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This thesis describes a relatively simple biogeochemical model that I 

developed and coupled with a three-dimensional circulation model of the Chesapeake 

Bay. To improve the performance of the physical model I attempted to assimilate 

high-resolution salinity data using a Newtonian relaxation scheme. In general, the 

simple assimilation scheme leads to visibly improved density structures in the Bay. 

However, the injection of high-resolution salinity data produces transient 

gravitational readjustment, which can have a significant impact on the 

biogeochemical properties and processes in the estuary. Therefore, this approach 

cannot be directly applied in biogeochemical modeling studies. Instead, I show that 

adjusting the salinity at open-ocean boundaries is also able to improve the density 

structure of the inner estuary. 

To obtain a relatively simple but effective way to model light attenuation 

variability in the coupled physical-biological model, I adopted a simple, non-spectral 

empirical approach. Surface water quality data and light measurements from the 

Chesapeake Bay Program were used to determine the absorption coefficients in a 

  



linear regression relationship. The resulting model between light attenuation 

coefficient (Kd) and water quality concentrations (chlorophyll, TSS and salinity as a 

proxy for CDOM) gives generally good estimates of Kd in most parts of Chesapeake 

Bay. I also discuss the feasibility and caveats of using Kd converted from Secchi 

depth in the empirical method. 

To develop the relatively simple biogeochemical model for Chesapeake Bay, I 

adopted a simple NPZD-type biological model and added in necessary additional 

components and simple parameterizations of the important processes for estuarine 

applications. The coupled model is then run under very different conditions: a dry 

year (1995) and a very wet year (1996). Observations of DIN, chlorophyll, total 

suspended solids (TSS), dissolved oxygen (DO), and light attenuation coefficient (Kd) 

obtained from Chesapeake Bay Program are used to validate the model. I demonstrate 

that this simple biological model is capable of reproducing the major features in 

nutrient, phytoplankton, DO, TSS and Kd distributions in a complex ecosystem like 

Chesapeake Bay, and the model is robust enough to generate reasonable results under 

both wet and dry conditions. Sensitivity studies on selected parameters are also 

reported. 
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Chapter 1: General Introduction and Motivation of Current Research 

 

1. Introduction 

In recent decades, coupled physical-biological models have been widely 

applied to the marine environment to simulate both the physical and biogeochemical 

processes and study the interactions between them, especially the effect of physical 

factors on biological communities. The complexity of the physical models ranges 

from box (Li et al., 2000) and 1-D models (cf. Doney et al., 1996; Hood et al., 2001; 

Marra and Ho, 1993) to fully 3-D hydrodynamic models (cf. Lima and Doney, 2004; 

Skogen et al., 1995). The biological models range from simple NPZ (nutrient, 

phytoplankton, zooplankton) (cf. McClain et al., 1996) or NPZD (nutrient, 

phytoplankton, zooplankton, detritus) model (cf. Doney et al., 1996; Oschlies and 

Garcon, 1999; Hood et al., 2003) to multi-nutrient, multi-species and size-structured 

ecosystem models (Moore et al., 2002; Lima and Doney, 2004). When such models 

are applied to estuarine and coastal waters, they can provide a means of assessing the 

potential impacts of local management strategies and hence provide useful 

information to decision-makers.  

Compared to the open-ocean, the estuarine environment is much more 

variable and complex due to the confluence of both fresh and oceanic waters. 

Elevated terrestrial and anthropogenic nutrient inputs and the hydrographic 

characteristics of estuaries promote the retention of both materials and organisms (cf. 

Taft et al., 1978; Malone, 1992), which support high productivity in estuaries. The 
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high primary production in these systems leads to disproportionately large yields 

from higher trophic levels including fisheries (Houde and Rutherford, 1993).  

Estuaries also provide irreplaceable habitats for living marine resources and wildlife 

and support recreation, tourism and other industries. These properties make estuaries 

very valuable natural resources. However, similar to other estuarine systems (e.g., 

Lapointe and Clark, 1992; Pitkanen et al., 1993; Nagy et al., 2002), Chesapeake Bay, 

the largest estuary in the United States, has been suffering from degradation of water 

quality due to increased environmental stresses (cf. Carpenter et al., 1969; Malone 

1992). Eutrophication in Chesapeake Bay has caused serious economic, aesthetic and 

ecological problems: harmful algae blooms (Bowers et al., 2000), loss of submerged 

aquatic vegetation (SAV) (Orth and Moore, 1983), and hypoxia and anoxia at deep 

waters in summer (Cooper and Brush, 1991; Kemp et al., 1992). Increased loads of 

suspended solids from the surrounding land directly reduces water clarity and 

deposits of this material on the bottom can have detrimental impacts on benthic 

organisms and production (Airoldi, 2003; Miller et al., 2002). Efforts have been made 

to reduce the N and P inputs from point and non-point sources and land-based 

sediment runoff with the goal of restoring the Bay to conditions observed in the early 

1950s (Chesapeake Bay Agreement 1983, 1987, 2000). Numerical models have been 

used as a key analytic tool to provide guidelines in setting goals of nutrient and 

sediment reduction to achieve water quality standards.  

In an effort to model the complexity of the ecosystem the Chesapeake Bay 

Program (CBP) has developed a whole package of models, which includes an airshed 

model (Regional Acid Deposition Model (RADM)) (Chang et al., 1990; Dennis, 
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1996), a watershed model (Hydrological Simulation Program-Fortran (HSPF)) 

(Bicknell et al., 1996; Greene and Linker, 1998), a hydrodynamic model (WES-

CH3D) (Johnson et al., 1991; Hood et al., 1999; Sheng, 1986) and a water quality 

model (CE-QUAL-ICM) (Cerco and Cole, 1994; Cerco and Noel, 2004) coupled with 

a sediment (DiToro and Fitzpatrick, 1993) and living resources (including SAV and 

benthos) model (Madden and Kemp, 1996; Wetzel and Neckles, 1986). Even though 

this modeling system is extremely complicated, many processes, which could be 

important in the nutrient budgets, are not modeled or fully accounted for. These 

include, for example, the processes in marshes and wetlands, nutrient inputs through 

ground water and atmospheric dry deposition, etc. Among these, marshes and 

wetlands could be a key missing component. Marshes have high tolerance for 

increased nutrient loading and function as a buffer zone for intercepting nutrients 

before they reach the adjacent estuarine and coastal waters (Nixon, 1980). In addition, 

the water quality model in this package itself has 24 state variables including two 

physical variables (temperature and salinity), multiple algal groups, two zooplankton 

groups, and multiple forms of nitrogen, phosphorus, carbon and silica. The numerous 

processes and huge number of parameters in this model make it difficult to identify 

the essential components and diagnose the potential problems. 

In contrast to the extremely complicated, all-inclusive CBP modeling 

package, in this study we use the same hydrodynamic model but incorporate a 

relatively simple ecosystem model with the goal of capturing the lower order 

variability in the system. Using the simple ecosystem model we attempt to address the 

following questions: 1) What are the essential components in modeling the biological 
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processes in Chesapeake Bay? 2) Can a relatively simple model capture the 1st order 

variability in nutrient cycles, oxygen concentration and phytoplankton biomass? 

2. Background 

2.1 Physical perspective of the Bay 

Chesapeake Bay, the largest estuary in the United States, stretches for about 

320km from the mouth of the Susquehanna River to its seaward end at Cape Charles 

and Cape Henry. As a partially mixed estuary, the circulation is driven by the 

freshwater inflow, tides and wind forcing.  

There are 50 major rivers which discharge into the Bay. The total freshwater 

input to the system average about 2280 m3/s. Nearly half of the total (48.2%) is 

supplied by the Susquehanna River. Freshwater sources along the western shore 

account for 43.6% of the total average freshwater inflow. The remaining 8.2% of the 

total average freshwater inflow comes from the rivers at the eastern shore. All of the 

major freshwater sources entering the Bay exhibit considerable month-to-month and 

year-to-year variability. Typical of mid-latitude rivers, they have high discharge in 

spring followed by low to moderate flow throughout the rest of the year, with lowest 

flow in late summer and early fall. However, the year-to-year variation in the monthly 

averaged flow can be relatively large. Over long time scales the range of monthly 

averaged flows considerably exceeds the median flow for each month (Schubel and 

Pritchard, 1987). 

Tides in Chesapeake Bay have a predominant lunar semidiurnal component 

with a significant spring and neap tide cycle. Tidal waves progress from the Bay’s 
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entrance to the mouth of Susquehanna River in approximately 14 hours (Hicks, 

1964), so that the Bay is able to contain a complete semidiurnal tidal wave at all 

times. The bay is also wide enough to show the earth’s rotational effects: the mean 

tidal range is significantly larger on the eastern shore. Close to the head of the Bay, 

the friction and reflection effects on the propagation of tidal waves become 

significant (Schubel and Pritchard, 1987). 

Averaging over a long period, the residual circulation in an estuary is 

predominantly density driven. In the Bay, the spatial variation in density results 

primarily from spatial variation in salinity. However, the vertical variation in 

temperature can account for as much as 20% of the vertical variation in density in the 

middle and upper reaches of the mainstem during late spring and early summer. The 

density distribution in the Bay depends primarily on the amount and timing of the 

freshwater inflow. When averaged over a sufficient time interval, the residual current 

field of Chesapeake Bay exhibits the classical two-layer estuarine circulation pattern 

of a partially mixed estuary. However, certain parts of the mainstem and some 

tributaries do, at times, approach conditions of a vertically homogeneous estuary. 

Wind-induced circulation in the Bay can be locally driven or remotely driven.  

The upper layer of the estuary responds directly to the north-south component of the 

local wind forcing, and the bottom layer responds in the opposite direction with a 

time lag, presumably in response to the downwind setup of the sea surface (Wang, 

1979). The circulation also reflects the Ekman transport effect produced by the cross-

bay component of the winds in the middle and lower reaches of the Bay (Elliott et al., 
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1978) or the north-south wind in the adjacent coastal ocean which results in sea level 

fluctuations (Elliott and Wang, 1978; Wang and Elliott, 1978).  

2.2 Nutrient loading to the Bay 

The nutrient enrichment of lakes, estuaries and coastal systems from 

anthropogenic activities has been a concern for the last several decades (e.g.: Nixon 

and Pilson 1983, Turner and Rabalais 1994). Chesapeake Bay has shown many 

symptoms of eutrophication (Heinle et al. 1980) and high nutrient concentrations in 

the Bay cause rapid growth of phytoplankton and algae. In shallow areas, the excess 

algae block the sunlight which is important for the growth of submerged aquatic 

grasses. This degrades the habitat and causes the eventual loss of these grass beds. In 

deeper areas, the decomposition of dead algae uses up available oxygen in the water, 

causing prolonged anoxic or hypoxic condition in warmer summer months.  

Excessive nutrient loading is now a serious problem in managing the water quality of 

the Bay.  

Nutrients enter Chesapeake Bay from rivers, atmospheric deposition, point 

sources, ground water discharge and diffusive sources along the shoreline. Of the 

nutrients from the nine major tributaries of Chesapeake Bay, three rivers have the 

highest flow: the Susquehanna, the Potomac, and the James Rivers, and they 

contribute the largest nutrient loads to the tidal part of the Bay. The Susquehanna 

River is the largest river entering the Bay and contributes about 60% of the total 

streamflow, 62% of the total nitrogen load, and 34% of the total phosphorus load to 

the nontidal part of the Chesapeake Bay. The Potomac River is the second largest 

river draining to the Bay and the second largest source of nitrogen and phosphorus. It 
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contributes about 20% of the total streamflow, 28% of the total nitrogen load and 

33% of total phosphorus load. Of the nine major tributaries, the James River 

contributes about 12% of the stream flow, 5% of the total nitrogen load and 20% of 

total phosphorus load. Collectively, the Susquehanna, Potomac and James Rivers 

contribute about 95% of the nitrogen load and 87% of the phosphorus load from the 

nine major tributaries draining to the Bay (Belval and Sprague, 2000).  

Atmospheric deposition is also a significant source of nutrient input for the 

Bay. Phosphorus has no significant atmospheric sources (ref) and anthropogenic 

deposition of atmospheric nitrogen is largely produced from the burning of fossil 

fuels. Studies have shown that atmospheric deposition of nitrogen is an important 

element of total nitrogen load to the Chesapeake Bay (Meyers et al., 2000, Fisher and 

Oppenheimer, 1991). Meyers et al. (2000) estimated that the total nitrogen deposition 

to the watersheds of Chesapeake Bay is about 13 kg N ha-1 yr-1, of which 35% 

originated from dry deposition and the total direct nitrogen deposition to the water 

surface is about 11x106 kg yr-1. Including riverine nitrogen loadings attributable to 

atmospheric sources, atmospheric nitrate deposition makes up as much as 25% of the 

anthropogenic nitrogen loading to the Bay, and atmospheric ammonium deposition 

contributes another 14% of the total (Fisher and Oppenheimer, 1991). However, only 

about 10 percent of the Bay's nitrogen load is the result of airborne nitrogen, 

deposited directly on the water surface of the mainstem and the tidal portions of its 

tributaries. 

Point sources also make important local contribution to nutrient inputs. 

Discharges from municipal wastewater treatment plant contribute the majority of 
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point source loadings. Nitrogen and phosphorus loads from point sources were 

reduced 33% and 56% between 1985 and 2001, respectively (The Chesapeake Bay 

Program). Chesapeake Bay Program data from 1995 and 1996 show that the total 

“end-of-pipe” discharge, including industrial sources of nitrogen and phosphorus to 

all receiving water bodies are about 38 x 106 kg yr-1 and 2.7 x 106 kg yr-1, 

respectively. Point sources are the second largest contributor to the total nutrient 

loadings. 

The diffusive nutrient sources entering the Bay from the coastal plain portion 

of the basin are not accounted for in the river inputs. Due to the proximity to the 

water body, with potentially less retention, nutrient inputs from land runoff from the 

adjacent watershed may be significant (e.g. Lee et al., 2001). The below fall line 

diffuse sources contribute about 5% and 10%, respectively, of total nitrogen and 

phosphorus input to the Maryland mainstem bay (Boynton et al., 1995). The nutrient 

loading through ground water discharge could be an additional large input (Staver and 

Brinsfield, 1996). However, only a little is known about the amount of nutrient from 

ground water entering Chesapeake Bay. 

2.3 Factors affecting phytoplankton growth 

Nutrient concentrations in Chesapeake Bay have been undesirably high in 

recent years. It is widely accepted that N is the essential limiting nutrient for 

phytoplankton biomass on a baywide scale (Malone et al. 1996, Harding 1994). 

However, the relative nutrient availability exhibits large seasonal and spatial 

variations, leading to possible seasonal shifts in the limiting nutrient. This is 
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profoundly important when considering the control of the algae growth by reducing 

the nutrients entering the Bay.  

Rivers supply large amounts of N relative to P due to the greater percentage of 

N (particularly NO3
-) transported via nonpoint runoff. Atmospheric deposition adds 

solely nitrogen to the Bay. During late winter and spring, Chesapeake Bay receives 

maximum fresh water runoff, and nutrient loadings from rivers dominate all sources. 

However, in summer, the freshwater discharges decrease, and regenerated nutrients 

become more important.  

Fisher et al. (1992, 1999) found that along the main axis of the Bay DIN/PO4 

in the surface water was typically greater than 100 in spring, indicating potential P-

limitation of the phytoplankton growth rate and the accumulation of algae biomass. In 

summer, DIN/PO4 was generally <10:1, indicating potential N-limitation. Their 

study, which includes assessments of nutrient turn over time, alkaline phosphatase 

activity and nutrient enrichment bioassays, strongly suggests that the limiting nutrient 

shifts from P (possibly Si) in spring to N in summer.  This study also shows that the 

likelihood of P-limitation is greatest in the upper Bay where the impact of high N:P 

ratio non-point source loading is greatest. Similar seasonal changes in the limiting 

nutrients were also found in the Patuxent and York subestuaries of Chesapeake Bay 

(D’Elia et al., 1986, Webb 1988). 

The relative availability of P is also closely linked to sedimentation processes. 

During winter-spring, the high-flow season, the total suspended solid input is also 

high. When suspended solids settle, they remove phosphorus to the sediments by 

absorption (Stumm and Morgan 1981, Fox et al. 1985). In warm seasons the DIP 
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fluxes across the sediment-water interface (to the water column) are highest (Boynton 

et al., 1980). In summer time, the anoxic conditions in deep water appear to result in 

substantial release of PO4 from sediments (Boynton and Kemp, 1985).   

Besides nutrient limitation, the phytoplankton distribution in Chesapeake Bay 

also shows strong light limitation in nutrient-rich, high turbidity zones. This will be 

emphasized in the next section. 

2.4 Seasonal and inter-annual changes in distribution of phytoplankton biomass 

and production 

Fresh water inflow, winds and tides determine the circulation features, 

nutrient and sediment loading of an estuary. These factors in turn determine the 

distribution of phytoplankton in the system. The interplay of these properties 

produces a spatially and temporally heterogeneous distribution of phytoplankton 

growth and the accumulation of biomass. For example, a persistent patch of high 

phytoplankton concentration between the mouths of the Potomac and Rappahannock 

Rivers is probably induced by the sill off the Rappahannock River. 

Annual phytoplankton production in Chesapeake Bay appears to be more 

sensitive to nitrogen than to phosphorus loading. The Susquehanna River is the major 

external source of nitrogen to Chesapeake Bay, and the fresh water discharge has a 

spring maximum and a fall minimum. As a result, about 50-60% of the annual 

nitrogen input to the upper Bay occurs during the spring freshet (Schubel and 

Pritchard 1986). Most of this nitrogen supply is assimilated downstream of the 

turbidity maximum in the mesohaline region of the Bay where phytoplankton 

productivity and chlorophyll a concentration are highest (Harding et al. 1986, Fisher 
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et al. 1988). In the turbid zone light limits nutrient uptake and phytoplankton 

productivity even though nutrients are abundant (Harding et al. 1986). Consequently, 

the timing and magnitude of the spring bloom in Chesapeake Bay largely depend on 

the timing and magnitude of the spring freshet, which controls the delivery of the 

nutrients and the estuarine circulation. In a high flow year, the sediment loading is 

high and the water at the upper reaches of the Bay is more turbid and has lower 

salinity The turbidity maximum locates further downstream due to the higher flow. 

Consequently, the high production zone in a high flow year exhibits a greater 

downstream displacement.  

The annual cycle of riverine nutrient input is in phase with phytoplankton 

biomass in the mesohaline reach of the Bay, but out of phase with phytoplankton 

productivity in this region (Malone et al. 1988). The accumulation of phytoplankton 

biomass is correlated with the external nutrient input while the phytoplankton 

productivity is correlated with light and temperature. Therefore, phytoplankton 

biomass peaks in spring, but phytoplankton productivity peaks in summer. These two 

peaks are coupled via the sedimentation of phytoplankton biomass during spring and 

subsequent recycling of regenerated nitrogen into the euphotic zone during summer. 

The fluxes of regenerated nutrients from bottom water to the euphotic zone in 

summer are mainly controlled by the vertical stratification. The water column is 

generally stratified in summer but the vertical density gradients can be weakened by 

tidal mixing in shallower regions. Also, occasional large and often rapid lateral 

oscillations of the pycnocline can change the vertical density structure and lateral 

transport of nutrients which may be responsible for the higher phytoplankton 
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production over the flanks of the main channel relative to production in the channel 

itself (Malone et al. 1986). Furthermore, sporadic mixing events in summer can break 

down the stratification in the mainstem and bring the regenerated nutrients from deep 

waters to euphotic zone where the nutrients support high phytoplankton production. 

The species composition of phytoplankton in the Bay also shifts seasonally. 

The classic view is that in spring a diatom bloom accounts for the annual biomass 

peak, but in summer flagellates and dinoflagellates make up most of the 

phytoplankton population (Malone et al., 1988; 1991). Accordingly, the food web of 

the system is dominated by diatom-mesozooplankton in spring, but microbially 

dominated in summer. 

2.5 The role of marshes and wetlands on nutrient loading 

The amount of nutrients entering an estuarine or coastal system determines, to 

a large extent, the biogeochemical activities in the system. Consequently, great care 

must be taken concerning nutrient loading when modeling such systems. However, 

processes such as ground water flow, stream-edge land runoff, nutrient 

retention/release in marshes and wetlands and atmospheric dry deposition are still 

very difficult to fully represent in numerical models. Among these uncertain factors, 

marshes and wetlands may be the most important factor for nutrient sinks/sources due 

to their special role in nutrient budgets.   

Intertidal marshes are generally described as net exporters of organic material. 

Export occurs in the form of detritus and through the activities/feeding and migration 

of animals (Teal 1962, Deegan and Garritt 1997) and the extent of export or 

outwelling from tidal marshes is related to the level of productivity, marsh coverage, 
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tidal amplitude and the geomorphology of the estuarine landscape. The occurrence is 

often intermittent and largest during rainstorms and high spring tides (Odum, 2000). 

However, marshes have been described both as sinks and sources of inorganic 

nutrients (Nixon 1980). The function of marshes to intercept land-derived nutrient 

and hence act as a buffer zone between land and the adjacent estuarine and coastal 

waters has been of great interest in light of increasing nutrient loading to these 

systems (Valiela et al, 1976). Nitrogen entering the marshes is removed from the 

biologically active systems primarily either by being trapped in refractory organic 

matter or through loss to the atmosphere as N2 by denitrification. In oxic water, 

phosphorus is generally found as insoluble salts and is transported to marshes 

attached to particles. Therefore, phosphorus is trapped and buried in marsh sediments 

in both organic and inorganic forms. Marshes at the upper Rhode River trap 700 

moles d-1 N and 34 moles d-1 P in sediments, respectively (Jordan et al., 1983, 1991). 

A recent study of Patuxent River tidal freshwater marshes shows that the marshes 

retain 35% of the nitrogen and 81% of phosphorus inputs to the tidal fresh portion of 

the river and remove approximately 10% of nitrogen by denitrification (Merrill, 

1999). Teal and Howes (2000) noted that the nitrogen removal through denitrification 

is more effective on inputs through ground water than through surface/tidal waters. 

Valiela et al. (2000), summarizing studies on 19 salt marshes, found that mature 

marshes export more NH4 and NO3 than young marshes. Despite these studies, there 

is still not enough information on nutrient exchange among linked watershed, estuary, 

and marsh systems to clearly understand the different roles of marshes. 
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The nutrient uptake or release from marshes and wetlands in temperate 

climates usually exhibits a seasonal pattern or at least differences in retention rate. 

Jordan et al.(1991) showed that dissolved PO4
3- production peaked in summer when 

watershed discharge was lowest, but NO3
- consumption peaked in spring when 

watershed discharge was highest in the upper Rhode River. Ammonium release in 

summer due to the mineralization of organic matter and ammonification of nitrate 

taken up by the sediments under anoxic conditions was observed in Patuxent River 

tidal marshes (Merrill, 1999). 

Chesapeake Bay tidal marshes cover approximately 1.7 million acres. Further 

studies and new techniques are needed to assess the role of these marshes and other 

sinks/sources and processes in nutrient balances. 

