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ABSTRACT

Title of Dissertation: Heavy and light traffic approximations

for queues with synchronization constraints
Subir Varma, Doctor of Philosophy, 1990

Dissertation directed by: Armand M. Makowski
Associate Professor

Electrical Engineering Department

The aim of this dissertation is to develop approximations to performance mea-
sures for queues with synchronization constraints with the help of limit theorems.
In particular we shall consider queues exhibiting the fork-join and resequencing
constraints. These queues invariably exhibit non-product form behavior, and their
analysis by any other method is extremely difficult. The limit theorems that we
shall use come in two flavors, i.e. heavy traffic limit theorems and light traffic
limit theorems. Heavy traffic limit theorems give estimates of the performance
measures when the system is operating near its full capacity, while light traffic
limit theorems give estimates of the performance measures when the system is
very lightly loaded. By interpolating between these two limits it is possible to ob-
tain estimates of the performance measures when the system operates at moderate

loads.
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CHAPTER 1

1.1 Introduction

The aim of this dissertation is to develop approximations to performance mea-
sures for queues with synchronization constraints with the help of limit theorems.
In particular we shall consider queues exhibiting the fork—join and resequencing
constraints. These queues invariably exhibit non-product form behavior, and their
analysis by any other method is extremely difficult. The limit theorems that we
shall use come in two flavors, i.e. heavy traffic limit theorems and light traffic
limit theorems. Heavy traflic limit theorems give estimates of the performance
measures when the system is operating near its full capacity, while light traffic
limit theorems give estimates of the performance measures when the system is
very lightly loaded. By interpolating between these two limits it is possible to ob-
tain estimates of the performance measures when the system operates at moderate
loads.

Heavy traffic limit theorems are obtained by means of diffusion approxima-
tions. Intuitively this corresponds to replacing the discrete state or discrete time
stochastic process under consideration by a diffusion process, with the understand-
ing that in heavy traffic a scaled version of the original stochastic process behaves
similarly to a diffusion process. The partial differential equations which are satis-
fied by the stationary distribution of the diffusion process can be obtained in some
cases and then the burden of the analysis is transferred to finding the solutions to
these equations.

A comprehensive theory for light traffic approximations has been devcloped
recently by Reiman and Simon [59]. It is applicable to queueing systems the input
of which is either a Poisson process or more generally, a process of the Phase
type. Not only does the theory provide values of the performance measure in light

traffic, but also more sensitive information in the form of the derivatives of the
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performance measure with respect to the arrival rate. We can then combine the
light and heavy traffic results to yield a polynomial expression (in the arrival rate)
as an approximation to the performance measure. For example by using the heavy
traffic limit, the light traffic limit, and the first derivative, we obtain a quadratic
approximation. Some of the principal results of the light traffic theory are given
in Appendix B.

The principle mathematical tool used in showing the convergence to a dif-
fusion process is the theory of weak convergence of probability measures on the
function spaces C[0,1] or D[0,1], an excellent treatment of which is given in [8]
(also see Appendix A). Weak convergence in function spaces is the generalization
of convergence in distribution, and is appropriate for stochastic processes.

Functional central limit theorems are readily available in the literature for
basic processes like random walks and renewal processes [8]. With this in mind,
the most commonly used method to obtain heavy-traffic limit theorems for queues
has been to connect the stochastic processes which arise in queues to these basic
processes. For example, limit theorems for the waiting time processes typically
exploit recursive schemes such as Lindley’s recursion, to connect them to random
walks [65], while limit theorems for queue length processes male use of the con-
nection between the queue lengths and the renewal processes generated by the

arrivals and departures in a queue [29],[30].

A survey of the literature reveals that most of the work on diffusion approx-
imations for queues has been limited to standard queucing systems. What we
propose to do here is to extend the scope of this method to non-standard queue-
ing systems which exhibit synchronization constraints in their behavior [1], [2], [3],
[4], [5]. Such systems have assumed increasing importance in recent years in view
of their applicability in modeling multi-processor architectures and distributed
systems. In contrast to standard queues, it is difficult to solve these systems
even under the assumptions of Poissonian arrivals and exponential service times.
Therefore a theory of diffusion approximations for these queues has two virtues:

not only will it provide a non-parametric body of results, but it will also enable
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us to make estimates of performance measures, a task which seems otherwise to
be difficult by any other method.

The aim of this introductory chapter is to acquaint the reader with some of
the basic techniques used in obtaining limit theorem approximations. This is done
by considering the special case of the GI/GI/1 queue. We consider this particular
system for illustrative purposes since the theory for this queue is specially well
developed owing to its simplicity. Moreover it was the first system to be analyzed
using limit theorems.

The rest of the chapter is organized as follows: In Section 1.2 we consider
heavy traffic approximations for the GI/GI/1 queue, and in Section 1.3 we dis-
cuss light traffic approximations for this queue as well as interpolations of the
performance measures between heavy and light traffic. The final Section 1.4 con-

tains a brief summary of the main results in the dissertation.



1.2 Heavy traffic for the GI/GI/1 queue

In this section we introduce the reader to the principle techniques of heavy
traffic approximations by way of the GI/GI/1 queue. We begin the discussion by
providing a recursive representation for the queueing delay process in this queue.

Let the following RVs be defined on a common probability space (2, IF, IP).
Forn=0,1..., we set

Up+1 ¢ Inter-arrival time between the (n + 1) and n'™ customers.
vy, Service time of the nt* customer.
W, : Waiting time of the n'" customer.
We shall assume that
(Ia): The sequences {u,+1}5° and {v,}5° are mutually independent sequences

of i1d RVs with

u = IF(uy) < 00, o2 :=Var(u,) <

n=0,1...

v := IE(v,) < 00, o2 := Var(v,) < oo.

v

Assuming that the first customer arrives into an empty system at time ¢t = 0,

Lindley [48] gave the following recursive representation.

Wo =0

Wn+1 = [an + vp — un+1]+- n = 0, 1... (21)

We consider the system to be stable if the sequence of queueing delays {W,,}§°
converges weakly as n T 0o to a proper RV . It is well known [51] that the queue
will be stable provided v < u.

We would like to obtain performance measures such as the average waiting
time for this queue while it is operating in its stable regime. Unfortunately, in
general there does not exist closed—form expressions for the average waiting time
such as the Pollaczek-Khinchin formula for A /GI/1 queues. However Kingman
[35],[36],[37] was able to prove the following interesting result which is independent

of any distributional assumption on the inter-arrival or service times. Consider a
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one parameter family of GI/GI/1 systems indexed by v and v and let

Xng1(u,v) = v(v) — upgy () n=~0,1...

Assume that
(Ib):

2, 2 2
ol +0l =0, with0< o® < oo, asu | v

sup [IEX2T¢(u,v)] < oo for some e >0
u>v>0

Under assumptions (Ia)—(Ib), Kingman [36] considered the iterated limit,
first letting n T oo to obtain the steady-state waiting time W (u,v) for each u > v,

and letting u | v after normalization to obtain

2(u —v)

R W(u,v) 2 B (2.2q)

where — denotes convergence in distribution and

P(E < )= {1 —e e 20 (2.2b)

0 otherwise

To use this result, assume that v is held fixed and that « | v. The following

approximation
2 2
o, ‘o,

2(u —v)’

is then made plausible by the convergence (2.2).

EW(u,v) ~ U R (2.3)

Kingman concluded to (2.2) by making use of well-known results for the steady
state waiting time for GI/GI/1 queues, e.g., Spitzer’s identity [34]. However for
more complicated systems, such results are usually not available and we have
to find other techniques for obtaining heavy traffic approximations such as (2.2)
and (2.3). One such technique is based on “diffusion limits” as explained below.
These diffusion limits can be obtained by considering a sequence of appropriately

normalized queueing processes instead of a sequence of appropriately normalized
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steady-state distributions. Accordingly, consider a sequence of GI/GI/1 systems
indexed by r > 1, each of which satisfies assumption (Ia). Make the following
additional assumptions (Ic)—(Id) where

(Ic): Asr T oo,

ou(r) — oy

ou(r) — oy
[u(r) — (M7 — ¢

(Id): For some € > 0,

%g{EHUKﬂF”ﬂ»EHUKﬂF+?}<0&

In the next step we make use of the theory of weak convergence to obtain the
diffusion limits. Define D[0, 00) to be the space of all real-valued right-continuous
functions having left limits. This space is endowed with a metric defined by
Lindvall [49], which makes it separable and complete (Appendix A).

Forr =1,2..., the stochastic process u, = {jr(t),t > 0} with sample paths
in D[0, 00) is defined by

Wi (r
() = —2e 20 ys, (2.4)

S Z
In order to obtain (2.2), Kingman first considered the limit of j1¢(r) as # T oo and
then took the limit as r T co. In contrast, the methodology for obtaining diffusion
limits directs us to take these two limits in the reverse order. We first let » T oo to
obtain a diffusion process, and then let ¢ T co to obtain the stationary distribution
of that diffusion process. It turns out that this stationary distribution is the same
as the limiting distribution obtained by Kingmans’s method. This interchange of
limits has been justified by Prohorov [55] and Harrison [20].

Define a random process ( = {(;,t > 0} by

G =0, —ouby —ct, 120 (-

!\)
ot
R
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where " and £¥ are two independent Wiener processes defined on [0, 00). Next,

define a mapping ¢ : D[0,00) T D[0, c0) by

g(z)e =a:+ sup z,;, +>0. (2.6)
0<s<t

For the subspace Dg[0,00) of D[0,00) for which zy = 0, the above definition

simplifies to

g\D
~J
S

)¢ =z — Inf @ t>0. '
g(@)e = 7y ot s, 20 (

The mapping ¢ is often referred to as the reflection mapping for the following
reason. Consider an element in = in Dg[0, 00) such that x; > 0 for all ¢ in [0, c0).
Then it is easy to see from (2.7) that g(2) = =z identically. However if the x
becomes negative, then the mapping g acts in such a way that g(x) is forced to
stay positive. In this case z is said to have a normal reflection from the origin.
Further discussion of the reflection mapping may be found in [24, Chap. 2] and
[12, Chap. §]

If we let = denote weak convergence, then under assumptions (Ia) and (Ic)-

(Id), it can be shown [65] that

pu(r) = g(¢) (2.8)

as r T oo, in DI[0, 00).

The process g(() is said to be the heavy traffic diffusion limit for the waiting
time process in the GI/GI/1 queue. It is well known [24] that for all £ > 0 and =
in IR,

T -+ ct — g, —a 4 ct
Plg(()i<z]=P| ——= 1] —¢ ot ”"',—> ) (2.9)
lo(C)s ] (02 + ¥t (o2 + o)t

where
1 i 2 ; n
D(z) = — exp” 2 dr, =zin
(2) = 7= f_oo I



We now take the limit in (2.9) as ¢ T 0o to obtain the stationary distribution

of the diffusion limit ¢((), namely

2cx

i Plg()e S @] =1—e 7077 (2.10)
tToo

Hence by a different route, we have once again arrived at Kingman’s exponential

approximation (2.2).



1.3 Light traffic limits for the GI/GI/1 queue

The theory of light traffic approximations for queueing systems was initiated
by Reiman and Simon [59]. We shall illustrate the main features of this theory
in this section by applying it to the single server queue with arrival rate A (= %
and service rate 1 (= ). Appendix B contains a collection of some of the basic
results of this theory.

Just as in heavy traffic theory we seek estimates of performance measures in
the case when the arrival rate A into the system approaches the maximum system
utilization g, in light traffic theory we seek estimates of performance measures
when the arrival rate into the system approaches zero. In the Reiman-Simon
theory, the arrival process is restricted to be either a Poisson process or a process
driven by a Poisson process, e.g., a non-stationary Poisson process or a renewal
process with a phase type renewal distribution. Hence we shall hereafter assume
that the queue under consideration is of the M/GI/1 type so that the light traffic
theory applies to it. Note that exact solutions already exist for the M/GI/1
queue [39], so that the limit theorem approximations are redundant for this case.
However for other systems like those with fork—join or resequencing constraints,
exact solutions are no longer available and limit theorem approximations are much
more useful.

The performance measure we consider is the average waiting time in the
M/GI/1 queue, since we have already developed heavy traffic limits for this mea-
sure in the last section. The un-normalized light traffic limit of the average waiting
time is trivial, since in the limit as the arrival rate goes to zero, there are no cus-
tomers in the system. However, as Reiman and Simon show, it is possible to obtain
more sensitive information on light traffic behavior by calculating the derivatives
of the average waiting time with respect to A at A = 0. Calculation of the nth
derivative requires consideration of the M /GI/1 queue in statistical cquilibrium
with a total of n arrivals in the interval (—oo, +c0). Once we know the values of
the average waiting time at A = 0 and of its first n derivatives, a natural procedure

would be to approximate it in the range [0, ) by means of a Taylor expansion,
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which has the form of an n** degree polynomial. However a polynomial approxi-
mation would not be appropriate, since we know that typically some performance
measures blow as A T . However heavy traffic approximation theory helps us get
better estimates in the following way. If W(\) is the average waiting time when
the arrival rate is A, then heavy traffic theory (2.3) shows that

L+pioy (3.1)

lim(y — A)W(N) =
ATu
Hence if we normalize W()) by (u — A) and consider the function w()\) = (p —
MW (), then a polynomial approximation is more reasonable. Using the n deriva-
tives at the origin and the heavy traffic approximation, our final approximation
would be a (n + 1)"** degree polynomial in A.

On the space (2, IF) define a measure IPy which renders the inter-arrival
time sequence {u,}§° exponential with rate ), so that the arrival process into the
system is a Poisson process. For each w in Q we add a tagged customer which
arrives at time ¢ = 0, and whose service time v* is independent of the sequence

{vn }§° but has the same distribution. Let
W = waiting time of the tagged customer entering at t = 0. (3.2)

Also let ¢(w) be the tagged customer’s expected waiting time for the sample w,

i.e. averaged over v*,

P(w) = [E[W | IF] (3.3)

The average waiting time is then given by the formula

W\ = /1/,d1PA. (3.4)
Define the expectations
P({t}) = IE[x) | one arrival at time ], *in IR (3.5a)
and
$(0) = IE[ | no arrivals] (3.5b)

10



Note that these expectations do not depend on \. As shown in Appendix B, we

have
W(0) = F(0) (3.6)

and

+oo
7 (0) = / @) — B0))dt. (3.7)

From (3.6) it is clear that W(0) = 0 and we now proceed to calculate T'Y_/"(O).
Let w¢(s) denote the waiting time of a customer arriving at time ¢ = 0 when

another customer arrives at time ¢ with service time s. Obviously, we have

0 if ¢ >0,
wils) = { [s+14T ift<0 (3.8)

so that by (3.5a),

P({t}) = /Ooo[s +t]TF(ds) t<0 (3.9)

where F' is the distribution function of the service time. Combining (3.9) with

(3.7), we obtain

W'(0) = /Ooo [/:o[s —t]+F(ds)} dt (3.10)

1,, .1
- —\0 +—; 311)
500+ ) (

after interchanging the order of integration and simplifying.
We now combine the results on light and heavy traffic to obtain an ap-

proximation which is valid for all values of the traffic intensity. As before let
w(A) = (= \W(A) for 0 < A < p. From the light traffic results (3.6) and (3.11),

we have

— [ 5 1
w(0) = 0 and w'(0) = ,LLTVI(O) = %L—(a;» + F) (3.12)

while from (3.1) we have
1 2 9.
w(p) = 5(1+ proy). (3.13)

11



Let @(A) denote the quadratic interpolation of w(\) over the interval [0, y1] based

on (3.12) and (3.13), i.e.,
W(A) = kg + k1 XA+ ko). (3.14)

Using (3.12)—(3.13), we now come to the conclusion that

1.
ko =ky=0and by = 5o} + ), (3.15)
2 12
whence
~ /\,u 2 1 .
W(A) = 7(0‘/ + ﬁ:z—), 0< A< . (3.16)

Finally, we undo the normalization to obtain an approximation ﬁ/’(/\) to the av-
erage waiting time as

)\/1(0%/'*',%)

W) =22 0< A< p (3.17)

However note that (3.17) is just the Pollaczek-Khinchine formula for the average

delay in the M/GI/1 queue. Hence for the simple case of the M/G/1 queue, this

approximation method yields the exact answer.
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1.4 Main results in the dissertation

The dissertation is divided into three parts. In Part I we consider limit theo-
rem approximations for fork—join queues and in Part II limit theorem approxima-
tions for queues with resequencing. Lastly in Part III we analyze a model which
exhibits both the fork—join and the resequencing constraints.

Part I is subdivided into six chapters. In Chapter 2 the convergence to dif-
fusion processes is demonstrated for fork—join systems in heavy traffic. We first
consider single stage fork—join queues and then general acyclic fork—join networks
as defined by Baccelli, Massey and Towsley [5]. In Chapters 3 to 5 we concentrate
on obtaining the invariant distribution of the limiting diffusion for the end-to-end
delay 1n single stage fork—join queues. In Chapter 3 we obtain upper and lower
bounds to this invariant distribution using ideas from stochastic ordering theory.
In Chapter 4, following Harrison and Reiman [22], we obtain a partial differential
equation for the invariant joint distribution of the I{-dimensional delay process.
This partial differential equation is solved in Chapter 5 for the special case when
K = 2 and the two queues are identical. We thereby obtain an expression for
the invariant distribution for the end-to-end delay, which we then use to obtain
formulae for all its moments in heavy traffic. Chapter 6 is devoted to obtaining in-
terpolation approximations for the fork—join queue by utilizing information about
its light and heavy traffic limits. We also present a formula for the heavy traffic
limit for a K dimensional system which agrees extremely well with experimental
results.

In Part II, we obtain limit theorem approximations for several resequencing
systems. In Chapter 7 we obtain the limiting diffusion in heavy traffic for a
resequencing model possessing a disordering system with an infinite number of
servers followed by resequencing and then service at a single server queue. We
show that the normalized queueing delay sequence in the buffer of the single server

queue converges to a reflected Wiener process in heavy traffic. We also show

that this result continues to hold in the case when there are IV infinite server

disordering stages (with resequencing after each disordering), with the single server
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queue as the final stage. We also obtain diffusion limits for the case when the
disordering system consists of I single server queues operating in parallel. Chapter
8 is devoted to obtaining light traffic limits for some of the resequencing models
described earlier as well as polynomial approximations which hold for moderate
values of the traffic intensity.

Part IIT deals with a model which exhibits both fork—join and resequencing
synchronization constraints. It is similar to the acylic fork—join network for which
limit theorems were obtained in Chapter 2, except that every single server queue
is preceded by an infinite server disordering system, followed by a resequencing
box. This model is being introduced here for the first time, and it subsumes
most of the different fork—join and resequencing models that we have analyzed so
far. We obtain the basic recursions governing this model and derive its stability
conditions. Our main result regarding this model, is that it has the same heavy
traffic diffusion limit as the acyclic fork—join network from Chapter 2. Hence in
heavy traffic the effect of resequencing on the queueing delays of this model is
negligible. There is an interesting special case of this model for which we obtain
polynomial approximations by interpolating between heavy traffic and light traffic
limits. This was a model originally proposed by Baccelli [3] to model time stamp

ordering in a distributed system.
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CHAPTER I1

2.1 Introduction

In this chapter our objective is to obtain heavy traffic diffusion limits for
fork—join queueing systems. In Section 2.2 we deal with a single stage fork—join
queue. The diffusion limits for this system are an easy extension of the limits for
the GI/GI/1 queue. We show that the vector stochastic process generated by the
queue delay sequences converges weakly to a J{—dimensional corrclated diffusion
process in the non-negative orthant with normal reflections at the boundaries.
Also the stochastic process generated by the end-to-end delay sequence converges
weakly to a process which is the maximum of thesc i’ diffusions. Sunilar diffusion
limits are shown to hold for the queue length processes in Section 2.3.

In Section 2.4 we prove heavy traffic diffusion limits for the class of acyclic
fork-join networks introduced by Baccelli, Massey and Towsley [5]. We show that
the vector stochastic process generated by the queue delay sequences converges

weakly to a complicated function of a I{—dimensional correlated diffusion process.
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Fig. 2.1. A parallel fork—join queue.

2.2 Heavy traflic limit for parallel fork—join queue delays.

2.2.1 The model.

Counsider a system of K single server queues operating in parallel. Each queue
has an infinite capacity buffer and operates according to the FIFO discipline.
There is a single stream of batch arrivals into the system so that every incoming
batch splits into K distinct customers, with each customer entering a different
buffer. This is known as the fork synchronization constraint. After a customer
receives service, it may have to wait in another buffer until the other (K — 1)
customers belonging to its batch have finished their service at the other queues,
at which time the K customers all leave simultaneously. This is known as the join
synchronization constraint.

Such queueing models arise in many application areas, including flexible man-

ufacturing and parallel processing, with a wide variety of interpretations. The dif-
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ficulty in analyzing such queueing models arises from the fact that the & queues
are highly correlated due to the common arrival stream into their buffers. Previous
approaches used complex variable theory [2], [14] and were confined to the case
I{ = 2; even then the analysis was very tedious and involved.

As explained in the introductory chapter, we seek approximations to the mo-
ments of the response time (defined below) of the fork—join queue by means of
limit theorems. In this chapter we initiate the process of obtaining a heavy traffic
approximation for fork—join queues by establishing a heavy traffic diffusion limit
for the delay processes, i.e., we show that an appropriately scaled and interpolated
version of the delay vectors, converges in the heavy traffic limit to a J{—dimensional
correlated Wiener process with reflections.

The following RVs are defined on a common probability space (€2, IF', IP). For
n=0,1...and 1 <k <K,

Un+1 : Inter-arrival time between the (n + 1)”'5 and nt" batch arrivals.

th 1

v . Service time of the customer belonging to the n** batch which was sent

to the k** server.

th l

WE . Waiting time of the customer belonging to the " batch which was sent

to the kt* server.

th Jyateh which was sent

RE . Response time of the customer belonging to the n
to the k** server.
T, : System response time of the n'® batch.
We shall assume that
(IIa): The sequences {up41}5° and {vF15e 1 < I < I, are iid with finite second

moments, and mutually independent.

Forn=0,1..., we set
u = IE(upt1) < 00, ag = Var(upyr) < 0
and

vb = JE(U,’i) < oo, 0F= Va,r(v.f”;) <oo, 1<kSKY

Under assumptions (ITa), each queue in the fork—join system operates like a
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GI/GI/1 queue. However the analysis of the queueing system is complicated by

the fact that the I queues do not operate independently, owing to the common

arrival stream.

2.2.2 Recursive representation for the delays

Assuming that the initial batch arrives into an empty system at time t = 0,
we proceed to write down the Lindley recursion for the sequence of waiting times

in the k** queue, i.e., for each 1 < k < K,
WE=o0
W,f+1 = [VV,’; —I—U,Ii T n=0,1...(2.1)
The response time RE,1 < k < I, is given by
RE =TWF 4 oF, n=0,1...(22)
and the system response time T}, of the n'® batch is then given by

T, = max RF. n=0,1...(2.3)
1<k<K :

We consider the system to bhe stable if the sequence of queueing delay vectors
{(W}, ..., WE)}e converges in distribution as n T oo to a proper random vector

(W1,..., W), It is well known [4] that the condition
P cu, 1<kE<K
is necessary and sufficient to insure stability.

2.2.3 The diffusion limit

We now proceed with the task of obtaining heavy traffic diffusion limits for
the delay processes in the fork—join queue. For reasons explained in Chapter
1, we consider a sequence of fork—join systems approaching mstability and show

that a re-scaled K—dimensional stochastic process generated by the vector delay
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sequence converges weakly to a I{-dimensional correlated diffusion process in the
non-negative orthant, with normal reflections at the boundaries. The attained
convergence results give convergence over the interval [0,00). However in the
proofs we limit ourselves to proving convergence over any finite interval [0, T],
since the two cases are equivalent as long as the limiting process obtained has
continuous sample paths [49, Thm. 3', pp. 120].

We now consider a sequence of fork—join systems indexed by r = 1,2..., each
of which satisfies assumption (ITa). We make the following additional assumptions
(ITb)—(IIc), where

(ITb): As r T oo,

(IIc¢): For some € > 0,

sup {IE{] ua(r) *Y, B{| of (r) )} < co.

’

Forr =1,2..., define the following partial sums

VOk(r) - 07
VR = o)+ vk (), 1<E<K, n=1,2..(24a)
and
Uo(r) =0,
Un(r) = wi{r) + ...+ un(r). no=1,2...(2.4b)

For r = 1,2..., define the stochastic processes £¥(r) = {£F(r),t > 0},0 <

k < K, with sample paths in D[0,o0) by

£ (ry = Jralr) }“(T)[”], >0 (2.50)

and
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1<E<K, t>0. (2.5b)

Let &8 = {¢F ¢ > 0},0 <k < K, be K +1 independent Wiener processes. Lemma
2.2.1 shows that that the stochastic processes defined in (2.5) converge weakly to

these Wiener processes.

Lemma 2.2.1. Asr T oo,

(€°(r), € (r), ..., €5 (r) = (00", 018", ..o ER) (2.6)

in D[0, 00)"+1,

Proof. Equation (2.6) follows directly by Prohorov's functional central limit the-

orem for triangular arrays (see Appendix A, Theorem A3) under assumptions

(1Ia)-(IIc). i
Forr=1,2..., set
SEry=0
SEry=VFr) = Un(r), 1<k <K n=1,2...(2.7)

and define the stochastic processes ¢*(r) = {¢F(r),t > 0},1 < I < K, with sample
paths in D[0, 00) by

SMW)

k’l“:
Ct() \/Fa

1<k<K, t>0. (2.8)

Also define the stochastic processes (¥ = {¢F,t > 0},1 <k < K, by
(F=orlf —ooll —axt, 1<E<K, t>0. (2.9)

The process (¢1,...,¢%) is a K-dimensional diffusion process with drift vector ¢

and covariance matrix R given by

c=(—¢1,...,—¢cK) (2.10)
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and

2, 2 2
o} + of ot ol
2 2, 2
ol o5 +ai ... ol ‘
R= . L . . (2.11)
2 2 2 2
ag o cee O + o}

Lemma 2.2.2 shows that the stochastic processes (2.8) generated by the ran-
dom walk (2.7) converge to (¢*,..., (") in the limit. The cross-correlation terms
in the matrix R reflect the correlation between the I queues due to the common

arrival process.

Lemma 2.2.2. Asr T oo,

(SN ) (GTNES (2.12)
in D[0, c0)¥.
Proof. Fix r > 1 and t > 0. For all 1 <k < I, we see from (2.7) that

Virg(r) = Uprg

T

Gi(r) =

7 i N
= 80) - 800 = pur) - A O)VF

_ V[lrat](r) — ¥ (r)[rt] B U[I;t](r) —u(m)rt]  tu(r) — oF ()]

From assumption (IIb) it is clear that as r T oo,
It — o -
[u(r) —v* ()T —et, 1<k <K
r

and we conclude to (2.12) by invoking Lemma 2.2.1 and the continuous mapping

theorem (Appendix A, Theorem A2).
N

The Lindley recursion (2.1) for the queueing delays can be reformulated in

the following way, which proves very useful in establishing limit theorems. For
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r=12...and 1 <k < K, observe that
WE(r) = max{S¥(r) - S¥(r):i=0,1...,n}
= S,Ij(r) —min{S¥(r):i=0,1...,n}, n=0,1... (2.13)
For r =1,2..., we now define the stochastic processes 1 (r) = {uF(r),t > 0},1 <
k < K, with sample paths in D[0, 00) by
W[I;t](r)
\/;: ?

pr) = 1<k<K, t>0. (2.14)

We also define the stochastic processes n* = {nf,+ > 0},1 <k < K, by
nF=g(C",, 1<kE<K, t>0. (2.15)

where ¢ denotes the reflection mapping (1.2.7).

In Lemma 2.2.3 we show that the vector process associated with (2.14), con-
verges weakly to a I{-dimensional diffusion process (2.15) with drift (2.10) and
covariance (2.11). This limiting diffusion stays in the non-negative orthant of the
I{—dimensional space and exhibits normal reflections at the boundaries.

Lemma 2.2.3. As r T oo,
()™ ) = (™) (2.16)
in D[0, 00).
Proof. From (2.13) and (2.14), we conclude for each r = 1,2,.. ., that
pir) = g(C*(r), 1<k <

Since ¢ is a continuous mapping [69], the result follows by the continuous mapping

theorem and Lemma 2.2.2. [

For r = 1,2..., define the stochastic processes n¥(r) = {nF(»),t > 0},1 <
k < I, with sample paths in D[0, 00) by

R’”’M (r)
ne(r) = u%,

1<k<K, t>0. (2.17)

[}
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In Lemma 2.2.4 we show that the vector process defined by (2.17) converges weakly

to the same limiting process as the vector process generated by the waiting times.

Lemma 2.2.4. As r T oo,

(), .. onT () = (0t . ™) (2.18)

in D[0, c0)™.
Proof. Fix T > 0. We first show that

k 2 P
su max | ne(r) — u{r 0 asor |
ogthlgkg;' 16(r) = pg(r) |=——0 asr oo

For each r =1,2..., we see from (2.2) that

RE() = W) =vk(r), 1<k<K n—0.1...
whence
sup max | n/(r) — uf(r) |= N max_max{vi(r): 0 <n <r} 250
OStSTISkSK ! ¢ \/F 1Skél\’ < I ° — _

as r T 0o, where this convergence ie validated by Theorem A5 in Appendix A. We

conclude (2.18) from Lemma 2.2.3 and the converging togcther theorem. |

{rq(r),t > 0} with

Hl

For r = 1,2..., define the stochastic processes x(r)

sample paths in D[0,00) by

for(1) = T[rt](r)
t(r) = N

t>0. (2.19)

Also define the stochastic process £ = {r¢,t > 0} with sample paths in D0, co)
by

ke = max nr, t>0. (2.20)
1<k<E

In Theorem 2.2.1 we show that the stochastic process (2.19) generated by the end-

to-end delays, converges weakly to the process (2.20), which is the maximum of
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I correlated Wiener processes with drift, in the non-negative orthant and normal

reflection at the boundaries.

Theorem 2.2.1. Asr T oo,
k(r) =k (2.21)
in D[0,00) .

Proof. From (2.2), (2.3) and (2.19) we conclude for each r = 1,2..., that

ke(r) = 12}%\}\ ng(r), t>0.

Equation (2.21) now follows from Lemma 2.2.4 wupon noting that
. . . K .
T — maxi<p<k Tk is a continuous function on IR", and then applying the con-

tinuous mapping theorem. |

2.2.4 Interchange of limits

Recall that in Chapter I we made a distinction between the asymptotic dis-
tributions obtained depending upon the order in which the limits for r» and ¢ were
taken for the single server queue waiting time process. Our objective is to show
that for the fork—join queue, the stationary distribution for the normalized vec-
tor of response times is the same, regardless of the order in which these limits are
taken. We begin by providing a sufficient condition for the vector diffusion process

(n',...,n%) to have a stationary distribution.

Proposition 2.2.1 The condition ¢ > 0,1 < k < K, is necessary and sufficient

to ensure that the K— dimensional process (n*,...,n™) converges in distribution
to a proper vector (nlo,...,nk) as t T cc.
Proof. For each r =1,2..., set
ﬁ/',’;(r) = max Sik(r), 1<k <Y (2.22)
0<i<n
and observe that
(W), ..., WE@)) =t (Wa(r),...,WE(r)). n=0,1...(2.23)
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For r =1,2..., we now define the stochastic processes [L’”(?) = {aF(r),t > 0},1<

k< K, by

" ﬁ/’; (r)
jif(r) = =

k -
= < k< > 0.
012?—%% Cs(r), 1<k<K, t>0

Also define the stochastic processes ¥ = {fi¥, ¢t > 0},1 <k < IU, by

Using Lemina 2.2.2 we conclude that as r T oo,
~ ~ K ~ ~ K
(B () () = (B, )
in D[0,00)¥, and in particular
. K D . LR
(At (r), - i (1)) == (figs- o i), £ 20,
However, (2.23) is equivalent to
(At () es it (1)) =t (e (7)o st (1), 7 =1.2..., 20
and (2.26) thus implies that as r T oo,
- D N e
(B0 1B () 2o (L ), 20

Consequently,

Moo ) =t (b, ii0), >0

upon invoking Lemma 2.2.3.

(2.26)

The monotonocity of the sample paths ¢t — ji¥, 1 < k < I, yields the conver-

gence

fif Tk =sup(f, 1<k<K
t>0

25
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as t T oo, hence by (2.29)

vy D ~ ~ I c
(is-omd) = (ke (2.31)

ast T oo.

It is well known [24] that i* < oo as. iff ¢ > 0,1 < k < K. so that

(n',...,n™) has a stationary distribution iff ¢ > 0,1 <k < K. i
Let us denote this stationary distribution of (n',...,7n™) by (nl,...,nL), so

that
(Moor- - nE) =st (jido, -, i), (2.32)

It is easy to deduce from (2.21) and (2.32) that under the condition ¢ > 0,1 <

k < K, we have

as t T oo, with

Foo =5t max sup (F. (2.33)
1<ESK >0

During the course of the preceding proof we have derived an expression for
(nl.,...,n2) which is the limiting process obtained from (5} (1), ..., (r)) by tak-
ing the limit in distribution as r T oo and then as ¢ T co. Denote by (71,..., 7%
the limiting process obtained from (73 (r),...,n5 (r)) by taking the limit in distri-
bution as t T co and then as r T co. We now show that these two limits are in fact

equal.

Theorem 2.2.2 Under the conditions ¢ > 0,1 < k < I and vF(r) < u(r),1 <
k< K,r=1,2...,the equality

(i, ...n2) = (5L, ... 9E) (2.34)

holds where

- e o D e
(Blo(r)s - BE () = (ks 05)

as r T oco.



Proof. Fix r = 1,2..., and recall the definition (2.24) of i*(»),1 <k < K. The

monotonocity of the sample paths t — jif(r),1 < k < K, yields the convergence

ag(r) 1k (r) i=sup (f(r), 1<E<K, (2.35)
>0

as t T oco. From standard results on the GI/GI/1 queue [39] we conclude that
ik (r) < 00,1 <k <K, since vf(r) <u(r),l <k < K.

Define a subspace D[0, 00) of D[0,00) as

D[0,00) = {z € D[0,00) : supz¢ < oo}

>0
and define a mapping T : D[0, c0) — IR by

Tz =supz, z € D[0,00).
t>0 ’

Under the assumptions ¢; > 0,1 < k < K and v*(r) < u(r),1 <k < K, it is easy
to see that the stochastic processes ¢ and ((r),r = 1,2..., belong a.s. to D[0, c0).

Moreover observe that

(fisos -+ s fine) = (TC,... . TCM)

and

(fita(r)s o f(r) = (T (), .., TCH ()

It can be shown [69] that T is a continuous mapping under Skohorkhod’s topology
on DJ0, o0).

