that should be used by a multi-
channel system when nodes actually move. While
important, such protocols are out of the scope of this
paper. Also this model allows for explicit control of
parameters that affect the protocol performance such as
topology density and frequency of topology changes.

Each link in the baseline topology cycles
independently between an ACTIVE (link “up”) and
INACTIVE (“link down”) state. A link remains
ACTIVE for a geometrically distributed number of slots
with mean activeT . Since all links alternate between the

two states independently, the long-term fraction of time
p a link is ACTIVE equals the average percentage of
active links in the baseline topology at any time. In
addition, certain multi-channel technologies impose a
limit on the number of physical links a wireless node
can maintain simultaneously. This restricts the
maximum node degree to Dmax (e.g. in Bluetooth Dmax is
7). The parameter Tactive is used to tune the rate of
topology changes while p and Dmax affect the average
network density. The frequency of rate adjustments is
controlled by the protocol parameter Tadjust. After a link
rate adjustment, the endpoint nodes agree on a random
rate adjustment timer chosen uniformly between 0 and
Tadjust slots. The timer decreases on each future time slot
the link is used for transmissions. When the timer
expires, the link is activated for rate adjustment.

We use two metrics for the algorithm performance
evaluation:

1. Relative computation error: If the MMF rate of a
link (i,j) at time t is � �tr m

ij
 and the computed rate is

� �trij
, the relative computation error for link (i,j) is

� � � �trtr m
ijij /1� at time t. For each slot t, we consider

the average relative computation error over all
currently ACTIVE links. After each topology
change, the reference MMF rates � �tr m

ij
 are

computed off-line using a centralized algorithm
similar to the one of [27] for wireline networks
appropriately adapted to our wireless setting. The
detailed algorithm can be found in Appendix C.

 9

2. Control Overhead: During network operation, a
slot can be idle, used for transmission of a DATA
packet or exchange of control information conveyed
by the FD and SC packets. The control overhead is
the ratio of control packets over the total number of
packets transmitted during a simulation run.

In the following experiments we consider bipartite
topologies because the rate feasibility region is defined
exactly in this case. Such topologies arise in clustered
architectures [17] [18] [19] where each cluster (channel)
is defined and controlled by a master node and the rest
of the cluster members are slaves. Inter-cluster
communication is performed by slave gateway nodes
that participate in more than one clusters. In the non-
bipartite case nodes can set their effective capacity to
2/3 to guarantee feasible rate allocations and the
algorithm will still yield MMF rates but with respect to
this fractional capacity.

We used an N=100 node bipartite baseline topology
with 50 nodes per set. This yields 2500 links in the
baseline topology. As system technology parameters we
use the ones of Bluetooth. Bluetooth supports a raw
transmission rate of Rtx =1Mbps and a maximum
number of simultaneously active physical links Dmax=7.
The system slot duration is 1.25ms. We use a period of
is T=200 slots, which is the maximum that could be
supported by the current Bluetooth specification5. In
terms of traffic demands, all link flows are assumed
backlogged (no demand constraints) when ACTIVE.

5.2. Experiments in Static Networks

All simulations in static topologies were run for
100000 slots. In the first experiment every node has a
degree of Dmax (p=1.0) and the target MMF rate every
link in the network must reach is 1/Dmax (approximated
by T/Dmax slots in each case).

Figure 7 shows the effect of the schedule period T
and maximum degree constraint Dmax on the average
and maximum relative errors. For a fixed Dmax, both
errors decrease as T increases. One reason is that a
larger period provides a better approximation to the
reference (continuous) MMF rates.

5 Half duplex mini-slots in our model correspond to single-slot Bluetooth

baseband ACL packets. The payload size of these packets is limited to 240
bits. If we exclude the higher layer headers and the CRC, only 216 bits are
left for the protocol information (DH1 packets). When FEC is added (DM1
packets), the available space goes down to 136 bits. Using equation (5), we
can see that the maximum period T for DH1 packets is 200 slots and for
DM1 packets 122 slots.

