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Growth mixture modeling has gained much attention in applied and 

methodological social science research recently, but the selection of the number of 

latent classes for such models remains a challenging issue. This problem becomes 

more serious when one of the key assumptions of this model, proper model-

specification is violated.  

The current simulation study compared the performance of a linear growth 

mixture model in determining the correct number of latent classes against two less 

parametrically restricted options, a latent profile model and an unstructured growth 

mixture model. A variety of conditions were examined, both for properly and 

improperly specified models. Results indicate that prior to the application of linear 

growth mixture model, the unstructured growth mixture model is a promising way to 

identify the correct number of unobserved groups underlying the data by using most 

model fit indices across all the conditions investigated in this study.
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CHAPTER 1: INTRODUCTION 

 

Research question that the current study aims to address arises from an empirical 

research on reading achievement development of elementary students across 

Kindergarten to 5
th

 grade (Douglas & Liu, 2009). Below Spaghetti Plot illustrates six 

random samples of students’ reading achievement scores from Early Childhood 

Longitudinal Study- Kindergarten Cohort (ECLS-K). Visual inspection indicates 

some students have steeper growth in the early years than others. This apparent 

heterogeneity motivated the need to consider using multiple growth trajectories to 

model this type of growth for all students. For this research purpose, growth mixture 

model (GMM), was selected as a suitable tool to investigate unobserved different 

group-based growth curves in this longitudinal data because GMM, as briefly 

introduced in the following paragraph, has its advantages over traditional or other 

statistical methods for studying developmental process.  

 

Figure 1. Spaghetti plots of reading achievement scores across Kindergarten to 5th 

Grade 
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Traditional mean-based methods (e.g., repeated-measures ANOVA) for studying 

individuals’ developmental change assume that all individuals change in a uniform 

pattern. That is to say, no random variation among individuals is allowed. More 

advanced statistical techniques proposed in the latter part of the twentieth century 

made an improvement by incorporating individual variation from the single fixed 

function into the models, such as hierarchical linear modeling (see, e.g., Raudenbush 

& Bryk, 2002), random-effect modeling (Laird & Ware, 1982) and latent growth 

modeling (LGM) in the structural equation modeling context (for review see Hancock 

& Lawrence, 2006). However, all of these methods assume there is only one 

population (i.e., one group-based trajectory) underlying the data, which may not be 

met in practice. Numerous examples can be illustrated in this regard. For example in 

education, students from kindergarden to 5
th

 grade can be classified into fast and 

normal readers in terms of their different growth trajectories in learning reading 

(Douglas & Liu, 2009). Taken another example in marketing application, Jedidi, 

Jagpal, and Desarbo (1997) illustrated the misleading model estimations due to 

ignoring the existence of heterogeneity.   

Growth mixture modeling (GMM) has gained much attention in the past decade 

for its capability of exploring and identifying different group-based growth curves in 

longitudinal data by considering both random effects and population heterogeneity. 

Therefore, GMM has been widely applied in the social and behavioral sciences. 

Examples of its application include studies of college alcohol development (e.g., 

Greenbaum, Del Boca, Darkes, Wang, & Goldman, 2005), depression patterns (e.g., 

Stoolmiller, Kim, & Capaldi, 2005), reading skills from kindergarten to 5
th

 grade 



 

3 

 

(e.g., Douglas & Liu, 2009), medication effects (e.g., Muthén, Brown, Hunter, Cook 

& Leuchter, 2011), and criminal behavior trajectories (Kreuter & Muthén, 2008a).  

Whenever researchers start their data analysis using GMM, a question arises, 

how many different growth trajectories should be applied for this data? In other 

words, how many unobserved groups exhibit distinct growth patterns across time? 

Give a further reflection, which criteria or method can be used to identify the number 

of unobserved groups accurately? In fact, the problem of class enumeration has 

invoked numerous debates on whether and how GMM should be used in practice 

soon after its appearance. So the main theme throughout the current research work is 

about how to identify the number of latent class for GMM accurately.  

In fact, the enumeration of latent groups (classes) is a problematic issue, not only 

for GMM, but also for other mixture models (e.g., mixture confirmatory factor 

analysis models and latent class models). But this problem is particularly challenging 

when the key assumptions of GMM are violated, as Bauer (2007) and Bauer and 

Curran (2003, 2004) pointed out. As these authors stated, when the assumption of 

having a properly specified within-class model is not met, spurious classes may be 

generated to compensate leading to further inaccurate longitudinal inference. This is 

especially disconcerting in practice because the true model is never known a priori, 

which is the dilemma that researchers have to deal with in the empirical study for 

students’ reading skills development.   

To address this problem, the current work proposes to use less restricted mixture 

models to determine the number of latent classes prior to applying GMM directly. 

This idea is theoretically compelling in the sense that fewer restrictions are imposed 
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on the model structure and thus there is less chance that model misspecification 

would occur. Consequently, the possible spurious latent classes caused by the 

improperly specified model might, in theory, be avoided. This idea has never been 

empirically investigated for GMM. As such, the current study is an extensive Monte 

Carlo study examining the accuracy of the number of latent classes for GMM 

suggested through a priori application of two less-restricted mixture models: the 

Latent Profile Model (LPM), which is completely unrestricted since no restricted 

relation is imposed among variables, and the Unstructured Growth Mixture Model 

(UGMM), which is partially restricted in the sense that the growth function is not 

restricted to be linear but the correlations among observed variables are still driven by 

latent growth factors. A wide range of model fit indices were used to choose the 

number of latent classes for each model and their relative performance was evaluated.  
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CHAPTER 2: LITERATURE REVIEW 

To better understand this work and its contributions to related field, this chapter 

reviews the related literature as follows: Section 2.1 describes a general theory 

framework for GMM; Section 2.2 presents key methodological problems and 

consequence associated with GMM and suggested solutions; Section 2.3 proposes the 

main idea of the current work and introduces the unrestricted LPM and less restricted 

UGMM; Section 2.4 introduces three types of model selection indicators for 

evaluating the number of latent classes in a GMM context and related simulation 

studies for comparing the efficiency of those indicators.  

2.1. Growth Mixture Model 

Although some precursor work (e.g., Verbeke & Lesaffre, 1996) had implied the 

similar idea of a mixture of random effects in linear mixed-effects model, GMM was 

first formally introduced by Muthén and Shedden (1999), and was extended in later 

publications by Muthén and his colleague (2001, 2002, 2004, & 2008).  

2.1.1 General Function for Growth Mixture Model 

According to Muthén and Shedden’ (1999) work, the general function for GMM can 

be written in matrix form as: 

k k
y Λ η ε                                                       

k k k k
η α Γ x ζ                                                 

where  

~ (0, )kNε Θ  

and  
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~ (0, )k kNζ Ψ  

All the symbols with superscript k imply that they differ across latent classes. 

y denotes the vector of continuous repeated measures for an individual, 
k

Λ is the 

matrix of factor loadings, which usually has a fixed pattern reflecting the growth 

function. For example, 

1 0

1 1

1 2

1 3

Λ indicates a linear function for a GMM with four 

equally spaced repeated measures.  ε is residual vector at level 1 and it is assumed to 

be normally distributed with mean zero and a typically diagonal covariance matrix 

k
Θ , indicating that relations among repeated measures are fully captured by the 

latent growth factors 
k
η . 

k
α is the vector of latent factor means, x is the observed 

covariate vector and
k

Γ is the matrix of regression coefficients of latent factors 

k
η on covariates x .  

k
ζ  is the residual vector that also follows normal distribution 

with mean zero and covariance matrix
k

Ψ . The normality assumption of random 

effects implies that the individual variations are centered on the expected value of 

xΓΛαΛ
kkkk

 within each latent class and they deviate from the center 

symmetrically.  

2.1.2 Unconditional GMM 

The inclusion of covariates was recommended in order to ―correctly specify the 

model, find the proper number of latent classes, and correctly estimate class 

proportions and class membership‖ (Lubke & Muthén, 2007; Muthén, 2004). 
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However, a recent academic talk with Muthén suggested (Marsh, Ludtke, Trautwein 

& Morin, 2009) that the inclusion of covariates must satisfy a strong assumption; the 

covariates are strictly antecedent variables to the latent classes, indicating that the 

causal ordering must be from the covariates to the latent classes. Because it is 

difficult to test this assumption in practice, researchers should evaluate the inclusion 

of covariates carefully even with a strong justification to do so (Marsh et al., 2009). 

Considering that our primary research concern is how to determine the number of 

latent classes accurately rather than investigate the kind of relations among variables, 

and that covariates have been shown to present challenges for class enumeration 

(Tofighi & Enders, 2008), no covariate is considered in this study. Therefore, after 

covariates are removed from the equation (2), the function for unconditional GMM in 

matrix form becomes 

k k k
η α ζ  

Now the individual variation in centered on the estimated intercept and slopes within 

each latent class.  

2.1.3 Estimation of GMM 

Maximum likelihood (ML) estimation is the dominant method for estimating 

mixture models (Yung, 1997). It is also used to estimate GMM through 

implementation of the EM algorithm (Muthén & Shedden, 1999). Following 

Tolvanen’s (2008) derivation, the log-likelihood function of observed data for the 

GMM can be constructed as below: 

1 11

log log log log ( )
n n n

i i i

i ii

L L L f y  
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where the density function is a mixture of K density functions for different latent 

classes as below 

1

( ) ( )
n

k k

i i

i

f y f y  

where
k

is the proportion of latent class k, whose density function follows a 

multivariate normal distribution:  

( ) ~ ( , )k k kf y N μ Σ  

where 

k k k
μ = Λ α  

k k k k k
Σ =Λ Ψ Λ +Θ  

and then the conditional density function is  

1

( | ) ( 1) ( | 1)
K

k

i i ik i ik

k

f y c p c f y c  

1ikc  indicates 
thi observation belongs to latent class k and 0ikc  otherwise. 

1 1

( 1) 1
K k

k

ik

k k

p c p . This restriction is necessary for model identification. 

Including the class information, the complete loglikelihood is 

1

log ( | )
n

i i

i

f y c                                                         

=log
1 1

[ ( 1) ( | )]
ikcn K

ik i ik

i k

c f y c  

=
1 1

log ( 1) ( | )ik ik

Kn
c c

ik i ik

i k

c f y c  
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=
1 1 1

log ( 1) log ( | )ik ik

K Kn
c c

ik i ik

i k k

c f y c  

=
1 1 1

log ( 1) log ( | )
n K K

ik ik ik i ik

i k k

c c c f y c  

From the derivations of the above equation, we can infer that the estimation 

consists of two parts: estimating the sum of the weighted K class proportions and the 

sum of the weighted K density functions.  

The EM algorithm includes an E-(expectation) step and an M-(maximization) 

step. In the E-step, the values of latent class information (i.e., posterior probabilities 

for each observation falling into each latent class after the first iteration) are 

considered missing and their expected values are estimated based on the starting 

values given in the first iteration and then the values from the M-step in following 

iterations. As expectations of the elements of the vector of class membership 

indicator variables ikc  they take the form of posterior probabilities of class 

membership. Then those posterior probabilities are inserted in the M-step to 

maximize the (expected) loglikelihood in this equation. Consequently, we get all the 

estimated parameters within each latent class at this iteration. After the M-step, the 

EM algorithm returns back to the E-step to obtain a new set of posterior probabilities. 

The iterations continue until some convergence criterion related to the complete-data 

log-likelihood is satisfied.  

2.2. Methodological problems with GMM and suggested solutions 

The increased popularity of GMM in the social sciences has invoked many 

methodological concerns, especially the enumeration of latent classes for this model, 

which is the first and a crucial step of applying GMM in practice. In fact, class 
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enumeration is always a challenging issue for mixture modeling (e.g., latent class 

analysis, mixture confirmatory factor analysis). As experts emphasize, the application 

of GMM should be based on substantive theory (e.g., Muthén, 2003, 2004). A recent 

handbook for methodology in psychology explicitly states (Little, Card, Preacher, & 

McConnell, 2009) that to confirm a theory, researchers should clearly state ―(1) why 

qualitatively distinct classes should exist, (2) how many classes should exist, and (3) 

what the functional form of the growth trajectories within each class should be,‖ 

(pp.39) based on sufficient theoretical reasons. 

However, usually this is not the case in practice. When a researcher believes in 

the existence of population heterogeneity in the developmental data, it is more likely 

that he/she will use an exploratory way to evaluate the number of latent classes for 

GMM. Unlike conventional structural equation models, testing the overall fit for 

GMM with different latent classes is not possible, as this model belongs to the 

mixture-modeling framework. Instead, researchers rely on statistical model indices to 

compare the relative fit of competing models with different latent classes to the data. 

This data-driven approach triggered much criticism on using GMM in the social 

sciences because spurious latent class might be generated from data and this problem 

becomes more serious when the key assumptions of GMM are violated.  

To streamline following discussion of those methodological concerns, Table 2.2 

provides a brief summary of all the methodological problems, authors’ findings on 

the effects on class enumeration, and suggested solutions. Among them, the problems 

of local maxima and non-normality have received greater attention recently, but much 

less so for the other problems. Despite all these problems, GMM has become widely 
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used for developmental study in the social sciences (e.g., psychopathology, Odgers, 

Moffitt, Broadbent, Dickson, Hancox, Harrington et al., 2008; organizational study, 

Wang & Bodner, 2007). Clearly, it is imperative and extremely significant to solve 

those methodological concerns regarding GMM to ensure this model as a promising 

approach for analyzing heterogeneous latent development process underlying data
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Table 2.2 Methodological problems, associated consequence on class enumeration and possible solutions  

 

Problems Effects on class 

enumeration 

Suggested solutions 

Violation of within-class 

normality 

overestimate Second-order GMM (Grimm & Ram, 2009); Non-

parametric version of a GMM (Muthén & Asparouhov, 

2008; Kreuter & Muthén, 2008b); Skew-normal 

mixture model (Azzalini, 1985 & 2005; Chang, 2005) 

Local Maxima under-or 

overestimate 

Multiple random starting values across a wide range of 

parameter space (Hipp & Bauer, 2006) 

Violation of data missing at 

random (MAR) 

might 

underestimate 

Pattern mixture model or Probability weight (Bauer, 

2007) 

Violation of simple random 

sampling 

might 

overestimate 

Design-based or model-based approach (Hamilton, 

2009) 

Misspecification of within-

class model (nonlinear 

relation is a special case) 

overestimate Unrestricted (or saturated) model (Yung, 1997; Bauer 

& Curran, 2004) 
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Bauer and Curran (2003, 2004) offered strong arguments against GMM. In their 

work in 2003, they showed that if the repeated measures are non-normal, a GMM 

with multiple latent classes always fits data better than a single-class latent growth 

model, whether or not the non-normality is caused by the mixture of multiple normal 

subpopulations or a unitary non-normal distribution. Even mild violation of normality 

may result in many artifact latent classes (Bauer & Curran, 2003; Tofighi & Enders, 

2008). Actually, this phenomenon has been observed in mixture models assuming 

normal distributions for several decades (e.g., Maclean, Morton, Elston & Yee, 1976).  

Several studies have been done to address the violation of the within-class 

normality assumption, as mentioned in the first chapter. Grimm and Ram (2009) 

posited that the latent construct of interest might be normally distributed, whereas its 

observed indicators might be non-normal due to ceiling, floor, or other possible 

measurement anomalies. Borrowing the idea from Hancock, Kuo, and Lawrence 

(2001), they proposed the second-order GMM, in which the factor scores indicated by 

observed variables were used as repeated measures across four occasions. As such, 

these latent constructs can provide more precise true-score distributions from the 

sample with non-normal data. We can see that this approach reduces the effect of 

measurement error, which directly deals with
k
. In this way, the risk of generating 

spurious latent classes from non-normal data (not a mixture of multiple normal 

distributions) is reduced. However, there is one limitation of applying this model in 

practice: it requires many more observed variables (i.e., indicators) to build up this 

complex model.  
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Muthén and his colleagues proposed a non-parametric version of a GMM (NP-

GMM) to accommodate non-normal random effects, which is denoted as k  in the 

GMM model (Kreuter & Muthén, 2008b; Muthén & Asparouhov, 2008). Inspired by 

the idea of latent class growth analysis (LCGA), NP-GMM also does not rely on any 

distribution assumption for the random effect. Instead, it uses additional latent classes 

to capture the non-normal distribution within the K latent classes specified before. 

Unlike LCGA, only the K latent classes have substantive meaning in NP-GMM; those 

additional latent classes within them are just mathematical approximations to fit the 

non-normal data within the K GMM classes. In other words, practitioners do not have 

to interpret those additional latent classes as meaningful subpopulations. NP-GMM 

can be used to model non-normal data as long as the number of latent classes K and 

the non-normality of the random effects are known a priori. However, this approach 

does not completely solve the problem of overextraction of latent classes caused by 

non-normal data because the K latent classes are established prior to the estimation of 

NP-GMM.  

Another potential method that might alleviate the overextraction of latent classes 

caused by nonnormal distributions is to change the underlying normal distribution to 

the skew normal distribution (Azzalini, 1985), in which a skewness parameter is 

introduced to loosen the normality assumption and thus the normal distribution 

becomes a special case. Chang (2005) applied this skew-normal mixture model to 

data with existence of skewness and successfully determined the number of 

components. By the same token, it is reasonable to assume this method could be used 

for the same purpose in GMM context.   
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The second problem associated with GMM is local maxima in the estimation 

process. Unlike a latent growth model for a homogeneous population, but similar to 

other finite mixture models, GMM could have a poorly behaved likelihood function 

often resulting in incorrect local solutions, as opposed to global maxima (e.g., Muthén 

& Shedden, 1999). Hipp and Bauer (2006) first presented an empirical study on the 

local optima problem in GMM for applied researchers and clearly recommended that 

it is necessary to vary the starting values extensively on the likelihood surface to 

obtain the global maxima. Almost at the same time, Mplus incorporated multiple 

random starting values across a wide range of the parameter space when estimating 

models. Moreover, Mplus version 6 can provide all the highest log-likelihood values 

and associated class proportion information from different solutions due to different 

starting values if users request ―tech8‖ in the output. This function can give more 

diagnostic information for the appropriateness of the model.  

In addition to the above problems, Bauer (2007) summarized other possible 

conditions that might prompt inappropriate estimation of latent classes. He found that 

if the missing data are modeled as random but in fact they are not, the number of 

latent classes might be underestimated because some smaller extreme classes could 

be under-represented in the observed data and hence become more difficult to recover 

the truth. Bauer (2007) also mentioned two possible corrections for this problem, 

using pattern mixture models or using probability weights to adjust for non-response 

and attrition.  

In the same work, Bauer also pointed out that if the complex sampling is ignored 

and treated as simple random sampling, the number of latent classes might be 
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incorrectly enumerated, such as the overextraction case in Wedel, ter Hofstede, and 

Steenkamp’s (1998) work for finite mixture models in general. To alleviate the effect 

of violating this assumption, Hamilton (2009) conducted a simulation study to 

investigate using either design-based (i.e., weights) or a model-based approach (i.e., 

modeling stratification variables directly) or both to account for unequal probabilistic 

selection resulting from complex sampling design. However, neither approach can 

provide acceptable proportion of unbiased parameter estimates, though design-based 

performs better than the other. More importantly, she did not examine the effect of 

these adjustments on the accuracy of class enumeration.  

Both Bauer (2007) and Bauer and Curran (2004) noticed that misspecification of 

the within-class model might also lead to spurious latent classes to capture the 

variance-covariance of the repeated measures. Moreover, Bauer (2007) pointed out 

that if nonlinear relation between exogenous predictors and the trajectory parameters 

within classes is treated as linear, more latent classes are required to approximate the 

data. Actually the nonlinear component is just one special case of model 

misspecification. To address this problem, a two-step modeling process was proposed 

to avoid that class overextraction solely induced by the model misspecification 

(Bauer & Curran, 2004; Yung, 1997). In the first step, the unrestricted (or saturated) 

models with different number of latent classes are estimated and compared according 

to the model fit indices, since no restriction is imposed on the within-class model 

structure and thus no within-class model misspecification would occur. Consequently, 

the possible spurious latent classes caused by an improperly specified model might, in 

theory, be avoided. Supposing the number of latent classes is correctly identified in 
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the first step, in the second step the hypothesized models are fit to the data to see if 

the models can adequately capture the within-class mean and covariance structures 

underlying the data.  

This idea is theoretically compelling. However, it has not been investigated for 

GMM and no empirical evidence is available to support this new decision rule. This 

study is designed to fill this gap. As GMM alone is prone to overextraction under 

certain misspecified model conditions as mentioned above, it is reasonable to suggest 

that an unrestricted although proper model could perform better as a preliminary tool 

for class determination of GMM. In the following section, a latent profile model, a 

completely unrestricted mixture model, is introduced in the first step to identify the 

number of latent classes.  

2.3. Using Unrestricted or Less Restricted Mixture Model to Address Class 

Enumeration Problems Caused by Misspecified Within-Class Model 

The latent profile model (LPM) was first developed by Gibson (1959). It is quite 

similar to latent class analysis (LCA) in the sense that they both use a model-based  

probabilistic approach to classify subjects into different groups (characterized by 

some distribution with unique set of parameters for each group) and can be tested 

with a number of model fit indices. Their difference lies in that LCA uses binary 

indicators while LPM uses continuous indicators. For this reason, LPM has been 

called ―Latent class models with metrical manifest variables‖ (Bartholomew, 1987, 

pp.34). Comparing to traditional cluster analysis, LPM is advantageous because it 

does not require indicators on the same scales prior to their input into the analysis. 

The fundamental equations of LPM in matrix form can be written as 
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The density function of LPM ( )f y is a sum of weighted group-based conditional 

distribution, each of which is defined by a mean vector k  and covariance matrix k .  

In social and behavioral science, the conditional distribution usually is assumed to be 

normal, but not limited to this form. 
k

denotes each class proportion and so 

1

1
K

k

k

. There are different ways to parameterize covariance matrix k  as shown 

in Table 2.3.1.  

Model E is chosen to fulfill the research goal in current study because there is no 

restriction imposed on the covariance, which makes LPM a completely unrestricted 

mixture model. As such it is a useful tool to study population heterogeneity (e.g., Hill, 

Degnan, Calkins, & Keane, 2006; Marsh et al., 2009).  

However, as Bauer and Curran (2004) noted, a saturated (completely 

unrestricted) model has far more parameters to be estimated than the restricted model. 

Table 2.3.2 presents the number of parameters to be estimated in the three types of 

mixture models, linear GMM, UGMM (will be introduced later), and LPM. Clearly, 

LPM has many more parameters that need to be inferred from data than other two 

models. This is particularly clear in the models with 7 repeated measures. LPM 

doubles the number of parameters in UGMM, and almost triples as linear GMM. 

 

1

( ) ( | , )
K

kk k

k

f fy y
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Table 2.3.1 Five parameterization ways of k  for r indicators  

Model  k  Characteristics 

A 2

1

2

2

20 0 r

 

Variance are allowed to differ 

across indicators within a class, 

but are constrained to be equal 

across classes; all covariances are 

zero.  

B 2

1

2

21 2

2

1 2r r r

 

Less restricted than Model A; 

covariance are freely estimated 

within a class, but are constrained 

to be equal across classes.  

C 2

1

2

2

2

0

0 0

k

k

rk

 

Less restricted than Model A; 

variance are also freely estimated 

across classes 

D 2

1

2

21 2

2

1 2

k

k

r r rk

 

Less restricted than Model C; 

covariance are freely estimated 

within a class, but are constrained 

to be equal across classes.  

E 2

1

2

21 2

2

1 2

k

k k

r k r k rk

 

Least restricted model; variance 

and covariance are freely 

estimated within and across 

classes.  

Note: this table is adapted from Pastor, Barron, Miller & Davis (2007) 



 

20 

 

 

 

Table 2.3.2 The number of parameters to be estimated in the three types of mixture 

models with 4 and 7 repeated measures 

 

 LPM UGMM 
linear 

GMM 

1-class 14/35 11/17 9/12 

2-class 29/71 23/35 19/25 

3-class 44/107 35/53 29/38 

 

In statistical modeling, researchers always need to consider the bias-variance 

tradeoff (or ―bias-variance dilemma‖) as displayed in Figure 2.2 (e.g., A’Hearn & 

Komlos, 2003; Rice, Lumley, & Szpiro, 2008). In practice, whenever an incorrect 

restriction is imposed, fewer parameters are required and some degree of bias is 

induced. As long as researchers can find a balance point so that this restriction is 

close to the truth, the bias induced will be small while the reduction in variance will 

be substantial. In reality, the choice between restricted and unrestricted model 

estimation depends on the researcher’s degree of confidence in those restrictions. 

How to decide this trade-off is an empirical question, highly related to sample size 

(A’Hearn & Komlos, 2003). In the results section, it is observed that the model 

performance, especially LPM, is highly related to sample size.  
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Figure 2.2 The trade-off between bias and precision in statistical modeling 

 

Taking into account this rationale in our context, the linear GMM could be 

considered the most restricted model and put on the leftmost end of the horizontal line 

while the LPM is the least restricted model and could be put on the other end. Our 

preliminary results indicate that LPM does not always outperform linear GMM in 

class enumeration, possibly due to too many parameters to be estimated in LPM. For 

this reason, an Unstructured Growth Mixture Model (UGMM) is proposed as a 

balanced model to be compared with the other two in determining the number of 

latent classes. Compared to GMM, UGMM is partially unrestricted in the sense that 

the growth function is not restricted to be linear; compared to LPM, UGMM is more 

restricted since it still assumes the correlations among observed variables within each 

class are driven by latent growth factors.  

Balance point 

Bias  variance 

 
Model Complexity – increasing the number of Parameters 

LPM UGMM Linear 

GMM 
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As stated above, usually is a matrix of fixed-factor loadings indicating fixed-

growth function. As for UGMM, does not follow a fixed pattern any more and 

needs to be estimated from data. Still, taking the GMM with four equally spaced  

 

time points as an example, the matrix of factor loadings becomes,                          

 

which indicates that  the last two factor loadings need to be estimated from data and 

the growth function is not assumed to be linear, but rather piecewise linear. In this 

sense, UGMM is a less restricted model in comparison with the general linear GMM.  

In sum, the primary purpose of this current study is to explore the performance of 

a LPM and an UGMM in selecting the number of latent classes compared to a general 

linear GMM across different experimental conditions as described in the Methods 

section. As such, this study can provide some practical guidance to practitioners in 

their empirical study using GMM.  

2.4. Evaluating the number of latent classes for mixture models 

For the purpose of comparing three types of mixture models, researchers need to 

refer to a number of statistical tests and fit indices, although none of them is 

considered a universally accepted criterion. Therefore, the suggested approach in 

practice is to look for converging evidence across multiple criteria. All the model fit 

indices used in this study can be categorized into three groups, information criteria, 

likelihood ratio tests and classification statistics.  
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2.4.1 Information Criteria 

Information criteria are the biggest family of indices being used for model 

selection in this study. All of them follow the form as 

IC 2LL pernalty term  

where the LL is the loglikelihood of the hypothesized model and the penalty term is 

determined by imposing different weights on parameterizations and/or sample size. 

Different choices of penalty term lead to different information criteria. All those 

information criteria used to compare mixture models in this study are summarized in 

Table 2.4.1. Models with lower values indicate a better fit to the data. We need to 

note that three new information criteria, DBIC, HQ, and HT-AIC, were first 

introduced in the context of GMM study because they have been investigated for 

determining the number of latent classes for latent class analysis under various 

experimental conditions (Yang & Yang, 2007). The information criteria that penalize 

for model complexity (i.e., the number of parameters) might be too conservative to 

scrutinize the potential latent classes. This is another reason that UGMM, as a 

potential solution for class enumeration, is studied in addition to the complex LPM. 

 

 



 

24 

 

Table 2.4.1 Information Criteria used in this study 

Abbrevi-

ation 

Information Criteria Function Form Key 

related paper 

advantages or 

disadvantages 

AIC Akaike’s information 

criterion 
2 2LL p  Akaike (1987) Inconsistency for not 

considering sample size 

BIC Bayesian information 

criterion 

2 ln( )LL p N  Schwarz 

(1978) 

Consistent with increasing 

sample size 

SABIC Sample adjusted BIC 2 ln(( 2) / 24)LL p N  Sclove (1987) 

Yang (2006) 

Good when model has 

large p or small N.  

CAIC  Consistent version of 

AIC 
2 [ln( ) 1]LL p N  Bozdogan 

(1987) 

Favor model with fewer 

parameters in comparison 

with BIC 

SACAIC Sample size adjusted 

CAIC 
2 [ln(( 2) / 24) 1]LL p N  Tofighi and 

Enders (2008)  

 

Favor model with fewer 

parameters in comparison 

with SABIC 

DBIC Draper’s BIC 2 [ln( ) ln2 ]LL p N  Draper (1995) Good with small to 

moderate sample size 

HQ Hannan and Quinn’s 

information criteria 
2 2 [ln(ln( ))]LL p N  Hannan and 

Quinn (1979) 

   Good with large sample 

size 

HT-AIC Hurvich and Tsai’s 

AIC 
2( 1)( 2)

2 2
2

p p
LL p

N p
 

Hurvich and 

Tsai (1989) 

Good with small sample 

size 

Note: LL is the model-based log-likelihood, p is the number of parameters, and N is the sample size.  
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2.4.2 Likelihood Ratio Tests 

 Compared to information criteria, likelihood ratio tests are more demanding 

because these statistics require bootstrapping or following certain asymptotic 

distributions in order to obtain the probabilistic statement (e.g., p value) regarding 

model selection. The commonly used ordinary likelihood ratio test (OLRT) is not 

applicable in GMM because this test can be used only for comparing nested models 

and not for mixture models with different numbers of latent classes. As summarized 

in Table 2.4.2, three other likelihood ratio tests are used in this study.  

Several things need to be clarified for Table 2.3.2. First, 

( | ; )f y z and ( | ; )g y z are conditional probability density functions for two 

competing models. After substituting the observed values for the endogenous variable 

y and exogenous variables z  and estimated model parameters ˆ  and ˆ  for the two 

models, the 
1

VLMR
n

can be calculated and is distributed as a sum of chi-square 

distributions if the two model-based density functions are equivalent, or a weighted 

sum of chi-square distributions if they are not (Henson, Reise, & Kim, 2007; Vuong, 

1989). Second, kp and 1kp represent the numbers of parameters in the two competing 

k-1 and k class models. Both of VLMR and LMR are to be compared with critical 

values from their theoretical distributions under the null hypothesis that the two 

model-based probability density functions are equivalent. Lo, Mendell, and Rubin’s 

(2001) work indicated that VLMR exhibited more Type I errors but more power than 

the LMR. The significance level alpha ( ) is set to be 0.05 throughout this study. 

And the rate of accuracy over 90/95 percent will be considered as acceptable/good.  
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Table 2.4.2 Likelihood ratio tests used in this study 

Abbrevi

ation 

Likelihood ratio 

tests 

Function Form Key 

related paper 

Decision rule 

VLMR Vuong-Lo-

Mendell-Rubin test 

2

1

ˆ( | ; )
log

ˆ( | ; )

n
i i

i i i

f y z

g y z
 

Lo, Mendell 

and Rubin 

(2001) 

A significant result 

indicates k class model 

is superior to the k-1 

class model 

LMR Lo-Mendell-Rubin 

test 1

11 [( ) ln ]k k

VLMR

p p N
 

Lo, Mendell 

and Rubin 

(2001) 

Same as above 

BLRT Bootstrapping 

likelihood ratio test 

NA McLachlan 

(1987) 

Same as above 
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2.4.3 Classification-based Statistics  

Unlike information criteria and likelihood ratio tests, classification-based 

statistics include the consideration of classification accuracy. After estimation of a 

mixture model, the chance of individuals arising from each latent class is 

measured by the estimated posterior probabilities. If each subject has a single high 

posterior probability for a certain class, this means the classification is 

unambiguous. Although this type of statistics can not be used as absolute fit 

indices because some mixture models per se have overlapping components, 

leading to ambiguous classification result, they could be used as comparative fit 

indices between models if the purpose is to select one out of several models that 

fit data equally well. Based on the previous summary (Henson et al., 2007; 

McLachlan & Peel, 2000), four classification-based statistics listed in Table 2.3.3 

will be investigated in this study.  
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Table 2.4.3 Classification-based statistics used in this study 

Abbreviati

on 

Classificatio

n-based 

statistics 

Function Form Key 

related paper 

Decision rule 

NEC Normalized 

entropy 

criterion 

( )

( ) (1)

E k

LL k LL
 

Celeus and 

Soromenho (1996) 

Close to 0 indicates 

better model fit 

Entropy Entropy ( )
1

*ln( )

E k

N k
 

Ramaswamy, 

DeSarbo, Reibstein, 

and Robinson 

(1993); Lubke and 

Muthén (2007) 

Close to 1 indicates 

better model fit; 0.6 

indicates 80 percent or 

less accurate 

classification while 0.8 

support 90 percent  

CLC Classificatio

n likelihood 

information 

criterion 

2 2 ( )LL E k

 

McLachlan and 

Peel (2000) 

Lower value indicates 

better model fit 

ICL-BIC Integrated 

classification 

likelihood  

2 2 ( ) ln( )LL E k p N

 

McLachlan and 

Peel (2000) 

Lower value indicates 

better model fit 
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In Table 2.4.3,
1 1

( ) ln( ) 0
K N

k k

i i

k i

E k , k

i is the posterior probability that 

subject i belongs to latent class k, and ( )LL k and (1)LL  are the model maximum 

likelihoods for k class model and 1 class model (i.e., no mixture), respectively.  