Lemma 2.2.2 yields that as r T oo,
(CH(r)see (R () = (i CR) (2.36)
in 15[0, c0)! | so that by the continuous mapping theorem, we conclude that

(TCH(r),..., TC (r)) = (T, T¢H) (2.37)
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as r T 0o. But by definition

as r T oo, so that

~ K /DI
G Be(r)) = (g1

~ I

K 1 K
.- 7770:) st (Moo? s 7/1’013)

Combining (2.32) and (2.38), we now conclude (2.34).
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2.3 Heavy traffic limit for the number in the join buffer

In this section we develop heavy traffic diffusion limits for the number of
customers at each queue and in the join buffer of the fork—join queue. Just as
functional central limit theorems for random walk processes were crucial in obtain-
ing heavy traffic limits for the queue delay processes, we shall see that functional
central limit theorems for renewal processes are crucial in obtaining heavy traffic
limits for the queue length processes. As before we assume that the queue is empty
at t = 0 and that assumption (ITa) is in effect. For 1 < L < I and ¢ > 0, we
define

N; : The number of customers in the join buffer of the fork—join queue.

QF . The number of customers in the k'* queueing system.

At @ The total number of arrivals into the system in the interval [0,¢]. Note

that
max{z :u; +...+u; <t} ifuy <t
At =
0, if uy >t
where the sequence {u,}5° was defined in Section 2.2.1.

S¥ . The total number of potential service completions in the interval [0,1] in

the k** queue. Note that

max{i: vf +... +of <t} if oF <t
SF =
¥ =

where the sequence {vE}g°,1 <k < K, was defined in Section 2.2.1.
D¥ : The total number of departures in the interval [0,#] from the ™ queue.

It is easy to see that the number of customers in the k' queue is given by
Qi =Ai— Dy, t>0. (3.1)

Note that A = {A;,t > 0} is a renewal process whereas D* = {Df,t > 0},1 <

k < K, are not renewal process since there are no departures from an empty
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queue. Consequently it is difficult to prove functional central limit theorems for
the IN-valued process Q% = {Q*(#),t > 0},1 < k < L. To remedy this situation,
a modified system is introduced in which the servers are not shut off when they
become idle. This idea first originated with Borovkov [10], and was extensively
used by Iglehart and Whitt [29],[30] from where the following description of the
modified system is borrowed: We associate with each server a sequence of potential
service times. If a server faces a continued demand for service, then its actual
service times are just these potential service times; but if there is no demand
during any potential service time, then the potential service time is ignored and
there is no actual service and no departure. After a server has begun working in
the absence of demand, then the next demand will occur in the middle of some
potential service time. Let the remaining portion of that potential scrvice time be
that next customer’s actual service time. Heavy traffic limit theorems are much
easier to prove for the modified system, and the desired result for the original
system 1s obtained by showing that the differences between the two systems is
negligible in heavy traffic. In keeping with this program, for 1 < k < I and ¢ > 0,
we set

qF : The number of customers at time t in the k' modified queueing system.

With the definition
XF=A,-8F 1<k<K t>0 (3.2)
we easily see [29] that the relation
" =g(X"), 1<k<K, t>0 (3.3)

holds where g is the reflection mapping (2.15)., and ¢* = {¢F.t > 0} and X* =
{(XF,t>0},1<k<K.
We now proceed to obtain the functional central limit theorems. Considering

a sequence of modified queueing systems indexed by r =1,2..., we set

1 PCVRNETIG ‘
/\(T) - IEul(r) - ’LL(T), T()(?‘) - (/\ ( ) 0( )) (34)
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and for 1 <k < I,

1 1 ok 9. .
0 = Fory = gy 0= () )

(3.5)

so that A(r) and pF(r),1 < k < K, are the arrival and service rates respectively
in the rt* system. We assume that
(I1d): As r 7T oo,
lim 7o(r) — 70,
limm(r) -, 1<EkE<K

A(r) = p*(Vr = dp, 1<k <K

For r = 1,2..., define the stochastic processes 4, = {A,(t),t > 0} and
Sk = {Sk(t),t > 0},1 < k < K, with sample paths in D[0, c0) by

A[rt] (r) — A(r)[rt]

At(r) = \/7— )

t>0 (3.6)

and

Sk 4 () = s ()]

k?“:
S¢(r) NG ,

1<k<K, +>0. (3.7)

Recall that ¢¥ = {€§,t > 0},0 <k < I, are I\ + 1 independent Wiener processes.
Lemma 2.3.1 shows that the stochastic processes (3.6)-(3.7) converge to these

Wiener processes.

Lemma 2.3.1. Asr T oo,
(A(r), SY(r), ..., SE(r)) = (10€%, m &, ... 7€) (3.8)

in D[0, c0)K+1,

Proof. Equations (3.8) is an immediate consequence of the functional central limit

theorem for renewal processes (Appendix A, Theorem A4) under assumptions

(ITa), (IIc) and (I1d). |
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For r = 1,2..., define the stochastic processes X*(r) = {XF(r),t > 0},1 <

k< K, with sample paths in D[0, c0) by

—k .
th(r) = 200
4 )

Moreover define the processes ¢F = {¢¥,+ > 0},1 <k < K, by

1<k<K, t>0. (3.9)

oF = —meF v dit, 1<E<K, t>0. (3.10)

The process (¢!,...,¢%) is a K—dimensional diffusion process with drift d and

covariance matrix ¢) given by

d=(dy,...,dx) (3.11)
and
T2+ 78 o , T(i
Q= 7? Tg'ng AR (3.12)
o T

Lemma 2.3.2 shows that the vector stochastic processes induced by (3.9)
weakly converge to (¢',...,¢"). The cross-correlation terms in the above matrix

reflect the correlation between the I queues due to the common arrival process.

Lemma 2.3.2. Asr T oo,
(X(r),..., XE0) = (6%, ... ™) (3.13)
in D[0, 00)¥.
Proof. Fixr =1,2...and t > 0. Forall 1 < k < I, we see from (3.2) that
VT

_ Apg(r) — S[’it](T)
NG

Aprg(r) — A(r)[rt] S[Ii*t](r) — pF(r)[rt] ) A) — 1F ()]

Xf(r) =

7 7 v
= () = $Ew) - Ty — eV
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From assumption (IId) it is clear that as r T oo,

i) — it Ve - dit, 120

and we conclude to (3.13) from Lemma 2.3.1 and the continuous mapping theorem.
i
For r = 1,2..., we define the stochastic processes ¢*(r) = {¢F(»).t > 0},1 <

k < K, with sample paths in D[0, c0) by

k
gk (r) = q[:’};ﬂ, 1<k<K, t>0. (3.14)
Lemma 2.3.3. As r T oo,
(g'(r)s- g™ () = (9(8"), -, 9(6™)) (3.15)

in D[0, 00)X.

Proof. From (3.3) we see that for all 1 <k < K,
k _ rk
¢ (r) =g(X"(r)), 20

Now using Lemma 2.3.2 and the continuous mapping theorem we obtain (3.15).

Forr = 1,2..., we define the stochastic processes Q*(r) = {QF(r),t > 0},1 <
k < K, with sample paths in D[0, c0) by

Q{crt] (’)

My = 1<E<K, t>0. (3.16)

In Lemma 2.3.4 we show that the vector process associated with (3.16) and gener-
ated by the queue length processes in the original system, converges to the same
limit as the vector process (3.14) generated by the queue length process of the

modified system.
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Lemma 2.3.4. Asr ] oo,

(Q'(r),....Q"(r) = (g(8"),...,9(¢™)) (3.17)
in D[0, 00)E.

Proof. Fix T > 0. The result (3.17) follows from the fact that as r» T oo,

k k P ;
: _ < b < 3.
OzltlnggnkaéXK | Q7 (r) —q¢i(r)|— 0, 1<k<K (3.18)

and a simple application of the converging together theorem. Proofs of (3.18) were
given by Borovkov [10] and by Iglehart and Whitt [29]. N

For r = 1,2..., we define the stochastic process N(r) = {N¢(r),t > 0} with

sample paths in D[0, 00) by

t>0. (3.19)

We conclude this section by obtaining a functional central limit theorem for the

number of customers in the join buffer.

Theorem 2.3.1. As r T oo,
K ,
N(r) = > [max{g(¢'),....9(6™)} = g(6")] (3.20)
k=1
in D0, 00).
Proof. For each r = 1,2..., the identity
K '
No(t) = > [max{Q}(r), ..., QF (N} = QF ()], =0 (3.21)

k=1

holds true, so that (3.20) follows from Lemma 2.3.4 and the continuous mapping

theorem. |
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Fig. 2.2. An example of an acyclic fork—join network
2.4 Heavy traffic limit for acyclic fork—join networks

2.4.1 The model

Baccelli, Massey and Towsley [5] extended the notion of a single stage fork-
join queue to acyclic fork—join networks. The single stage fork—join queue analyzed
in Section 2.2 is a special case of these networks. To see the motivation for intro-
ducing these more general networks, the reader may consult the survey paper [6].
We now introduce the notation and definitions associated with this network, most
of which is borrowed from [6].

The acyclic fork—join network under consideration is represented by an acyclic
graph G = (V, E) where V is a set of B FIFO queues labeled ¢ = 1,...,B and
E is a set of links such that (i,j) in E implies j > i. Also add for the sake of
convenience fictitious queues 0 and B + 1, which act respectively as source and

sink for the network.
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For 1 <: < B, we define the set of immediate predecessors p(i) of queue 7 as

the set of queues that have direct link to queue 1, i.e.,

p(ty={j€(,...,B)|(j,%) € E} (4.1)

and the set of immediate successors s(¢) of queue 7, as the set of queues to which

¢ has a direct link, i.e.,

s(y=1{j€,....,B)|(i,j) € E}. (4.2)

We also denote as s(0), the set of queues with no incoming links and as p(B + 1),
the set of queues with no outgoing links. It will be assumed that the numbering

of the queues is such that

s(0)=1{1,...,B'}, B'<B
and

p(B+1)={B",...,B}, B" <B.

We now describe the operation of the network. We assume that customers are
being created at the source which acts as the outside world for the network. These
exogenous customers enter the network through the queues in 5(0) and traverse
it upon following certain synchronization rules (SR;) — (SR3) described below.
Finally customers leave the network from the queues in p(B+1) by being absorbed
into the network sink and disappearing. We now specify the synchronization rules
that govern the network.

(SRy): The exogenous customers created at the source are routed instanta-
neously to the queues in s(0) under the constraint of a Fork primitive,

h arrival date to each one of the queues in s(0) coincides with

i.e., the n!
the nt® date of customer creation. An alternate way of viewing this con-
straint is to assume that upon its creation, a customer creates B’ replicas
of itself which are then dispatched at the same time and instantaneously

to the queues in s(0), one replica per queue.
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(SR;): A service completion in some queue ¢ in s(0) will not systematically
trigger an arrival to a queuein s(¢). Infact, more generally, the arrivals to
queue j, with B' < j < B, are generated as follows: Assume the sequence
of service completions to be known for all queues ¢, with 1 < < j and
B' < j < B. The n'* arrival date to queue j coincides with the latest
date among all the n!* service completions at the queues in p(j). Due
to the acyclic structure of (V, E'), this mechanism will successively define

the arrival patterns to queues B' +1,B'+2,..., B.

9

(SR3): Customers leave the network through the queues in p(B+1) in the form of

a single output stream by imposing the following synchronization of the
join type: The n'* network departure is defined as the latest date among

the dates of n** service completions in the queues B",B" 4+ 1,...,B.

2.4.2 Recursive representation of the delays

In this section a recursive representation for the delays in the network is

provided. The material of this section is borrowed from [6].

Given an acyclic graph G = (V, E), the performance measures associated with
the corresponding network are fully specified by B + 1 sequences of IIl4-valued

RVs with the interpretation that for all n =0,1..., and 1 <7 < B,

h

Tn ¢ Arrival epoch of the n'* customer into the network.

th customer to be served in queue j.

v{; : Service time requirement of the n
We assume the system to be initially empty and adopt the convention that
the 0t exogenous customer is created at time ¢ = 0, so that 7 = 0. In terms of

these RVs we define the following quantities forall n =0,1... and all 1 <7 < B,
Uy : Inter-arrival time between the (n + 1) and n'* exogenous customers

(Z Tp4+1l — Tn).

h

. Delay between the arrival of the n' exogenous customer in the network

th

and the beginning of the n** service in queue j.

T/Vg : Waiting time of the nth exogenous customer in the buffer of queue ;.
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T, : End-to-end delay or network response time of the n'* exogenous cus-

tomer.

The following recursion between these variables was established by Baccelli,

Massey and Towsley [5].

Lemma 2.4.1. Consider the acyclic fork—join network defined above. If the system

18 initially empty, then for 1 < j < B, the recursions

Dé = max {D +vo}
iep(J)

sz+1 = max{%l?}-{){D;ﬂ + ol b, DI ol — g =0,1...(4.3)
eply

and

Il

Wl =0

VV]+1 = max{0, W7 + rélax){D' + i} - max {Dn+1 + b} ol —upal,
i€p(y

n=0,1...(4.4)
hold where the mazimum over an empty set 1s zero by convention. Moreover the
network response time of the nt® customer is given by

T, = D —0,1...(4.5
ze%il){ + i} n .. (4.5)

Proof. Since the system is initially empty, the boundary conditions (4.3)—(4.4)
are immediate from the synchronization rules (SRy)—(SR;). Customers arriving
to queue j in s(0) do so according to the pattern of exogenous arrivals, so that DJ,

th

corresponds to the n'"® waiting time in a FIFO queue generated by the sequences

of interarrivals {un11}§ and service requirements {v{}§°,1 < j < B'. Writing

the corresponding Lindley equation, we get
D! =max{0,D} +v] —upp1}, 1<5<B n=0,1...(4.6)

and this reduces to (4.3), since p(j) = @ for j in s(0).
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For B' < j < B, we fix n = 0,1.... The (n + 1)"*! service completion at
queue ¢ in p(j) takes place at time 7,44 + Di 5 + viy, so that by applying
the synchronization rule (SR;), we see that the (n +1)"" arrival to queue j takes
place at time 7,41 —+—maxi€p(j){Df1+1 +vf;+1}. Since the server at queue j becomes
available for service at time 7, + D}, + vJ, we readily obtain (4.3).

In order to derive (4.4) we just have to note the relations

Wg:Df;—max{Di—[—vi}, 1<y <B. n=0,1...
i€p(y)

We now state a result regarding the stability of these networks. First we make the
assumption (Ile) where

(ITe): The sequences {un41}s° and {vi}$°,; = 1,...,B, are iid with finite

second moments and mutually independent.
Forn =0,1..., we set
u = IE(tpy1) < 00, o= Var(upyr) < oo
and
v = [E(v)) < oo, ol=Var(vi)<oo, 1<j<B

J

Again, as for the simple fork—join queue, we consider the system to be stable
if the vector of delays {(D., ..., DZ)}$° converges jointly in distribution as n T oo
to a proper random vector (D', ..., DB). The stability conditions for this system

were given in [5], and are reproduced below.

Lemma 2.4.2. Assume that condition (I1e) holds. The system is stable uff

v <u, 1<j<B. (4.7)

2.4.3 The diffusion limit
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In the last section we saw that the acyclic fork—join network will be stable
provided v/ < u,1 < j < B. The system is said to be in heavy traffic if v/ ~ u
for at least one of the queues. In this section our objective is to develop heavy
traffic diffusion limits for the delay processes in these networks. The methodology
that we employ is the same as the one used in Section 2.3.3. In short we shall
use the recursions (4.3)-(4.4) to connect the delay processes to partial sums of iid
RVs and then use well-known functional central limit theorems for these partial
sums in order to deduce the corresponding limit theorems for the delay processes
by means of the continuous mapping theorem. However, since the recursions in
this case are much more involved than those in Section 2.3.3, the limiting process
is correspondingly more complex.

We now consider a sequence of these networks indexed by » = 1,2..., each of

which satisfies condition (IIe). Moreover assume that

(TTIf): Asr T oo,

(IIg): For some € > 0,

sup {IE{] u(r) 7Y}, IB{] v (r) [7¥}) < co.

)

For1<j<Bandr=1,2..., define the partial sums

Vi(r) =0,
VIr) = vl(r) + ...+l _ (), n=12...(48a)
and
Uog(r) =0,
Un(r) = ws(r) + - .. + un(r). n=1.2.. (4.8)

For r = 1,2..., define the stochastic processes Ei(r) = {f{(?‘),t >0},0<j<B,
with sample paths in D[0,00) by

() = U[Tt](r)\;;(r)[rt] ,

t>0 (4.9a)

and
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. VI (1) — vl (r)[rt
El(r) = Wﬁ)w:«”],1Sng,tz& (4.9b)

Let &7 = {ﬁf,t > 0},0 <5 < B, be B+ 1 independent Wiener processes. Lemma
2.4.3 shows that the stochastic processes defined in (4.9) converge weakly to these

Wiener processes.
Lemma 2.4.3 As r T oo,

(), (r)y. .., €5(r)) = (008, €', ... opED) (4.10)

in D[0, 00)BFL,
Proof. The proof is exactly the same as for Lemma 2.2.1., with assumptions
(ITa)—(1Ic) now replaced by assumptions (ITe)—(IIg). i
Forr =1,2..., we set
Si(r)=0

Si(r) = Vi(r) — Un(r), n=12...(411)

and define the stochastic processes (/(r) = {Ctj(r),t > 0},1 < j < B, with sample
paths in D[0,c0) by

S7 (r
I <j<B, t>0. (4.12)

Cf (T) = \/F ” =

We also define the stochastic processes ¢/ = {C;?,t >0},1 <7< B, by

¢l =0i¢l —o0 —cjt, 1<j<B, 120, (4-13)

The next result shows that the stochastic process (C1(r),...,(P(r)) converges

weakly to (¢1,...,(P). As noted in the discussion preceding Lemma 2.2.2, the
stochastic process (¢1,...(?) is a K-dimensional diffusion process with drift given

by (2.16) and covariance given by (2.17).
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Lemma 2.4.4 Asr T oo,

(Cr)y e B = (¢ ) (4.14)
in D[0, 00)P.
Proof. The proof is exactly the same as for Lemma 2.2.2. |

For r = 1,2..., we define the stochastic processes 7’ (r) = {775(7"),t > 0} and

pi(r) = {13(r),t > 0},1 <j < B, with sample paths in D[0,00), by setting

D[jrt] (T)

ni(r) = o 1=isBo 120 (4.15)
and

](r———w 1<i<B, t>0 4.16

/“Lt - \/’F 9 _]__ ) - U. ( )

The processes 7/ = {pl,t>0},1<j<B,and pf = {nl,t>0},1<j <B,are

now defined by

n’ = ¢(¢) = max ')+ max n’, 1<j<B (4.17)
iep(4) i€pty)
and
gl =g(¢? — maxn'), 1<j<B. (4.18)
i€p(y)

In contrast with the situation for single stage fork—join queues, we note that the
limiting processes (4.17)—(4.18) for acyclic fork—join networks are much more com-

plicated.

Theorem 2.4.1. As r T oo,
(), B = (') (4.19)

in D[0,0)B.

Before providing a proof for Theorem 2.4.1, we present the following two
corollaries which identify the diffusion limit for the waiting times and the end-to-

end delay of the system respectively.



Corollary 2.4.1. Asr T oo,

(p(r), - 1B () = (... D) (4.20)
in D[0, 00)B.
Proof. Note that for all r =1,2...,

Wi(r) = Di(r) - ma .){D:;(r) +oi(r)}, 1<j<B n=01...
Ep(y

so that forallr =1,2...,

. . , vf o (r
Hr) = nl(r) — max {ni(r) + - , 1<;5<B, t>0 4.21
pe(r) = n3(r) Z.Ep(j){m( ) NG } >J = z ( )

We obtain (4.20) from (4.19) and (4.21) by applying the continous mapping the-
orem and the converging together theorem. |
For r = 1,2..., we introduce the stochastic processes k(r) = {k¢(r),t > 0}

with sample paths in D[0, o0) by

Corollary 2.4.2. Asr | oo,

k(r) = max n' (4.23
() emax )

in D[0, 00).
Proof. Using the fact that for all r =1,2...

'Ui
: [r1]
= mad )+ , t2>0 4.24
K:t(r) iep(gil){ntO ) \/F } ( )

we obtain (4.23) from (4.19) and (4.24) by applying the continuous mapping the-

orem and the converging together theorem. |
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We now proceed with the proof for Theorem 2.4.1. For 1 <i < B, we define

the level {(¢) of queue 7 by

I(2) = max {(j) + 1 (4.15)
jep(t)

where by definition /(z) = 1 if p(z) = §. The level N of the graph is defined by
N = max;ey [(2).
We denote the set of queues on level [ as ¢(1),1 <1 < N and assume that the

cardinality of ¢({) is B;. The queues are numbered in such a way that

¢(1) ={1,..., B1}

q(2): {Bl—{—l,...,Bl +Bg},
(4.26)

¢(N)={Bi+...+ By_1+1,...,B}

Note that the sets ¢(1) and ¢(IN) have already been defined earlier as s(0) and
p(B + 1) respectively, with B' = By and B" = By + ...+ By_1+ 1

Proof. Our proof proceeds by induction on the levels of the acyclic graph which
underlies the queueing network. First consider the queues belonging to the set
q(1), i.e., queues j such that I(j) = 1. Recall that for these queues p(j) = 0, so
that for r = 1,2... we have that

Df,+1(7“) = max{0, D{z(r) + 'vf;(r) — Uny1(7)}

J . j n=20,1...
= Spa(r) — oLn Si(r)
so that
ni(r) = g(¢i(r)), t>0, j=1,...,B, (4.27)

upon taking note of (4.13) and (4.15). From (4.27) and (4.14) it follows that

RO L (SRS (NN (3) UL LN S NN e (4.28)
as r T 0o, so that (4.21) is verified for the queues belonging to the set ¢(1).
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As the induction hypothesis, assume that

((r), ..., p BBy ), CB ) = (L BTt B e B
(4.29)
as r T oo, which implies that (4.21) holds for the queues belonging to the first [
levels. Using (4.29) we shall prove that (4.21) holds for queues belonging to the
first I + 1 levels, thus completing the induction step.
Consider queue j such that I(j) = [ + 1. Expanding the recursion in Lemma

241 forr=1,2..,n=0,1...and j = B;+ 1,..., Biy1, we obtain
Dyi(r) = ima}];){Diz+1(r) +vp41(r))

€p(

+ max{0, D},(r) — .gwkx){Dfm(r) + 0541 (M)} + 0l (r) = wnta(r)},
vep(y

= max {D:z+1(7") + U‘fH-l(T)} + 5£+1(7’) - ilélpfk‘]‘.){DiH(T) + U;+1(7°,)}

i€p(h)
=, dmin {S}(r) = max {Di(r) + vi(r 4.30
o min, {510r) = max {Di(r) + i)} (4.30)

Note that by (4.30), we have for j = By +1,...,Bi41 and t > 0,

nl(r)

vl , vt
—_ ] [rt] 10N R i/, [r] 4.31
= irgp%{m(r) + NG }+g (C (r) ilélp'c}?){n (r) + \/1—,}>1 (4.31)

From (4.29), (4.31), the continuous mapping theorem and the converging

together theorem, we conclude that as » T oo,

(A (r), ..., p Bt By (), By = (L BT B P
(4.32)

as 7 T 0o, which completes the induction step.
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CHAPTER III

3.1 Introduction

In the last chapter we obtained heavy traffic diffusion limits for single stage
fork—join queues. Our ultimate goal is to obtain heavy traffic approximations for
the end-to—end delay of this system. Hence according to the methodology sketched
in Chapter 1, our next step should be to obtain the stationary distribution of
the limiting diffusion for the end-to—end delay. However, as we now illustrate
evaluating this distribution is not as simple as was the case for the single server
queue in Chapter 1. Recall from Section 2.2.3 that the stochastic process x(r)
generated by the end—to—end delay sequence, converges as r T co over the interval
[0, 00), to a stochastic process k given‘ by

k= max (g(¢),... ,Q(CK))

1<k<K

Here, g is the reflection mapping, and the processes (¥ = {¢F,t > 0},1 <k < K,
are given by

E = optf —o0f) —ext, 1<E<K, t>0.

where the processes €°,..., €% are K 4 1 independent standard Wiener processes
over the interval [0, co).
For all t > 0 and 1 < k < K, it is known [24] that the marginal distribution

of each RV nF = g(¢*); is given by

, — il —z + ¢yt
Pipf <z)=2 (—m—fﬂ”t—) —e TN (—’”—+L> , e

2 2 2
O'z—l—O'Ot op +ogt

However we do not know the joint distribution of the vector (n},...,n!) due to

the correlation that exists between the different components. Hence, since the
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distribution of x; depends upon this joint distribution, we arc unable to evaluate
it directly.

The traditional method of overcoming this difficulty is by deriving a partial
differential equation (with appropriate boundary conditions) that the joint dis-
tribution satisfies. We explore this option in the next chapter. In the present
chapter we obtain diffusions that bound the limiting diffusion for the end—to—end
delay from above and from below in the sense of stochastic ordering. The signif-
icant fact is that the stationary distributions for the bounding diffusions can be
easily obtained and they serve to bound the stationary distribution of the original
diffusion. The basic methodology for carrying out this plan was first presented by
Baccelli and Makowski and Shwartz [4] .

This Chaptér is organized as follows: In Section 3.2 we give the definitions
and some basic properties of the stochastic orderings that we shall use. In Section
3.3 a diffusion that bounds the diffusion for the end-to—end declay from below 1s
obtained by using convex increasing stochastic ordering. In Sections 3.4 an upper
bound is obtained by using the idea of associated RVs. Lastly in Section 3.5 we
explicitly compute the stationary distributions of the bounding diffusions for both

the transient as well the steady-state cases.
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3.2 Some preliminaries

We first give a definition of convex-increasing and strong stochastic orderings

for continuous time stochastic processes.

Definition 3.2.1.Let X and Y be two real-valued RVs. The RV X is said to be
smaller than the RV'Y in the sense of strong stochastic ordering of

Ef(X) < Ef(Y)

for all non—decreasing functions f: IR — IR. This is denoted as X <, Y.
The RV X s smaller than the RV'Y in the sense of convez increasing stochas-
tic ordering if

Ef(X) < Ef(Y)

for all conver non-decreasing functions f : IR — IR. This is denoted as X <;., Y.
Let the symbol < denote one of the stochastic orderings <g or <icp. Let
X ={X,t>0} and Y = {V;,t > 0} be two real-valued stochastic processes. The

process X 1s smaller than Y with respect to <, denoted as X <Y, if

Xy <Y, t>0.

We now introduce the concept of associated stochastic processes.

Definition 3.2.2. The real-valued RVs {X',..., X%}, are associated if and only
if, the inequality
EF(X)HX)] 2 BB

holds for all pairs of monotone non-decreasing mappings f,h: IRY — IR for which

these expectations exist.
The real-valued stochastic processes X¥ = {XF,t > 0},1 < k < K, are
associated if and only if, for all t >0, the RVs {X},..., X[/} are associated.
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Definition 3.2.3 The stochastic processes X = {Xf,t >0},1 <k <K, are said
to form independent versions of the stochastic processes X = {XF,t > 0},1 <k <
I, of

(t): For allt >0, the RVs {Y:, . ,Yf(} are mutually independent, and

(i1) : For everyl <k < K andt >0, the RVs XF and :\7? have the same probability
distribution,.

The following result [7] is an immediate consequence of this definition.

Lemma 3.2.1. If the stochastic processes X = {X[,t > 0},1 < I < K, are

associated, then the inequality

R —k
max )&t" <¢ max X, t>0
1<k<K 1<k<K

holds true.

The following lemma [7] is very useful.

Lemma 3.2.2.
(i) : Independent RVs are always associated.
(i) : The union of independent collections of associated RVs forms a set of asso-
ciated RVs.
(153) : Any subset of a family of assoctated RVs forms a set of associated RVs.
(iv) : A monotone non-decreasing function of associated RVs generates o set of

associated RVs.
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3.3 A lower bound

It is a well-known fact that for certain queueing systems operating in their
stable regime, determinism in either the arrival or the service processes minimizes
queueing delays. Our results in this section imply that this property continues to
hold for the limiting diffusion of the end-to-end delay of the fork—join queue in
heavy traffic. We prove this result by working directly with the limiting diffusion.

Recall that for each 1 <k < I{, t > 0, we have

(F = ontl —o0t) —ert, nf = g(CF) (3.1
and
k
© = m ) 3.1b

We now construct a new limiting diffusion for the fork—join system which is the
same as the original one, except for the Wiener process £°, which no longer appears
in the equations. The intuitive reason for this may be understood as follows: The
stochastic process £%(r) obtained after appropriately scaling a deterministic input
sequence converge to 0 as r T oo, instead of to a Wiener process as was formerly
the case. We shall use the same notation to denote quantities in the new system

except that we shall underline them. For 1 <k < I, t > 0, we define

¢ =ond — ety 1y =9(CM (3.2a)
and
k
— max n*. 3.2b
Ky = 02X T, (3.20)

We now present our first result.

Lemma 3.3.1. Let S be the o— field of events generated on the sample space §2

by the stochastic process (€',...E8). The inequalities
nf <Epf|B), 1<k<IK, t20 (3.3)

hold, whence

K <[k | ], t>0 (3.4)

50



Proof. For each 1 <k < K and t > 0, we have

77tk = g(Ck)t
= sup (Ct’” — C;”)

0<s<t
Since

o= (G- 2t och 1Sk K p<ast

we readily conclude that

E(nf | B)> E(f | B)- B B), 1<k<K. 0<s<t
so that

E(n} | 5) > Oségx;t[mcf | B) — E((E | B))

= sup (ak.{f - UoEf? —cpt — akff 4 aolEfg + ers).
0<s<t

Since IEEY = 0 for all ¢ > 0, we get

E(n; | B) 2 sup (oréf — cxt — o1by + cis)
0<s<1t

= sup (¢~ (1)

0<s<t

and this proves (3.3). In order to prove (3.4) we note that

>
JE(Kt | 5) = e E(n;18), t>0
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Theorem 3.3.1. The following inequality holds

fy Sico Kty 12 0. (3.5)

Proof. Let f : IR — IR be a convex non-decreasing function. By Lemma 3.3.1,

we have

FUE(ke | 5)) = f(ry), t20.

Therefore, upon applying Jensen’s inequality, we see that
Ef(xe) 2 Ef(r,), 20
and (3.5) now follows. N

According to Proposition 2.2.1, the condition ¢; > 0,1 < k < I, is sufficient
to ensure that the RVs &,, and x4 converge as t T oo to proper RVs f,, and Kso

respectively. Our next result shows that the the RVs £ and rs continue to

satisfy (3.5).

Theorem 3.3.2 Under the condition ¢, > 0,1 < k < I¥, the following inequality
holds
Sicz Koo- (3.6)

Koo

Proof. Recall from the discussion in Section 2.2.4 that
Kt —st ;{f and By =—st _fit, t> 0 (37)

where

F¢ = max ﬁl‘ with ﬁfz sup gi‘, 1<k<K, t=0
1<k<K 0<s<t
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and

~ ~ k . -k I8 -
K, = max with = su 1<k<IK, t>0.
- 1.<_kSKQt L 0<82t£s’ =r=0 -

From (3.5) and (3.7) we conclude that for all convex non-decreasing functions f,

we have

Ef(&,) < Ef(k), t=0. (3.8)

Since the RVs #F and ﬁf for 1 < k < I{, are non-decreasing with ¢, it follows that
the RVs &: and £, are also non-decreasing with ¢. An application of the monotone

convergence theorem now ensures that

Ef(ks) < Ef(Roo), (3.9)

from which (3.6) is now immediate. |
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3.4 Upper bounds by association

By using the concept of associated stochastic processes, we exhibit a family of
diffusions that bound the diffusion for the end-to—end delay in the sense of strong
stochastic ordering. For the case of the fork—join queue operating in its stable
regime, upper bounds based on association have been found to be tighter than the

upper bounds obtained by convex ordering arguments [6].
Lemma 3.4.1. For each t > 0, the RVs {nF.... ,nE}, are associated.

Proof. In order to prove this property we use Lemia 3.2.2 of Section 3.2. First

note that the RVs

{&l_ i)"'a {\'_{ﬁ&'v_(ggwgg)}’ 0 <<t

are independent and hence are associated by property (7). By property (iv) the

RVs
{ontf — €] —oall) — €] —cn(t—s),1 <k <K}, 0<s<t

8 8

are associated, i.e., the RVs
{¢h =G G =G, 0<s <t (4.1)

are associated.

Fix t > 0. Define the set ID, by

and note that ID; is a countable dense subset of [0,#]. Since the process ¢ is

separable, it follows [Bi2, p. 468] that

sup (¢ — ¢¥) = max(¢f — (), 1<k<K (4.2)
0_<_8St SGDt

For each n = 1,2..., define the sets of RVs A}, 1 <k < n, by

~1 1 K K 8
AZ:{QEL‘C(k—lm---a ﬁ_”‘ (_)5_1_)3}, 1<k<n.

n
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By (4.1) it follows that the RVs in each AR, 1 <k < n, are associated. But since
the processes ¢ has independent increments, it follows from property (22) that the
RVsin A" = AP U...U A" are associated. By taking suins of RVs in A" it follows
that the RVs

1 K
{th"ﬂt&)
G Caymen G = (L
1 1 K " ¢
N n_lt,...,t\——g’fl‘_lt}, n=12..., t>0
n n

are associated. Another application of property (iv) assures us that the RVs

1 1 K N
{orgnl?gxn(‘c’:_ ,;_t),...,orgnkagn( ;- %)}, n=12..., t>0

are associated. Letting n T co it follow that the RVs

1 1 K K
— Y max(cX — >
{grel%i(ét ), ,gelfgi;t(ct ¢}, t>0

are associated. Finally from (4.2) we conclude that the RVs

{max (¢} = 1), max (K — ¢F)), ¢20

0<s<t 0<s<t

are associated, just another way of saying that the RVs {n},...,n{* } are associated.

We now define the stochastic processes 7* = {7%,t > 0},1 < k < K, which
form independent versions of the stochastic processes (n!,...n") in the sense
of Definition 3.2.3. For this purpose define I additional independent Wiener

processes £01, ... €0K For 1 <k < K, and t > 0, define

—k 3
Cr = opbF — g™ — eyt (4.3)

Lk -k . —k
= o= max 7. 4.3
My =9(C )¢ and & a7 (4.3b)

From Lemma 3.4.1 and Lemma 3.2.1, it directly follows that

K¢ = Imax 777{C <gt INax ﬁf =Kt
1<k<K 1<k<K
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This is stated in the next result.

Theorem 3.4.1. The following relation holds true for t > 0,

Kt Sst Et. (44)

It was shown in the last chapter that the condition ¢; > 0,1 < & < LU, 1s
necessary and sufficient to ensure that the RVs x; and &; converge weakly as t T oo
to proper RVs koo and R, respectively.” The following result is then an immediate

consequence of Theorem 3.4.1 and Proposition 1.2.3 in [60].

