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We are rapidly approaching the end of the semiconductor roadmap with re-

spect to silicon. To continue its growth, the semiconductor industry is therefore

looking into new materials. Two primary materials that are of interest for contin-

uing semiconductor development are germanium (Ge) and gallium nitride (GaN).

Ge is of interest as a replacement for silicon, in an effort to improve electronics

performances because of its high mobility and its ability to grow a native oxide. In

addition, Ge is of interest because of its potential use for economical CMOS-based

short wave infrared (SWIR) imaging systems. GaN is a nascent wide bandgap semi-

conductor and has many potential applications in high power electronics and ultra-

violet imaging systems. In this thesis, the key material properties and applications

of these two ”end of the roadmap” semiconductors are explored.

Ge is a semiconductor material with an indirect bandgap of 0.66eV[1]. This

bandgap value corresponds to a wavelength of 1.88µm, which lies in the infrared

range. The Ge material itself is also compatible with the standard Si CMOS pro-

cess technology. Because of these advantages, Ge is considered a candidate for the



application of photo detecting in the SWIR range. Apart from the indirect bandgap

of 0.66eV, Ge also has a direct bandgap of 0.8eV[1]. From early research, the rela-

tively small offset between the indirect and direct bandgaps can be inverted either

by applying strain[1, 9, 10, 11] or alloying with tin[2, 14].

GaN is a binary direct wide bandgap material with a direct bandgap of

3.4eV[26, 27]. It has a high breakdown field, and relatively high saturation ve-

locity and carrier mobility[28]. These properties give GaN an advantage in the

realm of high power application. GaN can also form a heterostructure with AlGaN,

which can give rise to a 2D electron gas (2DEG) layer at the interface without in-

tentionally doping either material. The 2DEG layer has an even higher mobility

when compared to the mobility of the bulk GaN, which allows the heterostructure

to be utilized for the design of high electron mobility transistors (HEMTs). The

formation of the 2DEG layer also gives rise to potential well confinement at the

heterostructure interface. The width of the potential well is only a few nanome-

ters, making the interface electron gas subject to quantum confinement along the

direction perpendicular to the interface. The detailed shape of the potential well

is determined by the configuration of the heterostructure, as well as the applied

voltage across the heterostructure.

The first set of goals for this research is to investigate how the bandstructure

of Ge changes: Part (1) with the applied strain, and Part (2) with alloyed tin (Sn).

The empirical pseudopotential method (EPM) was utilized for the band structure

calculation, together with the rules for strain translation for the investigation of

Part (1). In Part (1), simulation results give the optimal orientation for different



types of applied strain and also thoroughly map the influence of strain applied on

any arbitrary orientations. It also reveals that for biaxial strain, there exists another

orientation that is more robust against misalignment with respect to the originally

desired orientation than the optimal plane, with little compromise of bandgap and

slightly higher requirements for the sufficient strain. For Part (2), EPM is com-

bined with perturbation theory for the inclusion of the influence of the Sn atoms in

the Ge lattice. A new and computationally inexpensive method is developed dur-

ing the research. Simulation results agree significantly when compared to reported

experimental measurements, indicating the capability of the method.

The second set of goals is to investigate the electron transport properties of

the 2DEG layer at the interface of GaN HEMT and related power transistors. The

potential well is approximated and quantified by a triangular potential well and the

carrier sheet density is kept the same during the approximation. Thorough simula-

tions are conducted by calculating the band alignment of the heterostructure with

different structural configurations. A fixed correlation between the carrier sheet

density and the shape of the potential well (slope of the triangular potential well

and the height of the well) is revealed. This correlation is used as an input for the

Monte Carlo (MC) simulation. The changes to the mobility of the electrons at the

2DEG layer with changing interface potential well shape are investigated and statis-

tics of drift velocity, electron energy, and valley occupation are collected. Mobility

information is also extracted and compares favorably with reported experimental

measurements. The simulation results are used in the device simulations, which

compares the performances of two GaN/AlGaN heterostructure based devices: a



lateral HEMT and a current aperture vertical electron transistor (CAVET).



Thesis Structure

Chapter 1 presents the background and literature review. It explains the

background knowledge of this thesis and the necessity of this research.

Chapter 2 through Chapter 4 focus on the band structure engineering of Ge,

aiming to transform Ge from an indirect bandgap material to a direct bandgap

one. Chapter 2 explains the methodology of band structure calculation using EPM.

Chapter 3 investigates the band structure of Ge under the influence of strain and

Chapter 4 develops a new method to calculate the band structure of GeSn alloy.

Chapter 5 through Chapter 7 introduce the MC method to investigate the

electron transport properties of GaN material. Chapter 5 lists and describes all

the included scattering mechanisms for the MC simulation. Chapter 6 conducts

MC simulation for bulk GaN, while Chapter 7 describes the quantum confinement

of 2DEG and how to model the potential well for 2DEG and conducts 2D MC

simulation for 2DEG under different potential well parameters. Chapter 8 conducts

the device simulations on two types of GaN based devices using our simulation

results and compares their simulation results to provide insight into device design.

Chapter 9 summarizes the contribution and major results of the thesis.
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Chapter 1

Background and Literature Review

This chapter provides the background to, and review of the literature around

the topics related to Ge and GaN that are germane to the research on post-silicon

semiconductors proposed for this thesis.

1.1 Germanium (Ge) Crystal and Band Structure

Ge is a semiconductor material with a diamond crystal structure. It has re-

drawn attention in the realm of photo detecting in the SWIR range because of its

advantage of being well suited for integration into a CMOS process[1], as well as

having a direct bandgap of 0.8eV and an indirect bandgap of 0.66eV[1], with the

difference between the two being only 0.14eV. Even though photo detectors are

achievable using the indirect bandgap material, such as silicon and gallium phos-

phide, due to the nature of the indirect bandgap material, the photon absorption

coefficient varies less abruptly with wavelength than with the direct bandgap ma-

terial. In addition, the probability of light absorption for photon energies greater

than the bandgap is less than that of direct gap materials.