2.6 Sediment biogeochemistry 

Sediment processes are important for nutrient cycling in estuaries. Organic 

nitrogen and phosphorus are remineralized in sediments. The inorganic nitrogen and 

phosphate in interstitial waters can then be released to the water column and become 

available to the plankton community. The regeneration of both ammonium and 

phosphate are temperature dependent with maximum fluxes from sediment in summer 

(Boynton et al. 1980).  Sediment regeneration of phosphate and ammonium can 

provide an average of 28% of phytoplankton P requirement (Fisher et al. 1982) and 

13 to 40% of phytoplankton N requirement with a higher percentage in the summer 

period (Boynton and Kemp, 1985). In the sediments some of the ammonium released 

from the organic matter is nitrified to nitrate, and denitrification converts a substantial 

proportion of the nitrogen to N2 in hypoxic and anoxic strata (Kemp et al., 1990). 
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Hence the coupled process of nitrification-denitrification represents a pathway for 

nitrogen loss. Sediment nitrification rates are generally regulated by availabilities of 

O2 and NH4
+. The regeneration of NH4

+ has the highest rate in summer; however, the 

O2 penetration into sediments declines in summer due to increased temperature and 

organic inputs. In the mesohaline region of Chesapeake Bay, a relatively high rate of 

nitrification and denitrification in spring and fall and virtual elimination of both 

processes in summer have been observed (Kemp et al. 1990). The sediment redox 

potential also affects phosphate precipitation and dissolution. In anaerobic sediments 

bacteria reduce ferric iron (Fe3+) to ferrous iron (Fe2+) in the presence of H2S. Ferrous 

iron is much less effective in adsorbing phosphate than ferric iron (Krom and Berner, 

1980), which makes dissolved phosphate available under anaerobic conditions. 

Dissolved phosphate may leave anoxic sediments, but some of the phosphate may 

reprecipitate as FePO4 and/or sorb to oxyhydroxides at the oxic-anoxic interface 

(Krom and Berner 1980). Boynton and Kemp (1985) suggested that the relatively low 

observed sediment flux of DIP in some Chesapeake Bay sediments is due to the 

presence of O2 in the overlying water. 

3. Motivation and approach of current research 

3.1 Importance of correctly modeling the physical processes  

In aquatic systems, biological and chemical processes are, to a large degree, 

controlled by physical processes.  For example, rates of phytoplankton growth, 

zooplankton grazing, and organic matter remineralization are temperature dependent, 

and species composition of the biological community are affected by salinity and 
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temperature. Recent open ocean modeling studies have emphasized the importance of 

improving the representation of physical processes and variability in order to improve 

the performance of biogeochemical models (Oschlies and Garcon, 1999; Hood et al., 

2003; Friedrichs et al., 2004).  

In Chesapeake Bay, river flow during the spring freshet, which determines 

nutrient and sediment input, largely dictates the timing, magnitude and location of the 

spring bloom (Malone et al., 1988; Fisher et al., 1988), which consequently 

determines the available nitrogen for recycling in summer months (Malone et al., 

1988). In summer, stratification and mixing events control the amount of nutrient 

delivered to the euphotic zone and affect the extent of hypoxia and anoxia conditions 

in the Bay.  

Due to the paramount importance of reproducing the correct physical 

conditions in a coupled physical-biological model for modeling biogeochemical 

variability, my first task in this thesis (Chapter 2) was to validate the physical model 

for the studied period: 1995 and 1996. These two years were chosen because of their 

very contrasting river flow conditions, i.e., 1995 was a low flow year and 1996 was a 

very high flow year.  

Because computer resources are limited, one inevitable problem faced in all 

numerical modeling studies is resolution. Even with today’s powerful computers, it is 

still impossible to resolve all processes at all relevant scales in a model. Moreover, 

there are still some processes, such as turbulence, whose mechanisms are not fully 

understood. Data assimilation has emerged as a powerful tool to improve model 

performance (e.g., Ezer amd Mellor, 1994; Forbes and Brown, 1996; Wu et al., 1999) 
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and/or infer uncertain parameters (Bogden et al., 1996; Smedstad and Obrien, 1991; 

Ullman and Wilson, 1998). In Chapter 2 I also made an attempt to assimilate the high 

resolution salinity data obtained by Scanfish to improve the density structure, and 

hence the velocity structure, of the 3-D hydrodynamic model.  It is noted, however, 

that instabilities generated by the data assimilation can have a significant impact on 

the circulation and mixing in the estuary, and therefore may interfere with 

biogeochemical modeling studies. 

3.2 Underwater light field 

Light is essential for photosynthetic plants and algae. However, due to the 

rapid attenuation in water, light is often a limiting factor in primary production in the 

aquatic environment (e.g. Fisher et al., 1999). The degree of light attenuation also 

varies tremendously in aquatic systems due to the variable presence of 

“chromophoric” organic matter, such as phytoplankton, DOM and detritus. Therefore, 

reproducing the correct underwater light field is a key problem in modeling the 

biogeochemical processes in these systems. 

Because the incoming photosynthetically active radiation (PAR) at the air-

water interface can be measured or calculated quite accurately (e.g. Fisher et al., 

2003), the main issue in calculating the underwater light field is to have correct 

estimate of the vertical light attenuation coefficient (Kd). For monochromatic light the 

vertical light attenuation can be decomposed as a set of partial attenuation 

coefficients, each characterizing absorption and scattering by a different waterborne 

material. Strictly speaking, a complete spectrum of Kd (Kd(λ)) is needed to obtain the 

average Kd for the whole photosynthetic waveband and for each narrow band it is 
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necessary to know the wavelength-specific absorption and scattering coefficients for 

each waterborne material. Spectral bio-optical models have been developed and 

applied to different kinds of water bodies (e.g.: Arrigo and Sullivan 1994; Gallegos et 

al. 1990; Platt and Sathyendranath1988). However, due to the optical complexity of 

estuarine waters, and because our goal is to keep our biological model as simple as 

possible, we developed a simple, empirical, non-spectral bio-optical model for the 

Chesapeake Bay for estimating Kd variability.   This model is described and validated 

in Chapter 3 of this thesis.   

3.3 Complexity of the biological model 

As we discussed above, the water quality model developed by the Chesapeake 

Bay Program for management purpose is extremely complex. However, a recent 

biogeochemical model intercomparison study has shown that increasing model 

complexity may not lead to increased skill or predictive ability (Friedrichs et al., 

2004). It is not clear, however, whether or not these results, which were derived from 

a study of open-ocean models, is applicable in a complex system like Chesapeake 

Bay.  We therefore set out to develop a simple biogeochemical model for Chesapeake 

Bay that includes only the essential components that are necessary for modeling 

nutrient cycling, oxygen and phytoplankton biomass variability.  We also developed 

and incorporated into this model a suite of simple paramaterizations that account for 

some of the key sources of higher order variability, such as phosphorus limitation, 

temperature effects and seasonal changes in ecosystem structure. To bypass the effect 

of marshes and wetlands we use a simple nudging scheme to ‘push’ the model 

towards observations at the head of tributaries.  We then couple this model with our 
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3-D hydrodynamic model and run them for both 1995 and 1996 to test whether or not 

this simple configuration is robust enough to reproduce the tremendous seasonal and 

interannual variability in Chesapeake Bay.  We conclude that it is, although with 

some significant caveats. 

An overview of the dissertation is as follows. The effort of improving the 3-D 

hydrodynamic model through data assimilation is described and discussed in chapter 

2. Chapter 3 deals with the development and validation of a simple empirical, non-

spectral light model for Chesapeake Bay, and examines the issue of calculating Kd 

using direct light measurement versus using Kd derived from Secchi depth (SD). 

Chapter 4 provides a detailed description of the biogeochemical model we developed 

and we validate it by comparing the model results with Bay Program monitoring data. 

Sensitivity studies using selected parameters are also reported in chapter 4. Finally, a 

general summary and conclusions are given in chapter 5. 
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Chapter 2: Assimilating High-Resolution Salinity Data Into a Model 

of a Partially Mixed Estuary 

 

Abstract 

A three-dimensional circulation model of the Chesapeake Bay is used to validate a 

simple data assimilation scheme, using high-resolution salinity data acquired from a 

ship towed undulating vehicle (a Scanfish). The simulation period spans the entire 

year of 1995 during which the high-resolution Scanfish data were available in July 

and October, lasting a few days each. Since Scanfish data were irregularly distributed 

in time and space, only salinity fields are nudged in the model for simplicity. Model 

improvements through data assimilation are evaluated from a pair of experiments: 

one with data assimilation and one without. Data from scattered Chesapeake Bay 

Program monitoring stations and a few stations maintained by the National Ocean 

Service inside the Bay are used independently to check the model performance. In 

general, the simple assimilation scheme leads to visibly improved density structures 

in the upper and middle reaches of the Bay. The improvement in the lower Bay is 

equally pronounced after data assimilation but diminishes in a shorter time scale 

because of faster flushing from the adjacent coastal ocean. Moderate to weak nudging 

normally enhances the gravitational circulation. Strong nudging may produce 

transient overshooting, during which the gravitational circulation is renewed 

vigorously. 

 32 
 



 

1. Introduction 

In modeling partially mixed estuaries, a major difficulty to overcome is the 

numerical damping. The numerical representation of three-dimensional flow and 

density fields by a finite number of computation cells invariably increases friction. 

Part of the enhanced friction arises from grid-scale mixing, because friction 

coefficients must be made proportional to a power of grid spacing to achieve 

computational stability. Numerical form drag also enhances friction when irregular 

coastlines and bottom topographies are approximated by groups of computation cells. 

While these problems are common to all ocean models, they become particularly 

acute in models of long and narrow estuaries with excessive coastline and topography 

irregularities. The bottom inflow must follow a long and often sinuous path to enter, 

upwell and return seaward. To overcome numerical damping, it is often necessary to 

enhance bottom inflow of seawater from the mouth region in order to produce a 

realistic two-layered circulation well inside an estuary. 

There are two ways to further enhance model realism. One way is to improve 

grid resolution at the expense of computation speeds. The other way is through 

assimilation of high-resolution data. With the availability of satellite altimeter and 

climatological data sets, data assimilation is now widely used in large-scale ocean 

models and dynamic principles have been developed for the purpose of nudging 

several variables simultaneously (e.g., Ezer and Mellor, 1994; Forbes and Brown, 

1996; and Wu et al., 1999). Similar efforts in shallow reaches of the ocean are 

deliberately simplified for lack of climatological data sets and reliable altimeter data. 

For example, Spitz and Klinck (1998) used an adjoint variational method along with 
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tide gauge data from a few stations to improve sea level predictions in a two-

dimensional tidal model of the Chesapeake Bay. Similar methods were also used to 

assimilate current velocity data into shallow water equation models of Massachusetts 

Bay (Bogden et al., 1996) and Long Island Sound (Bogden and O’Donnell, 1998). 

Because of the resolution problem, highly nonlinear phenomena such as 

internal bore intrusion and sill-induced hydraulic jumps in estuaries are often smeared 

out by friction in numerical models. In this light, successful assimilation of high-

resolution data would be highly desirable for it allows modelers to reproduce these 

physical processes in more realistic settings. This remains as a lofty goal at the 

present time.  

Recent advances in Undulating Oceanographic Recorders (such as Scanfish 

manufactured by Danish company Geological & Marine Instrumentation) offer an 

alternative. Through rapid vertical undulations, a ship-towed vehicle can provide a 

reasonably synoptic, three-dimensional view of the density structure in a large body 

of shallow waters. The high-resolution data, though irregularly distributed in space 

and time, may be assimilated into numerical models. Ideally, one would like to derive 

climatological data sets for shallow bodies of waters from repeated sampling over 

many years, and assimilate climatological data into models in a dynamically 

consistent fashion. This option is presently not feasible for obvious reasons. 

An attempt is made below to assimilate the Scanfish data into a Chesapeake 

Bay three-dimensional circulation model. Year 1995 was chosen because it was the 

first year the high-resolution salinity data became available. Further, the 

hydrodynamic model simulation has not been carried out and verified beyond 1995 at 
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the time this research was initiated. The simulation period spans the entire year of 

1995, during which two rapid sampling cruises covering the main stem of the Bay 

were made in July and October. In the same year, 49 mainstem monitoring stations 

were maintained by Chesapeake Bay Program of the Environmental Protection 

Agency. Each station was sampled 16 to 20 times in the year at irregular time 

intervals. Only Scanfish data from the July and October cruises are assimilated. 

Selected salinity data from the 49 fixed stations are used to evaluate the performance 

of the data assimilation scheme. 

Intuitively, direct assimilation of hydrographic data into a model seems like an 

effective way to improve model realism. The ideal scenario is that assimilation 

improves the density structure, and the improved density field supports a more 

realistic circulation field. While this is generally true, the improvement does not come 

without penalties. In the subject at hand, it is found that quick injections of data may 

trigger brief moments of readjustment in gravitational circulation. Circulation during 

brief periods of gravitational readjustment may be unrealistic. In this light, the speed 

of data injection must be optimized, so that the gain will outweigh the loss. 

The oceanographic setting and data availability are described in section 2. In 

section 3, a hydrodynamic model of the Chesapeake Bay is described. Section 4 

discusses the data assimilation scheme. The undesirable consequence of data 

assimilation, i.e., the gravitational readjustment, is elaborated in section 5. Section 6 

summarizes benefits brought about by data assimilation. Section 7 concludes this 

work. 
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2. Oceanographic Setting 

A deep channel running north-south more or less along the western side of the 

main stem dominates the bathymetry in the middle reaches of the Chesapeake Bay 

(Fig. 2.1). The main channel, being bounded to the south by a sill at about 37.6°N, is 

completely closed below the sill depth of about 14 m. South of 37.6°N, the deep 

channel becomes somewhat shallower and ill-defined, often branching in multiple 

directions. Between 37.6°N and 39°N, the main deep channel harbors a rather 

persistent, river-induced two-layered circulation although the gravitational circulation 

is often influenced by winds and stratification (Goodrich et al., 1987). Along the main 

stem of the Bay, drainage from eight major tributaries (Susquehanna, Patapsco, 

Patuxent, Potomac, Rappahannock, York, James and Choptank) contributes to most 

of the river input. The Susquehanna River in the northern extreme of the Bay 

provides the largest freshwater influx among the eight, approximately one half of the 

total freshwater input. Tidal forcing is modest inside the Bay with tidal range rarely 

exceeding 1 m. Winds are generally episodic with dominant periods of 2-7 days. In 

the upper and middle reaches of the Bay, northwesterly winds dominate in winter 

months (November-February), but are more frequently disrupted by southerly winds 

of several days each in summer. 

Fig. 2.2 shows daily discharge rates from the four largest tributaries 

(Susquehanna, Potomac, James and Rappahannock) for the entire year of 1995, which 

was perceived as an abnormally dry year. Discharge from other rivers was 

considerably lower. Discharge was generally high from mid-January to April, further 

enhanced by several peaks of 5-10 days duration. It decreased markedly in summer 
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and was relatively high again in late fall. When averaged over sufficiently long 

periods to filter out wind and tidal effects, the annual variation of subtidal circulation 

in the Chesapeake Bay is expected to be dominated by the strength of freshwater 

discharge. See Goodrich et al. (1987) for some observations. 

Fig. 2.3 shows 24 Scanfish transects across the main stem of the Chesapeake 

Bay. Temperature and salinity were sampled along these transects from July 19 to 

July 22 and from October 24 to October 26 in 1995. Starting from transect 1 across 

the mouth of Chesapeake Bay, transects were visited sequentially as the ship moves 

up the estuary. Moving at an average speed of 6 knots, the ship covers each transect 

in about half an hour to four hours, and it takes about 3 days to complete a basinwide 

survey. The Scanfish follows slanted paths up and down the water column with 

inclination angles around 6°, sampling at time intervals of 0.5 seconds. During the 

July cruise, data along transect 1, transect 4 and transect 7 to 12 in the lower Bay 

were unfortunately lost. In consequence, effects of data assimilation in July come 

mostly from inner reaches of the Bay. 

Selected salinity stations maintained by Chesapeake Bay Monitoring Program 

are marked by dots in Fig. 2.3. These stations were visited 16 to 20 times in 1995 at 

somewhat irregular intervals. At each station, salinity profiles were measured with a 

vertical resolution of 1~2 m. These salinity profiles provide an independent data set 

that can be used to assess how well the data assimilation scheme works. Two 

temperature stations at Tolchester Beach and Solomons Island, marked by “X” in 

Fig.2.3, were maintained by the National Ocean Service of NOAA in 1995 

(http://www.co-ops.nos.noaa.gov/data-res.html). These time series can also be used 
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for model verification, although our major emphasis is on salinity as the major 

indicator of water density in the Bay. 

3. The hydrodynamic model 

The model, originally developed by Sheng (1986), was subsequently modified 

extensively by the US Waterways Experiment Station (WES) for application to 

Chesapeake Bay (Johnson et al., 1991; Wang and Chapman, 1995). Under 

Boussinesq and hydrostatic approximations, the hydrodynamic model solves for 

salinity, temperature, water-level elevation and velocities in three dimensions. There 

are up to 19 layers in the vertical with a uniform layer thickness of 1.52 m, except 

that the top layer thickness fluctuates with sea level. Horizontally, the governing 

equations in the Cartesian coordinate system are recast in a boundary-fitted 

curvilinear coordinate system (Fig. 2.4) to cope with the irregular shoreline 

configuration and deep channel orientation. The model domain extends offshore to 

include a piece of coastal ocean with coarse resolution. The coastal ocean is included 

mainly as a buffer zone to facilitate free exchanges across the Bay mouth. Inside the 

Bay, typical grid size ranges from 1 to 5 km in the main stem of the Bay; bottom 

topographic irregularities with horizontal scales in and below this range are truncated 

by the model. Further, the prominent sill bounding the main deep channel in the 

south, located between the mouths of Rappahannock and Potomac Rivers, is 

marginally resolved. In spite of the coarse resolution, essential circulation features, 

such as the two-layered circulation in the main channel and major tributaries, can be 

reproduced by the model (Johnson et al., 1991; Hood et al., 1999). Similar to a host of 

primitive-equation models such as Blumberg and Mellor (1987), the staggered 
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Arakawa-C grid system is used in both horizontal and vertical directions of the 

computation domain. The vertical eddy viscosity and diffusivity are computed from 

mean flow and stratification characteristics using the second-order k-ε turbulent 

closure scheme (see, for example, Kundu, 1980; Launder and Spalding, 1974). A 

quadratic stress is exerted at the bottom, assuming the bottom boundary layer is 

logarithmic over a bottom roughness height of 0.05 cm. Coefficients of horizontal 

eddy viscosity and diffusivity are set to 104 cm2/s. 

Originally, the initial three-dimensional salinity and temperature fields were 

constructed using the historical field data in January averaged over many years. Since 

initialization, this model simulation has been extended from 1985 to 1994 by WES. 

We used the model output at the end of 1994 as the initial condition for salinity and 

temperature fields. The initial velocity field was taken to be zero and the water 

surface was initially set at the mean sea level. 

The model is subsequently forced by open ocean tides, winds, freshwater 

inflows and the heat exchange at the water surface through 1995. Further, salinity and 

temperature fields were also prescribed on offshore open boundaries using monthly 

Levitus climatology data (Levitus, 1982) combined with field data at Duck, North 

Carolina (36.1833°N, 75.7467°W) acquired daily (with occasional lapses) by the 

Field Research Facility of the US Army Corps of Engineers. Daily freshwater inflow 

with zero salinity and time-varying temperature was prescribed for the eight major 

tributaries; arrows in Fig. 2.1 mark inflow locations. On each inflow cross-section, 

the incoming current is uniform with time-varying speeds regulated by the daily 

freshwater discharge rate.  
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Hourly wind stress in the lower and middle reaches of the Bay was linearly 

interpolated from data at the Norfolk International Airport (NIA), Patuxent River 

Naval Station (PRNS) and the Baltimore-Washington International (BWI) Airport. 

Their locations are marked by solid squares in Fig. 2.3. North of BWI, wind stress is 

assumed to be identical to that at BWI. Empirical factors for different regions were 

used to extrapolate winds over land to winds over water.  Daily air-water heat 

exchange was computed from data taken at the Patuxent meteorological station using 

the formulation of Edinger, Bradly and Geyer (1974). Ideally, meteorological stations 

over the water are desirable, but few offshore stations were available in 1995. In 

constructing the wind field for the Bay model, it should be noted that longitudinal 

winds are much more effective than lateral winds in driving circulation along the 

main stem of the Bay (Wang, 1979a and b). The linear interpolation among the three 

meteorological stations (NIA, PRNS and BWI) is intended to improve spatial 

resolution of longitudinal winds along the main axis of the Bay. One reviewer of this 

manuscript pointed out two additional records at Solomons Island and Tolchester 

Beach, maintained by the National Ocean Service of NOAA. From a basin-wide 

perspective, the Solomons Island station and PRNS are practically at the same 

location. The inclusion of Solomons Island, therefore, will not improve the spatial 

resolution of winds along the main axis of the Bay. Tolchester Beach station and BWI 

are also at about the same latitude. If the two wind records differ substantially, the 

inclusion of Tolchester Beach will likely improve lateral resolution of wind forcing in 

the upper reaches of the Bay, but does little to enhance longitudinal resolution of the 

wind field. If winds at Tolchester Beach and BWI do not differ substantially, then 
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there is no reason to include it. To investigate further, we have performed cross-

spectral analysis to document the relationship between winds at Solomons Island and 

PRNS, and at Tolchester Beach and BWI. Of major concern are low-frequency 

longitudinal winds with periods longer than a few days along the main axis of the 

Bay. High-frequency winds and cross-estuary winds are basically noise generators, 

ineffective to drive basin-scale subtidal circulation. In periods longer than about 2.5 

days, the coherence squared between Solomons Island and PRNS is about 0.8 for 

longitudinal winds and approaches 0.7 for lateral winds. The corresponding 

coherence squared between Tolchester Beach and BWI approaches 0.76 for 

longitudinal winds and 0.68 for lateral winds. Further, the phase lag between each 

pair of stations is generally less than a few hours for longitudinal winds. Therefore, 

the subtidal circulation in the main stem of the Bay will not be significantly impacted 

whether the additional wind records are included or not. As a consistency check, we 

have also compared the modeled and observed surface water temperature at 

Tolchester Beach and Solomons Island in 1995. The result, to be shown later in Fig. 

2.6, shows reasonable agreement even without the inclusion of the two additional 

wind records, lending support to the foregoing argument.  

Open-ocean boundary sea level was updated using data from stations at 

Wachapregue, VA (37.6067°N, 75.6867°W) and Duck, NC (36.1833°N, 75.7467°W) 

obtained from National Ocean Service (NOS), NOAA. These coastal sea-level data 

were first extrapolated offshore based on Green’s Law (Ippen, 1966). Namely, tidal 

amplitudes are assumed to be inversely proportional to the ¼ power of local water 

depth. In the along-shore direction, tidal amplitudes are linearly interpolated on the 
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offshore open boundary. While water level fluctuations are prescribed on open-ocean 

boundaries, the incoming and outgoing currents are induced by water level gradients 

normal to these boundaries. 

The model solves external and internal mode equations separately. The 

external mode consists of equations for the water surface elevation and vertically 

averaged flows in two horizontal directions. The internal mode computes the vertical 

shear of horizontal velocities, vertical velocity, temperature and salinity. Time steps 

for the external and internal modes are both set at 300s. The larger-than-normal time 

step for the external mode is made possible by an implicit solver which relaxes the 

stringent requirement for small time steps set by the Courant-Friedrichs-Levy 

computational stability criterion.  

Before data assimilation, the hydrodynamic model was tuned to reproduce 

observed surface salinity in the upper and middle reaches of the deep Channel. The 

initial tuning includes minor adjustment in the bottom topography, vertical mixing 

parameters and salinity on open-ocean boundaries. Fig. 2.5 shows the model-

produced time series of surface salinity at stations CB3.3C and CB5.1 in the upper 

and middle reaches of the deep channel, respectively. Superimposed are 

corresponding data points that agree with the model reasonably well. The quality 

control at the two points over the deep channel ensures comparable model 

performance in the vicinity, at least near the water surface. 