It is noteworthy that all the statistical indicators as introduced so far provide 

only a relative fit of competing models to data. Stated differently, we can infer 

that one model is better than another from these criteria or tests, but we are 

uncertain if this model is good enough to fit the observed data. Muthén (2003) 

tried to overcome this limitation by proposing the Multivariate Skewness Test 

(MST) and the Multivariate Kurtosis Test (MKT) for testing mixture models, 

analogous to the goodness of fit tests for structural equation models. A larger 

probability value (e.g., 0.05 ) means adequate model fit. However, Tofighi and 

Enders’ (2008) simulation results implied MST and MKT perform poorly across 

all the experimental conditions they examined for GMM. They concluded that 

these two indices are model-dependent, at least in a GMM context. For these 

reasons, MST and MKT are not investigated in this study.  

2.4.4 Previous studies of comparing relative model fit statistics  

Only a few simulation studies examined the relative efficiency of the 

statistical indicators for class enumeration in a GMM context (Nylund, 

Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008; Tolvanen, 2008). Tofighi 

and Enders’ comprehensive simulation study recommended the SABIC and the 

LMR test in selecting the number of classes for GMM. Nylund et al. (2007), on 

the other hand, found that BLRT outperformed the other indices and that BIC was 
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the most consistent information criterion among those considered. Henson et al. 

(2007) recommended using SABIC with latent variable mixture models but they 

found that no indices performed well when sample sizes were below 500. 

Tolvanen (2008) investigated the functionality of GMM with a limited sample 

size. His simulation results suggested BIC was more useful when the sample size 

was smaller than 500, whereas SABIC performed better when the sample size was 

larger than 500. These results are somewhat inconsistent or cover only some of the 

statistical indices aforementioned. While the current study is expected to shed 

some light on the relative efficiencies of a wider range of model fit indicators; the 

comparison of model fit indices is not this study’s primary focus.  
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CHAPTER 3: METHOD 

This simulation study investigates if and under what conditions LPM and 

UGMM can perform better than linear GMM in determining the number of latent 

classes. Data were generated from a GMM with model parameters specified a 

priori and then analyzed by GMM, LPM, and UGMM separately. By repeating 

this analysis within each model setting a large number of times, we can make an 

inference concerning the relative performance of these three types of models in 

accurately enumerating the latent classes for GMM. 

3.1 Data generation 

All sample data were simulated from a 2-class GMM population model in 

SAS IML. This population generating model is graphically depicted in Figure 3.1. 

Both the graph and the previous two-level equations indicate that no covariate is 

included in our study. The parameter values for this model are shown in Table 

3.1.1, and include those of the Nylund et al. (2007) study for purposes of 

replication. 
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Figure 3.1. Path diagram of the population growth mixture model used for data 

generation (Note: dashed lines indicate nonlinear components added into the 

misspecified model only)  

 

 

Table 3.1.1 Population growth mixture model specification 

 Class 1 Class 2 

 mean var mean var 

Intercept( 0

k

i ) 2 0.25 1 0.25 

Slope( 1

k

i ) 0.5 0.04 0 0.04 

Quadratic( 2

k

i )
a
 0.12 0.0016 - - 

Residual1:var( 1

k

i ) 0 0.15 0 0.15 

Residual2:var( 2

k

i )
b
 0 0.15 0 0.15 

Residual3:var( 3

k

i ) 0 0.2 0 0.2 

Residual4:var( 4

k

i )
b
 0 0.2 0 0.2 

Residual5:var( 5

k

i ) 0 0.2 0 0.2 

Residual6:var ( 6

k

i )
b
 0 0.35 0 0.35 

Residual7:var( 7

k

i ) 0 0.35 0 0.35 

a
 for misspecified model only    

b
 excluded for 4-measures model 

1 2( )Cov F F

Intercept slope 

y2 y3 y4 

1 
1 

1 
1 2 3 

y1 

1 

C 

class 

1i 5i 6i 7i

y7 y6 y5 

5i 6i 7i

1 1 
1 4 5 

6 

quatratic 
-1 

-0.5 
1 
1 

1 
-1 -0.5 
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During the process of data generation, five factors are manipulated in the 

2×2×4×2×2 simulation design according to their potential impact and practical 

implications on class enumeration.  

First, to examine if the LPM and UGMM outperform GMM in selecting the 

correct number of latent classes, both the properly and improperly specified 

population GMM were used to generate sample data. A quadratic term was added 

into the majority latent class in the population linear GMM; due to its small 

quantity (almost one-fifth of the slope and one- twentieth of the intercept), this 

subtle nonlinearity can not be detected by visual inspection of a spaghetti plot 

(i.e., trend line) of the sample data. As such, it is highly possible this growth 

pattern would be considered linear during estimation. Moreover, LPM and 

UGMM are still technically correct models since they do not assume a linear 

growth function, whereas the linear GMM is not the correct model. It is worth to 

emphasize that the inclusion of nonlinear component is just one type of 

misspecifying within-class model. Indeed, there are other possibilities for model 

misspecification, such as correlated error variance-covariance structure within a 

class.  

Second, the number of repeated measures includes two levels, 4 and 7. 

Models with four measurement points are relatively simple and often seen in 

applications of LGM and GMM (Tolvanen, 2008). Including the condition of 

seven measurement occasions can accomplish two goals: 1) to clearly differentiate 

the effect of the number of repeated measures on the class enumeration and 2) to 
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make the construction of the four measurement cases more convenient. The factor 

loadings jt  (i.e., the time variable) in the simpler model can take the values of 0, 

2, 4, and 6, based on the more complex model with factor loadings ranging from 

the integers 0 to 6 (Tofighi & Enders, 2008).  

Third, the total sample size was varied on values of 400, 700, 1000, and 2000. 

This factor takes these values according to a careful review of substantive GMM 

applications in Tofighi and Enders (2008). Hence, the results of our study can 

provide some guidelines for practitioners.  

Fourth, class mixing proportions were 50/50 and 75/25. Two different mixing 

percentages of classes were chosen for their important influence on classification 

results in mixture models. Usually a model with a balanced mixing proportion 

performs better in enumerating the correct number of latent classes. To replicate 

the Nylund et al. (2007) study, we choose these two conditions.  

Fifth, class separations along the intercept factor were chosen to be 2 and 3 

standard deviations (SD) separately. Tofighi and Enders (2008) used 

approximately two and three SD between the latent intercept means representing 

―high separation‖ and ―low separation‖ between classes. Nylund et al. (2007) only 

examined the condition of a two SD difference between intercept means. So class 

separation of two and three SD along the intercept factor is chosen to replicate 

their findings. This setting of class separation is equal to 3.5 and 5 squared 

Mahalanobis distance (a measure for the separation of two groups of objects) units, 

respectively, between the latent components of two latent classes according to the 
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equation given by McLachlan (1999). This measure is defined by  

)()( 21

1

21

2 T  

Where superscript T denotes matrix transpose, denotes the common 

(nonsingular) covariance matrix for the two groups, and 
1
and 

2
 are mean 

vectors of latent components for these two groups. If the Mahalanobis distance is 

measured at observable variable scale, it can be defined similarly as 

2 1

1 2 1 2( ) ( )Td Sx x x x  

Where 1x  and 2x are mean vectors for the indicator variables of two groups and S  

is the pooled covariance matrix for the two groups of indicators. S equals to 

1 1 2 2S S , in which 1  and 2  are mixing proportions for the two groups and 

1S  and 2S  are group-based covariance matrices. This measure varies across the 

manipulated conditions: for two SD separation conditions, the squared 

Mahalanobis distance ranges from 2.9 to 3.4 with an average of 3.1; for three SD 

separation conditions, the measure ranges from 3.5 to 4.1 with an average of 3.7.  

Only five factors are varied in the simulation design while others are held 

constant. As Table 3.2 shows, the full factorial design contains a total of 64 

conditions, making it more complete than either of the two key preceding studies 

focusing on fit index performance (Nylund et al., 2007; Tofighi & Enders, 2008). 

For each condition, 100 replications were conducted to obtain a reliable result, just 

as Nylund et al. (2007) did. Hence, 6400 sample data sets were generated in total.  
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Table 3.1.2 Simulation design 

Conditions 

Manipulated factors  

Class 

separation 

Sample 

size  

# of 

measures 

mixing 

prop 

model 

specification 
 

1 2 2000 4 50/50 correct 

2 2 2000 4 50/50 incorrect 

3 2 2000 4 75/25 correct 

4 2 2000 4 75/25 incorrect 

5 2 2000 7 50/50 correct 

6 2 2000 7 50/50 incorrect 

7 2 2000 7 75/25 correct 

8 2 2000 7 75/25 incorrect 

9 2 1000 4 50/50 correct 

10 2 1000 4 50/50 incorrect 

11 2 1000 4 75/25 correct 

12 2 1000 4 75/25 incorrect 

13 2 1000 7 50/50 correct 

14 2 1000 7 50/50 incorrect 

15 2 1000 7 75/25 correct 

16 2 1000 7 75/25 incorrect 

17 2 700 4 50/50 correct 

18 2 700 4 50/50 incorrect 

19 2 700 4 75/25 correct 

20 2 700 4 75/25 incorrect 

21 2 700 7 50/50 correct 

22 2 700 7 50/50 incorrect 

23 2 700 7 75/25 correct 

24 2 700 7 75/25 incorrect 

25 2 400 4 50/50 correct 

26 2 400 4 50/50 incorrect 

27 2 400 4 75/25 correct 

28 2 400 4 75/25 incorrect 

29 2 400 7 50/50 correct 

30 2 400 7 50/50 incorrect 

31 2 400 7 75/25 correct 

32 2 400 7 75/25 incorrect 

33 3 2000 4 50/50 correct 

34 3 2000 4 50/50 incorrect 

35 3 2000 4 75/25 correct 

36 3 2000 4 75/25 incorrect 

37 3 2000 7 50/50 correct 

38 3 2000 7 50/50 incorrect 

39 3 2000 7 75/25 correct 

40 3 2000 7 75/25 incorrect 

41 3 1000 4 50/50 correct 

42 3 1000 4 50/50 incorrect 

43 3 1000 4 75/25 correct 
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44 3 1000 4 75/25 incorrect 

45 3 1000 7 50/50 correct 

46 3 1000 7 50/50 incorrect 

47 3 1000 7 75/25 correct 

48 3 1000 7 75/25 incorrect 

49 3 700 4 50/50 correct 

50 3 700 4 50/50 incorrect 

51 3 700 4 75/25 correct 

52 3 700 4 75/25 incorrect 

53 3 700 7 50/50 correct 

54 3 700 7 50/50 incorrect 

55 3 700 7 75/25 correct 

56 3 700 7 75/25 incorrect 

57 3 400 4 50/50 correct 

58 3 400 4 50/50 incorrect 

59 3 400 4 75/25 correct 

60 3 400 4 75/25 incorrect 

61 3 400 7 50/50 correct 

62 3 400 7 50/50 incorrect 

63 3 400 7 75/25 correct 

64 3 400 7 75/25 incorrect 
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3.2 Model Estimation 

Three different mixture models with 1, 2, and 3 latent classes were used 

separately to analyze the 6400 data sets in Mplus Version 6 (Muthén & Muthén, 

2008): LPM, UGMM, and a linear GMM. When the data set is generated from the 

population GMM without a quadratic term, all estimated mixture models have the 

correct within-class structure and their differences lie in their parameterizations; 

when the data are generated from a model with a quadratic term, LPM and 

UGMM still have technically correct within-class model specification while the 

linear GMM is not correct in the sense that it ignores the nonlinear relations 

underlying the data.  

Estimation was carried out by using ML via an EM algorithm in Mplus. The 

default convergence criterion of complete-data log likelihood derivative for the 

EM algorithm is 0.001.  For each of these mixture models, one-, two-, and three-

class models were evaluated (i.e., under-extraction, proper extraction, and over-

extraction). All parameters were allowed to be class-specific, so no cross-class 

model constraints were involved for any model. Note that properly specified linear 

GMMs had no quadratic component in the data for either class; misspecified 

models had a quadratic component in the data for the first class only. Finally, 

multiple sets of random start values were implemented in Mplus to avoid the 

irregularities on the likelihood surface and to differentiate local maxima from the 

global optimum for estimation of mixture models (e.g., McLachlan & Peel, 2000; 

Muthén & Muthén, 2001).  



 

39 

 

CHAPTER 4: RESULTS 

Analyses for the total 64 conditions are summarized separately in Table A1 

through Table A64 in the appendix. Note that all the 1-class and 2-class models 

converged properly; and it is not surprising to find nonconvergence did occur in 

some replications of estimating the 3-class mixture models since they are 

misspecified models (e.g., Nylund et al., 2007). One option is to simply discard 

these failed replications and summarize the results that providing a proper solution 

for the mixture models; the other is to treat nonconvergent replications in GMM 

as an indicator of model misfit and also evidence to support model with one fewer 

classes (Nylund et al., 2007; Tofighi & Enders, 2008). In following analysis, both 

ways are used to present the results.   

Results are summarized in three parts. First, the general performance of the 

three types of mixture models and eleven model selection indices are presented. 

Second, the general effects of the manipulated factors on class enumeration are 

examined. Finally, the significant interaction effects among those factors in a 

given type of mixture model are also explored.  

4.1 General Performance of Types of Mixture Models and Model Fit Indices  

As stated before, nonconvergence is a problem for misspecified three-class 

mixture models. Among the three types of three-class mixture models, UGMM 

has the best convergence rate (95 out of 100 replications) while linear GMM has 

the worst (67 out of 100 replications) in this regard. As introduced above, two 

different ways of dealing with nonconvergent replications were used in Table 
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4.1.1 and Table 4.1.2 respectively, based on which the general performance of 

types of mixture models and model fit indices are summarized.  

Table 4.1.1 provides the frequency summary of the number of latent class 

selected by each model fit index in three different types of mixture models, 

averaged over all the 64 manipulated conditions. Nonconvergent replications are 

treated as evidence for supporting two-class models because nonconvergence is 

assumed to be caused by misspecified three-class models. Thus Table 4.1.1 

presents frequency information based on all the 100 replications. Moreover, the 

log likelihood derivative convergence criterion for the EM algorithm in Mplus is 

changed from the default value of .001 to .01 for some nonconvergent replications 

(not all of them due to time constraints) to see whether they could get converged. 

Unfortunately, the replications that had been re-examined still did not converge 

properly. However, if more efficient algorithm rather than those in Mplus were 

used in the future, it is possible that these nonconvergent replications might 

converge properly then and consequently some of them might not support 2-class 

model and the above assumption might not be valid.  

Differently from Table 4.1.1, Table 4.1.2 excluded the nonconvergent 

replications and summarizes the percentage result based on convergent ones. Each 

cell frequency is divided by the total number of convergent replications for the 

same index within the same model. However, this method might be criticized that 

it rules out those data space for the nonconvergent cases, based on which the 

inference might be misleading.  
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Clearly, each method has its justification and flaw. Both are used to explore 

whether less restricted mixture models can more accurately identify the number of 

latent classes.  
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Table 4.1.1 Average Frequency of each class selected by each index for all the 64 conditions for all the replications (nonconvergent replications were included). 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT 

 (1 vs.2) 

BLRT  

(2 vs.3) 

LPM (77 converged replications for 3-class model) 

1 class 0  26  7  21  2  9  6  0  - 5  - 4  - 

2 class  24  72  91  79  84  90  89  28  28  95  81  96  55  

3 class  76  2  1  0  14  1  5  72  72  - 19  - 45  

UGMM (95 converged replications for 3-class model) 

1 class 0  15  1  9  0  2  1  0  - 2  - 2  - 

2 class  55  85  98  91  90  97  92  58  23  98  89  98  87  

3 class  45  0  2  0  10  1  7  42  77  - 11  - 13  

Linear GMM (67 converged replications for 3-class model) 

1 class 0  5  0  3  0  0  0  0  - 0  - 2  - 

2 class  36  94  87  97  62  93  71  37  37  100  74  98  87  

3 class  64  0  13  0  38  7  29  63  63  - 26  - 13  

Table 4.1.2 Average Percent of each class selected by each index for all the 64 conditions for all the replications (nonconvergent replications were excluded). 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT  

(1 vs.2) 

BLRT 

 (2 vs.3) 

LPM (77 converged replications for 3-class model) 

1 class 0 36 10 29 2 13 8 0 - 5 - 4 - 

2 class  1 62 88 70 77 85 85 7 7 95 74 96 41 

3 class  99 2 2 1 22 1 7 93 93 - 26 - 59 

UGMM (95 converged replications for 3-class model) 

1 class 0 16 1 10 0 2 1 0 - 2 - 2 - 

2 class  52 84 97 90 90 97 92 54 19 98 88 98 86 

3 class  48 0 2 0 10 1 7 46 81 - 12 - 14 

Linear GMM (67 converged replications for 3-class model) 

1 class 0 7 0 4 0 0 0 0 - 0 - 2 - 

2 class  3 93 81 96 43 90 54 4 5 100 59 98 81 

3 class  97 0 19 0 57 10 46 96 95 - 41 - 19 

Note: The highest frequency/percent selected by each index among the three types of mixture models are highlighted as bolded. 
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4.1.1. Comparison of three types of mixture models 

In Table 4.1.1 and Table 4.1.2, three types of mixture model performances are 

compared in terms of the fit indices and those indices having highest 

frequency/probability of correct model selection among three models are highlighted 

in bold. Clearly, these two tables have almost identical pattern and very close values, 

making the results more valid because they do not reply on how to deal with 

nonconvergent replications. All the highest frequency/probabilities are clustered into 

UGMM and linear GMM. UGMM performs best in terms of most of the model fit 

indices we used.  

More specifically, AIC, SACAIC, SABIC, DBIC, HQ, HT-AIC, LMR LRT (2 

class versus 3 class) and BLRT within the UGMM perform best in selecting the 

correct 2-class model. Moreover, CAIC, BIC, Entropy, LMR LRT (1 class versus 2 

class), and BLRT perform better in linear GMM than in UGMM. But they have the 

same or similar values in linear GMM and UGMM. All these findings support the 

hypothesis that less restricted models can more accurately identify the number of 

latent classes.  

However, as an unrestricted mixture model assuming no specific within-class 

relations among variables, LPM does not outperform the linear GMM and UGMM 

on average (although LPM has close frequency values to the other two models in 

terms of some fit indices). This indicates that a completely unrestricted model 

might not win in this situation due to its over-parameterization (i.e., too many 

parameters to be estimated as shown in Table 2.3.2). As Table 2.4.1 presents, the 
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number of parameters is a penalty component in the functions of all the 

information criteria, some of which put much weight on the number of 

parameters. Therefore, it is understandable that over-parameterization of LPM 

makes it less effective in class enumeration using these information criteria.  

4.1.2. Comparison of model fit indices 

All of the information criteria, likelihood ratio tests, and classification-based 

statistics previously introduced were included for the purpose of identifying the 

correct number of classes. Among the three different groups of model fit indices, 

we found all four classification-based statistics exhibited very limited utility with 

a low rate of accuracy in class determination. This is consistent with previous 

studies (e.g., Henson et al., 2007), thus entropy is retained as a representative 

classification measure, while the likelihood ratio tests and information criteria are 

used for the remainder of this work. Moreover, the performance of the LMR and 

VLMR are almost identical, with a difference of no more than 1 and therefore 

only LMR was presented in the tables.  

An examination of Table 4.1.1 and Table 4.1.2 yields the similar general 

performance of those fit indices in class identification:  

 Entropy and other classification-based statistics do not seem to be very 

useful indices as they tend to overestimate the number of classes for all the 

mixture models across all the cell conditions examined. So they are not 

recommended to determine the number of latent classes for mixture models.  

 AIC and HT-AIC tend to overextract the number of latent classes with an 
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unacceptably low rate of accuracy across the three types of mixture models, 

which is consistent with previous published research (e.g., Nylund et al., 

2007) and so they are not recommended for class enumeration in mixture 

modeling. Only in UGMM, both of them have more than 50% of chance to 

correctly select the two-class model.  

 LMR and BLRT are sufficiently accurate when testing a 2-class versus a 1-

class model across all the models and all the conditions. However, both are 

less accurate when testing the 2-class model against the 3-class model. BLRT 

(2 vs.3) has inflated Type I error rate up to .45 (.59 if excluding 

nonconvergent replications) in LPM. Both of the two likelihood ratio tests 

perform best in UGMM with Type I error rate of around .11 and .13 

separately.  

 CAIC and BIC have very similar patterns. Both tend to underestimates the 

number of latent classes in three types of mixture models. Both perform best 

in linear GMM and least in LPM. Generally speaking, BIC has higher rate of 

accuracy than CAIC. Given the fact that CAIC and BIC have the largest 

penalty terms for the number of parameters among all the indices, which 

make them tend to favor simple models over complex ones, it is 

understandable why they more often select the 1- or 2-class models over 3-

class ones. This is consistent with previous studies (Hurvich & Tsai, 1989; 

Nylund et al., 2007).  

 SACAIC and DBIC are almost perfect model selectors in UGMM because of 



 

46 

 

their highest probabilities of selecting 2-class models. Both of them work best 

in UGMM, slightly underestimate the number of latent classes in LPM and 

slightly overestimate in linear GMM across all the cell conditions.  

 SABIC and HQ have very similar patterns. Both work best in UGMM and 

worse in linear GMM. In that sense, they favor less restricted models. Both 

tend to more often overestimate the number of latent classes, which is 

particularly true in linear GMM. HQ slightly outperform SABIC since it has 

higher rate of accuracy in all the three types of mixture models.  

All these observations are briefly summarized in Table 4.1.2.1.
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Table 4.1.2.1 Usability of fit indices in determining the number of latent classes for GMM 

Model fit indices recommendation reason 

classification-based statistics, HT-

AIC and AIC 

No Likely to overestimate 

BLRT and LMR LRT Definitely yes Sufficient power when testing 2- VS. 1-class model; Inflated type I 

error when testing 2- VS. 3-class model; both work best in less 

restricted UGMM 

CAIC and BIC Yes BIC performs better than CAIC; tend to underestimate; both work best 

in most restricted model and have similar pattern 

SACAIC and DBIC Definitely yes Almost perfect model selector in UGMM; both slightly underestimate 

in LPM and overestimate in linear GMM. 

SABIC and HQ Yes HQ performs slightly better than SABIC; both work best in UGMM 

and worst in linear GMM; both tend to overestimate, especially in 

linear GMM 
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Table 4.2 One way ANOVA for the effect of design factors on model fit indices in selecting the true model across types of models and 

conditions.  

Factors AIC CAIC SACAIC BIC SABIC DBIC HQ HT_AIC Entropy LMR_1V2 LMR_2V3 BLRT_1V2 BLRT_2V3 

Class 

separation 

F 0.05 20.27 5.50 20.71 0.71 10.76 0.95 0.04 1.20 10.57 0.75 13.50 0.64 

Sig. 0.81 0.00 0.02 0.00 0.40 0.00 0.33 0.85 0.27 0.00 0.39 0.00 0.43 

Eta 
squared 

0.00 0.10 0.03 0.10 0.00 0.05 0.00 0.00 0.01 0.05 0.00 0.07 0.00 

Sample size 

F 2.00 18.45 21.64 14.81 24.01 15.40 1.44 2.64 2.42 14.05 1.49 16.57 0.92 

Sig. 0.12 0.00 0.00 0.00 0.00 0.00 0.23 0.05 0.07 0.00 0.22 0.00 0.43 

Eta 
squared 

0.03 0.23 0.26 0.19 0.28 0.20 0.02 0.04 0.04 0.18 0.02 0.21 0.01 

# measures 

F 10.00 26.89 3.58 23.37 13.21 10.23 1.49 12.23 63.18 5.87 100.88 8.69 3.66 

Sig. 0.00 0.00 0.06 0.00 0.00 0.00 0.22 0.00 0.00 0.02 0.00 0.00 0.06 

Eta 
squared 

0.05 0.12 0.02 0.11 0.07 0.05 0.01 0.06 0.25 0.03 0.35 0.04 0.02 

Mixing 

proportion 

F 0.21 1.10 0.90 0.43 0.15 0.63 0.47 0.05 0.24 1.00 0.30 0.90 0.18 

Sig. 0.65 0.29 0.34 0.51 0.70 0.43 0.49 0.82 0.63 0.32 0.59 0.34 0.67 

Eta 
squared 

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Model 

specification  

F 2.05 0.51 0.14 0.10 0.94 0.00 2.20 1.53 0.37 0.90 4.13 1.54 3.02 

Sig. 0.15 0.48 0.70 0.75 0.33 0.97 0.14 0.22 0.54 0.34 0.04 0.22 0.08 

Eta 
squared 

0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.02 0.01 0.02 
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4.2 The effect of design factors on class enumeration 

Inspecting Table 4.2, in terms of Eta squared, which is a commonly used 

measure for effect size, value above 0.1 is considered practically significant 

throughout this study, three factors have practically significant effect on the 

accuracy of several model fit indices in selecting the correct two-class models 

across all three types of mixture models and sixty-four simulated conditions. They 

are class separations, sample size, and the number of repeated measures.   

In this section, each manipulated factor is examined in terms of their impact 

on the accuracy of class determination, given the type of mixture models. 

Moreover, the practically significant interaction effect between the factors and the 

types of models are also displayed graphically and interpreted.  

4.2.1 Class separation 

Table 4.2.1.1(a & b) and Table 4.2.1.2(a & b) present the frequency/percent 

summary for the two different class separation conditions, two- and three-standard 

deviation differences between the two class-specific intercept means separately. 

Likewise, comparing three types of mixture models in terms of each model fit 

index, the two-class models with the highest chance of being selected are 

highlighted in bold. By means of visual inspection, it is clear that these two groups 

of tables have similar patterns with Table 4.1.1 and Table 4.1.2. Therefore, the 

previous observations regarding model fit indices can also be applied here.  

Inspecting the two groups of tables, generally speaking, increasing the 

difference of latent intercept means directly lowers the chance of selecting the 
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one-class model dramatically. This is particularly true in linear GMM, in which a 

one-class model is not chosen at all. This observation makes sense in that the 

larger class separation increases the power to detect the second class and thus 

reject the one-class model. Due to this reason, larger class separation increases the 

probability of selecting the correct two-class model for most of the fit indices.  

However, there are a few exceptions in certain types of mixture models. First, 

AIC, SABIC, HT-AIC, and Entropy tend more often to overestimate the number 

of latent classes in models with larger class separation and so the probability for 

selecting two-class models decreases. Second, SACAIC and HQ select more 

three-class models in linear GMM. Third, the larger class separation does not help 

LMR and BLRT select two-class models over three-class ones. All of these 

exceptional indices share a common property that they have sufficient power to 

reject one-class models and tend to overestimate the number of latent class in the 

smaller class separation condition. That is to say, two SD class separation 

condition is enough to differentiate two different groups. As such, larger three SD 

class separation condition does not help separating the true two latent classes and 

would make overestimation even worse.  

Furthermore, the statistically significant interaction effect between the types 

of models and class separation of four model fit indices, SACAIC, DBIC, HQ, 

and LMR_1V2, are examined and graphically displayed in Figure 4.2.1.1. But 

they are not practically significant in terms of the criterion of partial Eta squared 

value of 0.1. Their corresponding values are .06, .06, .04, and .03. The dashed 
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black line and the solid red line represent the performances of fit index in two SD 

and three SD condition across types of models separately. As blue arrow shows, 

the larger class separation effect is most evident in LPM because the accuracy rate 

dramatically goes up as class separation increases. The class separation effect is 

least distinct in linear GMM. And on the contrary, SACAIC and HQ imply that 

larger class separation would slightly lower the accuracy rate in linear GMM. As 

the shaded circles show, the four indices perform best in UGMM, generally much 

better than in linear GMM.  
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Table 4.2.1.1a Average Frequency of each class selected by each index for 32 conditions with 2 SD class separations (nonconvergent replications are included) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT  

(1 vs.2) 

BLRT  

(2 vs.3) 

LPM (75 converged replications for 3-class model) 

1 class 0  35  13  31  2  17  10  0  - 9  - 7  - 

2 class  26  64  85  68  86  82  85  30  30  91  82  93  57  

3 class  74  1  1  1  12  1  5  70  70  - 18  - 43  

UGMM (94 converged replications for 3-class model) 

1 class 0  27  2  18  0  3  2  0  - 3  - 4  0  

2 class  58  72  97  82  91  96  92  60  22  97  89  96  87  

3 class  42  0  2  0  9  1  7  40  78  - 11  - 13  

Linear GMM (71 converged replications for 3-class model) 

1 class 0  11  0  6  0  1  0  0  - 1  - 3  0  

2 class  33  89  88  93  63  93  72  34  33  99  74  97  88  

3 class  67  1  12  1  37  7  27  66  67  - 26  - 12  

 

Table 4.2.1.1b Average Frequency of each class selected by each index for 32 conditions with 3 SD class separations (nonconvergent replications are included) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (78 converged replications for 3-class model) 

1 class 0  17  1  11  0  2  1  0  - 1  - 1  0  

2 class  22  81  98  89  83  97  93  27  27  99  80  100  53  

3 class  78  3  1  0  17  0  6  73  73  - 20  - 47  

UGMM (95 converged replications for 3-class model) 

1 class 0  3  0  1  0  0  0  0  - 0  - 0  0  

2 class  53  97  98  99  90  99  93  56  24  100  88  100  87  

3 class  47  0  2  0  10  1  7  44  76  - 12  - 13  

Linear GMM (62 converged replications for 3-class model) 

1 class 0  0  0  0  0  0  0  0  - 0  - 0  0  

2 class  39  100  86  100  61  93  69  40  41  100  74  100  85  

3 class  61  0  14  0  39  7  31  60  59  - 26  - 15  
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Table 4.2.1.2a Average percent of each class selected by each index for 32 conditions with 2 SD class separations ( nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT  

(1 vs.2) 

BLRT  

(2 vs.3) 

LPM (75 converged replications for 3-class model) 

1 class 0  50  19  44  3  23  15  0  - 9  - 8  - 

2 class  2  49  79  55  77  75  79  7  7  91  75  92  42  

3 class  98  1  3  1  20  2  7  93  93  - 25  - 58  

UGMM (94 converged replications for 3-class model) 

1 class 0  29  2  19  0  3  2  0  - 3  - 4  - 

2 class  54  71  97  81  90  96  91  57  18  97  88  96  86  

3 class  46  0  2  0  10  1  7  43  82  - 12  - 14  

Linear GMM (71 converged replications for 3-class model) 

1 class 0  14  0  7  0  1  0  0  - 1  - 3  - 

2 class  5  86  84  92  49  90  60  6  5  99  63  97  84  

3 class  95  1  16  1  51  9  40  94  95  - 37  - 16  

 

Table 4.2.1.2b Average percent of each class selected by each index for 32 conditions with 3 SD class separations ( nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (78 converged replications for 3-class model) 

1 class 0  22  2  15  0  3  2  0  - 1  - 1  - 

2 class  0  75  97  85  76  96  91  6  6  99  73  100  40  

3 class  100  3  2  0  24  1  8  94  94  - 27  - 60  

UGMM (95 converged replications for 3-class model) 

1 class 0  3  0  1  0  0  0  0  - 0  - 0  - 

2 class  49  97  98  99  89  99  92  52  20  100  87  100  86  

3 class  51  0  2  0  11  1  8  48  80  - 13  - 14  

Linear GMM (62 converged replications for 3-class model) 

1 class 0  0  0  0  0  0  0  0  - 0  - 0  - 

2 class  2  100  79  100  37  89  48  2  5  100  55  100  78  

3 class  98  0  21  0  63  11  52  98  95  - 45  - 22  
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Table 4.2.1.3. One way ANOVA results for the frequency difference of model fit indices between two class separation conditions.  