Strain engineering is a possible method for transforming Ge from being in-

direct to direct bandgap. When Ge is under tensile strain, both the direct and

indirect bandgaps are reduced. When enough tensile strain is applied along certain
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orientations (i.e. uniaxial 〈111〉 , biaxial {100}1)[1], the direct bandgap gets pushed

lower than the indirect bandgap, thus Ge becomes a direct bandgap material.

A similar phenomenon can also be observed with a GeSn alloy. Sn is also a

Group IV element, Sn has two major allotropes: α-Sn which has a diamond crystal

structure, more stable at low temperature; and β-Sn, a malleable metal, more stable

at room temperature. The band structure of α-Sn is calculated to have zero band gap

with its bottom-most conduction touching the top-most valence band. This band

structure is believed to help push the direct bandgap of Ge downwards, passing

the indirect bandgap, when a Ge-Sn alloy is fabricated. The alloy is still mainly

composed of Ge, with a small percentage of Sn introduced to achieve the direct gap

[2].

1.1.1 Empirical Pseudopotential Method (EPM)

Ge has a diamond crystal structure (shown in Fig. 1.1). For a diamond crystal,

the primitive cell consists of two atoms, which are also illustrated in Fig. 1.1.

The reciprocal lattice of a diamond crystal is shown in Fig. 1.2, with high

symmetry points labeled. A irreducible wedge of the reciprocal lattice is also shown

in the figure. This is the smallest region that can reproduce the entire reciprocal

lattice.

To quantify a band structure, experimental methods are limited to being able

1Notation: We use the standard notations for Miller Indices where curly brackets represent a

family of planes; angled brackets represent a family of directions; parentheses represent a single

plane and square brackets represent a single direction.
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Figure 1.1: The conventional unit cell with illustrated primitive unit cell.

to measure certain points or certain band-to-band transition energies on the band

structure. A band structure calculation is usually needed in order to obtain more

details. There are numerous methods available for the calculation. First princi-

ple calculations such as density functional theory (DFT), are able to calculate the

ground state energy of a many body system. These kinds of calculations are usually

without empirical fitting. However, purely first principle calculations usually give

results which show significant discrepancies when compared to experimental data.

Therefore, techniques such as hybrid functionals are commonly used to adjust the

calculation to agree with experiments. The huge computational expense to achieve

convergence is a disadvantage of such calculations, usually requiring massively par-

allel computation[3].
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Figure 1.2: The reciprocal lattice for a wurtzite crystal with high symme-

try points labeled. Zoom in onto the irreducible wedge of the reciprocal

lattice.
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As well as first principle calculations, another group of calculation methods

is widely used in the band structure calculation with empirically fitted parameters.

Other approaches are the tight-binding method (TB)[4], the k·p method[5] and the

EPM[6, 7]. A big advantage of these methods as opposed to the first principle

calculations, is that they solve the one-electron Schrödinger equation instead of

the many-body equation, therefore the calculation expenses are hugely reduced.

The TB method can accurately describe the valence bands, while improving the

accuracy of the conduction band would destroy the simplicity of the method[3].

k·p method is excellent at calculating band structure around the Γ point and the

effective mass. The simplicity goes away when the method is used to conduct a full

band calculation. Both TB and k·p method have some level of first principle atomic

orbital approximation for the valence electrons, and they both get more and more

complicated when the mixing of orbitals is taken into consideration.

EPM has the lowest computational expenses of the three methods. Its param-

eters are fitted based on experimental measurements. EPM takes advantage of the

periodicity of the lattice and uses a pseudopotential, rather than the real potential,

to reduce the bases needed to reconstruct the potential term used in the calcula-

tion. Using the pseudopotential allows the solution to be focused on the valence

electrons, which are most important for semiconductors, as opposed to the core lev-

els. The method becomes slightly complicated when the non-locality is included in

the method (nonlocal EPM), but this correction is used to account for the effect

that the angular momentum of the core electrons has on the pseudopotential[7].

Nonetheless, EPM has relatively the lowest computational expense.

5



Numerous papers report the band structure calculation on Ge[6, 7, 8]. Ref. [6]

and Ref. [8] both use the local EPM to calculate the band structure. The calcu-

lation results for direct/indirect bandgap are ∼ 1.1/1eV and 0.794/0.923eV . Both

calculations show significant discrepancies when compared to experimental values

for bandgaps of 0.66/0.8eV . In Ref.[7], it is pointed out that ”purely local pseudopo-

tential technique could not yield satisfactory results, an energy dependent and nonlo-

cal pseudopotential should be considered.” In Ref.[7], the calculated direct/indirect

bandgaps are given as 0.76/0.90eV .

1.1.2 Strained Germanium (Ge) and Germanium-Tin (GeSn) Alloy

Strain is defined as the deformation of a material divided by its original di-

mension. When strain is applied, the spacing between the atoms changes. A strain

in considered tensile if the effect is increase of the spacing between the atoms. The

deformation of the lattice also changes the potential distribution of the nuclei, which

consequently alters the band structure of Ge. When the strain is tensile, both the

indirect and the direct bandgaps tend to decrease. Under certain strains, the direct

bandgap is pushed even below the indirect bandgap; at which point, Ge becomes

a direct bandgap material. The value of the bandgap when Ge transforms from

an indirect to direct semiconductor upon the application of strain is named the

”bandgap transition point” (BTP), and the required strain is named ”strain at

transition point” (STP) in this work.

There are three basic types of strain commonly described in the literature:
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(a) Uniaxial: the stress is applied along a certain direction, such as in a nanowire;

(b) Biaxial: the stress is applied on a certain plane, such as in a deposited film on

a substrate;

(c) Hydrostatic: the stress is applied equally on all three directions.