Figure 7: Average and Relative Errors for a static network

of N=100 p=1.0 and Tadjust=512 slots for various choices of T
and Dmax. The average and maximum relative errors are

computed over all active links at the last slot of the
simulation.

For example a period of T=64 cannot provide enough
granularity for a Dmax=14 and the resulting errors are
very high. The other reason is that a larger T offers
more transmission slots to a link per period. This incurs
more frequent expirations of the rate adjustment timer,
and hence more overall activations for link rate
adjustment. This is also the explanation for the increase
in the control overhead in Figure 8 as the period T
increases.

Figure 8: Control Overhead for a static network of N=100,
p = 1.0 and Tadjust=512 slots for various choices of T and Dmax.

The maximum node degree Dmax has a more
pronounced effect both in errors and control overhead.
This is illustrated by the distance between the curves in
both Figures 7 and 8. In the error curves, the effect of
Dmax decreases as the period T increases. After T=1024
slots, the average relative error becomes less than 3%
and the maximum error less than 20% for all cases.
However, in terms of control overhead, the difference
between the curves does not decrease with T. Thus for
T=1024, a Dmax=7 spends only 3% of transmissions in
exchange of control packets while a Dmax=14 spends
17%. To keep the control overhead low, we need to
reduce the frequency of rate adjustments that is
controlled by the Tadjust parameter.

Figure 9 illustrates the effect of Tadjust on a (T=1024,
Dmax=14) system. By increasing Tadjust (hence
decreasing the frequency of link rate adjustments) the

0

0.05

0.1

0.15

0.2

32 64 128 256 512 1024

T (slots)

C
o

n
tr

o
l O

v
e

rh
e

ad

Dmax=7
Dmax=10
Dmax=14

 Maximum Relative Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

32 64 128 256 512 1024
T(slots)

D=7
D=10
D=14

Average Relative Error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

32 64 128 256 512 1024
T (slots)

Dmax=7
Dmax=10
Dmax=14

 10

control overhead decreases without any noticeable
effect in the resulting maximum and average
discrepancy from the MMF solution. At Tadjust = 16384
slots the control overhead becomes negligible. Still,
decreasing the frequency of link activations leads to a
slower convergence. This will become obvious in the
experiments of the dynamic topologies.

Figure 9: Effect of reduction in the frequency of link rate
adjustments.

Figure 10, shows the effect of the topology density

parameter p on the three metrics of interest. As the
density decreases, less nodes need to establish the
maximum number of links Dmax and this leads to a
reduction of both errors and control overhead in the
network.

Figure 10: Effect of the density topology parameter p.

5.2. Experiments in dynamic networks

For dynamic networks, all simulations run for 500000
slots. We study the distribution (pdf) of the average
relative error during the last 100000 slots.

Figure 11 illustrates the effect of mobility and
network density on the error distribution. The bell-
shaped curves indicate that the MMF rate discrepancy
experienced by an “average” link generally oscillates
around a mean value. In Figure11a, we let a link spend
an equal average amount of time in the “ACTIVE” or
“INACTIVE” state, by setting p=0.5. The average time
Tactive a link alternates between the two states varies
from 32min (1536000slots) to 1min (48000slots). As

the rate of topology changes increases, both error mean
and variance increase. This is illustrated by a right-shift
and “spreading” of the error distribution curves as the
parameter Tactive decreases. For a quasi-static network
(Tactive=32min), the MMF discrepancy of an “average”
link is centered at 0.7% and varies between 0.2% and
4%. For Tactive=1min the peak consists of a range of
error values (4%-6%) and the overall error dynamic
range is 2%-10%.

Figure 11: Effect of (a) rate of topology changes and (b)
topology density in the distribution of the average relative

error.

For the same rate of topology changes, the mean and
variance of the average relative error increase with
topology density (Figure 11b). The reason is that a
denser topology allows for less simultaneous conflict-
free transmissions per period and hence less frequent
expirations of the rate adjustment timer per link.
Therefore rate adjustments are happening at a slower
rate and this affects the ability of the algorithm to track
topology changes. Still, even in the most dense
topology (p=0.9) and high rate of topology changes of
Tactive=1min (48000 slots), an average link will achieve
above 80% of its target MMF rate.