    AIC CAIC SACAIC BIC SABIC DBIC HQ HT_AIC Entropy LMR_1V2 LMR_2V3 BLRT_1V2 BLRT_2V3 

LPM 

  

F 1.49 4.33 9.11 8.15 0.48 9.87 4.64 0.71 0.44 5.81 1.52 5.11 0.00 

Sig. 0.23 0.04 0.00 0.01 0.49 0.00 0.04 0.40 0.51 0.02 0.22 0.03 0.96 

Eta Squared 0.00 0.08 0.13 0.00 0.11 0.01 0.00 0.09 0.09 0.15 0.11 0.00 0.07 

UGMM 

  

F 0.30 14.00 2.30 11.00 0.24 4.98 0.33 0.33 0.15 7.85 0.14 5.11 0.00 

Sig. 0.59 0.00 0.13 0.00 0.63 0.03 0.57 0.56 0.70 0.01 0.71 0.03 0.96 

Eta Squared 0.00 0.18 0.04 0.15 0.00 0.07 0.01 0.01 0.00 0.11 0.00 0.08 0.00 

Linear 

GMM 

  

F 5.24 9.05 0.16 7.65 0.47 0.01 5.83 5.88 10.84 7.52 0.08 4.46 1.67 

Sig. 0.03 0.00 0.69 0.01 0.49 0.92 0.02 0.02 0.00 0.01 0.78 0.04 0.20 

Eta Squared 0.02 0.07 0.13 0.12 0.01 0.14 0.07 0.01 0.01 0.09 0.02 0.08 0.03 



55 

 

 
 

Figure 4.2.1.1 Model fit indices with significant interaction effects between the types of models and class separations 
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4.2.2 Sample size 

In terms of two different ways of handling the nonconvergent replications, 

Table 4.2.2.1 (a through d) to Table 4.2.2.1 (a through d) present the 

frequency/percent summary under conditions of four different sample sizes.  

Table 4.2.2.1 and Table 4.2.2.2 (a through d) indicate UGMM has a quite 

stable convergence rate, roughly around 95 out of 100. As expected, the 

convergence rate for LPM is lowest (62) at the smallest sample size of 400 and 

remains almost the same around 80 at or above sample size of 700. When sample 

size is sufficiently large (e.g., 700 in this case), the nonconvergence rate of 20% is 

highly possible to be caused by misspecified three-class models. As for linear 

GMM, a sample size of 400 is generally considered enough for model estimation. 

Increasing sample size provides more power to detect that the three-class model 

specification is not appropriate, which explains why the lowest convergence rate 

occurred in the case of 2000 sample size.  

The ANOVA test result in Table 4.2.2.3 shows sample size has a significant 

impact on all the model selectors in certain model contexts. And based on two 

groups of tables with quite similar patterns, several conclusions regarding the 

impact of sample size on the performance of model fit indices can be drawn as 

below.  

First, increasing sample size does not improve the accuracy of AIC and HT-

AIC in identifying the number of latent classes. In fact, larger sample size shows a 

lower rate of accuracy, especially in LPM and UGMM. Moreover, the rates of 
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selecting 2-class models for these two fit indices are unacceptably low (all less 

than 60 out of 100) so that AIC and HT-AIC are not suggested for the purpose of 

class enumeration.  

Second, large sample size has a positive impact on the accuracy rate of CAIC, 

SACAIC, BIC, SABIC, and DBIC in all the three types of mixture models. That is 

to say, within each type of mixture model, increasing sample size could improve 

the performance of these fit indices in enumerating the correct 2-class models. 

CAIC reaches a satisfactory rate of accuracy in linear GMM when sample size is 

over 700; it needs 1000 to achieve a satisfactory rate in UGMM and 2000 in LPM. 

SACAIC and DBIC can achieve a satisfactory rate of accuracy with sample size 

of 400 and 700 separately in UGMM, but need 1,000 subjects in linear GMM and 

LPM to have the rate of accuracy over 95%. As for BIC, 700 is enough to reach 

the rate of accuracy over 95% in linear GMM and UGMM while it requires more, 

such as 2,000, to obtain a satisfactory rate in LPM. SABIC has acceptable rate of 

accuracy (over 90%) in UGMM when sample size is 700 and it needs 1000 to 

obtain the rate over 90% in LPM. Based on our data, SABIC only reaches the 

satisfactory rate of accuracy with the largest sample size 2,000.   

Third, the relation between sample size and HQ’s performance is not 

consistent. HQ has a satisfactory rate of accuracy in UGMM with a sample size 

400 and 700, but it performs slightly worse when sample size increases to 1,000 

and much worse at 2,000. As sample size increases from 400 to 1000 it performs 
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better in LPM, but it tends to be worse with a sample size of 2,000. Therefore, this 

index does not have a clear asymptotic feature in this regard.  

Fourth, the likelihood ratio tests LMR and BLRT exhibit clear asymptotic 

behavior when testing one-class versus two-class models (i.e., they tend to select 

two-class models as sample size increases). Both of them have sufficient power to 

reject a 1-class model with the smallest sample size of 400 in UGMM and linear 

GMM. When sample size reaches 700, both indices have over 95% of chance to 

make a correct decision regarding class determination in all the three types of 

mixture models. However, when testing three-class models against two-class 

models, both LMR and BLRT perform best and relatively stable in UGMM, but 

with a growing Type I error rate as sample size increases from 400 to 1000.  

In a summary, it is not surprising to find that increasing sample size does help 

most fit indices more accurately identify the number of latent classes. But there 

are some exceptional cases; sample size does not improve the performance of 

AIC, HQ, and Entropy because their functions either remove or limit the effect of 

sample size: AIC does not include sample size in its penalty term while HQ and 

Entropy decrease this factor’s effect using a logarithm or division function of 

sample size. 

Examining the two groups of tables, we could summarize that the 

performance of these model fit measures based on sample size N.  

 When N is equal to 400, SACAIC, DBIC, HQ, LMR, and BLRT have 

good rates of accuracy in identifying the number of latent class in a 
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UGMM setting. Only LMR and BLRT perform acceptably well when 

testing 1- versus 2-class linear GMM.  

 When N increases to 700, SACAIC, BIC, DBIC, and HQ have 

satisfactory rates of more than 95% to select the two-class models in 

UGMM; CAIC and BIC also have satisfactory rate in linear GMM; 

SACAIC in LPM and SABIC in UGMM have acceptable rates of 90% 

to make right selections; LMR and BLRT has sufficient power to reject 

one-class model in all the three types of mixture models, but 

unfortunately they have inflated Type I error rates (mistakenly retain 

three-class models), which is particular worse in only in UGMM.  

 When N equals to 1000, SACAIC, DBIC, LMR and BLRT (both testing 

1- versus 2-class case) have satisfactory rates of accurate selection in all 

the three types of models; CAIC and BIC also have a rate of more than 

95% in both UGMM and linear GMM; SABIC and HQ have good rates 

of more than 90% in both LPM and UGMM; LMR and BLRT have 

almost 90% chance to retain two-class models in UGMM.  

 When considering the largest sample size 2000, CAIC, SACAIC, BIC, 

DBIC, LMR, and BLRT (testing 1- versus 2-class models) have 

sufficient rates of accuracy, more than 95%, in all the three types of 

mixture models; SABIC and HQ perform best in the unrestricted LPM 

and less accurate but acceptable in UGMM; LMR and BLRT perform 

best in UGMM, with 82% accuracy.  
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Comparing each of the four tables with Table 4.1.1, which has the general 

performance across all the sixty-four conditions, I find that Table 4.2.2.1a and 

Table 4.2.2.1b have very similar patterns with Table 4.1.1 while Table 4.2.2.1c 

and Table 4.2.2.1d conditioning on larger sample size exhibit different patterns. 

As stated before, LPM, a completely unrestricted model, does not outperform 

because there are many more parameters to be estimated than the other two types 

of mixture models based on the same set of data. However, when sample size is 

sufficiently large, the advantages of LPM become clear. In Table 4.2.2.1c, when 

sample size is 1,000, most of the model fit measures (except AIC, HQ, and HT-

AIC, which are not useful for class enumeration) in LPM perform better than or 

equally well as the other two types of mixture models.      

Figure 4.2.2.1 presents the model fit indices that exhibit a statistically 

significant effect between the types of mixture models and sample size. Among 

them, AIC, SACAIC, SABIC, HQ, HT-AIC, Entropy, LMR_1V2, BLRT_2V3 

has Eta squared value more than 0.1, indicating a practically significant effect. 

Inspecting the characteristic of their patterns, they can essentially be classified 

into two groups: one group performs consistently better as sample size increases 

and the other does not.  
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Figure 4.2.2.1a First group of model fit indices with significant interaction effects between the types of models and sample size 
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 As shown in Figure 4.2.2.1a, Information criteria CAIC, SACAIC, BIC, 

SABIC, DBIC, LMR_1V2 belong to the first group because they have a similar 

pattern favoring large sample size. Blue arrows in the figure indicate that as 

sample size increase, they perform better in all the three types of models. When 

sample size approach 2,000, the performances of three types of mixture models 

are comparable, as evidenced by the shaded horizontal rectangular across the three 

mixture models. The advantage of UGMM is particularly clear in SACAIC, 

SABIC, DBIC and LMR_1V2 with higher or comparable probabilities when 

sample size ranging from 400 to 1,000.  

In the second group, as Figure 4.2.2.1b shows, AIC, HQ, HT_AIC, Entropy, 

LMR_2V3 and BLRT_2V3 do not have the nice feature associated with sample 

size. Instead, AIC, HT_AIC, LMR_2V3 exhibit negative relationship with sample 

size in LPM and UGMM and positive in linear GMM. Among them, only 

LMR_2V3 shows an acceptable rate of accuracy in UGMM. As the shaded areas 

implied, UGMM performs best in the five fit indices except Entropy.  
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Figure 4.2.2.1b Second group of model fit indices with significant interaction effects between the types of models and sample size 
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Table 4.2.2.1a Average frequency of each class selected by each index for 16 conditions with sample size of 400 (nonconvergent replications are included) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT 

(1 vs.2) 

BLRT  

(2 vs.3) 

LPM (62 converged replications for 3-class model) 

1 class 0  43  18  39  4  22  18  0  - 19  - 15  - 

2 class  39  56  78  59  65  76  78  45  47  81  82  85  62  

3 class  61  1  4  1  32  2  4  55  53  - 18  - 38  

UGMM (95 converged replications for 3-class model) 

1 class 0  45  3  32  0  6  4  0  - 6  - 8  - 

2 class  69  55  95  68  87  93  95  72  23  94  93  92  91  

3 class  31  0  2  0  13  1  2  28  77  - 7  - 9  

Linear GMM (75 converged replications for 3-class model) 

1 class 0  20  0  11  0  1  0  0  - 2  - 6  - 

2 class  30  79  72  88  42  82  74  31  32  98 75  94  86  

3 class  70  1  28  1  58  17  26  69  68  - 25  - 14  

Table 4.2.2.1b Average frequency of each class selected by each index for 16 conditions with sample size of 700 (nonconvergent replications are included) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT 

(1 vs.2) 

BLRT  

(2 vs.3) 

LPM (80 converged replications for 3-class model) 

1 class 0  39  10  26  1  13  4  0  - 2  - 1  - 

2 class  20  61  90  74  83  87  91  29  26  98  80  99  52  

3 class  80  0  0  0  16  0  5  71  74  - 20  - 48  

UGMM (96 converged replications for 3-class model) 

1 class 0  14  0  5  0  0  0  0  - 1  - 0  - 

2 class  57  86  99  95  90  99  96  59  20  99  91  100  89  

3 class  43  0  1  0  10  1  4  41  80  - 9  - 11  

Linear GMM (67 converged replications for 3-class model) 

1 class 0  2  0  1  0  0  0  0  - 0  - 0  - 

2 class  34  98  86  99  56  93  71  34  36  100  74  100  84  

3 class  66  0  14  0  44  7  29  66  64  - 26  - 16  
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Table 4.2.2.1c Average frequency of each class selected by each index for 16 conditions with sample size of 1000 (nonconvergent replications are included) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT 

(1 vs.2) 

BLRT  

(2 vs.3) 

LPM (84 converged replications for 3-class model) 

1 class 0  20  1  18  0  3  0  0  - 0  - 0  - 

2 class  18  75  98  82  92  96  95  20  20  100  79  100  50  

3 class  82  5  0  0  8  0  5  80  80  - 21  - 50  

UGMM (95 converged replications for 3-class model) 

1 class 0  2  0  0  0  0  0  0  - 0 - 0  - 

2 class  50  98  99  99  92  99  94  53  21  100  89  100  88  

3 class  50  0  1  0  8  1  6  47  79  - 11  - 12  

Linear GMM (78 converged replications for 3-class model) 

1 class 0  0  0  0  0  0  0  0  - 0  - 0  - 

2 class  26  95  96  100  80  98  83  27  26  100  75  100  69  

3 class  74  5  4  0  20  2  17  73  74  - 25  - 31  

Table 4.2.2.1d Average frequency of each class selected by each index for 16 conditions with sample size of 2000 (nonconvergent replications are included) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT 

(1 vs.2) 

BLRT  

(2 vs.3) 

LPM (81 converged replications for 3-class model) 

1 class 0  2  0  0  0  0  0  0  - 0  - 0  - 

2 class  19  98  100  100  98  100  93  20  21  100  82  100  55  

3 class  81  0  0  0  2  0  7  80  79  - 18  - 45  

UGMM (93 converged replications for 3-class model) 

1 class 0  0  0  0  0  0  0  0  - 0  - 0  - 

2 class  46  100  98  100  93  98  85  48  27  100  82  100  82  

3 class  54  0  2  0  8  2  15  52  73  - 19  - 18  

Linear GMM (57 converged replications for 3-class model) 

1 class 0  0  0  0  0  0  0  0  - 0  - 0  - 

2 class  44  100  98  100  85  100  67  44  45  100  76  100  90  

3 class  56  0  2  0  16  0  33  56  55  - 25  - 10  
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Table 4.2.2.2a Average percent of each class selected by each index for 16 conditions with sample size of 400 (nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT 

(1 vs.2) 

BLRT  

(2 vs.3) 

LPM (62 converged replications for 3-class model) 

1 class 0  70  26  63  5  32  27  0  - 19  - 15  - 

2 class  2  28  66  35  41  64  66  11  14  81  70  85  38  

3 class  98  2  8  2  54  4  7  89  86  - 30  - 62  

UGMM (95 converged replications for 3-class model) 

1 class 0  48  3  33  0  6  4  0  - 6  - 8  - 

2 class  66  52  95  67  86  93  94  69  19  94  92  92  91  

3 class  34  0  2  0  14  1  2  31  81  - 8  - 9  

Linear GMM (75 converged replications for 3-class model) 

1 class 0  25  0  14  0  1  0  0  - 2  - 6  - 

2 class  5  73  62  85  21  76  64  7  9  98  65  94  82  

3 class  95  1  38  2  79  23  36  93  91  - 35  - 18  

Table 4.2.2.2b Average percent of each class selected by each index for 16 conditions with sample size of 700 (nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT 

(1 vs.2) 

BLRT  

(2 vs.3) 

LPM (80 converged replications for 3-class model) 

1 class 0  48  12  32  1  16  6  0  - 2  - 1  - 

2 class  0  52  87  68  78  83  88  12  7  98  75  99  41  

3 class  100  0  1  0  21  0  6  88  93  - 25  - 59  

UGMM (96 converged replications for 3-class model) 

1 class 0  15  0  6  0  0  0  0  - 1  - 0  - 

2 class  54  85  99  94  89  99  96  57  17  99  90  100  88  

3 class  46  0  1  0  11  1  4  43  83  - 10  - 12  

Linear GMM (67 converged replications for 3-class model) 

1 class 0  2  0  1  0  0  0  0  - 0  - 0  - 

2 class  2  98  78  99  33  89  56  2  5  100  60  100  77  

3 class  98  0  22  0  67  11  44  98  95  - 40  - 23  
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Table 4.2.2.2c Average percent of each class selected by each index for 16 conditions with sample size of 1000 (nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT 

(1 vs.2) 

BLRT  

(2 vs.3) 

LPM (84 converged replications for 3-class model) 

1 class 0  25  2  23  0  5  0  0  - 0  - 0  - 

2 class  2  69  98  77  90  94  94  4  4  100  74  100  40  

3 class  98  6  0  0  10  0  6  96  96  - 26  - 60  

UGMM (95 converged replications for 3-class model) 

1 class 0  2  0  0  0  0  0  0  - 0  - 0  - 

2 class  46  98  99  99  92  99  94  50  17  100  88  100  87  

3 class  54  0  1  0  8  1  6  50  83  - 12  - 13  

Linear GMM (78 converged replications for 3-class model) 

1 class 0  0  0  0  0  0  0  0  - 0  - 0  - 

2 class  5  100  88  100  47  94  55  6  4  100  56  100  80  

3 class  95  0  12  0  53  6  45  94  96  - 44  - 20  

Table 4.2.2.2d Average percent of each class selected by each index for 16 conditions with sample size of 2000 (nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT 

(1 vs.2) 

BLRT  

(2 vs.3) 

LPM (81 converged replications for 3-class model) 

1 class 0  2  0  0  0  0  0  0  - 0  - 0  - 

2 class  0  98  100  100  98  100  90  1  2  100  76  100  45  

3 class  100  0  0  0  2  0  10  99  98  - 24  - 55  

UGMM (93 converged replications for 3-class model) 

1 class 0  0  0  0  0  0  0  0  - 0  - 0  - 

2 class  40  100  98  100  92  98  83  42  22  100  80  100  80  

3 class  60  0  2  0  8  2  17  58  78  - 20  - 20  

Linear GMM (57 converged replications for 3-class model) 

1 class 0  0  0  0  0  0  0  0  - 0  - 0  - 

2 class  1  100  97  100  72  100  41  1  2  100  55  100  83  

3 class  99  0  3  0  28  0  59  99  98  - 45  - 17  
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Table 4.2.2.3 ANOVA results for the frequency difference of model fit indices in selecting two-class models under conditions with four difference samples  

    AIC CAIC SACAIC BIC SABIC DBIC HQ HT_AIC Entropy LMR_1V2 LMR_2V3 BLRT_1V3 BLRT_2V3 

LPM 

  

F 13.05 6.55 6.59 5.71 32.10 5.18 4.68 11.23 21.90 9.70 0.59 6.09 13.05 

Sig. 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.62 0.00 0.00 

Eta squared 0.21 0.32 0.79 0.28 0.90 0.74 0.17 0.21 0.17 0.27 0.03 0.19 0.07 

UGMM 

  

F 1.59 13.66 4.18 10.33 1.07 3.98 3.86 1.74 0.37 9.85 4.72 6.09 1.59 

Sig. 0.20 0.00 0.01 0.00 0.37 0.01 0.01 0.17 0.78 0.00 0.01 0.00 0.20 

Eta squared 0.07 0.41 0.17 0.34 0.05 0.17 0.16 0.08 0.02 0.33 0.19 0.23 0.19 

Linear 

GMM 

  

F 5.45 9.37 77.10 7.63 174.92 58.31 4.11 5.47 4.12 7.39 0.56 4.70 5.45 

Sig. 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.64 0.01 0.00 

Eta squared 0.39 0.25 0.25 0.22 0.62 0.21 0.19 0.36 0.52 0.33 0.03 0.26 0.21 
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4.2.3 Number of repeated measures 

Table 4.2.3.1(a & b) and Table 4.2.3.2 (a & b) present the frequency and 

percent summary for four- and seven-measures conditions separately. Just like 

before, the model fit indices with highest probability of selection in the 2-class 

models are highlighted in bold. Table 4.2.3.2 has a very similar pattern with the 

general condition in Table 4.1 while Table 4.2.3.1 is slightly different in terms of 

a few exceptional indices, AIC, HQ, and BLRT for testing 1- versus 2-class 

models.  

Generally speaking, increasing the number of repeated measures does not 

guarantee the improvement of the accuracy rate. Instead, many model selectors’ 

values for two-class models in seven-measure models decrease. This is 

particularly clear in LPM, in which all the fit indices, except SABIC and LMR, 

perform better in selecting the two-class model in four-measure models than in 

seven-measure ones. Considering the seven-measure LPM has more parameters to 

be estimated than the four-measure LPM as shown in Table 4.1.1, we could 

understand why some information criteria achieve better class identifications in a 

four-measure LPM because they might penalize over-parameterization of a seven-

measure LPM and thus disfavor complex models in this situation. Linear GMM 

has the least performance difference of fit indices between four and seven measure 

conditions. This finding is consistent with Tofighi and Enders’ (2008) conclusion 

that the number of repeated measurements has only a relatively minor impact on 

the class enumeration.  
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ANOVA results in Table 4.2.3.3 also shows, due to LPM’s complex 

parameterization, this model is most sensitive to the number of measures because 

most indices exhibit a significant (negative or positive) change in the accuracy 

rate. In contrast, linear GMM is the least sensitive one because its restricted 

parameterization makes seven-measure information redundant.  

In both conditions with different repeated measures, SACAIC, DBIC, and 

BLRT (testing 1- vs. 2-class model only) in UGMM and BIC in linear GMM have 

satisfactory rates of accuracy (more than 95%). BLRT performs equally well in 

linear GMM for testing 1- versus 2-class models. CAIC can achieve acceptable 

rate of accuracy (more than 90%) in linear GMM. Moreover, both BIC and DBIC 

perform consistently well across the three types of mixture models with four 

repeated measures while LMR and BLRT are consistently good model selectors 

for testing 1- versus 2-class models across the three types of models with seven 

repeated measures.  

Figure 4.2.3.1 presents model selectors exhibiting a significant interaction 

effect between the types of mixture models and the number of repeated measures. 

Only AIC, BIC, DBIC, HT-AIC, Entropy, BLRT_2V3 have partial Eta squared 

value more than 0.1, indicating a large effect size. Essentially they can be 

classified into two groups. In one group, seven-measure models generally perform 

better than four-measure models while it is the opposite case in the other group. 
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Figure 4.2.3.1(a) First group of model fit indices with significant interaction effects between the types of models and the number of measures 
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Figure 4.2.3.1(b) Second group of model fit indices with significant interaction effects between the types of models and the number of measures 
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Inspecting the first group of figures, it is clear that SABIC and LMR_2V3 

have consistently higher rate of accuracy in models with seven measures across 

types of mixture models. The performance rate of over 95% is particularly 

satisfying in UGMM. HQ has very similar pattern with SABIC and LMR_2V3, 

except that its performance in LPM does not differ across the conditions with 

different measures.  

AIC and HT-AIC have a similar pattern with a much higher rate of accuracy 

in UGMM with seven measures while consistently low across three types of 

mixture models with four measures and the other two mixture models with seven 

measures.  

In the second group of figures, CAIC, BIC, LMR_1V2 have consistently 

high rates of accuracy across types of mixture models with four measures and 

dramatically increasing rates of accuracy from the least restricted LPM to the most 

restricted linear GMM. As stated before, LPM with seven measures needs to 

estimate many more parameters than the other two and so CAIC and BIC 

performs much worse in this model setting.  

SACAIC and DBIC present much higher rates in four-measure LPM than 

seven-measure LPM. Both perform comparable across conditions with varying 

numbers of measurements in UGMM and linear GMM. BLRT_2V3 works 

satisfactorily in UGMM with seven measures and in linear GMM with four 

measures and much worse in LPM with different measures.  
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Table 4.2.3.1a Average frequency of each class selected by each index for 32 conditions with 4 repeated measures (nonconvergent replications are included) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT 

(2 vs.3) 

LPM (71 converged replications for 3-class model) 

1 class 0  7  0  3  0  0  0  0  - 45  - 1  - 

2 class  30  93  97  96  78  99  90  32  32  55  75  99  59  

3 class  70  1  3  1  23  1  10  68  68  - 25  - 40  

UGMM (92 converged replications for 3-class model) 

1 class 0  8  0  5  0  0  0  0  - 37  - 1  - 

2 class  26  92  97  95  83  98  88  29  38  63  82  99  84  

3 class  74  0  3  0  17  1  12  71  62  - 18  - 15  

Linear GMM (59 converged replications for 3-class model) 

1 class 0  3  0  1  0  0  0  0  - 14  - 0  - 

2 class  43  97  87  98  62  92  70  43  44  86  68  100  91  

3 class  57  0  13  0  38  8  30  57  56  - 32  - 8  

 

Table 4.2.3.1b Average frequency of each class selected by each index for 32 conditions with 7 repeated measures (nonconvergent replications are included) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT 

(2 vs.3) 

LPM (82 converged replications for 3-class model) 

1 class 0  45  14  38  2  19  11  0  - 9  - 7  - 

2 class  19  52  86  62  91  81  88  25  25  91  31  93  49  

3 class  81  3  0  0  6  0  0  75  75  - 13  - 50  

UGMM (97 converged replications for 3-class model) 

1 class 0  22  1  14  0  3  2  0  - 2  - 3  - 

2 class  85  78  98  86  98  97  97  87  8  98  95  97  89  

3 class  15  0  1  0  2  1  2  13  92  - 5  - 10  

Linear GMM (74 converged replications for 3-class model) 

1 class 0  8  0  4  0  0  0  0  - 1  - 3  - 

2 class  29  92  87  95  62  93  71  30  31  99  80  97  81  

3 class  71  0  13  1  38  6  29  70  69  - 20  - 19  

 



 

75 

 

Table 4.2.3.2a Average percent of each class selected by each index for 32 conditions with 4 repeated measures (nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (71 converged replications for 3-class model) 

1 class 0  13  0  8  0  0  0  0  - 1  - 1  - 

2 class  1  86  95  91  65  97  86  5  5  99  64  99  43  

3 class  99  1  5  1  35  2  14  95  95  - 36  - 57  

UGMM (92 converged replications for 3-class model) 

1 class 0  9  0  5  0  0  0  0  - 1  - 1  - 

2 class  20  91  97  95  82  98  87  23  32  99  80  99  83  

3 class  80  0  3  0  18  2  13  77  68  - 20  - 17  

Linear GMM (59 converged replications for 3-class model) 

1 class 0  4  0  2  0  0  0  0  - 0  - 0  - 

2 class  3  96  79  98  37  88  48  3  4  100  46  100  86  

3 class  97  0  21  0  63  12  52  97  96  - 54  - 14  

 

Table 4.2.3.2b Average percent of each class selected by each index for 32 conditions with 7 repeated measures (nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (82 converged replications for 3-class model) 

1 class 0  59  20  51  3  26  16  0  - 9  - 7  - 

2 class  1  38  80  49  88  74  84  9  8  91  84  93  39  

3 class  99  3  0  0  9  0  0  91  92  - 16  - 61  

UGMM (97 converged replications for 3-class model) 

1 class 0  23  2  15  0  3  2  0  - 2  - 3  - 

2 class  84  77  98  85  98  96  97  86  5  98  95  97  89  

3 class  16  0  1  0  2  1  2  14  95  - 5  - 11  

Linear GMM (74 converged replications for 3-class model) 

1 class 0  10  0  5  0  0  0  0  - 1  - 3  - 

2 class  4  90  84  94  50  91  60  5  6  99  72  97  75  

3 class  96  0  16  1  50  8  40  95  94  - 28  - 25  
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Table 4.2.3.3 ANOVA results for the frequency difference of model fit indices in selecting two-class models between two conditions with four- 

and seven repeated measures   

    AIC CAIC SACAIC BIC SABIC DBIC HQ HT_AIC Entropy LMR_1V2 LMR_2V3 BLRT_1V3 BLRT_2V3 

LPM  

F 11.47 37.48 7.56 27.97 14.22 13.97 0.18 3.17 3.67 5.51 78.92 4.13 18.96 

Sig. 0.00 0.00 0.01 0.00 0.00 0.00 0.67 0.08 0.06 0.02 0.00 0.05 0.00 

Eta squared 0.16 0.38 0.11 0.31 0.19 0.18 0.00 0.05 0.06 0.08 0.56 0.06 0.23 

UGMM  

F 390.77 3.91 0.27 3.13 71.15 1.15 11.80 345.33 86.88 0.89 53.95 2.25 7.68 

Sig. 0.00 0.05 0.61 0.08 0.00 0.29 0.00 0.00 0.00 0.35 0.00 0.14 0.01 

Eta squared 0.86 0.06 0.00 0.05 0.53 0.02 0.16 0.85 0.58 0.01 0.47 0.03 0.11 

Linear 

GMM 

F 47.37 1.72 0.05 1.73 0.00 0.24 0.20 41.26 31.46 0.03 75.33 2.75 30.42 

Sig. 0.00 0.19 0.83 0.19 0.98 0.63 0.66 0.00 0.00 0.86 0.00 0.10 0.00 

Eta squared 0.43 0.03 0.00 0.03 0.00 0.00 0.00 0.40 0.34 0.00 0.55 0.04 0.33 
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4.2.4 Mixing  Proportions 

Table 4.2.4.1 and Table 4.2.4.2 provide the frequency summary for the two 

groups conditioning on balanced and unbalanced sample sizes for the two latent 

classes separately. From the highlighted frequencies for all the model fit indices, 

it is clear that both tables have virtually identical patterns with the general 

performance summarized in Table 4.1. For this reason, the discussion for 

comparing three types of mixture models and model fit indices in section 4.1 can 

be applied here again.  

Inspecting these two tables for the results of equal and unequal class 

proportions, neither one is overwhelmingly better than the other. ANOVA test 

results for the frequency difference of model selectors between the two class 

proportion conditions are summarized in Table 4.2.4.3. Clearly, varying this 

factor does not make any difference for all these model selectors. This is different 

from the Tofighi and Enders (2008) results, which indicated that a different 

mixing percentage can cause a dramatically different accuracy of class 

enumeration. More specifically, their model with extreme small proportion of 7% 

exhibited an unacceptable proportion of incorrect class identification. At least two 

reasons can explain this difference. First, the unbalanced mixing proportions in 

the current work are not extremely small; the smaller proportion reaches 25% of 

the total. Second, their results are based on two different sets of mixing 

proportions, conditioning on the other factors that held constant. The results in the 

current study come from a full-factorial design. The marginal effect of the mixing 
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proportion is examined here, and so is its interaction effect later. Tueller and 

Lubke (2010) claimed that the BIC and SABIC perform worse in selecting the 

true model in conditions with lower sample sizes. But their competing models 

differed in within-class model structures, not the number of latent classes as in our 

case. We would expect that the difference between the balanced and unbalanced 

design might be clear if the minority class is extremely small. More research is 

required to know what the subtle cutting-point of mixing percentage is to make a 

difference in the accuracy of class enumeration. Considering this result in 

conjunction with Tofighi and Enders (2008) work, this cutting point is possibly 

between 7% and 25%, under the conditions that we have examined.  

Some useful information about model fit indices can be summarized for 

practitioners. In both of the mixing proportion conditions, SACAIC, DBIC, LMR, 

and BLRT (testing 1-versus 2-class) in UGMM have satisfactory rates of 

accuracy. BIC and BLRT (testing 1-versus 2-class) in linear GMM and BLRT 

(testing 1- versus 2-class) in LPM also has almost perfect accuracy in this regard 

under both class proportion conditions. CAIC, DBIC, and LMR (testing 1- versus 

2-class) in linear GMM, SACAIC in LPM, SABIC and HQ in UGMM, and LMR 

in both linear GMM and LPM have acceptable rates of accuracy across the 

mixing proportion conditions.  