Previous research has focused on uniaxial and biaxial strained Ge on the con-

ventional orientations, as these types of strain are more viable for engineering. Cicek

et al. (2014) report a requirement of 2% tensile biaxial strain threshold in a {100}

plane; while for a uniaxial stress, more than 4% is required for the direct-indirect

transition to happen[1]. Aldaphri et al. (2012) report a 4.5% biaxial strain on the

{110} plane, with no transition if the strain is applied on the {111} plane[9]. On

the 〈111〉 direction, a uniaxial strain of 4.2% and 4.7% are reported in Ref. [10] and

Ref. [11]

One of the advantages of Ge is that it is compatible with the silicon CMOS

process, which usually involves a silicon substrate. In Ref. [12], it is suggested that

by using a {100} Si substrate with a miscut angle, the quality of relaxed graded

Si-Ge and Ge layers are greatly improved in the surface roughness and dislocation

densities when compared to those grown on an on-axis {100} substrate. The miscut

angle ranges from 2◦ to 6◦, and then inevitably passes onto the grown Si-Ge or Ge

layer on top, which changes how the strain is applied to the deposited or grown

material on top of the substrate. Therefore, research into how the misalignment

affects the indirect-direct bandgap transition phenomenon is needed.

Sn, or α-Sn to be more specific, is a zero bandgap semiconductor material with
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a diamond crystal structure, like Ge, and is one row below Ge in the periodic table.

Its band structure has zero bandgap with a sharp valley in the conduction band in

contact with the top of the valence band at the Γ point. The alloying of Sn into

Ge is expected to lower the Γ point valley in the conduction band of the Ge band

structure. With increasing Sn fraction, the Γ point will eventually become lower in

energy than the L point in the conduction band, making the Ge-Sn alloy a direct

bandgap material. Regarding how much Sn is needed to achieve the indirect-direct

bandgap transition of the Ge-Sn alloy, various theoretical investigations have been

carried out. These investigations range from quasi-empirical methods, such as the

combined empirical pseudo-potential method/virtual lattice approximation method

(EPM/VLA)[13], to first principle calculations using DFT[14, 15, 16]. Experimental

efforts sought to grow the alloy with a different fraction of Sn and to measure the

photon absorption properties[2, 20, 17, 14, 19] to directly observe the transition.

Considering the theoretical calculations, the EPM could provide accurate

bandgaps once a proper pseudopotential was determined. The EPM has been shown

to provide the correct bandgap energy for group IV crystalline materials, including

Ge and Sn[6]. The combined EPM/VLA is an approach to calculating the alloy

band structure by taking the pseudopotentials for the alloy as a linear combination

of the two alloy elements in the alloy. While this approach is intuitive and relatively

computationally efficient, the linear approximation is difficult to fully justify[17].

The DFT method accounts for the many-body interaction of the alloy. However,

it is extremely computationally intensive for supercells that are sufficiently large

to account for the various ratios of alloy components. In addition, since the DFT
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really focuses on the ground state energy, it is not always optimal for calculating

bandgaps. Different hybrid functionals used in DFT calculations yield differing

results[17, 25, 16], as the Sn fraction to achieve the transition varies from 1.6%[25]

to 17%[17].

1.2 Gallium Nitride (GaN) Electron Transport

GaN is a binary direct wide bandgap material with a direct bandgap of approx-

imately 3.4eV[28]. It has a high breakdown voltage and relatively high saturation

velocity and carrier mobility[28]. GaN can also form an alloy with aluminum nitride

(AlN) forming AlxGa1−xN with mole fraction percentage x ranging from 0 to 1, and

bandgap changing from 3.4eV (corresponding to the bandgap of GaN) to 6.2eV [29]

(corresponding to the bandgap of AlN).

A heterostructure can be formed when the two materials (GaN and AlGaN)

are brought together. An accumulation of electrons also occurs at the interface,

resulting in a Two Dimension Electron Gas (2DEG) layer without any intentional

doping on either material[30]. This layer of 2DEG has different properties when

compared to electrons in the bulk material, such as higher mobility. The presence

and the advanced properties of the 2DEG at the interface of the heterostructure give

rise to the possibility of the application of the High Electron Mobility Transistors

(HEMTs)[31].

The formation of the 2DEG layer is accompanied by the formation of a po-

tential well at the interface, in which the electrons are confined. The width of
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the potential well is in the range of nanometers, confining the 2DEG quantum in

the direction perpendicular to the interface. However, the specific structure of the

potential well highly depends on the components of the heterostructure, as well

as the applied voltage across the heterostructure. However, the changing of the

electron transport properties with the changing parameters of the structure of the

heterostructure is not well-known.

1.2.1 Gallium Nitride/Aluminum Gallium Nitride (GaN/AlGaN) Het-

erostructure and Formation of 2D Electron Gas (2DEG)

Both GaN and AlGaN have a crystal structure of wurtzite. This structure

lacks symmetry along the <0001> direction and there is polarity in the Ga-N bond,

therefore GaN has spontaneous polarization. The spontaneous polarization points

toward the N-face; in effect, it is the < 0001̄ > direction. Ga-face, N-face and the

direction of the spontaneous polarization are shown in Fig. 1.3.

A piezoelectric property also rises from the wurtzite crystal configuration for

GaN, which, if the crystal is under stress, will also give rise to polarization. This

polarization is called piezoelectric polarization.

AlGaN shares this characteristic of spontaneous polarization and piezoelectric

polarization, when under stress. For a GaN/AlGaN heterostructure, a mismatch of

lattice constant is usually present. More specifically, when a film is deposited onto

a substrate with a lattice mismatch in between, the film is forced to accommodate

the lattice of the substrate, resulting in strain in the film, until the film reaches a
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Figure 1.3: The crystal structure for GaN. The growth toward < 0001 >

is called the Ga-face and the growth toward < 0001̄ > is called the N-

face. The spontaneous polarization (PSP ) of GaN is aligned with N-face.
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critical thickness when dislocations are generated to release the stress caused by the

lattice mismatch.

Depending on the material chosen for the substrate and the film, and/or the

direction in which the growth is happening, spontaneous polarization and piezoelec-

tric polarization of the deposited film can either be enhanced or weakened. The

possible combinations of heterostructures consisting of GaN and AlGaN are shown

in Fig. 1.4.