Theorem 3.4.2. Under the condition cx > 0,1 < k < I, the following inequality
holds

Koo Sst Roo- (45)
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3.5 Some computations

In this section we carry out explicit calculations of the distributions of the
bounding diffusions in the transient as well the stationary case. We shall denote
as a symmetric fork—join queue, the one in which all the K service times have

identical probability distribution functions, so that
cg=cp=...=cgx=c,and oy =0y =... =0 =0

We also use the notation Hg, X' = 1,2... for the partial sums of the Harmonic

series, 1.e.,
1 .
HK:Z—. K=1,2...

Lower bounds are computed in Section 3.5.1, while upper bounds are com-

puted in Section 3.5.2.

3.5.1 Lower Bounds

The results of Theorem 3.3.1 and Theorem 3.3.2 imply that
FEr, <IEx¢, t>0
and
Fr, < Frs.

Our objective in this section is to give explicit formulae for [Ex, and Ex .

We first proceed with the calculation of IEx,. Recall that

Ky = max n~, t>0
1<kE<RK —t

where _717': = g(akfk —cp)e,t > 0,1 < k < K. Note that since the stochastic

processes (¥, 1 < k < I, are independent, it follows that the stochastic processes

n*,1 < k < K are also independent, and therefore

A

K
P(r, <2)= [ P(nf <2), 20 (5.1)
k=1
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for all z > 0. Note that Qk,l <k < K, are diffusion processes with drift —c; and
variance oy, which are reflected from the origin. The transient distribution for

these processes is well known [24]. For all z > 0,

: z + cpt — 2o —z—l—ckt>
Ph*<:)=9 —e %k B ——Z2), t>0. 5.2
;<) <0k\/5> © ( o/t - (5.2)

From (5.1) and (5.2) it follows that for all z > 0,

K 2¢y, 2
2+ ept — k% (——z—l—cﬂ)}
Pk, <z)= P —e k| —— 1, t>0. 5.3
(8 = 2) ,1;11[ <0kﬂ> orVi (53)
Since
0o K
B = [ 1= ] Ploh) < =i 20 (5.4)
0 k=1

it follows that

K 2¢cyp z
o° z—l—ckt) -k (——z-{—ckt))
IFEg, = 1-— d —e % O —-—r dz, t>0.(5.5)
- /0 { H < < oVt oxVt (

k=1

In the symmetric case, equations (5.3) and (5.5) reduce for all z > 0 to

. K
Pk, < 2) = [@ (T\}?) _ %y (‘;\J;;tﬂ , t>0 (5.6

and

K
o Z-}—-Ct _2cz —Z—I_Cf
P 1—- @ — 2 ZZ) tZO 57
E—/{ (e (5F) (ﬁ>” (&1)

We now proceed with the calculation of IEx . under the condition ¢ > 0,1 <
k < K. Recalling that

K = maXx
T k<K oo

o8



we see from (5.2) that

_ 2¢pz

JP(_?ZI;ogz)zl—e Tkr, z>0

so that
K 2Ck
P, <z2)= H[l—e P, 2>0
k=1
Hence IEk , is given by
oo K _2ck:
FEkx =/ [1-— H(l —e _“kr)]dz
0 k=1
It is clear that
K _22%_2_ K _Z g_c_,}rz_
1_ H(]."e v ):Z(_l)k‘f'l Z e kel oL
k=1 k=1 Icly

where

Iy={IC{l,....K}:|I|=k}). 1<k<K

For any non-empty subset I of {1,..., K}, we see that

oo 2¢) z )
/ e Zke] '}—i‘—d; _ (Z Hcok)_l
0 T

kel Kk
so that
K O('L
. kL 2CE g
o= 0 Y (0%
k=1 lel, kel

In the symmetric case, equations (5.9) and (5.10) reduce to

2¢cz

P, <z)=[l—e 715 >0

and

Ex :/ [1—*6_%][\'(]2,
0

OO
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Taking note of the fact that | 7 |= (Ik‘) and of the identity

K 3 - K
—1)k+1 /] 1
(—l*(v: = = Hy, K=12...

Fx,, = —Hrg. (5.16)

3.5.2 Upper Bounds
The results of Theorem 3.4.1 and Theorem 3.4.2 imply that

JEEt Z El@t, 1 2 0
and

IFry 2 Eros.

Our objective in this section is to give explicit formulae for IER; and IER.. Since
all the calculations involved are exactly the same as in the last section, we only
give the final formulae in each case.

Proceeding exactly as in the last section, it is possible to show that

o0 K 2cp 2
z +cpt R i —z + ¢pt
.ZE_/‘EtZ/ ].— II @ —eeee —_ e Uk+00(I) ——r j‘dz
0 [ k=1 ( ( (0,%—1—(78)75) v(03-+03)i ,

t>0 (5.17)

and in the symmetric case,

K
> z -+ ct e —z 4 ct
IFr, = 1— [P ————— ] —¢ T 0P| ———— dz,
¢ /(; < ( (a2+ag)t> (x/(az—{—ag)z‘))

+>0. (5.18)
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Under the condition ¢ > 0,1 < k& < I, we further have that

K
— : 2¢yp .
F%,, = 1)kt ——=—)"!

DD Y (Y ) (5.19)

k=1 Iedy, ker k070

and in the symmetric case
B o? + o2
FEFfy = ——270”% (5.20)
Equations (5.16) and (5.20) imply that in the symmetric case
2 2, 2
T Hr < B < "2V Hy, (5.21)
2c 2c

and since

log(KX +1) < Hy <log I\

it follows that the expectation of the normalized end—to—end delay of a symmetric
fork—join queue in heavy traffic, increases logarithmically with I.

Equation (5.21) reveals an interesting difference between the asymptotic be-
havior in K, for fork—join queues operating in heavy traffic with those operating
in their stable regime. It was shown in [4] that moments of the end—to-end delay
of a stable fork—join queue increase logarithmically in I provided the following
condition is satisfied;

Let A*(s) and B*(s) denote the Laplace-Stieltjes transform of the interarrival

and service times. The transform B*(s) is assumed to be rational so that the

function s — f(s) which is initially defined for Re(s) = 0 by

f(s) = A%(s)B*(=s)

is continuable in the region Re(s) > 0.
Under this assumption it is shown in [4] that the response time of each queue has
an exponential tail, which leads to the logarithmic behavior. However in heavy

traffic the response times always have an exponential tail provided they satisfy
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assumptions (ITa)—(IIc) from Chapter 2. Hence even those fork—join queues
whose end-to-end delay does not grow logarithmically with Iy when they are
in their stable regime, (since they do not satisfy the above assumption), exhibit

logarithmic growth of their end-to—end delay with I{, once they are in heavy

traflic.



CHAPTER IV

4.1 Introduction

In Chapter 2 we obtained a diffusion limit for the delay processes in a single
stage fork—join queue. We saw that this diffusion was a correlated Wiener process
with drift in the non-negative orthant, with normal reflection at each boundary.
Our objective in this chapter is to obtain a PDE for the stationary distribution of
this diffusion.

The most general theory for multi-dimensional diffusions with reflections is
the one given by Stroock and Varadhan [61]. However this theory is applicable only
if the domain within which the diffusion is confined is bounded and has smooth
boundaries. Our reflected diffusion does not satisfy these conditions, and therefore
lies outside the scope of the Stroock—Varadhan theory.

In Section 4.2, we show that our diffusion is in fact a strong Markov process,
by taking advantage of its sample path structure. The next step is to obtain
the equation satisfied by the stationary density of this diffusion. Harrison and
Williams [25], have given a integral equation that is satisfied by the stationary
density. Using this integral equation, it is possible to derive the PDE that the
stationary density satisfies [22], [25]. There is another way by which this PDE
can be obtained [22], and that is by first writing down the forward PDE that is
satisfied by the transition density for the process (with the help of the Ito formula).
The PDE for the stationary distribution is this forward PDE at steady state. In
this chapter we follow that latter method.

The rest of the chapter is organized as follows: In section 4.2 we give a path—
by—path construction of diffusion process obtained as a weak limit of of the queue
delay processes and show that it is strong Markov process with continuous sample

paths. Following Harrison and Reiman [22], in Section 4.3 we give a heuristic
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derivation of the PDE that is satisfied by the stationary distribution of the diffusion
process. Finally in Section 4.4 we give the PDE that is satisfied by the stationary

distribution of the diffusion for the queue length process.
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4.2 The Markov property

For every = = (z!,...,2%) in JRff, let P, be probability measure on the
function space C[0, 00), such that under this measure, (¢1,..., (") is a diffusion

process satisfying (o = 2. Further more it has a covariance matrix R and drift

vector ¢ given by

c=—(¢c1,¢2,...,cK) (2.1a)
and
o? + o ol ol
2
oy o2 +o8 ... of
R= : : , : : (2.10)
2 2 2 2
o or N s

We now define a mapping h : D[0,00) — D][0, 00), by

h(m)t:—oir;:itxs, t > 0. (2.2)

Define a K—dimensional process v* = {vF,+ > 0},1 < k < K, by
yE=h(C*), 1<E<K, t2>0. (2.3)
The K~dimensional reflected diffusion process, (n',...,7%), is then given by
nEk=Ch4ak 1<k<K, t>0. (2.4)
Define IF; = IF(¢F,0 < s <t,1 <k < K),t > 0. We now present the main result

of this section.

Proposition 4.2.1
(a) For each t > 0, the processes n; and y; are measurable with respect to IFy.

(b) The process n is a Markov process with stationary transition probabilities.

Proof.

(a) From (2.3) and (2.4), it is clear that n; and v, depend only on the restric-

tion of (; to the interval [0,%]. This fact implies Part (a) of the Proposition.

65



(b) We first show that ({s,~) jointly form a Markov process under the mea-

sure P, through the following sequence of equalities. Note that

E, [eiy'Cr+h +iz' vign

IF]
— ei?}ICt‘*‘izl‘YcEz[e’iyl(Ct+lz“‘:t)+i:’(7t+h_7t) |Fi] (26)

Furthermore, for 1 < k < K, we have that

Yeren = = R(CF)eqn — (CH),

= —inf{—h(C*), ot CEY —n(chy,

. . k e
= mf{O,tS;gM (s +h(C%)}

. : k sk ok k
= mf{o’tS;Iglg—kh Cs —Cf + ¢ +h(C7)s}

_ . k 4k k
= lnf{O,tS;2£+,l Co — Gt +mi} (2.7)

From (2.6)~(2.7), it is clear that

Ex[eilet+h+i3'”Yt+h ]Ft]
— eiy,Ct—f"iz”YtEO[eiy/Ch e—-i;’ inf{O,infgSsSh C_.;-i-u}]7 Pl a.s. (28)

on subsets of IF'y in which 1y = w. This implies the Markov property for ((;, )

under the the measure P,. To conclude the Markov proporty for the process n,
simply put y = z in (2.8).

|

We have already shown in Chapter 2 that the process n has a stationary

distribution iff ¢ > 0,1 < k < K. In the next section we obtain a PDE whose

solution gives this stationary distribution.
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4.3 A PDE for the stationary distribution

In this section our objective is to obtain a PDE that is satisfied by the sta-
tionary distribution of the Markov process n. Harrison and Williams [25] gave
an integral relation which they called the basic adjoint relation (BAR) that must
be satisfied by any stationary distribution for the process. However the BAR has
been shown to be only a necessary and not sufficient condition for the stationary
distribution for the process. It was used them to give necessary and sufficient
conditions for the process to have a product form stationary distribution. If we
apply these results to our problem, it can be shown that the process 5 will have
a product form stationary distribution iff oy = 0, 1.e., the arrival stream into the
system is deterministic which is clearly not a very interesting case. Hence we pro-
ceed heuristically and assume that the BAR is a necessary as well as a sufficient

condition for the stationary distribution of the process.

Using the BAR it is possible to obtain the PDE that the stationary distribu-
tion satisfies [26]. However since the calculations involved are quite tedious, we
adopt an indirect way of deriving these PDE’s in this chapter. We proceed by
writing down the forward PDE’s that the stationary transition density satisfies,
and then assuming that the process is positive recurrent, the PDE satisfied by
the stationary distribution is simply this forward PDE in steady state. This as-
sumption has been shown to be true by Harrison and Reiman [22] for the diffusion

obtained by taking the heavy traffic limit of two queues in tandem.

Consider the following I{ correlated Wiener processes,

(F=optF -0l —cpt, 1<k<K, t>0 (3.1)

Recall that the drift vector and the covariance matrix for these diffusions are given

by ¢ and R defined in (2.6).

Define the following matrices
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0 o o2 ... 0
r=| . | | (3.2)
2
0 0 o + 0}
and
o? + o 202 . 208
202 o2 + or ... 202
II= . : ) . . (3.3)
202 202 . O3+ o0}

Let P;(.) be a distribution on the path space of ( corresponding to starting

state z = (2!,...,2%) ¢ ]Ri Recall that v = 2(¢) and n = ¢((), so that
k _ rk k -
e =C +7, 1<kE<LK, t20. (3.4)

We now write (; = f; + ¢t where 8 = {Bf,t >0},1 <k <K, is alk dimensional
Wiener process with covariance matrix R, zero drift and fy = (o = 7. This

implies that

ne=pF+of, 1<k<K, t>0, (3.5)

where

v = —qt+4F, 1<E<K, t>0. (3.6)

Note that 8* is a martingale over the o-fields IFy and v* is a continu-
ous adapted process of bounded variation. Thus each n* is a continuous semi-
martingale and hence we can apply the Ito-formula to it. Let Iy be the class
of functions f(¢,z,y);z,y € ZR_I; that are continuously differentiable in ¢ and
y*,1 < k < K, and are twice continuously differentiable in 2*,1 <k < K. Sup-
pose that f(t,z,y) € Ly and let

KN K

ZZ i 57: (%J (3.7)

11]1
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We also use the following convention: If 8 is a I{ dimensional vector, then the

directional derivative of a function f in the direction of 8 is denoted by
K P
evxf(t7 T, y) = ; Gj 5;1:7f(t7 Z, y)'

Then one has the following result.

Lemma 4.3.1. If f € Iy then

t
0
f(tv 77t77t) - f(07 77070) :/ (Ll +c¢Ve + au)f(u) 77u771t)d‘u’
0

K t 8 , .
+30 [ )5,
i1 0 a.’l/l

K ¢ b ) .
a . ) f(u uy fu ‘Ia Z . .
+3 [[Gar + gypmasEs 120,69

Here integrals involving dS} are of the Ito type, and those involving vi are defined

path-by-path as ordinary Riemann-Stieltjes integrals.

Proof. This is a direct consequence of the multi-dimensional generalized Ito for-

mula (see Appendix C, Theorem C1). |

We now proceed to obtain the backward and forward Kolmogorov equations
for the reflected diffusion process n. The approach that we shall follow is basically
the same as given by Harrison and Reiman [22] and proceeds by the following two
steps:

(1) Using the Girsanov transformation [24], we express the transition prob-
ability density for the diffusion n with drift in terms of an augmented
transition probability density (defined below) for this diffusion without
drift (i.e. ¢ =0).

(2) Using the Ito formula we obtain the partial differential equations satis-
fied by the augmented transition probability density for the diffusion 7

without drift.
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Let P; be the probability measure on the path space of the process (, cor-
responding to the initial state (o = z and drift vector ¢ and let ES be the cor-
responding expectation. Let P, and E, be the corresponding quantities for the
process ¢ with drift ¢ = 0.

We now define the transition density of diffusion n with initial position @ and

drift ¢, as a function p°(¢,z, z) such that
Pi(n € B) = / pe(t, 2. 2)dz, (3.9)
B

for any Borel subset B of ZRf This can also be expressed as

p°(t,z,z)dz = Pj(n € dz) (3.10)

or

p°(t,x,z)dz = E;[6(n — 2)] (3.11)

We now proceed to define the augmented transition density for n without

drift, as a function ¢(¢, z, z, @) such that
Ez[ea7£13(77t)] = / g(t, e, z, a)dz (3.12)
B
for any Borel subset B of ]R_If This can also be written as

g(t, 2, 5, a) = B [e?8(n, — 2)] (3.13)

In the next Lemma from Harrison and Reiman [22], we express p°(t, z, z) in

terms of ¢(t,z,z,a) with an appropriately chosen a.

Lemma 4.3.2 The following formula holds true
])C(t,sz) — e_CM(z_x)l_i_%(CN[C/)tg(t 2, CAI) (314)

where M = R™L.



Proof. By applying Girsanov’s formula for the process ¢, we obtain
P;(G) _ / e—cM(Ct—z)'—%(cMc’)thI
G
for all sets G € IFy. But (y = n; — 74, so

dP; — e——cM(m——’y,--a:)/—-%(c]V[c')th

x

Hence
Pi(ne € dz) = EZ[6(n: — 2)]
_ Ex[e—cj\f(nt~%—x)’—%(cﬂflc')t&(m — 2]
_ Ex[e—c]\/[(:—%—x)'-—%(CMC,)t(S(nt — 2)]
- e—cM(z——x)’—%(cMc')tEw[ecMy;(S(m _ :)]
_ e—cM(z~x)'—%(cMc')tg(t7 w, 2z, M)
so that

p(t,z,z) = e_CM(Z—”)I+%(CMcl)tg(t,rc,z,c]\/[).

(3.15)

(3.16)

(3.17)

(3.18)

Once again we follow Harrison and Reiman [22] in obtaining the PDE’s for

the augmented transition density g. Note that by (3.14) it is sufficient to obtain

the PDE’s satisfied by the augmented transition density ¢ in order to obtain the

PDE’s satisfied by the transition density p°.

Consider a function ¢(t. z, o) which is continuously in ¢ and twice continuously

differentiable in %, 1 < k < I{ and further satisfies
0

Lx¢ - 5%45 = 0,
99 +aid=0 if 2' =0,
Ozt

¢(0, 2, a) = P(),
where #(2) is bounded and continuous on S. For a fixed ¢ > 0 let
flu,z,y) = eyal¢(t —u,r, ), 0<ult
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Then
Fltone,ve) — £(0,2,0) = ™ (0,74, @) — $(t, @, )

) (3.21)
=" p(ne) — d(t, 7, @)
by (3.19¢). From (3.19a), (3.19b) and (3.20)
(Lot 2)f =0 (3.22
U ou 22)
and
3} 0
— — 3 = 4)‘
(axi + By Vf=0if z; =0. (3.23)

Substituting this f into the Ito formula (3.8) with ¢ = 0 and taking expecta-

tions we obtain
gﬁ(t, r, 0{) = Em[e%a,‘,ﬁ(nt )] (324)

Now suppose that their exists a function ¢ € IU; satisfying the augmented

backward equation

0]
L,g— —g=0, 3.2
g atg 0 (3.25a)
9y
~ 1 g = i s — U, 2 b
8$Z+ag 0 if ;=0 (3.25b)
g(0,z,z,a) = 6(x — 2), (3.25¢)

where 6 is the Dirac delta function. Define
ot z, ) 2/ Y(z)g(t,z, 2z, a)dz. (3.26)
RI{
+
From (3.25a)-(3.25¢) it follows that ¢ satisfies (3.19a)—(3.19¢) and thus by (3.24)

Ex[e"’to‘l?,/)(nt)] :/RK P(2)g(t, ¢, 2, a)dz. (3.27)
+

Choosing ¢ to be the indicator function 15(.) for any Borel set B of lRf, we

obtain

Bl () = [ glta.z,0)d5 (3.28)
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Hence the function ¢(t, 2, 2, a) is in fact the augmented transition density for the
diffusion  without drift that was defined earlier in (3.12) and (3.25a)~(3.25c¢) are
the backward partial differential equations which this function satisfies. By means
of complex calculations [22], it is possible to show that that g(¢, 2,2, ) satisfies

(3.25a)—(3.25¢) if and only if it satisfies the following forward PDE’s,

0 p
L.g— 9= 0, (3.294¢)
I,V.,g+ «;R;; =01f z; =0, (3291))
9(0,z, 2z, &) = §(z — ). (3.29¢)

Finally we combine Lemma 3.3.2 with (3.29a)-(3.29¢) to obtain the backward
and forward equations for the diffusion n with drift ¢. These equations are stated
in the next theorem [22].

Theorem 4.3.1 The transition density p°(t,z,z) satisfies backward equations

é] .
L,.p®+ cV,p° — N ° =0, (3.30a)
g];i =0 if 2'=0, (3.300)
p(0,z,2) = 6(a — 2). (3.30¢)

It also satisfies the forward equations

0
C—eV.pt — pf = (3.31
Lap® = eViep® — 20" =0, (3.31a)
IL;V,p° — 2e;p¢ =0 if 28 =0, (3.31b)
p°(0,2,2) = §(x — ). (3.31¢)
|

Conditions for the Markov process n to be positive recurrent are not known
in general. However if that is the case, and if 7°(z) is the the stationary density
function of the process (which we know exists since ¢ > 0,1 < &k < I), then

pi(t,z,2) =» 7(z) as tToo forall z in ZRflf
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In this case equations (3.31a)-(3.31c) suggest that 7¢(z) satisfies the following

equations.
L.7¢—cV,m© =0, (3.32a)
IV, 7¢ —2¢;7¢ =0 if z =0, (3.32b)
/ 7(z)dz = 1. (3.32¢)
ry

Equations (3.32a)—(3.32c) will solved in the next chapter to obtain a formula

for #°.



4.1 The queue length processes

An argument similar to the one outlined in the last section can be used to

obtain the PDE’s satisfied by the stationary distribution of the queue lengths

in the fork—join queue. Recall from Chapter 2 that the diffusions for the queue

lengths are given by

QF =¢(¢"), 1<k<K (4.1)
where
P =l e dit, 1<k<K, t>0. (4.2)
The co-variance matrix ¢ and the drift vector d for ¢ are given by
d:(dlng,...,d]{), (4:3&)
and
7'12 + 7'02 T02 . 7"02
72 72 4 72 2
Q= 0 2T ’ (4.3b)
7'02 7'02 7']2\— + 7'02
Also define the following matrices,
T12 + 702 0 - 0
0 7'22 + 2 .. 0
Fq = . . . (44)
0 0 TE + 14
and
7'12 + Téz 2T02 e 27'02
272 A 272
M, = 0 2 0 0 (4.5)
27 278 coo TEATE
Let P? be the probability measure on the path space of the process ¢, cor-
responding to the initial state ¢g = 2 and drift vector d. We now define the
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transition density of diffusion @ with drift d and initial position = as a function

pg(i, z,z) such that

PYQ e B) = Lz)g(t,w,z)d;, (4.6)

for any Borel subset B of ZR_Iﬁ Then the following result holds.

Lemma 4.4.1.The transition density p‘ql(t,x,z) satisfies the backward equations

0
prg — dep;l - 5?)3 =0, (4.7a)
d .

%:7 =0 if 2'=0, (4.75)

d . ; . .

pq(07a?,z) =6(x — z). (4.7¢)

It also satisfies the forward equations
L.p? 4+ dv,p? 0 i = 0 (4.8

qu + qu - ggpg ) : (L)
I, V.pl +2dp, =0 if 2 =0, (4.8D)
pg(O, x,z) = 6(z — z). (4.8¢)

Finally we let ¢ T oo in the forward equations (4.8a)-(4.8¢) to obtain the

PDE’s for the stationary distribution of the diffusion for the queue lengths in the

fork—join queue.

L,ry +dV.my =0, (4.9a)

0, Vorg +2dr] =0 if 2 =0, (4.90)

/ﬂj(h = 1. (4.9¢)
S
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CHAPTER V

5.1 Introduction

In this chapter our objective is to obtain a solution to the PDE for the sta-
tionary density of the diffusion process for the queue delays in a fork—join queue,
which was derived in Chapter 4. From this stationary density we can then recover
some heavy traffic information about the queue. We only consider the solution of
the PDE for the case of two independent variables, so that the results of this chap-
ter are applicable to two dimensional fork—join systems. However, as illustrated
in the next chapter, the solution that we obtain for this case helps us in obtaining
some information about heavy traffic behavior for general I\, without having to
solve PDE’s.

The technique that we shall use for solving the PDE is similar to the one
used by Harrison [21] and Foschini [16] in the context of a system of single server
queues in tandem. For this technique to be applicable, it is necessary to assume
that o9 = 04y = 05. In Section 5.3 we obtain formulae for all the moments of the
diffusion for the end-to—end delay for this case. These moments are combined with
light traffic results in Chapter 6 in order to obtain interpolation approximations.
Lastly in Section 5.4 we give the corresponding solutions for the diffusion due to
the queue length processes in the fork—join queue.

We use the following notation. As in the last chapter, the non-negative

quadrant in the (z,y)-plane will be reffered to as ZRri For each 0 < 3 < 1, the
region in the first and fourth quadrants that is bounded by the lines y = 4/ %‘L

and y = — %g—:t will be referred to as IR%, le.,

1 1
R%Z{(xay)emi:—\/?j—gmgyg\/l_‘—?gx}
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5.2 The queue delay processes: Symmetrical case

We consider the problem of determining the stationary density for the waiting
time processes of the fork—join queue in the case when K = 2. We start by writing

down the PDE obtained in the Chapter 4, which the stationary density satisfies.

ot + ol TR T dog o Trln)
e angz,y) +oe 0”(8‘1;’ v _y, (z,y) € IR2 (2.1a)
BC(z =0): %(a% + ag)a”gf; v) | g2 awg;, Y 4 er(0,y) = 0 (2.1b)
BC(y =0): agaﬂ—g;—o—)-l—%(ag +a§)@7—%@+m(:¢,0) = 0. (2.1c)

We further make the assumption that the two queues are identical with ¢ =

oy =0 and ¢; = ¢3 = ¢, and we set a? = o2 + 02 in what follows. The equilibrium

equations then simplify to the following.

2 2 2
1 20W(x,y)+ zaﬂ(m,y)+1a28 W(x,y)

—_— v

2 Ox? %0 Jx 0y 2 Oy?

1 0n(ey) | on(ayy)

- T 2 2.2
a.’C + ay Oa ('Lay) € 'ZR+ ( CL)
1 ,0x(0,y) 2 O0m(0.y)
BC(z =0): 5% 5 + oy By + cem(0,y) (2.2b)
on(z,0 1 ,0n(z,0)

We now scale the co—ordinates according to the transformation Tp : (x,y) —

2
(z1,y1), so that so that (21,y1) = (ez,ay) where a = %, and we set f = % in

what follows. Denoting 7( %, £-) by ma(21, y1), (2.2a)~(2.2¢) can then be written

as
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2
Fra(z1,91) 128

*ma(z1,y1) + Pro(z1,y1)
Jz? -

Oz1 0y Oy}

Oma(z1,1) | Oma(21,y1)
+ axl + ayl

:07 (:Clvyl)EZR—zi-

BO(a, = 0): Tel0) | o p0mal0oun)
1

2(0,91) =0
ayl +7I'( yl)

Omq(z1,0) n Ome(z1,0)

BC(y; =0):2
C(yl ) 6 3x1 8y1

Since
2
<l

o a%—{—a?’

~ 4 ma(21,0) = 0.

the parameter § is constrained to lie in the set [0, 1], and we shall therefore seek

solutions to (2.3a)—(2.3¢) with 3 constrained to lie in this set.
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5.3 The solution in polar co—ordinates

In this section we recast our basic equation (2.3a)~(2.3¢) into the form V2¢ =
¢, where V? is the two-dimensional Laplacian in polar form. This is accomplished
by several transformations as shown below. The development of this section is
inspired by Foschini [16] and Harrison [21].

The transformation is achieved in the following five steps:

(1): We start with an exponential substitution to eliminate the drift terms.

Let us introduce a new function 7; defined by

Tz, 1) = waler, y)e Y (2 ) € RY (3.1)
where b = —m. The PDE can then be re—written as
*my 9*m 0*m T 2
— +2 + = -, (21,1n) € IR 3.2a
O} ﬂaxlayl dy; 2(14 8) ( 1) + ( )
0 1%}
BC(ay = 0): T 4 9p9T ™ 0 (3.20)

" By dy 21+ 8)

Omy  Om ™

0o " op 214 8)

BC(y1 =0):23 0. (3.2¢)

(2): The term with the mixed derivatives can be removed by the orthogonal

transformation T3 : (z1,y1) — (22, y2), defined by

1 A
(w): Vi 7 () (ery) € 2. (3.3)
Y2 - i Y1

This transformation maps the quadrant ZR%r in the (z1,y; )-plane into a
region IR; in the first and fourth quadrants of the (22,y2 )—plane that is
bounded by the lines o = yo and x2 = —ys.

Denoting 7y (T1(z1,y1)) by m2(22,y2), we obtain the following PDE.

0% 0y Ty 2
— — = \ , c IR 3.4a
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87'(2

aﬂ'z Up)

BC(er =y2): (26 + D)5 = + (26 - )3y2 + NN (3.40)
J s Ly’
BC(z5 = —y2) : (2 2 ~ (28 - 1)gyz + N (3.4¢)

(3): The next transformation Ty : (z2,y2) — (x3,y3) is defined by

1 0
(S?jj):(@:ﬁ _1.«> (;7) (z2,y2) € IR} (3.5)
Ji-8/ N7°

This transformation maps the region IR? in the (z5,y;)-plane into a
g 0 Y2 )L

region ]R% in the first and fourth quadrants of the (z3,ys)-plane that

is bounded by the lines y3 = }—‘—_F%xg and y3 = i+g13 Denoting
7o (T2 (22, y2)) by m3(x3,ys), we obtain the PDE
2 73 2 _
Vénrg = 2(1+5), (mg,yg)EIRﬂ (36&)
1+ﬁ (286+1)0n  (2-1)07  m
W =\ T8 T8 0ma T VI=B Ous | L1 )
(3.60)
1 2 1) 0 28 —-1)0
BC(ys = +ﬂ vy) ZEX DI (F-D)O%s T
VIT0 00 VI 0w T AL+ 5)
(3.6¢)

(4): The next transformation T5 : (z3,y3) — (@4,y4) is given by

T S 0
<9€4> _ <\/2((1)+ﬁ) X ) <Zf3> . (23,y3) € ]Rzﬁ (3.7)
ya oo ) NP

Denoting m3(T3(z3,y3)) by ma(z4,ys), we obtain

Ving =my, (v1.y1) € RG (3.8a)
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BC(ys = igm (2ﬂ+1)aﬂ+4/ g(zﬂ—n by =0

(3.8b)
‘ 1+ Omy 1+5 or
(3.8¢)

(5): Finally we recast this equation into polar co-ordinates with the the trans-
formation Ty : (24,y4) — (r,6) given by
24 =rcosf and y4 =rsinf
We retain the notation IR% for the region in the (r,8) plane that is
bounded by the straight lines § = tan™1 %i_r—g and # = — tan™! %—Jf—g—
Denoting 74 (T(x4,y4)) = ¢(r, ), we finally obtain

0?4 10¢ 1 0%

T a taam =% WOER; (3.94)
BC(f = tan™" 1ig)\/13€_5g—(f- 2 1+ 7 0¢+\/—¢~0 (3.90)

BC(G=—tan‘1\/1+ﬂ) ﬂgf_—fﬂr Vlj a¢+f¢—0« (3.9¢)

We shall find a solution to this equation in the case when 3 = % In this case

the equation becomes,

Vi =1¢, (r6)c IRj 5 (3.10a)
99 V399
BC(6 = —) 5 o 98 +¢=0 (3.100)
. 0
BC(G_—ZT—) a¢ V309 +é=0. (3.10¢)
r 06
The case = % is of importance because it corresponds to the situation when

o9 = o, i.e., when the inter-arrival and service distributions have the same lim-

iting variance. This will always be the case if the service and inter—arrival time
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distributions are taken from the same family. For example consider the case of a
fork—join queue with exponential inter-arrival and service distributions with rate

% an 71; respectively. Then as A T p in heavy traffic,

Equations similar to (3.10) have been encountered earlier by Harrison [21] and
Foschini [16] in the context of the diffusion limit for queues in tandem. Guided by

their work, we try a solution of the form

1 6
é(r,0) = —J_;e_r cos(§), (r.8) € R: .. (3.11)

Note that it satisfies the PDE as well as the boundary conditions (3.10a)-(3.10c),
as can be verified by a direct substitution.

Our next objective is to obtain an expression for the density in terms of
(z,y). Note that the tranformation T : (r,8) — (z,y), which is a composition of

the transformations T = T, ' T, ' T, ' Ty ' T, ', can be written as

ar = (14 f)rcosf — /1 — B%rsinf
ay = (14 B)rcosf + /1 — f2rsinb, (r,0) € R ;. (3.12)

If we undo the transformation which corresponded to a multiplication by

e~5(@11¥1) e obtain the function p(r,8), where

L

1 6
Wb(r, 9) _ W@—r(l—i—cos ) COS(;), (7, 9) € 1335- (3_13)

Letting ¥ (T(r,0)) = ¢(x,y), the final solution is of the form Ay(x,y) where

the constant J{ is chosen so that

/ / Ko(z,y)dedy = 1. (3.14)
o Jo

We shall evaluate this integral on the (r,8) plane where the calculations are much

easier. It can easily be checked that the Jacobian .J for the transformation (3.12)

33



is given by J = 25(1 + B8)4/1 - 2 = 27.V/3. The integral (3.14) then transforms

to
x o0 9
3\/§K/3 / re~r(i+eosf) cos(7)drdf = al. (3.15)
6=0 Jr=0

Making the substitution y(6) =1 + cos 8, it follows that

/ Jre 1O gy — 7"%(9‘)/ Vue "du
0 0
3

=72 (O)(=

77EOI(5)
1 /7 _50

= —y/Zcos "=
4\ 2 2

3v3 [x_. f =
= ;Z—Ix [tan(g)]o?’
. 3K |«
2 \2
so that
ko2 2
3 s
Hence the final solution is
, 2a% |2 ‘ , .
W(l’,y) = —3— ;{_‘Q(«T7y), (CE,’L]) S R+- (316)

Making use of the fact that

2&\/—2—“‘—‘—2‘ x—i—y
= ——— —_ 1 N R 6: 317
T 3 T zy +y cos N Ry ( )
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and substituting for » and cos§ in (3.13), we finally conclude to the following

result.

Theorem 5.3.1 The stationary density w(z,y) of the diffusion for the waiting
times in a symmetric two dimensional fork-join queue in heavy traffic, which sat-

sfies 0 = 0o 18 given by

TV — oy oy BV g
(z,y) € IR% (3.18)
where a = 5.

Knessel [41] has also considered the problem of solving an equation similar to
(2.3) from the point of view of the theory of singular perturbations, and obtained
an expression for 7(x,y) in the case when x and y are very large. As expected,

our solution (3.18) agrees with his for large z, y.