No model selector shows a significant interaction effect between the types of 

mixture models and mixing proportions.  
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Table 4.2.4.1a Average frequency of each class selected by each index for 32 conditions with balanced sample size (nonconvergent replications are included ) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (77 converged replications for 3-class model) 

1 class 0  27  8  21  2  11  7  0  - 4  - 5  - 

2 class  24  69  90  78  83  88  88  28  28  96  44  95  54  

3 class  76  3  2  1  15  1  6  72  72  - 21  - 45  

UGMM (94 converged replications for 3-class model) 

1 class 0  17  1  11  0  2  1  0  - 1  - 2  - 

2 class  56  83  98  89  91  97  93  59  21  99  90  98  88  

3 class  44  0  1  0  9  1  6  41  79  - 10  - 11  

Linear GMM (66 converged replications for 3-class model) 

1 class 0  7  0  4  0  0  0  0  - 10  - 2  - 

2 class  37  93  86  95  61  92  69  38  37  90  73  98  86  

3 class  63  1  14  1  39  7  31  62  63  - 27  - 13  

 

Table 4.2.4.1b Average frequency of each class selected by each index for 32 conditions with unbalanced sample size (nonconvergent replications are included) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (77 converged replications for 3-class model) 

1 class 0  25  6  21  1  8  5  0  - 6  - 3  - 

2 class  24  75  93  79  86  91  90  29  29  94  82  97  54  

3 class  76  0  1  0  14  0  5  71  71  - 18  - 45  

UGMM (95 converged replications for 3-class model) 

1 class 0  13  1  8  0  1  1  0  - 2  - 1  - 

2 class  54  87  98  92  90  98  92  57  25  98  87  99  86  

3 class  46  0  2  0  10  1  8  43  75  - 13  - 14  

Linear GMM (67 converged replications for 3-class model) 

1 class 0  4  0  2  0  0  0  0  - 1  - 1  - 

2 class  35  96  88  98  63  93  72  36  37  99  75  99  86  

3 class  65  0  12  0  37  7  28  64  63  - 25  - 14  
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Table 4.2.4.2a Average percent of each class selected by each index for 32 conditions with balanced sample size (nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT 

(2 vs.3) 

LPM (77 converged replications for 3-class model) 

1 class 0  39  12  31  2  15  9  0  - 4  - 5  - 

2 class  1  57  86  68  76  83  83  6  6  96  72  95  41  

3 class  99  4  3  1  21  2  8  94  94  - 28  - 59  

UGMM (94 converged replications for 3-class model) 

1 class 0  18  1  11  0  2  1  0  - 1  - 2  - 

2 class  52  82  97  89  90  97  92  55  17  99  89  98  88  

3 class  48  0  2  0  10  1  6  45  83  - 11  - 12  

Linear GMM (66 converged replications for 3-class model) 

1 class 0  8  0  5  0  1  0  0  - 0  - 2  - 

2 class  4  91  79  94  41  89  50  4  5  100  57  98  81  

3 class  96  1  21  1  59  10  50  96  95  - 43  - 19  

 

Table 4.2.4.2b Average percent of each class selected by each index for 32 conditions with unbalanced sample size (nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT 

(2vs.3) 

LPM (77 converged replications for 3-class model) 

1 class 0  34  9  28  1  11  7  0  - 7  - 3  - 

2 class  1  66  90  72  77  88  87  8  8  93  75  97  41  

3 class  99  0  2  0  22  1  7  92  92  - 25  - 59  

UGMM (95 converged replications for 3-class model) 

1 class 0  14  1  8  0  1  1  0  - 2  - 1  - 

2 class  51  86  97  92  89  98  91  54  21  98  86  99  85  

3 class  49  0  2  0  11  1  8  46  79  - 14  - 15  

Linear GMM (67 converged replications for 3-class model) 

1 class 0  5  0  2  0  0  0  0  - 1  - 1  - 

2 class  3  94  83  97  45  90  58  4  5  99  61  99  80  

3 class  97  0  17  0  55  10  42  96  95  - 39  - 20  
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Table 4.2.4.3 ANOVA results for the frequency difference of model fit indices in selecting two-class models between two different mixing 

proportions 

    AIC CAIC SACAIC BIC SABIC DBIC HQ HT_AIC Entropy LMR_1V2 LMR_2V3 BLRT_1V3 BLRT_2V3 

LPM  

F 0.04 0.49 0.34 0.02 0.31 0.28 0.43 0.14 0.09 0.45 2.65 0.32 0.10 

Sig. 0.84 0.49 0.56 0.88 0.58 0.60 0.52 0.71 0.76 0.50 0.11 0.58 0.75 

Eta squared 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.04 0.01 0.00 

UGMM  

F 0.05 0.29 0.00 0.27 0.19 0.39 0.26 0.06 0.39 1.01 1.09 0.39 2.17 

Sig. 0.82 0.59 0.95 0.61 0.66 0.54 0.61 0.80 0.53 0.32 0.30 0.53 0.15 

Eta squared 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02 0.02 0.01 0.03 

Linear 

GMM  

F 0.70 0.62 1.05 1.18 0.24 0.24 5.60 0.63 0.07 0.75 0.99 0.29 0.21 

Sig. 0.41 0.43 0.31 0.28 0.63 0.63 0.02 0.43 0.79 0.39 0.32 0.59 0.65 

Eta squared 0.01 0.01 0.02 0.02 0.00 0.00 0.08 0.01 0.00 0.01 0.02 0.00 0.00 
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4.2.5 Within-class model specification 

The frequency summary in Table 4.2.5.1 and Table 4.2.5.2 present 

information about two groups conditioning on within-class models, properly and 

improperly specified. Again, after visual inspection, we found both tables have 

identical patterns with the general performance pattern summarized in Table 4.1. 

All the discussion about the types of mixture models and various model selectors 

in section 4.1 can also be applied. They are not repeated here for the sake of 

brevity.   

As described in Chapter 3, the nonlinear component introduced to the 

majority class is subtle so that the growth pattern could often be considered linear 

mistakenly. In comparing these two tables, it is worthwhile to know which model 

or model selector(s) can function well in class enumeration on the two conditions 

that models are specified properly or improperly (taking nonlinear growth as 

linear). Most fit indices in Table 4.2.5.1 have higher rates of accuracy than that in 

Table 4.2.5.2, in which the model estimation is conducted with misspecified 

within-class models. As seen in Table 4.2.5.1a versus Table 4.2.5.1b and Table 

4.2.5.2a versus Table 4.2.5.2b, the likelihood ratio tests, BLRT and LMR, both 

tend to overestimate the number of latent class, which is the effect of nonlinear 

component.   

In addition, the ANOVA test is conducted to check whether the frequency 

rate of model selectors in selecting two-class models between the properly and 

improperly specified models is significantly different or not. Although most 
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model selectors perform better in the properly specified model, the very few 

significant cases in Table 4.2.5.3 indicate this performance gap is not huge, 

probably due to the very subtle nonlinear component introduced in the population 

model.  

Moreover, there are several exceptional indices (e.g., CAIC) that have better 

performance in the improperly specified within-class model than in the properly 

specified one. One common property shared by these exceptions is that they 

underestimated the number of latent classes conditioning on the properly specified 

within-class models. As Bauer and Curran (2004) summarized, nonlinear relations 

among observed or latent variables might lead to a spurious latent class. Some 

model fit indices in Table 4.2.5.1, such as CAIC and SACAIC in UGMM or BIC 

in linear GMM, underestimate the number of latent class, but they might extract 

spurious latent class due to the existence of nonlinearity and therefore their 

performance improve to some extent as shown in Table 4.2.5.2.  

Due to the nonlinear component added to the population model, the indices 

overestimated the number of latent classes in Table 4.2.5.1, which will decrease 

the accuracy rate in Table 4.2.5.2 because more replications were incorrectly 

classified into three-class group. This finding also confirms the Bauer and Curran 

study result that a spurious latent class can be extracted because of nonlinear 

relations.  

Some information about model fit indices for practitioners’ use is summarized 

as follows. In both model specification conditions, SACAIC and DBIC in 
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UGMM, BIC in linear GMM, and two likelihood ratio tests for 1- against 2-class 

models perform well with satisfactory accuracy rate. These model selectors seem 

to be robust to mild nonlinearity in this case. CAIC and DBIC in linear GMM and 

SACAIC in LPM have acceptable rates of accuracy.  

Only Entropy and BLRT_2V3 exhibit a significant interaction effect between 

types of mixture models and the within-class model specification as shown in 

Figure 4.2.5.1. However, neither of them has partial Eta squared value more than 

0.1, which indicates their interaction effect is not practically significant. Entropy 

performs poorly across the models and model specification conditions, 

particularly worse in less restricted UGMM. Examining its efficiency under 

different conditions, Entropy always favored the most restricted linear GMM. By 

the same token as introduced before, the most restricted model linear GMM, as 

long as the bias is acceptably small, might have great precision in estimates, such 

as posterior probability associated with each subject, resulting in larger Entropy 

values.  However, entropy per se is not useful because of its low rate of accuracy 

in identifying the number of latent classes in GMM. Generally speaking, 

BLRT_2V3 performs better in estimating data in which no nonlinear component 

is embedded, as evidenced by the fact that the broken line is always above the 

solid line. It works best in UGMM when the nonlinear factor does not exist in 

data. The results in linear GMM are identical across two different model 

specifications embedded in data. This also implies the nonlinear effect introduced 
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is quite small in magnitude and so the advantages of LPM and UGMM are not 

distinct.   
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Table 4.2.5.1a Average frequency of each class selected by each index for 32 conditions with properly specified within-class model (nonconvergent replications are included) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT  

(1 vs.2) 

BLRT 

 (2 vs.3) 

LPM (73 converged replications for 3-class model) 

1 class 0  26  9  21  2  11  6  0  - 7  - 5  - 

2 class  27  71  91  79  85  89  89  31  32  93  83  95  58  

3 class  73  3  1  0  13  0  4  69  68  - 17  - 42  

UGMM (94 converged replications for 3-class model) 

1 class 0  18  1  11  0  2  1  0  - 2  - 3  - 

2 class  59  82  98  89  93  98  95  62  16  98  90  97  91  

3 class  41  0  1  0  7  0  4  38  84  - 10  - 9  

Linear GMM (64 converged replications for 3-class model) 

1 class 0  7  0  4  0  0  0  0  - 1  - 2  - 

2 class  37  93  89  96  63  94  73  37  38  99  75  98  87  

3 class  63  0  11  0  37  6  27  63  62  - 25  - 13  

 

Table 4.2.5.1b Average frequency of each class selected by each index for 32 conditions with improperly specified within-class model (nonconvergent replications are included) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT 

 (1 vs.2) 

BLRT 

 (2 vs.3) 

LPM (80 converged replications for 3-class model) 

1 class 0  26  6  21  0  8  5  0  - 4  - 3  - 

2 class  21  73  92  78  84  91  89  26  25  96  79  97  52  

3 class  79  1  2  1  16  1  6  74  75  - 21  - 48  

UGMM (95 converged replications for 3-class model) 

1 class 0  13  0  8  0  1  1  0  - 1  - 1  - 

2 class  51  87  97  92  87  97  89  54  30  99  87  99  84  

3 class  49  0  2  0  13  2  10  46  70  - 13  - 16  

Linear GMM (69 converged replications for 3-class model) 

1 class 0  4  0  2  0  0  0  0  - 0  - 1  - 

2 class  35  95  86  97  62  92  69  36  36  100  73  99  87  

3 class  65  1  14  1  38  8  31  64  64  - 27  - 13  
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Table 4.2.5.2a Average percent of each class selected by each index for 32 conditions with properly specified within-class model (nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT  

(1 vs.2) 

BLRT 

 (2 vs.3) 

LPM (73 converged replications for 3-class model) 

1 class 0  40  13  33  3  17  10  0  - 7  - 5  - 

2 class  0  58  85  67  76  83  84  6  7  93  75  95  42  

3 class  100  3  2  0  21  0  6  94  93  - 25  - 58  

UGMM (94 converged replications for 3-class model) 

1 class 0  19  1  12  0  2  1  0  - 2  - 3  - 

2 class  56  81  98  88  93  97  95  58  11  98  89  97  90  

3 class  44  0  1  0  7  0  4  42  89  - 11  - 10  

Linear GMM (64 converged replications for 3-class model) 

1 class 0  9  0  5  0  1  0  0  - 1  - 2  - 

2 class  2  91  82  95  43  90  56  3  4  99  60  98  80  

3 class  98  0  17  0  57  9  44  97  96  - 40  - 20  

 

Table 4.2.5.2b Average percent of each class selected by each index for 32 conditions with improperly specified within-class model (nonconvergent replications are excluded) 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT 

 (1 vs.2) 

BLRT 

 (2 vs.3) 

LPM (80 converged replications for 3-class model) 

1 class 0  33  7  26  1  10  6  0  - 4  - 3  - 

2 class  1  66  90  73  77  88  85  8  6  96  73  97  40  

3 class  99  1  3  1  22  2  8  92  94  - 27  - 60  

UGMM (95 converged replications for 3-class model) 

1 class 0  13  0  8  0  1  1  0  - 1  - 1  - 

2 class  48  87  97  92  87  97  89  51  27  99  86  99  83  

3 class  52  0  3  0  13  2  11  49  73  - 14  - 17  

Linear GMM (69 converged replications for 3-class model) 

1 class 0  4  0  2  0  0  0  0  - 0  - 1  - 

2 class  5  95  80  97  44  89  52  6  6  100  58  99  81  

3 class  95  1  20  1  56  11  48  94  94  - 42  - 19  
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Table 4.2.5.3 ANOVA results for the frequency difference of model fit indices in selecting two-class models between two model specification 

conditions  

    AIC CAIC SACAIC BIC SABIC DBIC HQ HT_AIC Entropy LMR_1V2 LMR_2V3 BLRT_1V3 BLRT_2V3 

LPM  

F 2.97 0.06 0.17 0.01 0.09 0.17 0.00 1.00 3.74 0.50 3.62 0.32 6.31 

Sig. 0.09 0.81 0.68 0.93 0.77 0.68 0.96 0.32 0.06 0.48 0.06 0.58 0.01 

Eta squared 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.01 0.06 0.01 0.09 

UGMM  

F 1.00 0.40 1.09 0.19 5.30 0.00 4.46 0.96 8.57 0.35 1.25 0.86 14.42 

Sig. 0.32 0.53 0.30 0.66 0.02 0.98 0.04 0.33 0.00 0.56 0.27 0.36 0.00 

Eta squared 0.02 0.01 0.02 0.00 0.08 0.00 0.07 0.02 0.12 0.01 0.02 0.01 0.19 

Linear 

GMM  

F 0.22 0.29 1.20 0.34 0.07 1.10 6.56 0.21 0.61 1.50 1.84 0.93 0.00 

Sig. 0.64 0.59 0.28 0.56 0.80 0.30 0.01 0.65 0.44 0.23 0.18 0.34 0.99 

Eta squared 0.00 0.00 0.02 0.01 0.00 0.02 0.10 0.00 0.01 0.02 0.03 0.01 0.00 

 

 

Figure 4.2.5.1 The significant interaction effects between the types of models and model specifications  
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4.3. Significant Interaction Effect between Factors in a Given Mixture Model 

Two-way ANOVA tests were conducted for the purpose of examining 

whether there are interaction effects between the manipulated factors on the 

performance of model selectors conditioning on types of mixture models. For the 

sake of brevity, only significant results are listed and interpreted. Interaction 

effects involving mixing proportion and within-class model specifications are not 

presented here because none of their interaction terms is significant.   

4.3.1 Sample size Х Class separation 

As Figure 4.3.1.1 shows, five model fit indices are statistically and 

practically significant in LPM, in terms of their p values (below 0.5) and partial 

Eta squared values (above 0.1) respectively. Except entropy, SACAIC, HQ, 

LMR_1V2 and BLRT_1V2 follow a similar interaction pattern. While these four 

indices work consistently well across different sample sizes under the condition of 

high class separation with a Mahalanobis distance of 5, only when the sample size 

reaches around or above 700 do they perform acceptably well (over 90%) under 

lower class separation condition.  

Figure 4.3.1.2 indicates that all five indices, CAIC, BIC, DBIC, LMR_1V2, 

and BLRT_1V2, exhibiting a statistically and practically significant interaction 

effect between sample size and class separation in UGMM, have a similar pattern 

as those indices in LPM. CAIC requires larger sample size (e.g., 1000) to achieve 

an acceptable rate of accuracy (90%) than the other four indices do (700 or less).  

As Figure 4.3.1.3 shows, again, four indices with a statistically and 

practically significant interaction effect have a similar pattern with those in other 

types of mixture models. If the class separation is very large, such as 5 

standardized Mahalanobis distance units in this case, sample size of 400 is large 
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enough to accurately identify the number of latent classes. If the class separation 

is 3.5 Mahalanobis distance units, sample size of 700 is enough for the purpose of 

class identification.  
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Figure 4.3.1.1 Significant Interaction (sample size X class separation) Plot for model selectors in LPM 
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Figure 4.3.1.2 Significant Interaction (sample size Х class separation) Plot for model selectors in UGMM 
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Figure 4.3.1.3 Significant Interaction (sample size Х class separation) Plot for model selectors in Linear GMM 
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4.3.2 Sample size Х Number of measures 

Figure 4.3.2.1 presents the statistically and practically significant interaction 

plots for eight model selectors in LPM. Six of them, CAIC, SACAIC, BIC, DBIC, 

LMR_1V2, BLRT_1V2 follow a similar pattern that they tend to have higher rate 

of correctly identifying the number of latent classes in the four-measure LPM 

rather than in the seven-measure LPM. This is partly due to the great demand of 

sample size for the highly parameterized LPM with seven measures.  

Very different from the other six indices, SABIC and HQ are two exceptional 

cases. SABIC works better in seven-measure model over four-measure ones. As 

summarized in section 2.4.1, this measure favors model with large number of 

parameters and as such its special pattern does make sense. As for HQ, sample 

size of 700 is a cutting point, below which HQ performs better in four-measure 

model and above which HQ works better with an acceptable rate of accuracy in 

seven-measure model.   

Figure 4.3.2.2 shows that the interaction pattern for model indices in UGMM 

distinctly different from those in LPM. First, generally seven-measure models win 

in this type of mixture model. This is probably due to the relatively lower 

requirement for sample size of this model. Second, the trend line of accuracy rate 

is not positively associated with sample size, which is also different from LPM. 

As summarized in Section 4.2.2, SABIC generally performs better as sample size 

increases across all the conditions. Since SABIC favors complex models with 

more parameters, sample size of 400 is enough for it achieving the ceiling effect 

in more complex seven-measure UGMM, and as discussed in Section 4.2.2, HQ, 

HT_AIC and LMR_2V3 perform worse as sample size increases in UGMM.  
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In linear GMM, only DBIC and BLRT_2V3 exhibit a statistically and 

practically significant interaction effect between sample size and the number of 

measures, as displayed in Figure 4.3.2.3. As sample size approaches 700, DBIC 

achieves good accuracy rate in both conditions with different numbers of 

measures. BLRT_2V3 performs much better in linear GMM with four repeated 

measures than in those with seven measures.  

 



 

96 

 

 

Figure 4.3.2.1 Significant Interaction (sample size Х the number of measures) Plot for model selectors in LPM 
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Figure 4.3.2.2 Significant Interaction (sample size Х the number of measures) Plot for model selectors in UGMM 
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Figure 4.3.2.3 Significant Interaction (sample size X the number of measures) Plot for model selectors in Linear GMM 
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4.3.3 Class separation Х Number of measures 

Four model-fit indices in Figure 4.3.3.1 exhibit statistically and practically 

significant interaction effect of class separation and the number of repeated 

measures in LPM. Their accuracy rates go up dramatically as class separation 

increases from 2 SD to 3SD in seven-measure LPM, but not sensitive to this 

change in the models with four-measure. 

 As Figure 4.3.3.2 shows, only SACAIC has a statistically and practically 

significant interaction effect in UGMM. And SACAIC has a very satisfactory rate 

of accuracy across conditions with different combinations of class separation and 

number of measures. Increasing class separation does not help this index correctly 

enumerate the number of latent class in four-measure UGMM. On the contrary, 

larger class separation does have a significant effect on improving rate of accuracy 

in seven-measure UGMM. 

 There is no significant interaction effect between class separation and the 

number of measures for model selectors in Linear GMM.  
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Figure 4.3.3.1 Significant Interaction (Class separation Х the number of measures) Plot for model selectors in LPM 
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Figure 4.3.3.2 Significant Interaction (Class separation Х the number of measures) Plot for model selectors in UGMM 
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CHAPTER 5: DISCUSSION 

―It is a capital mistake to theorize before one has data‖  

.                                                     —Arthur Conan Doyle, ―Sherlock Homes‖ 

Although class enumeration in application of growth mixture model is 

recommended by some researchers to be confirmatory in nature, practitioners 

often use this model in an exploratory way in reality because theory could be too 

ambiguous to tell exactly how many classes exist underlying the data, or 

researchers do not know how robust this theory is to be applied to different 

dataset.  That is why practitioners using GMM need to explore the data and rely 

on model fit indices to make a decision with respect to the number of latent 

classes. However, there is no universally accepted index that can accomplish this 

task so far.  

In addition to studying the relative efficiency of a wide range of model fit 

indices in class enumeration, more importantly, the current study has provided an 

alternative modeling strategy of assessing the number of latent classes for GMM. 

Both theoretical and empirical reasons for using less restricted models in this 

regard were presented.   

As stated before, how to balance bias and precision is always an important 

issue in statistical modeling. More flexible models, like UGMM and LPM, can 

lower the chance of bias occurring caused by model misspecification. But, 

estimating them requires larger sample sizes to detect the heterogeneity 

underlying the data and obtain a reliable result regarding class determination. 

Between the least restrictive LPM and the most restrictive linear GMM, UGMM 

is only one kind of compromise choice and there must be numerous ways to 

construct less restricted mixture models, depending on various ways to impose 

http://thinkexist.com/quotes/arthur_conan_doyle,_sr./
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model restrictions to data. A practical suggestion arising from this study is that 

practitioners, based on existing theory, their experience or belief, ought to think 

about which part of the within-class model structure that is uncertain and thuse 

should be loosened. By doing so, the chance of bias caused by model 

misspecification is reduced.    

After pooling all the mixture models into Mplus to be estimated, just as 

other type of mixture models, nonconvergence is a problem that needs to be 

addressed in current study, which is particularly true for three-class LPM and 

three-class linear GMM with low convergence rate on average. To make the 

arguments herein convincing, as presented in the results section, two different 

ways were used to summarize the results, one exclude those nonconvergent 

replications and the other include them as evidence supporting two-class models. 

Both methods have its limitations. And both types of results are very similar 

making the conclusions more credible.  

As the results section shows, different model fit indices might perform well 

in different mixture models with varying restrictions. After considering associated 

factors, such as class separation and sample size, practitioners must make a 

decision regarding using which models in conjunction with which model 

selector(s) to maximize the chance of correctly identifying the number of latent 

classes for mixture models. Some observations are given below based on the 

conditions examined in this work.  

 The results summarized in Chapter 4 show that AIC, HT-AIC, and Entropy 

are not useful for class enumeration in GMM studies because of their general 

30%-90% incorrect identification. Others might be superior in different 

mixture models under conditions with different combinations of manipulated 
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factors. In general, most indices would perform best in UGMM as Table 4.1 

implies. More specifically, BIC, LMR_1V2 and BLRT_1V2 in linear GMM 

could work well; SACAIC, DBIC, LMR_1V2 and BLRT_1V2 in UGMM can 

provide sufficiently accurate identification on the number of latent class.  

 Larger class separation can improve the performance of the useful indices. 

Table 4.2.1.1 and Table 4.2.1.2 indicate SACAIC and DBIC in UGMM, and 

LMR_1V2, and BLRT_1V2 in both UGMM and linear GMM can obtain 

sufficient rate of accuracy (over 95%) across class separation conditions.  

 Sample size plays an important role in this process because it directly 

influences the performance of model indices and does so through other 

factors. If the sample size at hand is sufficiently large, for example 2,000, 

Table 4.2.2.4 indicates that most indices perform satisfyingly best in LPM. 

But, if the sample size varies from 400 to 1000, based on the conditions 

investigated here, UGMM together with SACAIC and DBIC, or linear GMM 

with LMR_1V2 could achieve satisfactory rates of accuracy for our purpose. 

As discussed in Section 4.3, three types of models with 2 SD class separations 

and seven-measure LPM demand larger sample size to achieve good rate of 

accuracy.  

 The effect of the number of measures is highly associated with sample size. 

Increasing this factor does not necessarily improve the rate of accuracy. 

Instead, it might lower the performance of model selectors if the sample size 

is not sufficiently large. SACAIC, DBIC, LMR, and BLRT in UGMM, and 

BIC and BLRT_1V2 in linear GMM perform equally well (over 95%) under 

both conditions with 4 and 7 measures, respectively.   

 The mixing proportion and within-class model specification set up in my 
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simulation design might be too mild to show a significant difference on the 

performance of model selectors in types of mixture models. More 

investigations are necessary for these two factors.  

 Most fit indices used for class enumeration, more or less, perform better in the 

less restricted UGMM. This finding provides evidence supporting our 

conjecture that less restricted models might perform better in selecting the 

correct number of latent class for GMM prior to direct application of linear 

GMM, even when within-class model is appropriately specified. We could 

expect that the advantage of UGMM might be more distinct if the within-

class model misspecification is more serious.  

The practical suggestions this study could offer to the practitioners who use 

GMM is that they can try less restricted mixture models, UGMM first. If sample 

size is sufficiently large (e.g., 2000), LPM is also recommended for the same 

purpose. If different combinations of mixture models and model fit indices lead to 

the same number of latent class, researchers have more confidence about the result 

of class enumeration and then further consider what kind of growth function can 

fit the data; if these combinations indicate different number of latent classes, 

holding other conditions constant, the results from less restricted UGMM or LPM 

is more reliable. Moreover, researchers can make this decision by incorporating 

other information, such as substantial theory, or graphical inspection of data.   

Based on several research works on procedures for applying GMM (Connell 

& Frye, 2006; Muthen, 2004; Wang & Bodner, 2007), Ram and Grimm (2009) 

viewed GMM an exploratory technique and formulated four steps for conducting 

a GMM analysis, in which a single-group growth curve model is obtained prior to 

class enumeration. However, as stated in Section 2.2, within-class model 
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misspecification might lead to spurious latent classes. Due to the exploratory 

nature of applying GMM in practice, it is more reasonable to determine the 

number of latent classes before specifying the within-class model structure. Based 

on the current study, less restricted models are suggested to be used first to lower 

the chance of incorrect class enumeration.  Figure 5 summarizes a ―roadmap‖ for 

determining the number of latent class in GMM based on the conditions examined 

in this study.  

 

Figure 5. A roadmap for class enumeration in application of GMM 

In sum, based on the conditions examined in this study, the less restricted 

mixture model, UGMM, can be considered as a promising way to partly solve 

class enumeration problems caused by within-class model misspecification 

Use GMM. Is sample size  

sufficiently large (e.g., 2000 

 in this study) for GMM? 

Yes No 
Use LPM for  

class enumeration 

Use more restricted mixture  

model, such as UGMM, or put some 

restriction on LPM based on 

researcher’s belief or experience. 

Model 

estimation 

Plot longitudinal data.  

Graph or theory indicate  

different growth curve patterns? 

Yes 

If you’re not sure if sample size 

is large enough, check the 

consistency of the two results 

the same?  

Yes No 

Determine the number of latent classes 

Using external 

information, 

such as 

existing theory 

Use SACAIC, BIC, DBIC, LMR_1V2, 

and BLRT_1V2 for selecting model 
Use SACAIC, DBIC, LMR_1V2, 

and BLRT_1V2 for selecting model 
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because it can provide more a reliable result in selecting the correct number of 

classes than linear GMM. Surely this finding has important implications for class 

enumeration for other types of mixture models. But it needs further investigation 

to know how effective the less restricted model could play for the same purpose in 

different contexts.  

Just like any other methodological studies, there are some limitations and 

associated possible future research directions in this study.  

 Only two-class true model was used to generate data. Therefore, this study 

provides some information about how indices work to distinguish two-class 

from other class models when two-class model is true, but it does not tell how 

often they would still choose two-class model when a three- or four-class 

model is true. In other words, this study tells researchers about true positive 

and false negatives, but nothing about true negatives and false positives with 

respect to two-class model. To clarify this inquiry, more research needs to be 

done.  

 As stated before, the manipulated settings for two design factors, mixing 

proportion and within-class model specification are too mild and so they do 

not have substantial effect on the performance of model fit indices in 

selecting the number of latent classes. More variations of the two current 

factors could be further investigated, such as more extreme proportion for 

minority group or larger nonlinear component.  

 Due to time constraints, some other possible influential factors are not 

included in this simulation, such as correlation between latent intercept and 

slope factors and covariates for latent factors, etc. Usually the correlation 

between intercept and slope are correlated to some extent and so the degree of 
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correlation is worthy of further investigation. Although Tofighi and Enders 

(2008) results indicate covariates have detrimental effect on the class 

enumeration in linear GMM, their effect in less restricted mixture models, 

UGMM and LPM, are unknown. They might play a more important role in 

less restricted model because these models loosen the restrictions imposed to 

the variable relations and covariates can bring some useful information to 

facilitate researcher’s understanding to the associations among variables and 

thus to more accurately identify the number of latent classes.   

 UGMM is just one type of balancing model between the most unrestricted 

and restricted mixture models. Many other variations could be considered. 

Different mixture model could be used for different latent classes. For 

example, one class could follow linear growth function, while the other could 

use unstructured growth function; or one class could let all the parameter be 

freely estimated while the other put some equality constraints to some 

parameters.   
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Appendices A: Results for each condition listed in simulation design, as shown in Table 3.2  

Table A 3. Number of classes selected by each index in condition 1 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (71 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 71 69 71 68 70 63 0 0 100 50 100 40 

3 class  71 0 2 0 3 1 8 71 71 - 21 - 31 

UGMM (85 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  6 85 85 85 83 85 73 6 8 100 63 100 71 

3 class  79 0 0 0 2 0 12 79 77 - 22 - 14 

Linear GMM (46 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 46 42 46 32 45 18 0 0 100 24 100 40 

3 class  46 0 4 0 14 1 28 46 46 - 22 - 6 

Table A 4. Number of classes selected by each index in condition 2 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (68 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 68 68 68 66 68 56 0 0 100 43 100 25 

3 class  68 0 0 0 2 0 12 68 68 - 25 - 43 

UGMM (87 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  2 87 85 87 81 85 63 4 43 100 65 100 66 

3 class  85 0 2 0 6 2 24 83 44 - 22 - 21 

Linear GMM (51 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 51 49 51 38 51 15 0 5 100 25 100 49 

3 class  51 0 2 0 13 0 36 51 46 - 26 - 2 
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Table A 3. Number of classes selected by each index in condition 3 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (69 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 69 68 69 67 69 62 0 2 100 51 100 33 

3 class  69 0 1 0 2 0 7 69 67 - 18 - 36 

UGMM (86 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  5 86 86 86 83 86 72 8 4 100 68 100 70 

3 class  81 0 0 0 3 0 14 78 82 - 18 - 16 

Linear GMM (54 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 54 54 54 42 54 28 0 0 100 27 100 47 

3 class  54 0 0 0 12 0 26 54 54 - 27 - 7 

 

Table A 4. Number of classes selected by each index in condition 4 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (79 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 79 79 79 74 79 62 0 0 100 51 100 34 

3 class  79 0 0 0 5 0 17 79 79 - 28 - 45 

UGMM (92 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  1 92 88 92 65 89 38 1 69 100 48 100 52 

3 class  91 0 4 0 27 3 54 91 23 - 44 - 40 

Linear GMM (58 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 58 58 58 46 58 27 0 2 100 31 100 53 

3 class  58 0 0 0 12 0 31 58 56 - 27 - 5 
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Table A 5. Number of classes selected by each index in condition 5 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (90 converged replications for 3-class model) 

1 class 0 22 0 4 0 0 0 0 - 0 - 0 - 

2 class  0 68 90 86 90 90 88 1 0 100 78 100 39 

3 class  90 0 0 0 0 0 2 89 90 - 12 - 51 

UGMM (95 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  86 95 95 95 95 95 94 86 5 100 90 100 88 

3 class  9 0 0 0 0 0 1 9 90 - 3 - 5 

Linear GMM (70 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  1 70 67 70 51 70 32 1 1 100 41 100 56 

3 class  69 0 3 0 19 0 38 69 69 - 29 - 14 

 

Table A 6. Number of classes selected by each index in condition 6 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (91 converged replications for 3-class model) 

1 class 0 1 0 0 0 0 0 0 - 0 - 0 - 

2 class 0 90 91 91 91 91 91 1 1 100 69 100 26 

3 class 91 0 0 0 0 0 0 90 90 - 22 - 65 

UGMM (97 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class 71 97 97 97 96 97 95 74 4 100 95 100 84 

3 class 26 0 0 0 1 0 2 23 93 - 2 - 13 

Linear GMM (63 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class 1 63 61 63 49 63 29 3 1 100 42 100 50 

3 class 62 0 2 0 14 0 34 60 62 - 21 - 13 
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Table A 7. Number of classes selected by each index in condition 7 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (94 converged replications for 3-class model) 

1 class 0 5 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 89 94 94 94 94 94 3 1 100 84 100 46 

3 class  94 0 0 0 0 0 0 91 93 - 10 - 48 

UGMM (95 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  67 95 95 95 94 95 93 72 1 100 84 100 80 

3 class  28 0 0 0 1 0 2 23 94 - 7 - 11 

Linear GMM (73 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  1 73 73 73 60 73 44 2 3 100 53 100 60 

3 class  72 0 0 0 13 0 29 71 70 - 20 - 13 

 

Table A 8. Number of classes selected by each index in condition 8 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (92 converged replications for 3-class model) 

1 class 0 1 0 0 0 0 0 0 - 0 - 0 - 

2 class 0 91 92 92 92 92 90 1 1 100 79 100 34 

3 class 92 0 0 0 0 0 2 91 91 - 13 - 58 

UGMM (96 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class 60 96 84 96 78 86 77 61 20 100 73 100 64 

3 class 36 0 12 0 18 10 19 35 76 - 21 - 30 

Linear GMM (71 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class 1 71 70 71 59 71 42 3 1 100 53 100 67 

3 class 70 0 1 0 12 0 29 68 70 - 18 - 4 
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Table A 9. Number of classes selected by each index in condition 9 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (84 converged replications for 3-class model) 