As shown in Fig. 1.4, when GaN is chosen as the substrate material and AlGaN

film is deposited, the two types of polarization are of the same direction in the film,

despite the direction of the growth. In contrast, when GaN is deposited on AlGaN,

the two types of polarization are of the opposite direction in the film. Regardless

of the configuration of the heterostructure, there is always an abrupt change of

polarization when crossing the heterostructure interface. This change gives rise to

a layer of induced charge at the interface, and at each end of the heterostructure.

The quantity of the polarization induced charge is given by Eq. 1.1

σ = −(Pfilm − Psubstrate) (1.1)

Pfilm = (PPZ + PSP )film (1.2)

Psubstrate = (PSP )substrate (1.3)

where:

PPZ is the piezoelectric polarization

PSP is the spontaneous polarization.
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Figure 1.4: Four possible configurations of GaN/AlGaN heterostruc-

tures: the direction of the blue arrows are the growth direction and the

orange arrows are the direction of the polarization. The induced inter-

face charges are also labeled with a proper sign indicating whether they

are positive or negative charges

NOTE: If the polarization is in the direction of the growth direction, the sign

is positive and if the polarization is in the opposite direction to the growth,

the sign is negative.

Some material properties regarding the polarization of the GaN/AlGaN het-

erostructure are listed in Table. 1.1

Of course, the properties of AlGaN are mole fraction dependent. Nonetheless,

the values listed in Table. 1.1 can be considered the upper and lower limits for the
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Table 1.1: Material properties corresponding to spontaneous and piezoelectric po-

larization for GaN and AlN

GaN AlN

Crystal structure Wurtzite Wurtzite

Lattice constant a=3.186Å a=3.11Å

c=5.186Å c=4.98Å

Spontaneous polarization

PSP (C/m2) 0.029 0.081

Piezoelectric coeff. (C/m2) e31 = −0.49 e31 = −0.60

e33 = 0.73 e33 = 1.46

corresponding properties of AlGaN.

For all four heterostructure configurations, it is only when GaN is used as the

substrate that we get the maximum polarization change (assuming the same mole

fraction for AlGaN material). If the growth preference is the Ga-face, the induced

interface charges are positive, which aids the accumulation of electrons; while N-face

growth gives negative polarization induced charges, which helps accumulate holes

at the interface.

For reasons such as the effective mass for electrons being smaller than that of

holes[32, 33], and the activation energy of holes being much higher than electrons[34],

electrons are preferable for carriers in applications such as HEMTs. There are

also other configurations of the heterostructure involving more than two layers of

material[35, 36, 37], but that with GaN substrate and AlGaN film will be the core

of most.
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There is research indicating that the defects at the AlGaN surface act as ”sur-

face donors” with a mid-bandgap energy level. These surface donors are considered

the source of the formation of the 2DEG at the interface of the heterostructure[38],

and the induced interface charges are the ”driving force” for this formation.

The induced positive interface charges generate an electric field pointing away

from the interface. This induced electric field then bends the band alignment of

the heterostructure; more specifically, bending the band in AlGaN upwards in the

direction away from the interface. At the same time, this raises the energy level of

the surface donors, as shown in Fig. 1.5.

With the increasing thickness of the AlGaN layer, the energy level of the sur-

face donor is raised increasingly close to the Fermi level, until a ”critical thickness”

is reached when the surface donor level surpasses the Fermi level of the heterostruc-

ture. At this point the electrons of the donors are ready to be transported due to the

attraction of the induced positive interface charges. These electrons are therefore

accumulated at the interface, forming the 2DEG layer. This layer of 2DEG is the

core of the application and operation of GaN/AlGaN heterostructure HEMTs.

The relationship between the polarization and the 2DEG layer is described

in both intuitive and quantitative ways. The polarization-induced charges are, as

mentioned above, the driving force of the formation of the 2DEG layer. The effect

of this induced charge on the formation of the 2DEG, and the potential well of

the 2DEG, together with other conditions, such as the applied gate voltage, will be

thoroughly investigated.
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Figure 1.5: Formation of 2DEG: (a) abrupt change in polarization gives

rise to induced interface and surface charges; (b) the electric field caused

by the induced charges bends the band alignment of the heterostructure,

making the band on the AlGaN side go upwards away from the interface.

(c) When the thickness of AlGaN surpasses a ”critical thickness,” the

energy level of the surface donors is raised high enough to pass the Fermi

level of the heterostructure. (d) Electrons from the surface donor are

transported towards the interface and accumulate to form a layer of

electrons, called 2DEG.

1.2.2 Monte Carlo (MC) method

The MC method is usually used to investigate the electron transport properties

of semiconductors. The MC method is used throughout in this work, and it is

therefore introduced in the introduction as a main tool of analysis. The manner
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in which the electron’s state evolves under the influence of external force (electric

fields), as well as internal scatterings, is simulated. The whole process is as described

below:

(1) Initialize a single electron by giving a starting energy (E) and momentum (~k)

(2) Generate a random number (r1) to determine the flight time during (τ) which

the electron drifts before encountering a scattering event

(3) E and k evolve and sampling points are collected during the drift time

(4) At the end of the flight time, two more random numbers r2 and r3 are generated

to determine the scattering type for the electron and the resulting angle after

the scattering

(5) Repeat steps 2-4 until the predefined total flight time is reached

The process of the MC method is illustrated in Fig. 1.6.

When the MC simulation is finished, statistics such as distribution of the

electron energy, distribution of the drift velocity, average electron energy, average

drift velocity, and so on. can be gathered to describe the transport of the electron.

By conducting a series of MC simulations under different electric fields, a graph of

average velocity versus electric field can be obtained, which can be used to extract

the information of the electron mobility.

There are various reports on the MC simulation on the bulk GaN[39, 40, 41]

and the AlGaN/GaN heterostructure[42, 43, 44]. For the bulk MC simulation, most

reports implemented a multiple-valley model, in which the electrons can be scattered

into higher valleys when they gain high enough energy.
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Figure 1.6: Flowchart of the single-particle MC simulation

For the heterostructure Monte Carlo simulation, previous research has tended

to focus on one specific configuration, corresponding to a fixed structure of the

potential well of the 2DEG. It is not mentioned in the literature to date that The

alteration of the potential well itself would change the results of the MC simulation.