5.3.1 Calculations of the moments of the end—to—end delay

In this sub-section our objective is to obtain some information regarding the
stationary density and the moments of the diffusion for the end-to-end delay of
the fork—join queue. Our first objective is to find an expression for the density of

the equilibrium response time &, where
- _ 1 2
Koo = maX{T/oo7 7700}

It is clear that

F(z) = Plroo < 2) = Plnly < 2,02 < ) = / (e, y)dady, =3 0.
0 0

We make a change of co-ordinates from (z,y) to (r,8), by using the transfor-

mation (3.13). The square [0, 2] X [0, 2] in the (#,y) plane maps into the rhombus
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with sides of length 2% and vertices at (0,0), (%4 =T (2““ 0) and (&%, —~2) in

the (r,8) plane. Usmg the law of sines for tria‘ngles, it is clear that the limits of

3 : 20y Sin % 1
mtegratl rroa = s = 20Z SE 1+ I S—
gration for r are from r =0 to s 5 m V3 Sn(2ZE—9) Hence

Sln - 6
F(z)=2y/— / EEay Ve TFeos8) g —2—drd6, z 2 0. (3.20)
=0

As before, let v(8) = 1+ cos 8 , so that with the substitution v = v(8)r we obtain

az 1 azy (8 1
V8 sin( &E

sin( &% — ) V3 sin(2E -
) Ve 1rgr = 7“%(6)/ R Ve du.
u=0

=0

The resultant integral above is known as the incomplete Gamma function and

occurs frequently in analysis. It is well known that
x O 3
/ Ve ldt +/ VieTldt = I'(;)= ﬁ (3.21)
0 T =~

Hence (3.20) can be re-written as

F@)J[/{) Ocos: z(e)[\g ﬁoj(m:_i__\/ae~"dzt]d9

3 6
=1- / / v~ 2(8) cos =v/ue™ “dudf
2V o e 2

sm(-‘i—e)
3 (3 [ ue™
=1—1/— —-dudf, =z2>0 (3.22)
T Jo=0 u=2\;§z cos? %;W?’-T) cos® 3

so that

[/ / / VU Judede. (3.23)
6=0 Ju= _,,1___ cos? &




Interchanging the limits of integration, we obtain

T \/:‘?—»u 1 B
3 % %) e TIE sm( —0) e
JE%:,/—/ / / : A
T Jo=0 Ju=0 Jz=0 cos? &

2
3F

( >,/ / i ; ) a9 (3.24)
Tsin 3 Jo=o cos‘* 5

Using the fact that ['(2) = 2/7 and fo ﬁ%"ﬁi)dﬁ = L. we finally obtain
11 11 o2

_ o= 2
Bree =g, =% (3.25)

We can check the correctness of (3.25), by noting that in the special case
when the arrivals are Poisson and the service times are identically exponentially
distributed, IEr can also be calculated using the results of Flatto and Hahn
[14]. This was done by Nelson and Tantawi [52], and their formula for Exe
exactly matches ours in this special case. This result is also consistent with the
bounds for IE ks, obtained in Chapter 3.

Using (3.22), the density function f(z) of the response time is given by

fa) = dF(z \/7/9 - 08_5(9)«/5(9)%‘5(9) 6, 23>0 (3.26)

4:‘,OS2 g

where §(8) = 2% —5z2—

\/_ sin(2Z—6) "
Using this expression it is possible to obtain a formula for the nt" moment of

the response time, as is done next. Note that

Exl, = / 2" f(z)dz
z=0

[3 % e [ ! .
= %/3 8(6)+/6(9) > 9/ P P
g=0 COs 5 Jz=0
3. /3 (5 1 1
= -/ = EE———— 3.27
F(TL + 2) - /9=0 cos? g 5n(9) ( )
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Substituting for 6(6) and a, we finally obtain the following result.

Proposition 5.3.1 The n'* moment of the stationary density of the diffusion for
the end-to-end delay in o symmetrical two dimensional fork—join queue in heavy

traffic which satisfies o = oq, 15 given by

n 3. /3 .V30%, ;
where
3 2n+1)(2n—-1)...3.1
Dn+ ) = 2D T (3.29)
and
T sin”(2—7l —0)
P, = — 3 ____Z48. 3.30
[9:0 cog2nt2 g ( )

The reader may check that for the case n = 1, this formula agrees with the
expression for Ex, derived earlier. The integral (3.30) is evaluated for some values
of n in Section 5.5.

In the following corollary we obtain the heavy traflic limit for the fork—join
system. The proof is a direct consequence of Theorem 2.2.2 and Proposition 5.3.1

and is omitted.

Corollary 5.3.1 Consider a symmetric fork-join queue governed by an arrival

process with mean 5 and variance o3(N), and a service time distribution with

1

mean < and variance o

. Further assume that limy;, 02(X) = o%. The heavy

traffic limit for the nt* moment of the end—to—end delay of this queue -T_n(/\), is

given by

. nFER™) T 3 3 V3 2 2\n

1}}%&1(;4 = )" (N = I"(n + .—2—)\/;(‘70' wH" Py, (3.31)
where T'(n + %) and P, are defined in (5.29)-(3.30).

We now provide a formula for the normalized correlation between the delay
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processes of the two queues in heavy traffic. This is given by

Blkoi) = [ [ avme)dady.
0 0

Making the usual change of co—ordinates from (z,y) to (r, ), we obtain after some

calculations that

11,02
E(nsns) = 5 () (3.32)

Note that the two queues by themselves behave like GI/GI/1 queues, so that

PE <az)=1-e"27" k=12

and
o2
‘lEncI;o = T k= 172
c
It follows that
12 12 1 2 3 o° 2

This implies the following result.

Proposition 5.3.1 Consider a symmetric Ix-dimensional fork—join queue gov-

erned by an arrival process with mean % and variance oy(N), and a service time
2

distribution with mean % and variance o*. Further assume that limyy, o2(\) =2

If (WY, ..., WE(X)) represents the steady state vector of queueing delays in the

system, then

g%n Corr(W MWI(\) = % 1<i,j <K, i#j. (3.34)
n

It is a remarkable coincidence that the asymptotic correlation —‘;’—, almost equals
the constant %4-1— that was obtained by Nelson and Tantawi (see Section 6.4.2), as

part of their heuristic approximation. We also note that the correlation betwen two
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queues in the system is crucially dependent on the parameter 8. We just showed
that for the case g = —%, the coefficient of variation is given by g—. For the case
B =0, it is given by zero, since in this case the two queues are independent, while
in the case § = 1 it is given by omne, since in this case both queues are perfectly
synchronized with one another. Hence we observe that as the service times become
more deterministic, i.e., as f increases, the two queues become more correlated

with one another.
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5.4 The queue length processes: Symmetrical case

In this section we concern ourselves with the task of finding the statistics of
the diffusion connected with the queue length processes of the fork—join queue and
particularly the statistics of the diffusion due to the number in the join buffer.

We start by writing down the PDE with the appropriate boundary conditions

which the stationary density satisfies.

_;_(Toz )5 'ﬂq(fc v) 2 ) O gq(g Y) %( i S NoauriCadl Trq(:L )
0”5:; ) g, 0”5;’”) =0, (z,y)€ R (4.10)
BC(z =0): -;—(Tg + rf)a”-“ég’y) + 78 a”qa(g’y) — di7(0,y) =0 (4.1b)
BC(y=0): 7391‘1%—9)- + —;—(702 + 73)?—719%’9 — dymy(2,0) = 0. (4.1¢)

We further make the assumption that the two queues are identical with 7y =
79 = 7 and d; = dy = d and we set 7% = 7'02 + 72 in what follows. The equilibrium

equations then simplify to the following.

1 2827711(:”73/) + 2 0% my(,y) 1 2027%(4”,9)

27 Ox? o Oz dy 27 Oy?
_aZml o) OmED) ) e B (.20
Oz Jy

1 or O,y 2877( (07 y) ‘

BC(xz=0): 572 q(a(:c ) + 75 16 —dmg(0,y) =0 (4.2b)
. Omy(z,0) 1 ,0m,(x,0)

BC(y =0): 74 qux ) 5 2 jay — dny(z,0) = 0. (4.2¢)
We now scale the co-ordinates so that (z1,y1) = (bx, by) where b = 72 , and

set A = —;—02— in what follows. Denoting 7@(%}1—, ”Tl) by 7T2(CL71,y1), (4.2a)—(4.2c) can

be written as
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Orl(21,11) 9.,327r3($1.ay1)+ ?mh(x1, 1)

817% - axlé’yl ay%
5’”2($1,y1) 871'3(171,1,/1) 2
+ B o =0, (21,y1)€ IRy (4.3a)
orb((0,
BC(ar = 0): Z0Om) o IO gy )
Oy O

drh(x1,0) awb(xl,())

BC(y; = 0): 28
(y1 =0):28 e o

+ my(z1,0) = 0. (4.3¢)

Observe that the PDE for the queue length process has the same structure as
the PDE for the queue delay processes. Hence, guided by our analysis in the last

section, we shall write down the solution directly in the next section.

5.4.1 The solution to the PDE
Proceeding as in the last section, the following result is immediate.

Theorem 5.4.1 The stationary density m,(z,y) of the diffusion for the queue
lengths 1n a symmetric two dimensional fork-join queue in heavy traffic, which

satisfies T = 1o 18 given by

b \/2 T2 — zy + y2 4+ + y€—-—23—llvm —ry+y? ——(w+y)
m,(z,y) =by/ = 7
’ 3 Vat —ay +y?

(z,y) € IR} (4.4)

where b = ——;dQ—.

Our next objective is to find an expression for the expectation of the equilib-
rium number of customers in the join buffer. Let the RV N, possess the stationary
distribution of the diffusion for the number of customers in the join buffer of a two

dimensional fork—join queue in heavy traffic. Note that

IENy = / / |2 —y | mylz,y)dady (4.5)
y=0 Jx=0
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We make a change of variables according to the transformation
b = (1+ B)rcosf — /1 — Frsiné
by = (1+ B)rcosf+ /1~ Frsinb, (r,0) € IR:,

and evaluate (4.5) on the (r,8) plane, to obtain

3 372

As we now demonstrate, this expression for IEN,, along with a heavy traffic
version of Little’s law leads us to the expression for [Fks in (3.25). Note that
the two queues by themselves act as GI/GI/1 queues, so that IP(Q < z) =
1 —exp~®,k = 1,2. Hence if n denotes the expectation for the stationary
distribution of the diffusion for the total number of customers in the system in

steady state, then
3 11

2
Enee =3+ 3= 3

Next note that the total input rate into the system in heavy traffic is given by 2u,

so that by Little’s law we have

Eng 11

2p T8

so that taking note of the fact that 72 = p30? and

lim /(a(r) ~b) = lim =)

[

we finally obtain that

FEns, 1 11
T2

Fke = = .
froo 2 p 8a

h

We now present a formula for the n'* moment of the diffusion for the number

of customers in the join buffer, i.e.,

ENZ = / / |z —y " my(2,y)dedy. (4.7)
0 0
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A straightforward evaluation of this integral yields the following result.

Proposition 5.4.1 The n'® moment of the stationary density of the diffusion for
the number of customers in the join buffer in o two dimensional fork—join queue

in heavy traffic 1s given by
n 3. /3 V37?1
where T'(n + 2) was defined in (3.29) and

Ry = / TSl (4.9)
[

an4+2 8 7
=0 COS 2

The integral (4.9) is evaluated for some values of n in Section 5.5. The

correlation between the normalized queue lengths in heavy traffic is given by
o0 o, @)
Eql.q% = / / eymy(z,y)dzdy
o Jo

= (=12 (4.10)
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5.5 Tables for P, and R,

The co-efficients P, and R,, defined in (3.30) and (4.8) have been calculated
forn =1,...,4, with the help of the symbolic computation language MACSYMA,

and set down in the table below.

n P, IEr? R, IENZ
1 i1 11 2 3
9 8a 3 4b
3 81 3 5_
2 5 3 32a2 27\/§ 452
3 1759 10.3 4 105
1260 ad 9 3263
59123 43.3 32 189
4 68040 3 a3 135 3 1653
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CHAPTER VI

6.1 Introduction

In the last few chapters we developed heavy traffic limits for fork—join queues.
These provided good approximations to the performance measures of the queue
in the case when the utilization of the queue is close to unity. In this chapter we
concentrate on light traffic limits for the fork—join queue. By combining heavy
and light traffic results it is possible to obtain good approximations for the case
of moderate traffic.

This chapter is organized as follows. In Section 6.2 we show that the response
time of the fork—join queue is an admissible RV in the sense of Definition Bl
(Appendix B), so that the light traffic theory may be applicable to it. Section 6.3 is
devoted to light traffic approximations for the response time of a two—dimensional
symmetric fork—join queue with Poisson arrivals and exponential service times.
These approximations are developed for all moments of the response time.

So far we have developed approximations only for two—dimensional fork—join
queues due to the fact that we were able to solve the basic PDE for the station-
ary distribution of the diffusion limit for the queue delay processes, in the case
I = 2. Hence, even though light traffic limits are available for the case I{ > 2,
our ignorance of the corresponding heavy traffic limits prevents us from giving ap-
proximations for this case. However in Section 6.4 we make a crucial observation
which enables us to obtain formulae for the heavy traffic limit even for the case
K > 2. In particular we observe that, in the cases I = 1,2 when the inter-arrival
and service times are exponential, the first derivative of the expected value of the

average response time in light traffic is equal to its heavy traffic limit. Postulat-
ing a similar behavior for the case I > 2 we recover the heavy traffic limits for

the average response time for the general case. This conjecture is borne out by
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extremely good agreement with simulation results, as well as with the so-called
scaling approximation of Nelson and Tantawi.

In Section 6.5 we obtain approximations for the average response time for a
I{—dimensional fork—join queue with Poisson arrivals and Erlangian service times.
In order to obtain the heavy traffic approximations for this system we use the
conjecture that the first derivative of the average response time in light traffic is
equal to the heavy traffic limit, as long as the arrivals are Poisson. Good agree-
ment with experimental results is observed. Section 6.6 is devoted to light traffic
approximations for all the moments of the response time of a two-dimensional
symmetric fork—join queue with Erlang type arrivals and service distributions. A
similar conjecture to that in Sections 6.4 and 6.5 is made in Section 6.7 to obtain
heavy traffic limits for the first moment of the response time for general I{, in
the case when the inter-arrival and service times have the same distribution (not
necessarily exponential). Again we are guided by the exact results available for
the case K = 2 in making this conjecture. Using it, we give approximations for
general K for the average response time, when the inter-arrival and service are Er-
lang distributed. These approximations also agree extremely well with simulation
results.

In Section 6.8 we give a formula for the heavy traffic limit for N'~dimensional
fork—join queues with general inter—arrival and service times. The approxima-
tions obtained agree very well with experimental results. In particular we give
approximations for the average response time of a I{-dimensional fork—join queue
with second order Erlangian inter-arrival time and exponential service times. We
observe that this class of approximations does not work well for the case when
the service time distributions have large coefficients of variation. In particular we
present simulation results for the case of Poisson arrivals and hyper—exponential
service times with coefficient of variation equal to ten. Lastly, in Section 6.9 we
present an heuristic simulation based procedure for obtaining approximations for
the response times of general acyclic fork—join networks. These approximations

are also shown to agree well with simulations.
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6.2 Admissibility

In this section our objective is to prove the admissibility of the average re-
sponse time measure for general acyclic fork—join networks. Consider the following
sample space (2, IF'), where § is the set of infinite sequences {(,,,v},...,v5)}ee.
Here 7, has the interpretation of the arrival time of the n** batch, while vl 1<
J < B has the interpretation of the service time of the customer that is sent to
queue 7. We introduce a measure IP on (Q, IF') such that the arrival process under
this measure is a Poisson process with parameter A > 0. For each w in € we add
a tagged batch which arrives at time zero and whose service times ¢7,1 < j < B,
are independent of {v?}5°,1 < j < B, but have the same distribution. In order to
do so, we define an augmented probability space (', IF', @), such that for each

w'in ', we have that w' = (w, (8',...,95)), where w is an element of Q. Let
T = response time of batch entering at ¢t =0 (2.1)

and set

™ = [Bq, [T ] IF). n=1,2...(22)
The n?* moment T(n)()\) of the response time is then given by the formula

T (AN =1[Eq[T"] = /¢(")dQ>\. n=12...(2.3)
We define ;/)—(n)(@) and _ﬁ(n)({t}), tin IR by
E(n)(@) = ZEQA[@L'(") | no arrivals | n=12...(24)
and
—IZ;(n)({t}) = [Eq, [¢'™ | arrival at time #].  n=1,2...(2.5)
We conclude from Theorem B1 that
T0) = tmT ™ () = 7 () n=1,2...(2.6)

A[0
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a7 (0 dT(") A n 0
——# S . ) ( ) / @) -2 ndt n=1,2...2.7)

L0

provided we can show that the RV %" is admissible. In order to do so, let

M;(6) = E[**], 1<j<B, 6cR n=1,2...(2.8)

and introduce assumption (VIa), where

(VIa): There exists 8* > 0 such that

[T M;(6) < 0, 6 < 0"

j=1

Theorem 6.2.1 If assumption (VIa) is satisfied, then ™ as defined in (2.2) is

admaissible.

Proof. We introduce an admissible M/GI/1 queue (defined on the same prob-
ability space as the network) which ‘upper bounds’ the fork-join network in the
sense that as long as there is work remaining in the network, it works at least
as fast as the M/GI/1 queue. The arrival and service sequences in the M/GI/1
queue are given by {u,}§° and {E i=1 vl }&° respectively. According to Theorem
B2 (Appendix B), the M/GI/1 queue is admissible provided assumption (VIa) is
satisfied. Now proceeding as in Theorem B3 (Appendix B), it can easily be shown

that the fork—join network is admissible under assumption (VIa).
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6.3 Markovian symmetric fork—join queue: The case I{ = 2

Consider a symmetric two—dimensional fork—join queue subject to Poisson
arrivals with rate A and exponential service times with rate p. In the present
section we develop light traffic estimates for the response time statistics of this
queue, and combine it with the heavy traffic estimates of Chapter 5 to yield an
estimate that is also valid for moderate traffic. The approximations of this section
are zero order approximations in the sense that we shall only consider the limiting
value of the response time as A\ approaches zero (for light traffic approximations)
and as A\ approaches y (for heavy traffic approximations). The approximations

that we develop in this section hold for all moments of the response time.

We now proceed to calculate T(n)( 0) using (2.6). Since the batch arriving
at ¢t = 0 does not experience interference from any other customers, its queueing
delay will be zero, and therefore its response time will simply be the maximum
of two identically distributed exponential RVs. With F' denote the distribution of

the maximum of two exponential RVs with rate py, we have
Fz)=(1—-e")2=1-2e" +e 2, 220 (3.1)
so that the corresponding density function f is given by
f(z) =2u(e™™ — 7%, 2> 0. (3.2)

Hence

7™(0) = /0 2" f(2)d=

20(n + 1) 1 1

[1— 5037 n=1,2...(3.3)

pr

This concludes the calculation of the n!* moment of the steady-state response

time at A = 0. The next objective is to calculate these measures at A = p, i.e.,

in heavy traffic. This was carried out in Sections 5.3 of the last chapter. If we
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specialize (V.3.31) to the case when both the service times and inter—arrival times

are exponential, we obtain

1}\1&1(;1——)\) T°(X) ::I‘(n+§)\/;(—2—) P, n=12...(34)

where I'(n 4 2) and P, are as given in (V.4.31) and (V.4.32) respectively.

Combining the light traffic result (3.3) with the heavy traffic result (3.4), we

th

obtain as the 0™ order approximation to the n'* moment of the response time of

a two dimensional fork—join queue in the form

, 1 1
O e e
A 3. /3 V3, 1
+ PPN I'(n+ ‘2‘) ;(.7) Py —T(n+1)(2 -~ on

0< A<y, n=12...(35)
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6.3.1 Simulation results

All the simulation results presented in this and succeeding sections are for
t = 1s71, while X is varied from 0.1s7! to 0.9s7! in steps of 0.1s71.The 95%

confidence levels have been obtained in all cases using the method of batch means

[LaKe, p. 296]. The % error is calculated by using the formula

D A1)
00 200

% Error = Y 00.
T (\)

A Y0 | 700 | % Brror
0.1 1.65 £ 0.007 1.65 0.30
0.2 1.85 £ 0.011 1.84 0.43
0.3 2.09 + 0.0158 2.09 0.43
04 2.44 + 0.024 2.41 1.22
0.5 2.91 4+ 0.037 2.87 1.37
0.6 3.63 + 0.061 3.56 1.93
0.7 4.80 +£0.109 4.71 1.87
0.8 7.16 4+ 0.23 7.0 2.23
0.9 13.91 4+ 0.32 13.87 0.29




6.4 Markovian symmetric fork—join queue: The case K > 2

In this section we initially develop first order light traffic approximations
for the average response time of a two-dimensional symmetric fork—join queue
with Poisson arrivals with rate A and exponential service times with rate ;. The
approximations are first order approximations in the sense that we shall consider
the limiting value of the average response time as A approaches zero and pu, as
well as the value of the derivative of the response time at A = 0. In Section 6.4.1
we make a conjecture regarding heavy traffic limits for the case I > 2. Using
this conjecture we give polynomial approximations for the first moment of the
response time for a A—dimensional fork—join queue, which agree extremely well

with experimental results.

Since we only consider approximations for the first moments of the average

response time, the super—script n will be omitted from T™ for the rest of this

section. Note that by (3.3) we have

while by (3.4) we have

— 11
l)ar_ri(,u - NT(\) = 5 (4.2)

We now proceed to calculate TI(O) with the help of (2.7). To that end, let
T(t,s1,82,v1,v2) denote the response time of the batch which enters the system
at time 0 with service times v; and vq, given that another batch arrives at time ¢

with service times sy and sy. It is clear that

max(vy, v2) ift>0
T(t,s1,82,v1,v2) = (4.3)
max(vy + (81 + )T, vz + (52 + tHt)y ift<O0.
It is plain from (4.3) that for ¢ > 0
P({1}) = Bq, [max{vi,v2}] = ¥(0)
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so that (2.7) now reduces to

T, 0
k= [ we - v

Define the RVs X, X3,Y7 and Y3 as

Xi=(si+8), Yi=ov;+X; i=1,2

The RVs X;,2 = 1,2 are iid with common distribution F'y given by

Fx(z)=1—e"e ™™ >0,

while the RVs Y;,7 = 1,2 are iid with common distribution Fy given by

Fy(y)=1—e™" — pyet'e™,  y >0.
Note that
T:=T(t,s1,82,v1,2 ) =max(Y;,Ys) ift<0

Since the RVs Y7 and Y5 are independent, we obtain

ONT <z)=Q\(Y1 <2)Qx(Y2<2), 220

=1 + e—Z,uz + MZCL,262M€—2;L$ ) Py

‘ —2 ‘ -
+ 2uzette ™ — Quzette ™I,

Using the fact that

P({t}) = /000(1 —QNT < 2))dz, ift<O0

and using (2.5), (4.1) and (4.5), we see that

53? if ¢ >0,
P({t}) =

2 pt ut 2ut 3 .

Lol el ki<
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Finally combining (2.7) with (4.6) and (4.1), we obtain

— 1 1 2 11
T(0) = ——— — 220 7
(0) 8uz 242 + PRy (4.7)

Using (4.1), (4.2) and (4.7), we now obtain a first order approximation to the

average response time of the fork—join queue. Setting,
t(A) =(n-NTA), 0<A<yp (4.8)
we readily see that

() =3 1O =g, =5 (49)

Let #(\) denote the quadratic interpolation of ¢()) over the range [0, 1], say
A =k + ki A+ k)%, 0< A< (4.10)

Using (4.9) we come to the conclusion that

3 1 .
ko=—=, ki =—— = .
0=3 M s ko =0 (4.11)
so that
o 3 1A
HA) = = — —— 0< A< pu. 4.12
(V=35> 0=A<p (412)

Finally undoing the normalization, we obtain the first order approximation

T(A) to the average response time in steady state in the form

A
5 ! 0< A< L. (4.13)

=g s 0F

Note that the first order approximation to the average response time of the two-
dimensional fork—join queue is the same as the 0'* order approximation due to the

fact that ko = 0.
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6.4.1 A conjecture

So far we have developed approximations only for two dimensional fork—join
queues due to the fact that only in the case I = 2, were we able solve the basic
PDE for the stationary distribution of the diffusion limit of the end-to—end delay.
Because of the complexity involved, it is unlikely that we shall be able to obtain
heavy traffic limits for the case A” > 2 by solving PDE’s. Hence even though light
traffic limits are available for I > 2, our ignorance of the corresponding heavy
traffic limits prevents us from obtaining approximations.

We now make the following crucial observation. For the case k' = 1, when

the system consists of a single M/M/1 queue, we observe that
M2T'(O) = lim(u — \)T(\) = 1.
ATp ’

Moreover, for the case K = 2 and exponential inter—arrival and service times, we

note that
11

12T (0) = lim (4 — NI = (4.14)
Our conjecture is that such an equality is true in general for K-dimensional fork—
join queues, as long as the arrival process is Poisson. Hence, if T (\) denotes the
average response time of a I{ —dimensional fork—join queue, then we conjecture the
equality

p2T 5 (0) = lio (s MNT (M), K =3,4...(4.15)
m

This conjecture is extended to cover fork—join queues having the same inter-arrival
and service distributions in Section 6.6. The approximations obtained by using
this conjecture agree extremely well with simulation results as well as with the
so—called “scaling approximation” of Nelson and Tantawi [52].

The rest of this section is devoted to obtaining approximations for T-(A), I =
3,4 ... with the help of (4.15). We first obtain a formula for —TK(O) with the help
of (2.6). Since the batch arriving at ¢ = 0 does not experience interference from

any other customer, its queueing delay will be zero. Hence its response time will
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be the maximum of K independent identically distributed exponential RVs. Let
Fr denote the distribution of the maximum of I\ exponential RVs with rate p,

then

so that

Tr(0) = /0,00[1 — Fr(z))da

_y (f;) =yt

r
r=1 H

With the help of the identity given after (I11.5.15), this simplifies to

— Hy
Tr(0) = =%,
7

K =23,...(4.16)
We now proceed to calculate T'K(O) with the help of (2.7). To that end, let
Ti(t,81,...,8K,01,...,0K) denote the response time of the batch that enters the

system at time 0 with service times vy,...,vx, given that another batch arrives

at time ¢t with service times sy,...,sx. It is clear that
TI\'(_tv S1yec s SKUL, .. 7’01'\')
max(vy,...,Vx), ift>0

_ (4.17)
max(vy + (81 +8)F,...,vx + (5K +1)t), ift<0.

It is plain from (4.17) that for ¢ > 0,

E({t}) = [Eq, [lnax{vlv e 7UK}] = ZE(@)
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so that (2.7) now reduces to

0
T (0) = / (B — B(0))dr
Define the RVs X;,1 <k < K and ¥3,,1 <k < K by
Xp=(sr+)", Yi=vz+Xr, 1<k<K. (4.18)

Then each X3,1 < k < K, has the distribution Fx given in (4.4) while each
Yy, 1 <k < K, has the distribution Fy given in (4.5). Note that

Tr :=Tk(t,s1,...,SK,V1,...,0K) = max(Yy,...,Yx) if t<0
Since the RVs Yj,1 < k < K, are independent, we obtain
K
QaTx <z) = [Joa(Vi <o), 2>0
k=1

=[1—e™#* — ,uxe”’te_“x]j"

=[1-(1+ ,u:Ee’”)e—“]K

K K
= ( )(——1)’”(1 + ,u:ve”t)re_””

K /K T/
- Z (7“ )(—1)’”6—”“6 Z (m> (et (4:19)
r=0 m=0

and therefore

Pp({t}) = /000[1 — Qx\(Tx < z)]dx

[ e (e

r==0 m=0
oo K T r
/ ( > -1 e THE ( > 'ua?e,ut m
0 1 m=0 m
K - r R o0
= Z (A>(—1)T—1 <? )(Me“t)m/ e M dy
—1 r 0 m 0
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From the well known identity for the exponential distribution
o
/ e dr = m!, n=0,1...(4.20)
0

we conclude that

Sy o m!
s =23 (D) (1) (4.21)

r=1 m=0

Finally using (2.7) and the fact that

K e [ 1\r—
HK=Z<I:>——(—12 1—

r==1
we obtain
— 1 /0 K K " r m!
T,rO — _ r—1 mput o .
x(0) M/—oo I:;<T>( 1) 2 <m>e g dt
_l/o i i ( 1)T_1i T\ mpt m! gt
B K J—co r=1 r m=1 m ’ rmt
K r
1 K r—1 r\ (m—1)! o
LMo e
We shall write (4.22) as
Vi .
T (0) Mfz, K=23...

where

K /K 1= 7\ (m = 1) . 5
V= )1 > N B K =2,3...(4.23)

r=1 m=1

We have tabulated Vi, 1 < I¥ < 20, in Section 6.10.

We now give the heavy traffic limit by using the conjecture (4.15), i.e.,
%\i%n(p — T (N = Vk. K=23...(424)
I
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Finally combining (4.16), (4.23) and (4.24) we obtain a 1°¢ order approxima-
tion to the average response time,
N A 1 -
TI\'(/\) = |Hp + (VK - HK)—/:L— —/I-__)\? 0< A< He K= 273 s (425)
Nelson and Tantawi [52] gave the following formula T T()) for the average

response time of a K—dimensional fork—join queue with exponential service and

inter—arrival times.

2, .H-[( 4 .H_[' A ~
TNT)\ = - - ) < S = ..
K (M) i, +11( H2)M T, 0<A<p K =23...(4.26)
where
. 122
T=—2%  0<)<y
8k — M) !

is the 1°! order approximation to the average response time of a two-dimensional
fork—join queue. They arrived at this formula by using both experimental as well
as theoretical considerations. They showed that the relative error of their approx-
imation as compared to simulation results was less than 5 percent for systems
where K < 32.

We have checked our approximation against that of Nelson and Tantawi for
K <15, and our approximation seems to perform just as well (see Section 6.4.2).

The two approximations are closely related as can be seen by taking the heavy

traffic limit of TI]&V T,

A 1 7
. NT -
—NTNT(\) = = + —Hyg. K=2,3...(4.27
1;%2(” NIFTO) = 5 + 5 Ho N (4.27)
The numbers V- and Hy are tabulated in Section 6.10 and as the reader may see,

the right hand side of (4.27) agrees quite closely with V.

The advantages of our approximation to that of Nelson and Tantawi are two-

fold,
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(1):

(2):

Nelson and Tantawi resorted to experimental results to obtain the values of the
constants in their approximation, while we give exact closed—form expressions
for all the constants appearing in our approximation.

Nelson and Tantawi’s approximation is only valid for fork—join queues with
exponential inter—arrival and service distributions. On the other hand as
we show in Sections 6.5, 6.6 and 6.7, our approximation procedure can be
extended to cover fork—join queues with general inter—arrival and service dis-

tributions.
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6.4.2 Simulation results

In this section, approximation (4.25) is compared with simulation results for

the case when g = 1 while K = 5,10 and 15.

A Ts()\) Ts(N) % Error TNT()) |
0.1 2.49 £ 0.008 2.49 0.04 2.48
0.2 2.75 +£0.012 2.75 0.07 2.73
0.3 3.09 £0.017 3.08 0.32 3.06
0.4 3.55 £ 0.027 3.52 0.84 3.49
0.5 4.19 £ 0.042 4.14 1.09 4.10
0.6 5.16 £ 0.074 5.07 1.74 5.01
0.7 6.80 £ 0.154 6.62 2.64 6.54
0.8 9.85£0.09 9.72 1.3 9.59
0.9 19.30 £ 0.43 19.02 1.45 18.74
A Ti(A) | Tw(\) | % Brror | TRT(N) |
0.1 3.17+£0.009 3.17 0.09 3.16
0.2 3.48 £0.013 3.48 0.06 3.47
0.3 3.88 £ 0.018 3.86 0.51 3.86
0.4 4.42 £+ 0.026 4.39 0.68 4.38
0.5 5.18 £ 0.042 5.12 1.16 5.11
0.6 6.34 £0.072 6.22 1.89 6.21
0.7 8.23 £ 0.137 8.05 2.18 8.05
0.8 11.92 £ 0.30 11.71 1.76 11.72
0.9 23.49 4 0.41 22.68 3.45 22.76
A 715()\) T15(/\) % Error legT(/\) |
0.1 3.58 £ 0.009 3.58 0.03 3.58
0.2 3.91+0.013 3.91 0.13 3.91
0.3 4.35 4+ 0.020 4.34 0.23 4.34
0.4 4.95 4+ 0.031 4.90 1.01 4.92
0.5 5.78 £ 0.050 5.70 1.38 5.72
0.6 7.03 +0.086 6.88 2.13 6.94
0.7 9.14 + 0.166 8.87 3.04 8.96
0.8 13.44 4+ 0.392 12.83 4.54 13.01
0.9 25.90 £+ 0.47 24.73 4.52 25.18
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6.5 Approximations for queues with Poisson arrivals

Our objective in this section is to obtain approximations for J{—dimensional
fork—join queues with Poisson arrivals. Since these queues do not satisfy the
condition 3 = % (except when the service times are exponential), we do not have
their heavy traffic limit even for the case I = 2. However, notice that that in the
case I = 1, when the system consists of a single M/GI/1 queue, the following
equality holds
1+ pod

‘)

p)

p2T(0) = lim(p — MT(N) =
ATu
Hence, we assume that such an equality is true in general as IV increases, so that
12T (0) = lim(j« AT k(M) K=23...(51)
I

holds for all fork—join queues with Poisson arrivals. Our experimental results
indicate that the heavy traffic approximations so obtained are quite good.

We illustrate the general methodology by considering the special case of Pois-
son arrivals and second order Erlangian service times, even though any other
service time distribution would have sufficed.

We now proceed to obtain a formula for T (0) with the help of (2.6). The
response time of the batch arriving at ¢ = 0 into an empty system will be the

maximum of K identically distributed RVs with density f given by
flz) =4p?ze ™" £ >0.