1 class 0 6 0 2 0 0 0 0 - 0 - 0 - 

2 class  0 78 84 82 72 84 77 3 1 100 54 100 42 

3 class  84 0 0 0 12 0 7 81 82 - 29 - 42 

UGMM (92 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 1 - 0 - 

2 class  21 92 92 92 86 92 87 26 14 99 81 100 81 

3 class  71 0 0 0 6 0 5 66 77 - 10 - 10 

Linear GMM (55 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 55 50 55 24 54 30 0 0 100 24 100 49 

3 class  55 0 5 0 31 1 25 55 55 - 31 - 6 

 

Table A 10. Number of classes selected by each index in condition 10 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (92 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  10 92 91 92 74 92 82 10 0 100 59 100 44 

3 class  82 0 1 0 18 0 10 82 92 - 32 - 48 

UGMM (98 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  23 98 96 98 87 97 88 32 43 100 85 100 85 

3 class  75 0 2 0 11 1 10 66 55 - 13 - 13 

Linear GMM (78 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  27 78 72 78 44 75 44 27 5 100 36 100 72 

3 class  51 0 6 0 34 3 34 51 73 - 42 - 6 
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Table A 11. Number of classes selected by each index in condition 11 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (81 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 1 - 0 - 

2 class 0 81 81 81 70 81 75 0 3 99 56 100 41 

3 class 81 0 0 0 11 0 6 81 78 - 25 - 40 

UGMM (92 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class 21 92 92 92 85 92 89 25 12 100 81 100 86 

3 class 71 0 0 0 7 0 3 67 80 - 11 - 6 

Linear GMM (53 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class 0 53 48 53 28 52 32 0 1 100 25 100 49 

3 class 53 0 5 0 25 1 21 53 52 - 28 - 4 

 

Table A 12. Number of classes selected by each index in condition 12 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (92 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class 13 92 92 92 77 92 82 13 1 100 64 100 36 

3 class 79 0 0 0 15 0 10 79 91 - 28 - 56 

UGMM (100 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 1 - 0 - 

2 class 12 100 99 100 84 99 88 14 51 99 76 100 79 

3 class 88 0 1 0 16 1 12 86 49 - 24 - 21 

Linear GMM (77 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class 19 77 68 77 47 72 51 19 5 100 37 100 64 

3 class 58 0 9 0 30 5 26 58 72 - 40 - 13 
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Table A 13. Number of classes selected by each index in condition 13 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (49 converged replications for 3-class model) 

1 class 0 49 13 49 1 29 1 0 - 1 - 0 - 

2 class  0 0 36 0 48 20 48 4 2 99 40 100 19 

3 class  49 0 0 0 0 0 0 45 47 - 9 - 30 

UGMM (99 converged replications for 3-class model) 

1 class 0 20 0 4 0 0 0 0 - 0 - 0 - 

2 class  95 79 99 95 99 99 99 96 1 100 95 100 95 

3 class  4 0 0 0 0 0 0 3 98 - 2 - 2 

Linear GMM (70 converged replications for 3-class model) 

1 class 0 1 0 0 0 0 0 0 - 0 - 0 - 

2 class  4 69 63 70 40 67 44 5 8 100 54 100 55 

3 class  66 0 7 0 30 3 26 65 62 - 16 - 15 

 

Table A 14. Number of classes selected by each index in condition 14 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (96 converged replications for 3-class model) 

1 class  95 1 86  8   -  -  - 

2 class  3 1 93 9 93 86 94 7 2 100 71 100 34 

3 class  93  2 1 3 2 2 89 94 - 25 - 62 

UGMM (99 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  70 95 93 94 90 93 91 74 10 100 94 100 88 

3 class  29 4 6 5 9 6 8 25 89 - 5 - 11 

Linear GMM (91 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 -  -  - 

2 class  9 86 76 85 51 80 61 9 5 100 57 100 72 

3 class  82 5 15 6 40 11 30 82 86 - 34 - 19 
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Table A 15. Number of classes selected by each index in condition 15 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (92 converged replications for 3-class model) 

1 class 0 92 6 88 1 16 1 0 - 2 - 0 - 

2 class  0 0 86 4 91 76 91 9 5 98 82 100 38 

3 class  92 0 0 0 0 0 0 83 87 - 10 - 54 

UGMM (95 converged replications for 3-class model) 

1 class 0 3 0 1 0 0 0 0 - 0 - 0 - 

2 class  74 92 95 94 93 95 94 76 2 100 79 100 74 

3 class  21 0 0 0 2 0 1 19 93 - 9 - 14 

Linear GMM (81 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  2 81 73 81 48 78 52 2 3 100 62 100 67 

3 class  79 0 8 0 33 3 29 79 78 - 19 - 14 

 

Table A 16 Number of classes selected in condition 16 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (82 converged replications for 3-class model) 

1 class 0 78 1 62 0 2 0 0 - 1 - 0 - 

2 class  0 4 81 20 81 80 82 2 1 99 70 100 20 

3 class  82 0 0 0 1 0 0 80 80 - 12 - 62 

UGMM (97 converged replications for 3-class model) 

1 class 0 1 0 1 0 0 0 0 - 1 - 0 - 

2 class  71 96 97 96 92 97 94 74 12 99 86 100 70 

3 class  26 0 0 0 5 0 3 23 85 - 4 - 20 

Linear GMM (71 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 1 - 0 - 

2 class  0 71 59 71 37 65 41 0 1 99 55 100 54 

3 class  71 0 12 0 34 6 30 71 70 - 16 - 17 
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Table A 17. Number of classes selected by each index in condition 17 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (80 converged replications for 3-class model) 

1 class 0 37 0 18 0 1 0 0 - 1 - 0 - 

2 class  0 43 80 62 64 79 76 3 6 99 62 100 49 

3 class  80 0 0 0 16 0 4 77 74 - 18 - 31 

UGMM (95 converged replications for 3-class model) 

1 class 0 14 0 4 0 0 0 0 - 0 - 0 - 

2 class  36 81 93 91 74 93 85 41 11 100 80 100 82 

3 class  59 0 2 0 21 2 10 54 84 - 15 - 13 

Linear GMM (61 converged replications for 3-class model) 

1 class 0 3 0 0 0 0 0 0 - 0 - 0 - 

2 class  2 58 50 61 19 58 36 2 1 100 35 100 37 

3 class  59 0 11 0 42 3 25 59 60 - 26 - 24 

 

Table A 18. Number of classes selected by each index in condition 18 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (82 converged replications for 3-class model) 

1 class 0 18       -  -  - 

2 class  0 64 80 82 57 82 76  7 100 60 100 41 

3 class  82 0 2 0 25  6 82 75 - 22 - 41 

UGMM (97 converged replications for 3-class model) 

1 class 0 2 0 0 0 0 0 0 - 1 - 0 - 

2 class  20 95 94 97 75 97 87 21 32 99 81 100 83 

3 class  77 0 3 0 22 0 10 76 65 - 16 - 14 

Linear GMM (70 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 70 48 70 20 60 38 0 3 100 29 100 61 

3 class  70 0 22 0 50 10 32 70 67 - 41 - 9 
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Table A 19. Number of classes selected by each index in condition 19 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (70 converged replications for 3-class model) 

1 class 0 11 0 4 0 0 0 0 - 0 - 0 - 

2 class  0 59 69 66 46 69 62 1 2 99 48 100 29 

3 class  70 0 1 0 24 1 8 69 68 - 22 - 41 

UGMM (96 converged replications for 3-class model) 

1 class 0 4 0 1 0 0 0 0 - 1 - 0 - 

2 class  40 92 94 95 83 95 93 44 13 99 83 100 83 

3 class  56 0 2 0 13 1 3 52 83 - 12 - 12 

Linear GMM (66 converged replications for 3-class model) 

1 class 0 1 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 65 55 66 19 58 38 0 2 100 35 100 60 

3 class  66 0 11 0 47 8 28 66 64 - 31 - 6 

 

Table A 20. Number of classes selected by each index in condition 20 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (78 converged replications for 3-class model) 

1 class 0 4 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 74 76 78 51 77 69 0 6 100 53 100 32 

3 class  78 0 2 0 27 1 9 78 72 - 25 - 46 

UGMM (97 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 3 - 0 - 

2 class  18 97 96 97 79 96 92 22 47 97 86 100 91 

3 class  79 0 1 0 18 1 5 75 50 - 11 - 6 

Linear GMM (62 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 1 - 0 - 

2 class  0 62 53 62 15 58 37 0 2 99 35 100 57 

3 class  62 0 9 0 47 4 25 62 60 - 27 - 5 
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Table A 21. Number of classes selected by each index in condition 21 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (75 converged replications for 3-class model) 

1 class 0 75 58 75 10 69 37 0 - 5 - 12 - 

2 class  0 0 17  61 6 38 8 2 95 62 88 32 

3 class  75 0 0 0 4 0 0 67 73 - 13 - 43 

UGMM (99 converged replications for 3-class model) 

1 class 0 79 1 40 0 2 0 0 - 0 -  - 

2 class  93 20 97 59 97 96 98 94 2 100 92 100 92 

3 class  6 0 1 0 2 1 1 5 97 - 5 - 5 

Linear GMM (80 converged replications for 3-class model) 

1 class 0 11 0 5 0 0 0 0 - 0 - 2 - 

2 class  3 69 73 75 37 76 58 3 6 100 63 98 71 

3 class  77 0 7 0 43 4 22 77 74 - 17 - 9 

 

Table A 22. Number of classes selected by each index in condition 22 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (87 converged replications for 3-class model) 

1 class 0 87 30 87 1 45 10 0 - 2 - 0 - 

2 class  0 0 57 0 82 42 76 15 3 98 73 100 30 

3 class  87 0 0 0 4 0 1 72 84 - 14 - 57 

UGMM (96 converged replications for 3-class model) 

1 class 0 42 0 11 0 1 0 0 - 0 - 0 - 

2 class  81 54 96 85 94 95 96 82 5 100 92 100 82 

3 class  15 0 0 0 2 0 0 14 91 - 1 - 11 

Linear GMM (84 converged replications for 3-class model) 

1 class 0 3 0 1 0 0 0 0 - 0 - 0 - 

2 class  4 81 69 83 42 78 60 5 6 100 65 100 69 

3 class  80 0 15 0 42 6 24 79 78 - 19 - 15 
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Table A 23. Number of classes selected by each index in condition 23 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (77 converged replications for 3-class model) 

1 class 0 77 49 76 6 62 20 0 - 17 - 3 - 

2 class  0 0 28 1 70 15 57 11 5 82 62 96 35 

3 class  77 0 0 0 2 0 0 66 71 - 15 - 43 

UGMM (94 converged replications for 3-class model) 

1 class 0 56 0 25 0 1 0 0 - 2 - 2 - 

2 class  83 38 94 69 93 93 93 83 0 97 79 98 75 

3 class  11 0 0 0 1 0 1 11 93 - 7 - 11 

Linear GMM (77 converged replications for 3-class model) 

1 class 0 6 0 2 0 0 0 0 - 0 - 0 - 

2 class  1 71 59 74 37 66 48 1 3 100 56 100 57 

3 class  76 0 18 1 40 11 29 76 74 - 21 - 20 

 

Table A 24. Number of classes selected by each index in condition 24 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (84 converged replications for 3-class model) 

1 class 0 84 16 83 0 29 3 0 - 9 - 0 - 

2 class  0 0 68 1 83 55 81 8 5 91 73 100 27 

3 class  84 0 0 0 1 0 0 76 78 - 10 - 57 

UGMM (98 converged replications for 3-class model) 

1 class 0 31 0 6 0 0 0 0 - 2 - 0 - 

2 class  83 67 97 92 95 98 97 85 7 98 87 100 76 

3 class  15 0 1 0 3 0 1 13 91 - 4 - 15 

Linear GMM (85 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  3 85 71 85 46 78 63 5 5 100 67 100 62 

3 class  82 0 14 0 39 7 22 80 80 - 18 - 23 
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Table A 25. Number of classes selected by each index in condition 25 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (35 converged replications for 3-class model) 

1 class 0 35 3 29 0 4 3 0 - 15 - 16 - 

2 class  2 0 28 6 13 29 28 3 6 84 22 83 17 

3 class  33 0 4 0 22 2 4 32 29 - 13 - 18 

UGMM (86 converged replications for 3-class model) 

1 class 0 75 1 50 0 7 3 0 - 4 - 15 - 

2 class  45 11 81 36 68 77 79 49 12 93 75 82 75 

3 class  41 0 4 0 20 2 4 37 74 - 13 - 13 

Linear GMM (62 converged replications for 3-class model) 

1 class 0 42 0 27 0 4 1 0 - 4 - 8 - 

2 class  1 20 43 35 12 48 43 1 4 96 37 92 56 

3 class  61 0 19 0 50 10 18 61 58 - 25 - 6 

 

Table A 26. Number of classes selected by each index in condition 26 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (59 converged replications for 3-class model) 

1 class 0 29 0 16 0 0 0 0 - 5 - 3 - 

2 class  2 8 36 21 14 37 36 3 3 95 39 97 23 

3 class  57 22 23 22 45 22 23 56 56 - 20 - 36 

UGMM (100 converged replications for 3-class model) 

1 class 0 66 0 43 0 2 0 0 - 4 - 2 - 

2 class  42 34 94 57 75 96 95 47 32 96 89 98 93 

3 class  58 0 6 0 25 2 5 53 68 - 11 - 7 

Linear GMM (98 converged replications for 3-class model) 

1 class 0 18 0 4 0 0 0 0 - 0 - 1 - 

2 class  12 68 48 81 20 58 52 12 8 100 49 99 81 

3 class  86 12 50 13 78 40 46 86 90 - 49 - 17 
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Table A 27. Number of classes selected by each index in condition 27 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (29 converged replications for 3-class model) 

1 class 0 23 0 21 0 0 0 0 - 16 - 8 - 

2 class  0 6 26 8 5 29 27 1 4 84 14 92 7 

3 class  29 0 3 0 24 0 2 28 25 - 15 - 22 

UGMM (85 converged replications for 3-class model) 

1 class 0 63 0 31 0 1 0 0 - 13 - 1 - 

2 class  48 22 84 54 68 83 84 52 11 86 73 98 68 

3 class  37 0 1 0 17 1 1 33 74 - 11 - 16 

Linear GMM (67 converged replications for 3-class model) 

1 class 0 23 0 9 0 0 0 0 - 7 - 1 - 

2 class  2 44 49 58 10 55 49 2 7 90 35 96 59 

3 class  65 0 18 0 58 12 18 65 60 - 33 - 9 

 

Table A 28. Number of classes selected by each index in condition 28 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (43 converged replications for 3-class model) 

1 class 0 26 0 13 0 0 0 0 - 6 - 1 - 

2 class  0 17 38 30 7 41 38 0 4 92 20 97 13 

3 class  43 0 5 0 36 2 5 43 39 - 23 - 30 

UGMM (92 converged replications for 3-class model) 

1 class 0 42 0 17 0 0 0 0 - 4 - 3 - 

2 class  36 50 89 75 73 91 89 42 37 96 80 97 80 

3 class  56 0 3 0 19 1 3 50 55 - 11 - 11 

Linear GMM (64 converged replications for 3-class model) 

1 class 0 2  0 0 0 0 0 - 2 - 0 - 

2 class  2 62 37 64 10 46 38 2 6 98 39 100 58 

3 class  62 0 27 0 54 18 26 62 58 - 25 - 6 
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Table A 29. Number of classes selected by each index in condition 29 

 
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (61 converged replications for 3-class model) 

1 class 0 61 61 61 25 61 61 1 - 55 - 67 - 

2 class 4 0 0 0 31 0 0 17 22 39 54 27 32 

3 class 57 0 0 0 11 0 0 43 39 - 13 - 35 

UGMM (95 converged replications for 3-class model) 

1 class 0 95 20 90 1 39 22 0 - 17 - 42 - 

2 class 91 0 75 5 93 56 73 91 9 82 83 57 86 

3 class 4 0 0 0 2 0 0 4 86 - 5 - 2 

Linear GMM (80 converged replications for 3-class model) 

1 class 0 72 1 53 0 7 3 0 - 4 - 39 - 

2 class 4 8 57 27 28 61 59 7 3 95 60 60 64 

3 class 76 0 22 0 53 12 18 73 77 - 21 - 17 

 

Table A 30. Number of classes selected by each index in condition 30 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (78 converged replications for 3-class model) 

1 class 0 77 72 76 11 75 72 0 - 36 - 50 - 

2 class  5 1 5 2 41 2 5 18 15 64 60 50 34 

3 class  73 0 1 0 26 1 1 60 62 - 17 - 44 

UGMM (100 converged replications for 3-class model) 

1 class 0 97 9 88 1 21 11 0 - 7 - 19 - 

2 class  90 2 90 11 96 78 88 93 7 93 93 81 89 

3 class  10 1 1 1 3 1 1 7 93 - 3 - 7 

Linear GMM (97 converged replications for 3-class model) 

1 class 0 59 0 32 0 3 0 0 - 2 - 12 - 

2 class  19 31 72 56 48 78 72 22 10 98 81 88 78 

3 class  78 7 25 9 49 16 25 75 87 - 16 - 19 
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Table A 31. Number of classes selected by each index in condition 31 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (67 converged replications for 3-class model) 

1 class 0 67 63 67 15 66 64 0 - 69 - 46 - 

2 class  1 0 4 0 35 1 3 14 18 29 62 52 36 

3 class  66 0 0 0 17 0 0 53 48 - 4 - 31 

UGMM (95 converged replications for 3-class model) 

1 class 0 94 12 86 1 19 14 0 - 22 - 24 - 

2 class  91 1 83 9 93 76 81 91 1 75 83 75 83 

3 class  4 0 0 0 2 0 0 4 92 - 2 - 2 

Linear GMM (80 converged replications for 3-class model) 

1 class 0 60 1 33 0 2 1 0 - 7 - 22 - 

2 class  4 20 59 47 20 67 60 6 4 93 62 78 64 

3 class  76 0 20 0 60 11 19 74 76 - 18 - 16 

 

Table A 32. Number of classes selected by each index in condition 32 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (75 converged replications for 3-class model) 

1 class 0 75 56 75 5 68 57 0 - 55 - 30 - 

2 class  0 0 19 0 51 7 18 16 16 44 65 69 34 

3 class  75 0 0 0 20 0 0 59 59 - 11 - 42 

UGMM (100 converged replications for 3-class model) 

1 class 0 92 5 79 0 8 6 0 - 15 - 12 - 

2 class  90 8 95 21 97 92 94 90 6 85 86 88 80 

3 class  10 0 0 0 3 0 0 10 94 - 6 - 12 

Linear GMM (79 converged replications for 3-class model) 

1 class 0 42 0 17 0 0 0 0 - 2 - 13 - 

2 class  6 37 50 62 28 64 51 8 13 97 66 86 58 

3 class  73 0 29 0 51 15 28 71 66 - 14 - 22 
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Table A 33. Number of classes selected by each index in condition 33 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (73 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 73 73 73 70 73 56 0 0 100 47 100 29 

3 class  73 0 0 0 3 0 17 73 73 - 26 - 44 

UGMM (91 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  8 91 91 91 88 91 85 9 9 100 67 100 82 

3 class  83 0 0 0 3 0 6 82 82 - 24 - 9 

Linear GMM (48 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 48 46 48 31 48 8 0 1 100 16 100 40 

3 class  48 0 2 0 17 0 40 48 47 - 32 - 8 

 

Table A 34. Number of classes selected by each index in condition 34 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (60 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 60 60 60 55 60 42 0 1 100 33 100 28 

3 class  60 0 0 0 5 0 18 60 59 - 27 - 32 

UGMM (86 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 86 85 86 73 85 53 0 44 100 58 100 61 

3 class  86 0 1 0 13 1 33 86 42 - 27 - 24 

Linear GMM (41 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 41 41 41 26 41 9 0 2 100 16 100 38 

3 class  41 0 0 0 15 0 32 41 39 - 25 - 3 
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Table A 35. Number of classes selected by each index in condition 35 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (75 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 75 75 75 73 75 64 0 4 100 54 100 37 

3 class  75 0 0 0 2 0 11 75 71 - 21 - 38 

UGMM (90 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  7 90 89 90 86 90 78 7 10 100 65 100 76 

3 class  83 0 1 0 4 0 12 83 80 - 25 - 14 

Linear GMM (48 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 48 45 48 37 48 23 0 0 100 19 100 42 

3 class  48 0 3 0 11 0 25 48 48 - 29 - 6 

 

Table A 36. Number of classes selected by each index in condition 36 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (75 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 75 75 75 70 75 62 0 2 100 51 100 38 

3 class  75 0 0 0 5 0 13 75 73 - 24 - 37 

UGMM (92 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 92 79 90 53 82 33 0 77 100 42 100 40 

3 class  92 0 13 2 39 10 59 92 16 - 50 - 52 

Linear GMM (52 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 52 51 52 36 51 16 0 1 100 20 100 46 

3 class  52 0 1 0 16 1 36 52 51 - 32 - 6 
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Table A 37. Number of classes selected by each index in condition 37 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (83 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 83 83 83 83 83 82 0 2 100 73 100 38 

3 class  83 0 0 0 0 0 1 83 81 - 10 - 45 

UGMM (98 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  84 98 98 98 97 98 96 86 11 100 94 100 90 

3 class  14 0 0 0 1 0 2 12 87 - 4 - 8 

Linear GMM (55 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 55 51 55 38 53 15 0 0 100 35 100 36 

3 class  55 0 4 0 17 2 40 55 55 - 20 - 19 

 

Table A 38. Number of classes selected by each index in condition 38 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (88 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 88 88 88 88 88 88 2 6 100 72 100 43 

3 class  88 0 0 0 0 0 0 86 82 - 16 - 45 

UGMM (96 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  76 96 96 96 95 96 92 80 7 100 84 100 79 

3 class  20 0 0 0 1 0 4 16 89 - 12 - 17 

Linear GMM (55 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 55 51 55 31 55 19 0 1 100 28 100 40 

3 class  55 0 4 0 24 0 36 55 54 - 27 - 15 
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Table A 39. Number of classes selected by each index in condition 39 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (89 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 89 89 89 89 89 88 0 4 100 81 100 38 

3 class  89 0 0 0 0 0 1 89 85 - 8 - 51 

UGMM (98 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  71 98 98 98 98 98 98 75 6 100 84 100 84 

3 class  27 0 0 0 0 0 0 23 92 - 11 - 11 

Linear GMM (64 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 64 64 64 42 64 29 0 1 100 44 100 46 

3 class  64 0 0 0 22 0 35 64 63 - 20 - 18 

 

Table A 40. Number of classes selected by each index in condition 40 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (91 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0  - 0 - 0 - 

2 class  0 91 91 91 91 91 91 0 3 100 78 100 48 

3 class  91 0 0 0 0 0 0 91 88 - 13 - 43 

UGMM (97 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  78 97 96 97 96 97 96 80 2 100 93 100 88 

3 class  19 0 1 0 1 0 1 17 95 - 4 - 9 

Linear GMM (60 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  2 60 59 60 43 60 28 3 3 100 43 100 45 

3 class  58 0 1 0 17 0 32 57 57 - 17 - 15 
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Table A 41. Number of classes selected by each index in condition 41 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (70 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 70 70 70 55 70 61 0 3 100 40 100 20 

3 class  70 0 0 0 15 0 9 70 67 - 30 - 50 

UGMM (90 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  3 90 88 90 79 89 83 6 13 100 75 100 76 

3 class  87 0 2 0 11 1 7 84 77 - 15 - 14 

Linear GMM (45 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 45 40 45 7 43 18 0 0 100 12 100 38 

3 class  45 0 5 0 38 2 27 45 45 - 33 - 7 

 

Table A 42. Number of classes selected by each index in condition 42 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (81 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 81 80 81 60 81 66 0 3 100 46 100 27 

3 class  81 0 1 0 21 0 15 81 78 - 35 - 54 

UGMM (86 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 86 83 86 65 84 68 1 21 100 54 100 62 

3 class  86 0 3 0 21 2 18 85 65 - 32 - 24 

Linear GMM (49 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 49 42 49 17 44 18 0 1 100 17 100 44 

3 class  49 0 7 0 32 5 31 49 48 - 32 - 5 
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Table A 43. Number of classes selected by each index in condition 43 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (77 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 77 77 77 60 77 65 0 2 100 48 100 28 

3 class  77 0 0 0 17 0 12 77 75 - 29 - 49 

UGMM (92 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  9 92 92 92 78 92 83 12 16 100 74 100 81 

3 class  83 0 0 0 14 0 9 80 76 - 18 - 11 

Linear GMM (60 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 60 53 60 20 57 31 0 0 100 26 100 55 

3 class  60 0 7 0 40 3 29 60 60 - 34 - 5 

 

Table A 44. Number of classes selected by each index in condition 44 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 0- 0 - 0 - 

2 class  0 83 83 83 71 83 73 0 4 100 57 100 38 

3 class  83 0 0 0 12 0 10 83 79 - 26 - 45 

UGMM (converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  2 91 87 91 71 89 74 4 47 100 69 100 73 

3 class  89 0 4 0 20 2 17 87 44 - 22 - 18 

Linear GMM (converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 56 50 56 20 51 27 0 1 100 22 100 49 

3 class  56 0 6 0 36 5 29 56 55 - 34 - 7 
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Table A 45. Number of classes selected by each index in condition 45 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (90 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 7 90 90 90 90 90 4 10 100 77 100 39 

3 class  90 83 0 0 0 0 0 86 80 - 13 - 51 

UGMM (96 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  73 96 96 96 95 96 95 80 9 100 92 100 90 

3 class  23 0 0 0 1 0 1 16 87 - 3 - 5 

Linear GMM (75 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 75 62 75 33 72 42 1 5 100 50 100 46 

3 class  75 0 13 0 42 3 33 74 70 - 25 - 29 

 

Table A 46. Number of classes selected by each index in condition 46 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (89 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 89 89 89 89 89 89 3 4 100 73 100 32 

3 class  89 0 0 0 0 0 0 86 85 - 16 - 57 

UGMM (95 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  76 95 95 95 95 95 95 80 4 100 92 100 82 

3 class  19 0 0 0 0 0 0 15 91 - 3 - 13 

Linear GMM (63 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  1 63 50 63 23 59 26 1 0 100 41 100 52 

3 class  62 0 13 0 40 4 37 62 63 - 22 - 11 
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Table A 47. Number of classes selected by each index in condition 47 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (90 converged replications for 3-class model) 

1 class 0 4 0 1 0 0 0 0 - 0 - 0 - 

2 class  0 86 90 89 90 90 90 4 9 100 79 100 37 

3 class  90 0 0 0 0 0 0 86 81 - 11 - 53 

UGMM (96 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  76 96 96 96 96 96 96 78 0 100 87 100 89 

3 class  20 0 0 0 0 0 0 18 96 - 6 - 4 

Linear GMM (72 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  3 72 65 72 42 69 43 6 6 100 57 100 58 

3 class  69 0 7 0 30 3 29 66 66 - 15 - 14 

 

Table A 48. Number of classes selected by each index in condition 48 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (93 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 93 93 93 92 93 92 1 5 100 86 100 43 

3 class  93 0 0 0 1 0 1 92 88 - 7 - 50 

UGMM (99 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  86 99 99 99 98 99 99 87 2 100 95 100 88 

3 class  13 0 0 0 1 0 0 12 97 - 2 - 9 

Linear GMM (76 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 76 69 76 40 71 44 3 7 100 52 100 23 

3 class  76 0 7 0 36 5 32 73 69 - 24 - 53 
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Table A 49. Number of classes selected by each index in condition 49 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 82 80 82 39 81 70 0 1 100 42 100 29 

3 class  82 0 2 0 43 1 12 82 80 - 39 - 53 

UGMM (92 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  20 92 90 92 82 91 88 22 22 100 82 100 81 

3 class  72 0 2 0 10 1 4 70 70 - 10 - 11 

Linear GMM (converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 55 33 55 8 45 15 0 0 100 25 100 51 

3 class  55 0 22 0 47 10 40 55 55 - 30 - 4 

 

Table A 50. Number of classes selected by each index in condition 50 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (81 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 81 80 81 49 81 73 0 2 100 60 100 38 

3 class  81 0 1 0 32 0 8 81 79 - 21 - 43 

UGMM (89 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  6 89 86 89 60 87 76 8 27 100 69 100 70 

3 class  83 0 3 0 29 2 13 81 62 - 19 - 18 

Linear GMM (56 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 56 38 56 6 47 20 0 4 100 21 100 44 

3 class  56 0 18 0 50 9 36 56 52 - 35 - 12 
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Table A 51. Number of classes selected by each index in condition 51 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (69 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 69 66 69 36 69 59 0 5 100 44 100 27 

3 class  69 0 3 0 33 0 10 69 64 - 25 - 42 

UGMM (95 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 1 - 0 - 

2 class  20 95 92 95 76 93 87 23 28 99 76 100 85 

3 class  75 0 3 0 19 2 8 72 67 - 18 - 9 

Linear GMM (67 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 67 51 67 12 59 36 0 2 100 28 100 29 

3 class  67 0 16 0 55 8 31 67 65 - 39 - 38 

 

Table A 52. Number of classes selected by each index in condition 52 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (74 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 74 71 74 41 71 59 74 6 100 48 100 36 

3 class  74 0 3 0 33 3 15 0 67 - 25 - 38 

UGMM (93 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  10 93 91 93 70 91 85 12 44 100 74 100 77 

3 class  83 0 2 0 23 2 8 81 49 - 18 - 15 

Linear GMM (49 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 49 38 49 9 45 25 0 3 100 18 100 46 

3 class  49 0 11 0 40 4 24 49 46 - 31 - 3 
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Table A 53. Number of classes selected by each index in condition 53 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (85 converged replications for 3-class model) 

1 class 0 78 0 30 0 0 0 0 - 0 - 0 - 

2 class  0 7 85 55 83 85 85 6 5 100 67 100 23 

3 class  85 0 0 0 2 0 0 79 80 - 18 - 62 

UGMM (95 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  80 95 95 95 95 95 95 82 12 100 94 100 91 

3 class  15 0 0 0 0 0 0 13 83 - 1 - 4 

Linear GMM (57 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  1 57 40 57 21 49 30 1 1 100 41 100 38 

3 class  56 0 17 0 36 8 27 56 56 - 16 - 19 

 

Table A 54. Number of classes selected by each index in condition 54 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (87 converged replications for 3-class model) 

1 class 0 60 0 14 0 0 0 0 - 0 - 0 - 

2 class  0 27 87 73 83 87 86 3 7 100 62 100 25 

3 class  87 0 0 0 4 0 1 84 79 - 24 - 62 

UGMM (94 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0  - 0 - 0 - 

2 class  83 94 94 94 93 94 93 83 3 100 93 100 80 

3 class  11 0 0 0 1 0 1 11 91 - 0 - 13 

Linear GMM (85 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  3 75 55 75 28 63 39 3 4 100 53 100 48 

3 class  72 0 20 0 47 12 36 72 71 - 22 - 27 
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Table A 55. Number of classes selected by each index in condition 55 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (81 converged replications for 3-class model) 

1 class 0 52 0 17 0 0 0 0 - 1 - 0 - 

2 class  0 29 81 64 80 81 81 6 12 99 73 100 37 

3 class  81 0 0 0 1 0 0 75 68 - 8 - 44 

UGMM (99 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  84 99 99 99 99 99 99 85 0 100 86 100 85 

3 class  15 0 0 0 0 0 0 14 99 - 5 - 6 

Linear GMM (71 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  1 71 60 71 29 64 44 4 8 100 49 100 49 

3 class  70 0 11 0 42 7 27 67 63 - 22 - 22 

 

Table A 56. Number of classes selected by each index in condition 56 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (93 converged replications for 3-class model) 

1 class 0 43 0 11 0 0 0 0 - 0 - 0 - 

2 class  0 50 93 82 89 93 93 10 14 100 79 100 34 

3 class  93 0 0 0 4 0 0 83 79 - 14 - 59 

UGMM (99 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  83 99 99 99 97 99 98 86 1 100 96 100 83 

3 class  16 0 0 0 2 0 1 13 98 - 2 - 15 

Linear GMM (68 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  3 68 61 68 27 63 38 4 5 100 47 100 48 

3 class  65 0 7 0 41 5 30 64 63 - 21 - 20 
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Table A 57. Number of classes selected by each index in condition 57 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (71 converged replications for 3-class model) 

1 class 0 15 0 2 0 0 0 0 - 0 - 0 - 

2 class  0 56 64 69 17 71 64 1 5 100 45 100 26 

3 class  71 0 7 0 54 0 7 70 65 - 25 - 45 

UGMM (93 converged replications for 3-class model) 