Such research is needed because the potential well parameters are strongly dependent

on the configuration and applied voltage across the heterostructure. There is thus

a need for investigation of how potential well alteration changes electron transport

properties.
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Chapter 2

Germanium (Ge) Band Structure Calculations

In this chapter, we focus on Ge as one of our post-silicon semiconductors. We

examine the basic electronic properties, where the typical starting point is usually

the electronic energy band structure, which provides the electron energy versus

electron wave-vector relationship. From the band structure, virtually all of the

electronic properties of the material can eventually be obtained. The properties

include bandgap, effective mass and density of states. As a result, virtually all

electron transport properties and all optical properties are contained within the

band structure. In this work, we will focus on the optical properties of Ge and how

they can be engineered by physically altering the lattice structure. The change in

the lattice structure gives rise to a variation in the band structure, and thus the

electric and optical properties. In this chapter we perform calculations which guide

the distortion of the lattice in order to change the bandgap and thus engineer the

optical properties of Ge.

As is mentioned in the previous chapter, Ge is an indirect bandgap (∼ 0.66eV )

material, but with a relatively small offset (∼ 0.14eV ) between the direct and indi-

rect bandgap. The bandgap of Ge makes it a candidate for photo detection in the

SWIR range. However, its bandgap being indirect means the material suffers from

a relatively large dark current.
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By straining the material in a proper orientation, it is possible to transform

Ge into a direct bandgap material. In order to analyze this transition phenomenon,

EPM is utilized to calculate the band structure of Ge. EPM has relatively low

computational expenses and uses parameters extracted from experimental data, thus

it guarantees a reasonable agreement with experiments. To verify the method,

calculation results will be compared to experimental data.

2.1 Empirical Pseudopotential Method (EPM) for Calculating Ger-

manium (Ge) Band Structure

EPM solves the one-electron Schrödinger equation, described in Eq. 2.1:

(
− h̄2

2m
∇2 + V (~r)

)
ψ(~r) = Eψ(~r) (2.1)

where,

ψ(~r) is the wave function solution for the equation

V (~r) is the potential experienced by the electron

E is the total energy of the electron

m is the rest mass of an electron

The method starts with the standard approach of transforming the Schrödinger

equation into a system of algebraic equations [18].

Based on Bloch’s theorem, the wave function of a crystal can be expressed in

the form of:
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ψ(~r) = e−i
~k·~r · u(~r) (2.2)

where e−i
~k·~r represents a plane wave, ~k is the wave vector and u(~r) is a Bloch

function with the same periodicity as the lattice. The same periodicity can also be

applied to the potential term V (~r). Because of the periodicity, both u(~r) and V (~r)

can be transformed into Fourier’s series:

u(~r) =
∑
~G

U(~G)ei
~G·~r (2.3)

V (~r) =
∑
~G

V (|~G|)ei ~G·~r (2.4)

where:

~G is the translation vector of the reciprocal lattice points;

V (~G) is the Fourier coefficient of the periodic potential;

U(~G) is the Fourier coefficient of the Bloch function.

By substituting Eq. (2.4) and Eq. (2.3) back into Eq. (2.1), the Schrödinger

equation can be transformed into an algebraic equation:

[
h̄2(~k + ~G)2

2m

]
U(~G) +

∑
~G′

V (|~G− ~G′|)U( ~G′) = E U(~G) (2.5)

For each individual ~G, an equation can be constructed from Eq. 2.5. The

number of equations is equal to the number of ~G being considered. This series of

equations can be reorganized into a matrix from, which is expressed as follows:
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
H11 . . . H1n

...
. . .

...

Hn1 . . . Hnn




U( ~G1)

...

U( ~Gn)

 = E


U( ~G1)

...

U( ~Gn)

 (2.6)

where:

Hij =


[
h̄2(~k+ ~G)2

2m

]
+ V (0), i = j

V (| ~Gi − ~Gj|), i 6= j

(2.7)

By finding the determinant of this matrix equation and solving the character-

istic equation, the eigenvalues (the energies) at each ~k point can be obtained. This

process will be repeated for every ~k point of interest. To construct the complete

band structure of Ge, all ~k points in the BZ, or at least the points in the irreducible

wedge, need to be evaluated. Nonetheless, considering the symmetry of the BZ, a

specific path that connects all the high symmetry point will be a good representative

of the total band structure.

2.2 Crystal Structure for Germanium (Ge)

As mentioned above, the crystal structure for Ge is diamond, which is shown in

Fig. 1.1. The three primitive lattice vectors1 to describe a diamond crystal structure

1Notation: for real space and reciprocal space vectors throughout this work, the different com-

ponents of the vectors are separated by commas, and are within parentheses.
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are listed below:

a1 = a0(
1

2
,
1

2
, 0) (2.8)

a2 = a0(0,
1

2
,
1

2
) (2.9)

a3 = a0(
1

2
, 0,

1

2
) (2.10)

where:

a0 is the lattice constant of the conventional unit cell of Ge.

The diamond structure is constructed from a face-centered cubic crystal de-

scribed by the three vectors above using an elementary pattern, which is also shown

in Fig. 1.1. If the mid-point of the basis is chosen as the origin, the vectors for the

elementary pattern are given in Eq. 2.11:

~rb = a0

(
1

8
,
1

8
,
1

8

)
(2.11)

At each location of rb and −rb, there is an atom. If both atoms are of the

same element, the crystal is a diamond structure. If they are different elements, the

crystal is a Zinc-Blende crystal.

Considering that the potential in a crystal is periodically repeated by the

primitive vector, the potential can be expanded into a Fourier series of V (~G)′s as in

Eq. 2.4, which is expressed as follows:

V (|~G|) =
2

Ω

∫
Ω

d~r V (~r) ei
~G·~r (2.12)

where Ω is the volume of the unit cell.

In the equation, the total potential will be expressed as the sum of the two
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atoms in the elemental pattern:

V (~r) = V1(~r + ~rb) + V2(~r − ~rb) (2.13)

where V1 and V2 are the potential of the nuclei of the two-atom bases, respec-

tively.