Figure 2.6 compares the modeled and observed water surface temperature at 

Tolchester Beach and Solomons Island in 1995. The model outputs were retrieved at 

half-hour intervals while the observed time series were at hourly intervals. In general, 
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the model reproduces the seasonal trend of water surface temperature reasonably 

well, although the model tends to overestimate surface temperature in winter months. 

Note that the hydrodynamic model does not have an ice layer component and 

therefore cannot simulate occasional winter freezing events in shallow reaches of the 

basin. This deficiency is likely to cause some discrepancies in winter. The problem is 

not serious because the discrepancy diminishes quickly in warmer months. 

Leaving the model-data agreement aside, sizeable discrepancies still exist at 

depths and laterally. Figure 2.7 illustrates the general pattern of discrepancies by 

comparing model results with Scanfish data along two selected transects (sections 13 

and 20 in Fig. 2.3) in July. The lower panels show sections of salinity fields derived 

from Scanfish data, while upper panels show corresponding sections retrieved from 

the model, following the same tracks and sampling intervals of the Scanfish. Section 

13 (left panels) and section 20 (right panels) are in the middle and upper reaches of 

the Bay, respectively. The comparison points out a dominant trend. Namely, the 

model tends to overestimate salinity at depths and the deviation increases toward 

lower reaches of the Bay. 

A similar comparison in October (Fig. 2.8) leads to the same conclusion. 

Because of the availability of transects in lower reaches of the Bay, section 2 (left 

panels) and section 16 (right panels) are chosen to facilitate the comparison in lower 

and middle reaches of the Bay, respectively. In the lower Bay (left panels), the 

model-derived salinity is considerably higher than observations, and the discrepancy 

increases with depth. In the middle reaches (right panels), the modeled salinity 

structures compare favorably with those observed. 
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Figure 2.9 shows longitudinal sections of monthly averaged circulation and 

salinity field derived from the model in February (top panel) and October (bottom 

panel). The vertical slice follows the center axis of the deep channel southward to the 

mouth of Rappahannock River and thereafter extrapolates farther southward to the 

southern land boundary. The monthly averaging removes most of the wind and tidal 

influences and the residual circulation is mostly gravitational. The peak discharge 

from tributaries in January results in a pronounced two-layered circulation in 

February. The bottom inflow is visibly much stronger than the surface outflow 

because of the lateral confinement at depths. October is in the end of a long dry 

period and the two-layered circulation is much weaker. Waters in the deep channel 

also becomes saltier in the dry period. 

Conceivably, further tuning of the model will further reduce the discrepancies 

as illustrated in Figs. 2.7 and 2.8, but the point of diminishing return will be reached 

soon if the model resolution remains the same. As we stated earlier, the model 

resolution is ultimately responsible for this type of discrepancies. With coarse 

resolution, the bottom inflow is partially choked by numerical damping near the 

estuary mouth, and therefore must be enhanced in order to reproduce observed 

salinity structures in the middle and upper reaches of the Bay. In consequence, the 

model-produced bottom inflow becomes saltier, especially in the lower reaches of the 

Bay. The intention of data assimilation is therefore to reduce modeled salinity at 

depths and in lower reaches of the Bay. 
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4. Data assimilation scheme 

The hydrodynamic model receives irregularly spaced time series of Scanfish 

data through the salinity equation, using a Newtonian relaxation scheme (Anthes, 

1974). Since salinity is the major indicator of water density in this region, 

temperature data are excluded from assimilation for simplicity. Let x be the 

longitudinal axis, y be the lateral axis and z be the vertical axis. At a given time (t = 

t0), a model grid point at (x0,y0,z0) may receive Scanfish data from distributed points 

(xi, yi, zi, ti) in a four dimensional neighborhood. The governing equation for salinity 

(S) is  
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where D/Dt is the substantial differential operator and [diffusion] accounts for 

turbulent mixing in three dimensions. In addition to advection and diffusion, the 

nudging term in (1) restores observed salinity at a fixed rate K. The Gaussian 

dependence in space ensures that the influence of a data point on a model grid point 

decays with distance away from the data point. The appropriate length scale of spatial 

decay is X in the longitudinal direction, Y in the lateral direction and Z in the vertical. 

A Gaussian time dependence ensures active data injection in a timescale (T) before 

and after the data arrival. At any given time step of data insertion, a model grid point 

must choose a point among distributed Scanfish data in a four-dimensional 

neighborhood to receive data. The winning data point at (xi, yi, zi, ti) is the point 

making maximum contribution to a model grid point at (x0, y0, z0, t0). In this light, the 
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observed salinity (Sobs) in eq. (1) represents the salinity value of the winning data 

point. 

The assimilation procedure as outlined in the proceeding paragraph is 

computationally demanding. At any given time step of integration, a winning data 

point must be chosen among millions for every grid point inside the model domain. 

The searching procedure is cumbersome and arises solely because the irregular 

distribution of Scanfish data is highly incompatible with modeled salinity fields. A 

few measures can be taken to speed up the search. For example, one can switch off 

the search routine if a model grid point is sufficiently away from Scanfish data in 

time or space. Further, the resolution of Scanfish data is unnecessarily high in terms 

of model needs. To enhance the efficiency of searching, the Scanfish data were sub-

sampled at intervals of 5 seconds before they were used for data assimilation. 

For the assimilated results shown below, the salinity restoration rate (K) is 

chosen to be (15 hr)-1. The value of K needs to be large enough to make an impact 

while being small enough to avoid excitation of gravity waves. Haltiner and Williams 

(1980) suggested that the timescale for K should be smaller than the dominant 

timescale contained in observations. In anticipation of a fast changing estuarine 

environment, our timescale for K is considerably shorter than typical values used in 

open-ocean settings (Sarmiento and Bryan, 1982). While the nudging improves the 

modeled salinity fields, it also triggers brief moments of readjustment in gravitational 

circulation. The readjustment may occur during and shortly after the data insertion 

period, and brings unrealistic features into the model for a short period of time. In this 

light, K is optimized to maximize the gain and minimize the loss caused by data 
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injection. The choice of e-folding timescale, T = 6 hr, is comparable to the timescale 

of semidiurnal tides. Nudging length scales (X, Y and Z) have also been optimized. 

For the solution shown below, longitudinal and lateral (X and Y) scales are set to 40 

km and 3 km, respectively. Vertical scale (Z) is considerably shorter; chosen to be 2 

m. Model sensitivity to K, T, X, Y, Z will be discussed later, after the discussion of 

main results. 

 

5. Gravitational readjustment 

The data assimilation may trigger renewed gravitational circulation because 

the density structure is significantly altered. Since each model or assimilation period 

varies in oceanographic setting and data availability, it is difficult to predict the 

timing and longitudinal extent of the readjustment. Nevertheless, the readjustment 

process documented below is likely to be encountered in a variety of models of long 

estuaries during periods of strong or moderate data injection. Prognostic models of 

long estuaries, if properly tuned to produce realistic features in the inner reaches, are 

likely to overestimate the salinity of bottom inflow especially near the estuary mouth. 

When data are inserted, the salinity is reduced in the mouth region and/or deeper 

reaches of the basin. The buoyant outflow may intrude farther seaward in response to 

the altered density structure. The strength of the renewed seaward expansion depends 

on the data injection speed. Further data injection in time will eliminate the 

undesirable transient and move the solution back to reality. 

In this model, high-resolution data were available only briefly in July and 

October. The data injection must be sufficiently strong to make a lasting impact. As a 
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result of the strong nudging, the gravitational readjustment occurs preferably in the 

early stage of data assimilation in October, soon after the salinity data in lower 

reaches of the Bay are inserted. The readjustment will not occur if either July or 

October is excluded from data assimilation. The combination of the two assimilation 

periods is necessary to trigger it. 

Figure 2.10 shows flow and salinity fields on the longitudinal-vertical section 

as in Fig. 2.9 before, during and after the gravitational readjustment in October. These 

snapshots are instantaneous, so that wind- and tide-induced currents are included. 

Locations of 16 psu isohalines are marked by arrows on top of each panel to highlight 

the gravitational readjustment. Shortly before data arrival (top panel), brackish water 

is confined in upper reaches and waters in lower reaches are quite saline. The middle 

panel shows the same vertical section 24 hours later. The time corresponds to 8 hours 

after the beginning of active data assimilation or 2 hours after the Scanfish was 

deployed in October. Recall that active data assimilation begins in an e-folding time 

scale (T = 6 hr) before data arrival. At this time, data are inserted only in regions 

around and seaward of transect 5 in Fig. 2.3. Nevertheless, the limited amount of data 

insertion is able to trigger a gravitational readjustment. As indicated by the 16-psu 

isohaline, the buoyant surface layer expands seaward by about 70 km in one spurt. 

Further, waters in lower reaches are freshened by about 2 psu or so. Thereafter, 

continuous data insertion would eliminate the artificial seaward expansion. The 

bottom panel shows the same section 10 hours after the October data assimilation 

ends. The snapshot is taken 84 hours after the middle panel. The artificial seaward 

expansion of buoyant layer is eliminated and the basin-wide salinity structure is 
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moved closer to observations. Our analysis of root-mean-square errors in section 6 

will confirm this point.  

It is worth pointing out that the salinity restoration rate (K) is a crucial 

parameter controlling the strength and longitudinal extent of gravitational 

readjustment. With a larger K, the seaward expansion of the buoyant layer is greater, 

but subsequent data injection in middle and upper reaches of the Bay also eliminates 

the readjustment at a faster rate. In the other extreme, the readjustment process can be 

eliminated if K becomes exceedingly small. Leaving K aside, the longitudinal extent 

of data assimilation also influences the strength of gravitational readjustment. For 

example, one could limit the data insertion to upper and middle reaches of the Bay 

only. The consequent gravitational readjustment would be weaker. 

It is conceptually useful to interpret the renewed gravitational circulation in 

terms of pressure changes. In the model-derived two-layered circulation, the bottom 

inflow upwells and returns as a surface outflow. The gyre is maintained by proper 

pressure gradients. When data are assimilated in lower reaches of the Bay, pressure is 

reduced near the mouth. The consequent increase in the seaward pressure gradient 

triggers the seaward expansion of the buoyant layer. If data are inserted only in 

middle and upper reaches, the effect is essentially to reduce salinity at depths. The 

consequent pressure deficit at depths enhances the bottom inflow of saline water from 

the mouth region. Thereafter the pressure field is temporarily reduced in lower 

reaches due to the sudden loss of salinity. This may also cause the layer of brackish 

water to expand seaward. Following this line of reasoning, the data insertion in lower 

Bay has the immediate effect to encourage seaward expansion of buoyant layer. The 
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data injection in middle and upper reaches may also encourage the seaward 

expansion, but only after the pressure field in lower Bay is reduced. Thus, data 

assimilation in the lower Bay has a more profound effect than insertions elsewhere, 

insofar as the renewed gravitational readjustment is concerned. Our preliminary 

experiments by varying the region of assimilation lend support to the foregoing 

conclusion. 

6. Model improvement through data assimilation 

Despite the undesirable consequence of gravitational readjustment, the 

agreement between model and the observations after data assimilation is generally 

improved. Salinity measurements at scattered stations in 1995 (Fig. 2.3) provide an 

independent data set to evaluate the model performance. Each station was visited 

16~20 times in 1995 at somewhat irregular intervals with a vertical resolution of 1~2 

m. Discrepancies between the model and data are first evaluated in terms of root-

mean-square (RMS) errors. Figure 2.11 illustrates the RMS error as a function of time 

in the upper, middle and lower reaches of the Bay. In the top panel, each ensemble 

contains all data points collected north of the Choptank River in each month. The 

RMS error, ranging up to several psu, may have under-represented the model’s 

prognostic skill because salinity stations are fixed in space. A slight longitudinal shift 

of salinity patterns produced by the model may be seen as a large error at a fixed 

station. Leaving the magnitude of RMS errors aside, model improvements through 

data assimilation are apparent. Results from the pair of experiments, one with data 

assimilation and one without, contrast the difference brought about by data injections. 
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The reduction in RMS errors is maximum in the month immediately following the 

July and October assimilation, and decreases slowly thereafter. 

The model performance is similar at all salinity stations in the middle reaches 

of the Bay; therefore, only one station (CB4.3C) is chosen to illustrate the RMS error 

(middle panel). At this station, data are not grouped for each month and each 

ensemble consists of only a vertical profile of salinity with 1~2 m resolution. The 

improvement brought about by data assimilation is generally more profound in 

middle reaches than in upper reaches, except during the brief period of gravitational 

readjustment. At the end of July, the RMS error decreases twofold as a result of data 

insertions. The improvement diminishes slowly in time thereafter. After October data 

assimilation, the RMS error actually increases over a brief period in November as a 

result of the gravitational readjustment. Thereafter the RMS error decreases again 

after the adjustment is over. 

Data insertions generally also enhance the model performance in the lower 

Bay, but the improvement does not persist for a long time because the adjacent 

coastal sea is excluded from data assimilation. As in the top panel, each ensemble in 

the bottom panel of Fig. 2.11 contains all data points collected from stations south of 

Potomac River (Fig. 2.3) in each month. The RMS errors decrease little after data 

injections. 

On a longer time scale, marginal improvements resulted in the lower Bay 

despite massive injections of data with high spatial resolution. Shorter memories of 

flushing time scales in the lower Bay are responsible for the deficiency. Fig. 2.12 

shows the model-produced variations of salinity structures in a zonal section midway 
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between Scanfish transects 3 and 4 as indicated in Fig. 2.3. Before the data arrival in 

October, the salinity field (top panel) shows considerable stratification. In reality, 

waters in the lower Bay are typically less stratified in winter. Destratification occurs 

shortly after the data injection (middle panel), bringing the model closer to reality. 

Thereafter the stratification returns in time (bottom panel). Apparently, the bottom 

inflow from the coastal ocean tends to reestablish the stratification. More illustrations 

of short flushing time scale in the lower Bay will be given later in Fig. 2.15. 

There are two ways to improve the model performance in the lower Bay. One 

way is to continuously inject data with high temporal resolution in the lower Bay. 

This measure, however, would defeat the purpose of the data assimilation scheme, 

which is meant to find ways to make lasting model improvements through occasional 

data injection. A more reasonable way would be to extend the assimilation areas to 

the adjacent coastal ocean. Without data assimilation, the salinity of the coastal ocean 

is highly constrained by climatology; subsequent intrusion into the Bay tends to offset 

the data injection effort especially in the lower Bay. If high-resolution salinity data 

are available in the coastal ocean during the data assimilation period, assimilation of 

these data in the coastal ocean would sustain the effect of data assimilation in the 

lower Bay for a longer period of time. This recommendation is not heeded herein for 

lack of qualified data off the Bay mouth.  

In general, model improvements through the data assimilation are not depth-

sensitive. Figure 2.13 shows observed and modeled salinity profiles at selected 

stations. Top panels are derived from station CB3.3C in the upper Bay, while bottom 

panels are from station CB5.1 in the mid-Bay. Surface salinity data from these two 
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stations have been used in the initial tuning of the model before data assimilation 

(Fig. 2.5). Figure 2.13 indicates that the model improvements after July assimilation 

(left panels) and October assimilation (right panels) do not favor a particular depth. 

With data assimilation, the model-derived salinity profiles generally shift toward 

observed profiles at all depths with few exceptions. 

In the absence of concurrent flow measurements, it is a bit uncertain whether 

the data assimilation actually improves the model-produced flow fields. However, the 

collective wisdom from previous modeling experiences suggests that a more realistic 

density structure often supports a more realistic flow field. It is highly likely that the 

flow fields after the data assimilation are more realistic. Figure 2.14 illustrates the 

changes in the flow field induced by the data assimilation. Left panels are biweekly 

averaged flow fields at the surface (top panel) and 10 m below mean water level 

(bottom panel) without data insertions. The time average is over the middle two 

weeks in November (from day 310.5 to day 324.5). Since wind and tidal effects are 

filtered out through time averaging, the patterns are dominated by surface outflow 

and bottom inflow. The right panels show the corresponding difference caused by 

data assimilation. Leaving minor variations aside, it is clear that the data assimilation 

essentially enhances both the surface outflow and bottom inflow. The speed 

enhancement ranges up to about 4 cm/s. Similar changes in the circulation pattern 

were also found in August and September (not shown here) after data assimilation in 

July. The result is not surprising in light of the fact that most ocean models tend to 

underestimate the strength of density-driven currents because of grid-scale mixing. 
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Thus, assimilation of hydrographic data appears to offer a remedy to offset numerical 

damping. 

Dynamically, the enhanced bottom inflow and surface outflow can be 

regarded as a renewed adjustment under gravity. To illustrate this, Fig. 2.15 shows 

the time-averaged longitudinal section of density anomalies induced by data 

assimilation in October. The longitudinal section is the same as in Figs. 2.9 and 2.10. 

Further, the time averaging is from day 295 to day 310.55 in the top panel, and from 

day 310.55 to day 326.1 in the bottom panel. The averaging period in the top panel 

covers the time span of active data assimilation (roughly from day 296 to day 298). 

The density anomaly is obtained by subtracting model results without data 

assimilation from that with data assimilation. Since the time span extends to well after 

the period of active data assimilation, the density anomaly in the top panel of Fig. 

2.15 does not correspond to a static change brought about solely by data assimilation. 

Dynamic adjustments also set in to change the density structure. Despite the 

complication, simple analyses below suggest that the density anomaly is becoming an 

integral part of the two-layered circulation. 

The data assimilation essentially induces density deficits that intensify toward 

the bottom of the deep channel. Data injections also produce a patch of density 

surplus in upper depths, confined mostly in the upper and middle reaches of the Bay. 

By comparison, the bottom-trapped density deficit is the most dominant signal. 

Roughly speaking, the density deficit in the top panel of Fig. 2.15 is characterized by 

Δσt = 0.8 over the bottom 10 m of the deep channel. The associated speed of internal 

gravity waves (c0) is about 28 cm s-1. The density deficit is mostly confined inside the 
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estuary because the adjacent coastal ocean is excluded from data assimilation. In 

consequence, this density deficit would induce bottom inflow from the coastal ocean. 

Let u0 be the characteristic inflow speed. In the absence of topography drag, mixing 

and friction, inviscid theories such as Benjamin (1968) would suggest an internal 

Froude number (u0  /c0 ) of order one and the two-layered circulation would be 

enhanced by 30 cm s-1  or so. The actual enhancement is only about 5 cm s-1 in Fig 

2.14, suggesting a characteristic Froude number much below one in this partially 

mixed estuary. 

The low Froude number governs not only the perturbation field induced by 

data assimilation, but also the mean circulation in the Chesapeake Bay as well. 

Relative to the seawater density near the Bay mouth, the density deficit (Δσt ) in the 

upper reaches of the Bay is often in excess of 10 [see Goodrich et al. (1987) or Fig. 

2.9]. The characteristic c0   associated with this density deficit is about 100 cm s-1. 

Mean speeds of bottom inflow are generally below 20 cm s-1 [see Goodrich et al. 

(1987) or Fig. 2.14].  Thus, the basin-scale mean circulation is also governed by a 

similarly low Froude number. 

The bottom panel of Fig. 2.15 provides an alternative to illustrate the faster 

loss of memory in the lower Bay. Generally speaking, the density anomalies decrease 

slowly in time after the data injection. The enhancement of two-layered circulation by 

data injections also decreases in time accordingly. However, the density deficit 

diminishes much faster in the lower reaches of the Bay, disappearing almost 

completely in the bottom panel of Fig. 2.15. As commented on earlier, the fast 
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disappearance arises because the adjacent coastal ocean is excluded from data 

assimilation. 

 

7. Discussion and conclusions 

Using a Chesapeake Bay model as a test case, assimilation of high-resolution 

Scanfish data proved to be a useful tool to enhance model performance if certain 

precautions are taken to minimize volatile transients induced by fast data injections. If 

nudging is strong, the consequent transient may manifest as renewed gravitational 

circulation. Subsequent data assimilation will eliminate the transient overshooting. 

Brief lapses of model accuracy may be inconvenient if one desires to obtain a 

continuous quality output. If this is the major concern, one can blend in the model 

result without data assimilation using a time varying weighting function to eliminate 

the undesirable transient.  

Given a few narrow windows of high-resolution data in a year, the nudging 

must be strong enough to make a difference but also weak enough to minimize 

possible gravitational readjustment. The precaution is necessary because of the 

limited availability of high-resolution data. Ideally, the restoration rate of 

hydrographic data can be reduced to a bare minimum if the data string is more or less 

continuous in time. In this idealized setting, continuous nudging in time will 

minimize model discrepancies and the nudging rate need not be large because the 

discrepancy is kept small at all times. It is highly likely that the undesirable 

overshooting can be eliminated in this limit. Leaving the idealized scenario aside, the 

choice of nudging rate (K) must be optimized to maximize the gain and minimize the 
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loss brought about by the data assimilation. When this is done, the gravitational 

circulation is normally enhanced after the data insertion, and the enhancement will 

last for months.  

In theory, the amount of salinity anomaly received by the model from a single 

data point is linearly related to a four-dimensional volume (TXYZ) by the constant K. 

Since data continue to enter the model from different locations, the real relationship is 

quite complex. Nevertheless, K and T should be chosen to be inversely proportional 

to each other in order to approximately maintain the same intensity of nudging. 

Leaving K and T aside, the assimilation scheme still involves choices of proper length 

scales (X, Y and Z) in the longitudinal, lateral and vertical directions. The model is 

generally not sensitive to these choices as long as we maintain proper aspect ratios 

pertaining to the estuary basin. As a rule of thumb, the choice of X must be 

commensurate with the tidal excursion length in the longitudinal direction. Once X is 

fixed, Y and Z can be chosen proportionally to maintain the aspect ratios of the basin. 

After these choices are made, moderate variations in parameter space do not 

profoundly impact the model response. 

In the long run, repeated acquisitions of high-resolution hydrographic data 

would lead to climatological data sets for the basin. Climatological data are regularly 

distributed in time and space, and therefore can be assimilated more efficiently into 

models. Additional gains from regularly spaced climatological data can also be 

anticipated in the future if we borrow similar experiences from the open ocean 

modeling community. Through assimilation of regularly spaced climatological data, 

we may be able to adjust other variables such as sea level, vorticity and currents in a 
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dynamically consistent manner to maximize the gain. Similar methodology has been 

advanced considerably in the open ocean setting; see, for example, Ezer and Mellor 

(1994), Forbes and Brown (1996) and Wu et al. (1999) for several interesting 

applications. At the present time, it is not clear what dynamic constraints should be 

enforced when nudging several variables simultaneously in a tidally dominated 

estuarine environment. While the methodology still awaits future development, the 

simple assimilation scheme presented herein draws attention to this issue and makes a 

modest start. 

 

Appendix A: A shorter assimilation time scale 

One reviewer suggested that a shorter e-folding time scale (T = 1~2 hours) 

should be used for data assimilation in estuaries. Obviously, the choice of T should be 

constrained by the dominant tidal period (12.42 hours). Our numerical results indicate 

that this is a loose constraint. As long as T is not completely decoupled from the tidal 

period, the assimilation scheme achieves similar results if the restoration rate (K) and 

T are inversely proportional to each other. 