1 class 0 2 0 0 0 0 0 0 - 0 - 0 - 

2 class  36 91 89 93 61 92 91 39 32 100 81 100 81 

3 class  57 0 4 0 32 1 2 54 61 - 12 - 12 

Linear GMM (53 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 53 26 53 2 37 29 0 1 100 28 100 46 

3 class  53 0 27 0 51 16 24 53 52 - 25 - 7 

 

Table A 58. Number of classes selected by each index in condition 58 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (80 converged replications for 3-class model) 

1 class 0 3 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 77 70 80 15 77 71 0 5 100 46 100 46 

3 class  80 0 10 0 65 3 9 80 75 - 34 - 34 

UGMM (91 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 1 - 0 - 

2 class  15 91 88 91 61 90 89 20 39 99 82 100 82 

3 class  76 0 3 0 30 1 2 71 51 - 8 - 8 

Linear GMM (59 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 0- 0 - 0 - 

2 class  0 59 21 59 2 37 22 0 6 100 21 100 52 

3 class  59 0 38 0 57 22 37 59 53 - 38 - 7 
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Table A 59. Number of classes selected by each index in condition 59 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (61 converged replications for 3-class model) 

1 class 0 4 0 1 0 0 0 0 - 1 - 0 - 

2 class  1 57 52 60 11 59 54 1 7 99 39 100 23 

3 class  60 0 9 0 50 2 7 60 53 - 21 - 38 

UGMM (96 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  38 96 91 96 77 94 91 43 37 100 82 100 86 

3 class  58 0 5 0 19 2 5 53 59 - 13 - 9 

Linear GMM (58 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 58 29 58 1 36 31 0 0 100 33 100 51 

3 class  58 0 29 0 57 22 27 58 58 - 25 - 7 

 

Table A 60. Number of classes selected by each index in condition 60 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (58 converged replications for 3-class model) 

1 class 0 2 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 56 52 58 15 55 53 2 4 100 31 100 21 

3 class  58 0 6 0 43 3 5 56 54 - 27 - 37 

UGMM (95 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 3 - 0 - 

2 class  31 95 88 95 68 93 89 38 57 97 87 100 86 

3 class  64 0 7 0 27 2 6 57 37 - 8 - 9 

Linear GMM (64 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  0 63 29 63 7 42 31 0 2 100 29 100 57 

3 class  64 1 35 1 57 22 33 64 62 - 35 - 7 
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Table A 61. Number of classes selected by each index in condition 61 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (61 converged replications for 3-class model) 

1 class 0 61 14 61 1 28 15 0 - 6 - 2 - 

2 class  0 0 47 0 34 33 46 11 0 94 49 98 15 

3 class  61 0 0 0 26 0 0 50 61 - 12 - 46 

UGMM (99 converged replications for 3-class model) 

1 class 0 32 0 7 0 0 0 0 - 0 - 0 - 

2 class  94 67 99 92 97 99 99 95 2 100 93 100 91 

3 class  5 0 0 0 2 0 0 4 97 - 3 - 5 

Linear GMM (86 converged replications for 3-class model) 

1 class 0 1 0 0 0 0 0 0 - 0 - 0 - 

2 class  7 85 62 86 20 75 65 9 9 100 67 100 65 

3 class  79 0 24 0 66 11 21 77 77 - 19 - 21 

 

Table A 62. Number of classes selected by each index in condition 62 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (66 converged replications for 3-class model) 

1 class 0 66 8 64 0 17 10 0 - 6 - 4 - 

2 class  0 0 58 2 43 49 56 7 5 94 54 96 12 

3 class  66 0 0 0 23 0 0 59 61 - 12 - 54 

UGMM (100 converged replications for 3-class model) 

1 class 0 23 0 9 0 0 0 0 - 1 - 0 - 

2 class  87 77 100 91 97 100 100 89 2 99 98 100 92 

3 class  13 0 0 0 3 0 0 11 98 - 2 - 8 

Linear GMM (85 converged replications for 3-class model) 

1 class 0 2 0 0 0 0 0 0 - 0 - 0 - 

2 class  3 83 55 85 20 74 57 6 11 100 64 100 65 

3 class  82 0 30 0 65 11 28 79 74 - 21 - 20 
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Table A 63. Number of classes selected by each index in condition 63 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (62 converged replications for 3-class model) 

1 class 0 62 5 62 0 17 5 0 - 18 - 0 - 

2 class  0 0 57 0 38 45 57 13 11 82 51 100 26 

3 class  62 0 0 0 24 0 0 49 51 - 11 - 36 

UGMM (98 converged replications for 3-class model) 

1 class 0 26 0 6 0 0 0 0 - 2 - 2 - 

2 class  96 72 98 92 96 98 98 96 0 98 100 86 84 

3 class  2 0 0 0 2 0 0 2 98 - 0 - 4 

Linear GMM (81 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  6 81 60 81 25 67 61 8 12 100 65 100 63 

3 class  75 0 21 0 56 14 20 73 69 - 16 - 18 

 

Table A 64. Number of classes selected by each index in condition 64 

  
AIC CAIC SACAIC BIC SABIC DBIC HQ HT-AIC Entropy LMR LRT     

(1 vs.2) 

LMR LRT           

(2 vs.3) 

BLRT (1 

vs.2) 

BLRT (2 

vs.3) 

LPM (82 converged replications for 3-class model) 

1 class 0 82 4 79 0 10 4 0 - 10 - 10 - 

2 class  0 0 78 3 59 72 78 5 10 90 58 90 25 

3 class  82 0 0 0 23 0 0 77 72 - 23 - 57 

UGMM (99 converged replications for 3-class model) 

1 class 0 16 0 3 0 0 0 0 0 0 - 0 - 

2 class  91 83 99 96 98 99 99 94 3 100 90 100 80 

3 class  8 0 0 0 1 0 0 5 96 - 3 - 13 

Linear GMM (85 converged replications for 3-class model) 

1 class 0 0 0 0 0 0 0 0 - 0 - 0 - 

2 class  8 85 58 85 26 68 58 9 15 100 66 100 64 

3 class  77 0 27 0 59 17 27 76 70 - 19 - 21 
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Appendices B: Two-way ANOVA Results 

Table B1: Types of mixture model X Class separation  

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Corrected 

Model 

AIC 33223.229
a
 5 6644.646 15.057 .000 

CAIC 31625.609
b
 5 6325.122 9.633 .000 

SACAIC 6203.792
c
 5 1240.758 9.033 .000 

BIC 23146.417
d
 5 4629.283 9.930 .000 

SABIC 28756.047
e
 5 5751.209 26.883 .000 

DBIC 5707.375
f
 5 1141.475 7.367 .000 

HQ 18725.062
g
 5 3745.012 29.259 .000 

HT_AIC 30704.688
h
 5 6140.938 13.159 .000 

Entropy 7802.417
i
 5 1560.483 6.251 .000 

LMR_1V2 1953.187
j
 5 390.637 6.118 .000 

LMR_2V3 6765.089
k
 5 1353.018 18.015 .000 

BLRT_1V2 1338.417
l
 5 267.683 3.664 .003 

BLRT_2V3 44191.875
m
 5 8838.375 104.940 .000 

Intercept AIC 
284284.083 1 

284284.08

3 
644.190 .000 

CAIC 
1346197.547 1 

1346197.5

47 
2.050E3 .000 

SACAIC 
1625456.021 1 

1625456.0

21 
1.183E4 .000 

BIC 
1508752.083 1 

1508752.0

83 
3.236E3 .000 

SABIC 
1196850.422 1 

1196850.4

22 
5.594E3 .000 

DBIC 
1671786.750 1 

1671786.7

50 
1.079E4 .000 

HQ 
1357777.687 1 

1357777.6

87 
1.061E4 .000 

HT_AIC 
322752.000 1 

322752.00

0 
691.585 .000 

Entropy 
166970.021 1 

166970.02

1 
668.807 .000 
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LMR_1V2 
1826370.187 1 

1826370.1

87 
2.860E4 .000 

LMR_2V3 
1266362.755 1 

1266362.7

55 
1.686E4 .000 

BLRT_1V2 
1826760.333 1 

1826760.3

33 
2.500E4 .000 

BLRT_2V3 
1119046.687 1 

1119046.6

87 
1.329E4 .000 

type_mixture AIC 32027.823 2 16013.911 36.288 .000 

CAIC 15421.594 2 7710.797 11.743 .000 

SACAIC 3613.948 2 1806.974 13.155 .000 

BIC 10543.510 2 5271.755 11.308 .000 

SABIC 28475.094 2 14237.547 66.550 .000 

DBIC 1882.781 2 941.391 6.076 .003 

HQ 17449.031 2 8724.516 68.162 .000 

HT_AIC 29551.344 2 14775.672 31.661 .000 

Entropy 6464.823 2 3232.411 12.948 .000 

LMR_1V2 804.500 2 402.250 6.300 .002 

LMR_2V3 6653.323 2 3326.661 44.295 .000 

BLRT_1V2 214.542 2 107.271 1.468 .233 

BLRT_2V3 43881.031 2 21940.516 260.506 .000 

class_sepa AIC 33.333 1 33.333 .076 .784 

CAIC 14822.755 1 14822.755 22.575 .000 

SACAIC 892.687 1 892.687 6.499 .012 

BIC 10800.000 1 10800.000 23.165 .000 

SABIC 254.380 1 254.380 1.189 .277 

DBIC 1850.083 1 1850.083 11.941 .001 

HQ 212.521 1 212.521 1.660 .199 

HT_AIC 22.687 1 22.687 .049 .826 

Entropy 341.333 1 341.333 1.367 .244 

LMR_1V2 728.521 1 728.521 11.409 .001 

LMR_2V3 81.380 1 81.380 1.084 .299 

BLRT_1V2 990.083 1 990.083 13.552 .000 

BLRT_2V3 200.083 1 200.083 2.376 .125 
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type_mixture 

* class_sepa 

AIC 1162.073 2 581.036 1.317 .271 

CAIC 1381.260 2 690.630 1.052 .351 

SACAIC 1697.156 2 848.578 6.178 .003 

BIC 1802.906 2 901.453 1.934 .148 

SABIC 26.573 2 13.286 .062 .940 

DBIC 1974.510 2 987.255 6.372 .002 

HQ 1063.510 2 531.755 4.154 .017 

HT_AIC 1130.656 2 565.328 1.211 .300 

Entropy 996.260 2 498.130 1.995 .139 

LMR_1V2 420.167 2 210.083 3.290 .039 

LMR_2V3 30.385 2 15.193 .202 .817 

BLRT_1V2 133.792 2 66.896 .916 .402 

BLRT_2V3 110.760 2 55.380 .658 .519 

Error AIC 82082.688 186 441.305   

CAIC 122127.844 186 656.601   

SACAIC 25548.188 186 137.356   

BIC 86715.500 186 466.212   

SABIC 39792.531 186 213.938   

DBIC 28817.875 186 154.935   

HQ 23807.250 186 127.996   

HT_AIC 86803.312 186 466.684   

Entropy 46435.562 186 249.654   

LMR_1V2 11876.625 186 63.853   

LMR_2V3 13969.156 186 75.103   

BLRT_1V2 13589.250 186 73.060   

BLRT_2V3 15665.437 186 84.223   

Total AIC 399590.000 192    

CAIC 1499951.000 192    

SACAIC 1657208.000 192    

BIC 1618614.000 192    

SABIC 1265399.000 192    

DBIC 1706312.000 192    

HQ 1400310.000 192    

HT_AIC 440260.000 192    
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Entropy 221208.000 192    

LMR_1V2 1840200.000 192    

LMR_2V3 1287097.000 192    

BLRT_1V2 1841688.000 192    

BLRT_2V3 1178904.000 192    

Corrected 

Total 

AIC 
115305.917 191 

   

CAIC 153753.453 191    

SACAIC 31751.979 191    

BIC 109861.917 191    

SABIC 68548.578 191    

DBIC 34525.250 191    

HQ 42532.312 191    

HT_AIC 117508.000 191    

Entropy 54237.979 191    

LMR_1V2 13829.812 191    

LMR_2V3 20734.245 191    

BLRT_1V2 14927.667 191    

BLRT_2V3 59857.313 191    

a. R Squared = .288 (Adjusted R Squared = .269) 

b. R Squared = .206 (Adjusted R Squared = .184) 

c. R Squared = .195 (Adjusted R Squared = .174) 

d. R Squared = .211 (Adjusted R Squared = .189) 

e. R Squared = .419 (Adjusted R Squared = .404) 

f. R Squared = .165 (Adjusted R Squared = .143) 

g. R Squared = .440 (Adjusted R Squared = .425) 

h. R Squared = .261 (Adjusted R Squared = .241) 

i. R Squared = .144 (Adjusted R Squared = .121) 

j. R Squared = .141 (Adjusted R Squared = .118) 

k. R Squared = .326 (Adjusted R Squared = .308) 

l. R Squared = .090 (Adjusted R Squared = .065) 
m. R Squared = .738 (Adjusted R Squared = .731) 

 

 

 

 

 



 

145 

 

Table B2: Types of mixture model X Sample size  

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected 

Model 

AIC 43257.167
a
 11 3932.470 9.825 .000 

CAIC 58971.391
b
 11 5361.036 10.181 .000 

SACAIC 14566.729
c
 11 1324.248 13.870 .000 

BIC 36752.792
d
 11 3341.163 8.226 .000 

SABIC 54168.016
e
 11 4924.365 61.638 .000 

DBIC 10489.625
f
 11 953.602 7.141 .000 

HQ 21944.062
g
 11 1994.915 17.441 .000 

HT_AIC 42834.625
h
 11 3894.057 9.387 .000 

Entropy 15923.729
i
 11 1447.612 6.801 .000 

LMR_1V2 5054.687
j
 11 459.517 9.426 .000 

LMR_2V3 8086.932
k
 11 735.176 10.463 .000 

BLRT_1V2 3840.792
l
 11 349.163 5.669 .000 

BLRT_2V3 46421.313
m
 11 4220.119 56.536 .000 

Intercept AIC 284284.083 1 284284.083 710.229 .000 

CAIC 1346197.547 1 1346197.547 2.557E3 .000 

SACAIC 1625456.021 1 1625456.021 1.703E4 .000 

BIC 1508752.083 1 1508752.083 3.715E3 .000 

SABIC 1196850.422 1 1196850.422 1.498E4 .000 

DBIC 1671786.750 1 1671786.750 1.252E4 .000 

HQ 1357777.688 1 1357777.688 1.187E4 .000 

HT_AIC 322752.000 1 322752.000 777.993 .000 

Entropy 166970.021 1 166970.021 784.424 .000 

LMR_1V2 1826370.188 1 1826370.188 3.746E4 .000 

LMR_2V3 1266362.755 1 1266362.755 1.802E4 .000 

BLRT_1V2 1826760.333 1 1826760.333 2.966E4 .000 

BLRT_2V3 1119046.688 1 1119046.688 1.499E4 .000 

type_mixture AIC 32027.823 2 16013.911 40.008 .000 

CAIC 15421.594 2 7710.797 14.644 .000 

SACAIC 3613.948 2 1806.974 18.926 .000 

BIC 10543.510 2 5271.755 12.979 .000 
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SABIC 28475.094 2 14237.547 178.210 .000 

DBIC 1882.781 2 941.391 7.050 .001 

HQ 17449.031 2 8724.516 76.277 .000 

HT_AIC 29551.344 2 14775.672 35.617 .000 

Entropy 6464.823 2 3232.411 15.186 .000 

LMR_1V2 804.500 2 402.250 8.251 .000 

LMR_2V3 6653.323 2 3326.661 47.346 .000 

BLRT_1V2 214.542 2 107.271 1.742 .178 

BLRT_2V3 43881.031 2 21940.516 293.934 .000 

N AIC 3562.875 3 1187.625 2.967 .033 

CAIC 34969.766 3 11656.589 22.137 .000 

SACAIC 8150.104 3 2716.701 28.455 .000 

BIC 21002.958 3 7000.986 17.237 .000 

SABIC 18990.391 3 6330.130 79.234 .000 

DBIC 6812.458 3 2270.819 17.006 .000 

HQ 955.271 3 318.424 2.784 .042 

HT_AIC 4743.292 3 1581.097 3.811 .011 

Entropy 2017.771 3 672.590 3.160 .026 

LMR_1V2 2533.104 3 844.368 17.320 .000 

LMR_2V3 480.057 3 160.019 2.277 .081 

BLRT_1V2 3122.375 3 1040.792 16.898 .000 

BLRT_2V3 868.188 3 289.396 3.877 .010 

type_mixture * 

N 

AIC 7666.469 6 1277.745 3.192 .005 

CAIC 8580.031 6 1430.005 2.716 .015 

SACAIC 2802.677 6 467.113 4.893 .000 

BIC 5206.323 6 867.720 2.136 .051 

SABIC 6702.531 6 1117.089 13.982 .000 

DBIC 1794.385 6 299.064 2.240 .041 

HQ 3539.760 6 589.960 5.158 .000 

HT_AIC 8539.990 6 1423.332 3.431 .003 

Entropy 7441.135 6 1240.189 5.826 .000 

LMR_1V2 1717.083 6 286.181 5.870 .000 

LMR_2V3 953.552 6 158.925 2.262 .040 

BLRT_1V2 503.875 6 83.979 1.363 .232 
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BLRT_2V3 1672.094 6 278.682 3.733 .002 

Error AIC 72048.750 180 400.271   

CAIC 94782.062 180 526.567   

SACAIC 17185.250 180 95.474   

BIC 73109.125 180 406.162   

SABIC 14380.562 180 79.892   

DBIC 24035.625 180 133.531   

HQ 20588.250 180 114.379   

HT_AIC 74673.375 180 414.852   

Entropy 38314.250 180 212.857   

LMR_1V2 8775.125 180 48.751   

LMR_2V3 12647.312 180 70.263   

BLRT_1V2 11086.875 180 61.594   

BLRT_2V3 13436.000 180 74.644   

Total AIC 399590.000 192    

CAIC 1499951.000 192    

SACAIC 1657208.000 192    

BIC 1618614.000 192    

SABIC 1265399.000 192    

DBIC 1706312.000 192    

HQ 1400310.000 192    

HT_AIC 440260.000 192    

Entropy 221208.000 192    

LMR_1V2 1840200.000 192    

LMR_2V3 1287097.000 192    

BLRT_1V2 1841688.000 192    

BLRT_2V3 1178904.000 192    

Corrected 

Total 

AIC 115305.917 191    

CAIC 153753.453 191    

SACAIC 31751.979 191    

BIC 109861.917 191    

SABIC 68548.578 191    

DBIC 34525.250 191    

HQ 42532.312 191    
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HT_AIC 117508.000 191    

Entropy 54237.979 191    

LMR_1V2 13829.812 191    

LMR_2V3 20734.245 191    

BLRT_1V2 14927.667 191    

BLRT_2V3 59857.313 191    

a. R Squared = .375 (Adjusted R Squared = .337) 

b. R Squared = .384 (Adjusted R Squared = .346) 

c. R Squared = .459 (Adjusted R Squared = .426) 

d. R Squared = .335 (Adjusted R Squared = .294) 

e. R Squared = .790 (Adjusted R Squared = .777) 

f. R Squared = .304 (Adjusted R Squared = .261) 

g. R Squared = .516 (Adjusted R Squared = .486) 

h. R Squared = .365 (Adjusted R Squared = .326) 

i. R Squared = .294 (Adjusted R Squared = .250) 

j. R Squared = .365 (Adjusted R Squared = .327) 

k. R Squared = .390 (Adjusted R Squared = .353) 

l. R Squared = .257 (Adjusted R Squared = .212) 
m. R Squared = .776 (Adjusted R Squared = .762) 

 

Table B3: Types of mixture model X Number of measures 

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected 

Model 

AIC 91773.792
a
 5 18354.758 145.078 .000 

CAIC 45425.172
b
 5 9085.034 15.599 .000 

SACAIC 5774.229
c
 5 1154.846 8.269 .000 

BIC 31196.979
d
 5 6239.396 14.753 .000 

SABIC 35107.922
e
 5 7021.584 39.055 .000 

DBIC 6823.250
f
 5 1364.650 9.163 .000 

HQ 18760.062
g
 5 3752.012 29.357 .000 

HT_AIC 85825.313
h
 5 17165.063 100.771 .000 

Entropy 24668.354
i
 5 4933.671 31.034 .000 

LMR_1V2 1781.562
j
 5 356.312 5.501 .000 

LMR_2V3 13890.526
k
 5 2778.105 75.504 .000 

BLRT_1V2 1009.854
l
 5 201.971 2.699 .022 



 

149 

 

BLRT_2V3 47571.813
m
 5 9514.363 144.046 .000 

Intercept AIC 284284.083 1 284284.083 2.247E3 .000 

CAIC 1346197.547 1 1346197.547 2.311E3 .000 

SACAIC 1625456.021 1 1625456.021 1.164E4 .000 

BIC 1508752.083 1 1508752.083 3.567E3 .000 

SABIC 1196850.422 1 1196850.422 6.657E3 .000 

DBIC 1671786.750 1 1671786.750 1.122E4 .000 

HQ 1357777.687 1 1357777.687 1.062E4 .000 

HT_AIC 322752.000 1 322752.000 1.895E3 .000 

Entropy 166970.021 1 166970.021 1.050E3 .000 

LMR_1V2 1826370.187 1 1826370.187 2.820E4 .000 

LMR_2V3 1266362.755 1 1266362.755 3.442E4 .000 

BLRT_1V2 1826760.333 1 1826760.333 2.441E4 .000 

BLRT_2V3 1119046.687 1 1119046.687 1.694E4 .000 

type_mixture AIC 32027.823 2 16013.911 126.575 .000 

CAIC 15421.594 2 7710.797 13.239 .000 

SACAIC 3613.948 2 1806.974 12.938 .000 

BIC 10543.510 2 5271.755 12.465 .000 

SABIC 28475.094 2 14237.547 79.191 .000 

DBIC 1882.781 2 941.391 6.321 .002 

HQ 17449.031 2 8724.516 68.263 .000 

HT_AIC 29551.344 2 14775.672 86.744 .000 

Entropy 6464.823 2 3232.411 20.333 .000 

LMR_1V2 804.500 2 402.250 6.210 .002 

LMR_2V3 6653.323 2 3326.661 90.413 .000 

BLRT_1V2 214.542 2 107.271 1.434 .241 

BLRT_2V3 43881.031 2 21940.516 332.175 .000 

measure AIC 5764.083 1 5764.083 45.560 .000 

CAIC 19060.255 1 19060.255 32.727 .000 

SACAIC 588.000 1 588.000 4.210 .042 

BIC 12033.333 1 12033.333 28.452 .000 

SABIC 4456.380 1 4456.380 24.787 .000 

DBIC 1764.187 1 1764.187 11.845 .001 

HQ 330.750 1 330.750 2.588 .109 
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HT_AIC 7105.333 1 7105.333 41.713 .000 

Entropy 13534.083 1 13534.083 85.133 .000 

LMR_1V2 414.187 1 414.187 6.394 .012 

LMR_2V3 7190.755 1 7190.755 195.432 .000 

BLRT_1V2 652.687 1 652.687 8.723 .004 

BLRT_2V3 1131.021 1 1131.021 17.123 .000 

type_mixture * 

measure 

AIC 53981.885 2 26990.943 213.339 .000 

CAIC 10943.323 2 5471.661 9.395 .000 

SACAIC 1572.281 2 786.141 5.629 .004 

BIC 8620.135 2 4310.068 10.191 .000 

SABIC 2176.448 2 1088.224 6.053 .003 

DBIC 3176.281 2 1588.141 10.663 .000 

HQ 980.281 2 490.141 3.835 .023 

HT_AIC 49168.635 2 24584.318 144.328 .000 

Entropy 4669.448 2 2334.724 14.686 .000 

LMR_1V2 562.875 2 281.438 4.345 .014 

LMR_2V3 46.448 2 23.224 .631 .533 

BLRT_1V2 142.625 2 71.313 .953 .387 

BLRT_2V3 2559.760 2 1279.880 19.377 .000 

Error AIC 23532.125 186 126.517   

CAIC 108328.281 186 582.410   

SACAIC 25977.750 186 139.665   

BIC 78664.938 186 422.930   

SABIC 33440.656 186 179.788   

DBIC 27702.000 186 148.935   

HQ 23772.250 186 127.808   

HT_AIC 31682.687 186 170.337   

Entropy 29569.625 186 158.976   

LMR_1V2 12048.250 186 64.776   

LMR_2V3 6843.719 186 36.794   

BLRT_1V2 13917.812 186 74.827   

BLRT_2V3 12285.500 186 66.051   

Total AIC 399590.000 192    

CAIC 1499951.000 192    
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SACAIC 1657208.000 192    

BIC 1618614.000 192    

SABIC 1265399.000 192    

DBIC 1706312.000 192    

HQ 1400310.000 192    

HT_AIC 440260.000 192    

Entropy 221208.000 192    

LMR_1V2 1840200.000 192    

LMR_2V3 1287097.000 192    

BLRT_1V2 1841688.000 192    

BLRT_2V3 1178904.000 192    

Corrected 

Total 

AIC 115305.917 191    

CAIC 153753.453 191    

SACAIC 31751.979 191    

BIC 109861.917 191    

SABIC 68548.578 191    

DBIC 34525.250 191    

HQ 42532.312 191    

HT_AIC 117508.000 191    

Entropy 54237.979 191    

LMR_1V2 13829.812 191    

LMR_2V3 20734.245 191    

BLRT_1V2 14927.667 191    

BLRT_2V3 59857.313 191    
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a. R Squared = .796 (Adjusted R Squared = .790) 

b. R Squared = .295 (Adjusted R Squared = .277) 

c. R Squared = .182 (Adjusted R Squared = .160) 

d. R Squared = .284 (Adjusted R Squared = .265) 

e. R Squared = .512 (Adjusted R Squared = .499) 

f. R Squared = .198 (Adjusted R Squared = .176) 

g. R Squared = .441 (Adjusted R Squared = .426) 

h. R Squared = .730 (Adjusted R Squared = .723) 

i. R Squared = .455 (Adjusted R Squared = .440) 

j. R Squared = .129 (Adjusted R Squared = .105) 

k. R Squared = .670 (Adjusted R Squared = .661) 

l. R Squared = .068 (Adjusted R Squared = .043) 
m. R Squared = .795 (Adjusted R Squared = .789) 
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Table B4: Types of mixture model X Mixing proportions 

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model AIC 32176.042
a
 5 6435.208 14.399 .000 

CAIC 16373.484
b
 5 3274.697 4.434 .001 

SACAIC 3845.417
c
 5 769.083 5.126 .000 

BIC 10821.229
d
 5 2164.246 4.064 .002 

SABIC 28642.609
e
 5 5728.522 26.700 .000 

DBIC 2030.125
f
 5 406.025 2.324 .045 

HQ 17763.500
g
 5 3552.700 26.679 .000 

HT_AIC 29729.375
h
 5 5945.875 12.599 .000 

Entropy 6654.604
i
 5 1330.921 5.202 .000 

LMR_1V2 909.687
j
 5 181.937 2.619 .026 

LMR_2V3 6983.026
k
 5 1396.605 18.891 .000 

BLRT_1V2 292.167
l
 5 58.433 .743 .592 

BLRT_2V3 44055.625
m
 5 8811.125 103.715 .000 

Intercept AIC 284284.083 1 284284.083 636.075 .000 

CAIC 1346197.547 1 1346197.547 1.823E3 .000 

SACAIC 1625456.021 1 1625456.021 1.083E4 .000 

BIC 1508752.083 1 1508752.083 2.833E3 .000 

SABIC 1196850.422 1 1196850.422 5.578E3 .000 

DBIC 1671786.750 1 1671786.750 9.569E3 .000 

HQ 1357777.687 1 1357777.687 1.020E4 .000 

HT_AIC 322752.000 1 322752.000 683.901 .000 

Entropy 166970.021 1 166970.021 652.674 .000 

LMR_1V2 1826370.187 1 1826370.187 2.629E4 .000 

LMR_2V3 1266362.755 1 1266362.755 1.713E4 .000 

BLRT_1V2 1826760.333 1 1826760.333 2.322E4 .000 

BLRT_2V3 1119046.687 1 1119046.687 1.317E4 .000 

type_mixture AIC 32027.823 2 16013.911 35.831 .000 

CAIC 15421.594 2 7710.797 10.440 .000 

SACAIC 3613.948 2 1806.974 12.044 .000 

BIC 10543.510 2 5271.755 9.900 .000 
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SABIC 28475.094 2 14237.547 66.361 .000 

DBIC 1882.781 2 941.391 5.388 .005 

HQ 17449.031 2 8724.516 65.516 .000 

HT_AIC 29551.344 2 14775.672 31.309 .000 

Entropy 6464.823 2 3232.411 12.635 .000 

LMR_1V2 804.500 2 402.250 5.791 .004 

LMR_2V3 6653.323 2 3326.661 44.997 .000 

BLRT_1V2 214.542 2 107.271 1.363 .258 

BLRT_2V3 43881.031 2 21940.516 258.259 .000 

mix_prop AIC 126.750 1 126.750 .284 .595 

CAIC 888.380 1 888.380 1.203 .274 

SACAIC 150.521 1 150.521 1.003 .318 

BIC 247.521 1 247.521 .465 .496 

SABIC 53.130 1 53.130 .248 .619 

DBIC 114.083 1 114.083 .653 .420 

HQ 105.021 1 105.021 .789 .376 

HT_AIC 31.688 1 31.688 .067 .796 

Entropy 67.687 1 67.687 .265 .608 

LMR_1V2 72.521 1 72.521 1.044 .308 

LMR_2V3 32.505 1 32.505 .440 .508 

BLRT_1V2 70.083 1 70.083 .891 .347 

BLRT_2V3 56.333 1 56.333 .663 .417 

type_mixture * 

mix_prop 

AIC 21.469 2 10.734 .024 .976 

CAIC 63.510 2 31.755 .043 .958 

SACAIC 80.948 2 40.474 .270 .764 

BIC 30.198 2 15.099 .028 .972 

SABIC 114.385 2 57.193 .267 .766 

DBIC 33.260 2 16.630 .095 .909 

HQ 209.448 2 104.724 .786 .457 

HT_AIC 146.344 2 73.172 .155 .856 

Entropy 122.094 2 61.047 .239 .788 

LMR_1V2 32.667 2 16.333 .235 .791 

LMR_2V3 297.198 2 148.599 2.010 .137 

BLRT_1V2 7.542 2 3.771 .048 .953 
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BLRT_2V3 118.260 2 59.130 .696 .500 

Error AIC 83129.875 186 446.935   

CAIC 137379.969 186 738.602   

SACAIC 27906.563 186 150.035   

BIC 99040.687 186 532.477   

SABIC 39905.969 186 214.548   

DBIC 32495.125 186 174.705   

HQ 24768.812 186 133.166   

HT_AIC 87778.625 186 471.928   

Entropy 47583.375 186 255.825   

LMR_1V2 12920.125 186 69.463   

LMR_2V3 13751.219 186 73.931   

BLRT_1V2 14635.500 186 78.685   

BLRT_2V3 15801.687 186 84.955   

Total AIC 399590.000 192    

CAIC 1499951.000 192    

SACAIC 1657208.000 192    

BIC 1618614.000 192    

SABIC 1265399.000 192    

DBIC 1706312.000 192    

HQ 1400310.000 192    

HT_AIC 440260.000 192    

Entropy 221208.000 192    

LMR_1V2 1840200.000 192    

LMR_2V3 1287097.000 192    

BLRT_1V2 1841688.000 192    

BLRT_2V3 1178904.000 192    

Corrected Total AIC 115305.917 191    

CAIC 153753.453 191    

SACAIC 31751.979 191    

BIC 109861.917 191    

SABIC 68548.578 191    

DBIC 34525.250 191    

HQ 42532.312 191    
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HT_AIC 117508.000 191    

Entropy 54237.979 191    

LMR_1V2 13829.812 191    

LMR_2V3 20734.245 191    

BLRT_1V2 14927.667 191    

BLRT_2V3 59857.313 191    

a. R Squared = .279 (Adjusted R Squared = .260) 

b. R Squared = .106 (Adjusted R Squared = .082) 

c. R Squared = .121 (Adjusted R Squared = .097) 

d. R Squared = .098 (Adjusted R Squared = .074) 

e. R Squared = .418 (Adjusted R Squared = .402) 

f. R Squared = .059 (Adjusted R Squared = .034) 

g. R Squared = .418 (Adjusted R Squared = .402) 

h. R Squared = .253 (Adjusted R Squared = .233) 

i. R Squared = .123 (Adjusted R Squared = .099) 

j. R Squared = .066 (Adjusted R Squared = .041) 

k. R Squared = .337 (Adjusted R Squared = .319) 

l. R Squared = .020 (Adjusted R Squared = -.007) 
m. R Squared = .736 (Adjusted R Squared = .729) 
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Table B5: Types of mixture model X Model specifications 