Let F denote the distribution of the maximum of I of these RVs with rate p,

then for z > 0, we see that

Fre(e) = [1— (1 4 2uz)e 20|18

K K
=3 (F)mrrs speyrene
T
r=0

. () 3 (1 )omaymeoe

r= m=0

K=23...(52)
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Therefore

oo K ~ r
T_K(O) = /0 [1 - Z (I:)(——l)r (;) (2u$)m6_2rux]d$

m=0

Il
i =
A
TN
s
—
~~~
—
p—
S
|
—
i ]~
-
N~
.
V)
=
e
3
c\
R
3
o)
&
5
=
8
QA
2

— Fy i}
Tr(0) = ; : LK =23...(54)

where

K r
1 K _ r m! .
FI"ZEZ<7~>(_1Y IZ( )W K=23..5)

m
r=1 m=0

The numbers F, 1 < k < 20, are tabulated in Section 6.10. Our next objective is

to obtain a formula for TK(O). Let Tw(t,81,...,8K,v1....,vx ) be the response
time of the batch that enters the system at time ¢t = 0 with service times vy,..., v
given that another batch arrives at time ¢ with service times si,....sx. Then

Tr(t,s1,...,8K,01,...,0) satisfies equation (4.20). For 1 < k < I, define the
RVs X and Y} as in (4.21)-(4.22). Here each RV X, 1 < k < IV, has distribution

Fy where

Fx(z) =1—e 2 —2uze ", >0 (5.6)

and each RV Yy, 1 < k < I, has distribution Fy where

5 4 - :
Fy(z) = 1— (1 +2uz)e” 2 — [(2p* —4p°1)2” + 5;1,3:53]62’”6 >0 (5.7)

Note that

Ty = max(Yy,...,Yr) if £<0
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Since the RVs Y%, 1 < k < K, are iid, we obtain

O\Tx < z)

K
: 4
= [1 — (14 2ux)e™2H® — [(2,u2 — 42 t)2? + gpgwg]ez"te"z“”

K K X
=3 (D) 2y
r=0 r

2 3 2 4 3 3717 2rut —2rprx
x[(.?,u — 4u”t)z +§/,La:}e‘e #

K /K png g 4 q
S0 B (e
r=0 m=0

q=0 =

r 4 . . 2rut —2rpe
< [Z (;) (2M2$2)n(§u3$3)r—n1;) (p)(-—l)p(Qﬂt)P:l eZTHt o =271

S

n=0
Hence it follows that

S ({t})

_ /0 1= QA(Tx < 2))da

r=0 q=1 m=0

T 4 —_n " n rut —2rpx
< (;)(2M2$2)n(§M3$3)T > (7)) (a et
0

K K o K—r I — q ¢ .
:Z 74)(_1) Z ( q >(—1)q Z <m>(2,u)
r=0 q=1 m=0
X (:;) (2”2)11(%#3)1“—11 Z: (Z) (—1)])(2;#)])62”“ /0 $m+3r—ne—2(r-+q)ﬂxdx
n=0 p_O
2 (K o1 (K= . /q -
= (">H) 1 q; ( g >(—1)qn§\; <m>(2”)
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r Y a4 7) . ) 9 (m 4+ 3r —n)!
X <n> (2I~‘2) (§P3) Z <p>("1)p(2ﬁ‘t)) e?m 2(r + q)p]mt3r—n+l

n=0 p=0

S E e 5 ()

g=1 m=0

r r orpt (M4 37 —n)!
<Y (g 3 (0) car e Lt 58)

n=0 p=0

Finally using (4.4) we obtain

R[S ()2 () ()

HJ—eo r=0 ¢=0 m=0

1 m + 3r —n) ) w
" Z( >3T n (r(+ g)mE3r=ntl Z( ) —1)P(2pt)P M — Fyeldt

LS (e s ()

q=

L/t 1 (m43r—n) <= (n .
§ Z: <n> 3r=n (p 4 g)mt3r—n+l p; <p>(2ﬂt) € |dt

K K—vr
1 <[> (=1)rt Z (I& _7> .
T T ( 1)’]
P \T ort+1 pr 2 o
§ <T> 3’”1 n o +T§L:;’ nn)+1 ( > (21) P/ Po—2rut gy
n=0 L2 (7" + q) -
u Ke—r .
! K\ (=) K — . ]
:F2<r> 9r+1 Z( q ( 1) -
r=1 g=0
o\ 1 (m+3r—n) - (n )
5.9
X o (n) 3r—n (T’ + q)m+3r—n+1 Z (p) ( )p+1 ( )
We shall write (5.9) as
Ti(0) = (;LR K =2,3...(5.10)
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where

1 K—r - q
) I —r q
G = _1\¢
(NS 2 ()
(m + 3r — n)! “/n
Z 3r n (7‘ + q)m—}-Sr n+1 p r)p—i—l

p=0

K=23...(511)

We have tabulated Gg,1 < K < 20, in Section 6.10.

Now using the conjecture (5.1) we conclude that

lAiTm(u —MTr(\) = Gr. K=23...(512)
I

Combining (5.4), (5.10) and (5.12) we obtain the following 1"*! order approx-
imation TK()\), for the average response time in {—dimensional fork—join queue
with Poisson arrivals and Erlangian service times,

A 1

Tr(\) = |Fr + (Gx — FK); Y 0< A< p K=23...(513)

This approximation is in very good agreement with simulation results (see Section

6.5.1).
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6.5.1 Simulation results

In this section, approximation (5.13) is compared with simulation results for

the case when y = 1 while K = 2,5,10 and 15.

A Tz(A) Tg()\) % Error
0.1 1.48 4 0.005 1.48 0.13
0.2 1.62 4+ 0.007 1.61 0.37
0.3 1.79 4+ 0.009 1.78 0.50
0.4 2.0240.014 2.01 0.49
0.5 2.354+0.022 2.33 0.86
0.6 2.85 4 0.039 2.81 1.4
0.7 3.65 +0.07 3.61 1.09
0.8 9.30 £0.19 5.20 1.88
0.9 10.08 +0.20 9.98 0.99

A Tg,()\) T5(/\) % Error
0.1 2.03 £ 0.005 2.04 0.24
0.2 2.20 £ 0.007 2.21 0.45
0.3 2.43 4+ 0.011 2.42 0.41
0.4 2.73+0.015 2.71 0.73
0.5 3.15 £ 0.022 3.11 1.26
0.6 3.8040.041 3.72 2.10
0.7 4.88+0.079 4.73 3.07
0.8 6.98 4 0.06 6.74 3.43
0.9 13.34 £0.23 12.79 4.12
A TIO(/\) Tlo()\) % Error
0.1 2.46 £+ 0.005 2.46 0.08
0.2 2.66 £ 0.007 2.66 0.007
0.3 2.92+0.011 2.91 0.31
0.4 3.2740.017 3.23 1.22
0.5 3.75+0.027 3.70 1.33
0.6 4.49 4+ 0.047 4.39 2.22
0.7 5.75 £+ 0.10 5.54 3.65
0.8 8.30 £0.07 7.85 5.42
0.9 15.90 £ 0.27 14.77 7.10
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A 715(/\) T15(/\) % Error
0.1 2.71 4+ 0.005 2.71 0.07
0.2 2.92 1+ 0.008 2.92 0.07
0.3 3.19+£0.012 3.18 0.31
0.4 3.574+0.021 3.53 1.12
0.5 4,104+ 0.037 4.02 1.95
0.6 4.90 &+ 0.062 4.76 2.86
0.7 6.26 £ 0.114 5.99 4.31
0.8 9.03£0.29 8.44 6.53
0.9 17.34 +0.30 15.81 8.82
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6.6 Erlangian symmetric fork—join queue: The case [ =2

In the present section we obtain approximations for all the moments of the
response time of a two—dimensional fork—join queue with Erlang distributed service
and inter—arrival times. Exact heavy traffic results for this system were obtained in
Chapter 5. In the next section we obtain approximations for the average response
time of a K—dimensional fork—join queue with Erlang distributions.

Consider a two—dimensional symmetric fork—join queue with second order Er-
langian arrivals with rate A and second order Erlangian service times with rate
i. In the present section we develop light traffic estimates for the response time
statistics of this queue, and then combine it with the heavy traffic estimates of
Chapter 5 to yield an estimate that is also valid for moderate traffic. The ap-
proximations that we develop in this section hold for all moments of the response
time.

The density f of a second order Erlangian distribution with rate p is given
by

f(z) = 4pPze 2 > 0. (6.1)

and its mean and variance are given by % and —5;—2 respectively.

We now proceed to calculate T(n)(O) as follows. Since the batch arriving
at ¢ = 0 into an empty system does not experience interference from any other
customers, its queueing delay will be zero, and hence its response time will simply
be the maximum of two identically distributed Erlangian RVs. If F' denotes the

distribution of the maximum of two second order Erlangian RVs with rate p, then
F(z) = [1 — T 2;&26'2“2]2, z>0 (6.2)
so that its density function f is given by
flz) = [1 — 72T Z;Lze"z’“‘z]Suzze"z”’, z > 0. (6.3)
Hence, T(n)( 0) is given by the formula
T(0)= / 2" f(z)dz
0
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E_ (n+1)! (n+1)! 2(n+2)

7 ont2  4n+2  4n+3 n=12...(64)

We shall write (6.4) as
T(0) = %(gﬂ n=1,2...(6.5)

where

, (n+1D! (n+1)! 2(n+2) .
Q(n) =8 2n+2) ~(4n+2> — (4n+3 . n=12...(6.6)

This concludes the calculation of the n*® moment of the steady response time
at A = 0. The next objective is to calculate this measure at A = p, i.e., in heavy
traffic. If we specialize the results of Sections 5.4 to the case when both the service

times and inter—arrival times are second order Erlangian, we obtain

- W0y = T(n 4 3y, [ 3 Y3yn Pn _
1}3&1(@—)\) T ()\)—1“(72—1—2)'\/;( 2) T n=12...(6.7)

where I'(n + £) and P, are given in (V.4.31)-(V.4.32).
Finally combining (6.5) with (6.7), we obtain as the 0™ order approximation

T(")()\) to the nt* moment of the response time as

Ay @) A 3. /3 V3.,.P, |
T( )()\)~— (M—)\)n +;(/«L—/\)n {F(n-{—é‘)\/;(—?—) -é—;—Q(n) .
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6.6.1 Simulation results

In this section, approximation (6.8) is compared with simulation results for

the case when =1 and n = 1.

A T(l)(/\) T(l)()\) % Error
0.1 1.40+ 0.004 1.45 3.57
0.2 1.46 + 0.005 1.54 5.48
0.3 1.55 4 0.006 1.67 7.74
0.4 1.69 £ 0.008 1.83 8.28
0.5 1.91+0.012 2.06 7.8
0.6 2.23 4+ 0.021 2.41 8.07
0.7 2.80 4+ 0.041 2.98 6.42
0.8 4.03+£0.11 4.12 2.23
0.9 7.44 4+ 0.14 7.56 1.61




6.7 Erlangian symmetric fork—join queue: The case K > 2.

The main difficulty in obtaining limit theorem approximations for the case
K > 2 is that heavy traffic approximations are no longer available. We were able
to overcome this problem for the case when the inter—arrival times are exponential

by postulating that
12T (0) = lim(p — NT g (N). K=34..(11)
n

However simulation results suggest that such an equality is no longer true, even for
the case of single server queues if the assumption about exponential inter—arrival
times is relaxed. For example for a single server queue with second order Erlangian

inter—arrival times and exponential service times, we found
2——/ 3 . —
p T (0) =0 # — = lm(p — \)T(A).
4 Ap

However, we are able to recover the heavy traffic approximation for the case
I{ > 2 and the inter—arrival and service times have the same distribution, by
making the following crucial observation. For the case ' = 2, and exponential

inter—arrival and service distributions, we have
— 11
li — MNT(A) = —.
lim(p — MT(A) = 3

More generally, if the arrivals and services have the same distribution for I = 2,

then by (V.4.25) we have

— 11
1}\1{2(# —NT(\) = §0'2,u2. (7.2)

For the case K > 2, and exponential inter—arrival and service distributions, our

conjecture (4.18) states that

lim(p — MNTr(\) = Vi.
ATp
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By observing the form of the expression (7.2) when K = 2, one would expect that
for the case K > 2 and the arrivals and services have the same distributions, the

following holds
l}ﬁm(,u — T (X)) = Vi o u?. K =3,4...(13)
¥z

Equation (7.3) does indeed provide a very good heavy traffic approximation as our
simulation results indicate (in Section 6.7.1). In the remainder of this section we
use (7.3) to obtain a first order approximation to the average end-to-end delay of
a [{~dimensional Erlangian fork—join queue. An application of (7.3) to this queue

yields
Vi

Em T ()) =

K=23...(74
ATu ( )

Using results from Section 6.5, we can write down the following light traffic

limit

= Fr
o
where F was defined in (5.5).

Finally, by combining (7.4) and (7.5), we obtain an approximation for the
average response time of a J{—dimensional fork—join queue with Erlangian inter-—
arrival and service distributions. This approximation, denoted by T (), is given
by

R - A 1 -
Ti(\) = FK+(Z§_—FK); Y 0< A<y K =23...(76)

and agrees extremely well with simulation results (see Section 6.7.1).
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6.7.1 Simulation results

In this section, approximation (7.6) is compared with simulation results for

the cases I = 5,10 and 15.

A Ts()\) Ts(N\) % Error
0.1 1.93 £ 0.004 2.01 4.14
0.2 2.01+0.005 2.13 5.97
0.3 2.14 4 0.007 2.30 7.47
0.4 2.33 £0.010 2.92 8.15
0.5 2.62+0.015 2.83 8.01
0.6 3.06 4+ 0.024 3.29 7.51
0.7 3.83 + 0.046 4.07 6.26
0.8 5.43 4+ 0.11 5.62 3.49
0.9 10.11 &+ 0.15 10.27 1.58
A T1o()\) Tlo()\) % Error
0.1 2.34 4 0.004 2.43 3.84
0.2 2.43 4 0.005 2.58 6.17
0.3 2.58 +0.007 2.78 7.75
0.4 2.81 £0.010 3.04 8.18
0.5 3.15+0.014 3.41 8.25
0.6 3.68 £ 0.022 3.96 7.60
0.7 4.59 £ 0.043 4.87 6.10
0.8 6.45 4+ 0.09 6.70 3.87
0.9 12.09 £ 0.15 12.19 0.83
A 7150\) Tl_g,(/\) % Error
0.1 2.58 + 0.003 2.68 3.87
0.2 2.68 £ 0.004 2.85 6.34
0.3 2.84 + 0.006 3.06 7.74
0.4 3.08 +0.009 3.34 8.44
0.5 3.43£0.014 3.74 9.03
0.6 33.9940.025 4.33 8.52
0.7 4.94 + 0.052 5.32 7.69
0.8 6.87+0.12 7.31 6.40
0.9 12.89 4+ 0.47 13.25 2.79
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6.8 A formula for the heavy traffic limit for general 5 and I

Consider a I{-dimensional fork—join queue. Recall that the parameter g was

defined by

2
Tq

U%—i—aQ

g =

where o( is the variance of the inter—arrival times and o 1s the variance of the
service times. Heavy traffic limits for this queue are known for 3 = 0 and 5 =1,
while for 8 = %, we have our conjecture (7.3). In particular we see that,

(1): 8 = 0: In this case the i queues are decoupled from each other since

the arrival stream is deterministic, and using (II1.5.31), we can write

o2 2

‘)

yd)

15%11(,; — MTg(N\) = Hg K=23...(81)
©

(2): B = }: In this case o = ¢ and according to our conjecture (7.3),

lgn(p - )\)TK(/\) = Violu?. K =23...(82)
T

(3): B = 1: In this case ¢ = 0 and the system behaves like a GI/D/1 queue

so that

. = o2 p? .
Um(p — T (M) = 5 K =2.3...(8.3)
ATw

<

Observing the structure of (8.1)-(8.3), we may venture to write down the

following expression for the heavy traffic limit for a general value of 3.

2 2
lim(u - MTr(Y) = My (8)% ;UO ph 0<B<, K =2,3...(84)
I
where
1
Mg(0) = Hr, ]V[K(—‘)—) =V, Mgp(l)=1. (8.5)

In the absence of any further information we may use a quadratic approximation

for M(ﬂ) This leads to

lim(p — NT (N)
ATy
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zto ; %2
K =2,3...(86)

= [Hx + (4Vk —3Hg — 1)B + 2(1 + Hy — 2V )] 0<pB<1

We may verify that (8.6) is indeed a very good approximation by making the
following observation: Consider the case when the arrivals are Poisson and the
service times are second order Erlang distributed, so that 3 = —g— In this case (8.6)

leads to

. NTT _ 1 'HI{ 2 7 s

If we compare the right hand side of (8.7) with the values of G given in the table
in Section 6.10, then we observe that they indeed match very closely. Moreover,
simulation results in Section 6.5.1 indicated that the approximations obtained by
using G'i as the heavy traffic limit, matched closely with simulation results. This
implies that the approximation obtained by using (8.7) as the heavy traffic limit
would also match closely with simulation.

As further evidence that (8.6) provides a good heavy traffic approximation,
consider the case when the arrivals are second order Erlangian and the service
times are exponential, in which case 3 = + and (8.6) leads to

, = 1 1 2
lim(p — MTr(\) = —— + ~Hp + =Vi. K=23.. (88
)}%I;(/.L MT r(N) 12+6 I\+3I ¢ (8.8)

Also it is obvious that for this system

H[\'

Tx(0) = .

K =23...(89)
Combining (8.8) with (8.9) we obtain the following approximation T ( A), for

the average response time,

~ 2 5) 1A 1
Tr(\) = |Hr +(5Vk — gHk

~ )2 2 0<a<p K=2,3...(8.10
6 20 g 0sAsm B (8.10)

This approximation agrees extremely well with simulation results (see Section

6.8.1).
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We now present a general methodology for obtaining limit theorem approxi-
mations for fork—join queues. Assume that the K-dimensional fork—join queue is
governed by inter—arrival times possessing a distribution function A and service
times possessing a distribution function B. Also assume that the distribution A4
has mean -1): and variance g, while the distribution B has mean ZIZ and variance

o. The following procedure then gives the heavy and light traffic limits for the

system.

2
(1): Calculate the value of 8 = ;2:_—00—2 Substitute the values of Hy, Vi, 00,0, 1
0

and § into (8.6) to obtain the heavy traffic limit a, for the system.
(2): Obtain the light traffic b for the system by using the formula

b= /000[1 — (1 — B(z))*]de.

This integration may be done numerically if necessary.

The limit theorem approximation for the system 7(\), is then given by
. A 1
T(A) = |bu+ (a—bu)— — 0< A< (8.11)
wl p—

We now present an application of (8.11) to the case when the coefficient of
variation of the service time distribution exceeds one. In this case we observe that
the approximation works well in heavy traffic, but the relative error is quite large
(in the region of 30 percent) for moderate or light traffic.

Consider a RV S possessing the following hyper—exponential density function
fs,

fs(z) = prp1e™ ™ d pruge™ 2 > 0. (8.12)

Assume that the condition

pr_p2_ 1 (8.13)
g p 2 '
is satisfied. Then note that
11
ES=1and ES" = — + — (8.14)
Hi 2
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so that the square of the coefficient of variation, c% is given by

A=~ —1= -1 (8.15)

The light traffic limit for the average response time of a K{—dimensional fork—join
queue subject to Poisson arrivals, and service times with density function given

by fs can be obtained with the help of (2.6), and is reproduced below.

K - r m._r—m
7o) =3 (7)o 3 () A (5.16)

r=1 m=0 mj + (T - m)ﬂz

Let us consider the special case when p; = 0.1, 2 = 1.9, p; = 0.05 and py = 0.95.
In this case ES = 1, ES5? = 10.526, ¢? = 9.526 and # = 0.095. Substituting into

(8.6), we come to the conclusion that the heavy traffic limit is given by
gFQA—AﬁEdA):365HK4—L&yk-04 (8.17)
"

Combining (8.16) with (8.17), it is possible to obtain interpolation approximations

for this system, which are written down below.

1.704 4-6.176A

[y(\) = —— 0<a<1 (8.18)
X 32 4 8.44)

Ty() = il_t%__ 0<A<1 (8.19)
i A5+ 0.4

Ty = Z2F02 g<a<a (8.20)

and
7.23 4+ 9.45)\

Tis(\) = T —

0<A<l (8.21)

These approximations are compared with simulation results in Section 6.8.2. We
observe that the relative error is quite small in heavy traffic, but large in light and
moderate traffic. Hence it seems that the interpolation approximation technique
gives good results only for the case when the coefficient of variation of the service

times is less than one.
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6.8.1 Simulation results

In this section, approximation (8.10) is compared with simulation results for

the case when p = 1 while I = 2,5,10 and 15.

A T2 () To(N) % Error
0.1 | 1.55+0.007 1.62 4.51
0.2 | 1.65+0.009 1.77 7.27
0.3 | 1.8140.011 1.96 8.28
0.4 | 2.0540.015 2.22 8.29
0.5 | 2.39+0.024 2.58 7.95
0.6 | 2.9140.042 3.12 7.21
0.7 | 3.81+0.083 4.03 5.77
0.8 | 5.6540.203 5.83 3.18
0.9 | 10.96+0.24 11.25 2.64

A Ts(M) Ts(N) % Error
0.1 | 2.34+0.007 2.45 4.70
0.2 | 2.4940.008 2.67 7.23
0.3 | 2.7140.011 2.94 8.48
0.4 | 3.0340.016 3.31 9.24
0.5 | 3.5040.026 3.82 9.14
0.6 | 4.2240.044 4.59 8.77
0.7 | 5.4740.086 5.87 7.31
0.8 8.01 £ 0.21 8.43 5.24
0.9 | 15.75+0.27 16.12 2.34
A Tio()\) Tyo(N) % Error
0.1 | 3.0040.007 3.13 4.33
0.2 | 3.1840.009 3.39 6.60
0.3 | 3.4740.013 3.73 7.49
0.4 | 3.8840.019 4.17 7.47
0.5 4.4940.03 4.79 6.68
0.6 5.4140.05 5.73 5.91
0.7 6.99 + 0.09 7.29 4.29
0.8 | 10.214+0.22 10.40 1.86
0.9 | 19.514+0.28 19.74 1.18

130



A T15()\) Tys(\) % Error
0.1 | 3.3940.007 3.54 4.30
0.2 | 3.5940.009 3.83 6.68
0.3 | 3.8940.011 4.20 7.97
0.4 | 4.3440.017 4.69 8.06
0.5 | 4.9940.027 5.37 7.61
0.6 | 5.9940.045 6.40 6.84
0.7 | 7.6940.008 8.11 5.46
0.8 | 11.084+0.19 11.53 4.06
0.9 | 21.03+0.85 21.80 3.67
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6.8.2 Simulation results

In this section, approximations (8.18)—(8.21) are compared with simulation

results for the case when y = 1 while K = 2,5,10 and 15.

A To(N\) Tg(/\) % Error
0.1 2.78 £0.021 2.58 7.19
0.2 4.09 £+ 0.042 3.67 10.26
0.3 5.71 £0.067 5.08 11.03
0.4 7.83 +0.105 6.96 11.11
0.5 10.73 £0.172 9.58 10.72
0.6 14.95 £ 0.289 13.52 9.56
0.7 21.70 £ 0.503 20.09 7.42
0.8 34.71 £ 1.50 33.22 4.29
0.9 71.14 £ 2.59 72.62 2.04

A Ts()\) T5(/\) % Error
0.1 5.59 + 0.030 4.63 17.26
0.2 8.22 + 0.054 6.26 23.84
0.3 11.32 4 0.086 8.36 26.15
0.4 15.10+0.130 11.16 26.09
0.5 19.93 +0.198 15.08 24.33
0.6 26.70 + 0.332 20.96 21.50
0.7 37.40 + 0.609 30.76 17.75
0.8 57.94 +1.30 46.14 20.36
0.9 114.03 £ 3.11 109.16 4.27
A T10(N) Tio(N) % Error
0.1 9.18 £ 0.038 7.10 22.66
0.2 13.16 £ 0.066 9.16 30.39
0.3 17.56 £ 0.099 11.81 32.74
0.4 22.67 +0.147 15.35 32.29
0.5 28.99 +0.219 20.30 29.97
0.6 37.64 £0.34 27.72 26.35
0.7 50.89 4+ 0.59 40.10 21.20
0.8 79.95+1.19 64.85 18.88
0.9 146.72 +£2.95 139.10 5.19




)\ T15(/\) T15(/\) % Error
0.1 11.99 £ 0.041 9.08 24.27
0.2 16.79 4+ 0.069 11.40 32.10
0.3 21.92 +0.106 14.38 34.40
0.4 27.76 + 0.157 18.35 33.90
0.5 34.94 + 0.234 23.91 31.57
0.6 44.72 + 0.363 32.25 27.88
0.7 59.97 £ 0.630 46.15 23.04
0.8 89.09 £ 1.29 73.95 16.99
0.9 174.26 £+ 3.28 157.35 9.70
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6.9 Approximations for acyclic fork—join networks

The reader may recall that we obtained the heavy traffic diffusion limit for
acyclic fork—join networks in Chapter 2. However the form of the limiting diffusion
was quite complicated and we were unable to say anything about the stationary
distribution of this diffusion. Basing ourselves on the experience gained in the pro-
cess of solving the single stage fork—join queue, we now present a simulation based
approach for obtaining approximations for these systems. These approximations

agree quite well with experimental results.

Consider the homogeneuous fork—join network depicted in Fig 2.2. Asume
that the arrivals into the system constitute a Poisson stream with rate X, while
the service time distribution at each queue has rate p and variance 0. Let T())
be the average response time of the network when the arrival rate is A\. Based
on our experience with the fork—join queue, we would expect that the light traffic

limits of the network are given by

T(0) = A (9.1)
v’
T'(0) = % (9.2)

where A and B are constants. Moreover we use the conjecture (4.15) for this
system so that

lim(p — MT(\) = B (9.3)
Alp

Combining (9.1), (9.2) and (9.3) we obtain the following approximation T()\) for

the average response time of this system.

. A 1

T(A\) = [A + (B — A)—} —_ (9.4)
" M [ — A

The only task left is to identify the value of the constants 4 and B. Even

though it is possible to calculate them using the light traffic equations, it is likely

that the calculations would be quite tedious for arbitrary networks. A more viable
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method would be automate the calculations using some symbolic computation tool
such as MACSYMA. However, this is a subject for future research and here we
only give a simulation based technique for obtaining A and B. The main idea in
this technique is to simulate the system with p = 1, and use the simulation output
for obtaining 4 and B. For e.g., for the network in Fig 2.2, for the case when the

services are exponential with rate u = 1, we found that

T(0.0005) = 5.05685 and T(0.01) = 5.100354

so that
A =5.05685 and B =4.35
so that
. A 1
T(\) = [5.05685 — 0.70685 — | —— (9.5)
plop—A

This approximation is compared with simulations in Section 6.9.1, and as the
reader may note, the agreement is quite good. For the case of Poisson arrivals and

Erlang-2 services, the approximation is given by

. A 1
T(\) = [4.759 — 2.176—} —_— (9.6)
plp—=A
while for the case of Poisson arrivals and deterministic services, the approximation
is given by ’
A A 1
T\ = [4 — 3.467—] — (9.7)
plop—A
These approximations also compare extremely well with simulation results as
shown in Section 6.9.1.
The technique that we have proposed here for obtaining approximations for
acyclic fork—join networks is very efficient, since by incurring the cost of just two
simulation runs, we are able to obtain a formula that holds for all values of A and

(. Moreover, the simulations are made for A & 0, so that a good confidence level

can be obtained from a relatively short run.
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6.9.1 Simulation results

Approximations (9.5), (9.6) and (9.7) are compared with simulation for the

case when p = 1.

A (N T()\) % Error
0.1 5.56 + 0.018 5.54 0.28
0.2 6.19 4+ 0.026 6.141 0.73
0.3 7.02 & 0.039 6.926 1.38
0.4 8.11 £ 0.058 7.96 1.91
0.5 9.63 £+ 0.090 9.41 2.31
0.6 11.92+0.152 11.59 2.87
0.7 15.73 + 0.285 15.21 3.33
0.8 | 23.71+£0.215 22.46 5.29
0.9 46.93 +0.76 44,21 5.80
A T(\) T(/\) % Error
0.1 5.06 4+ 0.010 5.04 0.28
0.2 5.44 4+ 0.017 5.40 0.66
0.3 5.93 £ 0.024 5.87 1.01
0.4 6.57 +0.034 6.48 1.35
0.5 7.47 + 0.054 7.34 1.74
0.6 8.84 4+ 0.093 8.63 2.37
0.7 11.19+0.189 10.78 3.66
0.8 15.89 +0.123 15.09 5.03
0.9 30.13 +0.496 28.00 7.06
A T(\) T()\) % Error
0.1 4.05 4+ 0.001 4.06 0.09
0.2 4.12 £+ 0.002 4.13 0.19
0.3 4.21 £+ 0.003 4.23 0.35
0.4 4.33 £+ 0.005 4.35 0.53
0.5 4.50 4 0.010 4.53 0.73
0.6 4.75 £ 0.017 4.79 1.02
0.7 5.18 4 0.034 5.24 1.14
0.8 5.99 £ 0.023 6.13 2.33
0.9 8.44 4- 0.096 8.80 4.06

136



6.10 Tables

K Hyg Vi Fr G
2 1.5 1.375 1.375 0.957
3 1.833 1.594 1.606 1.072
4 2.083 1.745 1.773 1.151
5 2.283 1.860 1.904 1.210
6 2.449 1.951 2.011 1.258
7 2.593 2.027 2.101 1.297
8 2.717 2.091 2.180 1.330
9 2.829 2.147 2.249 1.359
10 2.929 2.195 2.313 1.384
11 3.019 2.240 2.367 1.407
12 3.103 2.280 2.418 1.427
13 3.180 2.316 2.465 1.446
14 3.251 2.349 2.508 1.463
15 3.318 2.379 2.549 1.474
16 3.380 2.408 2.587 1.494
17 3.439 2.434 2.622 1.507
18 3.495 2.460 2.658 1.520
19 3.547 2.478 2.688 1.532
20 3.597 2.510 2.734 1.547
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CHAPTER VII

7.1 Introduction

The next two chapters in this thesis are devoted to approximations for queues
exhibiting the resequencing synchronization constraint. As was the case for fork—
join queues, the presence of resequencing renders the analysis to be very complex
and very few results are known [63]. Our work on heavy traffic diffusion limits for
resequencing systems leads to the following advances:

(1): We have obtained good estimates for the queueing delays for several
models that were previously intractable analytically;

(2): We have identified a class of models in which resequencing can be ignored
in heavy traffic.

In the present chapter we obtain heavy traffic diffusion limits for a variety of
resequencing systems possessing the following generic structure: Customers enter
a disordering system which they leave (after being served) in an order different
from the one in which they entered it. This necessitates resequencing which takes
place in a so—called resequencing buffer. After leaving the resequencing buffer,
the customers enter the buffer of a single server queue from where they leave the
system. This generic model is introduced in Section 7.2, where we also give the
recursive equations governing its delays. In Section 7.3 we obtain the heavy traffic
diffusion limit for the generic model from Section 7.2 from which diffusion limits
for specific models can be easily recovered.

In Section 7.4 we specialize the results of Section 7.3 for the important special
case when the disordering system is an infinite server queue. We show that the
queue delay process of this system has the same heavy traffic limit as an ordinary
single server queue, i.e., in heavy traffic the resequencing delay has negligible

influence on the operation of the system. We also extend this result to the case

138



when there may be more than one disordering and resequencing stages before the
single server queue.

In Sections 7.5 and 7.6 we obtain the heavy traffic limit for finite server
disordering systems. When the disordering system is a GI/GI/K queue, we show
that the normalized resequencing delay converges to zero in heavy traffic. For the
case when the disordering system is composed of I{ single server queues operating
in parallel, we use an alternate representation for the end-to—end delay of the
system than the one given in Section 7.2, to obtain the heavy traffic diffusion
limit. In this case, our results show that the resequencing delay constitutes the

major portion of the total delay, in heavy traffic.
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Fig. 7.1. A generic resequencing model.

7.2 The model

In this section we introduce a generic resequencing model, from which specific
resequencing structures can be recovered as special cases. There is a stream of
customers which enter a disordering system, and leave in an order different than
the one in which they entered it. After leaving the disordering system, they wait
in a resequencing buffer until all customers which entered the disordering system
prior to them have left it. After leaving the resequencing box, these customers are
served by a single server queue, before finally leaving the system. The model of
Baccelli, Gelenbe and Plateau [1] is special case of this model when the disordering
system corresponds to an infinite server queue.

We now define some RVs that are useful in discussing the properties of this
system. Let the sequences of RVs {D,}5°, {vn}§° and {rn}§° be defined on some
probability space (Q, F,IP). Here 7, represents the time of arrival of the nth
customer into the system, D, represents its disordering delay and v, represents
its service time in the single server queue. In terms of these RVs define the following
quantities for all n = 0,1...,

Un+1 : Inter-arrival time between the (n+1)"** and the nth customers (= Th41—
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Tn)-
W, : Delay of the n'* customer in the resequencing box and in the buffer of
the single server queue.

Y, : The end-to—end delay of the n*"* customer (= D, + W,,).

Various kinds of disordering systems can be realized by assuming different
statistical structures on the sequence {D,}§°. For example, if the delay sequence
{D, }§° is an iid sequence which is independent of the inter-arrival sequence {u, }§°
then the disordering system corresponds to a GI/GI/oco queue. Similarly we
can realize the disordering system as GI/GI/I{ queue or a system of I{ parallel
GI/GI/1 queues by imposing a particular structure on {D,}§°.

The analysis of this model is very difficult, one of the reasons being that
the output stream from the resequencing buffer is a complicated process with
batch departures and correlations between the batch sizes and inter—departure
times. For the special case when the disordering system has an infinite number
of servers, and the the sequences {u,}§°, {Dr}5° and {v,}§° are all exponentially
distributed, Baccelli, Gelenbe and Plateau [1] were able to derive a complicated
expression for the Laplace transform of the end-to—end delay Y,,. We now derive a

recursion first given by Baccelli, Gelenbe and Plateau [1], governing the sequences

{Y,}5° and {Whlse.

Lemma 7.2.1. Consider the resequencing system defined above. If the system 1s

initially empty, then the recursions

0 =Dy
Yog1 = max{Dpt1,Yn + Un — Unt1}, n=20,1...(2.1)
and
Wo=20
Wott = maX{O, Wa+Dp— Dpy1 +vy — un+1}, n=20,1... (22)
hold.

141



Proof. Since there is no initial load in the system by assumption, the first cus-
tomer in the system will not undergo any resequencing delay and the initial con-
ditions are therefore immediate.

In order to prove (2.1) consider the (n + 1)"" customer. Its resequencing
delay plus queueing delay will be zero if the n'® customer has left the system at

the time it leaves the disordering subsystem, i.e.,
Y.n+1 = Dn+1 if Tn+1 + Dn+1 >Th+ Y A+ Un, n=0,1... (23)

If the n** customer has not left the system at the time the (n + 1) leaves the
disordering subsystem, then the (n+1)"*" customer will experience a resequencing

delay of duration 7, + Y, 4+ v — (Tn+1 + Dny1), hence

Yit1 = Dpy1 +[mn + Yo + v — (Tng1 + Do)y if Tngt + Dppr <7 + Yo + 00
n=20,1...(2.4)
By combining (2.3) and (2.4) it is plain that

Yn_|_1 = maX{Dn+1,Yn + Un — (Tn+1 - Tn)} n— 0, 1... (25)

and (2.1) follows since Uunp41 = Tp41 — T
In order to derive (2.2), simply take note of the fact that W,, =Y, — D,, for

n=20,1.... |

Throughout we shall assume that
(VIIa): The sequences {u,}5° and {v,}§° are iid with finite second moments and
mutually independent.

Foralln=0,1..., we set
u=IFB(tng1) <00, 0p =Var(upsi) < o0

and

v=IE(v,) < 00, 0% = Var(v,) < oco.



7.3 The heavy traffic limit for general resequencing systems

In this section we obtain heavy traffic diffusion limits for resequencing systems
possessing a disordering system with an arbitrary structure. Disordering systems
possessing specific structures are discussed in Sections 7.4-7.6.

We now consider a sequence of resequencing systems indexed by r = 1,2.. .,
each of which satisfies assumptions (VIIa). Moreover assume that
(VIIb): Asr T oo,

ou(r) — ou.
ov(r) — ov,

fu(r) = v(r)]V/7 = c.

(VIIc): For some € > 0,

sup {IE{] ua(r) 2}, E{oi(r) 779} < oo

For r =1,2..., define the following partial sums

Vo(?‘) = 0,

Valr) = vo(r) + ... + vp-a(r), n=12...(3.1)
and

[j(](?“) = O,

Un(7) = uo(r) + ... + tn—1(r). n=12...(3.2)