Figure 12: Effect of frequency of link activations on (a) the
average relative error and (b) control overhead.

Figure 12 shows the effect of the rate adjustment
parameter Tadjust in the most dynamic case where links

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

0.02

0.04

0.06

0.08

0.1

0.12

Tadjust= 4096 (5.12s)

Rtx =1Mbps, Dmax = 7, T = 200
p=0.5, Tactive = 48000

Relative Error

Tadjust= 2048 (2.56s)

Tadjust= 1024 (1.28s)
Tadjust= 512 (640ms)

Tadjust= 256 (320ms)

Tadjust= 128 (160 ms)

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

0.02

0.04

0.06

0.08

0.1

0.12

Tadjust= 4096 (5.12s)

Rtx =1Mbps, Dmax = 7, T = 200
p=0.5, Tactive = 48000

Relative Error

Tadjust= 2048 (2.56s)

Tadjust= 1024 (1.28s)
Tadjust= 512 (640ms)

Tadjust= 256 (320ms)

Tadjust= 128 (160 ms)

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

4096 2048 1024 512 256 128
Tadjust (#slots)

C
o

n
tr

o
l

O
v
e

rh
e

a
d

 T =1024, p=1.0, D max=14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

128 256 512 1024 2048 4096 8192 16384
Tadjust (slots)

Overhead

MaxRelError

AvgRelError

 T =1024, D max=14, Tadjust=512

0

0.05

0.1

0.15

0.2

0.25

0.3

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
p

Overhead

AvgRelError

MaxRelError

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Tactive= 48000 (1min)

Rtx=1Mbps, Dmax = 7, T = 200,
Tadjust = 512, p=0.5

Relative Error

Tactive= 96000 (2min)

Tactive= 192000 (4min)

Tactive= 384000 (8min)

Tactive= 768000 (16min)

Tactive= 1536000 (32min)

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Tactive= 48000 (1min)

Rtx=1Mbps, Dmax = 7, T = 200,
Tadjust = 512, p=0.5

Relative Error

Tactive= 96000 (2min)

Tactive= 192000 (4min)

Tactive= 384000 (8min)

Tactive= 768000 (16min)

Tactive= 1536000 (32min)

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p=0.9

Rtx = 1Mbps, Dmax = 7, T = 200
Tadjust = 512 Tactive = 48000

p=0.7

p=0.5

p=0.3

Relative Error

(b)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p=0.9

Rtx = 1Mbps, Dmax = 7, T = 200
Tadjust = 512 Tactive = 48000

p=0.7

p=0.5

p=0.3

Relative Error

(b)

 11

form and fail every 1minute (48000 slots) on the
average. As Tadjust varies from 5.12s (4096slots) to
160ms (128 slots), the error mean and variance decrease
slightly (Figure 12a) but the control overhead increases
(Figure 12b). For Tadjust =160ms (128slots), the error is
centered at 2% of the MMF rate but the control
overhead needed to sustain it amounts to 27% of the
overall number of transmissions. A Tadjust greater than
640ms (512 slots) keeps the overhead below 9% but the
error mean and variance will gracefully increase
according to Figure 12a.

Figure 13 illustrates how topology dynamics and
density affect the algorithm performance had the
reference technology specification allowed for a larger
Dmax. The curve trends are the same as in Figure 11 but
the error means and variances increase with Dmax. This
shows the performance degradation of the algorithm for
technologies using a certain radio transmission rate and
wish to support a larger maximum number of MMF
flows per node in a dynamic network.

Figure 13: Dmax=14: Effect of (a) rate of topology changes
and (b) topology density in the distribution of the average

relative error.

Technologies supporting higher transmission rates
result in a better performance because they can use a
shorter slot duration. For example if Rtx = 2Mbps in the
reference system, the system slot duration is 0.625ms
instead of 1.25ms and therefore “Tactive=2min” in Figure
11a will now correspond to the error distribution of
Tactive=192000 instead of the one of 96000 slots. As we
double the transmission rate, we can see the
corresponding performance improvement by “moving”
one error distribution curve to the left in Figures 11a,
12a, 13a and one point to the left in Figure 12b for the
control overhead.