Plug the above expression back into V (~G) equation:

V (|~G|) =
[
V1(|~G|)e−i ~G·~rb + V2(|~G|)ei ~G·~rb

]
/2 (2.14)

=
V1(|~G|) + V2(|~G|)

2

[
cos(~G · ~rb)

]
+
V1(|~G|)− V2(|~G|)

2

[
−isin(~G · ~rb)

]
= Vs(|~G|) cos(~G · ~rb) + Va(|~G|)

[
−isin(~G · ~rb)

]
= Vs(|~G|) Ss + Va(|~G|) Sa

where Vs and Va are called symmetry and anti-symmetry form factors, re-

spectively; and Ss and Sa are called symmetry and anti-symmetry structure factors

respectively for either diamond or zinc-blende structure.

For The Ge band structure calculation, V1 = V2 in Eq. 2.14. Therefore, Va = 0,

as there are only symmetry form factors (Vs) and symmetry structure factors (Ss)

for Ge.

The first Brillouin zone (BZ) of Ge is shown in Fig. 1.2 and is presented here

again in Fig. 2.1. The coordinates for the labeled high symmetry points are listed

below:
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Figure 2.1: The reciprocal lattice for Ge crystal with high symmetry points labeled.

Γ = (0, 0, 0)

X = (0,
2π

a0

, 0)

W = (
π

a0

,
2π

a0

, 0)

K = (
3π

2a0

,
3π

2a0

, 0)

L = (
π

a0

,
π

a0

,
π

a0

)

(2.15)

The k-point path for the band structure calculation is selected as: L-Γ-X-

K-Γ. The calculation of band structure along the high symmetry k-point path is

considered a good representation of the band structure of the entire BZ.
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The primitive vectors for the reciprocal lattice are as follows:

b1 =
4π

a0

(
1

2
,
1

2
,−1

2

)
(2.16)

b2 =
4π

a0

(
−1

2
,
1

2
,
1

2

)
(2.17)

b3 =
4π

a0

(
1

2
,−1

2
,
1

2

)
(2.18)

Therefore the ~G′s expressed in Eq. 2.14 can be expressed as follows:

~G = l · b1 +m · b2 + n · b3 (2.19)

where: l,m, and n are integers.

Now we build on these basics and use the empirical pseudopotential to obtain

the band structure for Ge.

Theoretically, to restore the wave function, required ~G′s are infinite; nonethe-

less, a cut-off of |~G|2 is considered sufficient to give the wave function with enough

precision. In this report’s case, the cut-off is set at 11 with the unit of (2π/a0)2[6] [7],

which includes |~G|2 = 0, 3, 4, 8, 11. As an example, to get |~G|2 = 3, all the possible

combinations of b1, b2, b3 are: b1, b2, b3, b1 + b2 + b3, −b1, −b2, −b3, −(b1 + b2 + b3).

All the included ~G’s are presented in Table 2.1. Permutations of the same

family of ~G group are presented by one of the members in the table.

Table 2.1: ~G groups included in the EPM calculation of Ge band structure

|~G|2 ~G group number

unit:(2π/a0)2 unit: 2π/a0 of permutations

0 (0,0,0) 1

3 (1,1,1) 8

4 (2,0,0) 6

8 (2,2,0) 12

11 (3,1,1) 24
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There are total 51 of ~G’s included in the EPM calculation for Ge band struc-

ture. And 5 unique values for V(|~G|) are required, which are noted V(0), V(
√

3),

V(
√

4), V(
√

8), V(
√

11) for simplicity. Among the 5 required V(|~G|)’s, V (0) is es-

sentially the overall offset of the final band structure. It won’t affect the bandgaps,

which are the differences between energy bands. For V (
√

4), the corresponding ~G

group is the (2,0,0) family, as shown in Table 2.1. Taking ~G = 2π/a0 · (2, 0, 0) as an

example, we can calculate the symmetry structure factor Ss, as shown below:

Ss = cos(~G · ~rb) (2.20)

= cos

((
2 · 2π

a0

, 0, 0

)
·
(
a0

8
,
a0

8
,
a0

8

))
= cos(

π

2
) = 0

Similar calculations can be conducted on all the permutations of the (2, 0, 0)

family and the same conclusion can be drawn that the structure factor Ss associated

with V (
√

4) is always 0. Therefore, it is unnecessary to obtain a form factor for

V (
√

4). All the other necessary form factors are presented in Table 2.2.

By using pseudopotential rather than all electron potential, the calculation

is focused on the electric properties of valence electrons, and the calculated band

structure is the valence band and the conduction band for the valence electrons.

By empirically selecting the appropriate values for the form factors, the EPM is

considered suitable to construct the right band structure of Ge.

As mentioned previously, it is insufficient to calculate the band structure of Ge

with only consideration of the local form factors, where all valence electrons feel the
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same core pseudopotential. For a better approximation, a nonlocal compensation

is also required to accommodate the assumption that different orbitals of electrons

feel different core pseudopotentials.

The algebraic form of the Schrödinger Equation, with the inclusion of the

nonlocal term, is shown below:

 h̄2
(
~k + ~G

)
2m

U (~G)+
∑
~G′

{[
V
(
~G− ~G′

)
+ V NL

ps

(
~k, ~G, ~G′

)]
U
(
~G′
)}

= E ~G

(2.21)

where V NL
ps is the nonlocal compensation term for the EPM calculation, as

expressed in Eq. 2.22 [7].