 Taking the reviewer’s comment as an example, we can reduce T threefold 

(from 6 to 2 hours) and increase K threefold (from (15 hr)-1 to (5 hr)-1) to achieve 

similar effects. Figure 2.16 illustrates resulting RMS errors as functions of time in the 

upper, middle and lower reaches of the Bay. This figure is produced following the 

same recipe as that of Fig. 2.11; a comparison between the two figures highlights the 

insensitivity of the assimilation scheme to the e-folding assimilation time scale. In the 

upper Bay, the new e-folding time scale leads to similar reduction in RMS errors. In 
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the middle reaches, improvements after data assimilation and discrepancies induced 

by the brief gravitational readjustment after October are comparable to that in Fig. 

2.11. Improvements in the lower Bay are as marginal as before. Since the difference 

between Figs. 2.11 and 2.16 is small, other details will not be presented. 

 

Appendix B: Modification of salinity at open-ocean boundaries 

Even though the gravitational readjustment that is induced as a result of the 

data injection is transient, it is problematic for carrying out biogeochemical 

calculations. The seaward expansion of the buoyant layer may wash out the biological 

organisms and produce an unrealistic distribution of biological variables, which will 

not be restored to reality by further physical data assimilation. Therefore, we made 

another attempt to improve the modeled density structure by adjusting the salinity at 

the open-ocean boundaries to set the stage for the biogeochemical modeling work 

described in the subsequent chapters.  

Without assimilation the model tends to overestimate salinity at depth in both 

years. Beside the numerical damping problem we discussed above, another possible 

reason for this could reside in the specification of the open-ocean boundary 

conditions from monthly Levitus climatological data, i.e., we use long term averaged 

seasonal salinity at the open-ocean boundaries that may not represent the specific year 

very well. We therefore set out to determine how the prescribed salinity values at the 

open-ocean boundary might be modified to give the best fit to the observed salinity 

values in the inner estuary.  Because of the complexity of the three-dimensional 

numerical model and irregularity of available observations (the time series data are 
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available at scattered stations and the high resolution (scanfish) data are available 

only over short periods of time), the process of adjusting the boundary conditions was 

done manually and the optimization was achieved by try-and-error. We first estimated 

that the time lag for boundary salinity to affect the upper bay bottom salinity is about 

40 days. Then corrections were made gradually at open-ocean boundaries to minimize 

the discrepancies between observed and modeled bottom salinity at the upper and mid 

bay (CB3.3C and CB5.1).  The final adjustments we made to the boundary conditions 

are listed in table 2.1. These adjustments significantly improved the salinity structure 

at depth, especially in the upper and mid reaches of the bay shown here in the bottom 

salinity comparisons in both years (Fig. 2.17).  This, in turn, resulted in substantial 

improvements in the agreement between the modeled and observed salinity profiles in 

both 1995 and 1996 without the need for data assimilation. 

 
Table B1: The time period and corresponding values of salinity change made at the 
open-ocean boundaries. 
Time Period Day 1-70, 

1995 
Day 130-
180, 1995 

Day 10-60, 
1996 

Day 140-
200, 1996 

Day 220-
290, 1996 

Salinity 
Change 

-4.0 -2.0 +1.0 -1.2 -4.0 
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Figures 

 

Fig. 2.1 Bathymetry of the Chesapeake Bay and adjacent coastal area. 
Major tributaries are marked. Depth scales are in the unit of meters.
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Fig. 2.14 Biweekly averaged flow fields without data assimilation [left 
panels (a) and (c)] and corresponding changes caused by data assimilation 
[right panels (b) and (d)]. Time averaging is over the second and third weeks 
of November 1995. Panels (a) and (b) are surface features, while (c) and (d) 
are taken at 10m below mean water level. Zonal length scales and zonal 
velocities are stretched for clarity. 
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Figure 2.15.  Biweekly averaged section of density (σt) anomalies induced by the data 
assimilation in October along the main axis of the deep channel. Time averaging is 
from day 295 to day 310.55 in panel (a), and from day 310.55 to day 326.1 in panel 
(b). The longitudinal section is the same as in Figs. 2.9 and 2.10. The density anomaly 
is obtained by subtracting the model result without data assimilation from that with 
data assimilation. Solid and dashed contours correspond to density deficit and density 
surplus, respectively. Contours intervals are Δσt =0.2. 

 78 
 



 

 
 

Fig. 2.16  As in Fig. 2.11 except T is reduced threefold to 2 hours 
and K is increased threefold to (5 hr)-1. 
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Chapter 3: A Simple Empirical Optical Model for Simulating Light 

Attenuation Variability in a Partially Mixed Estuary 

 

Abstract 

The representation of the submarine light field is a crucial component of pelagic 

ecosystem and water quality models. Modeling the light field in estuaries is a 

particularly complicated problem due to the significant influence of high 

concentrations of dissolved and particulate matter that are derived from both 

terrestrial and estuarine sources. The goal of this study was to develop a relatively 

simple but effective way to model light attenuation variability in a turbid estuary 

(Chesapeake Bay, USA) in a coupled physical-biological model. In this effort we 

adopted a simple, non-spectral empirical approach. Surface water quality data 

(salinity was used as a proxy of CDOM) and light measurements from the 

Chesapeake Bay Program were used to determine the absorption coefficients in a 

linear attenuation model using regression methods. This model predicts Kc (specific 

attenuation due to phytoplankton/chlorophyll), Kt  (specific attenuation due to total 

suspended solids) and Ks (a function of specific attenuation coefficients of CDOM in 

relation to salinity). The bay-wide fitted relation between light attenuation coefficient 

and water quality concentrations gives generally good estimates of total light 

attenuation, Kd. However, the direct inclusion of salinity in the relationship has one 

disadvantage: it can yield negative values for Kd at high salinities when applied in a 

numerical model. We therefore developed two separate models for two different 
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salinity regimes. This approach, in addition to solving the negative Kd problem, also 

accounts for some changes in specific light absorption by chlorophyll, seston (non-

phytoplankton particulate matter) and CDOM that apparently occur in different 

salinity regimes in Chesapeake Bay. The resulting model predicts the statistical 

characteristics (i.e., the mean and variance) of Kd quite accurately in most part of 

Chesapeake Bay. We also discuss in this paper the feasibility and caveats of using Kd 

converted from Secchi depth in the empirical method. 

1. Introduction 

The intensity and spectral composition of light in aquatic systems change 

greatly with depth. These changes arise from the absorption and scattering by water 

and substances that are either suspended or dissolved.  As a result, except in very 

shallow systems, light tends to limit primary production in deep water, but the depth 

at which this limitation occurs varies tremendously depending upon the 

concentrations of  “chromophoric” (optically active) dissolved and particulate matter 

in the water.  Thus, the degree of light limitation, and therefore rates of primary 

production, in aquatic systems are a strong function of these constituents as well. 

Light availability also influences many other biological and chemical processes, 

including, among other things, species composition (Rijstenbil 1987; Jones and 

Gowen 1990), behavior of organisms (e.g., Gal et al. 1999; Graham et al. 2001; 

Dieguez and Gilbert 2003), phytoplankton physiological response (Cullen and Lewis 

1987) and photochemical degradation (Anning et al. 2000). Therefore, reproducing 

the light field variability is a key problem in modeling biogeochemical processes in 

aquatic ecosystems.  
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Light intensity diminishes approximately exponentially with depth in water, 

so that  

I(Z) = I(0) EXP(-KdZ)                                                                                           (1) 

where I(Z) is the downward irradiance at depth Z; I(0) is the downward irradiance 

just beneath the air-water interface and Kd is the vertical light attenuation coefficient. 

However, to determine precisely the amount of light available to phytoplankton, the 

spectral distribution of underwater light is needed because of the differential light 

absorption by water and chromophoric matter. If the quality of light is taken into 

consideration, then Eq. (1) can be expressed as: 

I(Z,λ) = I(0,λ) EXP(-Kd(λ)Z)                                                                               (2a) 

and  

I(Z) = ∫ I(Z,λ) dλ                                                                                                  (2b) 

Given that I(0) or I(0,λ) can usually be directly measured or estimated at the sea 

surface, the major challenge is how to model Kd or Kd(λ) variability in the water. 

For monochromatic light the vertical light attenuation can be decomposed as a 

set of partial attenuation coefficients, each characterizing absorption and scattering by 

a different waterborne material. Taking all wavelengths into consideration, spectral 

bio-optical models have been developed to calculate each partial attenuation 

coefficient for each narrow band of the spectrum. These models have, among other 

things, been applied to the interpretation of remote sensing data on ocean color (Platt 

and Sathyendranath1988; Sathyendranath and Platt 1989a) and development of 

numerical models for primary production (Smith et al. 1989; Sathyendranath and Platt 

1989b; Arrigo and Sullivan 1994). 

 83 
 



 

In a spectral light model, it is often necessary to know the wavelength-specific 

absorption and scattering coefficients for each waterborne material; this is not a trivial 

task in a complex and variable estuarine environment like Chesapeake Bay. 

Therefore, a simple approach expressed in eq. (1) is appealing, especially when the 

goal is to predict diffuse attenuation from numerically simulated concentrations of 

chromophoric substances in the water.  Strictly speaking, a complete spectrum is still 

needed to determine the average Kd for the whole photosynthetic waveband. 

However, as a simplification it is commonly assumed that the average Kd for 

photosynthetically active radiation (PAR) can be decomposed as a set of partial 

attenuation coefficients in the same manner as for the monochromatic light. To 

further simplify the problem, Kd(PAR) is often modeled as a linear function of  water 

quality concentrations (Smith 1982; Stefan et al. 1983). Phytoplankton (and, if any, 

macrophytes), seston and chromophoric dissolved organic matter (CDOM) contribute 

to light attenuation (Kirk, 1994). Consequently, Kd(PAR) can be approximated as:  

Kd (PAR) = Kw + Kp [PHY] + Ks [SES] +Ko [CDOM]                                   (3) 

where Kw is the attenuation due to water, and Kp, Ks, and Ko are the specific 

attenuation coefficients of phytoplankton, seston and CDOM, respectively. 

Estimation of Kp, Ks and Ko is quite challenging in estuaries. The estuarine 

environment is more optically complex and variable than either open ocean or coastal 

waters due to the confluence of river water and sea water, leading to a broad suite of 

optically active constituents from both terrestrial and aquatic sources. The temporal 

and spatial distributions and compositions of phytoplankton, seston and CDOM vary 
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considerably. Theoretically, the corresponding specific coefficients, Kp, Ks and Ko, 

will vary in time and space as well.  

Chesapeake Bay is a large partially mixed estuary in the United States. There 

are 50 major rivers discharging into the Bay. Among all tributaries, the Susquehanna 

River at the head is the primary source of freshwater as well as nutrients, dissolved 

organic matter and sediments. Generally speaking, concentrations of these 

chromophoric constituents are high in the upper Bay and low in the lower Bay. These 

gradients are mainly affected by the freshwater input. Typical of mid-latitude rivers, 

the discharge is high in spring followed by low to moderate flow throughout the rest 

of the year. The seasonal and spatial change in nutrient concentrations and turbidity 

greatly affect the light attenuation in the Bay (Harding 1994). 

A complex spectral light model has been developed and applied to 

Chesapeake Bay in studies related to restoring the Submerged Aquatic Vegetation 

(SAV) habitat (Gallegos et al. 1990; Gallegos 2001). In this paper we describe our 

efforts to develop a simple and suitable light model for calculating light penetration in 

a coupled physical-biological model of Chesapeake Bay. We use an empirical 

approach to estimate the specific attenuation coefficients for chlorophyll, total 

suspended solids (TSS), and CDOM (using salinity as a proxy). Specifically, water 

quality data obtained from Chesapeake Bay Program are used in a linear regression 

model to obtain a relation between Kd and water quality concentrations, chlorophyll, 

TSS and salinity. We show that this method yields a simple bay-wide optical model 

which reproduces the observed Kd variability remarkably well, and can be easily 

adopted in a numerical biogeochemical model. 

 85 
 



 

2. Derivation of empirical light model 

2.1 Empirical linear light model derived using direct light measurements  

The empirical, non-spectral approach is not a new method, having been used 

to study and model the relation between light attenuation and water quality 

concentrations in a number of different marine systems (e.g., Smith 1982; McMahon 

et al. 1992; Wang et al. 1996, Gallegos and Moore 2000). The basic premise behind 

this approach is that if one can simultaneously measure both Kd and the 

concentrations of the optical constituents that determine Kd, then multiple linear 

regression methods can be used to “back out” the values of the specific attenuation 

coefficients. The regression method also has the advantage that it is simple and will 

generate coefficients that are specific to the particular water body from where the data 

were obtained. 

The 1995 and 1996 data from 70 stations maintained by Chesapeake Bay 

Program in the main stem of Chesapeake Bay and its tributaries (Fig. 3.1) were used 

to develop a set of empirical models for Chesapeake Bay 

(www.chesapeakebay.net/data/). At each station, underwater light intensity was 

measured every 0.25 m or 0.5 m, with the surface measurement at 0.1m. In addition,  

salinity was measured every 1 or 2 m; chlorophyll, dissolved organic carbon and total 

suspended solids (TSS) were usually measured at the surface (0.5 m or 1m) , above 

the pycnocline, under the pycnocline and at bottom. Each station was visited 12-20 

times a year at somewhat irregular intervals. For the development of the empirical 

models presented in this paper, TSS data were used as a proxy for seston in equation 

3. There was no direct measurement of CDOM and DOC cannot be used as a proxy 
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for CDOM because the proportion of CDOM in DOC varies considerably (Rochelle-

Newall and Fisher 2002; Siegel et al. 2002).  However, it has been shown that CDOM 

behaves conservatively like salinity in Chesapeake Bay (Rochelle-Newall and Fisher 

2002) as in some other estuarine and coastal systems (Monahan and Pybus 1978; 

Bowers et al. 2004), with the primary source deriving from terrestrial freshwater 

inputs.  As a result, CDOM varies inversely with salinity and salinity data can be used 

as a proxy for CDOM in equation 3.  

The linear representation of Kd can then be written as 

 Kd (PAR) = Kw
′ + Kc [CHL] + Kt [TSS] + Ks[Sal]                                       (4) 

where Kc and Kt are the specific attenuation coefficients of chlorophyll and total 

suspended solid, respectively. Ks is a function of specific attenuation coefficients of 

CDOM in relation to salinity,  and Kw
′ is attenuation due to pure water and CDOM in 

fresh water. The combination of these latter two terms characterizes everything that 

impacts Kd (PAR) except the effect of chlorophyll and total suspended solids.  

Including salinity in the equation makes the physical interpretation of the first and 

fourth term a little awkward. However, there are at least two advantages: firstly, the 

slope and intercept of the inverse relationship between CDOM and salinity are 

basically determined by the CDOM concentrations in fresh water. By using salinity 

directly in the equation we avoid the uncertainty and variability of the slope and 

intercept in the relation. Secondly, CDOM is usually not an explicit compartment in 

coupled physical-biological models while salinity is carried universally. Therefore, 

equation 4 is more readily applied in biogeochemical models for estimating Kd. 

The light attenuation coefficient was calculated from Eq. (1) as: 
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Where I1 and I2 are measured underwater light intensity at depth Z1 and Z2, 

respectively. Z1 was taken to be depth closest to the surface, usually at 0.1m and Z2 

the depth of 1.5m. If the water is shallower than 1.5m or the measurement at 1.5m 

was missing then a measurement closest to 1.5m was used. 

Using the entire database the regression of this calculated Kd against measured 

surface chlorophyll, total suspended solids and salinity yields: 

Kd = 1.932 - 0.004765[CHL] + 0.059[TSS] - 0.08667[Sal]                          (6) 

where [CHL] and [TSS] have the units of mg/m3 (μg/l) and g/m3 (mg/l), respectively. 

The value and probability for each coefficient are listed in Table 3.1. Also listed in 

Table 3.1 is the variability explained by each variable from a stepwise statistical 

model. TSS is by far the most important factor in controlling light attenuation in 

Chesapeake Bay. Alone it explains about 58% of the total variability in Kd. CDOM 

variation (expressed by salinity here) is the second most important, which explains an 

additional 14% of Kd variability. Chlorophyll enters the model only at 5% level and 

does not improve the R2.  Thus, unlike oceanic waters, phytoplankton absorption  

plays a minor role in controlling the light field in Chesapeake Bay, though it is shown  
 
 
Table 3.1. The coefficient, P value and partial R2 for each term in equation 6. 

Variables Kw
′ Kt Ks Kc 

Value 1.932 0.059 -0.0867 -0.004765 

Pr <0.001 <0.001 <0.001 0.0275 

Partial R2 NA 0.585 0.138 0.001 
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below that the importance of phytoplankton absorption increases down estuary.  

The negative sign in front of salinity is expected because CDOM is inversely 

related to salinity. However, the small negative but significant (at 0.05 level) 

coefficient for chlorophyll is somewhat puzzling given that increases in chlorophyll 

concentration should lead to increases in light attenuation.  Gallegos and Moore 

(2000) thought that a negative coefficient for chlorophyll was a dubious result and so 

and dismissed these instances in their discussion. However, we suspect that this 

statistically significant coefficient reflects that fact that in the tributaries and in the 

upper bay (see next section) light often limits phytoplankton growth. That is, even 

though chlorophyll contributes to light attenuation, the light control of phytoplankton 

growth is so strong in some areas due to the influence of TSS and CDOM that it 

results in an inverse relation between Kd and chlorophyll concentration. When Kd is 

big, i.e. very turbid water, chlorophyll concentration is relatively low because 

phytoplankton cannot grow and vice versa. However, since phytoplankton is also 

component of TSS its net contribution to light attenuation can still be positive. 

The fit between Kd obtained from eq. (6) (Kd_predicated) against the 

calculated Kd (Kd_observed) appears to be linear (Fig. 3.2) and the R2 = 0.72 is 

remarkably high, i.e., the empirical model explains about 72% of the observed Kd 

variability. The variability that is not accounted for can, at least to some degree, be 

attributed to the fact that the composition of optically active constituents in the Bay 

changes considerably in time and space. Light absorption and scattering by 

phytoplankton changes with the species composition, pigment composition (Stuart et 

al. 1998), cell shape and size (Ciotti et al. 2002, Lorenz et al. 2003), and light 
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scattering also depends on the composition, geometric shape and size of TSS (Baker 

et al. 2001; Richardson 1987; Risovic 2002).  Given the demonstrated importance of 

TSS in controlling Kd, we conclude that the latter is responsible for most of the 

unresolved Kd variability. 

2.2 Empirical light model derived using Secchi Depth 

Secchi depth (SD) is routinely measured as a simple means of assessing water 

clarity in estuarine, coastal and open ocean waters. In the Chesapeake Bay Program, it 

was measured much more often (along with water quality measurements) than the 

direct light measurements that we used in our analysis above. For 1995 and 1996, 

3428 SD measurements were made from 129 stations. Therefore, it is tempting to use 

attenuation coefficients derived from these measurements for our optical model 

development. However, the relationship between SD and attenuation coefficient is not 

fixed, i.e., it can vary by as much as sevenfold in waters with large variations in 

CDOM and turbidity (Koenings and Edmundson 1991). One must, therefore, be very 

careful when converting SD to Kd in estuarine applications or highly inaccurate 

values may be obtained. Indeed, our attempts to derive an optical model using SD-

derived Kd values were unsuccessful.  The following analysis illustrates the problem:   

There are a total of 1345 simultaneous measures of SD and Kd in 1995 and 

1996. A hyperbolic fit of the dataset gives us 

01856.06.0
1
+

=
SD

d Z
K                             (R2 = 0.78)                                    (7) 

In contrast, a conversion obtained from Choptank River 
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SD

d Z
K                                                                                                (8) 

gives a similar fit to the dataset (R2 = 0.72) if data points of ZSD=0.1 are discarded, 

but Fig. 3.3 shows that Eq. (8) tends to give higher Kd values when SD is less than 0.3 

and lower Kd values when SD is greater than 0.3. Also shown in Fig. 3.3 is the widely 

used conversion:  

SD
d Z

K 7.1
=

                                                                                                         (9) 

Using these three different relations to convert SD to Kd we repeated the 

regression of this derived Kd to chlorophyll, TSS and salinity: 

 Kd = 2.69 + 0.005[CHL] + 0.024[TSS] – 0.108[SAL]                              (10.1)  

 Kd = 1.37 + 0.004[CHL] + 0.061[TSS] – 0.082[SAL]                              (10.2) 

 Kd = 2.90 + 0.005[CHL] + 0.031[TSS] – 0.122[SAL]                              (10.3) 

All three of these optical models describe much less of the observed Kd 

variability (R2 = 0.56, R2 = 0.55, R2 = 0.55, respectively) compared to the model 

derived using the direct light measurements (Eq. 6). Moreover, they all tend to 

underestimate high Kd and overestimate low Kd, thus creating significant biases at 

both extremes (Fig. 3.4).  Because all three models give similar fit of the dataset, only 

Kd obtained from Eq. 10.1 vs. Kd calculated from Eq. 7 is illustrated.  The severity of 

these biases suggests that Kd values derived from SD data cannot be used for optical 

model development. 
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2.3 Dual empirical linear light models with direct light measurement 

The uniform empirical linear light model described by Eq. 6 produces a 

reasonably good fit of the data. However, there is one significant problem:  Kd can go 

negative in high salinity regions.  To surmount this problem and account for some 

geographic variability in specific attenuation coefficients as well, we divided the data 

into two groups based on salinity: one group of data with salinity less and equal to 15 

and the other group with salinity greater than 15. If only the first and fourth terms in 

Eq. 6 are considered, only salinity value greater than about 22 could result in negative 

Kd. The dividing criterion of salinity was chosen to obtain a statistically significant 

relationship for high salinity regime. Because the data are fewer and more scattered in 

the high salinity regime, a lower salinity value than the one could give negative Kd is 

used here. 

The regression model (Eq. 4) leads to the following two empirical relations: 

Kd = 1.80 - 0.0044[CHL] + 0.0673[TSS] - 0.096[Sal]  (S ≤ 15, n=785)      (11.1) 

Kd = 1.17 + 0.024[CHL] + 0.006[TSS]  - 0.0225[Sal]  (S >15, n=563)       (11.2) 

where S is salinity and n the number of available data points. The overall R2 is 0.78 

and thus is not dramatically improved compared to Eq. 6. 

To test the significance of the change in regression coefficients between 11.1 

and 11.2, we used an indicator variable (A), or dummy variable, based on the 

grouping criterion-salinity (A=0 for S ≤ 15 and A=1 for S > 15) (for more detailed 

description of the method, please refer to Weisberg (1985) or Rosner (1995)). A new 

model is built as 

Kd = Kw
′ + Kc[CHL] + Kt[TSS] + Ks[SAL]+  
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         Kw
′
1A + Kc1[CHL∗A] + Kt1[TSS∗A] +Ks1[SAL*A]                           (12) 

Therefore, when A = 0, Eq. 11 collapses to 11.1 and when A = 1, it is equivalent to 

11.2. Furthermore, the changes in Kw
′, Kc, Kt and Ks from 11.1 to 11.2 are given by 

Kw
′
1, Kc1, Kt1 and Ks1.  Therefore the significances of changes in Kw

′, Kc, Kt and Ks in 

11.1 and 11.2 are given by the significances of Kw
′
1, Kc1, Kt1 and Ks1, respectively. 

The value and probability for each term are listed in Table 3.2.  

All the coefficients in eqs. 11.1 and 11.2  are significantly different (P<0.01 

for intercept Kw′ and P < 0.001 for the others, Table 3.2). The smaller intercept and 

the smaller coefficient for salinity in 11.2 are expected. They show, respectively, that 

in the lower Bay, the higher salinity water has less CDOM and CDOM has less 

influence on light attenuation.  The decrease of Kt from low to high salinity in Eqs. 