6. EXTENSIONS

6.1. Multiple logical flows per physical link

In the case of multiple logical flows per physical link,
each time a link (i,j) is activated for rate adjustment, the

link endpoint nodes compute a per-flow fairness deficit
for each flow of link (i,j). The deficit calculation
algorithm for a flow will change only in that instead of
link rates a node considers the rates of all its adjacent
flows. If all flow fairness deficits for link (i,j) are zero,
no adjustment needs to take place. If more than one
flow deficits are non-zero then only one flow rate will
be adjusted during this link activation (because each
flow fairness deficit is computed independently of the
others). Which one to adjust can be decided in a round
robin fashion.

6.2. The case of Bluetooth

Throughout the paper we assumed a mechanism that
keeps the system synchronized on a slot basis. Such a
mechanism is not supported in Bluetooth. Each
Bluetooth device has its own “native” hardware clock,
but different native clocks are not necessarily
synchronized. During link formation the endpoint nodes
acquire the phase between their native clocks and one
node assumes the role of master and the other acts as
slave. Masters provide their native clock as the time
reference for communication within their channel. Each
slave uses the phases with respect to its masters to know
the slot boundaries where communication happens in
each channel.

Our protocol can operate properly even in this setting.
The local schedule of a node is with respect to its native
clock tick and the node uses it to know which link it can
communicate conflict-free at any time (either as a
master or slave). Also according to the protocol a node
is informed by FD packets about other nodes’ local
schedules and is instructed by SC packets to modify its
own. Therefore slot positions in an FD packet refer to
the native clock reference of the sender node, while slot
positions in an SC packet refer to the native reference of
the receiver node. Each time a control packet is sent on
a link, the receiver of an FD packet (or sender of an SC
packet), perform the time reference translation on the
slot positions in the packet using the corresponding link
phase.

7. RELATED WORK

Maxmin fairness has been addressed in both single
channel and multi-channel wireless networks. Single
channel systems are considered in [4][5][6]. The work
in [4] uses a weighted fairness scheme to first allocate a
minimum fair bandwidth to the network flows and then
maximize the system utilization subject to this
allocation. This approach could also reach maxmin
allocation via the appropriate flow weights. However,

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Tactive= 48000 (1min)

Rtx=1Mbps, Dmax = 14, T = 200,
Tadjust = 512, p=0.5

Relative Error

Tactive= 96000 (2min)

Tactive= 192000 (4min)

Tactive= 384000 (8min)

Tactive= 768000 (16min)

Tactive= 1536000 (32min)

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Tactive= 48000 (1min)

Rtx=1Mbps, Dmax = 14, T = 200,
Tadjust = 512, p=0.5

Relative Error

Tactive= 96000 (2min)

Tactive= 192000 (4min)

Tactive= 384000 (8min)

Tactive= 768000 (16min)

Tactive= 1536000 (32min)

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

p=0.9

Rtx=1M bps, Dmax = 14, T = 200,
Tadjust = 512, Tactive = 48000

p=0.7

p=0.5

p=0.3

Relative Error

(b)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

p=0.9

Rtx=1M bps, Dmax = 14, T = 200,
Tadjust = 512, Tactive = 48000

p=0.7

p=0.5

p=0.3

Relative Error

(b)

 12

the weight computation requires knowledge of the
maxmin fair rates. This requires a global network MMF
rate pre-computation phase, something not efficient in a
large dynamic network. Nandagopal et al. [6] define
fairness in terms of maximizing total logarithmic user
utility functions and the resulting allocation is
proportionally fair. Maxmin fairness is mentioned as a
limiting case of the general utility fairness model. A
centralized and a distributed algorithm targeted
specifically for maxmin fairness are proposed in [5].
The centralized algorithm reaches an approximate
solution for large networks because it relies on the
computation of the clique corpus of a graph, which is an
NP-complete problem. In the distributed algorithm a
node maintains a subset of the contention graph and
heuristically computes a coarser allocation.