V NL
ps

(
~k, ~G, ~G′

)
=

4π

Ωa

∑
l

Al(2l + 1)Pl(cos θKK′)

×S( ~K − ~K ′)Fl(K,K
′) (2.22)

where:

~K = ~k + ~G and K = | ~K|, with units of m−1

~K ′ = ~k + ~G′ and K ′ = | ~K ′|, with units of m−1

θKK′ is the angle between ~K and ~K ′

l is the angular quantum number of the core electrons

Al is the coefficient for l, with units of J

Pl(x) are Legendre polynomials

S(~G) is the form factor as expressed in Eq. 2.14

Fl(K,K
′) is expressed in Eq. 2.23 as follows:
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Fl(K,K
′) =



(1/2R2
l ){[jl(KRl)]

2 − jl−1(KRl)jl+1KRl}, K = K ′

R2
l /(K

2 −K ′2)[Kjl+1(KRl)jl(K
′Rl)

−K ′jl+1(K ′Rl)jl(KRl)]], K 6= K ′

(2.23)

where:

Rl is the cut-off radius of nonlocal effect;

jl(x) are spherical Bessel functions with argument of x.

In Ref [7], it is stated that only the contribution from l = 2 is significant for

the EPM band structure calculation of Ge. Therefore, Equ. 2.22 can be simplified

as:

V NL
ps

(
~k, ~G, ~G′

)
=

4π

Ωa

A2 · 5 · P2(cos θKK′)

×S( ~K − ~K ′)F2(K,K ′) (2.24)

The nonlocal parameters for the inclusion of the nonlocal effect of the EPM

calculation are also listed in Table. 2.2.

2.3 Calculation Results

The methodology for solving the one-particle Scrödinger equation is explained

in the previous section. For each ~k point on the chosen high symmetry k-point

path, a matrix equation is constructed using Eq. 2.21. The matrix equation is then
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Table 2.2: Form factors for the calculation using (EPM) of Ge[6] [7].

Lattice Nonlocal

constant Form factors parameters

a0 |~G|2 3 8 11 A2 R2

5.658Å Vs(|~G|) -0.23Ry 0.01Ry 0.06Ry 0.275Ry 1.22Å

solved and eigenvalues are extracted. The lowest 8 solutions of the matrix equation

represent the 4 top-most valence band energy and 4 bottom-most conduction band

energy for the specific ~k point used to construct the matrix equation. After repeating

such process for all the ~k points on the hight symmetry k-point path, curves can be

drawn to connect the eigenvalues corresponding to the save energy band, forming a

band structure plot.

The calculation results of the band structure along the high symmetry k-point

path mentioned above are shown in Fig. 2.2.

The simulation results indicate that Ge is an indirect band gap material with

a conduction band minimum at the L point, the valence maximum at the Γ with a

band gap of 0.66 eV. The direct Γ point conduction minimum has a direct bandgap

of 0.8eV. The results from the calculation of the band structure are compared to

experimental data and are listed in Table. 2.3.

In addition to the results along the selected k-point path, band structure

calculations are also conducted on the specific 2D planes that cut through the first

BZ. The planes are selected to pass through the high symmetry points displayed

alongside the band structure calculation results in these various planes.
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Figure 2.2: Calculation results of the band structure of Ge in this work.

Figure 2.3: Band structure illustration for Table. 2.3 (source: http://www.ioffe.ru/

SVA/NSM/Semicond/Ge/bandstr.html)
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Figure 2.4: Contour of the 2D band structure of (a) the top-most valence band

(TVB) and (b) bottom-most conduction band (BCB) along Plane A and (c) BCB

along Plane B. The units of the axes are 2π/a0. The unit of the color bar is eV.

The high symmetry points are also labeled on the band structure graph. Of all the

equivalent points, only one is labeled.
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Table 2.3: EPM calculation compared to experimental data and first principle cal-

culation collected from literature. The energy levels listed below are illustrated in

Fig. 2.3.

EPM Experiment

Eg(eV ) 0.66 0.66

EΓ1(eV ) 0.796 0.8

EX(eV ) 1.005 1.2

EΓ2(eV ) 3.073 3.22

∆E(eV ) 0.832 0.85

These calculations form the foundation for the band structure engineering

which is presented in the next chapter.
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Chapter 3

Germanium Band Structure Under Strain

As mentioned in previous chapters, a direct bandgap Ge is desired for the

application of photo detection in the SWIR range. Straining the material is one

possible method of transforming Ge from an indirect to a direct bandgap material.

The band structure of Ge is subject to change when strain is applied to the lattice.

Tensile strain tends to decrease both the direct (Eg−Γ) and indirect (Eg−L) bandgaps.

How they change, however, depends on the type of strain applied (uniaxial, biaxial,

or hydrostatic) and the orientation on which the strain is applied.

3.1 Strain Translation of Ge Crystal

Strain is the fraction of the change in the crystal lattice’s dimension, from its

original dimension, after deformation by an applied force. There are two coordinate

systems involved in strain translation: (1) the one to describe the Ge crystal lattice

(using subscripts xyz) and (2) the one to directly describe the applied strain (using

subscripts x′y′z′). For a cubic lattice crystal such as Ge, There are three different

types of strain: uniaxial, biaxial and hydrostatic, which are defined as follows:

(a) Uniaxial: the stress is applied along a certain direction, such as in a nanowire;

(b) Biaxial: the stress is applied on a certain plane, such as in a deposited film on

a substrate;
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(c) hydrostatic: the stress is applied equally on all three directions.

The three basic strain types can be expressed by a diagonal strain tensor:

¯̄ε′(x′y′z′) =


εx′x′ 0 0

0 εy′y′ 0

0 0 εz′z′

 (3.1)

In this expression of strain, the assignment of the x′ unit vector of the x′y′z′

coordinate system is dependent on the type of the strain. For uniaxial strain, the x′

unit vector is assigned in the same direction as the applied strain; while for biaxial

strain, it is assigned the direction perpendicular to the plane the strain is applied

on. For hydrostatic strain, the x′y′z′ coordinate system is assigned the same as the

xyz.

The two coordinates systems can also be expressed as a 3 × 3 matrix (xyz

and x′y′z′ for xyz and x′y′z′). The two coordinate system matrices are connected

through a translation matrix noted as T :

x′y′z′ = T · xyz (3.2)

The stress tensors σ(xyz) and σ(x′y′z′) are also connected through the trans-

lation matrix T :

σ(xyz) = T
T
· σ(x′y′z′) · T (3.3)

The two stress vectors both satisfy Hooke’s law under their own coordinate

system:

~σ(xyz) = ¯̄c(xyz) · ~ε(xyz) (3.4)

~σ(x′y′z′) = ¯̄c(x′y′z′) · ~ε(x′y′z′) (3.5)
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where ¯̄c(xyz) and ¯̄c(x′y′z′) are the elastic constant matrices under coordinate

systems xyz and x′y′z′, respectively. The translation between the two elastic con-

stant matrices is given in detail in Ref. [45].