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model AIC 33625.542
a
 5 6725.108 15.314 .000 

CAIC 15897.109
b
 5 3179.422 4.290 .001 

SACAIC 3825.354
c
 5 765.071 5.096 .000 

BIC 10684.917
d
 5 2136.983 4.008 .002 

SABIC 29034.484
e
 5 5806.897 27.334 .000 

DBIC 2021.188
f
 5 404.238 2.313 .046 

HQ 18185.437
g
 5 3637.087 27.786 .000 

HT_AIC 30822.563
h
 5 6164.513 13.227 .000 

Entropy 10441.542
i
 5 2088.308 8.869 .000 

LMR_1V2 908.875
j
 5 181.775 2.617 .026 

LMR_2V3 7104.026
k
 5 1420.805 19.389 .000 

BLRT_1V2 335.667
l
 5 67.133 .856 .512 

BLRT_2V3 45300.688
m
 5 9060.138 115.768 .000 

Intercept AIC 284284.083 1 284284.083 647.363 .000 

CAIC 1346197.547 1 1346197.547 1.816E3 .000 

SACAIC 1625456.021 1 1625456.021 1.083E4 .000 

BIC 1508752.083 1 1508752.083 2.830E3 .000 

SABIC 1196850.422 1 1196850.422 5.634E3 .000 

DBIC 1671786.750 1 1671786.750 9.567E3 .000 

HQ 1357777.687 1 1357777.687 1.037E4 .000 

HT_AIC 322752.000 1 322752.000 692.525 .000 

Entropy 166970.021 1 166970.021 709.108 .000 

LMR_1V2 1826370.187 1 1826370.187 2.629E4 .000 

LMR_2V3 1266362.755 1 1266362.755 1.728E4 .000 

BLRT_1V2 1826760.333 1 1826760.333 2.329E4 .000 

BLRT_2V3 1119046.687 1 1119046.687 1.430E4 .000 

type_mixture AIC 32027.823 2 16013.911 36.466 .000 

CAIC 15421.594 2 7710.797 10.404 .000 

SACAIC 3613.948 2 1806.974 12.035 .000 

BIC 10543.510 2 5271.755 9.887 .000 
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SABIC 28475.094 2 14237.547 67.019 .000 

DBIC 1882.781 2 941.391 5.387 .005 

HQ 17449.031 2 8724.516 66.652 .000 

HT_AIC 29551.344 2 14775.672 31.704 .000 

Entropy 6464.823 2 3232.411 13.728 .000 

LMR_1V2 804.500 2 402.250 5.790 .004 

LMR_2V3 6653.323 2 3326.661 45.396 .000 

BLRT_1V2 214.542 2 107.271 1.367 .257 

BLRT_2V3 43881.031 2 21940.516 280.349 .000 

model_spec AIC 1230.187 1 1230.187 2.801 .096 

CAIC 411.255 1 411.255 .555 .457 

SACAIC 24.083 1 24.083 .160 .689 

BIC 58.521 1 58.521 .110 .741 

SABIC 338.672 1 338.672 1.594 .208 

DBIC .187 1 .187 .001 .974 

HQ 487.688 1 487.688 3.726 .055 

HT_AIC 936.333 1 936.333 2.009 .158 

Entropy 105.021 1 105.021 .446 .505 

LMR_1V2 65.333 1 65.333 .940 .333 

LMR_2V3 441.047 1 441.047 6.019 .015 

BLRT_1V2 120.333 1 120.333 1.534 .217 

BLRT_2V3 936.333 1 936.333 11.964 .001 

type_mixture * 

model_spec 

AIC 367.531 2 183.766 .418 .659 

CAIC 64.260 2 32.130 .043 .958 

SACAIC 187.323 2 93.661 .624 .537 

BIC 82.885 2 41.443 .078 .925 

SABIC 220.719 2 110.359 .519 .596 

DBIC 138.219 2 69.109 .395 .674 

HQ 248.719 2 124.359 .950 .389 

HT_AIC 334.885 2 167.443 .359 .699 

Entropy 3871.698 2 1935.849 8.221 .000 

LMR_1V2 39.042 2 19.521 .281 .755 

LMR_2V3 9.656 2 4.828 .066 .936 

BLRT_1V2 .792 2 .396 .005 .995 
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BLRT_2V3 483.323 2 241.661 3.088 .048 

Error AIC 81680.375 186 439.142   

CAIC 137856.344 186 741.163   

SACAIC 27926.625 186 150.143   

BIC 99177.000 186 533.210   

SABIC 39514.094 186 212.441   

DBIC 32504.062 186 174.753   

HQ 24346.875 186 130.897   

HT_AIC 86685.438 186 466.051   

Entropy 43796.438 186 235.465   

LMR_1V2 12920.938 186 69.467   

LMR_2V3 13630.219 186 73.281   

BLRT_1V2 14592.000 186 78.452   

BLRT_2V3 14556.625 186 78.261   

Total AIC 399590.000 192    

CAIC 1499951.000 192    

SACAIC 1657208.000 192    

BIC 1618614.000 192    

SABIC 1265399.000 192    

DBIC 1706312.000 192    

HQ 1400310.000 192    

HT_AIC 440260.000 192    

Entropy 221208.000 192    

LMR_1V2 1840200.000 192    

LMR_2V3 1287097.000 192    

BLRT_1V2 1841688.000 192    

BLRT_2V3 1178904.000 192    

Corrected Total AIC 115305.917 191    

CAIC 153753.453 191    

SACAIC 31751.979 191    

BIC 109861.917 191    

SABIC 68548.578 191    

DBIC 34525.250 191    

HQ 42532.312 191    
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HT_AIC 117508.000 191    

Entropy 54237.979 191    

LMR_1V2 13829.812 191    

LMR_2V3 20734.245 191    

BLRT_1V2 14927.667 191    

BLRT_2V3 59857.313 191    

a. R Squared = .292 (Adjusted R Squared = .273) 

b. R Squared = .103 (Adjusted R Squared = .079) 

c. R Squared = .120 (Adjusted R Squared = .097) 

d. R Squared = .097 (Adjusted R Squared = .073) 

e. R Squared = .424 (Adjusted R Squared = .408) 

f. R Squared = .059 (Adjusted R Squared = .033) 

g. R Squared = .428 (Adjusted R Squared = .412) 

h. R Squared = .262 (Adjusted R Squared = .242) 

i. R Squared = .193 (Adjusted R Squared = .171) 

j. R Squared = .066 (Adjusted R Squared = .041) 

k. R Squared = .343 (Adjusted R Squared = .325) 

l. R Squared = .022 (Adjusted R Squared = -.004) 
m. R Squared = .757 (Adjusted R Squared = .750) 

 

Table B6: Sample size X Class separation in LPM 

Tests of Between-Subjects Effects
n
 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model AIC 5747.734
a
 7 821.105 6.837 .000 

CAIC 23287.500
b
 7 3326.786 3.962 .001 

SACAIC 9575.734
c
 7 1367.962 7.493 .000 

BIC 24046.734
d
 7 3435.248 5.217 .000 

SABIC 10543.359
e
 7 1506.194 13.629 .000 

DBIC 11319.484
f
 7 1617.069 5.946 .000 

HQ 6343.234
g
 7 906.176 5.833 .000 

HT_AIC 8004.609
h
 7 1143.516 5.841 .000 

Entropy 8901.359
i
 7 1271.623 12.390 .000 

LMR_1V2 6828.937
j
 7 975.562 11.059 .000 

LMR_2V3 339.359
k
 7 48.480 .766 .618 

BLRT_1V2 5173.000
l
 7 739.000 9.315 .000 
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BLRT_2V3 2111.687
m
 7 301.670 3.855 .002 

Intercept AIC 37008.141 1 37008.141 308.166 .000 

CAIC 334662.250 1 334662.250 398.609 .000 

SACAIC 534909.391 1 534909.391 2.930E3 .000 

BIC 397372.641 1 397372.641 603.425 .000 

SABIC 456807.016 1 456807.016 4.134E3 .000 

DBIC 516421.891 1 516421.891 1.899E3 .000 

HQ 509260.641 1 509260.641 3.278E3 .000 

HT_AIC 51927.016 1 51927.016 265.239 .000 

Entropy 51472.266 1 51472.266 501.524 .000 

LMR_1V2 574185.062 1 574185.062 6.509E3 .000 

LMR_2V3 418447.266 1 418447.266 6.615E3 .000 

BLRT_1V2 590592.250 1 590592.250 7.444E3 .000 

BLRT_2V3 193380.062 1 193380.062 2.471E3 .000 

class_sepa AIC 293.266 1 293.266 2.442 .124 

CAIC 4590.063 1 4590.063 5.467 .023 

SACAIC 2537.641 1 2537.641 13.900 .000 

BIC 7077.016 1 7077.016 10.747 .002 

SABIC 129.391 1 129.391 1.171 .284 

DBIC 3645.141 1 3645.141 13.403 .001 

HQ 1048.141 1 1048.141 6.747 .012 

HT_AIC 213.891 1 213.891 1.093 .300 

Entropy 102.516 1 102.516 .999 .322 

LMR_1V2 1008.063 1 1008.063 11.427 .001 

LMR_2V3 92.641 1 92.641 1.465 .231 

BLRT_1V2 756.250 1 756.250 9.532 .003 

BLRT_2V3 175.563 1 175.563 2.243 .140 

N AIC 4924.547 3 1641.516 13.669 .000 

CAIC 17341.875 3 5780.625 6.885 .000 

SACAIC 4905.547 3 1635.182 8.957 .000 

BIC 13537.547 3 4512.516 6.852 .001 

SABIC 10308.797 3 3436.266 31.094 .000 

DBIC 5462.797 3 1820.932 6.696 .001 

HQ 2851.172 3 950.391 6.118 .001 
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HT_AIC 6819.047 3 2273.016 11.610 .000 

Entropy 7656.422 3 2552.141 24.867 .000 

LMR_1V2 3843.312 3 1281.104 14.523 .000 

LMR_2V3 111.172 3 37.057 .586 .627 

BLRT_1V2 2532.375 3 844.125 10.640 .000 

BLRT_2V3 1371.313 3 457.104 5.841 .002 

class_sepa * N AIC 529.922 3 176.641 1.471 .232 

CAIC 1355.563 3 451.854 .538 .658 

SACAIC 2132.547 3 710.849 3.894 .013 

BIC 3432.172 3 1144.057 1.737 .170 

SABIC 105.172 3 35.057 .317 .813 

DBIC 2211.547 3 737.182 2.711 .054 

HQ 2443.922 3 814.641 5.244 .003 

HT_AIC 971.672 3 323.891 1.654 .187 

Entropy 1142.422 3 380.807 3.710 .017 

LMR_1V2 1977.563 3 659.188 7.473 .000 

LMR_2V3 135.547 3 45.182 .714 .548 

BLRT_1V2 1884.375 3 628.125 7.917 .000 

BLRT_2V3 564.813 3 188.271 2.406 .077 

Error AIC 6725.125 56 120.092   

CAIC 47016.250 56 839.576   

SACAIC 10223.875 56 182.569   

BIC 36877.625 56 658.529   

SABIC 6188.625 56 110.511   

DBIC 15229.625 56 271.958   

HQ 8699.125 56 155.342   

HT_AIC 10963.375 56 195.775   

Entropy 5747.375 56 102.632   

LMR_1V2 4940.000 56 88.214   

LMR_2V3 3542.375 56 63.257   

BLRT_1V2 4442.750 56 79.335   

BLRT_2V3 4382.250 56 78.254   

Total AIC 49481.000 64    

CAIC 404966.000 64    
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SACAIC 554709.000 64    

BIC 458297.000 64    

SABIC 473539.000 64    

DBIC 542971.000 64    

HQ 524303.000 64    

HT_AIC 70895.000 64    

Entropy 66121.000 64    

LMR_1V2 585954.000 64    

LMR_2V3 422329.000 64    

BLRT_1V2 600208.000 64    

BLRT_2V3 199874.000 64    

Corrected Total AIC 12472.859 63    

CAIC 70303.750 63    

SACAIC 19799.609 63    

BIC 60924.359 63    

SABIC 16731.984 63    

DBIC 26549.109 63    

HQ 15042.359 63    

HT_AIC 18967.984 63    

Entropy 14648.734 63    

LMR_1V2 11768.937 63    

LMR_2V3 3881.734 63    

BLRT_1V2 9615.750 63    

BLRT_2V3 6493.937 63    
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a. R Squared = .461 (Adjusted R Squared = .393) 

b. R Squared = .331 (Adjusted R Squared = .248) 

c. R Squared = .484 (Adjusted R Squared = .419) 

d. R Squared = .395 (Adjusted R Squared = .319) 

e. R Squared = .630 (Adjusted R Squared = .584) 

f. R Squared = .426 (Adjusted R Squared = .355) 

g. R Squared = .422 (Adjusted R Squared = .349) 

h. R Squared = .422 (Adjusted R Squared = .350) 

i. R Squared = .608 (Adjusted R Squared = .559) 

j. R Squared = .580 (Adjusted R Squared = .528) 

k. R Squared = .087 (Adjusted R Squared = -.027) 

l. R Squared = .538 (Adjusted R Squared = .480) 

m. R Squared = .325 (Adjusted R Squared = .241) 
n. type_mixture = LPM 

 

Table B7: Sample size X Class separation in UGMM 

Tests of Between-Subjects Effects
n
 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model AIC 5157.609
a
 7 736.801 .712 .662 

CAIC 41643.000
b
 7 5949.000 32.576 .000 

SACAIC 275.438
c
 7 39.348 3.400 .004 

BIC 24628.938
d
 7 3518.420 26.501 .000 

SABIC 373.750
e
 7 53.393 .483 .843 

DBIC 1001.734
f
 7 143.105 5.700 .000 

HQ 1479.938
g
 7 211.420 1.849 .096 

HT_AIC 5483.688
h
 7 783.384 .776 .610 

Entropy 632.609
i
 7 90.373 .206 .983 

LMR_1V2 766.438
j
 7 109.491 17.032 .000 

LMR_2V3 1282.188
k
 7 183.170 2.011 .070 

BLRT_1V2 1508.937
l
 7 215.562 8.939 .000 

BLRT_2V3 827.484
m
 7 118.212 1.883 .090 

Intercept AIC 196359.766 1 196359.766 189.760 .000 

CAIC 459006.250 1 459006.250 2.513E3 .000 

SACAIC 609570.562 1 609570.562 5.268E4 .000 

BIC 523814.062 1 523814.062 3.945E3 .000 
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SABIC 522006.250 1 522006.250 4.718E3 .000 

DBIC 607425.391 1 607425.391 2.420E4 .000 

HQ 545751.562 1 545751.562 4.773E3 .000 

HT_AIC 214600.562 1 214600.562 212.672 .000 

Entropy 33902.016 1 33902.016 77.137 .000 

LMR_1V2 618975.562 1 618975.562 9.629E4 .000 

LMR_2V3 502326.562 1 502326.562 5.514E3 .000 

BLRT_1V2 615832.562 1 615832.562 2.554E4 .000 

BLRT_2V3 489125.391 1 489125.391 7.790E3 .000 

class_sepa AIC 301.891 1 301.891 .292 .591 

CAIC 9555.063 1 9555.063 52.322 .000 

SACAIC 33.063 1 33.063 2.857 .097 

BIC 4830.250 1 4830.250 36.381 .000 

SABIC 25.000 1 25.000 .226 .636 

DBIC 178.891 1 178.891 7.126 .010 

HQ 42.250 1 42.250 .370 .546 

HT_AIC 333.063 1 333.063 .330 .568 

Entropy 62.016 1 62.016 .141 .709 

LMR_1V2 126.563 1 126.563 19.688 .000 

LMR_2V3 14.062 1 14.062 .154 .696 

BLRT_1V2 217.563 1 217.563 9.021 .004 

BLRT_2V3 .141 1 .141 .002 .962 

N AIC 4656.422 3 1552.141 1.500 .225 

CAIC 21052.750 3 7017.583 38.427 .000 

SACAIC 159.562 3 53.188 4.596 .006 

BIC 10923.062 3 3641.021 27.424 .000 

SABIC 333.250 3 111.083 1.004 .398 

DBIC 399.672 3 133.224 5.307 .003 

HQ 1276.062 3 425.354 3.720 .016 

HT_AIC 4960.562 3 1653.521 1.639 .191 

Entropy 456.922 3 152.307 .347 .792 

LMR_1V2 371.812 3 123.938 19.279 .000 

LMR_2V3 1218.062 3 406.021 4.457 .007 

BLRT_1V2 667.688 3 222.562 9.229 .000 



 

166 

 

BLRT_2V3 823.922 3 274.641 4.374 .008 

class_sepa * N AIC 199.297 3 66.432 .064 .979 

CAIC 11035.188 3 3678.396 20.142 .000 

SACAIC 82.812 3 27.604 2.386 .079 

BIC 8875.625 3 2958.542 22.284 .000 

SABIC 15.500 3 5.167 .047 .986 

DBIC 423.172 3 141.057 5.619 .002 

HQ 161.625 3 53.875 .471 .704 

HT_AIC 190.063 3 63.354 .063 .979 

Entropy 113.672 3 37.891 .086 .967 

LMR_1V2 268.063 3 89.354 13.900 .000 

LMR_2V3 50.062 3 16.687 .183 .907 

BLRT_1V2 623.688 3 207.896 8.621 .000 

BLRT_2V3 3.422 3 1.141 .018 .997 

Error AIC 57947.625 56 1034.779   

CAIC 10226.750 56 182.621   

SACAIC 648.000 56 11.571   

BIC 7435.000 56 132.768   

SABIC 6196.000 56 110.643   

DBIC 1405.875 56 25.105   

HQ 6402.500 56 114.330   

HT_AIC 56507.750 56 1009.067   

Entropy 24612.375 56 439.507   

LMR_1V2 360.000 56 6.429   

LMR_2V3 5101.250 56 91.094   

BLRT_1V2 1350.500 56 24.116   

BLRT_2V3 3516.125 56 62.788   

Total AIC 259465.000 64    

CAIC 510876.000 64    

SACAIC 610494.000 64    

BIC 555878.000 64    

SABIC 528576.000 64    

DBIC 609833.000 64    

HQ 553634.000 64    
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HT_AIC 276592.000 64    

Entropy 59147.000 64    

LMR_1V2 620102.000 64    

LMR_2V3 508710.000 64    

BLRT_1V2 618692.000 64    

BLRT_2V3 493469.000 64    

Corrected Total AIC 63105.234 63    

CAIC 51869.750 63    

SACAIC 923.438 63    

BIC 32063.938 63    

SABIC 6569.750 63    

DBIC 2407.609 63    

HQ 7882.438 63    

HT_AIC 61991.438 63    

Entropy 25244.984 63    

LMR_1V2 1126.438 63    

LMR_2V3 6383.438 63    

BLRT_1V2 2859.437 63    

BLRT_2V3 4343.609 63    

a. R Squared = .082 (Adjusted R Squared = -.033) 

b. R Squared = .803 (Adjusted R Squared = .778) 

c. R Squared = .298 (Adjusted R Squared = .211) 

d. R Squared = .768 (Adjusted R Squared = .739) 

e. R Squared = .057 (Adjusted R Squared = -.061) 

f. R Squared = .416 (Adjusted R Squared = .343) 

g. R Squared = .188 (Adjusted R Squared = .086) 

h. R Squared = .088 (Adjusted R Squared = -.025) 

i. R Squared = .025 (Adjusted R Squared = -.097) 

j. R Squared = .680 (Adjusted R Squared = .640) 

k. R Squared = .201 (Adjusted R Squared = .101) 

l. R Squared = .528 (Adjusted R Squared = .469) 

m. R Squared = .191 (Adjusted R Squared = .089) 
n. type_mixture = UGMM 
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Table B8: Sample size X Class separation in Linear GMM 

Tests of Between-Subjects Effects
n
 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model AIC 2390.500
a
 7 341.500 3.602 .003 

CAIC 12123.984
b
 7 1731.998 24.041 .000 

SACAIC 5925.109
c
 7 846.444 31.815 .000 

BIC 4156.984
d
 7 593.855 15.303 .000 

SABIC 15210.750
e
 7 2172.964 77.954 .000 

DBIC 2765.500
f
 7 395.071 24.041 .000 

HQ 582.359
g
 7 83.194 2.956 .010 

HT_AIC 2238.859
h
 7 319.837 3.764 .002 

Entropy 2552.438
i
 7 364.634 3.833 .002 

LMR_1V2 84.187
j
 7 12.027 14.721 .000 

LMR_2V3 133.000
k
 7 19.000 .289 .956 

BLRT_1V2 1002.437
l
 7 143.205 6.491 .000 

BLRT_2V3 546.109
m
 7 78.016 .951 .475 

Intercept AIC 82944.000 1 82944.000 874.821 .000 

CAIC 567950.641 1 567950.641 7.884E3 .000 

SACAIC 484590.016 1 484590.016 1.821E4 .000 

BIC 598108.891 1 598108.891 1.541E4 .000 

SABIC 246512.250 1 246512.250 8.843E3 .000 

DBIC 549822.250 1 549822.250 3.346E4 .000 

HQ 320214.516 1 320214.516 1.138E4 .000 

HT_AIC 85775.766 1 85775.766 1.009E3 .000 

Entropy 88060.562 1 88060.562 925.735 .000 

LMR_1V2 634014.062 1 634014.062 7.761E5 .000 

LMR_2V3 352242.250 1 352242.250 5.356E3 .000 

BLRT_1V2 620550.062 1 620550.062 2.813E4 .000 

BLRT_2V3 480422.266 1 480422.266 5.858E3 .000 

class_sepa AIC 600.250 1 600.250 6.331 .015 

CAIC 2058.891 1 2058.891 28.579 .000 

SACAIC 19.141 1 19.141 .719 .400 

BIC 695.641 1 695.641 17.926 .000 
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SABIC 126.562 1 126.562 4.540 .038 

DBIC .563 1 .563 .034 .854 

HQ 185.641 1 185.641 6.596 .013 

HT_AIC 606.391 1 606.391 7.136 .010 

Entropy 1173.062 1 1173.062 12.332 .001 

LMR_1V2 14.063 1 14.063 17.213 .000 

LMR_2V3 5.062 1 5.062 .077 .782 

BLRT_1V2 150.063 1 150.063 6.802 .012 

BLRT_2V3 135.141 1 135.141 1.648 .205 

N AIC 1648.375 3 549.458 5.795 .002 

CAIC 5155.172 3 1718.391 23.852 .000 

SACAIC 5887.672 3 1962.557 73.767 .000 

BIC 1748.672 3 582.891 15.021 .000 

SABIC 15050.875 3 5016.958 179.981 .000 

DBIC 2744.375 3 914.792 55.668 .000 

HQ 367.797 3 122.599 4.356 .008 

HT_AIC 1503.672 3 501.224 5.899 .001 

Entropy 1345.562 3 448.521 4.715 .005 

LMR_1V2 35.062 3 11.688 14.306 .000 

LMR_2V3 104.375 3 34.792 .529 .664 

BLRT_1V2 426.187 3 142.062 6.439 .001 

BLRT_2V3 345.047 3 115.016 1.402 .252 

class_sepa * N AIC 141.875 3 47.292 .499 .685 

CAIC 4909.922 3 1636.641 22.718 .000 

SACAIC 18.297 3 6.099 .229 .876 

BIC 1712.672 3 570.891 14.711 .000 

SABIC 33.313 3 11.104 .398 .755 

DBIC 20.563 3 6.854 .417 .741 

HQ 28.922 3 9.641 .343 .795 

HT_AIC 128.797 3 42.932 .505 .680 

Entropy 33.813 3 11.271 .118 .949 

LMR_1V2 35.063 3 11.688 14.306 .000 

LMR_2V3 23.563 3 7.854 .119 .948 

BLRT_1V2 426.188 3 142.063 6.439 .001 
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BLRT_2V3 65.922 3 21.974 .268 .848 

Error AIC 5309.500 56 94.812   

CAIC 4034.375 56 72.042   

SACAIC 1489.875 56 26.605   

BIC 2173.125 56 38.806   

SABIC 1561.000 56 27.875   

DBIC 920.250 56 16.433   

HQ 1576.125 56 28.145   

HT_AIC 4758.375 56 84.971   

Entropy 5327.000 56 95.125   

LMR_1V2 45.750 56 .817   

LMR_2V3 3682.750 56 65.763   

BLRT_1V2 1235.500 56 22.063   

BLRT_2V3 4592.625 56 82.011   

Total AIC 90644.000 64    

CAIC 584109.000 64    

SACAIC 492005.000 64    

BIC 604439.000 64    

SABIC 263284.000 64    

DBIC 553508.000 64    

HQ 322373.000 64    

HT_AIC 92773.000 64    

Entropy 95940.000 64    

LMR_1V2 634144.000 64    

LMR_2V3 356058.000 64    

BLRT_1V2 622788.000 64    

BLRT_2V3 485561.000 64    

Corrected Total AIC 7700.000 63    

CAIC 16158.359 63    

SACAIC 7414.984 63    

BIC 6330.109 63    

SABIC 16771.750 63    

DBIC 3685.750 63    

HQ 2158.484 63    
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HT_AIC 6997.234 63    

Entropy 7879.438 63    

LMR_1V2 129.937 63    

LMR_2V3 3815.750 63    

BLRT_1V2 2237.937 63    

BLRT_2V3 5138.734 63    

a. R Squared = .310 (Adjusted R Squared = .224) 

b. R Squared = .750 (Adjusted R Squared = .719) 

c. R Squared = .799 (Adjusted R Squared = .774) 

d. R Squared = .657 (Adjusted R Squared = .614) 

e. R Squared = .907 (Adjusted R Squared = .895) 

f. R Squared = .750 (Adjusted R Squared = .719) 

g. R Squared = .270 (Adjusted R Squared = .179) 

h. R Squared = .320 (Adjusted R Squared = .235) 

i. R Squared = .324 (Adjusted R Squared = .239) 

j. R Squared = .648 (Adjusted R Squared = .604) 

k. R Squared = .035 (Adjusted R Squared = -.086) 

l. R Squared = .448 (Adjusted R Squared = .379) 

m. R Squared = .106 (Adjusted R Squared = -.005) 
n. type_mixture = Linear GMM 

 

Table B9: Sample size X Number of measures in LPM 

Tests of Between-Subjects Effects
n
 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model AIC 7344.234
a
 7 1049.176 11.456 .000 

CAIC 51512.250
b
 7 7358.893 21.930 .000 

SACAIC 9003.484
c
 7 1286.212 6.672 .000 

BIC 39372.734
d
 7 5624.676 14.615 .000 

SABIC 14302.859
e
 7 2043.266 47.105 .000 

DBIC 13930.234
f
 7 1990.033 8.831 .000 

HQ 6917.484
g
 7 988.212 6.811 .000 

HT_AIC 8352.859
h
 7 1193.266 6.295 .000 

Entropy 9135.109
i
 7 1305.016 13.255 .000 

LMR_1V2 6720.937
j
 7 960.134 10.651 .000 

LMR_2V3 2407.609
k
 7 343.944 13.066 .000 
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BLRT_1V2 4594.000
l
 7 656.286 7.319 .000 

BLRT_2V3 3053.437
m
 7 436.205 7.100 .000 

Intercept AIC 37008.141 1 37008.141 404.096 .000 

CAIC 334662.250 1 334662.250 997.317 .000 

SACAIC 534909.391 1 534909.391 2.775E3 .000 

BIC 397372.641 1 397372.641 1.033E3 .000 

SABIC 456807.016 1 456807.016 1.053E4 .000 

DBIC 516421.891 1 516421.891 2.292E3 .000 

HQ 509260.641 1 509260.641 3.510E3 .000 

HT_AIC 51927.016 1 51927.016 273.941 .000 

Entropy 51472.266 1 51472.266 522.786 .000 

LMR_1V2 574185.063 1 574185.063 6.370E3 .000 

LMR_2V3 418447.266 1 418447.266 1.590E4 .000 

BLRT_1V2 590592.250 1 590592.250 6.586E3 .000 

BLRT_2V3 193380.063 1 193380.063 3.148E3 .000 

N AIC 4924.547 3 1641.516 17.924 .000 

CAIC 17341.875 3 5780.625 17.227 .000 

SACAIC 4905.547 3 1635.182 8.482 .000 

BIC 13537.547 3 4512.516 11.725 .000 

SABIC 10308.797 3 3436.266 79.218 .000 

DBIC 5462.797 3 1820.932 8.081 .000 

HQ 2851.172 3 950.391 6.550 .001 

HT_AIC 6819.047 3 2273.016 11.991 .000 

Entropy 7656.422 3 2552.141 25.921 .000 

LMR_1V2 3843.313 3 1281.104 14.212 .000 

LMR_2V3 111.172 3 37.057 1.408 .250 

BLRT_1V2 2532.375 3 844.125 9.413 .000 

BLRT_2V3 1371.313 3 457.104 7.440 .000 

measure AIC 1947.016 1 1947.016 21.260 .000 

CAIC 26487.563 1 26487.563 78.935 .000 

SACAIC 2150.641 1 2150.641 11.155 .001 

BIC 18940.641 1 18940.641 49.216 .000 

SABIC 3122.016 1 3122.016 71.974 .000 

DBIC 4882.516 1 4882.516 21.668 .000 



 

173 

 

HQ 43.891 1 43.891 .303 .584 

HT_AIC 922.641 1 922.641 4.867 .031 

Entropy 819.391 1 819.391 8.322 .006 

LMR_1V2 961.000 1 961.000 10.661 .002 

LMR_2V3 2173.891 1 2173.891 82.583 .000 

BLRT_1V2 600.250 1 600.250 6.694 .012 

BLRT_2V3 1521.000 1 1521.000 24.757 .000 

N * measure AIC 472.672 3 157.557 1.720 .173 

CAIC 7682.813 3 2560.938 7.632 .000 

SACAIC 1947.297 3 649.099 3.367 .025 

BIC 6894.547 3 2298.182 5.972 .001 

SABIC 872.047 3 290.682 6.701 .001 

DBIC 3584.922 3 1194.974 5.303 .003 

HQ 4022.422 3 1340.807 9.241 .000 

HT_AIC 611.172 3 203.724 1.075 .367 

Entropy 659.297 3 219.766 2.232 .094 

LMR_1V2 1916.625 3 638.875 7.087 .000 

LMR_2V3 122.547 3 40.849 1.552 .211 

BLRT_1V2 1461.375 3 487.125 5.432 .002 

BLRT_2V3 161.125 3 53.708 .874 .460 

Error AIC 5128.625 56 91.583   

CAIC 18791.500 56 335.562   

SACAIC 10796.125 56 192.788   

BIC 21551.625 56 384.850   

SABIC 2429.125 56 43.377   

DBIC 12618.875 56 225.337   

HQ 8124.875 56 145.087   

HT_AIC 10615.125 56 189.556   

Entropy 5513.625 56 98.458   

LMR_1V2 5048.000 56 90.143   

LMR_2V3 1474.125 56 26.324   

BLRT_1V2 5021.750 56 89.674   

BLRT_2V3 3440.500 56 61.438   

Total AIC 49481.000 64    
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CAIC 404966.000 64    

SACAIC 554709.000 64    

BIC 458297.000 64    

SABIC 473539.000 64    

DBIC 542971.000 64    

HQ 524303.000 64    

HT_AIC 70895.000 64    

Entropy 66121.000 64    

LMR_1V2 585954.000 64    

LMR_2V3 422329.000 64    

BLRT_1V2 600208.000 64    

BLRT_2V3 199874.000 64    

Corrected Total AIC 12472.859 63    

CAIC 70303.750 63    

SACAIC 19799.609 63    

BIC 60924.359 63    

SABIC 16731.984 63    

DBIC 26549.109 63    

HQ 15042.359 63    

HT_AIC 18967.984 63    

Entropy 14648.734 63    

LMR_1V2 11768.937 63    

LMR_2V3 3881.734 63    

BLRT_1V2 9615.750 63    

BLRT_2V3 6493.937 63    
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a. R Squared = .589 (Adjusted R Squared = .537) 

b. R Squared = .733 (Adjusted R Squared = .699) 

c. R Squared = .455 (Adjusted R Squared = .387) 

d. R Squared = .646 (Adjusted R Squared = .602) 

e. R Squared = .855 (Adjusted R Squared = .837) 

f. R Squared = .525 (Adjusted R Squared = .465) 

g. R Squared = .460 (Adjusted R Squared = .392) 

h. R Squared = .440 (Adjusted R Squared = .370) 

i. R Squared = .624 (Adjusted R Squared = .577) 

j. R Squared = .571 (Adjusted R Squared = .517) 

k. R Squared = .620 (Adjusted R Squared = .573) 

l. R Squared = .478 (Adjusted R Squared = .412) 

m. R Squared = .470 (Adjusted R Squared = .404) 
n. type_mixture =LPM 

 