(11.1-11.2) is not intuitive. Theoretically, the scattering process of light by suspended 

solids is size-dependent with smaller particles more optically active. Because bigger 

particles sink faster to the bottom the mineral particles in the water column get finer 

down the Bay. Following this reasoning, one would expect lower TSS but higher Kt 

as salinity increases. On the other hand, the lower Kt in higher salinity water agrees 

with our general knowledge that TSS has much less influence on attenuation in 

coastal and open ocean waters. Moreover, the weaker relationship between TSS and  

Table 3.2. The coefficient and P value for each term in equation 12. 
Variable Kw

′ Kc Kt Ks Kw1
′ Kc1 Kt1 Ks1 

Value 1.80 -

0.0044 

0.0673 -0.096 -0.63 0.0284 -

0.0609 

0.0735 

Pr <0.001 0.0368 <0.001 <0.001 0.007 <0.001 <0.001 <0.001 
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Kd is expected from scrutinizing the data, i.e., the values for TSS in the lower bay are 

highly variable, but this variability does not appear to be reflected in the Kd 

variability. One other interesting change in the coefficients between Eqs. 11.1 and 

11.2 is that the specific light attenuation coefficient for chlorophyll changes sign from 

negative to positive going from the low to high salinity regime. We interpret this 

change as reflecting a change from light controlling phytoplankton biomass in the 

turbid waters of the upper Bay (negative sign), to phytoplankton biomass controlling 

light in the clearer waters of the lower Bay (positive sign).  We also speculate that the 

magnitude of Kc in Eq. 11.2 is reduced compared to literature values because of these 

opposing effects. 

We see this same change when treating 1995 and 1996 data separately 

(analysis not shown). 1996 was a very high flow year while 1995 was a slightly 

below average flow year. As a result, the water was much more turbid in 1996 and 

phytoplankton growth was light limited over a considerably larger portion of the Bay. 

As we can infer from argument above we indeed have an inverse relationship 

between Kd and chlorophyll in 1996, which is manifest in the lower Bay as well as 

the upper Bay.  

This leads to a general problem in the empirical method. In environment, such 

as estuaries and turbid inland water, where light could be a limiting factor in 

phytoplankton growth, field data will contain information from the two competing 

effects: Firstly, light limits phytoplankton growth. Hence phytoplankton grows more 

in clearer (lower Kd) conditions. Secondly, more phytoplankton biomass absorbs 

more light and attenuates light more quickly (higher Kd). Therefore, the empirical 
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light model obtained from field data will tend to underestimate the net contribution of 

phytoplankton to light attenuation (the second effect alone).  

Another problem revealed by the division of the data into two different 

salinity regimes is that the model explains a much smaller fraction of the optical 

variability in the higher salinity regime (R2 = 0.15).  It explains even less when a 

higher salinity criterion is chosen. Thus, it appears that in the higher salinity water, 

something other than chlorophyll, CDOM and TSS is substantially controlling 

variability in light attenuation. Alternatively, it is possible that the light controlling 

dependences change considerably in time and space so that the bulk relationship, 

fitted over many months and a large expanse of the lower Bay, fails. Fitting each 

month’s data in the high salinity group shows that there is a quite big range for each 

regression coefficient. 

Despite the problems discussed above, the empirical light model expressed in 

Eqs. 11.1 and 11.2 performs remarkably well over the entire Bay.  Figure 3.5 

compares Kd derived from direct light measurements with Kd estimated and from Eqs. 

11.1 and 11.2 at all available main stem stations in 1995.  The model-estimated Kds 

compare favorably with measurements and the model also captures the high Kd 

variability at the upper bay and low variability in the mid bay. However, as we 

discussed above, the light model cannot explain a large part of the variability in Kd in 

the lower bay (i.e., the high salinity region).  
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3. The Role of each component in light attenuation 

To estimate the role of each component in total Kd we calculated the 

percentage contribution of each component using relations 11.1-11.2 for each data 

point.  To simplify the interpretation we combined the first (Kw′) and fourth (Ks[Sal]) 

terms, which yields the contributions from water itself and CDOM. We also separated 

phytoplankton from other suspended solids in the third term (Kt[TSS ]) and added it 

to the second term (Kc[CHL]) to give the total contribution of phytoplankton. Figure 

3.6 shows the contribution of water + CDOM (Kw’+ Ks[Sal]) , phytoplankton 

(Kc[CHL]+Kt[Phy])  and seston (Kt[TSS-Phy]) to total Kd . The phytoplankton in 

weight in the TSS term is derived from chlorophyll data assuming the ratio of 

chlorophyll to carbon is 1:50 and total organic weight is about twice the weight of 

carbon. We multiplied the carbon weight by 2.5 to get the total phytoplankton weight 

to account for the inorganic material. In the low salinity region (S ≤ 15), light 

attenuations by seston and water + CDOM are equally important. The contribution 

from phytoplankton is almost negligible. However, it does not necessarily mean that 

there is little phytoplankton accumulation in the water column or they don’t 

contribute to light attenuation. As we discussed above, the empirical model will tend 

to underestimate the net contribution of phytoplankton due to the competing effects of 

light attenuation by phytoplankton with light control of phytoplankton growth in 

turbid water. In the high salinity region (S > 15), phytoplankton plays a bigger role in 

attenuating light. The averaged contribution is below 20% but can be up to 50% at 

times. Light attenuation due to water and CDOM dominates. Because CDOM 

concentration is, presumably, much lower than in the low salinity region, a large part 
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of this term has to be attributed to water itself, with relatively small fluctuations in 

CDOM accounting for a large fraction of the Kd variability. The contribution of 

seston becomes much smaller.  Recall, however, that in the high salinity region the 

model explains only 15% of the observed Kd variability. Thus, it is possible that all 

three of these sources of optical variability are small compared to some other 

unknown chromophoric constituents or some nonlinear effects.  

Overall, these results lead us to conclude that the variability of light 

attenuation due to phytoplankton in this partially mixed estuary is small compared to 

that due to seston and CDOM. In estuaries where CDOM behaves conservatively 

CDOM distribution can be adequately represented by salinity. Therefore, in modeling 

the light field in such environments, the first order importance is to reproduce both 

the mean distribution and variability of TSS.  In contrast, in the open ocean and 

coastal waters, sediment loading and resuspension are negligible. Hence the role of 

TSS in light attenuation is insignificant. 

 

4. Summary and conclusions 

This paper describes an effort to develop a relatively simple optical model for 

estimating the diffuse light attenuation coefficient (Kd) from variations in the 

concentrations of optically active constituents (i.e., chlorophyll-a, TSS and CDOM) 

in a partially mixed estuary.  

The estuarine environment is optically complex and variable, which poses a 

potential challenge in reproducing the underwater light field with a simple light 

model. Nonetheless, we have demonstrated that an empirical linear model derived 
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using in situ observations of Kd, Chl-a ,TSS and salinity (as a proxy of CDOM) works 

remarkably well, i.e, the simple light models derived here generate reasonable Kd 

values across the estuarine gradient. 

One caveat that arises in an optical model derived from using Kd and Chl-a, 

TSS and salinity data for the entire Chesapeake Bay is that it can give rise to negative 

Kd values in high salinity regions. Therefore, we divided the data into two groups by 

salinity (one for S ≤ 15 and one for S > 15). This approach resolved the negative Kd 

problem in our model and it further demonstrated how the role of different optically 

active constituents can change over a wide range of salinity in an estuarine 

environment.  

 In particular, models developed for the two different salinity regimes show 

that the specific absorption coefficient for chlorophyll changes sign (becomes 

positive) in high salinity waters.  We believe this indicates that there are two 

competing factors controlling the relationship between Kd and Chl-a. In turbid waters 

where constituents other than phytoplankton strongly influence Kd, light controls 

phytoplankton growth and biomass, which will tend to give rise to a negative 

correlation between Kd and Chl-a. In contrast, in clearer waters where phytoplankton 

growth and biomass are controlled by factors other than light (i.e., nutrients), 

chlorophyll strongly influences Kd which will tend to give rise to a positive 

correlation between Kd and Chl-a.  Our empirical optical model derived using data 

from the entire Chesapeake Bay reveals that the former effect tends to dominate, i.e., 

the specific absorption coefficient for Chl-a is negative because light attenuation is 

strongly controlled by CDOM and seston. However, because the field data always 
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contain information from these two competing factors, we have to take precautions 

when analyzing the contribution of each optically active constituent to total light 

attenuation:  An empirically obtained model will tend to underestimate the effect of 

Chl-a variability on Kd and vice versa.   

We also show that Secchi depth-derived Kd values cannot be used in the 

derivation of an empirical light model for Chesapeake Bay, i.e., when we try to use 

SD-derived Kd values in the regression analysis the resulting optical model does a 

poor job of predicting Kd and has strong biases at both high and low Kd values. These 

problems arise because the equations used to convert SD to Kd cannot describe all of 

the Kd variability and they introduce biases at extreme Kd values. Furthermore, SD 

cannot be used in the derivation of an optical model directly because the linear 

regression assumes that Kd is linearly related to the water quality concentrations 

whereas SD is not linearly related to Kd.  

Finally, the analysis of each optical constituent’s contribution to total light 

attenuation shows that in modeling the light field in estuaries, the first order 

importance is to reproduce both the mean distribution and variability of TSS and 

CDOM because they are often the dominant determinants of Kd variability.  In 

estuaries where CDOM behaves conservatively, CDOM concentration can be 

adequately represented by salinity. Therefore, in such systems, to correctly model the 

underwater light field the main problem is reproducing TSS variability. Because the 

light attenuation properties of phytoplankton, TSS and CDOM vary in different 

environments, the specific attenuation coefficients obtained in this study will tend to 

be locality-specific. None-the-less, we have demonstrated that the simple optical 
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model derived using linear regression yields reasonably good results in a variable and 

complex estuarine system. 
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Chapter 4: Modeling Biogeochemical Cycles in Chesapeake Bay 

with a Coupled Physical-Biological Model 

 

Abstract 

In this paper we describe the development and validation of a relatively simple 

biogeochemical model in Chesapeake Bay. This model (which is coupled to a three-

dimensional hydrodynamic model of the Bay) was adapted from a NPZD-type open-

ocean ecosystem model, which was then modified by adding additional compartments 

and parameterizations of biogeochemical processes that are important in estuarine 

systems. These modifications include an empirical optical model for predicting Kd, 

compartments for representing oxygen and suspended sediment concentrations, and 

parameterizations of phosphorus limitation, denitrification, and seasonal changes in 

ecosystem structure and temperature effects. To show the overall performance of the 

coupled physical-biological model, the modeled dissolved inorganic nitrogen, 

phytoplankton, dissolved oxygen, total suspended solids and light attenuation 

coefficient in 1995 (a dry year) and 1996 (a very wet year) are examined and 

compared to observations obtained from the Chesapeake Bay Program. We 

demonstrate that this relatively simple model is capable of producing the general 

distribution of each field (both the mean and variability) in the mainstem of the Bay. 

And the model is robust enough to generate reasonable results under both wet and dry 

conditions. Some significant discrepancies are also observed, such as overestimation 

of phytoplankton concentrations in shoal regions and overestimation oxygen 
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concentrations in deep channels, which reveal some deficiencies in the model 

formulation.  Some potential improvements and remedies are suggested. Sensitivity 

studies on selected parameters are also reported. 

 

1. Introduction 

In recent decades, coupled physical-biological models have been widely 

applied to the marine environment to simulate both the physical and biogeochemical 

processes and study the interactions between them, especially the effect of physical 

factors on biological communities. The complexity of the physical models ranges 

from box (Li et al., 2000) and 1-D models (e.g., Doney et al., 1996; Hood et al., 2001; 

Marra and Ho, 1993) to fully 3-D hydrodynamic models (e.g., Lima and Doney, 

2004; Skogen et al., 1995). The biological models range from simple NPZ (nutrient, 

phytoplankton, zooplankton) (e.g., McClain et al., 1996) or NPZD (nutrient, 

phytoplankton, zooplankton, detritus) models (e.g., Doney et al., 1996; Oschlies and 

Garcon, 1999; Hood et al., 2003) to multi-nutrient, multi-species and size-structured 

ecosystem models (e.g., Moore et al., 2002; Lima and Doney, 2004). When such 

models are applied to estuarine and coastal waters they can provide a means of 

assessing the potential impacts of local management strategies and hence provide 

useful information to decision-makers. 

Chesapeake Bay is the largest and most productive estuary in the United 

States. Similar to other estuarine systems (e.g., Lapointe and Clark, 1992; Pitkanen et 

al., 1993; Nagy et al., 2002), Chesapeake Bay has been suffering from degradation of 

water quality due to increased environmental stresses (Carpenter et al., 1969; Malone 
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1992).  Eutrophication in Chesapeake Bay has caused serious economic, aesthetic and 

ecological problems: harmful algae blooms (Bowers et al., 2000), loss of submerged 

aquatic vegetation (SAV) (Orth and Moore, 1983), hypoxia and anoxia at deep waters 

in summer (Cooper and Brush, 1991; Kemp et al., 1992), among other things. And 

increased load of suspended solids directly reduces water clarity and when they 

deposit at the bottom they can have a detrimental impact on benthic organisms and 

production (Airoldi, 2003; Miller et al., 2002). Efforts have been made to reduce the 

N and P inputs from point and non-point sources and land-based sediment runoff with 

the goal of restoring the Bay to conditions observed in the early 1950s (Chesapeake 

Bay Agreement 1983, 1987, 2000). Numerical models have been used as a key 

analytic tool to provide guidelines in setting goals of nutrient and sediment reduction 

to achieve water quality standards.   

The Chesapeake Bay Program has developed a modeling system that is a 

state-of-the-art package of models that has been expanded and refined over more than 

a decade through the combined efforts of both scientists and managers. In an effort to 

model the complexity of the real world this package includes an airshed model 

(Regional Acid Deposition Model (RADM)) (Chang et al., 1990; Dennis, 1996), a 

watershed model (Hydrological Simulation Program-Fortran (HSPF)) (Bicknell et al., 

1996; Greene and Linker, 1998), a hydrodynamic model (WES-CH3D) (Johnson et 

al., 1991; Hood et al., 1999; Sheng, 1986; Xu et al., 2002) and a water quality model 

(CE-QUAL-ICM) (Cerco and Cole, 1994; Cerco and Noel, 2004) coupled with a 

sediment (DiToro and Fitzpatrick, 1993) and living resources (including SAV and 

benthos) model (Madden and Kemp, 1996; Wetzel and Neckles, 1986). This 
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modeling system, which has been developed explicitly for management applications, 

is extremely complicated. The water quality model in this package alone has 24 state 

variables including two physical variables (temperature and salinity), multiple algal 

groups, two zooplankton groups, and multiple forms of nitrogen, phosphorus, carbon 

and silica. And there has been tendency toward including more and more complexity 

in an effort to simulate all of the potentially relevant biogeochemical processes. 

However, recent studies have demonstrated that more complexity in an ecosystem 

model does not necessarily improve model performance (Denman, 2003; Hood et al., 

2003; Friedrichs et al., 2004). Friedrichs et al. (2004) has shown that a simple NPZD 

model can reproduce as much of the observed variability as more complicated models 

in an open ocean system, and that more complex model formulations can lead to 

reduced predictive ability if they are not adequately constrained with data. In 

addition, simple models have many advantages in terms of identifying the most 

important processes and parameters that drive the observed variability.  It is not clear, 

however, whether or not these results, which were derived from an open ocean model 

intercomparison, are applicable in a complex estuarine system like Chesapeake Bay.  

Nitrogen, silica and iron are the major limiting nutrients in the open ocean. In 

estuaries, iron is not likely to be an important limiting nutrient due to the close 

proximity of terrestrial Fe sources.  Rather, in estuaries nitrogen, silica and 

phosphorus limit phytoplankton growth, with the latter becoming particularly 

important during periods of high freshwater runoff (Fisher et al., 1992). Variations in 

freshwater flow can therefore lead to seasonal and regional shifts in these limiting 

factors (e.g., D’Elia et al. 1986; Fisher et al., 1992).  
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Benthic processes play a far more important role in biogeochemical cycling in 

estuarine systems due to the closer proximity of the bottom (Boynton and Kemp, 

1985; Boynton et al., 1995; Seitzinger, 1988). Under different conditions, sediments 

can be either a sink or source of nutrients. Sediment regeneration of phosphate and 

ammonium can provide a significant portion of phytoplankton N and P requirement 

(Fisher et al. 1982; Boynton and Kemp, 1985; Malone et al., 1988). The coupled 

nitrification and denitrification process represents an important pathway for removing 

nitrogen from the system (Boynton et al., 1995).  These benthic influences are 

particularly important in coastal plain estuaries like Chesapeake Bay which are very 

shallow.   

Another important difference between open-ocean and estuarine systems is 

the influence of suspended sediments on light transmission in the water column. High 

sediment loads in estuaries, which are also associated with periods of high freshwater 

flow, can lead to very rapid light attenuation in estuarine waters which limits primary 

production (see Xu et al., 2004 and references therein). 

Seasonal and interannual variability in river flow into the Chesapeake Bay is 

extremely large, with annual flow varying between about 20 – 60 x 109 m3 yr-1 

(Harding, 1994). Because nutrient (and sediment) loads vary in direct proportion to 

flow, so does stimulation of phytoplankton growth, resulting in large seasonal and 

interannual variations in primary production (ranging from ~ 200 – 600 gC m-2 yr -1, 

Harding et al., 2002) and oxygen demand.  Variations in river flow also impact 

sediment load / light and stratification which, in turn, controls the resupply of oxygen 

to bottom waters and regenerated nutrient in deep water to euphotic zone. 
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The species composition of phytoplankton in the Bay also shifts seasonally. 

The classic view is that in spring the diatom bloom accounts for the annual biomass 

peak but in summer flagellates and dinoflagellates make up most of the 

phytoplankton population. Accordingly, the food web of the system is dominated by 

diatom-mesozooplankton in spring but microbially in summer (Malone et al., 1988, 

Malone et al., 1991).  

Another unique phenomenon observed in Chesapeake Bay is the accumulation 

of phytoplankton biomass at depth in the deep channels of the mainstem Bay and 

tributaries (Chesapeake Bay Program database: www.chesapeakebay.net/data/ and 

our Fig. 4.9 as an example). In winter and spring, maximum chlorophyll 

concentrations are often observed at the bottom. In the open ocean, deep chlorophyll 

maximum are routinely observed near the bottom of the euphotic zone in association 

with the nutricline due to a combination of photoadaption and phytoplankton growth 

(e.g., Gundersen et al., 1998; Varela et al., 1992; Venrick, 1991), but this is a very 

different mechanism from the accumulation of phytoplankton biomass at the bottom 

in Chesapeake Bay. In the Bay this accumulation of chlorophyll happens well below 

the euphotic zone and appears to be associated with enhanced phytoplankton sinking 

and deposition. It has been hypothesized that high concentrations of phytoplankton 

and TSS combined with strong vertical and horizontal T-S gradients promote the 

flocculation and sinking of phytoplankton in Chesapeake Bay (and in estuarine 

systems in general, W. M. Kemp, personal communication).  

The shallow depth and two-layered estuarine circulation help to retain the 

biomass in the system so that the subsequent recycling of regenerated nitrogen into 
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the euphotic zone supports high phytoplankton production in summer (Malone et al. 

1988). Therefore, in addition to correctly modeling the physical processes that deliver 

nutrient from the bottom to euphotic zone, it is also important to reproduce the 

bottom accumulation of phytoplankton biomass in spring in order to have a 

reasonable phytoplankton production and deep oxygen demand in summer. 

Clearly, we face numerous additional challenges when we attempt to model 

biogeochemical cycles in an estuarine system like Chesapeake Bay. But does this 

necessarily mean that we must employ a vastly more complicated model, like the 

CBP modeling system (which may have reduced predictive skill) in order to 

reproduce the observed variability?  Or is it feasible to use a more simplified model 

and parameterize the impacts of these additional complexities? In this study, we 

adapted a simple NPZD-type biological model, that was originally developed for the 

open ocean, and coupled it with a numerical hydrodynamic model of Chesapeake 

Bay, with the goal of capturing the first order biogeochemical variability in the 

system. Using this coupled model we explore the possibility of using a simple 

ecosystem model to simulate the complex estuarine environment and simple ways to 

parameterize the important processes, such as phosphorus limitation, suspended 

sediment effects upon light penetration, benthic biogeochemical impacts and 

enhanced sinking and recycling of phytoplankton biomass. Observations are used to 

evaluated the model performance and analyze existing problems in the model. 
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2. Model Description 

The combined model consists of an eight-compartment biogeochemical model 

coupled to a numerical hydrodynamic model of the Chesapeake Bay.  In the 

following subsections we describe these two models and how they are linked, as well 

as the forcing, and boundary conditions.  Because the physical model has been 

discussed in detail previously (Xu et al., 2002), here we will focus on the 

biogeochemical part of the model. 

2.1 The physical model 

The physical model, originally developed by Sheng (1986), was subsequently 

modified extensively by the US Waterways Experiment Station (WES) for 

application to Chesapeake Bay (Johnson et al., 1991; Wang and Chapman, 1995). 

Under Boussinesq and hydrostatic approximations, the hydrodynamic model solves 

for salinity, temperature, water-level elevation and velocities in three dimensions. 

There are up to 19 layers in the vertical with a uniform layer thickness of 1.52 m, 

except that the top layer thickness fluctuates with sea level. Horizontally, the 

governing equations in the Cartesian coordinate system are recast in a boundary-fitted 

curvilinear coordinate system (see Xu et al., 2002, their figure 4) to cope with the 

irregular shoreline configuration and deep channel orientation. The model domain 

extends offshore to include a piece of coastal ocean with coarse resolution. The 

coastal ocean is included mainly as a buffer zone to facilitate free exchanges across 

the Bay mouth. Inside the Bay, typical grid size ranges from 1 to 5 km in the main 

stem of the Bay. Similar to a host of primitive-equation models such as Blumberg and 

Mellor (1987), the staggered Arakawa-C grid system is used in both horizontal and 
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vertical directions of the computation domain. The vertical eddy viscosity and 

diffusivity are computed from mean flow and stratification characteristics using the 

second-order k-ε turbulent closure scheme (see, for example, Kundu, 1980; Launder 

and Spalding, 1974). A quadratic stress is exerted at the bottom, assuming the bottom 

boundary layer is logarithmic over a bottom roughness height of 0.05 cm. 

Coefficients of horizontal eddy viscosity and diffusivity are set to 104 cm2/s.  

The model is forced by open ocean tides, winds, freshwater inflows and the 

heat exchange at the water surface. Further, salinity and temperature fields were also 

prescribed on offshore open boundaries using monthly Levitus climatology data 

(Levitus, 1982) combined with field data at Duck, North Carolina (36.1833°N, 

75.7467°W) acquired daily (with occasional lapses) by the Field Research Facility of 

the US Army Corps of Engineers. Daily freshwater inflow with zero salinity and 

time-varying temperature was prescribed for the eight major Chesapeake Bay 

tributaries. Additional details about the physical model implementation and forcing 

can be found in Xu et al. (2002). 

In spite of the coarse resolution of the model, essential circulation features, 

such as the two-layered circulation in the main channel and major tributaries, and 

reasonable temperature and salinity structures can be reproduced by the model 

(Johnson et al., 1991; Hood et al., 1999; Xu et al., 2002). 