For r = 1,2... define the stochastic processes &/ = {gf(mt > 0}, = 0,1,

with sample paths in D[0,00) by

&(r) = U[”](T);;u“)m, t>0 (3.3)

and

f}(?‘) — V[rt](r)\_/‘;y(r)[ﬁ] >0, (3.4)
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Let &7 = {ﬁg,t > 0},7 = 0,1, be two independent Wiener processes. Lemma
8.3.1 shows that the stochastic processes defined in (3.1)-(3.2) converge weakly to

these Wiener processes.

Lemma 7.3.1. Asr T oo,

(€°(r), & (n) = (ou’,ovE) (3.5)
in D[0, 00)?.
Proof. The proof is the same as for Lemma 2.2.1 in Chapter 2. |
Forr=1,2..., we set
So(r)=0
Sn(r) = Vu(r) = Un(r), n=12...(3.6)

and define the stochastic processes ( = {(i(r),t > 0}, with sample paths in
D[0, 00), by

Sl L 3.7
o 2o (3.7)

We also define the stochastic process { = {(,t > 0}, by

Cu(r) =

Ct = O’Vaftl — 0[75? — Ct, t 2 0. (38)

Lemma 8.3.2 shows that the stochastic processes (3.7) generated by the random
walk (3.6) converge weakly to (.

Lemma 7.3.2. Asr T oo,

((r)=¢ (3.9)
in DI[0, 00).
Proof. The proof is the same as for Lemma 2.2.2 in Chapter 2. |
For r = 1,2..., we define the stochastic process p = {p(r),t > 0} and
§ = {64(r),t > 0} with sample paths in D[0,00) by
Hd@:‘ﬁ%ﬁ% £>0 (3.10)
and
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() ==, 120 (3.11)
Theorem 7.3.1.
(a): Assume that as r T oo,
Dy(r) 2 Dy (3.12a)
and
(6(r),¢(r)) = (6,¢) (3.12b)

in D[0,00)?. Further assume that | ¢ |< oo, then

(r) = g(¢ —6) (3.13)
in D[0,00) as r T oo.
(b): Assume that as r T oo,
(8(r), €°(r), €' (r)) = (6,€",€") (3.14a)
in D[0,00)* and
u(r) — u and v(r) — v with u(r) > v(r) and u > v, (3.14b)
then
w(r) =0 (3.15)
in D[0,00) as r T oo.
Proof. We first prove Part (a). Fix 7 = 1,2.... We can write the recursion (2.2)

for the waiting time sequence as
Wo(r) =0,

Woti(r) = max{0, Wy (r) + Xnt1(r)}, n=0,1,...(3.16)
where

Xn41(r) = Dp(r) = Dpg1(r) + valr) — Upt1(T). n=0,1...(3.17)
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By successive substitutions, we obtain

Wi(r) = max{0, X,,(r), X, (v) + Xpooa(r), ..., Xo(r) + ... + Xi(r)}.
n=0,1...(3.18)

Let
Zo('l") == 0,
Za(r) = _ Xi(r). n=1,2...(3.19)
=1
It follows that
=Z (r) — mi (7 - 9
Wa(r) = Zn(r) Ogr%gnZk(U. n=0,1...(3.20)
Note that
Zn(r) = Do(r) — Dp(r) + Su(r). n=0,1...(3.21)

For r = 1,2... we introduce the stochastic process p(r) = {p:(r),t > 0} with

sample paths in D[0,00) by

pt(T) = ’ i Z 0. (322)

From (3.20) and (3.22) it follows that

pe(r) = g(p(r))e, t20. (3.23)

Hence by the continuous mapping theorem, in order to prove (3.13), it is sufficient
to show that as r T oo,

p(r)=>(—20 (3.24)

in D[0, c0). From (3.21), we see that

. Dy(7)
p(r) = \/)—

+ ¢(r) — 6(r). (3.25)
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As a consequence of (3.12a), it follows that

D
——OLQ = 0asrToo
NG
so that (3.24) follows from (3.12b), (3.25) and the converging together theorem.
We now provide a proof for Part (b), the main idea of which is borrowed

from Iglehart and Whitt [30]. For » = 1,2... introduce the stochastic processes

p'(r) = {pi(r),t > 0}, with sample paths in D[0, o), by

Zipg(r) = [v(r) — u(r)][rt]
\/F Y

py(r) = t>0. (3.26)

Then proceeding as in Part (a), it can be easily shown with the help of (3.14a)
that

pl(r) = ové —opt® —§ (3.27)

in D[0,00) as r T 0.

In order to prove that u(r) = 0, it is sufficient to show for each T > 0, that

P
sup | pe(r)|]— 0 (3.28)
0<t<T

as r | co. It is intuitive to expect that (3.28) would be true, since
— oo fr) — >
pe(r) = pe(r) Oggfgtps(r), t>0
and as a consequence of (3.14b)

lim[u(r) - v(r)|Vr = oo

so that p¢(r) | —oo asr T o0.
Fix T > 0, a value d in [0,T] and 0 < ¢ < 1. We first show that as r T oo,

with probability greater that 1 — ¢, we have

) S[rs](T) - D[m](r) S[rt](r) - D[‘rt](r)
inf > ,
0<s<t—d T VT

147

0<t<T (3.29)



which is a justification for the intuitive fact that infocs<t ps(r) & pe(r) for a

sufficiently large value of r. For d <t < T, we note that

Srpa1(r) —
of (rs)(7) = Dppgp (1)
0<s<t—d VT

_ S[TS](T) - D[.,,s](r) N [(r) —u(r)][rs]  [v(r) — u(r)][rs]®
0t ( va VT " Vr >

> inf (%mv%~mmv> MH—UOMND

T 0<s<t—d

vr vr
) = u(r)]fr(t = )

' v
= ine (Sra(r) = Dirg () [o(r) = u()][rs]
o<t ( Vr va )

_(SWWJ—DmWﬁ_hMﬁ—MHWﬂ>
v 7

Strg(r) = Dy (r) L () = v()][rd]
NG NG

S[Tt] (7’) — D['rt] (T)
>
- VT

with probability greater that 1 — e for sufficiently large r > ry. The second

+

inequality follows from assumption (3.14b), while the last inequality follows from
the fact that the terms in the first two brackets have weak limits while the last
term blows to infinity as r increases.

As a result of (3.29), it follows that for r > rq, with probability greater than

1 — €, we have

S[rs](r) - D[rs](r)

inf = inf

0<s<t JT t—d<s<t NG

for a fixed value of d. Hence, for r > rg, with probability greater that 1 — ¢, we

see that

sup | pu(r) |
0<t<T
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— s |5[rt](7“)—D[rt](7°) g Sbra(r) = Drrg(r) |
0<t<T VT t—d<s<t NG

Z[rt](r) - Z[rs](r) [U(T) —‘ U(T)} [T(t - 5)]
S T ey Jr |

= wy(r)(d) (3.30)

where the modulus of continuity w,/(,y for the process p'(r) is given by

wpr(d)= sup sup |pi(r) —p(r) ], d>0.
0<5,t<T [s—t|<d

Also as a result of (3.27) and of the continous mapping theorem, we get
wp/(,«)(d) = w,):(d) (3.31)

as r T 0o. Since we can make the value of d as small as we please, and since

wy(d) 25 0 (3.32)

as d | 0, it follows from (3.30) that
p(r) =0 (3.33)
in D[0,T] as 7 T oo, and this proves the theorem. |

Part (b) of Lemma 7.3.1 implies the surprising fact that the normalized re-
sequencing delay of the customers will always be zero if the single server queue
is operating in its stable regime, irrespective of whether the disordering system
is in heavy traffic or not. However this result hinges upon the crucial condition
(3.14a), that §(r) = § in D[0,00) as r T co. This condition is satisfied for dis-
ordering systems of the GI/GI/K type as well as for infinite server disordering
systems. Unfortunately it is not satisfied for disordering systems with probabilis-
tic routing of customers. For example, as elaborated in Section 7.6, this condition

is not satisfied for disordering systems which are made up of parallel queues with
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Bernoulli switching of arriving customers, or disordering systems which involve
probabilistic feedback from the output to the input. For such disordering systems,
the conclusion of Part (b) does not hold. In fact we show in Section 7.6, that
rather than going to zero, the resequencing delay constitutes the major portion of

the total delay of such systems, in heavy traffic.

150



7.4 The heavy traffic limit for infinite server systems

In this section we specialize the results of Theorem 7.3.1 to the case when
the disordering system is an infinite server queue. This queueing system was first
analyzed in detail by Baccelli, Gelenbe and Plateau [1], and consequently we will

refer to 1t in the remainder of this dissertation as the BGP model. We shall assume

that
(VIId): The sequences {uy}5°, {Dn}° and {v, }§° are iid with finite second mo-
ments and independent.

Foralln =0,1..., we set
u=IE(u,) < co, o5 =Var(u,) < oo,

v =IE(vy) < 00, 0% =Var(v,) < oo
and

d=IE(D,) < oo, o5 ="Var(D,)< 0.

We now consider a sequence of resequencing systems indexed by r =1,2.. .,

each of which satisfies assumption (VIId). Moreover assume that
(VIIe): Asr T oo,

ou(r) — ou.

UV(T) — oV,

op(r) = o,
fu(r) = v(r)lV/F — c.

(VIIf): For some € > 0,
sup {IE{| ui(r) [**}, E{vi(r) P E{] Di(r) T3} < oc

Under these assumptions, Theorem 7.3.1 immediately yields the following

corollary.

Corollary 7.4.1. Asr T o0
p(r) = 9(C) (4.1)
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in D[0, 00).

Proof. This follows from Part (a) of Theorem 7.3.1 owing to the fact that
§(r) = 0 in D[0,00) as r T oo, since

For infinite server disordering systems the sequence {1V,}5° has the same
traffic limit as the sequence of waiting times in an ordinary single server queue.
This means that asymptotically resequencing as a negligible effect on the operation
of the single server queue in heavy traffic. This result is surprising if seen from the
following viewpoint: Kingman [38] has shown that the diffusion limit for a single
server queue depends on the particular discipline chosen to serve the customers,
for example it is different if the customers are served in LCF'S order rather than in
FCFS order. Resequencing may be viewed as a special type of service discipline (if
the resequencing buffer and the single server queue buffer are regarded as a single
buffer of an equivalent single server), because customers are served in the order
in which they entered the infinite server queue, rather than the order in which
they enter the equivalent buffer. Also note that this effect remains unchanged in
heavy traffic. Hence in this case even though we change the service discipline of

the single server queue, we nevertheless obtain the same diffusion limit.

7.4.1 Generalization to a tandem system

We now proceed to extend the result of the previous sub-section to the case
when there are an arbitrary number of disordering and resequencing systems pre-
ceding the single server queue. The system under consideration operates as follows:
Each customer is disordered by an infinite server queue and resequenced K suc-
cessive times before it enters the buffer of a single server queue. After getting
served there, it leaves the system (Fig 7.2). Let the sequences {u,}{° and {v,}§°

be defined as before, and for each 1 <k < K andn =0,1..., define the following,
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Fig. 7.2. A multi-stage resequencing model.

Dk .
wk .

W :

D, :

Delay of the nt* customer at the k** disordering system;

For 1 < k < K — 1, this RV represents the delay of the n'* customer in
the kt* resequencing box;

Delay of the n'* customer in the I{** resequencing box plus the delay in
the buffer of the single server queue; and

=Dl +Wl4. . +DE-1 L WK1 1 DK ie, the total disordering delay
of the nt* customer, before it is resequenced and sent to the buffer of the

single server queue.

We shall assume that

(VIIg): The sequences {5}, {un}{® and {DE}§°,1 < k < K, are iid with finite

second moments and mutually independent.

Foralln=0,1..., we set

and

u=IE(uy) < o0, o} =Var(u,)< oo

v=IE(v,) < 00, 0% = Var(vs) < o0

dy = E(D¥) < o0, ol =Var(DE)<oo, 1<k<K.

Now consider a sequence of resequencing systems indexed by r = 1,2... each

of which satisfies assumptions (VIIg). Moreover assume that
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(VIIh): Asr T oo,
ou(r) — ou,
ov(r) — ov,
op(r) = o, 1<k<K

[u(r) — v(r)]V/r — c.

(VIIi): For some € > 0,

sup {IE{] us(r) [P*}, E{oi(r) PFYE{] DY(r) )} < o0

r.k

Define the partial sums {V,,}§°, {U,}5°, {X}5° and {Z,}3° asin (3.1), (3.2),

(3.17) and (3.19) respectively. Also define the stochastic processes £°(r), £ (r),
C(r), u(r), 6(r) and p(r) as in (3.1), (3.4), (3.7), (3.10), (3.11) and (3.22). It is

easy to see that Lemma 7.3.1 and Lemma 7.3.2 continue to hold for this model.

Forr =1,2..., define the stochastic processes u* = {u¥ t >0}, 1 <k < K-1

with sample paths in D[0, c0) by

_ YV[’jt](r)

pk () , 1<kE<SK-1
7

Theorem 7.4.1. Asr T oo

o(r) =0
in D0, 00).
Proof. Fix r =1,2.... Note that
D! K—-1 ] K
5ur) = = by 4o e T+ =, 2o

vr a Vo

Hence in order to prove (4.3), it is sufficient to show that as r T oo

(ut(r),... BT ) = (0,...,0)
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in D[0, 00) 1,
We propose to prove (4.5) by induction on the number of levels in the system.

We first show that as r T oo

pr(r) =0 (4.6)

in D[0, c0).
Note that

W71+1(7") = max{0, VV;(T) + Dllz(r) - D1lz+1(7") — —~Upt1(7)}

=Zp,(r) - 0<€%17?+1Z (r), n=0,1...(4.7)
where
Z(r) = Dy(r) — DL(r) — uy(r) — ... — un(r). n=0,1...(4.8)

From (4.7)-(4.8) it follows that

_ Di(r) Dly(r) Upy(r) . {1ﬂ(m D (r) Up(r)
VT »/F va A% Vv VT Vr

(4.9)
For r = 1,2..., define the stochastic processes '(r) = {ji;(r).t > 0} in D[0, o0)
by

fie(r) = U[:t/ET) 0<s<t{— :S/ET>}

t>0 (4.10)

and note that p'(r) and ii*(r) both have the same limit due to the converging

together theorem. Note that in this case we do not require an additional condi-

converges to zero, since by

. Dl ’l") D[lrt}(’r)
‘) a 0 N
tion such as (3.12a) to conclude that U or —
assumption they form sequences of iid RVs.
Hence in order to prove (4.6), it is sufficient to show that i'(r) = 0 as r T occ.
In order to prove this, it is sufficient to show that

~ P
sup | i (r) |2 0 (4.11)
0<t<1
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as 7 T oo. The proof for (4.11) is similar to the proof given for Part (b) of Theorem
7.3.1, and is therefore omitted.

As the induction step, assume that as r 7 oo
(ut(r), ..., pz*()) = (0,...,0) (4.12)
in D[0, o), for some 2 < k < I — 2. We shall show that as r T co
(e (), ..., p* () = (0,...,0) (4.13)

in D[0, co)k+1,

For 1<k <K -—1andr=1,2..., define the RVs T¥(r) by
TE(r) = Dy(r) + Wa(r) + ...+ DE(r) + Wi(r)

Note that as a consequence of (4.12), it follows that as r T oo,

=0 (4.14)

in D0, 00).
Note that

Wt (r) = max{0, W¥(r) + TE(r) + DEFL(r) = TF 1 (r) = DYEI(r) — unga(r)}

M)y —  mi kL =0,1...(4.15
Zn+1(r) 03%2—}—1 Zz (T)’ n : ( )
where
Z,’i'l"l(r) = Tok(r) - D(’)H'l(r) - T,’f(‘r) - D:frl(r) —uy(r) — ... —up(r)

n=0,1...(4.16)

From (4.15)-(4.16) it follows that
L) Ti(r) , DY) Thg(r) D' () Upy(r)
Vr VT VT VT VT

; T (r) D(’;"“(r)_T[]ﬁs](?“) D[r-:]l( )_U[rs](r)}
A Y Y Y Y
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From equation (4.14) (which is a consequence of the induction hypothesis
(4.12)) and (4.17), and the fact that T%(r) is independent of D¥*1(r), it is clear
that that (4.13) holds, and this completes the proof.

|
Equation (4.3) in combination with Part (a) of Theorem 7.3.1, implies that

Theorem 7.4.2. Asr ] oo
p(r) = g(¢) (4.18)

in D0, 00).
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7.5 The heavy traffic limit for finite server resequencing systems: Mul-
tiserver disordering systems

The resequencing systems analyzed in the next two sections deviate slightly
from the general model introduced in Section 7.2 due to the fact that the single
server queue after the resequencing buffer is omitted from the system. In this
section we shall consider the case when the disordering system is a GI/GI/K
queue, while in Section 7.6 we shall consider the case when the disordering system
consists of I single server queues operating in parallel.

The resequencing system under consideration operates as follows: Customers
enter a GI/GI/K queue, after obtaining service from which they are resequenced
in a resequencing buffer and leave the system. Our basic heavy traffic result about

this system is stated next.

Theorem 7.5.1 The end-to—end delay in the GI/GI/K resequencing sysiem has
the same heavy traffic limit as the end-to-end delay of a GI/GI/K queue.

Proof. This system satisfies the conditions in Part (b) of Theorem 7.3.1, so that

the conclusion is a direct consequence of (3.15).
i

Let the average end—to—end delay for the system be denoted by T (\). Then
Theorem 7.5.1 and results regarding heavy traffic limits for GI/GI/I queues in
Kollerstrom [44] imply that

2 7r2,2
. - T ooy 2, Iv KTp S — O
)\111%#(]&/1 —MTg(A) =lop + KQ] 5 K=223...(51)

where A\, oy and p, oy are the rates and variances of the arrival and service pro-

cesses respectively.
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RESEQUENCING
BOX

BERNOULLI
SWITCH

Fig. 7.3. Parallel queues with resequencing.

7.6 The heavy traffic limit for finite server resequencing systems: Dis-

ordering due to parallel queues

‘The system discussed here has a disordering system composed of K parallel
single server queues. We assume that customers are routed to the different queues
according to a Bernoulli switch with switching probability px,1 < k£ < K. After
receiving service, they are resequenced in a resequencing buffer before leaving the
system.

This system was analyzed by Glin and Jean-Marie [17] when the arrival pro-
cess into the system is Poissonian. They gave a complicated expression for the
average end-to—end delay involving the virtual waiting time in the system. How-
ever, since for most systems it is difficult to obtain a formula for the virtual waiting
time, we expect that the limit theorem approximations to be of practical compu-

tational value.
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The following RVs are defined on a common probability space (2, IF, IP). For
n=0,1...and 1 <k < K,
Up41 ¢ Inter—arrival time between the (n + 1)™ and nt" customers.

vk : Service time of the n** customer to enter the system, if it were to join
the k** queue.
af : This is a {0, 1}-valued RV, with a® = 1 if the n** customer joins the kt*
queue.
WE . Waiting time of the n'® customer to enter the system, if it were to join
the k™ queue.
T, : End-to-end delay of the n®* customer to enter the system (including the
resequencing delay).
We shall assume that
(VIIj): The sequences {u,11}5°, {a*}5° and {vf1°.1 < k < K, are iid with
finite second moments, and mutually independent.
Forn=0,1..., we set

lP(aI;L :1) = Pk

= IE(upt1) < 00, Ug = Var(tnp4+1) < 00
and

v = E(vz) < 00, a% = Var(v,]f;) <oo, 1<k<K

7.6.1 Recursive representation for the delays

The delays in the system obey the recursions given in Lemma 7.2.1 with

b customer in the system of parallel

D,, replaced by the reponse time of the n’
queues. However we give another set of recursions for the system which have the
advantage of facilitating the proof of the heavy traffic limit theorems. Assuming
that the initial customer arrives into an empty system at time ¢ = 0, it is easy to
see that for each 1 <k < K,
Wy =0
Wk, = max{0, Wk 4 akof —upya}. n=0,1...(6.1)

160



The end-to—end delay T,,,1 < k < K. is given by

I, = 1I<I%€a<XF{W,f +afok). n=0,1...(6.2)

It is well known [1] that the stability condition of a system with resequencing
is the same as the system without resequencing. Therefore the system is stable iff

each queue is stable, i.e.,

progp < u, 1< E< K. (6.3)

7.6.2 The diffusion limit

We now proceed with the task of obtaining heavy traffic diffusion limits for the
delay processes in the resequencing system. We consider a sequence of resequencing
systems indexed by r = 1,2..., each of which satisfies assumption (VILj). We
make the following additional assumptions (VIIk)—(VIIl). where
(VIIk): Asr T oo,

op(r) — o, 0<k<IK,
pi(r) = pk, 1<k <K,
vp(r) — o, 1<EkELK,
[u(r) — pe(r)vr(MVr — ¢k, 1<k <K.
(VIIl): For some € > 0,

sul? {IE{| v1(r) 2Te}, IE{] vf(r) 12+1) < 0.

For r = 1,2..., define the following partial sums

V() =0,
VEr) = af(rpuf () + ..+ ah_i(rvh_i(r), 1<k <nB51,2...(6.4)
Us(r) =0,
Un(r) = ua(r) 4+ ... + un(r). n=1,2...(6.5)

and

161



S¥ry=0

Sh(r) =V,i(r) = Un(r), 1<k <K n=12...(6.6)

We also define the stochastic processes (*(r) = {¢F(r),t > 0},1 < k < I, with
sample paths in D0, 00) by

Sk . (r)
k(py — _rt

L 1<k<K, t>0. (6.7)

With € = {¢F,¢t > 0},1 < k < K, as K independent Wiener processes, we define
the stochastic processes (¥ = {¢F,¢+ > 0},1 <k < K, by

K
= Qutl—cxt, 1<k<K, t>0 (6.8)
j=1

where the matrix @ = {Q”}szl is such that the covariance matrix R for the

diffusion is given by

_ T
R=0QQ
= 2
08 4’22910% -+ P1P1U% ) U(z) - P21P2U102 , e Ug — P1PKV1VK
o5 — P2P1v2v1 04 + p205 + pabavy ... Oy — P2PKV2VRK
2 2 2 . 2 o 2
0y — PKP1VK V1 Gy — PKP2UVR V2 .o 0§ T PROE + PKPKVE

(6.9)
with p, = 1 — pg,1 < k < K. The process (¢',...,(") is thus a K-dimensional
diffusion process with drift vector ¢ = (—¢1,..., —cx) and covariance matrix R.

Theorem 7.6.2 shows that the stochastic processes (6.7) generated by the

random walk (6.6) converge weakly to ((*....,(™).

Theorem 7.6.2. Asr | oo,

(), ) = (¢, ¢ (6.10)

in D[0, 00)E.



Before providing a proof of Theorem 7.6.2, we present the following two corol-
laries.
Forr=1,2...and 1 <k < K, observe that
VV,’f(T) = max{S,’i(r) — Sl-k(r) c1=0,1...,n}
= SEr) —min{S¥r):i=0,1...,n}, n=0,1...(6.11)

For r =1,2..., we now define the stochastic processes u*(r) = {u*(r),t > 0},1 <

k < K, with sample paths in D[0, 00) by

(> 0. (6.12)

We also define the stochastic processes u* = {uF,t > 0},1 <k < I, by
wF=g(c™, 1<E<K, t>0. (6.13)

In Corollary 7.6.1 we show that the vector process associated with (6.12),
converges weakly to a K—dimensional diffusion process (6.13) with drift ¢ and
covariance (6.9). This limiting diffusion stays in the non-negative orthant of the

I{-dimensional space and exhibits normal reflections at the boundaries.

Corollary 7.6.1. As r T oo,

() () = (™) (6.14)

in D[0, 00) .

Proof. From (6.11) and (6.12), we conclude for each r = 1,2,.. ., that
ph(r) = g(C*(r), 1<k <K

and the result follows by the continuous mapping theorem and Theorem 7.6.2.
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For r = 1,2..., define the stochastic processes k(r) = {k,(r),t > 0} with

sample paths in D[0, c0) by

Ki\T) = T[Tt](r)
() = 0

t>0. (6.15)

Also define the stochastic process k = {k¢,t > 0} with sample paths in D[0, c0)
by

k
ot = £ > 0. 6.16
fe= max pp, 02 (6.16)

In Corollary 7.6.2 we show that the stochastic process (6.15) generated by the end-
to-end delays, converges weakly to the process (6.16), which is the maximum of I
correlated Wiener processes with drift, in the non-negative orthant and normal

reflection at the boundaries.

Corollary 7.6.2. Asr T oo,

k(r) = & (6.17)
in D0, 00) .
Proof. From (6.2), (6.15) and (6.16) we conclude for each r =1,2..., that
Ve

ki(r) = max '{;Lf(r) + t > 0.

1<k<K VT btz

Equation (6.17) now follows from Corollory 6.7.1 by the continous mapping theo-

rem and the converging together theorem |

We now proceed with the proof of Theorem 7.6.2.

Proof. We write (6.7) as

k (r) — (pp(r)vr(r) —u(r))]r .
tk(r) _ S[rt]( ) (Pk( \)/Fk( ) ( ))[ t] n (pk(T)l’k(T) _ U(T))L\—/jf]’

1<k<IK, t>0 (6.18)
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As a result of assumption (VIIk), we have

lim (pi(r)oi () = 10(7“))7—; = —cxt. (6.19)

By a multi-dimensional version of Prohorov’s theorem. it follows that as r T oo,

(S[lrt](r) — (p1(r)v1(r) — u(r))[rt] S[Ir"t](r) — (pr(r)vk(r) —u(r))[rt]
7 e 7

K K
= (Z Q1k€t17 e Z QKkgf\') (620)
k=1 j=k

in D[0,00)", and it now remains for us to identify the components of the matrix

Q. This can be done by observing that for each t > 0
(QQT)ijt =Rijt

= lim IF

rtoo

(S[irt](r) — (pi(r)vi(r) — u(r))[r]
NG

(S[j" q(r) = (p(r)o;(r) — u(r))[v~t]>
\/77 .

(6.21)

A straightforward computation of the right hand side in (6.21) leads to the con-
clusion that

o2 + pio? +pil—pid, ifi=j
Rij =
o5 — PiDjviv;, if1 # 7

which proves the theorem. |

Recall that in Chapter I we made a distinction between the asymptotic dis-
tributions obtained depending upon the order in which the limits for r and ¢ were
taken for the single server queue waiting time process. In the next result we show
that for the parallel queue resequencing system, the stationary distribution for

the normalized vector of response times is the same, regardless of the order in
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which these limits are taken. We also provide a sufficient condition for the vector
diffusion process (u!,..., ") to have a stationary distribution. Since the proof
1s exactly the same as for Proposition 2.2.1 and Theorem 2.2.2 in Chapter 2, it is

omitted.

Theorem 7.6.3
(a): The condition ¢, > 0,1 < k < K, is necessary and sufficient to ensure
that the K- dimensional process (u',..., ™) converges in distribution
to a proper vector (uéo, .. ,,ué‘(;) as t T oco.
(b): Denote by (pl,,....ak) the limiting Process
obtained from (ui(r),...,ul(r)) by taking the limit in distribution as
t T oo and then as r T oo. Under the conditions ¢ > 0,1 < k < I and

pr(rve(r) <u(r),l1 <k < I r=1,2...,the equality

(i, nBy =g (pl.... 08 (6.22)

holds.

7.6.3 Homogeneous queues with Poisson arrivals

Consider the case when each queue has identical parameters so that v = vy,
o =0} and ¢ = ¢, 1 < k < I{. Further assume that p; = 71‘,—.,1 <k < K. In this

homogeneous case, we have
2 g_i .l_ _ L 2 e
99 + K + K(l I\’)v o i =J
2 2 . . .
0y — (%) ’ if ¢ % J-

Therefore under the the assumption

Rz‘j =

2 O (6.23)
7 = I '
the cross—corelation terms in R cancel and we get
2 -
ag+%€+[}{§1v2 0 0
P K-1,2
R 0 of + % + =t L. 0 (6.24)
: ; : o
0 0 s o+ = 4 A5t?
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One of the most common inter—arrival distributions that satisfies (6.23) is the

exponential, since in this case

ATK p /\r) - I&’Z,LLZ

where as usual, we have set v = % Making these substitutions in (6.24), we obtain

70+ 37) 0 0
0 A = v?
K 2
R = . R _ _ : (6.25)
0 0 .. 71,;(02 + —Ml—z)

Thus under the condition that the arrivals are Poisson and pj = -};, 1<k <K,

(6.8) simplifies to

1 I . i
gf:,/E(02+;L—2-)§§~ct, 1<k<K, t>0. (6.26)

Note that now the stochastic processes ¢¥,1 < k < K, are independent, so that we
have reduced the diffusion to a form from which it is easy to obtain the stationary
distribution. Carrying out the calculations for the case ¢ > 0 as in Section 3.5.2,

it can be shown that the RV x; converges in distribution to a RV ks, such that

1 HI\
IFke =
" (0 )ch

(6.27)

where Hy as usual is the Harmonic series. In general, the nt" moment is given by

n K - ,
" 1 1 K\ (—1)k!
e = [(UQ e QKJ ZA <k> T (6.28)
=1

Let us denote the average end-to-end delay of a I{—dimensional resequencing

system with Poisson arrivals by T () and its n'” moment by —T(I?)(/\). Owing to
(6.27)-(6.28) and Theorem 7.6.3, it can be shown that

1 I&H[\
/\1%%(1&# MNT (A = (o2 2) (6.29)

and
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- n K :
T S PR Y 7' K\ (~1)F
)\ITl%'lu(A'u —N"Ty " (\) =n! [(a + M_z) 5 } k§:1 (k T (6.30)

Note that in this case, in contrast to the case of disordering by GI/GI/K queues,

the resequencing delay grows logarithmically with .

It is interesting to contrast the behavior of parallel queues operating under
the fork—join and resequencing constraints. From (3.5.31) and (6.27) we come
to the conclusion that the average response time in heavy traffic for these queues
under both the synchronization constraints varies logarithmically with the number
of queues K. However in light traffic, the fork—join synchronization still leads to
logarithmic increase of the average response time with Iy’ (see Chapter 6), while the
resequencing synchronization leads to a constant light traffic limit for the average
response time, i.e. T(0) = % From this we come to the conclusion that while the
fork—join constraint leads to an equal degradation of the average response time in
both light and heavy traffic, the resequencing constraint becomes important in the
calculation of the average response time only when the system is heavily loaded

and the number of parallel queues I is large.

Before closing this chapter, we would like to give another example of a sys-
tem in which the resequencing constraint leads to a significant degradation of the
average response time in heavy traffic. The disordering system is composed of a
single server queue with feedback in which the customers may be routed back to
the end of the queue with probability ¢, or they may enter the resequencing box
with probability p after receiving service. We have been unable to carry out a
heavy traffic analysis of this system, however an exact analysis was carried out
by Horlatt and Mailles [27] for the special case when the inter-arrival and ser-
vice times are exponential with rate A and u rvespectively. They showed that the

average end-to-end delay T(p) as a function of p = ﬁ satisfies

qu—l

— —.B-oo
T(p) = p ; 1= p(1— ML= p(1 = ¢* 1)’

(6.31)
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From (6.31) it is possible to obtain the following heavy traffic limit

k 1

lim(1 —

2
pT1 Z(1+q +qk 1 _ 2k-1)' (6~3)

Hence as a result of the resequencing constraint, the average response time grows

at rate (1—_1[;)—2- as p T 1, rather than at rate ﬁ
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CHAPTER VIII

8.1 Introduction

In the last chapter we developed heavy traffic approximations for a variety
of queueing systems with resequencing. In the present chapter our objective is
to provide polynomial approximations for some of those models. To that end we
calculate the light traffic limits using the Reiman-Simon theory and combine them
with the heavy traffic limits of Chapter 7.

In Section 8.2 we obtain polynomial approximations for the BGP model dis-
cussed in Section 7.4. An earlier analysis of this model using complex analytic
methods [1] yielded a complicated expression for the Laplace transform of the
end—to—end delay, from which it was very difficult to obtain explicit formulas.
However using our methods, we obtain a quadratic approximation to the average
waiting time which agrees extremely well with simulation results. In Sections 8.3
and 8.4 we obtain polynomial approximations for the resequencing model from
Section 7.6, in which the disordering is due to I single server queues operating
in parallel. This model was analyzed by Giin and Jean—-Marie [17], who gave an
expresion for the average end—to—end delay for the case when the arrivals are Pois-
son. However, this expression is difficult to evaluate except in the case when the
services are exponential. Using, heavy and light traffic theory, we give simple but
good approximation for non—exponential service times, such as deterministic ser-

" order Erlangian service times (in Section 8.4).

vice times (in Section 8.3) and r*
Lastly in Section 8.5 we obtain polynomial approximations for a generalized BGP
model, in which the disordering system, which is composed of two single server
queues operating in parallel, is followed by a single server queue.

Before we can obtain the light traffic limits for the various performance mea-

sures that we are interested in, we have to verify that these measures are admissible
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in the sense of Definition B1 (Appendix B). This verification was carried out for
the case of the fork—join queue in Chapter 6, and since the procedure for doing so

for queues with resequencing is very similar, we have omitted it.
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4

INFINITE SERVER RESEQUENCING
QUEUE BOX

Fig. 8.1. The BGP model

8.2 Polynomial approximations for the BGP model

The reader may recall that the BGP model operates as follows: customers
arrive into an infinite server disordering system after receiving service from which,
they are resequenced and sent into a single server queue. In this section we develop
light traffic approximations for the BGP model in the special case when the arrival
process is Poisson with rate ), the disordering distribution is exponential with rate
v and the service distribution is also exponential with rate p. The methodology
of finding the light traffic limits is the same as the one employed for fork-join
queues in Chapter 6. We combine the heavy traffic limit of Section 7.4 with the
light traffic limits of this section, to obtain an approximation that provides good
estimates over the entire range of . Note also that even though we restrict our
attention to exponential service and disordering distributions, this methodology

can be applied to arbitrary service and disordering distributions.

Let W(A) be the sum of the average waiting times in the resequencing box

and the buffer of the single server queue. We now proceed to obtain formulae for
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W(0) and WI(O) with the help of (VI.2.6) and (VI1.2.7). It is trivial to see that