Table B10: Sample size X Number of measures in UGMM 

Tests of Between-Subjects Effects
n
 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model AIC 55201.547
a
 3 18400.516 139.686 .000 

CAIC 13643.375
b
 3 4547.792 7.138 .000 

SACAIC 158.063
c
 3 52.688 4.130 .010 

BIC 7493.063
d
 3 2497.688 6.099 .001 

SABIC 3768.125
e
 3 1256.042 26.900 .000 

DBIC 415.297
f
 3 138.432 4.169 .010 

HQ 1505.563
g
 3 501.854 4.722 .005 

HT_AIC 53501.188
h
 3 17833.729 126.030 .000 

Entropy 15104.547
i
 3 5034.849 29.791 .000 

LMR_1V2 162.813
j
 3 54.271 3.379 .024 

LMR_2V3 3084.313
k
 3 1028.104 18.698 .000 

BLRT_1V2 407.812
l
 3 135.937 3.327 .025 

BLRT_2V3 519.297
m
 3 173.099 2.716 .053 

Intercept AIC 196359.766 1 196359.766 1.491E3 .000 

CAIC 459006.250 1 459006.250 720.455 .000 

SACAIC 609570.562 1 609570.562 4.779E4 .000 

BIC 523814.062 1 523814.062 1.279E3 .000 
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SABIC 522006.250 1 522006.250 1.118E4 .000 

DBIC 607425.391 1 607425.391 1.829E4 .000 

HQ 545751.562 1 545751.562 5.135E3 .000 

HT_AIC 214600.562 1 214600.562 1.517E3 .000 

Entropy 33902.016 1 33902.016 200.595 .000 

LMR_1V2 618975.562 1 618975.562 3.854E4 .000 

LMR_2V3 502326.562 1 502326.562 9.136E3 .000 

BLRT_1V2 615832.562 1 615832.562 1.507E4 .000 

BLRT_2V3 489125.391 1 489125.391 7.674E3 .000 

class_sepa AIC 301.891 1 301.891 2.292 .135 

CAIC 9555.062 1 9555.062 14.998 .000 

SACAIC 33.062 1 33.062 2.592 .113 

BIC 4830.250 1 4830.250 11.795 .001 

SABIC 25.000 1 25.000 .535 .467 

DBIC 178.891 1 178.891 5.387 .024 

HQ 42.250 1 42.250 .398 .531 

HT_AIC 333.062 1 333.062 2.354 .130 

Entropy 62.016 1 62.016 .367 .547 

LMR_1V2 126.562 1 126.562 7.880 .007 

LMR_2V3 14.062 1 14.062 .256 .615 

BLRT_1V2 217.562 1 217.562 5.325 .024 

BLRT_2V3 .141 1 .141 .002 .963 

measure AIC 54463.891 1 54463.891 413.457 .000 

CAIC 3080.250 1 3080.250 4.835 .032 

SACAIC 4.000 1 4.000 .314 .578 

BIC 1540.562 1 1540.562 3.762 .057 

SABIC 3510.562 1 3510.562 75.183 .000 

DBIC 43.891 1 43.891 1.322 .255 

HQ 1260.250 1 1260.250 11.858 .001 

HT_AIC 52555.562 1 52555.562 371.406 .000 

Entropy 14731.891 1 14731.891 87.167 .000 

LMR_1V2 16.000 1 16.000 .996 .322 

LMR_2V3 2970.250 1 2970.250 54.019 .000 

BLRT_1V2 100.000 1 100.000 2.447 .123 
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BLRT_2V3 478.516 1 478.516 7.507 .008 

class_sepa * measure AIC 435.766 1 435.766 3.308 .074 

CAIC 1008.062 1 1008.062 1.582 .213 

SACAIC 121.000 1 121.000 9.486 .003 

BIC 1122.250 1 1122.250 2.740 .103 

SABIC 232.562 1 232.562 4.981 .029 

DBIC 192.516 1 192.516 5.798 .019 

HQ 203.062 1 203.062 1.911 .172 

HT_AIC 612.562 1 612.562 4.329 .042 

Entropy 310.641 1 310.641 1.838 .180 

LMR_1V2 20.250 1 20.250 1.261 .266 

LMR_2V3 100.000 1 100.000 1.819 .183 

BLRT_1V2 90.250 1 90.250 2.209 .142 

BLRT_2V3 40.641 1 40.641 .638 .428 

Error AIC 7903.688 60 131.728   

CAIC 38226.375 60 637.106   

SACAIC 765.375 60 12.756   

BIC 24570.875 60 409.515   

SABIC 2801.625 60 46.694   

DBIC 1992.312 60 33.205   

HQ 6376.875 60 106.281   

HT_AIC 8490.250 60 141.504   

Entropy 10140.438 60 169.007   

LMR_1V2 963.625 60 16.060   

LMR_2V3 3299.125 60 54.985   

BLRT_1V2 2451.625 60 40.860   

BLRT_2V3 3824.312 60 63.739   

Total AIC 259465.000 64    

CAIC 510876.000 64    

SACAIC 610494.000 64    

BIC 555878.000 64    

SABIC 528576.000 64    

DBIC 609833.000 64    

HQ 553634.000 64    
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HT_AIC 276592.000 64    

Entropy 59147.000 64    

LMR_1V2 620102.000 64    

LMR_2V3 508710.000 64    

BLRT_1V2 618692.000 64    

BLRT_2V3 493469.000 64    

Corrected Total AIC 63105.234 63    

CAIC 51869.750 63    

SACAIC 923.438 63    

BIC 32063.938 63    

SABIC 6569.750 63    

DBIC 2407.609 63    

HQ 7882.438 63    

HT_AIC 61991.438 63    

Entropy 25244.984 63    

LMR_1V2 1126.438 63    

LMR_2V3 6383.438 63    

BLRT_1V2 2859.437 63    

BLRT_2V3 4343.609 63    

a. R Squared = .875 (Adjusted R Squared = .868) 

b. R Squared = .263 (Adjusted R Squared = .226) 

c. R Squared = .171 (Adjusted R Squared = .130) 

d. R Squared = .234 (Adjusted R Squared = .195) 

e. R Squared = .574 (Adjusted R Squared = .552) 

f. R Squared = .172 (Adjusted R Squared = .131) 

g. R Squared = .191 (Adjusted R Squared = .151) 

h. R Squared = .863 (Adjusted R Squared = .856) 

i. R Squared = .598 (Adjusted R Squared = .578) 

j. R Squared = .145 (Adjusted R Squared = .102) 

k. R Squared = .483 (Adjusted R Squared = .457) 

l. R Squared = .143 (Adjusted R Squared = .100) 

m. R Squared = .120 (Adjusted R Squared = .076) 
n. type_mixture = UGMM 
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Table B11: Sample size X Number of measures in Linear GMM 

Tests of Between-Subjects Effects
n
 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model AIC 5108.250
a
 7 729.750 15.768 .000 

CAIC 6487.484
b
 7 926.783 5.367 .000 

SACAIC 6075.359
c
 7 867.908 36.281 .000 

BIC 2262.234
d
 7 323.176 4.449 .001 

SABIC 15267.000
e
 7 2181.000 81.167 .000 

DBIC 2894.000
f
 7 413.429 29.242 .000 

HQ 562.359
g
 7 80.337 2.819 .014 

HT_AIC 4434.609
h
 7 633.516 13.844 .000 

Entropy 4014.938
i
 7 573.563 8.311 .000 

LMR_1V2 35.437
j
 7 5.062 3.000 .010 

LMR_2V3 2357.500
k
 7 336.786 12.933 .000 

BLRT_1V2 787.437
l
 7 112.491 4.343 .001 

BLRT_2V3 2185.359
m
 7 312.194 5.920 .000 

Intercept AIC 82944.000 1 82944.000 1.792E3 .000 

CAIC 567950.641 1 567950.641 3.289E3 .000 

SACAIC 484590.016 1 484590.016 2.026E4 .000 

BIC 598108.891 1 598108.891 8.234E3 .000 

SABIC 246512.250 1 246512.250 9.174E3 .000 

DBIC 549822.250 1 549822.250 3.889E4 .000 

HQ 320214.516 1 320214.516 1.123E4 .000 

HT_AIC 85775.766 1 85775.766 1.874E3 .000 

Entropy 88060.563 1 88060.563 1.276E3 .000 

LMR_1V2 634014.063 1 634014.063 3.757E5 .000 

LMR_2V3 352242.250 1 352242.250 1.353E4 .000 

BLRT_1V2 620550.063 1 620550.063 2.396E4 .000 

BLRT_2V3 480422.266 1 480422.266 9.109E3 .000 

N AIC 1648.375 3 549.458 11.872 .000 

CAIC 5155.172 3 1718.391 9.950 .000 

SACAIC 5887.672 3 1962.557 82.040 .000 

BIC 1748.672 3 582.891 8.024 .000 



 

180 

 

SABIC 15050.875 3 5016.958 186.709 .000 

DBIC 2744.375 3 914.792 64.703 .000 

HQ 367.797 3 122.599 4.301 .008 

HT_AIC 1503.672 3 501.224 10.953 .000 

Entropy 1345.562 3 448.521 6.499 .001 

LMR_1V2 35.063 3 11.688 6.926 .000 

LMR_2V3 104.375 3 34.792 1.336 .272 

BLRT_1V2 426.188 3 142.063 5.485 .002 

BLRT_2V3 345.047 3 115.016 2.181 .100 

measure AIC 3335.062 1 3335.062 72.061 .000 

CAIC 435.766 1 435.766 2.523 .118 

SACAIC 5.641 1 5.641 .236 .629 

BIC 172.266 1 172.266 2.371 .129 

SABIC .250 1 .250 .009 .924 

DBIC 14.063 1 14.063 .995 .323 

HQ 6.891 1 6.891 .242 .625 

HT_AIC 2795.766 1 2795.766 61.095 .000 

Entropy 2652.250 1 2652.250 38.433 .000 

LMR_1V2 .063 1 .063 .037 .848 

LMR_2V3 2093.063 1 2093.063 80.378 .000 

BLRT_1V2 95.063 1 95.063 3.670 .061 

BLRT_2V3 1691.266 1 1691.266 32.069 .000 

N * measure AIC 124.813 3 41.604 .899 .448 

CAIC 896.547 3 298.849 1.731 .171 

SACAIC 182.047 3 60.682 2.537 .066 

BIC 341.297 3 113.766 1.566 .208 

SABIC 215.875 3 71.958 2.678 .056 

DBIC 135.562 3 45.188 3.196 .030 

HQ 187.672 3 62.557 2.195 .099 

HT_AIC 135.172 3 45.057 .985 .407 

Entropy 17.125 3 5.708 .083 .969 

LMR_1V2 .312 3 .104 .062 .980 

LMR_2V3 160.062 3 53.354 2.049 .117 

BLRT_1V2 266.187 3 88.729 3.426 .023 
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BLRT_2V3 149.047 3 49.682 .942 .427 

Error AIC 2591.750 56 46.281   

CAIC 9670.875 56 172.694   

SACAIC 1339.625 56 23.922   

BIC 4067.875 56 72.641   

SABIC 1504.750 56 26.871   

DBIC 791.750 56 14.138   

HQ 1596.125 56 28.502   

HT_AIC 2562.625 56 45.761   

Entropy 3864.500 56 69.009   

LMR_1V2 94.500 56 1.688   

LMR_2V3 1458.250 56 26.040   

BLRT_1V2 1450.500 56 25.902   

BLRT_2V3 2953.375 56 52.739   

Total AIC 90644.000 64    

CAIC 584109.000 64    

SACAIC 492005.000 64    

BIC 604439.000 64    

SABIC 263284.000 64    

DBIC 553508.000 64    

HQ 322373.000 64    

HT_AIC 92773.000 64    

Entropy 95940.000 64    

LMR_1V2 634144.000 64    

LMR_2V3 356058.000 64    

BLRT_1V2 622788.000 64    

BLRT_2V3 485561.000 64    

Corrected Total AIC 7700.000 63    

CAIC 16158.359 63    

SACAIC 7414.984 63    

BIC 6330.109 63    

SABIC 16771.750 63    

DBIC 3685.750 63    

HQ 2158.484 63    



 

182 

 

HT_AIC 6997.234 63    

Entropy 7879.438 63    

LMR_1V2 129.937 63    

LMR_2V3 3815.750 63    

BLRT_1V2 2237.937 63    

BLRT_2V3 5138.734 63    

a. R Squared = .663 (Adjusted R Squared = .621) 

b. R Squared = .401 (Adjusted R Squared = .327) 

c. R Squared = .819 (Adjusted R Squared = .797) 

d. R Squared = .357 (Adjusted R Squared = .277) 

e. R Squared = .910 (Adjusted R Squared = .899) 

f. R Squared = .785 (Adjusted R Squared = .758) 

g. R Squared = .261 (Adjusted R Squared = .168) 

h. R Squared = .634 (Adjusted R Squared = .588) 

i. R Squared = .510 (Adjusted R Squared = .448) 

j. R Squared = .273 (Adjusted R Squared = .182) 

k. R Squared = .618 (Adjusted R Squared = .570) 

l. R Squared = .352 (Adjusted R Squared = .271) 

m. R Squared = .425 (Adjusted R Squared = .353) 
n. type_mixture = Linear GMM 

 

Table B12: Class separation X Number of measures in LPM 

Tests of Between-Subjects Effects
n
 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model AIC 2255.297
a
 3 751.766 4.415 .007 

CAIC 31518.625
b
 3 10506.208 16.253 .000 

SACAIC 7101.547
c
 3 2367.182 11.185 .000 

BIC 28893.297
d
 3 9631.099 18.041 .000 

SABIC 3882.672
e
 3 1294.224 6.043 .001 

DBIC 11538.922
f
 3 3846.307 15.375 .000 

HQ 2824.672
g
 3 941.557 4.624 .006 

HT_AIC 1244.172
h
 3 414.724 1.404 .250 

Entropy 923.797
i
 3 307.932 1.346 .268 

LMR_1V2 2410.062
j
 3 803.354 5.150 .003 

LMR_2V3 2332.547
k
 3 777.516 30.113 .000 
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BLRT_1V2 1776.750
l
 3 592.250 4.533 .006 

BLRT_2V3 1721.562
m
 3 573.854 7.215 .000 

Intercept AIC 37008.141 1 37008.141 217.321 .000 

CAIC 334662.250 1 334662.250 517.717 .000 

SACAIC 534909.391 1 534909.391 2.528E3 .000 

BIC 397372.641 1 397372.641 744.351 .000 

SABIC 456807.016 1 456807.016 2.133E3 .000 

DBIC 516421.891 1 516421.891 2.064E3 .000 

HQ 509260.641 1 509260.641 2.501E3 .000 

HT_AIC 51927.016 1 51927.016 175.787 .000 

Entropy 51472.266 1 51472.266 225.016 .000 

LMR_1V2 574185.062 1 574185.062 3.681E3 .000 

LMR_2V3 418447.266 1 418447.266 1.621E4 .000 

BLRT_1V2 590592.250 1 590592.250 4.520E3 .000 

BLRT_2V3 193380.062 1 193380.062 2.431E3 .000 

class_sepa AIC 293.266 1 293.266 1.722 .194 

CAIC 4590.062 1 4590.062 7.101 .010 

SACAIC 2537.641 1 2537.641 11.991 .001 

BIC 7077.016 1 7077.016 13.257 .001 

SABIC 129.391 1 129.391 .604 .440 

DBIC 3645.141 1 3645.141 14.571 .000 

HQ 1048.141 1 1048.141 5.147 .027 

HT_AIC 213.891 1 213.891 .724 .398 

Entropy 102.516 1 102.516 .448 .506 

LMR_1V2 1008.062 1 1008.062 6.463 .014 

LMR_2V3 92.641 1 92.641 3.588 .063 

BLRT_1V2 756.250 1 756.250 5.788 .019 

BLRT_2V3 175.562 1 175.562 2.207 .143 

measure AIC 1947.016 1 1947.016 11.433 .001 

CAIC 26487.562 1 26487.562 40.976 .000 

SACAIC 2150.641 1 2150.641 10.162 .002 

BIC 18940.641 1 18940.641 35.479 .000 

SABIC 3122.016 1 3122.016 14.578 .000 

DBIC 4882.516 1 4882.516 19.517 .000 
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HQ 43.891 1 43.891 .216 .644 

HT_AIC 922.641 1 922.641 3.123 .082 

Entropy 819.391 1 819.391 3.582 .063 

LMR_1V2 961.000 1 961.000 6.161 .016 

LMR_2V3 2173.891 1 2173.891 84.195 .000 

BLRT_1V2 600.250 1 600.250 4.594 .036 

BLRT_2V3 1521.000 1 1521.000 19.123 .000 

class_sepa * measure AIC 15.016 1 15.016 .088 .768 

CAIC 441.000 1 441.000 .682 .412 

SACAIC 2413.266 1 2413.266 11.403 .001 

BIC 2875.641 1 2875.641 5.387 .024 

SABIC 631.266 1 631.266 2.948 .091 

DBIC 3011.266 1 3011.266 12.037 .001 

HQ 1732.641 1 1732.641 8.509 .005 

HT_AIC 107.641 1 107.641 .364 .548 

Entropy 1.891 1 1.891 .008 .928 

LMR_1V2 441.000 1 441.000 2.827 .098 

LMR_2V3 66.016 1 66.016 2.557 .115 

BLRT_1V2 420.250 1 420.250 3.217 .078 

BLRT_2V3 25.000 1 25.000 .314 .577 

Error AIC 10217.562 60 170.293   

CAIC 38785.125 60 646.419   

SACAIC 12698.062 60 211.634   

BIC 32031.062 60 533.851   

SABIC 12849.312 60 214.155   

DBIC 15010.188 60 250.170   

HQ 12217.688 60 203.628   

HT_AIC 17723.812 60 295.397   

Entropy 13724.938 60 228.749   

LMR_1V2 9358.875 60 155.981   

LMR_2V3 1549.188 60 25.820   

BLRT_1V2 7839.000 60 130.650   

BLRT_2V3 4772.375 60 79.540   

Total AIC 49481.000 64    



 

185 

 

CAIC 404966.000 64    

SACAIC 554709.000 64    

BIC 458297.000 64    

SABIC 473539.000 64    

DBIC 542971.000 64    

HQ 524303.000 64    

HT_AIC 70895.000 64    

Entropy 66121.000 64    

LMR_1V2 585954.000 64    

LMR_2V3 422329.000 64    

BLRT_1V2 600208.000 64    

BLRT_2V3 199874.000 64    

Corrected Total AIC 12472.859 63    

CAIC 70303.750 63    

SACAIC 19799.609 63    

BIC 60924.359 63    

SABIC 16731.984 63    

DBIC 26549.109 63    

HQ 15042.359 63    

HT_AIC 18967.984 63    

Entropy 14648.734 63    

LMR_1V2 11768.937 63    

LMR_2V3 3881.734 63    

BLRT_1V2 9615.750 63    

BLRT_2V3 6493.937 63    



 

186 

 

a. R Squared = .181 (Adjusted R Squared = .140) 

b. R Squared = .448 (Adjusted R Squared = .421) 

c. R Squared = .359 (Adjusted R Squared = .327) 

d. R Squared = .474 (Adjusted R Squared = .448) 

e. R Squared = .232 (Adjusted R Squared = .194) 

f. R Squared = .435 (Adjusted R Squared = .406) 

g. R Squared = .188 (Adjusted R Squared = .147) 

h. R Squared = .066 (Adjusted R Squared = .019) 

i. R Squared = .063 (Adjusted R Squared = .016) 

j. R Squared = .205 (Adjusted R Squared = .165) 

k. R Squared = .601 (Adjusted R Squared = .581) 

l. R Squared = .185 (Adjusted R Squared = .144) 

m. R Squared = .265 (Adjusted R Squared = .228) 
n. type_mixture =LPM 

 

Table B13: Class separation X Number of measures in UGMM 

Tests of Between-Subjects Effects
n
 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model AIC 55201.547
a
 3 18400.516 139.686 .000 

CAIC 13643.375
b
 3 4547.792 7.138 .000 

SACAIC 158.063
c
 3 52.688 4.130 .010 

BIC 7493.063
d
 3 2497.688 6.099 .001 

SABIC 3768.125
e
 3 1256.042 26.900 .000 

DBIC 415.297
f
 3 138.432 4.169 .010 

HQ 1505.563
g
 3 501.854 4.722 .005 

HT_AIC 53501.188
h
 3 17833.729 126.030 .000 

Entropy 15104.547
i
 3 5034.849 29.791 .000 

LMR_1V2 162.813
j
 3 54.271 3.379 .024 

LMR_2V3 3084.313
k
 3 1028.104 18.698 .000 

BLRT_1V2 407.812
l
 3 135.937 3.327 .025 

BLRT_2V3 519.297
m
 3 173.099 2.716 .053 

Intercept AIC 196359.766 1 196359.766 1.491E3 .000 

CAIC 459006.250 1 459006.250 720.455 .000 

SACAIC 609570.562 1 609570.562 4.779E4 .000 

BIC 523814.062 1 523814.062 1.279E3 .000 
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SABIC 522006.250 1 522006.250 1.118E4 .000 

DBIC 607425.391 1 607425.391 1.829E4 .000 

HQ 545751.562 1 545751.562 5.135E3 .000 

HT_AIC 214600.562 1 214600.562 1.517E3 .000 

Entropy 33902.016 1 33902.016 200.595 .000 

LMR_1V2 618975.562 1 618975.562 3.854E4 .000 

LMR_2V3 502326.562 1 502326.562 9.136E3 .000 

BLRT_1V2 615832.562 1 615832.562 1.507E4 .000 

BLRT_2V3 489125.391 1 489125.391 7.674E3 .000 

class_sepa AIC 301.891 1 301.891 2.292 .135 

CAIC 9555.062 1 9555.062 14.998 .000 

SACAIC 33.062 1 33.062 2.592 .113 

BIC 4830.250 1 4830.250 11.795 .001 

SABIC 25.000 1 25.000 .535 .467 

DBIC 178.891 1 178.891 5.387 .024 

HQ 42.250 1 42.250 .398 .531 

HT_AIC 333.062 1 333.062 2.354 .130 

Entropy 62.016 1 62.016 .367 .547 

LMR_1V2 126.562 1 126.562 7.880 .007 

LMR_2V3 14.062 1 14.062 .256 .615 

BLRT_1V2 217.562 1 217.562 5.325 .024 

BLRT_2V3 .141 1 .141 .002 .963 

measure AIC 54463.891 1 54463.891 413.457 .000 

CAIC 3080.250 1 3080.250 4.835 .032 

SACAIC 4.000 1 4.000 .314 .578 

BIC 1540.562 1 1540.562 3.762 .057 

SABIC 3510.562 1 3510.562 75.183 .000 

DBIC 43.891 1 43.891 1.322 .255 

HQ 1260.250 1 1260.250 11.858 .001 

HT_AIC 52555.562 1 52555.562 371.406 .000 

Entropy 14731.891 1 14731.891 87.167 .000 

LMR_1V2 16.000 1 16.000 .996 .322 

LMR_2V3 2970.250 1 2970.250 54.019 .000 

BLRT_1V2 100.000 1 100.000 2.447 .123 
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BLRT_2V3 478.516 1 478.516 7.507 .008 

class_sepa * measure AIC 435.766 1 435.766 3.308 .074 

CAIC 1008.062 1 1008.062 1.582 .213 

SACAIC 121.000 1 121.000 9.486 .003 

BIC 1122.250 1 1122.250 2.740 .103 

SABIC 232.562 1 232.562 4.981 .029 

DBIC 192.516 1 192.516 5.798 .019 

HQ 203.062 1 203.062 1.911 .172 

HT_AIC 612.562 1 612.562 4.329 .042 

Entropy 310.641 1 310.641 1.838 .180 

LMR_1V2 20.250 1 20.250 1.261 .266 

LMR_2V3 100.000 1 100.000 1.819 .183 

BLRT_1V2 90.250 1 90.250 2.209 .142 

BLRT_2V3 40.641 1 40.641 .638 .428 

Error AIC 7903.688 60 131.728   

CAIC 38226.375 60 637.106   

SACAIC 765.375 60 12.756   

BIC 24570.875 60 409.515   

SABIC 2801.625 60 46.694   

DBIC 1992.312 60 33.205   

HQ 6376.875 60 106.281   

HT_AIC 8490.250 60 141.504   

Entropy 10140.438 60 169.007   

LMR_1V2 963.625 60 16.060   

LMR_2V3 3299.125 60 54.985   

BLRT_1V2 2451.625 60 40.860   

BLRT_2V3 3824.312 60 63.739   

Total AIC 259465.000 64    

CAIC 510876.000 64    

SACAIC 610494.000 64    

BIC 555878.000 64    

SABIC 528576.000 64    

DBIC 609833.000 64    

HQ 553634.000 64    
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HT_AIC 276592.000 64    

Entropy 59147.000 64    

LMR_1V2 620102.000 64    

LMR_2V3 508710.000 64    

BLRT_1V2 618692.000 64    

BLRT_2V3 493469.000 64    

Corrected Total AIC 63105.234 63    

CAIC 51869.750 63    

SACAIC 923.438 63    

BIC 32063.938 63    

SABIC 6569.750 63    

DBIC 2407.609 63    

HQ 7882.438 63    

HT_AIC 61991.438 63    

Entropy 25244.984 63    

LMR_1V2 1126.438 63    

LMR_2V3 6383.438 63    

BLRT_1V2 2859.437 63    

BLRT_2V3 4343.609 63    

a. R Squared = .875 (Adjusted R Squared = .868) 

b. R Squared = .263 (Adjusted R Squared = .226) 

c. R Squared = .171 (Adjusted R Squared = .130) 

d. R Squared = .234 (Adjusted R Squared = .195) 

e. R Squared = .574 (Adjusted R Squared = .552) 

f. R Squared = .172 (Adjusted R Squared = .131) 

g. R Squared = .191 (Adjusted R Squared = .151) 

h. R Squared = .863 (Adjusted R Squared = .856) 

i. R Squared = .598 (Adjusted R Squared = .578) 

j. R Squared = .145 (Adjusted R Squared = .102) 

k. R Squared = .483 (Adjusted R Squared = .457) 

l. R Squared = .143 (Adjusted R Squared = .100) 

m. R Squared = .120 (Adjusted R Squared = .076) 
n. type_mixture = UGMM 
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Table B14: Class separation X Number of measures in Linear GMM 

Tests of Between-Subjects Effects
n
 

Source 

Dependent 

Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model AIC 3935.375
a
 3 1311.792 20.907 .000 

CAIC 2909.797
b
 3 969.932 4.393 .007 

SACAIC 33.047
c
 3 11.016 .090 .966 

BIC 1046.797
d
 3 348.932 3.963 .012 

SABIC 159.875
e
 3 53.292 .192 .901 

DBIC 23.625
f
 3 7.875 .129 .943 

HQ 192.547
g
 3 64.182 1.959 .130 

HT_AIC 3402.297
h
 3 1134.099 18.928 .000 

Entropy 3825.563
i
 3 1275.188 18.874 .000 

LMR_1V2 14.187
j
 3 4.729 2.451 .072 

LMR_2V3 2098.125
k
 3 699.375 24.431 .000 

BLRT_1V2 340.187
l
 3 113.396 3.585 .019 

BLRT_2V3 1955.797
m
 3 651.932 12.289 .000 

Intercept AIC 82944.000 1 82944.000 1.322E3 .000 

CAIC 567950.641 1 567950.641 2.572E3 .000 

SACAIC 484590.016 1 484590.016 3.939E3 .000 

BIC 598108.891 1 598108.891 6.792E3 .000 

SABIC 246512.250 1 246512.250 890.371 .000 

DBIC 549822.250 1 549822.250 9.008E3 .000 

HQ 320214.516 1 320214.516 9.773E3 .000 

HT_AIC 85775.766 1 85775.766 1.432E3 .000 

Entropy 88060.562 1 88060.562 1.303E3 .000 

LMR_1V2 634014.062 1 634014.062 3.286E5 .000 

LMR_2V3 352242.250 1 352242.250 1.230E4 .000 

BLRT_1V2 620550.062 1 620550.062 1.962E4 .000 

BLRT_2V3 480422.266 1 480422.266 9.056E3 .000 

class_sepa AIC 600.250 1 600.250 9.567 .003 

CAIC 2058.891 1 2058.891 9.324 .003 

SACAIC 19.141 1 19.141 .156 .695 
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BIC 695.641 1 695.641 7.900 .007 

SABIC 126.562 1 126.562 .457 .502 

DBIC .562 1 .562 .009 .924 

HQ 185.641 1 185.641 5.666 .020 

HT_AIC 606.391 1 606.391 10.121 .002 

Entropy 1173.062 1 1173.062 17.362 .000 

LMR_1V2 14.062 1 14.062 7.289 .009 

LMR_2V3 5.062 1 5.062 .177 .676 

BLRT_1V2 150.062 1 150.062 4.744 .033 

BLRT_2V3 135.141 1 135.141 2.547 .116 

measure AIC 3335.062 1 3335.062 53.154 .000 

CAIC 435.766 1 435.766 1.973 .165 

SACAIC 5.641 1 5.641 .046 .831 

BIC 172.266 1 172.266 1.956 .167 

SABIC .250 1 .250 .001 .976 

DBIC 14.062 1 14.062 .230 .633 

HQ 6.891 1 6.891 .210 .648 

HT_AIC 2795.766 1 2795.766 46.662 .000 

Entropy 2652.250 1 2652.250 39.255 .000 

LMR_1V2 .062 1 .062 .032 .858 

LMR_2V3 2093.062 1 2093.062 73.115 .000 

BLRT_1V2 95.062 1 95.062 3.006 .088 

BLRT_2V3 1691.266 1 1691.266 31.881 .000 

class_sepa * measure AIC .062 1 .062 .001 .975 

CAIC 415.141 1 415.141 1.880 .175 

SACAIC 8.266 1 8.266 .067 .796 

BIC 178.891 1 178.891 2.032 .159 

SABIC 33.062 1 33.062 .119 .731 

DBIC 9.000 1 9.000 .147 .702 

HQ .016 1 .016 .000 .983 

HT_AIC .141 1 .141 .002 .962 

Entropy .250 1 .250 .004 .952 

LMR_1V2 .062 1 .062 .032 .858 

LMR_2V3 .000 1 .000 .000 1.000 
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BLRT_1V2 95.062 1 95.062 3.006 .088 

BLRT_2V3 129.391 1 129.391 2.439 .124 

Error AIC 3764.625 60 62.744   

CAIC 13248.562 60 220.809   

SACAIC 7381.938 60 123.032   

BIC 5283.312 60 88.055   

SABIC 16611.875 60 276.865   

DBIC 3662.125 60 61.035   

HQ 1965.938 60 32.766   

HT_AIC 3594.938 60 59.916   

Entropy 4053.875 60 67.565   

LMR_1V2 115.750 60 1.929   

LMR_2V3 1717.625 60 28.627   

BLRT_1V2 1897.750 60 31.629   

BLRT_2V3 3182.938 60 53.049   

Total AIC 90644.000 64    

CAIC 584109.000 64    

SACAIC 492005.000 64    

BIC 604439.000 64    

SABIC 263284.000 64    

DBIC 553508.000 64    

HQ 322373.000 64    

HT_AIC 92773.000 64    

Entropy 95940.000 64    

LMR_1V2 634144.000 64    

LMR_2V3 356058.000 64    

BLRT_1V2 622788.000 64    

BLRT_2V3 485561.000 64    

Corrected Total AIC 7700.000 63    

CAIC 16158.359 63    

SACAIC 7414.984 63    

BIC 6330.109 63    

SABIC 16771.750 63    

DBIC 3685.750 63    
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HQ 2158.484 63    

HT_AIC 6997.234 63    

Entropy 7879.438 63    

LMR_1V2 129.937 63    

LMR_2V3 3815.750 63    

BLRT_1V2 2237.937 63    

BLRT_2V3 5138.734 63    

a. R Squared = .511 (Adjusted R Squared = .487) 

b. R Squared = .180 (Adjusted R Squared = .139) 

c. R Squared = .004 (Adjusted R Squared = -.045) 

d. R Squared = .165 (Adjusted R Squared = .124) 

e. R Squared = .010 (Adjusted R Squared = -.040) 

f. R Squared = .006 (Adjusted R Squared = -.043) 

g. R Squared = .089 (Adjusted R Squared = .044) 

h. R Squared = .486 (Adjusted R Squared = .461) 

i. R Squared = .486 (Adjusted R Squared = .460) 

j. R Squared = .109 (Adjusted R Squared = .065) 

k. R Squared = .550 (Adjusted R Squared = .527) 

l. R Squared = .152 (Adjusted R Squared = .110) 

m. R Squared = .381 (Adjusted R Squared = .350) 
n. type_mixture = Linear GMM 
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