2.2 The biogeochemical model 

The biological model (Fig. 4.1) was adapted for application in Chesapeake 

Bay from an open ocean model described in Hood et al. (2001).   It has 6 

compartments and a total of 8 state variables. The three nutrient pools include 
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dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP) and 

dissolved organic nitrogen (DON). The model also contains one compartment for 

phytoplankton (P), one compartment for heterotrophs (H) and one detrital 

compartment (D). The H compartment is considered to represent all heterotrophic 

groups including bacteria, microzooplankton, mesozooplankton etc. And in this 

model the heterotrophic processes are microbially dominated. Two additional state 

variables are carried in this model: dissolved oxygen (DO) and inorganic suspended 

solid (ISS). Dissolved oxygen is included to simulate anoxia and hypoxia in the Bay 

and it also serves as a natural trigger to slow down the respiratory processes of the 

heterotrophs under hypoxic and anoxic conditions. The inorganic suspended solid 

does not participate in the biological cycles. However, its existence has a great effect 

on the light attenuation, which in turn modifies the phytoplankton growth. The 

symbols and values of all model parameters are list in Table 4.1. 

Changes in H due to biological processes are determined as follows: 

DONHCgenhHHChgehDHCgedhPHCgeph
t

H
mdonmhmdmp +−++=

∂
∂ )1(       (1) 

Where ΘΦ=ΘΦ=ΘΦ=ΘΦ= /,/,/,/ hhdondonddpp hhhh  

And shdondp HKHDONDP +Φ+Φ+Φ+Φ=Θ , 

The HKs, the half-saturation constant, is assumed here to be the same for all 

substrates. 

The DIN compartment represents the sum of all forms of dissolved inorganic 

nitrogen: NO3, NO2 and NH4
+. Changes in DIN, due to biological processes, are 

determined by the heterotrophic remineralization of particulate and dissolved organic 

nitrogen to dissolved inorganic nitrogen and the uptake of DIN by phytoplankton: 
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The phytoplankton DIN uptake is mediated by light and nutrients (N, P) availability. 

The equation for phytoplankton growth and mortality is: 

PHChPSPU
t
P

mppP −−=
∂
∂ α         (3) 

Similar to DIN, changes in DON, due to biological processes, have corresponding 

components of the heterotrophic remineralization in addition to contribution to the 

DON pool from phytoplankton due to direct exudation and natural mortality and 

consumption of DON by heterotrophs (i.e., bacteria): 

DONHChPSPUHHChgehaeh

DHChgedaedPHChgepaep
t

DON

mdonppmh
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βαγ

γγ
  (4) 

The modeled biological processes for the detritus pool include the 

contributions due to egestion by heterotrophs and natural mortality of phytoplankton 

and removal due to consumption by heterotrophs: 

DHChPSDONHChaen

HHChaehDHChaedPHChaep
t
D

mdpmdon

mhmdmp

−+−+

−+−+−=
∂
∂

β)1(

)1()1()1(
                             (5) 

DO is not represented in the modeled biological processes directly. The 

changes in DO are based on the oxygen production in DIN uptake by phytoplankton 

due to photosynthesis and oxygen demand in respiratory processes using the 

photosynthetic quotient for oxygen and nitrogen (pqn). 
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DIP is not dynamically modeled in this study. Its parameterization will be 

discussed in the next section. 

In addition, there is a sinking term for phytoplankton, detritus and ISS in our 

model. The change of these variables due to sinking is represented by 

z
CW

t
C s

∂
∂

=
∂
∂                                                                                                     (7) 

where C is the concentration of phytoplankton, detritus or ISS, Ws is the 

corresponding sinking rate and z is the vertical coordinate. 

This model runs “on line” in the hydrodynamic model. To save computing 

time, the biogeochemical model currently has a time step of 1 hour while the physical 

model has a time resolution of 5 minutes. 

2.3 Boundary conditions for the biogeochemical model 

2.3.1 Data availability 

Biological data from stations at the major tributaries were downloaded from 

Chesapeake Bay Program (CBP).  At each station, DIN, DON, Chlorophyll, and TSS 

were measured once or twice every month and they were linearly interpreted in the 

model. Heterotrophic biomass was assumed to be ¼ of the phytoplankton in N unit. 

TSS was assumed to include everything particulate in the model: phytoplankton, 

heterotrophs, detritus and inorganic suspended solids (ISS). To estimate the detritus  

Table 4.1: Model parameters. 

Description Symbol Value Units 
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Growth efficiency for H on P Gep 0.2  
Growth efficiency for H on DON Gen 0.2  
Growth efficiency for H on D Ged 0.2  
Growth efficiency for H on H Geh 0.2  
Assimilation efficiency for H on P aep 0.7  
Assimilation efficiency for H on DON aen 1.0  
Assimilation efficiency for H on D aed 0.7  
Assimilation efficiency for H on H aeh 0.7  
Partition of P senesence β 0.25  
Partition of P production α 0.7  
Partition of excretion to DIN γ 0.75  
Maximum phytoplankton growth rate μp 0.96    (Sal ≤ 3) 

3.22    (Sal > 3) 
d-1 

Phytoplankton light saturation paramenter Ik 40.0 W m-

2 

Phytoplankton photoinhibition paramenter Iβ 400.0 W m-

2 
Half-sat. const. for DIN uptake by P KN 0.5 μM 
Half-sat. const. for DIP uptake by P KP 0.015 μM 
Phytoplankton natural mortality rate Sp 0.01 d-1 
Heterotrophic maximum consumption rate Cm 0.8    (T ≤ 10 °C) 

6.4    (T > 10 °C) 
d-1 

Half-sat. const. for heterotrophic 
consumption 

HKs 0.8 μM 

Heterotrophic preference for P φp 0.3    (T ≤ 10 °C) 
0.1    (T > 10 °C) 

 

Heterotrophic preference for D φd 0.2    (T ≤ 10 °C) 
0.3    (T > 10 °C) 

 

Heterotrophic preference for H φh 0.3  
Heterotrophic preference for DON φdon 0.2    (T ≤ 10 °C) 

0.3    (T > 10 °C) 
 

Stoichiometric O:N ratio  pqn 8.625  
Stoichiometric P:N ratio pnr 0.0625  
Detritus sinking rate wd 2 m d-1 
Phytoplankton sinking rate wp 2.5   (Jan. - May) 

1      (Jun. – Dec.) 
m d-1 

DIP concentration DIP 0.1   (Jan. – May) 
1.0   (Jun. – Dec.) 

μM 

Dinitrification loss rate at bottom layer Rdnf 0.01  
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and ISS from TSS and chlorophyll data it was assumed that ISS contributes 50% of 

TSS. 

 

2.3.2 Initial conditions and boundary conditions at tributaries and Open-Ocean 

All biological variables except DIN are assigned uniform values for the whole 

Bay at values that roughly approximate wintertime concentrations (Table 4.2). The 

along bay gradient of DIN concentration was estimated by fitting data from mainstem 

stations in winter to a power function and the concentration was hold constant 

vertically and laterally.  Because the loadings and biological processes rapidly change 

and dominate the distributions of biogeochemical properties, the initial values have 

little impact on the solution.  

The amount of nutrients entering an estuarine or coastal system determines, to 

a large extent, the biogeochemical cycling in the system. Consequently, great care 

must be taken in specifying nutrient loading when modeling such systems. However, 

processes such as ground water flow, stream-edge land runoff, nutrient 

retention/release in marshes and wetland and atmospheric dry deposition are still very 

difficult to fully represent in numerical models. To obtain a correct estimate of the 

nutrient loading to the Bay and account for the uncertain nutrient sinks/sources we  

 
Table 4.2: Initial values for variables in the biogeochemical model 
DIN DON DIP P H D DO ISS 

Max{2, 2.71*1.63**(0.072*Ia)-

4.88} μM 

0.15 

μM 

0.1 

μM 

6.0 

μM 

1.0 

μM 

10 

μM 

300 

μM 

10 

mg/l 
a: I is the along-bay grid index. 
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nudged the biological variables’ values towards CBP observations in the upper 

reaches of the tributaries.  

At the upper reaches of the tributaries the equation for each biological variable 

(C) becomes: 

)(log CCprocessesicalbiodiffusion
Dt
DC obs −++= γ

                               (8) 

In addition to the advection, diffusion and biological production/consumption, 

the nudging term in (8) restores observed value of C at a fixed rate γ. To obtain Cobs 

in each grid cell, available data from stations in the upper reaches of the tributaries 

was linearly interpolated along the tributaries.  

The nudging is not strong (γ = 24 hours-1) and it is applied only at the tidal 

fresh and oligohaline regions of the tributaries so that the vast majority of the 

estuarine system still functions dynamically.  

At the open-ocean boundary, seasonally averaged data for DIN, 

phytoplankton and DO were obtained from NOAA (nodc.noaa.gov). The data were 

linearly interpolated to each boundary grid cell and the boundary conditions change 

seasonally. When data were not available zero gradient boundary conditions were 

used. 

 

2.3.3 Atmospheric wet and dry deposition of DIN & DON 

For simplicity, atmospheric wet and dry deposition of DIN and DON are 

considered to be uniform across the Bay. Monthly wet DIN deposition data were 

obtained from National Atmospheric Deposition Program (NADP) at station MD13 (-

76.1525, 38.9131). And wet DON deposition is estimated to be 20% of total wet 
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deposition (Meyers et al., 2000). Dry deposition of DIN has been estimated to 

attribute 30 to 63% of the total atmospheric nitrogen deposition in the eastern US 

(Levy and Moxim, 1987, Logan, 1983, Meyers et al. 2000). In this study we assume 

that the dry deposition is 50% of total deposition.  

 

2.3.4 Air-sea exchange of O2 

In addition to advection and diffusion and biological production and 

consumption, oxygen also exchanges between air and water at the estuary surface. 

For the surface layer, the change of oxygen concentration induced by this process is 

modeled by: 

Hs D[O2w]/ Dt = K(PO2w – PO2a)                                                                         (9) 

where Hs is the depth of the surface layer and K is the exchange rate. And 

K = kL 

Where k is the piston velocity and L is the solubility. Then equation (9) can be 

expressed as: 

Hs D[O2w]/ Dt = k L (PO2w – PO2a) = k ([O2w] – LPO2a)                                     (10) 

The piston velocity and solubility are computed by using equations from 

Wanninkhof (1992): 

 k = 0.31 U2 (Sc / 660)1/2                                                                                           (11) 

Sc(T) = 1638 –81.83T + 1.483T2 –0.008004T3                                                        (12) 

Where U is the wind speed in m/s and Sc is the Schimit number and T is temperature. 

Solubility L is a function of temperature and salinity and calculated as in the 

table A2 in Wanninkhof (1992). 
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For simplicity, the O2 concentration in the air is taken to be constant: PO2a = 

0.23 atm. 

 

2.3.5 Sediment deposition and resuspension 

There is no explicit sediment layer in our model. Instead, the bottom layer of 

the physical model is treated as a reservoir of sediment as well as part of the water 

column.  Inorganic and organic matter is treated differently at the bottom. For 

inorganic suspended sediments (ISS), we assume a 100% deposition rate, i.e., all 

particles that hit the bottom will deposit to the bottom. Many studies have been done 

on sediment deposition rate and there are a wide range of values. When bottom stress 

exceeds some critical shear stress sediments are resuspended, which is modeled by: 

Resuspension flux = M(τ-τc) 

where M is the resuspension rate, τ is the shear stress and τc is the critical shear stress. 

In contrast, the organic detritus (D) accumulates in the bottom layer and is 

regenerated by heterotrophs in the same way as in the water column with a feedback 

from oxygen concentration, i.e., when DO is lower than 60 mg/l, the respiration rate 

decreases by 25% (T. R. Fisher, personal communication). 

2.4 Parameterization in the model 

Except for those discussed below and in the previous sections, all of the 

biogeochemical model parameters are set as described in Hood et al. [2001, see their 

Table 1]. 
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2.4.1 P-Limitation 

Phosphorus limits phytoplankton growth over a significant extent of the upper 

Bay during high flow conditions (Fisher et al., 1992; 1999).  As discussed in the 

introduction, proper representation of the phosphorus cycle in the Chesapeake Bay 

requires explicit modeling of the phosphorus cycle, i.e., at the very least, each 

compartment of the model would also have to be expressed in phosphorus units and 

cycled using different rules and parameterizations. In order to avoid this level of 

complexity, and considering that P-limitation effects are significant only during 

springtime and that there are only small differences in P concentration in the surface 

waters (where it matters) over the the whole bay (Fisher et al., 1992) we took a very 

simple approach: We assign a uniform value for the P concentration over the whole 

Bay, and then specify how this value varies seasonally relative to a fixed half-

saturation constant for phosphorus uptake. In so doing, we can invoke P-limitation 

manually by simply specifying a low P concentration during the time when P-

limitation is expected and a high value for other time when it is not.  The specific 

seasonal values that we set for the Bay wide P concentration are specified in Table 

4.1. The value for half saturation coefficient for phosphorus uptake (Kp)  was set a 

posteriori to invoke a moderate level of P-limitation in the spring with P 

concentration set to be 0.1µM (Fisher et al., 1992). Note that what matters in the 

model is not the actual values but the relative magnitude of these two terms. 
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2.4.2 Light attenuation 

To calculate the under water light field we use a simple non-spectral light 

attenuation model: 

I(Z) = I(0) EXP(-KdZ)                                                                                               (14) 

where I(Z)  is the photosynthetically available radiation (PAR) below the surface of 

the water, I(0) is PAR at the surface, Kd is the diffuse attenuation coefficient for PAR, 

and Z is depth.  Spatial and temporal variability in Kd is specified using a simple 

empirical optical model that was derived specifically for the Chesapeake Bay (Xu et 

al., submitted). In developing the empirical optical model, surface water quality data 

and direct light measurements from the CBP were divided into two groups by salinity. 

Each group of data was then fitted against a linear attenuation model to determine the 

specific attenuation coefficients for chlorophyll, TSS and salinity (used as a proxy for 

CDOM). The two empirical relations are: 

Kd = 1.80 - 0.0044[CHL] + 0.0673[TSS] - 0.096[Sal]      (S ≤ 15, n=785)          (15a) 

Kd = 1.17 + 0.024[CHL] + 0.006[TSS]  - 0.0225[Sal]      (S > 15, n=563)         (15b) 

It is shown in Xu et al. (submitted) that this model can explain more than 70% of the 

observed Kd variability in Chesapeake Bay.  

The solar radiation at the water surface is calculated from daily meterological 

data: cloud coverage, dew-point temperature, air temperature and wind speed, from 

the Patuxent Naval station in the same way that it is used to force the physical model 

(see Xu et al., 2002 for details) and the variability in the solar radiation flux is 

considered to be uniform across the Bay. This computed incoming radiation includes 

both long and short wave radiations. To obtain PAR at the surface (I(0)) a conversion 
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factor of 0.47 (estimated from the spectral energy distribution of solar radiation at sea 

level) is used. Below the water surface, the averaged light intensity for each physical 

model layer is applied in the biological model. 

 

2.4.3 Denitrification 

Denitrification is a very important process in coastal marine and estuarine 

systems, where N losses via denitrification may account for a significant portion of 

total N input from terrestrial sources and regeneration (Boynton et al., 1995; 

Seitzinger, 1988; Seitzinger and Giblin, 1996). In Chesapeake Bay, denitrification 

loss of N has been estimated to be 24 % of total N budget in Maryland mainstem and 

ranges from 13-79% at other study sites (Boynton et al., 1995). Indeed, without any 

representation of denitrification processes in the model, it tends to greatly 

overestimate DIN concentrations at depth. Denitrification rates are largely determined 

by the availability of NO3
-. However, our model does not differentiate different types 

of DIN. Therefore, a simple loss term is added in each grid cell at the bottom, which 

is proportional to the DIN concentration in the bottom layer. The loss was then set a 

posteriori at a rate that gives reasonable bottom water DIN concentrations (Table 4.1).  

This denitrification loss term yields a annual DIN sink of about 60 μmol/m2/h in 1995 

and 100 μmol/m2/h in 1996, which is comparable to the denitrification loss estimated 

from field data (Boynton et al., 1995). 
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2.4.4 Seasonal adjustment of parameters 

Zooplankton grazing and bacterial remineralization are temperature 

dependent, i.e., lower in winter and higher in summer. In order to account for this 

effect, we lower the maximum heterotrophic consumption rate (Cm) by a factor of 6 

when temperature drops below 10 °C (Table 4.1). The choice of the temperature 

criterion and the magnitude of the rate decrease is consistent with the temperature 

dependence of mesozooplankton grazing rate described by Huntley and Lopez 

(1992).  

Along with grazing rate we also changed the grazing preferences in different 

seasons (Table 4.1). Specifically, the grazing preferences were adjusted so that the 

heterotrophs prefer to graze more on phytoplankton and less on detritus and DON in 

the wintertime. This change in grazing preference is intended to crudely parameterize 

broadscale seasonal changes in foodweb structure that are known to occur in 

Chesapeake Bay, i.e., in summer and fall, the Bay is dominated by microbial 

consumers, while in winter and spring, mesozooplankon grazing is considered to be 

more important (Malone and Ducklow, 1990; Malone et al., 1991).  

The dominant primary producers also change seasonally in Chesapeake Bay. 

In spring, diatoms dominate phytoplankton production whereas in summer flagellates 

and dinoflagellates dominate (Malone and Ducklow, 1990; Malone et al., 1991).  In 

order to parameterize the effect that these floristic shifts have upon export flux, we 

use a higher sinking rate for phytoplankton in later winter to spring (Table 4.1). 
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2.4.5 Regional adjustment of parameters 

Finally, in order to reproduce the relatively low CBP-measured phytoplankton 

biomass observed at the head of the Bay it was necessary to lower the net growth rate 

of phytoplankton in our model.  To achieve this change we simply lowered the 

growth rate of phytoplankton in the fresh region of the Bay (Table 4.1).  This 

adjustment was necessary in spite of the fact that the model reproduces the observed 

Kd values quite accurately in these waters. Although this adjustment may seem 

somewhat arbitrary, it can be justified for a number of reasons.  In the estuarine 

environment the confluence of river water and sea water produces a salinity gradient 

which ranges from 0 to more than 30 across the system. Thus, biogeochemical 

cycling is driven by a more of a fresh water ecosystem at the head of the estuary 

compared to the mouth. Obviously, the species composition of both phytoplankton 

and zooplankton communities will be very different in marine and freshwater 

systems, and may therefore require different phytoplankton growth and grazing rate 

parameters.  We can also speculate that the transition from fresh to more saline water 

at the head of the Bay will result in a decline in the phytoplankton growth rate due to 

senescence in this transitional zone.  Finally, it also likely that in the Susquehanna 

flats at the head of the Bay, benthic bivalves graze heavily on phytoplankton. In the 

model, different approaches can be taken to lower the net primary production, i.e., 

lower phytoplankton growth rate, increase the grazing rate, increase the sinking rate 

of phytoplankton or any combination which will decrease the production term and/or 

increase the loss terms in equation 3. Here we chose the simple solution of lowering 

phytoplankton growth rate (Table 4.1). 
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3. Results and Discussion 

In this section we discuss our main run solution and carry out some selected 

parameter sensitivity studies. In so doing we point out and discuss some of the major 

successes and deficiencies of our model.  Wherever possible, we suggest potential 

reasons for deficiencies and possible means of correcting them. In order to provide a 

robust test of the overall performance of this coupled model system, we have forced 

the model over two contrasting years in terms of flow: 1995 and 1996. The year1995 

was a below normal flow year, while 1996 was a very high flow year. Daily discharge 

rates from the major tributaries in both years are shown in Fig. 4.2. The averaged 

fresh water discharge in 1996 is 112,000 cfs, comparing to an average of 49,000 cfs 

in 1995. During the first major freshet event in 1996, the discharge rate reached up to 

1,123,000 cfs. The high nutrients and TSS input coming with the high fresh water 

discharge in 1996 resulted in a very different biogeochemical response bay-widely. 

As a starting point, we first examine the seasonally (quarterly) averaged 

characteristics of the nutrient cycles and phytoplankton distributions generated by the 

model and compare them directly to observations collected by the CBP.  Given the 

fact that we do not expect our model to be able to reproduce short time and space-

scale variability, and the general paucity of observations that are available for 

comparison with the model, we consider this level of comparison to be an appropriate 

starting point. 
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3. 1 Main run results 

3.1.1 Seasonal comparison with CBP data at main stem stations along a longitudinal 

transect 

In order to compare our model results quantitatively with Chesapeake Bay 

Program data, we sampled the model in the same manner as the observations and 

calculated the seasonal mean and variability at each station for both modeled and 

observed fields. We selected the stations along the main axis of the Bay to present the 

comparisons (Fig. 4.3).  

(For clarification we used the same scale for all seasons and all stations. Some 

error bars are out of the plotting area. We didn’t rescale the plot because we think 

they do not interfere with the presentation of the idea and different scales may be 

confusing and misleading.) 

3.1.1.1 DIN and Chlorophyll  

Figure 4.4 shows the seasonally averaged surface DIN in both 1995 and 1996 

for each quarter. The data points represent the mean and the error bars are the 95% 

confidence interval. Data points with no error bars mean there is only one observation 

available for that period. The modeled DIN mean field follows the observed pattern 

quite closely in space and time in both years. For the most part, the error bars indicate 

the modeled and observed fields are statistically indistinguishable. However, these 

error bars are very wide due to the long averaging time periods.  In the analysis that 

follows we point out differences between the model and the observations even though 

in most cases these differences are not statistically significant.   
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It appears that the model has a tendency to underestimate DIN in the first 

quarter of both years. Also in 1996, the model has a tendency to overestimate DIN in 

the upper Bay in the second, third and fourth quarters, which corresponds to the 

underestimation of chlorophyll (Fig. 4.5, see below). Thus, in 1996, when freshwater 

and nutrient loads were particularly high, the phytoplankton in the model often did 

not take up enough DIN in the surface layer. DIN concentrations are highest in the 

spring and lowest in the summer in both years in the model and the observations. The 

available DIN in the surface water decrease abruptly going down the bay due to the 

phytoplankton consumption except in winter and spring of 1996 due to the extremely 

high fresh water discharge rate. During these two seasons DIN at the surface layer in 

the lower Bay can still exceed 20 μM, enough to support substantial phytoplankton 

growth. The variability is generally highest in the upper Bay because the available 

DIN mainly varies with the fresh water discharge in that region. In the lower part of 

the Bay DIN is scarce in the surface water and it varies little except in winter and 

spring of 1996. Our modeled DIN variability follows the observed patterns of 

variability quite well. However, in some cases the modeled variability appears to 

substantially exceed that in the observations (e.g., second quarter of 1996 in the upper 

Bay).   

Figure 4.5 shows the seasonally averaged surface chlorophyll concentration in 

1995 and 1996. Again, our modeled chlorophyll concentrations compare reasonably 

well with the observations. In 1995, the chlorophyll-a maxima in all seasons occur to 

the north of Bay Bridge and there is a well defined decreasing trend going down the 

Bay (Fig. 4.5a) in both the model and the observations. In contrast, in 1996 the 
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surface chlorophyll is higher throughout the Bay expect in winter as observed (Fig. 

4.5b). In spring of 1996, the high surface chlorophyll extends from Choptank River to 

the Bay mouth, and the chlorophyll maximum actually occurs in the mid to lower 

Bay. At the very head of the Bay phytoplankton growth in the model is light limited 

due to high light attenuation from TSS (see section 3.1.1.2 below). In the summer of 

1996, even though DIN in the surface layer is scarce the chlorophyll concentration is 

still high in both the observations and the model, presumably because phytoplankton 

growth is supported by the regenerated nutrients during this period (Malone et al., 

1988).  