W(0)=0

(2.1)

since if only one customer arrives over the entire time interval, then the only delay

it encounters before getting served is the disordering delay.

We now proceed to calculate W,(O). Let W(t,dy,d1,s1) be the waiting time

of the customer that arrives at time zero with disordering delay dy, given that

another customer arrives at time ¢ with disordering delay d; and service time sy

at the single server queue. It is clear that

0, ift>0
VV(t,do,dl,Sl) =
max(0,t +dy —do + 1), ift <0.

Define the RVs X and Y by
X =dy + s1,

Y =X - do.
Then it can be easily shown that X has the density function fx given by

fx(w) = st ™), w20,

v— o
while Y has the distribution function Fy- given by

—v 2 ,—px
ue ve
Hz) = __ , v€eR
Bl =1t o "Gy

Note that
W .= X’V’(t,do,dl,sl) :l’l’laX(O,t“‘—}f), 1 SO

so that the RV W has distribution Fy given by

Fw(z)=P(Y +t< ),

—vz vt 2 —pzx pt
LE [ v-e €
- z > 0.

w—r)  F—2) T
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Using the fact that

JWDZAwH—ﬂwmm,t<o

it follows that

. V2e;tt ’ueyt
tp) = — t . 2.
Bt = 55 i< (28)
Finally combining (2.8) with (VI.2.7), we obtain
2
W(0) = —— a (2.9)

p(? —p?) 23w —p)

For the case v = u, if we use L’Hospitals rule and take the limit as v — p in

(2.8), we obtain,

S— 7

W (0) = —. 2.10
We now combine the light traffic estimates with the heavy traffic estimates of

the last section to obtain a first order approximation to the average waiting time

of the resequencing model. If we specialize the heavy traffic result of Section 7.4

to the case when all RVs all exponentially distributed, we obtain

lim(pu — \)W(A) = 1. (2.11)
AT

Finally from (2.1), (2.9) and (2.11), we obtain the first order approximation to the

average waiting time in steady state in the form

- A2 A A2
W) = . n
) p(v? =) (p =) 202w —p)(p =) pp—A)
212 A2
- + 9 v,
pr? — B (p—A) 20 (v = p)(p = A) aa
0< A< p(212)
and
. A 3 A A
W) = + Z(2)?), p=v., 0< A< (2.13)
(M) T 4(#—A)[M u)] /



This approximation agrees extremely well with simulation results (see Section

8.3.1).
Note that in (2.12)

lim W()) = 2

2L 0<A<

which is the average waiting time in a M/M/1 queue, as expected, because as

v T oo the disordering delay goes to zero and the system behaves like an ordinary

M/M/1 queue.

8.2.1 Simulation results

The approximation (2.12) is compared with simulation results in the case

v =2 and pu = 1. Substituting these values into (3.12) we obtain

W) = (29 -5)), 0< A<l

24(1 = \)

The 95% confidence levels have been obtained in all cases.

A W\ W(\) % Error
0.1 | 0.133+0.003 0.13 2.95
0.2 0.29 + 0.006 0.29 1.69
0.3 0.49 £ 0.011 0.49 1.80
0.4 0.76 4 0.017 0.75 1.83
0.5 1.12 4 0.029 1.10 1.78
0.6 1.65 + 0.049 1.62 1.82
0.7 2.51 4 0.097 2.48 1.19
0.8 4.21+0.24 4.16 1.19
0.9 9.50 = 0.31 9.19 3.26
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8.3 Approximations for the parallel queue resequencing model: The

case of deterministic services

Our objective in this section is to obtain interpolation approximations for the
average response time T()) of the resequencing model in which the disordering is
due to K single server queues operating in parallel. We further assume that the
input into the system is a Poisson process and the customers are routed to the
various queues with a Bernoulli switch with equi-probable switching probability.

In this section we assume that the service times are deterministic and equal
to % In the next section we treat the case in which the service times possess

the Erlangian distribution. The heavy traffic limit for this system was given in

(8.4.10), which in the case of deterministic service times reduces to

_ KHy
Im (Kp—ANTg(N) = L H; .

A—Kp 2

(3.1)

We now proceed to obtain the light traffic limits for this system. It is easy to that

Tk(0) = (3.2)

1
1
since if only one customer arrives over the entire time interval, then it does not
encounter any queueing or resequencing delay in the system.

We now proceed with the calculation of TIK(O). Let T'(t) be the response time
of a customer that arrives at time zero, given that another customer arrived at
time t. We have

if t > 0 orif t < 0 and the two customers
go to different queues,

T(t) = (3.3
®) ;1; + max(0,t + %) if t < 0 and both customers )

go to the same queue.

1
I

It is plain from (3.3) that for the case ¢t > 0

T() = B({t}) = % _ W0
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so that (VI.2.7) now reduces to

T'(0) = / (B({1)) — F))de. (3.4)

gl @]

Taking note of the fact that both customers go to the same queue with proba-

bility %, while they go to different queues with probability Kl;l , and substituting

(3.3) into (3.4), we obtain

T (())—i/0 (t+ St
K ~IX’ =L I

1

= —, 3.5
2K p? (3:5)

Combining (3.1), (3.2) and (3.5) we obtain an approximation TK(/\) for the

average response time of the system in the form

I A Hy —1 A 9

Tr(M) = Kp—N  2u(Kp—») " 2K(IKpu— A)(ﬁ) ’

0< A< LKp. (3.6)

This approximation agrees extremely well with simulation results (see Section

8.3.1).
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8.3.1 Simulation results

Approximation (3.5) is compared with simulation for the case when y = 1,

while K = 2,5 and 10.

A Ta(N) Tz(/\) Y%Error
0.2 1.05 £+ 0.001 1.05 0.01
0.4 1.13 4+ 0.002 1.14 0.88
0.6 1.24 + 0.004 1.25 0.81
0.8 1.38 £0.007 1.40 1.45
1.0 1.60 & 0.012 1.62 1.25
1.2 1.95 4 0.024 1.97 1.02
1.4 2.53 £ 0.048 2.57 1.58
1.6 3.70 £ 0.111 3.80 2.70
1.8 7.53 +0.16 7.52 0.13
A Ts(\) | Ts(N) % Error

0.5 1.06 £ 0.001 1.06 0.11
1.0 1.16 4+ 0.003 1.16 0.44
1.5 1.31 4+ 0.006 1.30 1.42
2.0 1.52 £ 0.011 1.50 1.31
2.5 1.85 £ 0.020 1.81 2.16
3.0 2.36 £ 0.039 2.31 2.16
3.5 3.234+0.072 3.18 1.55
4.0 5.01 +£0.167 4.98 0.60
4.5 10.68 4+ 0.21 10.51 1.59
A T1o(\) Tlg(/\) % Error
1 1.07 £ 0.002 1.06 0.65
2 1.20 + 0.004 1.17 2.50
3 1.41 £ 0.009 1.34 4.96
4 1.73 £ 0.016 1.59 8.06
5 2.194+0.028 1.98 9.58
6 2.90 £ 0.053 2.62 9.65
7 4.084+0.104 3.74 8.33
8 6.43 £ 0.257 6.08 5.44
9 13.69 £ 0.22 13.31 2.77
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8.4 Approximations for the parallel queue resequencing model: The

case of Erlang services

The model to be analysed is the same as in the last section, except for the
fact that now the parallel queues are assumed to possess a r** order Erlang service

distribution with rate p. The heavy traffic limit (VI1.4.10) reduces to

1
lim (Kp—\MTg(\) = T KN Hy. (4.1)
A—=Kp 2r
As in the last section, we have
— 1
Tr(0) = ; (4.2)

—
and we now proceed to calculate T (0).
Let T(t, s0,51) be the response time of a customer that arrives at time zero
with service time sg, given that another customer arrived at time ¢ with service

time s1. We see that

S0, lftZO

8o + max(0,t + s1), ift <0 and the two customers
T(t,s0,81) = join the same queue, (4.3)

max(sg,t + 31), if t < 0 and the two customers
join different queues.

As before, the two customers join the same queue with probability %, while they

. Let TB ;(0) be the first derivative of

the average response time which is obtained under the assumption that the two

customers join the same queue, and let T_IK’ 11(0) be this derivative obtained under

the assumption that the two customers join different queues. Then it is clear that

K —1_-

—T 0
I IxII( )

1
TI\ 7(0) +

— N
TI\'(O) ]’
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When both customers join the same queue, the calculation of TIK’ 7(0) reduces
to the calculation of the corresponding quantity in a single server queue, since
resequencing does not play any role. From the light traffic limits for the single

server queue obtained in Chapter 1, we conclude that

r+1

2rp?’

Ty1(0) = (4.4)

We now treat the case where the two customers join different queues. Note

that
T’K’”(O) = /t—o/ _0/ max(0,s1 — 8o — t)dt hy(s1)hr(s0)dst dsg (4.5)

where h,, is the density function of a r** order Erlang distribution, given by

r—1 e THE

ra(ruz)
hr(x) = (7“ _ 1)' ’

z > 0. r=1,2...(4.6)

Interchanging the order of integration in (4.5), we then get

T}x',II(O) = / 0/ 0/ . (31 — Sp — t)dt hr(So)hr(Sl)dSOdsl. r = 1,2 .
81= 3g= t=

Carrying out the integration with respect to ¢ and simplifying, we conclude that

r 41
2ru?

o0 81
T’A—JI(O) = - / . / _0 50811 (80)er(51)dsodsy. r=1,2...(4.7)

Substituting the expression (4.6) for h, into (4.7) and making some further sim-

plifications, we obtain

= 1 T+1 :
Tg,r1(0) = ;5( 5~ @) r=12...(4.8)
where
: OOT“”d " - =1,2...(4.9)
Q:W v=0ve v u:vue u_g. r=1,2...(4
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Combining (4.4) and (4.8), we obtain

= 1 r+41 K-1
T,:(0) = — -

). r=12...(4.10)

Finally combining (4.1), (4.2) and (4.10) we obtain an approximation T%())

for the average response time of the system in the form

. K r+l K -1 A
Ti(V) T [I‘( Y A ] (K — \)
rHLHg r4l K-17 A, 1
2r I¥ 2r 2K p (Kp—=2X)

0< A< Ku, r=1,2...(4.11)

This approximation agrees extremely well with simulation results (see Section

8.4.1).
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8.4.1 Simulation results

Approximation (4.11) is compared with simulation for the case when r

2,1 =1, while K = 2,5 and 10.

A Ta(N) TQ(A‘) % Error
0.2 1.11 & 0.005 1.11 0.09
0.4 1.25 £+ 0.007 1.25 0.08
0.6 1.43 £ 0.010 1.44 0.70
0.8 1.69 £ 0.016 1.74 2.96
1.0 2.054+0.028 2.06 0.49
1.2 2.59 £ 0.048 2.61 0.77
1.4 3.49 4+ 0.089 3.54 1.43
1.6 5.31 +0.232 5.40 1.69
1.8 10.90 £ 0.28 11.01 1.03
A T5(\) Ts(N) % Error
0.5 1.19 4-0.005 1.19 0.25
1.0 1.43 £0.007 1.43 0.35
1.5 1.74 4+ 0.017 1.74 0.28
2.0 2.1540.028 2.15 0.30
2.5 2.72 4+ 0.047 2.73 0.37
3.0 3.57 & 0.083 3.59 0.56
3.5 5.08 £0.174 5.02 1.18
4.0 7.874+0.121 7.88 0.13
4.5 16.14 £0.372 16.44 1.86
A T10()\) Tm(/\) % Error
1 1.31£0.007 1.32 0.76
2 1.67 4+ 0.014 1.71 2.39
3 2.11 +0.023 2.18 3.32
4 2.67 £ 0.038 2.79 4.49
5 3.43 £+ 0.062 3.60 4.95
6 4.56 4= 0.110 4.78 4.82
7 6.50 £+ 0.225 6.69 2.92
8 10.49 4 0.574 10.44 0.47
9 20.97+ 0414 21.52 2.62
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Fig. 8.2. A generalized BGP model

8.5 Light traffic approximations for a generalized BGP model
The model analyzed in this section operates as follows: Customers arriving
according to a Poisson process with rate A are routed to one of K single server
queues operating in parallel with identical exponential service rates v. The routing
decision is made with a Bernoulli switch, with equal routing probability. After they
leave this system they are resequenced in a resequencing buffer and sent to the
buffer of single server queue with exponential service rate u. After getting served
in this queue they leave the system. Note that the parallel M/M/1 queues can
also be in heavy traffic, in addition to the single server queue. Hence we shall
assume that Kv > p, so that as the the arrival rate A increases from zero, the
single server queue goes into heavy traffic earlier than the K M/M/1 queues.
- We now proceed to find the light traffic limits for the average waiting time
W k()), in this system, which is defined as the. sum of the average waiting times

in the resequencing box and the buffer of the single server queue.
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It is trivial to see that
Wi(0)=0 (5.1)

since if only one customer arrives over the entire time interval, then it does not

encounter any resequencing or queueing delay.

We now proceed to calculate WIA(O) Let W{(t,co,c1,51) be the waiting time
of the customer that arrives at time zero with service time ¢y at one of the M/M/1
queues, given that another customer arrives at time ¢ with service times ¢; at one

of the M/M/1 queues and s; at the single server queue. Then it clear that

0, i 1> 0:
max(0,t + ¢1 + $1 — ¢o), if t <0 and the
customers are
routed to
Wi(t,co,c1,81) = different queues.
max(0,t + ¢1 + s1 — ¢o — max(0,t +¢1)), ift <0 and both
customers are
routed to the

sarle queue.
(5.2)

Note that the customers are routed to the same queue with probability ?1;., while

they are routed to different queues with probability Kgl . When the customers go

to different queues, the waiting time is exactly the same as for the case when the

disordering system is an infinite server queue. Hence

Wi (0) =

K—-1 [° _
&I( / / / / maX(O,t +c1+ 81 — Co)Hl(dCO )Hl(dcl)Hg(dsl)
t=—0o0 J¢g ver v 8y

1 /0 ,
+~—/ / / / max(0.t + ¢ + 81 — co — max(0.1 4+ ¢1))
I( t=—0oco Jveg Jeg v 81

Hl(dCO)Hl(dcl>H2(d81) (53)

where Hy and H, are exponential distributions with rate v and u respectively.
The first of these integrals was already calculated in Section 8.2 so that

(X —1)1? (K —1)u

——
WK(O) Z_KMZ(V2 — #2) N 2[&’1/2(1/ — )
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1 0
+f/ / / / max(0,t + ¢ + 51 — o — max(0,t + ¢1))
t=—0c0 Co C1 81

H1 (dco)Hl(dcl)HQ(dsl).

(5.4)

We now proceed to calculate the second integral which we denote as I. The

RV X defined by
X = c1 + 2

has the density function.

Also, the RV Y defined as
Y = 81 — Co

has distribution function

1-— y”ue'"’“Z
Fy(z) =

eVJJ

v+

With the help of (5.5) and (5.7), (5.2) simplifies to

W(X,Y) = max(0,X +Y — max(0, X))

v e(l/-i—-Z/,L)ac7

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

for the case t > 0. Our next objective is to find the distribution function of the

RV W(X,Y). Note that for z > 0, we have

P(W(X,Y) < z) = P(X +Y — max(0, X) < )

= / P(z +Y —max(0,2) < z | X =) fx(x)dr (5.10)
=t

Since that the RVs X and Y are independent, (5.10) simplifies to

0 %)
P(W(X,Y)<xz) :/ Pz +Y <z)fx(x)dz + / P(Y < z)fx(a)de
=1 =0

14
=(1 -
Vi
0
v
+ 1—
z:t( V+M
=1 — __1_/____6111‘6-——#2__
v+ u v —p
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and we get

x>

EW(X,Y) = / 1 — P(W(X.Y) < )]d

z==0

2

v vt v

= —— N 4PY L SN 4 : 5
o T A (5.12)

Integrating over ¢t we conclude that
I=—. (5.13)

Whence, upon combining (5.4) and (5.13),

(K =12 (K —1)p 1
K2 —p?) 2Ky —p)  Kp?’

Wi (0) (5.14)

Note that if we specialize the heavy traffic result of Section 7.3 to the case

when all RVs all exponentially distributed, we obtain

lim(p — W g(N) = L. (5.15)
Atp

Combining (5.1), (5.14) and (5.15), we obtain the first order approximation

Wi (\) to the average waiting time for the case when Kv > o and v # p, in the

form
2 A K — 12 I — D)au?
I/VK(/\) =— + — ( A ) v . _ (1Y ) H .
Kp(p—2N)  Kpw?—p2)(p—2X) 2Kv2(v — 1) —A)
(K —1))\? (I — 1)\20? (K — )\
Kp2(p—N)  Kp2(? —p2)(p—A)  2Kviv —p)(p —A)
0< A< (5.16)
Note that
A A
i c(A) = — , 0< A<y
r}%rrglOWI( ) T < p

which is the average waiting time in a M/M/1 queue, again as expected, because

as v T oo the disordering delay goes to zero.
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In the case v = g, a similar calculation shows that

A MK-3)A 1 (3—3K) A, 1
W,\' A) = —_ - - 3 S/ . .
x(A) 4IC  pp—A 4K (u) = A OsA<u (5.17)

Even though approximation (6.16) is valid in the range v > p, simulation
results suggest that it performs quite poorly when Kv is close to p. It performs
best when Kv > u (see Section 8.5.2), and we suggest that the reader who is

interested in applying (5.16), choose v such that at least v > p.

8.5.2 Simulation results

Approximation (5.16) is compared with simulation for the case when K =

2,v =2 and u = 1. Substituting these values into (5.16) we obtain

- A

A Wa(\) Wa(X) % Error
0.1 | 0.124 +0.004 0.121 2.42
0.2 0.27 & 0.006 0.271 0.37
0.3 0.46 &+ 0.010 0.456 0.22
0.4 0.72 4+ 0.016 0.71 1.39
0.5 1.07 & 0.028 1.05 1.86
0.6 1.60 4= 0.050 1.56 2.50
0.7 2.46 4 0.104 2.41 2.03
0.8 4.12 4 0.07 4.08 0.97
0.9 8.91+0.25 9.09 2.02
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CHAPTER IX

9.1 Introduction

So far in this dissertation, we have considered queueing systems with either the
fork—join synchronization constraint or the resequencing constraint. Heavy traffic
limit theorems were given for fork—join systems in Chapter 2, while light traffic
results were presented in Chapter 6. The corresponding results for resequencing
systems were given in Chapters 7 and 8 respectively.

We now consider queueing models that exhibit both fork—join as well as re-
sequencing synchronization constraints. In Section 9.2 we introduce a new model
which is a generalization of the acyclic fork—join network analyzed in Chapter 2.
It is similar to the acylic fork—join network, except that every single server queue
is preceded by an infinite server disordering system, followed by a resequencing
box. This model is being introduced here for the first time, and it subsumes most
of the different fork—join and resequencing models analyzed so far. We obtain the
basic recursions governing this model and give the stability conditions. Our main
result regarding this model is that it has the same heavy traffic diffusion limit as
the acyclic fork-join network from Chapter 2. Hence in effect we have identified
a class of queueing models in which the resequencing constraint can be ignored
in heavy traffic. There is an interesting special cases of this model for which we
shall obtain polynomial approximations by interpolating between heavy traffic and
light traffic limits. This is a model originally proposed by Baccelli [3] to model
time-stamp ordering in a distributed system.

This chapter is organized as follows: In Section 9.2.1 we introduce the acyclic
fork—join network with resequencing, while in Section 9.2.2 we derive the recursions
for the delays in the network as well as its stability conditions. Heavy trafiic

diffusion limits for this network are presented in Section 9.2.3. In Section 9.3 we
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prove the admissibility of the queueing systems whose light traffic limits are to be
obtained. Sections 9.4 is devoted to obtaining polynomial approximations for the

time—stamp ordering model.
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Fig. 9.1. An example of an acyclic synchronized network.

| 9.2.1 The model

In this section we generalize the notion of an acyclic fork—join network by
introducing an additional synchronization constraint, i.e., resequencing, into its
framework. In order to do so, we precede every single server queue in the acyclic
fork—join network by an infinite server disordering system, followed by a rese-
quencing box (Fig. 9.1). For convenience this network will be referred to as an
acyclic synchronized network. Our principle result is that the acyclic synchronized
network has the same heavy traffic diffusion limit as the usual acyclic fork-join
network.

We now introduce the notations and definitions associated with the acyclic
synchronized network. Just as the basic building block of an acyclic fork-join
network was a single server queue, the basic building block of an acyclic synchro-
nized network is a single server queue preceded by an infinite server disordering
system which is followed by a resequencing box. We shall refer to this unit as a
resequenced queue.

The acyclic synchronized network under consideration is represented by an

acyclic graph G = (V, E) where V is a set of B resequenced queues labeled i =
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1,...,B and FE is a set of links such that (7,7) € E implies j > 7. Also add
for the sake of convenience fictitious single server queues 0 and B + 1, which act
respectively as source and sink for the network.

Define the sets s(2), s(0), p(¢), p(B 4+ 1) and the queues B', B", as in (2.4.1)-
(2.4.2) after substituting the phrase resequenced queue for all occurrences of the
word queue.

We now describe the operation of the network. We assume that customers
are being created at the source which acts as the outside world for the network.
These exogenous customers enter the network through the resequenced queues
in s(0) and traverse it upon following certain synchronization rules (SRy)-(SRy)
described below. Finally customers leave the network from the resequenced queues
in p(B + 1) from where they are absorbed into the network sink and disappear.
We now specify the synchronization rules that govern the network.

(SR;y): The exogenous customers created at the source are routed instanta-
neously to the‘resequenced queues in s(0) under the constraint of a Fork
primitive, i.e., the n'® arrival date to each one of the queues in s(0)

coincides with the n** date of customer creation. An alternate way of
viewing this constraint is to assume that upon its creation, a customer
creates B’ replicas of itself which are then dispatched at the same time
and instantaneously to the resequenced queues in s(0), one replica per

queue.

(SR3): Each resequenced queue j, for 1 < j < B, processes customers according
to the BGP model of resequencing (Section 8.4), with the disordering
being carried out by an infinite server queue.

(SR3): The service completion in some resequenced queue in s(0) will not sys-
tematically trigger an arrival to a resequenced queue in s(z). In fact,
more generally, the arrivals to resequenced queue j, with B < j <
B, are generated as follows: Assume the sequence of service comple-
tions to be known for all resequenced queues 7, with 1 < ¢ < j where

B' < j < B. The n** arrival date to resequenced queue j co-incides
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with the latest date among all the n** service completions at the re-
sequenced queues in p(j). Due to the acyclic structure of (V, E), this
mechanism will successively define the arrival patterns to resequenced
queuves B'+1,B'+2,...,B.

(SR;): Customers leave the network through the queues in p(B + 1) in the form
of a single output stream by imposing the following synchronization of
the join type: The n!" network departure is defined as the latest date

among the dates of n'® service completions in the resequenced queues

B".B"+1,...,B.

9.2.2 Recursive representation of the delays

In this section a recursive representation for the delays in the network is

provided. The single server queue and the infinite server queue associated with

h

the j** resequenced queue will be referred to as the j!* single server queue and

h

the 7' infinite server queue respectively. Given an acyclic graph G = (V. E),

the performance measures associated with the corresponding network are fully
specified by (B + 1) sequences of IR4~valued RVs with the interpretation that for

alln=0,1...,and 1 <57 < B,

h

Tn : Arrival epoch of the n'® customer into the network.

h

v) : Service time requirement of the n'" customer to be served in the single

server queue j.

h

d? : Service time requirement of the n'* customer to be served in infinite

server queue j.
We assume the system to be initially empty and adopt the convention that
the 0" exogenous customer is created at time t = 0, so that 7o = 0. In terms of

these RVs we define the following quantities for all n = 0,1... and all 1 < j < B,

1

Upt1 © Inter-arrival time between the (n 4+ 1)™" and n'" exogenous customers

(= Tp+1 — Tn,)-

D’ : Delay between the arrival of the n'* exogenous customer and the begin-

n

h

ning of the n'" service in resequenced queue j.
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Wi : Waiting time of the n'* exogenous customer in the the resequencing box
associated with the infinite server queue j, as well as the buffer of queue
Jj-

T, : End-to-end delay or network response time of the n'* exogenous cus-

tomer.

The following recursion holds between these variables.

Lemma 9.2.1. Consider the acyclic resequenced network defined above. If the
system 1s initially empty, then for 1 < j < B, the recursions

D} = dj + max {Dj + v}
iep(J)
Dy = maX{d{H—l + ;élpag){l?éﬂ + vhyr 1 D)+ ol — unga ),
n=20,1...(2.1)

and
Wi =0
Wi+1 = max{0, W] +dJ, + ifélpaf?){D:z + U:z} - dfz+1 - Z.Iélpa(‘:;:){DiL-}-l + U;-H}

+ 0] — Uupy1}, n=0,1...(2.2)

hold where the mazimum over an emptyset 1s zero by convention. Moreover the
twork time of the n'® : t s given b
network response time of the n*® exogeneous customer is given by

T, = D' 4ot} =0,1...(2.3
ieﬁgﬁl){ n R} n (2.3)

Proof. The system being initially empty, the boundary conditions (2.1)—(2.2) are
thus immediate from the synchronization rules (SR;)—(SRs). Customers arriving
to the resequenced queue j in $(0) do so according to the pattern of exogenous

th

arrivals, so that DJ corresponds to the n'* delay in resequenced queue, generated

by the sequences of interarrivals {u,41}5°, infinite server queue delays {d4,}§°,1 <
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j < B and single server service requirements {v1}°,1 < 5 < B. Writing the

corresponding recursion which was given in Lemma 7.2.1, we get
D!y =max{d {, Dl + v} —un41}, 1<j<By n=0,1...(2.4)

and this reduces to (2.1), since p(j) = 0 for j € s(0).

For B' < j < B, wefixn = 0,1.... The (n + 1) service completion at
queue ¢ in p(j) takes place at time Tn+1fo,l+1 + ULH, so that by applying the
synchronization rule (SRj3), we see that the (n + 1)"! arrival to the resequencing
buffer in queue j takes place at time 7,41 +dfl+1 +max;ep(j){ Dh1 + vl 44} Since
the server in queue j becomes available for service at time 7, +DJ 4+ v, we readily
obtain (2.1).

In order to derive (2.2) we just have to note that

Wi =DJ —dJ — max{D! +v}, 1<j<B. n=0,1...
iep(y)

We now state a result regarding the stability of these networks. First we malke
the following assumption.
(IXa): The sequences {u,41}5°, {di}s° and {vi}5°,j = 1,..., B, are iid with
finite second moments and mutually independent.

Foralln =0,1..., we set
w = IF(uy,) < 0o, og="Var(u,)< oo
vl = IE(v)) < oo, o5 = Var(vl) <oc, 1<j<B
P IE(d)) < oc, ”U'? =Var(d)) < oo, 1<3j<B.
The next lemma provides conditions for stability of the system.

Lemma 9.2.2. Assume that condition (I1Xa) holds. If



holds, the system is stable in the sense that the vector of delays (DL,...,DB)

7y
converges jointly in distribution as n T co to a proper random vector (D*, ..., D?),

Proof. The proof is a simple extension of the argument given for acyclic fork—join

networks in [5], and is left to the interested reader.

9.2.3 The diffusion limit

In the last section we saw that the acyclic synchronized network will be stable
provided v/ < u,1 < j < B. The system is said to be in heavy traffic if v/ ~ u
for one or more queues. In this section our objective is to develop heavy traffic
diffusion limits for the delay processes in these networks. The methodology that
we shall employ is the same as the one used in Section 2.4.3, i.e., we shall use the
recursions (2.1)-(2.2) to connect the delay processes to partial sums of iid RVs
and then use the well-known results regarding functional central limit theorems
for these partial sums in order to deduce the corresponding limit theorems for the
delay processes by means of the continuous mapping theorem. The main result
that we obtain is that acyclic synchronized networks have the same diffusion limit
as acyclic fork—join networks.

We now consider a sequence of these networks indexed by r = 1,2. .., each of

which satisfies condition (IXa). Moreover assume that:

(IXb): Asr T oo,

(IXc): For some € > 0,

sup {IE{| w(r) T}, B{| of(r) T E{] di(r) PF) < oo

rJ
For1 <j < Bandr =1,2..., define the partial sums
Vi (r) =0,
Vi) = vi(r) 4+ ... +ol_i(r), n=12...(2.6a)
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and

Uo(?“) = 0,
Un(r) = us(r) + ...+ un(r). n=12...(2.6b)
For r = 1,2..., define the stochastic processes £/(r) = {€/(r),t >0},0< 5 <
B, with sample paths in D[0, 00) by

Uprg(r) — u(r)[rt]

&(r) = 7 , t>0 (2.7a)
7 - ] T
El(r) = g ) \/;J( )M, 1<j<B, t>0. (2.7b)

Let ¢ = {f{,t > 0}0 < j £ B, be B + 1 independent Wiener processes. Lemma
9.2.3 shows that the random functions defined in (2.7) converge weakly to these

Wiener processes.

Lemma 9.2.3 As r T oo,

(E°(r), 6 (1), ., E5(r)) = (008", 1 &, opED) (2.8)
in D[0, 00)B.

Proof. The proof is exactly the same as for Lemma 2.2.1., with assumptions
(ITe)—(IIg) now replaced by assumptions (IXa)—(IXc). |

Forr =1,2..., we sct

Si(r)=0

I

Si(r) = VI(r) = Un(r), n=12...(2.9)

and define the following stochastic processes {¢’(r) = {¢i(r),t > 0},1 <5 <

B,with sample paths on D[0, o), by

= 1<j<B, t>0. (2.10)




We also define the stochastic processes (! = {(’,t > 0},1 <j < B, by

(=0t —optd —cjt, 1<j<B, t>0. (2.11)
The next result shows that the stochastic processes (¢1(r)....,¢B(r)) converge
weakly to (¢1,...,¢B). As we noted in the discussion preceding Lemma 2.2.2, the

random process (7,1 < 5 < B form a ~dimensional diffusion process with drift

given by (2.2.16) and co~variance given by (2.2.17).

Lemma 9.2.4 As r T oo,

(Cl(r)7"'?CB(T)) i (C17"'7CB) (2'12)

in D[0,00)8B.
Proof. The proof is exactly the same as for Lemma 2.2.2. |
Forr =1,2..., we define the stochastic processes n’(r) = {nl(r),t >0} and

w(r) = {,u{(r),t > 0},1 < 5 < B, with sample paths in D[0, c0), by setting

i )—D[j”](r) 1<j<B, t>0 (2.13)
m\r) = \/7‘; Y >J = j e =
and
i Wig(r) : N
piry=—"22 1<j<B, t>0. (2.14)
VNG

The processes 7/ = {p/,t > 0},1 < j < B, and pf = {pi.t >0},1 <j < B, are

now defined by

i = I — max n') + max 'i, 1<;<B (2.15)
= g(C = g s g
and
w =g(¢F — maxn’), 1<j<B, (2.16)
i€p(y)

We now present the main result of this section.
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Theorem 9.2.1. Asr T oo,
(' (r),... ;P () = (n",....n") (2.17)
in D[0, o00)B.

The reader may note that the limiting process obtained for the acyclic syn-
chronized network in heavy traffic is identical to the limiting process obtained for
the acyclic fork—join network in heavy traffic. Before providing a proof for The-
orem 9.2.1, we present the following two corollaries which identify the diffusion

limit for the waiting times and the end-to—end delay of the system respectively.

Corollary 9.2.1. Asr T oo,

(), 6P () = (i D) (2.18)
in D[0,00)5.
Proof. Note that forall r =1,2.. .,

Wi(r) = Di(r) = di(r) = max (Di(r) 04(r)}, 15 <B  n=01..

so that for all r =1,2...,

,uj( )= j( ) d{”](r) max { 2(7) + v[irt](r)} 1<5<B, t>0 (2.19)
r)=— r) — —— = 3 g , ' . 2.19
¢ T \/7: i€p(7) T \/F J

We obtain (2.18) from (2.17) and (2.19) by applying the continous mapping the-
orem and the converging together theorem. i
For r = 1,2..., we introduce the stochastic processes k(r) = {r¢(r),t > 0}

with sample paths in D[0,c0) by

Trea(r
Keo(r) = [\‘j; ), £>0. (2.20)
Corollary 9.2.2. Asr T oo,
K(r) = ieﬁg}j—nni (2.21)
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in D[0, c0).

Proof. Using the fact that for all r =1,2...

U‘i
= i A > 2.99
ma(r) = max {ni(r) + r b, 620 (2.22)

we obtain (2.21) from (2.17) and (2.22) by applying the continuous mapping the-

orem and the converging together theorem. ]

We now proceed with the proof for Theorem 9.2.1. For 1 <: < B, we define
the level I(2) of queue ¢ and the set ¢({),1 < I < N, of queues on level as in
(4.15)—(4.16).

Proof. Our proof proceeds by induction on the levels of the acyclic graph which
underlies the queueing network. First consider the queues belonging to the set
¢(1), i.e., queues j such that I(j) = 1. Recall that for these queues p(j) = @, so
that for r = 1,2... we have
Di+1(r) = max{0, Dﬁ;(r) + df;(r) — dil_l_l(r) + vfl(r) — Upt1(r)}
= 57Jz+1(7") - dfw—u(?’) - 0<%1<i£1+1{51];(7“) —dy 41 (1)}

n=0,1...(2.23)

From (2.12), (2.23), the continuous mapping theorem and the converging together

theorem, it follows that

(nl(r)"" 7?731(T)7C1(r)7"' 7CB(T)) i (7717"'777BL"<—17"'7CB) (.

®)
)
4;,

as r T 0o, so that (2.17) is verified for the queues belonging to the set ¢(1).

As the induction hypothesis, assume that

(), ... BB Gy B = (0 pBitetB el By
(2.25)
as r T oo, which implies that (2.17) holds for the queues belonging to the first /
levels. Using (2.25) we shall prove that (2.17) holds for queues belonging to the
first [ + 1 levels, thus completing the induction step.