It should be noted that in [4][5][6], the distributed
algorithms that approximate the fairness models are
implemented using a random access MAC protocol and
attempt to achieve the desired bandwidth allocations by
setting a per-flow back-off timer according to the fair
weight of the flow. Since random access cannot support
strict bandwidth allocation guarantees, fairness can be
achieved only in a probabilistic sense (only long-term
fairness).

The work in [7] defines the maxmin fairness
objective in a slotted multi-channel system using
scheduled access and provides a scheduling policy that
achieves maxmin fair allocation of flows. At each slot, a
node first assigns appropriate weights to each of its
adjacent flows by using a round robin token generation
scheme. Then the flows that constitute a maximum
weighted matching on the network are scheduled to
transmit conflict-free. This step makes this approach
unsuitable for distributed implementation because it
requires global topology information for computing the
maximum weighted matching.

DSSA [8] is a distributed scheduling algorithm for
Bluetooth scatternets but it cannot apply to the maxmin
fairness objective. In DSSA every node starts with an
assumption of local link traffic demands and
heuristically tries to reach a conflict-free schedule of
short length that satisfies them. However maxmin
fairness is a global objective. Hence to use this
algorithm one must first pre-compute the network
maxmin fair shares and then provide them as local
traffic demands to every node in the network,
something not practical.

Finally, distributed algorithms for maxmin fair end-
to-end session rate computation have also been studied
extensively in the wireline networks context [22][23].

Our algorithm is similar by being asynchronous,
distributed and targeting the MMF rates. The difference
is that these algorithms perform only the fluid model
part: they only compute the MMF rates but do not
specify how to enforce them. The problem of enforcing
the rates is treated separately by using end-to-end or
hop-by-hop link schedulers and traffic shapers [24][25].
This separation is perfectly justified in the wireline
networks context due to the link scheduling
independence. In the wireless case, a rate adjustment on
a link has an effect on the rates of links adjacent to both
endpoint nodes and the problems of rate computation
(fairness deficit computation) and rate enforcement
(conflict-free slot assignment) must be addressed
jointly.

8. CONCLUSIONS/FUTURE WORK

Future deployment of wireless ad hoc networks calls
for decentralized techniques that allocate efficiently the
scarce wireless medium to users. In this paper we
present an asynchronous distributed algorithm that aims
for maxmin fair bandwidth allocation of flows in a
wireless ad hoc network. The algorithm is of low
complexity and applies to any slotted wireless ad hoc
network using multiple channels at the physical layer.
Bandwidth allocations are realized by perfectly conflict-
free periodic link schedules. This implies that the
algorithm possesses both short-term (to the extend of
the period T) and long-term fairness properties.

The distributed scheduling mechanism is driven by
the rate calculation algorithm, which converges to the
maxmin fair solution under the fluid model. Still, when
emulating the fluid algorithm in the slotted world the
convergence is not exact and there are certain
restrictions and trade-offs a designer has to take into
account. To this end we provide a simple analysis of the
algorithm communication requirements and how they
affect the spectrum of design choices of a multi-channel
technology wishing to support maxmin fair bandwidth
allocation of flows. As a rule of thumb, higher radio
transmission rates give room for larger number of slots
per period and shorter slot durations. More slots per
period provide a better support for larger number of
MMF flows per node while smaller slot durations yield
a better performance in the face of network dynamics.

The algorithm was extensively tested under various
technology choices and topology dynamics. For static
networks it demonstrated excellent convergence
properties especially as the schedule period T increases.
For dynamic scenarios an average flow typically
experiences a certain mean MMF discrepancy with a

 13

finite variance. Performance gracefully degrades with
the increase in the rate of topology changes, network
density and desired maximum number of simultaneous
flows supported by a wireless node. In highly dynamic
scenarios and stringent technology constraints (modest
Rtx and high Dmax), the incremental nature of the
algorithm allows the network to be reasonably close to
the maxmin fair solution most of the time. In addition,
the frequency of link rate adjustments can be fine-tuned
to get acceptable performance for low control overhead.