From these seasonal comparisons we conclude that our simple model not only 

reproduces the bay-wide patterns, but also successfully captures the seasonal and wet 

versus dry year variability in DIN and Chlorophyll concentrations in Chesapeake 

Bay. Our model’s tendency to sometimes underestimate chlorophyll at the head of the 

bay in spring, summer and fall, is partly the result of specifying a lower 

phytoplankton growth rate in the fresh regions of the Bay. Because salinity changes 

dynamically with river discharge and other physical conditions, the parameterization 

has different effects under different conditions and perhaps too much effect during 

some seasons. As we will discuss later, the phytoplankton biomass in the upper Bay 

may be more grazing controlled. If this grazing control comes from bivalves in the 

Susquehanna River flats, then it will tend to occur at fixed locations, which will 

improve our model’s simulation of chlorophyll. 

3.1.1.2 Kd and TSS 
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Proper representation of the light field and, in particular, the diffuse 

attenuation coefficient (Kd) variability, is crucial for modeling primary production in 

estuarine systems where light attenuation varies tremendously in both space and time.  

Reproducing Kd variability is particularly difficult in turbid estuaries like Chesapeake 

Bay where suspended sediments play an important role in controlling Kd (Xu et al., 

submitted).  The seasonally averaged, observed and modeled surface light attenuation 

coefficient (Kd) is shown in Fig. 4.6, where the observed Kd is calculated from direct 

light measurements obtained from the CBP.  (Although the number of  Kd values that 

can be derived from direct light measurements in the Bay is relatively sparse 

compared to those that can be derived form secchi-derived measurements, we use the 

former because the conversion equations that must be applied to calculate Kd from 

secchi depth produce systematic biases in the derived Kd values (Xu et al., 

submitted)).   

Figure 4.6 shows that our simple empirical light model is able to reproduce 

the observed Kd patterns reasonably well, reproducing the spatial, seasonal and year-

to-year variations where the data allow comparison. Both the model and the 

observations show that the variability in Kd tends to be high in the upper Bay and low 

in the mid-Bay.  However, the variability in the modeled Kd in the lower bay is much 

less than that of the observed. This happens in part because modeled TSS variability 

is generally lower than observed in the lower lower Bay and partly because the light 

model itself does not explain as much of the observed Kd variability in the lower bay 

(see Xu et al., submitted). 
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Figure 4.7 shows the observed and modeled surface TSS for 1995 and 1996. 

These plots reveal that the modeled TSS means and variability compare fairly well 

with observations in the mid and upper Bay regions. However, our model always 

tends to underestimate both the mean and variability in the lower Bay. The high TSS 

values and large variability is a persistent feature in the observations in the lower bay.  

The failure of our model to simulate TSS in the lower Bay is almost certainly related 

in some way to the simplicity of our TSS representation: Modeled TSS is the sum of 

the four biological model compartments: phytoplankton, zooplankton, detritus plus 

inorganic suspended solids (ISS). In Chesapeake Bay, ISS can constitutes a large part 

of TSS and our parameterization of processes controlling ISS distribution is 

oversimplified, i.e., we use a uniform and constant sinking speed, resuspension rate 

and critical shear stress. Alternatively, in the lower bay, there may be wave-current 

interactions, which are more effective in resuspending the sediments. There may also 

be some lateral TSS loading to this region that is not represented in our model, which 

loads ISS only in the tributaries and does not include shoreline erosion. 

3.1. 2 Synoptic comparison with CBP data at different bay areas 

By seasonally averaging the data at each station we sacrifice the temporal 

resolution in our model, which makes it impossible to judge how well the model 

reproduces finer-scale (sub-seasonal) temporal variability.  In this section, we divide 

the Bay into three different regions: upper bay, mid bay and lower bay (Fig. 4.3). For 

each region, spatially averaged data are presented for each cruise to get a synoptic 

view, i.e, we now calculate means and standard deviations that represent spatial 

means and spatial variability (Fig. 4.8). However, because each station was not 
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sampled simultaneously, the sampling time for each region can span a time period 

covering as much as 2 days. As in the previous plots, the model results were sampled 

exactly the same way as the observations. 

In 1995, both the mean and variability of chlorophyll are high in upper Bay 

and decrease down the Bay (Fig. 4.8a). Our model reproduces the temporal evolution 

of both the mean and the variability quite well in mid to lower bay. Note that there is 

not much seasonality in the mid to lower Bay in 1995 in the observations and the 

model, which we attribute to persistent nutrient limitation in these regions in a low 

flow year. It appears that the relatively weak spring bloom in 1995 did not deposit 

enough organic nitrogen on the bottom to fuel a substantial summer increase in 

phytoplankton growth in the mid to lower Bay (Malone et al., 1988).  In the upper 

bay the model does not reproduce the high observed chlorophyll concentrations in 

May and tends to overestimate chlorophyll concentration in September and October.   

In 1996, chlorophyll concentrations in the mid to lower bay are higher than in 

1995 and our model generally captures this phenomenon, which we attribute to 

generally higher nutrient loading and more recycling from organic nitrogen deposited 

on the bottom. In 1996 in the upper bay, our model simulates chlorophyll 

concentration and seasonality quite well.  Note that there is much more seasonality in 

1996 compared to 1995, especially in the mid the lower bay which is also generally 

captured by the model, although point-to-point discrepancies are apparent. In 1996, 

there was a strong summer/fall chlorophyll increase in the upper bay and 

spring/summer increase in mid to lower bay. It appears that the upper Bay bloom in 
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1996 was delayed by high turbidity and low water clarity associated with high 

freshwater flow and ISS loading (Fig. 4.6 and 4.7). 

3.1.3 Seasonal comparison of vertical profiles at selected stations 

So far we have only examined the model performance at the surface. In this 

section we show some seasonally averaged vertical profiles at selected stations: 

CB3.3C in the upper bay, CB5.3 in the mid bay and CB6.3 in the lower bay. The 

positions of the stations are shown in Fig. 4.3. The observations were linearly 

interpolated in the vertical direction to the modeled layers. At each depth, both the 

modeled and observed values are presented as means with 95% confidence intervals.  

Figure 4.9 shows the seasonally averaged chlorophyll distributions at the three 

stations. Generally, our modeled vertical profiles compare favorably with the 

observed profiles. Note that in the upper Bay (station CB3.3C, Fig. 4.9a) both the 

model and the observations reveal substantially higher chlorophyll concentrations 

near the bottom in the first quarter, but the reverse tends to be true in the third and 

fourth quarters.  The second quarter appears to be transitional. At this station (Fig. 

4.9a), the model reproduces the observed profiles quite well in winter and fall, but 

tends to underestimate the chlorophyll concentration in the upper layer in spring and 

summer. In contrast, in mid to lower bay (Fig. 4.9b and 4.9c), the model reproduces 

the observed chlorophyll profiles remarkably well in all but the winter season (first 

quarter) where, there is considerable underestimation of chlorophyll.  We speculate 

that this may have something to do with our increased sinking speed in the first and 

second quarters and the fact that our sinking rate is uniform across the bay. It is 
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possible that, in reality, phytoplankton sink faster in the upper bay due to flocculation 

because both phytoplankton and TSS concentrations are higher.   

In general, Figure 4.9 shows that the model reproduces the broad scale 

seasonal and spatial changes in chlorophyll concentrations at depth as well as at the 

surface, and also the pronounced bottom enhancement of chlorophyll concentration 

that is sometimes observed. We emphasize here that this bottom enhancement was 

achieved in the model through the direct application of a sinking term to the 

phytoplankton compartment, which is not necessary in open ocean models (e.g., 

Hood et al., 2001; 2004).  Indeed, as we discussed in the introduction, it appears that 

the combination of high chlorophyll and ISS concentrations, perhaps combined with 

strong spatial gradients in temperature and salinity, accelerate phytoplankton sinking 

and export to the bottom in productive and turbid estuaries like Chesapeake Bay. It is 

possible that even better results could be obtained through the application of some 

kind of aggregation model or parameterization which substantially enhances the rate 

of chlorophyll sinking under high chlorophyll and ISS concentrations. 

The seasonally averaged vertical profiles of DIN at the same three stations are 

shown in Fig. 4.10. Reproducing the vertical distribution of DIN is more problematic. 

In general, the model reproduces the observed profiles better in the second half of the 

year at all three locations. In the first quarter, at all three stations the observed DIN is 

high at the surface and decreases at depth. However, our model produces a reversed 

curve with lower DIN at surface and higher DIN at the bottom. We speculate that this 

problem may have something to do with physical rather than biological processes, i.e. 

perhaps DIN is not transported down the bay fast enough or there is not enough 
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vertical mixing in the physical model to replenish DIN in the upper layer from the 

lower layers. In the second quarter, the model generally overestimates DIN at depth. 

This may also be explained by insufficient vertical mixing.  Alternatively, there could 

be too much reminerization at depth during this time period. As with chlorophyll, the 

model reproduces the observed DIN profiles better at the two lower Bay stations.  In 

spite of these discrepancies, Fig. 4.10 shows that, as with chlorophyll, the model 

reproduces the broad scale seasonal and spatial changes in DIN concentrations at 

depth as well as at the surface.  

Vertical profiles of TSS are illustrated in Fig. 4.11. In our model TSS matters 

most where it can affect the light attenuation hence the phytoplankton growth. 

Therefore, our first goal is to correctly estimate the TSS concentration in the upper 

layer. Given the simplicity of our parameterization of TSS production and burial 

processes, the model does a remarkable job of reproducing the observed TSS profiles 

in the upper and mid Bay regions (Fig. 4.11a, b). The model does not, however, 

reproduce TSS profiles very well in the lower Bay (Fig. 4.11c), where it generally 

underestimates the observed concentrations.  As discussed above, we suspect that this 

has something to do with lateral loading and/or a resuspension problem.  

Finally, in Fig. 4.12 we show DO concentration profiles at these same three 

stations (Fig. 4.12). DO in our model is cycled in proportion to DIN using a fixed 

ratio and is therefore coupled tightly with primary production and remineralization 

except at the surface layer where there is air-sea exchange. DO concentration profiles 

are reproduced very well in spring and fall and in all seasons in the lower bay. In 

winter, the model tends to underestimate DO at depth in the upper to mid bay. This 
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could result from the underestimation of primary production in winter or, perhaps 

more likely, insufficient wintertime ventilation/vertical diffusion in the physical 

model. The model consistently overestimates DO at depth in the summer (third 

quarter), especially in the deep channel (Figs. 4.12a,b). Thus, it appears that there is 

not enough organic matter to fuel remineralization at depth during this time. This idea 

is consistent with our speculation that we have too much remineralization in the 

spring, which gives rise to the high DIN concentration at depth in spring. Perhaps a 

more sophisticated thermal regulation of remineralization could improve these 

aspects of the solution, as opposed to the step function that is currently employed to 

capture temperature control of heterotrophic processes. 

Even though 1996 is very different year in terms of freshwater forcing and 

nutrient loading, we see similar levels of agreement in the vertical profiles between 

the modeled and observed fields (results not shown). 

3.1.4 Seasonal spatial plots for chlorophyll and DIN in 1995 and 1996 

The modeled surface DIN and chlorophyll concentration in the second 

(spring) and third (summer) quarters in 1995 and 1996 are shown in Fig. 4.13 and 

Fig. 4.14, respectively. DIN concentration is usually highest in spring in the upper 

Bay. In 1995 high DIN concentration was confined to north of Bay Bridge (Fig. 

4.13a), whereas in 1996, due to the large amount of fresh water discharge and DIN 

loading, the high DIN concentrations extended well into the mid Bay (Fig. 4.14a). 

Phytoplankton biomass, shown here as chlorophyll a concentration, was higher in 

1996 throughout the Bay (Figs. 4.13b and 4.14b). Along with high nutrient input also 

came high ISS loading. As a result, there was much more intense light attenuation in 
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the upper Bay in 1996 compared to1995 (Figs. 4.13c and 4.14c). Consequently, the 

chlorophyll a concentration maximum was further south of the Bay in 1996 (Figs. 

4.13b and 4.14b). In summer, surface DIN concentrations are generally low (Figs. 

4.13d and 4.14d). However, in 1996 there was still a lot of DIN available in the water 

column in the upper Bay (Fig. 4.14d), which appears to have contributed to an 

extensive phytoplankton bloom in the summer of 1996 (Fig. 4.14e) while in 1995 the 

bloom was less intense and more restricted to the upper reaches of the Bay.  

The overall picture in our model matches favorably with our understanding of 

Chesapeake Bay plankton dynamics, i.e., the idea that seasons and years with high 

flow and nutrient loading tend to produce more intense phytoplankton blooms that 

extend further down Bay compared to low flow /load years (Harding, 1994). One 

persisting feature in our model that is not entirely consistent with observations is the 

very low chlorophyll in regions of very high turbidity in the upper Bay (see section 

3.1 above). Another striking feature in these figures is the enhanced phytoplankton 

growth near the shores, especially in spring (Figs. 4.13b and Fig. 4.14b). This 

enhancement is not observed in either satellite maps of near surface chlorophyll (L. 

Harding, personal communication). In the following section we take a closer look at 

this problem and suggest some possible solutions.  

3.2 Lateral variations of chlorophyll distribution 

Theoretically, we would expect higher chlorophyll concentrations at shoal 

areas than in the deep main stem of the Bay. At the shallow flanks, the mixing depth 

will be shallower than the euphotic zone more often due to the shallow depth which 

will tend to relieve light limitation. Moreover, organic matter trapped by the bottom 
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and regenerated there by benthic organisms will tend to resupply nutrients directly to 

the euphotic zone. As a result of these kinds of processes, our model generates 

unrealistically high chlorophyll concentrations in the shoal areas along the shores, 

especially in spring (Figs. 4.13b and Fig. 4.14b). The fact that we see (and expect) 

this enhancement in our model, it suggests that we are either mis-calculating 

something like light attenuation rate over the shoals, or that some processes is missing 

from the model that prevents phytoplankton growth and/or chlorophyll accumulation 

in the shoal regions. Here we put forward a set of hypotheses that could explain this 

discrepancy and test them with our model.  

One possible mechanism that could prevent the development of enhanced 

chlorophyll concentrations in the shoals is lateral transport of chlorophyll and organic 

matter from the shoals to deeper water where production is light limited. i.e, there 

may not be sufficient lateral transport and export from the shoals in the model. We 

tested this idea by increasing the horizontal diffusion in the model by tenfold, which 

has the effect of transporting organic matter from regions of high concentration 

(shoals) to low concentration (deep channel). Increasing the horizontal diffusion in 

this manner results in a general smoothing out of chlorophyll gradients in the Bay, but 

it does not correct the problem (results not shown). Of course, this does not rule out 

the possibility that we are missing some form of horizontal transport that moves 

chlorophyll and/or organic matter into the mainstem. For example, sediment transport 

from the shoal areas towards the main stem may play an important role. Because we 

do not have a sediment layer explicitly in the model there is no simple way to further 

explore this possibility.  
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The high biomass of phytoplankton concentrations that develop near the shoal 

regions in the model is related to the application of direct sinking losses to the 

phytoplankton compartment, which was done to reproduce the elevated chlorophyll 

concentrations at the bottom in the deep channel.  Phytoplankton sinking has different 

effect between shallow versus deep waters in the model. In deep water, it transports 

the biomass out of the euphotic zone to lower layers where the phytoplankton stops 

growing. In contrast, in shallow water even the phytoplankton at the bottom may still 

continue to grow. This difference leads directly to enhanced primary production in 

shoal regions in the model when phytoplankton sinking is invoked.  When 

phytoplankton sinking is turned off, the enhancement disappears.  One possible 

solution to this problem would be to assume that the mortality rate of phytoplankton 

at the bottom increases. When we invoked this assumption in the model we found that 

it has a significant effect on production in both the deep channels and the shoals and 

so does not substantially alleviate the problem (results not shown).  

Another possible solution is that there is, in fact, enhanced phytoplankton 

mortality at the bottom, but that it occurs only over the shoals, perhaps due to grazing 

or some other source of mortality that is only occurs in shallow water.  Indeed, 

Malone et al. (1986) found that even though phytoplankton biomass was low in shoal 

waters along the eastern shore the growth rate was high, which indicates grazing 

control. We therefore implemented a simple bivalve filtration loss term at the bottom 

for waters no deeper than 5m. As a first attempt, we adopted a high bivalve 

concentration of 100g/m2 with a filtration rate of 0.25 l/hr/g (Newell and Koch, in 

press) and the filtration was turned on for spring and summer to crudely reproduce 
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increased bivalve filtration that occurs in summer (Apr. to Sep.). This filtration does, 

indeed, remove most of the high chlorophyll concentration near the shores (Compare 

Fig. 4.15b with Fig. 4.14e). To quantitatively show the effect, we selected two pairs 

of stations: one in the main stem and one in the shoal (CB4.2C and EE2.1, CB5.3 and 

EE3.4, positions shown in Fig. 4.3), and at each station we seasonally averaged the 

observed surface chlorophyll and compared it to average chlorophyll concentrations 

from model runs with and without bivalve filtration (Fig. 4.16). The biggest effect can 

be seen in the mid to lower bay in spring (left panel in Fig. 4.16b) where we see a 

substantial lowering of chlorophyll in the model run with filtration, which compares 

much more favorably with observed concentrations. Due to the uniformly high 

bivalve concentration we adopted in the model the chlorophyll concentration at EE3.4 

in the summer even went too low. Another interesting fact is that even though bivalve 

filtration only happens in shallow water it has a significant effect on chlorophyll 

concentrations in the main stem as well. 

From this suite of tests we conclude that some form of enhanced mortality of 

phytoplankton may be occurring in shoal waters in Chesapeake Bay that prevents 

accumulation of phytoplankton biomass where it otherwise would have a tendency to 

increase relative to the mainstem Bay.  One possibility is that this mortality is due to 

some form of benthic grazing that occurs in shallow waters, such as bivalve filtration. 

However, we cannot rule out the possibility that lateral transport from the shoals into 

the deep channel, perhaps associated with sediment transport, is occurring that is not 

properly represented in the model. 
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3.3 Sensitivity studies 

In this section we briefly describe how the model response to adjustments in 

selected parameters that are involved specifying P-limitation, light response, grazing 

and export/detrital sinking. Most of the sensitivity results discussed below were 

derived from parameter adjustments applied to our 1995 model run because 1995 

represent the more typical year in terms of flow and loading. Plots are not shown. 

In its current configuration the model is surprisingly insensitive to small 

perturbations to its parameter values, which seems to indicate that the seasonal and 

spatial patterns that we see in the model (and by analogy the Chesapeake Bay) arise 

as a result of the strong influence of the freshwater forcing and nutrient and ISS 

loading. 

 

3.3.1 Sensitivity to P-limitation 

Many publications have pointed out that phosphorus is important limiting 

nutrient in estuarine systems and particularly in the spring, especially in a wet year, in 

Chesapeake Bay (e.g., D’Elia et al. 1986; Fisher et al., 1992; Glibert et al., 1995). 

Adjusting the degree of P limitation in a model like ours provides an excellent means 

of illustrating biogeochemical effects. We explored the impacts of P-limitation by 

adjusting the value of the P concentration (Table 4.1) in summer and fall to a value 

that is much greater than Kp (Table 4.1) to turn the P-limitation off. 

As expected, without P-limitation the model produces a bigger spring bloom 

in both 1995 and 1996. The seasonally averaged chlorophyll concentration increases 

about 50% in upper to mid bay in spring without P-limitation. P-limitation needs to 
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be invoked in both years in order to get the correct bloom intensity and down Bay 

extent. It seems, therefore, that P-limitation was occurring during the springtime 

during both years even though they were very different in terms of flow and nutrient 

loading. However, a larger extend of the bay appears to be P-limited in 1996. In 1995 

P-limitation extends from Baltimore Harbor to the mouth of Potomac River while in 

1996 it extends from the Bay bridge to south of Rappahannock River. In addition, 

without P-limitation the seasonally averaged chlorophyll concentration in winter can 

be twice as high in the mid Bay in 1996. In contrast, P-limitation has little effect in 

1995. The P-limitation effect is most pronounced in upper to mid bay.  In the far 

upper reaches at the head of Bay, invoking P-limitation has little or no effect because 

in these waters light is the most important controlling factor. In the lower bay, DIN 

becomes depleted and is the primary limiting factor and so the impacts of P-limitation 

tend to be reduced there as well. 

 

3.3.2 Sensitivity to Ik 

Unlike many other model parameters, the 1995 solution is fairly sensitive to 

the half saturation parameter for light (Ik) because this parameter directly dictates how 

deep phytoplankton growth can occur in the water column. This, in turn, has a direct 

impact on the DIN distribution in the model. In winter and spring, the effects of 

changing Ik can extend from the head of the Bay to south of Potomac River, which 

indicates that this large part of the Bay is light, rather than nutrient, limited due to the 

low surface irradiance, high turbidity, deeper winter mixing and high nutrient loading 

at these times of year. In summer and fall, the effects of changing Ik are confined to 
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the upper Bay because most of the middle and lower Bay switch to nutrient 

limitation. Adjustments to Ik show very clearly where the region of transition from 

light to nutrient limitation occurs in the Bay, i.e, it occurs where the impacts of 

adjusting Ik goes to zero. For example, the transition occurs close to the mouth of 

Potomac River in winter while near bay bridge in summer. 

 

3.3.3 Sensitivity to grazing parameters 

As in all NPZD-type models, the grazing terms are the closure of the model. 

Therefore, the specification of grazing rate and grazing preferences is very important.  

The model results show that changes in the grazing parameters (Gm and the grazing 

preferences) affect the model to the largest extent in the upper and mid Bay in spring. 

While in other seasons, the effect is only apparent north of Bay bridge. This indicates 

that phytoplankton biomass is more grazing controlled in the upper bay and that this 

control is exerted further down Bay in spring when nutrient loads are higher. 

Conversely, this shows that the lower Bay is more subject to “bottom up” control, i.e., 

nutrient, rather than grazing, limitation. 

 

3.3.4 Sensitivity to sinking parameters 

The sinking rate of phytoplankton is an important parameter in our model. It 

transports phytoplankton from the surface to the bottom layers. Without sinking of 

phytoplankton, there is no accumulation of phytoplankton near the bottom in deep 

water anywhere in the model domain. Therefore, specification of the sinking rate of 

phytoplankton largely determines the redistribution of biomass in the water column. 
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However, as we mentioned in the previous section, phytoplankton sinking also results 

in the enhanced chlorophyll concentration on the shoals, especially along the eastern 

shore from upper to mid Bay.  

With phytoplankton sinking invoked, the model is not sensitive to the sinking 

rate of the detritus in the range we tested (1-4 m/d). However, when phytoplankton 

does not sink it can be very important especially in summer. The model is most 

sensitive to the sinking rate of detritus in summer and least sensitive in winter. As we 

mentioned before, the phytoplankton growth is mostly fueled by regenerated nutrients 

in summer and fueled by input from rivers at other times. Therefore, the amount of 

detritus that is deposited on the bottom directly determines the availability of DIN in 

the water column during summer as it is recycled through the heteotrophic 

compartment.  Thus, these sensitivity results show that the model dynamics are 

consistent with our conceptual model of how detritus deposition associated with the 

spring phytoplankton bloom fuels summertime primary production through recycling 

(Malone et al., 1988). 