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Clonsider queue j such that I(jy=1+1 Expanding the recursion in Lemma

921forr=12..., n=0,1...andj =B;+1,...,Bit1, We obtain

Dl 4(r)

= d{@+1(r> + max {Dfx+1(r) + Ufa+1(’">}
i€p(d)

+ max{O,D%( )~ dn+1(7") 5’9& {D a(r) + Un+1(7 )+ ln — wnt1(r)}s

=d +1(7) + ifélpaf§){Di+1(r) + v;+1(‘")} + 5i+1(T) - dn+1(7’)

'm‘c“‘{DnH“")*”nH(”}*02,32%“{51»(” dj(r) = maxx {Di(r) + v}

i€p(J)
(2.26)

Note that by (2.26), we have for j =Bi+1,... By and t 20,

ni(r)

dl (1)
_ Ol [+
i +gél§>3<{m(7“>+ \f

. d () vl
Gy — L — max {1 —[—l
(a (r) g ;\){7 \/. t
(2.27)
From (2.25), (2.27), the continuous mapping theorem and the converging

together theorem, we conclude that as r T 00,

Bt B (), ¢ (1), () = G LTTTY iR SIPERRIY

(’7 (T)yeees?
(2.28)

as r | oo, which completes the induction step.
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9.3 Admissibility

In this section our objective is to prove the admissibility of the average re-
sponse time measure for acyclic synchronized networks. Consider the following
sample space (Q,IF), where € is the set of infinite sequences
{(Tn,vl,...,0B,d%, ..., dB)1s°. Here 7, has the interpretation of the arrival time
of the nt* batch, v/,1 < j < B has the interpretation of the service time of the
n'™ customer that is sent to the single server queue j, while di,1 < j < B has
the interpretation of the service time of the n'® customer that is sent to the infi-
nite server queue j. We introduce a measure IPy on (£, IF') such that the arrival
process under this measure is a Poisson process with parameter A > 0. For each
w in  we add a tagged batch which arrives at time zero and whose service times
%/,d7,1 < j < B, are independent of {vi}g°,{d%}2°,1 < j < B, but have the
same distribution. In order to do so, we define an augmented probability space

(' IF', Q)), such that for each w' in Q/, we have w' = (w,(‘f)l?...,ﬁB,ch, . ,JB)),

where w is an element of Q. Let
T = response time of batch entering at ¢t =0 (3.1)

and set

N = Bo, [T™ | IF). n=12...(3.2)

We now show that show that the RV (™ is admissible so that one may
obtain the light traffic limits for the system by using the formulae in Theorem B1

(Appendix B). For 6 in IR, set
M;(8) = E[e?), T1,(0) = E[e*] 1<j<B. (3.3)

Assume that

(IXd): There exists §* > 0 such that

K
I M:(6)3M(6) < 00,1 < j < B,6 < 6.
1=1
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Theorem 9.3.1 If Assumption (IXd) is satisfied, then ™ as defined in (3.2)

18 admassible.

Proof. We introduce an M/GI/1 queue (defined on the same probability space
as the network) which upper bounds the acyclic synchronized network and is itself
admissible. The arrival and service sequences in the M/GI/1 queue are given by
{un}s® and {2;110% + d},)}5° respectively. It is clear that as long as there is
work remaining in the system, it works at least as fast as the bounding M/GI/1
queue. The M/GI/1 queue is admissible provided assumption (IXd) is satisfied.
Now proceeding as in Theorem B3 (Appendix B), it can be easily shown that the

synchronized network is admissible under assumption (IXd). i



Y §
A
\

1
< ' Yn >
<Dy
- —
L
o
L
—> ———— —> — >
o
FORK Y JOIN
POINT °® BUFFER
NETWORK RESEQUENCING

DELAY BUFFER

Fig. 9.2. The time-stamp ordering system.

9.4 Approximations for the time—stamp ordering model

The following queueing system (Fig. 9.2), was introduced by Baccelli (3] to
model the time-stamp ordering, consistency preserving scheme in a distributed
database. The noteworthy feature of this model is that it exhibits fork-join as

well as resequencing mechanisms.

The model operates as follows: Consider I single server queues operating
in parallel, which are fed by renewal process that sends customers to each queue
simultaneously, i.e., by a fork primitive. However the customers do not enter the
single server queues directly, but first enter a disordering system after which they
are resequenced and are finally sent to the buffer of the single server queue. After
a customer belonging to the nt* arrival batch finishes service in one of the single
server queues, it waits in a join buffer until all the other customers from that batch

have completed service, at which point the nt® batch leaves the system, thereby
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realizing the join primitive. Note that this model is a special case of the acyclic
synchronized network from Section 9.2.

We shall assume that the batches arrive into the system according to a renewal
process with rate A, the I{ infinite server queues have service times with the same
rate v, and the K single server queues also have service times with the same rate
. Results from Section 9.2 suggest when A & p, i.e., when the system is in heavy
traffic, it has the same limiting diffusion limit as the N-dimensional fork—join
system which was analyzed in detail in Part I of this thesis. This fact can be used
to obtain a heavy traffic approximation for the average end-to-end delay of the
time stamp ordering model in the following way: Consider a It dimensional fork—
join system with arrival rate A\ and service rate p in all the queucs. The following
result was given in Chapter 6. If we denote the average end-to—end delay for this

system by 5 (A), then

1;%&1(# — Ntr(N)

2 2
0+ 0y o
{

) kl

K=23...(41)

= [Hx + (4Vx —3Hg — 1)+ 2(1 + Hi — 2Vi)5?] 0<p<1

where 8 and Vi are defined in (5.2.4) and (6.4.26) respectively, and ¢ and oq are
the limiting variances of the service and inter-arrival distributions, respectively.
Now if we precede each queue with disordering and resequencing, then using results
from Section 9.2, the heavy traffic limit for the average end-to-end delay (denoted
by Tx()\)) is unchanged so that for the time stamp ordering model the average

end-to—end delay satisfies
1;%1‘(/1 — MTr(N)

2
o —1-08 2
D) _——ILL K

<

= [Hy + (4Vic —8Hx — 1)f +2(1 + Hy — 2Vi)5’]

0<p<1l K=23...(42)

For the special case when the inter-arrival and service times are exponentially
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distributed, (4.2) simplifies to

lg;?n(u ~ MTr(\) = Vk. K=23...(43)
"

We now proceed to obtain light traffic limits for T'x-()\) for the case when the
inter—arrival, disordering and service distributions are all exponential with rates )\,
v and p respectively. Admissibility for this system was proven in Theorem 9.3.1.
We first calculate Tk (0). Consider the batch arriving at ¢t = 0 into an empty
system. Let di,...,dx be its disordering delays and si,...,s5 be its service
times at the I{ queues. Since this batch does not experience interference from any
other customer, i.e., it does not experience any queueing or resequencing delay, it
is clear that

Twc(0) = I mas (di + s). (4.4)

Each of the RVs di + s, 1 < k < K, has a common distribution F', given by

F(z)=1+ Bogmve_ Y e, 2>0 (4.5)
vV—pu V=i

so that

Tx(0) :/ 1— (14 —Hemve - Le—“f)f"} dz
0

L v—H v—u
o [ KoK L v
— = —vz =R ]
[-2 Ot -]
K r
I&’ E r m ILL rT—1m 7 v m
r m v— v—
r=1 m=0

w .
y / o~ (mpk(r=m)n)z g
0

I{ g r m-+41 H r—m v m 1
r)z(m>(_1) (V—pa) (V—/L) mu + (r —my’

m=0

r=1

Let Lg(u,v) denote the right hand side of this last equation, so that
Tx(0) = Lr(p.v). (4.6)
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Tables for Lx(1,2),1 < K < 10 are given in Section 9.5.

We now proceed to calculate Ty (0). Let
T(t,dl, Cee ,dR’,Sl, Ce ,8[{,3]_, e ,—(—Z[\",gl* cen ,:9_]()

be the response time of the batch that arrives at time t = 0 with service times
81,...,5rK and disordering delays dy,...,dy given that another customer arrives
at time ¢ with disordering delays 31, . ,EK and service time 31,...,3x. It is not

difficult to see that

T(tadla"'7dK731)"'75K7d17-" 7(11\’7?11--‘ agl\')

Hlaxlgkglx'(dk + Sk), ift>0
= ) (47)
maxi <<k |[max(dg,t + d +5¢) +sx] if ¢t <0.
Define the RVs X;,1 <k < K, by
X :t+3k + 5k. (4.8)

Then it can be shown that each X;,1 < k < K, has distribution F'x given by

14

(=) i i 6y(t-—1)’ z >t (4.9)
v—pu v—H

Fx(z)=1-

Next define the RVs ¥%,1 < k < I{, by
Y: = max(di, Xi). (4.10)

Since the RVs di and X}, are independent for 1 <k < I, each RV Y, 1 <k <K,

has the distribution Fy given by

Fy(ib) :[1 _ v e,u(t—z) + H eu(t—r)](l _ e—yz)
v— U v— U

-1 — __l/_____e;z(t—x) + __f_j’____el/(t——a:) _eE
V— i v — I

1 6Mte—-(1}+;¢)z _ __/L__eute—ZVx z > 0. (411)

v—pu v— i

+
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Lastly define the RVs Rg,1 < k < K, by

Ry =Yy + si. (4.12)

Taking into account that the RVs s; and Y, are independent for 1 < k < K, it

can be shown that each Rg,1 < k < I, has the distribution Fg given by

v Vi

Fr(z) =1+ P e—ve e Mt — eMlge™H
vl v— i v— i
2 " 2
+ H (37; — 2!“) eVt he _ H - eVle—ve
(v —p)?(2v — p) (v—p)
+ # 6;Lte—-ux _ H 6ute—(1/+u)x
v— v— i
- " e’leE 2> 0. (4.13)
@ = W — 1)
Note (4.7), (4.8), (4.10) and (4.12), that
T = max R, t<0 (4.14)

1<k<K

where the left hand side of (4.7) has been abbreviated to T'. Since the RVs 2,1 <

k < K, are independent, we obtain that
K )
P(T<2)= [ P(Rx <2)=Ff(2), =20 (4.15)
k=1

Proceeding as in Section 6.5, we can show after some calculations that

0 o N -
—T,I\(O) = ——/ / Z <I:>UK_rVrd;Udt (4.16)
t=—o00 Jr=0 .y

where

U114t emve Y mue (4.17)
v— v—p
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and

— /’62(37/ — 2”’) eVte—HE _ v el pe—HE
(v — p)?(2v — p) v—p
2
H vt —vz H tt  —
R A — -+ — L eHteTHT
(v —p)? V=i
7 I
. eute—(u—i—u)x _ eute—-Quz.
= r @ = (v — 7

It can be shown that

K-—r > my
- K—r mq ‘ 7 - v
UI\ T —1)™m2 m)—ma my
Z ( my > Z()(mg)( ) (l/———/.b) (V—,LL)
mao=

ma =0

% e-(u(m1—mz)+umz)x

and
d L 7
VT = ~1 ky r—ky —ko
yeve() 2 (5,

M2(3U — 2/”’) ]kz (u(r——kl——kg)—{-ukz)te—uaz(r—kl)
(v — )2 (2v — p)

B\ SR ke — v T

}: 1 Z v 3 k ky—ka—k
X ) 4 1 R3 ke

k3=0 (l”i'») ( ka )(V“H' [(V—N)Z]

k4=0

x|

X 6(“]{4-}-”(1»‘1—k3—k4)tmk4e—(pk4+u(k1—k3—k4))l

k
= (ks ks y ks—ks
x 2 (;%)(y_,) ek

ks=0

x e(uks+V(k3—ks))te"(ﬂks-i-ll(?ks—k&s))w.

From (4.16), (4.19) and (4.20) it follows that

—T,I\' ( O)

v

(4.18)

(4.19)

(4.20)

K K = K—r & my mo M mi—nty my
- ()X () 2 oot e

mq=0



T—-k]_

Fer (Bt

k1=0 ka0 Vo (v —p)*(2v — p)
kl k]_-—kg
v (kl) Z (kl —_ k3>( v )k4[ MQ ]kl—k‘g—-k4

Z_(i)( e A

s/ v—n' (v—u)(2v - p)

o0 .
X / R e~ (ulrtme—ki+kytks)+v(my—mothi+hks—kai—ks))z 7.
0

0
% / e(ﬂ(r—kl—k2+k4+k5)+'/(k1+k2—k4—ks))tdt

—_0

K—r mq my mo o my—mo 1% my
)X (e

mo=0 K

S0

(
><i<—1>’“([1)r—25 ()t

(v —p)2(2v — p)

k1:0 kz 0
k ky—k
o Zl (h) — <k1 - k3>( LIRVH, e k1 —ks = ks
oo \Fs/ (o a vep ()
(ks p
X >k5 . kg-—ks
2 <k>( ) omhew
o k4t
[(r +mo — ki + kg + ks) + v(ma —mo + ki + k3 — ky — kg)]Fatd
X L (4.21
/,L(T—kl—kz+k4+k5)+y(kl+k2“k4_k5). 2
We shall denote the right hand side of (4.21) as G'x(p, v) so that
T(0) = Gx(p.v). (4.22)

Tables for Gi(1,2),2 < I < 10 are given in Section 9.5.

Finally, combining (4.3), (4.6) and (4.22), we obtain the following first order
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approximation to the average response time of the time stamp ordering model,

T[((A) — MLK'(/JW 1/)

A
Y + [/’LGI\(/'La V) - L]{(,u, l/)] -

[H— A

Yy A, 1
+ [Vk = 1* Gr(p,v)) (;)nﬂ—j, 0<\<p. (4.23)

This approximation agrees extremely well with simulation results (see Section

9.4.2).
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9.4.2 Simulation results

In this section, approximation (4.23) is compared with simulation results for

the case p =1,y =2 and K = 2, 3,5 and 10.

A _Tg()\) Ag(/\’) % Error
0.1 2.254-0.008 2.23 0.89
0.2 2.46 £+ 0.012 243 1.22
0.3 2.73 £0.016 2.67 2.19
0.4 3.08 £0.017 3.00 2.59
0.5 3.56 + 0.036 3.46 2.80
0.6 4.27 +£0.062 4.15 2.81
0.7 5.40+0.112 5.30 1.88
0.8 7.59 +0.24 7.59 0.00
0.9 14.54 - 0.31 14.47 0.48
A Ts()) Ts(\) % Error

0.1 2.64 +0.007 2.63 0.38
0.2 2.88 +0.011 2.85 1.04
0.3 3.17+0.015 3.14 0.95
0.4 3.57+0.022 3.52 1.40
0.5 4.114+0.036 3.89 5.35
0.6 4.92 + 0.059 4.86 1.22
0.7 6.31 + 0.111 6.19 1.90
0.8 9.13 +0.295 8.85 3.07
0.9 17.63 £ 1.23 16.82 4.59
A Ts()) T5(/\) % Error

0.1 2.64 £ 0.007 2.63 0.38
0.1 3.14 4 0.009 3.14 0.06
0.2 3.41 4+ 0.012 3.40 0.32
0.3 3.76 £ 0.017 3.73 0.80
0.4 4.22 +0.026 4.18 0.99
0.5 4.8740.041 4.88 0.20
0.6 5.83 + 0.068 5.73 1.71
0.7 7.39 +0.12 7.28 1.48
0.8 10.44 £+ 0.28 10.39 0.97
0.9 19.96 £ 0.39 19.69 1.35




9.5 Tables

A Tlo()\) Tlo(/\) % Error
0.1 3.84 £+ 0.008 3.84 0.08
0.2 4,16 £ 0.011 4.14 0.48
0.3 4.5740.016 4.53 0.87
0.4 5.11 + 0.019 5.05 1.17
0.5 5.86 + 0.026 5.78 1.36
0.6 6.99 + 0.076 6.88 1.57
0.7 8.89 +0.15 8.70 2.13
0.8 12.73 +0.37 12.34 3.06
0.9 24.25 4+ 0.43 23.26 4.08

K LK(172) G]((l,Q)

2 2.08 1.39

3 2.45 1.62

4 2.72 1.77

5 2.93 1.88

6 3.10 1.97

7 3.25 2.04

8 3.38 2.10

9 3.49 2.15

10 3.60 2.19

Lo
—
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APPENDIX A

The principle results regarding the weak convergence of probability measures
are given in this appendix. Most of these are results are borrowed from Billingsley
[8] to which the reader is referred to for proofs and further details. Let (S, m) be

a metric space and let I be the o— field generated by the open sets in S.

Definition Al. Consider a sequence of probability measures {P,}5° as well as a

single probability measure P defined on II. If these probability measures satisfy

/S FdP, — /S fdp

for every bounded, continous fuction f on S, we say that P, converges weakly to

P and write P, = P.

Definition A2. A probabilty measure P on (S, II) s tight if for each positive €
there exists o compact set I such that P(K) > 1 —e.

A stochastic process X is a measurable mapping from probability space
(Q,IF, IP) into S. The distribution of X is the probability measure P = IPX ™!
on (S, II). We shall say that a sequence of stochastic processes {X,}7° converges

weakly to a stochastic process X, and write
X, =X

if the distribution P, of X, converges weakly to the distribution P of X.

Definition A3. A sequence of stochastic processes { X, }5° converges in probability

to X if X,, and X are defined on a common probability space and for all € > 0.

P{m(X,,X) > e} — 0.
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When X is a constant process (non-random), convergence in probability is
equivalent to weak convergence. In such casej we shall write m(X,,X) = 0 or
X, = X. If X, and Y, have a common domain, we also write m(X,, Y.)=0
when for all € > 0, IP{m(X,,Y,) > €} — 0.

The following result is Theorem 4.1 in Billingsley [8].

Theorem Al. (The converging together theorem.)If X, = X and
m(Xn,Yn) =0, then Y, = X.

Suppose I is a measurable mapping of S into S’, a second metric space with
Borel sets II'. Each probability measure P on (S, IT) induces on (S, I') a unique
probability measure Ph™'(A4) = P(h71A4) for A in I'. Let Dj be the set of

discontinuities of h.

The following result is Theorem 5.1 in Billingsley [8].

Theorem A2. (The continous mapping theorem).If X,, = X and IP{X €
Dp} =0, then hoX,, = hoX.

Two function spaces have received the greatest attention in th weak con-
vergence literature; the space of continous functions on [0,1} and the space of
functions on [0, 1] having only jump discontinuities. These spaces are the natural
ones for the sample paths of most processes which arise in applied probability.

Let C[0,1] denote the space of all continous real-valued functions on [0, 1]

with the metric of uniform convergence,

p(x,y) = sup{] z(t) —y(t) |: 0 <t < 1},

and Borel sets IU'. With this metric C[0, 1] is a complete separable metric space.

Let D[0,1] be the space of all real valued, right continous functions on [0, 1]
having left limits. In order to describe the metric for D[0, 1] we let A denote the

class of strictly increasing, continous maps of [0, 1] onto itself. For A in A, A(0) =0
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and A(1) = 1. Think of ) as being a new time scale. For A in A let

3 1= sup log 2= A Z 2D,

and define d(z,y) as follows:
d(z,y) =1inf{e > 0:]] A ||< € and p(z,y.\) < ¢, for some \ € A}.

The function d is a metric on D[0, 1] which renders it a complete separable metric
space. This metric generates the Skorokhod topology [8] which relativized to
C10, 1] coincides with the uniform topology. Let the Borel sets of D[0, 1] be denoted
by ID.

We now state Prohorovs functional central limit theorem which first appeared
as Theorem 3.1 in Prohorov [54]. Given a double sequence {X,(i)},i,7r =1,2...,
of RVs assume that

(A1).
(7): X1(2),X2(¢),... are independent and identically distributed for each 7 >
1, and defined on some probability space ({2, IFIP).
(v1): IB[X, ()] = mx(i) = mx < oo as: — oo. If mx(z) # 0 and mx # 0,
we let ﬁ =mx(z) and u_x =mx.
(111): 0 < Var[X,(1)] = 0% (i) — 0%,0 < 0% < 00, as { — 0.

(iv): E[| X,(1) |**€] is bounded in ¢ for some positive e.

Theorem A3. (Prohorovs Theorem).If the double sequence of RVs
{X.()},i,r = 1,2..., satisfies Assumption (A1) and if for each t € [0,1] we
define in DI[0,1]
i) = Sira (1) — mx (2)[rt]
VT
where Sj(1) = X1(2) + ... + X;(9), So(z) = 0 and [.] is the largest integer function,
then

& = ox¢
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i D[0,1] as 2,7 — oo in general manner. Here £ denotes the Wiener process.

For a sequence {X,(7)},7,7 = 1,2..., of non-negative RVs we define a se-

quence of counting renewal processes {N'(¢);¢ > 0,i = 1,2...} as follows

Ny = § max{n > 0] 2, Xeli) <4} 3 Xa(1) 2 4,
0 if Xl(i) < t

We then have the following result whoose proof may be found in Kyprianou

[45; Theorem 1].

Theorem A4. (Functional central limit theorem for renewal processes).
If the double sequence of non-negative RVs {X,()},i,7 = 1,2..., satisfies As-
sumption (A1) and if for each t in [0,1] we define in D[0,1]

Ni(rt) — rtpx(1)

Ni(t) = 7

then
i 2 .3
Nr = UXMX&
as 1,7 — 00 in general manner.

The proof of the following useful result that was used repeatedly throughout
the thesis may be found in Kyprianou [45; Lemma 3].

Theorem AS5. If the sequence {X,(¢),1,r = 1.2... of RVs satisfies Assumption

(A1) then as i,7 — oo in a general manner

The following discussion that clarifies the relationship between the function
spaces C'[0,1] and D[0, 1] is taken from Iglehart and Whitt [29]. Analysis is much
easier in C[0, 1] as compared to D0, 1], but many processes of interest are not

continous and must be regarded as elements of D[0,1]. The standard procedure
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has been to consider linearly interpolated versions of such processes which will be
in C[0,1], but the following result due to Ligget and Rosen [29] shows that the

analysis in C'[0, 1] may often be used for processes in D[0, 1].

Theorem A6. Let {X,,}§° be u sequence of stochastic processes in D[0,1], {Y,}5°
o sequence of stochastic processes in C[0,1]. If d(X,,Y,) = 0, then X,, = X in
D[0,1] if YV, = X in C[0,1].

As a consequence of this Theorem A6 the functional central limit theorems
for stocastic processes induced in D[0, 1] by sequences of partial sums or renewal
processes are equivalent to the corresponding theorems for the linearly-interpolated

stochastic processes in C[0, 1].

We now state a result that gives C'[0, 1]— tightness for sequences of stochastic
processes in D0, 1]. Knowing that a sequence of stochastic processes converges
weakly in D[0, 1], we often want to use the resulting tightness for other arguments.
The main condition for C[0, 1]— tightness is expressed in terms of the modulus of
continuity, w(6) : C[0,1] — IR, defined for any = in C]0, 1] by

we(6) = sup sup |z(t) —xz(s)].
0<s,t<1 |s—t]<$6 '

Theorem AT7. Let {X,,}§° be a sequence of stochastic processes in D[0,1], and
let X be a stochastic process such that P(X € C[0,1]) = 1. If X), = X, then
{X,15° 1s C[0,1]— tight: for all positive € and 1, there ezists ¢ 6 (0 <6 < 1) and

an integer ng such that

P{an(é) >e} <

for all n > nyg.
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APPENDIX B

This appendix contains some of the principle results from the theory of light
traffic approximations for queueing systems. For proofs and further details the

reader may consult Reiman and Simon [59].

In this theory, we are concerned with functions of a marked Poisson process,
{Tn, X, )}, where the markings, {X,}, chosen from a mark space (X,IB), are
iid, and are independent of the Poisson process {I,}. In a queueing context,
the Poisson process will usually constitute the arrival process, and x in X is the
description of a customer, which would include its service times, priorty levels, or
any other information needed to specify its behaviour in the system. The marked
Poisson process is defined on (2, IF"), where 2 is the set of all finite and infinite
sequences {(7n,Tpn),—M; <n < My},0 < My, M, < oo, that satisfy x, helongs
toX,and ... < 7.2 <7-1 <0< 7 <71 <.... The counting process associated
with w in Q is given by Ny(w) = inf{n : T),(w) > t}. Thus Ny, — Ny, is the number
of points in [t1,?2).

The o— algebra, IF, is generated by subsets of the form {N,, — Ny, =
k},~co < t; <ty < oo,k > 0 and {2 € B}.B € IB,—o0 < koo. We can
decompose IF into IF' and 17, where IF is generated by {Ny, — Ny, = &} and
IG is generated by {zx € B}. Let IFp C IF be generated by subsets of the
form {N;, — Ny, = k},t € (=T,T),k > 0 and {x, € B} N {| t, |,T},B € I,
—00 < n < 00; i.e. IFp measures the process on the interval (=T, T). In addition,
Fp C IFp will denote the family of o— algebras generated by {N; — N_p = k}.
Note that F' measures the Poisson process and JF 7 measures the Poisson process

on the interval (—=T1,T).

Let [Py be a measure on (§, IF) such that {N¢, —oo < t < oo} is a Poisson
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process under Py, and
IPA(A1 N Ag) = IPA(A1)PA(4y), A€ JF. A, € I5.

In other words, (£, IF, IP,) is a probability space for a Poisson process intensity

A.

For w € (), define wr to be w excluding all points outside the interval (—T,T).

Thus wy satisfies

N_T(w), t < =T,
Nt(wT) = Nt(wi)a I t ]< Ta
NT(w), t>T.

Let ¢ : Q — IR be IF' measurable and define ¢r : @ — IR by ¢r(w) = ¢(wr).
Note that ¥ is [Fp— measurable. Let

$=E@ | F)and ¥y = E(r | Fr).

We are concerned with functions, f(A), which are constructed as limits as T — oo

of fr()), where

Fr) = [Fpds= [uraps

To insure that f(A) is well defined, with derivatives at A = 0, we require that
the RV 1, has a certain type of regularity. In order to define this ‘admissibility’
condition, introduce the following additional notation. For 0 < o < y,l < 0, we

define A, (1) € IF by

Ae,y)(1) = {w : [ arrivals in the set [y, —a) U (z,y]}.

Definition B1. The RV ¢ is admaissable if there exist constants K, N < 00,1 <
a < oo, and 6 > 0 such that for any 0 <T <5,

E( vr — s || Apn(@), Arg(D) < K+ DN’ exp(—6t). (B1)



Admissability assures that f(\) and all its derivatives can be obtained as
limits as T' — oo of fr()) and its derivatives for \ in a neighborhood of zero.
Let ¥({t1,...,tn}) correspond to (w) when w consists of n points

{t1,...,tn}. Similarly, let ¥(0) be the value of 1)(w) when w € Q (i.e. no points
at all).

Let {(;’)} be the set of j— tuples chosen from {1,2...,n}, and for 7 =

{i1,...,1k} € {(',f)}, let tr = {t;,,...,t;, }. Define the function

U({tr,-. - ta}) =D (=D D" D({t}).
7=0 me{(7)}

The formulas for the derivatives are given by the following result.

Theorem B1. If ¢ is abmussible, then f(0) = lﬁ(@) and for n > 1,

f<”)(0):/oo /Oo T({t1,... tn})dty ... dby. (B2)
t1=—00 i

n——00

Reiman and Simon proved that several important functions of the M/G/1
queue are admissible, and using this fact they were able to prove admisibility of
these functions in general open queueing networks. The procedure that we employ
in Chapters 6, 8 and 9 for proving admissabilty for the response times for fork-join
and resequencing systems is very similar, since we use the fact that certain queue-
ing networks (which are special cases of general queueing networks) are admissable
in order to obtain our results. We now proceed to give the statement and detailed
proof of admissibility for the M/G /1 case since some of the constructs in the proof
are used in the thesis to prove admissibility for fork-join and resequencing systems.

The mark space X for the M/G/1 queue is IR, the non-negative reals. For
each w € Q we add an extra (tagged) customer who arrives at time zero, and

whose mark X*, is independent of the X,,’s but has the same distribution. Let

M(8) = Elexp(6X,)], 6€ IR.
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Let the RV @ denote the number of customers in the system at ¢ = 0 and let
W denote the sojourn time of a customer who enters at ¢t = 0. If v = QV,
then f()\) is the N*" moment of the queue length distribution and likewise for
Y = E[WN | X*].
Theorem B2. If there exists a 8* > 0 such that M(6) < oo for 8 < 8*, and 1 is
defined as

(a) ¥v=Q",

(b) ¢=EWY|X*]

for 1 < N < o0, then i is admissable.

The following lemma is needed in the proof of Theorem B2. Since the proof

of the lemma is not important for the discussion in the thesis, we omit it.

Lemma B1l. Let X be non-negative RV such that there exists a 8* > 0 with
IElexp(6z)] < oo for 8 < 6*. Let Z be a RV having an exponential distribution

with parameter 6%, let C' = M—[?}f’—(iﬂ, and define Y = C+Z. Then, fort >0,
X Sst },

In addition it is possible to construct a probability space (2,IF, P) on which X
and Y having the same distributions as x and Y respectively are defined, such that

X <Y for every w € Q.

Proof of Theorem B2. Fix 0 < T < S. Let

Zs(T) = {w : with arrivals turned off outside [—S, §] the server is idle at

some point during both [T, 0) and (0,T]}. (B3)
We can write

E(| 7 —¥s || Aom(7) Acr,si(1)

= E(| v —¥s || A7), Acer.s(1), Zs(T)) x P(Zs(T) | Ao, 1(5): Acr.sy(D)

+ IE(| b7 — s || A1) Aa.s(D), Z5 (T)) % IP(Z§(T) | Aw,()): Acr,s(D)-
(B4)

[RV]
N
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Note that
E(| 1 —bs || Awo,11(4), Acr,51(1), Zs(T)) = 0

so that only the second term in (B4) remains.

Renumber customers so that the first to enteron or after —S is 1. Let D(t) =
Ny —N_g,-5<t<S85,and set V,, = Z?zl X;,n > 1. Since the worst case for
keeping a server busy continualy during an interval is to have all arrivals during

that interval enter at the beginning, we have

IP(Z§(T) | A1), Ar5)(D) < 2IP{Vpsy > T | Awo,1(5), Ajr.sy (1)}
and

. P{V:ii>T f ),
JP{VD(S) >T | A(O,T](])aA[T,S)(Z)} = {IP%V;:H >}T} f(c)); EZ)).

For § < 8, we have E[exp(6V )] = [M(6)]*. By Chebychevs inequality we have
P{V}, > T} < [M(6*)]* exp(—6*T),
so that

> : MO T exp(—6*T for (a
PAZET) | o) Ay (D) < { [E DT a0C0T) - fortah )

Equation (B1) is satisfied for case (a) due to the bound

| Yr — s |< D(S), (B6)

so that Q¥ is admissable.

Case (b) is more involved since the conditioning can change the expectation.
By Lemma B1, we can construct a ‘companion’ system on the same probability
space as the original system which has service times {Y;.7 = 1,2...} such that
Xi<Yie=12..,and Y, =C+Z;,,C = lo—g]ng(Q, and Z; 1s an exponentially

distributed RV with parameter 8*. Let @y denote the N® moment of ¥7.
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Let V,, = 31, Y;. For case (b) we have

s < [Vpsy+1]", (B7)

so that

Elps | A7), Arr,s1(1), 2§ (T)] < BV 5y41 | A,my(3), Arsy(D), Z5(T))

N . e
< EVpe41 | Awn(), Al 25 (T)]

The memoryless property for the Z;’s yields

EV psy+1 | A1), Ae,s(D), 28 (T)]

< E[2T + VD(S)+1>N | Ao,51(7 +7)]
N N L
<> (k)@T)N“’“E(VHz)’“ (B8)

S2NTN 4 1+ 1)V ay < STV + 0V iy

= KnTV (G + DY,

Since TV exp(—8T) < K y exp(—%z) for some I¥ < oo, the result follows. ]

In the next step the admissibility property is extended to general queueing
networks with priorties and feedback. The greatest complication involved in doing
so 1s the burdensome notation involved in describing the system.

Consider a queueing network with 1 < I < oo stations, each with an infinite
waiting room, where station k has Ly servers, 1 < k < K. Server /| at station &
works at deterministic rate ur;. Cuustomers arrrive to the network in a Poisson
process with rate A\. There are J > 1 classes of customers; the probability that an
arriving customer is from class j is p;, 1 < j < J. If we let j; denote the class of the
ith customer to enter the system, then {j;,i =1,2...} is iid. with P(j; = 1) = p;.

A customers behavior in the network is determined by an itinerary, which is

a random vector. For each class, itineraries form an iid sequence. The sequences
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corresponding to different classes are independent. The 1** class j customer’s

itinerary is
{R;';(k;'uV}pT;i)»-- , (] JRlv ]R” ]R’)} 1<y<J 1=1,2...

The number of ‘stops’ in the itinerary is given by R; The m'* stop is described by

) H . : LN
(K! Tmo ]mr]m , where k]m is the station, U]m is the customers service requirement,
and r;m is the customers priorty. The priorty discipline can be either pre-emptive
resume or non-pre-emptive, with cuszomers of the same priorty level being served
in order of arrival to the station. Customers at the head of the queue are served

by the next available server, with an arbitrary choice being allowed when more

than one server 1s free.

Let
R;
Vi=> v, 1<j<J i=1,2...
m=1

denote the total service time of the i** class j customer, and define M;(§) =
IFE [exp(Gle]. Let () denote a generic queue length at ¢t = 0, that is, the number if
a specific type at a specific station, or a sum over a set of types and/or stations.
Similarly, W will denote a generic sojourn time, which may consist of any subset
of a customers itinerary. In addition W may be conditioned on a specific type, or

a set of types.

Theorem B3. If there exists a 8* > 0 such that M;(6) < oo for 1 < j < J, 6 < 6%,
and ¥ s defined as

(a) v =QV,

(b) o = E[WY | X%,

for 1 < N < oo, then v 1s admissable.
Proof. We introduce an M/G/1 queue (defined on the same probability space as

the network) which ‘bounds’ the network in an appropriate manner, and which is

itself admissable. Let

tl

min  min fig.
1<k<lx 1<I< Ly,
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Define

L V‘j
Vie-t, 1<j<J i=1,2...
I

We define J(dependent) discrete renewal processes by

n
P(n) =) 1=, 1<I1<J n=12...
t=1
so that Pj;(n) denotes the number of type [ customers among the first n customers

entering the system. Finally we define V; =V b+ () as the service time of the 7%

Ji
customer to enter the bounding M/G/1 queue. Defining M(8) = IE[exp(6V )],

we have

J
_ 0
M(6) = Y0 piMy(=)
j=1

The bounding M/G/1 queue is thus admissable with 8§ = fi6*.
Let Zs(T) be as defined in (B3) for the bounding M/G/1 queue, and define

Zs(T) = {w : with arrivals turned off outside [~S5, S] all servers are idle at

some point during both [-7,0) and (0, T]}. (B9)

When there is any work remaining in the network, it i1s working at least as fast as
the bounding M/G/1 queue. Hence , Zs(T) C Zs(T). Thus (B5) holds for the

network (with 6* replaced by 5*, and M replaced by M). The bound (B6) still
holds and (B8) goes through as before. ]

]
DN
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APPENDIX C

The following result known as the multi-dimensional Ito formula for semi-

martingales is Theorem 5.10 in Chung and Williams [12].

Theorem C1. Let m,n € IN. Let M' be a continous local martingale for 1 <
i < m, and VF be a continous process which is locally of bounded variation for

1<k <n. Suppose that D is a domain in IR™F™ such that a.s.
Zy= (M}, ..., MV, V)

takes values in D for all t. Let f(x,y) be a continous real-valued funciion of

(x,y) € D such that —(%ff OF <1, <m, and gyfk—,l <k < n, exist and are

i Owx;0x;?

continous in D. Then a.s. we have for all t:

fz0- 520 =Y [ gEza
i=1 Y0 t

k=170
ht —(Z)d < M*, M’ >, .
+2;]§=:1 0 83:1-8%( Jd <
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