The low algorithm communication and computation
requirements make it attractive for Bluetooth, a
technology not supporting system-wide slot
synchronization. While the protocol can still operate
properly in this case, the convergence to the MMF rates
will not be as accurate as in a synchronized system
because when a slave switches channel, a slot is always
wasted for aligning to the time reference and local
schedule of the new channel master. Another source of
overhead is the fact that the time a node spends in
topology discovery using the inquiry protocol is at the
expense of communication slots. We are currently
engaged in an implementation that takes into account
these challenges and integrates them in a complete
solution.

9. REFERENCES
[1] B. Hajek and G. Sasaki, “Link Scheduling in Polynomial Time",

IEEE Trans. Inform. Theory, vol. 34, no 5, Sept. 1988.
[2] M. J. Post, A. Kershenbaum and P.E. Sarachik, “A Distributed

Evolutionary Algorithm for Reorganizing Network Communications",
in Proc. MILCOM'85, Boston, MA, Oct. 1985.

[3] M. Post, P. Sarachik and A Kershenbaum, “A Biased Greedy
Algorithm for Scheduling Multihop Radio Networks", In 19th Annu.
Conf. on Information Sciences and Systems, Johns Hopkins Univ.,
March 1985.

[4] H.Luo, S. Lu and V. Bharghavan, “A new model for packet
scheduling in multihop wireless neworks”, Proceedings of ACM
MobiCom 2000, Boston MA, August 2000.

[5] X.L. Huang, B. Bensaou, “On Max-min Fairness and Scheduling in
Wireless Ad-Hoc Networks: Analytical Framework and
Implementation”, Proceedings of IEEE/ACM MobiHoc, Long Beach
CA, Oct. 2001.

[6] T. Nandagopal, T. Kim, X. Gao and V. Bharghavan, :Achieving
MAC layer fairness in Wireless Packet Networks”, Proceedings of
ACM MobiCom 2000, Boston MA, August 2000.

[7] L. Tassiulas and S. Sarkar, “Maxmin Fair Scheduling in Wireless
Networks”, Proceedings of Infocom 2002, New York, 2002.

[8] N. Johansson, U. Korner, L. Tassiulas, “A distributed scheduling
algorithm for a Bluetooth scatternet”, In Proc. Of the 17th International
Teletraffic Congress, ITC ’17. Salvador da Bahia, Brazil, Sep. 2001.

[9] A. Racz, G. Miklos, F. Kubinszky, A. Valko, “A Pseudo Random
Coordinated Scheduling algorithm for Bluetooth Scatternets”,
Proceedings of IEEE/ACM MobiHoc, Long Beach CA, Oct. 2001.

[10] N.Johansson, F. Alriksson, U. Jonsson, "JUMP mode - a dynamic
window-based scheduling framework for Bluetooth scatternets",
Proceedings of the 2001 ACM International Symposium on Mobile ad
hoc networking and computing (MobiHoc), pp. 204-211.

[11] Y. Ofek, “Generating a Fault Tolerant Global clock using High
Speed Control Signals for the MetaNet Architecture”, IEEE
Transactions on Communications, 42(5), pp2179-88, 1994.

[12] L. Hu, “distributed Code Assignments for CDMA packet radio
networks”, IEEE ACM Transactions on Networking, pp. 668-677, Dec
1993.

[13] J.J. Garcia-Luna-Aceves and J. Raju, “Distributed Assignment of
Codes for multi-hop Packet Radio Networks”, Proceedings of
MILCOM 1997, Monterey, California 1997.

[14] T. Salonidis, P. Bhagwat, L. Tassiulas, R.O. LaMaire, "Distributed
Topology Construction of Bluetooth Personal Area Networks",
Infocom 2001.

[15] C. Law, A. K. Mehta, and K. Siu, "Performance of a new Bluetooth
scatternet formation protocol", Proceedings of the ACM Symposium on
Mobile Ad Hoc Networking and Computing 2001, Long Beach,
California, USA, October 2001.

[16] G.V. Zaruba, S. Basagni, I. Chlamtac, "Bluetrees - scatternet
formation to enable Bluetooth-based ad hoc networks", IEEE
International Conference on Communications (ICC) 2001, pp. 273-277.