The sinking rate of ISS is very important in determining the ISS distribution, 

which largely determines the TSS distribution because ISS constitutes a large portion 

of TSS in the Bay. And TSS concentration in the upper layers greatly affects Kd and 

the light available for phytoplankton growth. When the ISS sinking rate is high, it 

drives most of the mineral particles out of the surface layers. As a result, TSS 

concentrations in the upper layers drop and become much less variable.  This, in turn, 

causes water clarity to increase (Kd goes down) and become less variable.  These 

kinds of effects are most pronounced in the upper Bay where the ISS loading is 
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highest and where TSS is the primary factor that controls light penetration. The 

current sinking rate used in the model was obtained by trial-and-error to achieve 

reasonable TSS concentrations and variability in the upper layers and hence correct 

Kd values and variability. 

 

4. Summary and Conclusions 

In this study we incorporated a simple NPZD biological model with a 

representation of mineral particles and dissolved oxygen into a 3-D numerical 

hydrodynamic model of Chesapeake Bay. To keep the ecosystem model as simple as 

possible we parameterized some important biochemical processes in the Bay: (1) 

instead of implementing a fully uncoupled P-currency model we enforced P-

limitation using a simple parameterization where we specify uniform seasonal P 

concentrations with low values in winter and spring relative to a fixed half-saturation 

constant for P uptake; (2) underwater light attenuation is calculated using a simple 

empirical optical model that was developed for Chesapeake Bay which can account 

for more than 70% of the observed Kd variability; (3) denitrification loss of DIN is 

accounted for by adding a loss term at the bottom which is proportional to DIN 

concentration in the bottom layer; (4) the temperature-dependent grazing rate of 

heterotrophs is simplified by a step function and the seasonal food-web structure 

change is represented as switch in grazing preferences; and (6) a sinking rate is added 

to the phytoplankton compartment that is modified seasonally to account bottom 

accumulation of chlorophyll and seasonal variations in phytoplankton species 

composition and export.  
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With its simple configuration, our model succeeds in producing the observed 

patterns in DIN, phytoplankton, DO, TSS and Kd in the main stem in a dry year 

(1995) and a very wet year (1996) (Figs. 4.4-14). Modeled surface DIN distributions 

along the main stem compare quite favorably with the observed concentrations (Fig. 

4.4). And the vertical DIN profiles in summer and fall also compare reasonably well 

with the observed. However, significant discrepancies remain in winter and spring, 

perhaps related to a combination of insufficient vertical mixing and too much 

remineralization at depth (Fig. 4.10). For phytoplankton, both the surface and 

subsurface distributions in the model generally compare well with the observations 

(Figs. 4.5 and 4.9). Discrepancies are mainly in the upper bay in 1996.  In general, the 

model reproduces the observed concentrations better at locations with less variability 

(generally mid to lower bay). Even though DO simply cycles with DIN in the model 

(except for air-sea exchange), the vertical profiles of DO compare favorably with 

observations at most time and locations. The biggest problem is the overestimation of 

DO near bottom over the deep channel in summer, which may related to insufficient 

organic matter accumulation or remineralization in the spring that is too rapid. 

Correctly modeling the TSS distribution is as complex as modeling the 

biogeochemical system, but must be included at some level because TSS 

concentrations have a strong influence on light penetration. Despite the simplicity of 

our TSS parameterization, we obtain reasonable TSS distributions across the Bay 

except in lower bay, where the model tends to underestimate both the mean and 

variability. As a result, the model also reproduces the observed Kd variability quite 

well except in the lower Bay.  

 154 
 



 

The spatial picture of chlorophyll distribution in both years reveals that the 

model produces unrealistically high chlorophyll concentrations on the shoal regions, 

especially along the eastern shore, from the upper to mid bay. Using different test 

runs, we suggest that this problem may be due to grazing control at the shoals and/or 

physical processes that transport phytoplankton laterally from the shoals to the deep 

channels. We test the former hypothesis by implementing bivalve filtration which 

succeeds in reducing the high chlorophyll concentrations in these shoal regions. 

However, the lateral transport hypothesis is difficult to test with our current model 

setting.  

In addition, we also carried out some sensitivity studies with the simple 

biological model. Varying P-limitation in the model shows that P-limitation is 

important in both years but to a larger extend in 1996 when freshwater flow was 

much higher. The model is quite sensitive to the light saturation parameter Ik for 

phytoplankton growth in winter and spring. While in summer and fall, the effect is 

confined to the upper bay only, revealing the seasonal and spatial extent of light 

limitation. As the closure of the model, we expect the grazing parameters are very 

important. Interestingly, the effects of adjusting the grazing parameters is mainly 

manifested in the upper bay except in spring when they extend much further south, 

which indicates that at most of time from mid to lower bay phytoplankton biomass is 

not grazing limited, but rather nutrient limited in the main stem. We have a sinking 

flux specified for three variables in our model: phytoplankton, detritus and ISS. 

Phytoplankton and ISS sinking is necessary to transport mass to deeper water and the 
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rate greatly affects their vertical distributions. With phytoplankton sinking, the model 

becomes less sensitive to the detritus sinking rate. 

In this study, we have demonstrated that a relatively simple biological model 

is capable of reproducing the major features in nutrient concentrations, phytoplankton 

biomass, oxygen concentration and underwater light attenuation in a complex 

biogeochemical system like Chesapeake Bay. And the model is robust enough to 

generate reasonable results under extreme conditions, i.e., in both a dry year (1995) 

and a very wet year (1996). Nonetheless, we also uncovered a number of significant 

discrepancies which suggest possible future improvement to the model. For example, 

inclusion of an explicit sediment layer could help to improve our solution in several 

ways. That is, by allowing a different zone for remineralization other than in the 

water column, and a more realistic interface for nutrient flux.  An explicit sediment 

layer would also allow representation of sediment transport across the bed, which 

may help reduce unrealistically high chlorophyll concentrations in shoal regions, and 

a better representation of remineralization and denitrification, which might produce 

better DIN and oxygen profiles. Other potential improvement includes 

implementation of phytoplankton and TSS biomass dependent sinking rate for 

phytoplankton that can capture the enhanced sinking rates and export flux that seem 

to occur in turbid, productive estuaries.  It may also be necessary to include grazing 

control in shoal regions in Chesapeake Bay to help reduce the high chlorophyll 

concentration in shoal regions at both the head of bay and along the shores. 
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Chapter 5: Summary and Conclusions 
 

 

The main objective of this study is to explore if a simple biological model will 

work in a complex ecosystem such as Chesapeake Bay under proper physical forcing 

and what essential components are necessary in such a simple model to reproduce the 

observed variability in nutrient concentrations, oxygen and phytoplankton biomass. 

For this purpose we developed a relatively simple biogeochemical model that 

includes several paramterizations of key processes such as dentrification, P limitation, 

seasonal changes in ecosystem structure and temperature effects on remineralization, 

and a simple empirical light attenuation submodel.  This biogeochemical model is 

coupled with a 3-D hydrodynamic model of Chesapeake Bay - WES-CH3D. 

WES-CH3D is 3-D primitive-equation model solving for salinity, 

temperature, water level elevation and velocities. The governing equations are recast 

in a boundary-fitted curvilinear coordinates system to cope with the irregular 

shoreline configuration and deep channel orientation of Chesapeake Bay. We decided 

to use WES-CH3D as our physical model because it has been tuned to Chesapeake 

Bay specifically and validated with a ten-year (1985-1994) time series of 

observations obtained by Chesapeake Bay Program and the Bay Program also uses its 

output to drive their water quality model. Therefore, the results from our simple 

biological model provide a direct reference to their more complicated water quality 

model.  

 191 
 



 

Due to importance of physical forcing in biological processes we first 

undertook an effort to validate the physical model for our study period: 1995 and 

1996, which was chosen because it encompasses a dry year (1995) and an 

exceptionally wet year (1996). The physical model reproduces the essential 

circulation features, such as the two-layered circulation in the main channel and 

major tributaries and the temperature and salinity structure compares reasonably well 

with observations. However, sizable discrepancies are found at depth and laterally in 

salinity profiles: the model tends to overestimate bottom water inflow and salinity at 

depth and the discrepancy increases toward the lower reaches of the bay so that the 

water column in the model tends to be more stratified, especially in the mid to lower 

bay.  

The enhanced bottom inflow with saltier bottom water in the model is a result 

of the coarse resolution of the model. The numerical representation of three-

dimensional flow and density fields by a finite number of computation cells 

inevitably increases friction. To overcome the numerical damping, it is often 

necessary to enhance the bottom inflow of seawater from the estuarine mouth region 

in order to produce a realistic two-layered circulation well inside the estuary. To 

enhance further model realism without increasing grid resolution at the expense of 

computation speeds, an attempt was made to assimilate available high-resolution 

Scanfish salinity data in 1995 into the model. A Newtonian relaxation scheme was 

used in the salinity equation to receive the irregularly spaced time series of Scanfish 

data. After data assimilation the agreement between the model and the observations is 

generally improved and the improvement is generally more profound in the middle 
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reaches than in the upper and lower reaches of the bay. The improvement is maximal 

right after the data injections and decreases slowly thereafter. In the lower bay the 

improvement diminishes more quickly because the adjacent coastal ocean is excluded 

from data assimilation. The data assimilation also enhances the two-layered 

circulation. The speed enhancement ranges up to 4 cm s-1.  

However, the improvement does not come without penalties. The data 

assimilation may trigger renewed gravitational circulation because the density 

structure is significantly altered. As mentioned above, the model tends to 

overestimate salinity at depths and towards the lower reaches of the bay and the 

intention of data assimilation is to reduce modeled salinity at depths and in the lower 

reaches of the bay. Because there are only two short periods of high-resolution data 

available the restoration rate has to be strong enough to make a lasting impact. When 

data are assimilated in the lower reaches of the bay, pressure is reduced near the 

mouth. The consequent increase in the seaward pressure gradient triggers the seaward 

expansion of the buoyant layer. The artificial seaward expansion is eliminated with 

continuous data injections. The strength and the longitudinal extent of gravitational 

readjustment are largely controlled by the restoration rate K. Precautions have to be 

taken in order to maximize the model improvement and minimize the volatile 

transients, which is necessary because of the limited availability of high-resolution 

data. 

Because only a few of narrow windows of high-resolution data are available, 

the nudging must be strong enough the make a difference. Even though the 

gravitational readjustment is transient it is problematic when running a 
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biogeochemical model because it can potentially have profound biogeochemical 

impacts. The seaward expansion of the buoyant layer may wash out the biological 

organisms and produce an unrealistic distribution of biological variables. Therefore, 

we made another attempt to improve the model performance by adjusting the salinity 

at the open-ocean boundaries. The adjustments were inferred from the observations at 

inner estuary by trial-and-error and they improved the salinity structure at depth, 

especially in the upper and mid reaches of the bay.  

After validating the physical model we embarked upon the development and 

implementation of the biogeochemical model. An immediate problem is how to 

reproduce the observed underwater light field variability. In aquatic environments, 

light tends to limit primary production in deep water. In Chesapeake Bay, light can be 

a limiting factor even in shallow waters under turbid conditions, and light attenuation 

is modulated by a variety of chromophoric substances, including dissolved organic 

matter and detritus. Because our goal is to keep the whole biogeochemical model as 

simple as possible, the complex spectral optical models, such as in Platt and 

Sathyendranath (1988), Smith et al. (1989) and Gellegos et al. (1990), were not 

considered. Moreover, these complex models are not easily applied in 

biogeochemical models where only a handful of the optically active constituents are 

represented.  In our first attempt we used dual-wavelength light model as in Hood et 

al. (2001), but this model failed to capture the large range of light attenuation 

variability in Chesapeake Bay. Therefore, we derived an empirical light model 

specifically for Chesapeake Bay. Assuming the averaged light attenuation coefficient 

(Kd(PAR) ) can be decomposed as a set of partial attenuation coefficients and each 
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partial attenuation coefficient is a linear function of concentration of each waterborne 

material, the values of each specific attenuation coefficient can be “backed out” by 

multiple linear regression methods when data are available. A light model obtained 

by this approach will be simple and specific to the water body where the data are 

from. 

A total of 1348 data points from 1995 and 1996, where underwater light 

intensity (from which Kd is derived) as well as water quality concentrations were 

measured simultaneously by Chesapeake Bay Program, were used to develop the 

empirical light model. In Chesapeake Bay, the main optically active constituents 

besides water itself are: phytoplankton, seston (non-phytoplankton particulate matter) 

and CDOM. Given the data availability and the constraints imposed by what we can 

represent in our biogeochemical model, chlorophyll, TSS and salinity were used in 

the linear regression relationship. Salinity is included as a proxy for CDOM because 

CDOM behaves conservatively like salinity in Chesapeake Bay (Rochelle-Newall and 

Fisher, 2002). The resulting model gives an R2 of 0.72 between the calculated Kd 

from this relation (Kd_predicted) and the Kd derived from direct light measurement 

(Kd_observed). A stepwise statistical model showed that TSS is by far the most 

important factor in controlling light attenuation in Chesapeake Bay, explaining about 

58% of the total variability in Kd alone. Contrary to oceanic water, phytoplankton 

absorption only plays a minor role in controlling the light field in Chesapeake Bay. 

Chlorophyll only enters the model at 5% level and does not improve the R2. In 

addition, the specific light attenuation coefficient for chlorophyll turned out to be 

negative. We interpreted this to be a consequence of the strong effect of light 
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controlling phytoplankton growth in the system where Kd is large and determined 

primarily by TSS and CDOM. 

Even though the regression relation for the entire bay gives a nice fit between 

Kd_predicted and Kd_observed it has one caveat: Kd values can become negative at 

high salinity regions, which can be inconvenient in numerical modeling. Therefore, 

we divided the dataset into two groups by salinity (one for S ≤ 15 and one for S > 15) 

and for each group the same method was applied. This approach did not further 

improve the overall R2 but it solved the negative Kd problem. In addition, the changes 

in the specific light attenuation coefficients between the two salinity regimes 

demonstrated how the role of different optically active constituents can change over a 

wide range of salinity in an estuarine environment. Specifically, the intercept, the 

coefficients for salinity and TSS decreases from low to high salinity regions and the 

coefficient for chlorophyll changed sign (negative in low salinity, positive in high 

salinity). The smaller intercept and coefficient for salinity in high salinity regions 

show that the lower bay has less CDOM and CDOM has less influence on light 

attenuation. The decrease in coefficient for TSS indicates that TSS plays a less 

important role in attenuating light in lower bay. And we believe that the sign change 

in the coefficient for chlorophyll is results from two competing factors in determining 

the relationship between Kd and chlorophyll. Namely, in turbid waters where 

constituents other than phytoplankton strongly influence Kd, light controls 

phytoplankton growth and biomass, which will tend to give rise to a negative 

correlation between Kd and chlorophyll; while in clearer water where phytoplankton 

growth and biomass are controlled by factors other than light, chlorophyll strongly 
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influences Kd which will tend to give rise to a positive correlation between Kd and 

chlorophyll. Because field data always contain information from both these two 

competing factors, an empirical model will tend to underestimate the effect of 

chlorophyll variability on Kd.  

From the two relations for different salinity regime we estimated the 

contribution of each component in total Kd. In the low salinity region, light 

attenuations by seston and water + CDOM are equally important while 

phytoplankton’s contribution is mostly below 10%. In the high salinity region, light 

attenuation due to water and CDOM dominates and phytoplankton plays a bigger 

role, while the contribution from seston becomes very small. However, one has to 

keep in mind that the contribution from phytoplankton estimated from empirical 

model tends to be underestimated, as we discussed above. Nevertheless, this analysis 

shows that in modeling the light field in estuaries, the first order importance is to 

reproduce both the mean distribution and variability of TSS and CDOM. In systems 

where CDOM behaves conservatively, CDOM concentration can be adequately 

represented by salinity. Therefore, in such systems TSS is the crucial component in 

modeling the underwater light field. 

In this part of study, we also tested the possibility of using Secchi depth (SD) 

derived Kd in place of Kd from direct light measurements. Three conversions from SD 

to Kd were used: one fitted to the specific dataset, one obtained from Choptank River 

and another commonly used conversion. We then recalculated the regression equation 

relating these derived Kd values to chlorophyll, TSS and salinity, which yielded three 

different relations (one for each SD to Kd conversion equation). All three relations 
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describe much less of the observed Kd variability than the model derived using direct 

light measurements. Moreover, they all tend to underestimate high Kd and 

overestimate low Kd. The severity of the biases at both extremes suggests that the SD 

derived Kd values cannot be used in the derivation of an empirical light model in 

Chesapeake Bay. 

For the main body of the biogeochemical model, we adopted the simple five-

compartment NPZD-type model (DIN, DON, phytoplankton, heterotrophs and 

detritus) in Hood et al. (2001). One DIP compartment was added to simulate 

phosphorus limitation in Chesapeake Bay. Two additional state variables were also 

included: dissolved oxygen (DO) and inorganic suspended solids (ISS). DO is 

included to simulate anoxia and hypoxia in the Bay and it also serves as a natural 

trigger to slow down the respiratory processes of heterotrophs under these conditions. 

ISS is included for dynamically modeling the underwater light field. 

The biological model is forced by nutrient input and suspended solids loads 

from major tributaries, atmospheric deposition of DIN and DON and air-water 

exchange of O2.  In light of the important role played by nutrients in the 

biogeochemical activities in the system we assimilated available observations in the 

upper reaches of the tributaries in the model. This approach allows us to not only 

have a relatively correct estimate of the nutrient loading but also bypass the difficulty 

of accounting for some uncertain nutrient sinks/sources, such as nutrient 

retention/release by marshes and wetlands at the upper tributaries. 

The ecosystem model was then embedded in the hydrodynamic model of 

Chesapeake Bay and run for 1995 and 1996. In the process of diagnosing the model 
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performance we gradually added some simple parameterizations of important 

biochemical processes in the Bay: 1) P limitation is enforced by using a uniformly 

low value for DIP in winter and spring relative to a fixed half saturation constant for 

phosphorus uptake. 2) Under water light attenuation is calculated using our simple 

empirical optical model. 3) Denitrification loss of DIN is taken to be proportional to 

DIN concentrations in the bottom layer. 4) The temperature-dependent grazing rate of 

heterotrophs is represented by a step function. 5) The seasonal change in food-web 

structure is represented by changes of grazing preferences. 6) The sinking rate of 

phytoplankton is modified seasonally to represent the changes of species composition 

and account for the bottom accumulation of phytoplankton in spring. 

To show the overall performance of this coupled physical-biological model, 

both the surface distributions and vertical profiles (except for Kd) of DIN, 

phytoplankton, DO, TSS and Kd were examined. With its simple configuration, the 

model successfully produced the general distribution of each field (both the mean and 

variability) in the mainstem of the bay and reproduced the observed seasonal and 

interannual patterns. However, some significant discrepancies were also observed. 

With DIN, the main problem resides in winter and spring: In winter, observed DIN is 

high at surface and decreases with depth. However, the modeled DIN is low at 

surface and high near bottom. In spring, the model generally overestimates DIN at 

depth. For phytoplankton, both the surface and subsurface distributions in the model 

generally compare favorably with observations. Discrepancies are mainly in the upper 

bay in 1996 and the model generally produces better chlorophyll distributions in the 

mid to lower bay where the variability is lower. Even though DO is simply cycled 
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with DIN in the model with air-sea exchange at the surface the model produces 

reasonable DO distributions all the time over the whole Bay. One pronounced 

problem is the overestimation of DO near bottom over the deep channel in summer, 

which may be related to too much reminerization near bottom and hence insufficient 

organic matter accumulation in spring. In Chesapeake Bay, inorganic suspended 

solids make up a major portion of TSS. In our model, ISS is simply modeled with 

loading, uniform sinking, deposition and resuspension rate. There is no size-structure 

and no aggregation effect. However, the modeled distribution of TSS is reasonable 

throughout the bay and all seasons except in lower bay where the model tends to 

underestimate both the mean and variability. The problem in the lower bay may be 

related to insufficient lateral loading and resuspension. Because Kd becomes less 

dependent on TSS this does not affect the Kd field very much. The modeled Kd has 

less variability in the lower bay mainly because the empirical light model cannot 

explain much of the variability in the lower bay. 

The spatial patterns of DIN and chlorophyll in both years agree with our 

general understanding of the bay dynamics. In the low flow season/year (1995), high 

DIN concentrations are confined to the northernmost part of the Bay and the 

chlorophyll maximum occurs in the upper bay as well. During the high flow 

season/year (1996), due to the large amount of TSS loading the upper bay becomes 

light-limited so that chlorophyll maximum moves further south, and high DIN 

concentration also extends down the bay. However, the horizontal spatial plots of 

phytoplankton biomass for both years also revealed that the model produced 

unrealistically high chlorophyll concentrations in the shoal areas, especially along the 
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eastern shore, from upper to mid bay. We tested several hypotheses and suggest that 

this problem may be due to grazing control at the shoals and/or physical processes 

that transport phytoplankton laterally from the shoals to the deep channels. We test 

the former hypothesis by implementing bivalve filtration which succeeds in reducing 

the high chlorophyll concentrations in these shoal regions. However, the lateral 

transport hypothesis is difficult to test with our current model setting. Simply 

increasing horizontal mixing does not work.  

Taking advantage of the simple configuration we also carried out sensitivity 

studies on some key parameters. Varying the degree of P-limitation shows that P-

limitation is important in both years but to a larger extend in 1996 when freshwater 

inflow was much higher and that P-limitation tends to be more important in the upper 

Bay. The model is quite sensitive to the light saturation parameter Ik for 

phytoplankton growth in winter and spring. While in summer and fall, the effect is 

confined to the upper bay only, revealing the seasonal and spatial extent of light 

limitation. As the closure of the model, we expect the grazing parameters to be very 

important. Interestingly, the effects of adjusting the grazing parameters is mainly 

manifested in the upper bay except in spring when they extend much further south, 

which indicates that at most of time from mid to lower bay phytoplankton biomass is 

not grazing limited, but rather nutrient limited in the main stem. We have a sinking 

flux specified for three variables in our model: phytoplankton, detritus and ISS. 

Phytoplankton and ISS sinking is necessary to transport mass to deeper water and the 

rate greatly affects their vertical distributions. With phytoplankton sinking, the model 

becomes less sensitive to the detritus sinking rate. 
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The major conclusions that we derive from this study are: 1) Assimilating 

high-resolution data, even only in a short period, can improve the performance of the 

physical model; 2) a simple empirical optical model is capable of producing the light 

attenuation variability but it is necessary to carry TSS in a numerical model to 

dynamically model underwater light field in a complex estuarine environment such as 

Chesapeake Bay; 3) a relatively simple biochemical model is capable of reproducing 

the major features in phytoplankton biomass, nutrient, oxygen and TSS distributions 

and is robust enough to generate reasonable results in both wet and dry years. 

Potential future work includes: 1) more detailed examination of the physical 

model, especially with regard to the mixing parameters with efforts focused on 

generating more realistic stratification and mixing depth; 2) including an explicit 

sediment layer in the ecosystem model to allow a different zone for remineralization 

other than in the water column, and a more realistic interface for nutrient flux.  An 

explicit sediment layer would also allow representation of sediment transport across 

the bed and a better representation of remineralization and denitrification; 3) 

implementation of phytoplankton and TSS biomass dependent sinking rate for 

phytoplankton that can capture the enhanced sinking rates and export flux that seem 

to occur in turbid, productive estuaries; 4) including realistic representation of grazing 

control in shoal regions in Chesapeake Bay to help reduce the high chlorophyll 

concentration in shoal regions at both the head of bay and along the shores. 
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