[17] D. Baker and A. Ephremides, “The architectural organization of a
packet radio network via a distributed algorithm”, IEEE Transactions
on Communications, COM-29 (1981), pp. 1694-1701.

[18] M. Gerla and J. T.-C Tsai, “Multicluster, mobile multimedia radio
network”, ACM Baltzer J. Wireless networks, vol. 1, no. 3, pp. 255-
265, 1995.

[19] Bluetooth baseband specification v. 1.1.
[20] V. Bharghavan, S. Shenker, L. Zhang, “MACAW: A media Access

protocol for wireless LANs”, Proc. ACM Sigcomm 94.
[21] IEEE, “Wireless LAN, Medium Access Control (MAC) and

Physical Layer (PHY) specifications”, IEEE Standard, 1999.
[22] A. Charny, “An algorithm for Rate Allocation in a packet

Switching network with feedback”. MS Thesis, MIT May 1994.
[23] L. Kalamboukas, “Congestion Management in High Speed

Networks”, PhD Thesis, University of California Santa Cruz,
September 1997.

[24] A. Demers, S. Keshav, and S. Shenker, "Analysis and Simulation
of a Fair-queueing Algorithm", Proc. ACM SigComm 89, pp 1-12, Vol.
1, No. 1, 1990.

[25] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong, "Scalable
architecture for integrated traffic shaping and link scheduling in high-
speed ATM switches," IEEE Journal on Selected Areas in
Communications, Vol. 15, No. 5, June 1997, pp. 938-950.

[26] V. Park, M. S. Corson, “A performance comparison of the
Temporally-Ordered Routing Algorithm and Ideal Link State Routing”,
ISCC ’98, Athens, Greece.

[27] D. Bertsekas, R. Gallager, “Data networks”

 14

10. APPENDIX:

Appendix A: Fairness Deficit Computation

Algorithm (Figure3)

Figure 3: The fairness deficit computation algorithm

Appendix B: Proof of Theorem 1

We assume that every link in the network will be
asynchronously activated for rate adjustment infinitely
often. This means that the links do not stop attempting
to perform rate adjustments and intervals in-between
consecutive rate adjustments of a specific link are finite.
The proof is for backlogged single link flows. The case
of constrained flows and multiple flows per physical
link is similar.

Let the link rate adjustment process start at time
0t .

Consider the set of most constrained nodes � �0F , for
which the capacity/degree ratio is equal and minimum:

� �

� � �
�
�

�
	

��
�

�
��
�

��

� kN

C
iiF k

Nk

minarg:0 .

When a rate of a link (i,j) adjacent to a node i in � �0F
is activated for rate adjustment:

�
 Node i is always the bottleneck node for this link
because it offers the minimum deficit.

�
 According to the deficit calculation algorithm of i,
link (i,j) will belong to the maximum rate set of the
new rate allocation ’

ir . Also, the cardinality of the

new maximum rate set of node i increases by one
link.

When all adjacent links of i have been activated for
rate adjustment the maximum rate set will have � �iN
links, each link allocated a rate of � �iNCi / . From that

point on, when a link (i,j) is activated for link rate
adjustment, i will be giving it a fairness deficit of zero,
and no further rate adjustment will take place on this
link. Since every link in � �0F will be activated infinitely
often, there will be a point in time

01 tt � where all

adjacent links to all nodes i in � �0F will have been
allocated a rate of � �iNCi / .

After time
1t , consider the set � �1F of the next most

constrained nodes in the network:

� �

� � � � �
�
�

�
	

��
�

�
��
�

��

�� kN

C
iiF k

FNk 0

minarg:1 .

When a rate of a link (i,j) adjacent to a node i in � �1F
is activated for a rate adjustment:
�
 If node j is in � �0F , no rate reallocation takes place

because the fairness deficit on link (i,j) is zero.
�
 Otherwise node i is the bottleneck node for this

link. Now if there is another link (i,k) for which
node k is in � �0F then its rate cannot be decreased
further by the deficit calculation calculation
algorithm of i because it has already established the
minimum possible fair share in the network

� �kNCk / .

�
 The cardinality of the new maximum rate set of
node i increases by one link.

Now let time instant
12 tt � be the point in time where

all adjacent links to all nodes i in � �1F (except the links
(i,k) for which k is in � �0F) will have been allocated a
rate of � �iNCi / . We can easily show by induction that

there will be a finite time instant
1�kt until every set of

constrained nodes � �

� � � � � � �
�
�

�
	

��
�

�
��
�

��

�

���� kN

C
iiF k

FFNk

k

k 10

minarg:
�

will

saturate its remaining links. Therefore the algorithm
converges in a finite number of steps.

Appendix C: Centralized algorithm for calculation

of the MMF rates of a static topology.

 Procedure ComputeRatesAndDeficit(i , ir , j, ij� , ’
ir , jifd

�
)

Input: i , ir , j, ij� Output: ’
ir , jifd

�

Initialization: t=0, ii rr �

’ , � �
� �

�
�

��

iNj
ijiei rCr ,

� � � �� �� �eiM ,0
� , 1�m

begin

1. � �eiijij rrr ��
’ /*Increase by the available node bandwidth*/

2.
� �

’maxmax_ ik
iNk

rrate
�

�

3. while (raterij max_’
� AND ijijr ��

’)

 begin

 3.1. t = t + 1

 3.2. � � � � � �
� � � �

� �’’’
1 max:,,,,

1 ik
jiNk

ijijm
t rrrjijiM

m
��

���� ��

 3.3.
� � � �

’maxmax_ ik
jiNk

rrate
��

� , � �tMm �

 3.4.
1

’’’
’’’ 1

1
�

���

����

m

rrr
rrr

ijijij

ijijij
m

m

�

�

 end

4. If (ijijr ��
’) /*rate constraint is less than the fair share*/

 4.1. ijijr ��
’

 4.2.
m

r
rr ijij

ijij kk

��
��

’
’’ for every � �kji, in � �tM .

5. ijijji rrfd ��
�

’

end

 15

The algorithm works iteratively and at each iteration,
we consider all “bottleneck” nodes, which are defined
as the nodes with the smallest capacity available per
flow. We share the remaining capacity of these nodes
between all flows adjacent to them. Then we “remove”
these flows from the network and reduce all node
capacities by the bandwidth consumed by the removed
flows. In the next iteration, we identify the “next level”
bottleneck nodes of the reduced network and repeat the
procedure. The process continues until all flows are
assigned their fair bandwidth. The details of the
algorithm are given in the following pseudocode
fragment, which also includes the case of constrained
flows.

 Procedure GlobalComputeMMF

Input: � �LNG , , F , � �FfP f ����� :0 �

Output: maxmin rate vector ! "FfrR m
fmmf �� : where m

 is the number of iterations for the algorithm to
converge.

Initialization:
i=1, NnU n ��� 00 , Ffrf ��� 00 , FF �

1 ,

NN �

1

�
�
�

�

otherwise

bipartiteisgraphif
Cn ,3/2

,1
, Nn��

repeat
1. i

nf = number of flows iFf � adjacent to node n

2. � �1
2

1

1 min,min �

��

����
�

�
��
�

� i
ff

Ffi
n

i
nn

Nn
rK

f

UC
K

ii
�

3. � �21,min KKdr i
�

4.
��

�
�
�

��

�
�
�

��
�

	

�

� �

��

�

�

i
n

i
nn

Nn

i

f

UC
mmB

i

1

minarg:

5.
� �

� ��
�

�
�

�

��

�
�
�
�

��
�

�

�

21

21
1

,:

,minarg:ˆ

KKBneverytoadjacentisff

KKrff
F

i

i
fj

Fj
i

i

�

6. i
fr = ii

f drr �
�1 , iFf ��

7. ��

ntoadjacentf

i
f

i
n rU

8. � �0:1
���

� i
nn

i UCnN

9. iii FFF ˆ1
��

�
10. i=i+1
until (iF is empty)