3.2 Band Structure Calculation Using the Empirical Pseudopotential

Method (EPM) for Strained Germanium (Ge)

The previous section described the method of translating the strain tensor (¯̄ε′)

from the original coordinate system to that (¯̄ε) with the coordinates in which the

crystal lattice is described.

Because of the applied strain, the primitive vectors (~a1, ~a2 and ~a3) used to

describe the original unstrained lattice are changed, as well as the vector used to

describe the basis of the diamond crystal structure (~rb). The change is described by

the obtained ¯̄ε′:

~ai
′ = (¯̄1 + ¯̄ε) · ~ai (3.6)

~rb
′ = (¯̄1 + ¯̄ε) · ~rb (3.7)

where: i = 1,2,3

As the lattice vector is distorted, the reciprocal lattice will also be so. There-

fore the three discrete values of V (~G) must expand into a continuous curve to ac-

commodate the continuously changing |~G| values under arbitrary strain. A cubic

spline interpolation of the atomic form factors is used here for purpose[46], which is
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Table 3.1: Coefficients for continuous form factors for EPM for Ge[47].

Parameter Value (a.u.) Parameter Value (a.u.)

C1 23.31608 C4 0.97655

C2 2.50648 C5 5.0

C3 0.63901 C6 0.3

described as follows:

V (|~G|) =
1

Ωa

C1(|~G|2 − C2)

exp
[
C3(|~G|2 − C4)− 1

] [1

2
tanh

(
C5 − |~G|2

C6

)
+

1

2

]
(3.8)

where:

C1-C6 are fitting parameters.

Ωa is the volume of the primitive cell.

The coefficients mentioned in Eq. 3.8 are listed in Table 3.1.

3.3 Results and Analysis

3.3.1 Strain Along Commonly Used Orientations

The calculations are first conducted on the commonly used orientations of the

three basic strain types. In the example in Fig. 3.1, the direct-indirect bandgap

transition happens with the right type of strain and a sufficient amount of it.

(This transition is when the Ge transforms from an indirect to a direct bandgap

semiconductor after the proper strain is applied.) As shown in Fig. 3.1 by the

dashed/double-dotted curve, the original unstrained band structure has an indirect

bandgap, with the L valley lower than the Γ valley. When a 1.7% tensile strain is
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Figure 3.1: Band structure of Ge. Dashed/double-dotted line is for 0 % strain; Solid

line is for biaxial strain of 1.7% on {100} plane.

applied on the {100} plane, it can be observed on the graph that both valleys are

pushed downwards, though the Γ valley is pushed further than the L valley. With

this amount of the strain, the Γ valley reaches the same level as the L valley. This is

the point at which Ge transforms from indirect bandgap material to direct bandgap

material. It is worth pointing out that in Ref. [1], a biaxial strain of 2.33% on a

{100} plane is achieved, making the 1.7% strain required for the transition feasible

in real application.

In Table 3.2, the calculation results are presented for the commonly used

orientation. In Table 3.2, strain at transition point (STP) and bandgap at transtion

point (BTP) are defined as ”N/A” when no amount of strain will be sufficient enough

to achieve the indirect-direct transition before the bandgap decreases to zero and/or
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Table 3.2: Calculation results of strained Ge and comparison with reported values:

STP and BTP.

Orientation STP BTP Reported STP Reported BTP

Uniaxial

〈100〉 6.2% 0.29eV

〈110〉 N/A N/A

〈111〉 3.7% 0.50eV 4.2%[62] 0.34eV[62]

Biaxial

{100} 1.7% 0.49eV 2%[63], 1.7%[1] 0.48eV[63], 0.47eV[1]

{110} 2.1% 0.45eV

{111} 4.0% 0.10eV

Hydrostatic

0.86% 0.636eV

L valley is pushed below valence band maximum along the specific orientation.

Of the three types of strain, hydrostatic strain is preferred, because the tran-

sition can be achieved with the lowest amount of strain and the remaining bandgap

very much preserved. However, the major problem lies in how to engineer this kind

of strain, given that the tensile strain is required in all directions, thus the material

must be stretched in all directions at once.

For the other two types, the application of the strain can be engineered prac-

tically. Biaxial strain can be applied on a film if it is deposited on a substrate with

a larger lattice constant[52] or through the fabrication of nanomembranes[1]. In

addition, the film needs to be thin enough before the strain is released through the
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formation of dislocations. The fabrication of nano wires gives rise to the possibility

of applying uniaxial strain to a material[53].

3.3.2 Strain Along Arbitrary Orientation

As mentioned in Chapter 1, a Si substrate is not perfectly cut along a chosen

orientation (such as a {100} plane), but cut with a miscut angle. This miscut

angle passes onto the grown structure atop; in our case, a Ge layer or nanowire.

The engineered applied strain on the Ge epilayer is subsequently misaligned with

the chosen orientation. The effect of this alignment on the indirect-direct bandgap

transition phenomenon will be investigated in this section.

hydrostatic strain is the only one of the three types of strain (uniaxial, biaxial

and hydrostatic) to have a uniform strain along all directions; thus, only uniaxial

and biaxial strain are considered in terms for the effect of arbitrary orientation.

To visualize the arbitrary orientation more easily, a projection of the Miller

indices of the orientation is applied.

Taking uniaxial strain as an example, the Miller index of any arbitrary direc-

tion is expressed by a combination of three integers, noted as 〈lmn〉. Considering the

symmetry of the Ge crystal, it is reasonable to assign to n the maximum absolute

value of l,m, and n, as expressed as follows:

max(|l|, |m|, |n|) = |n| (3.9)
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The Miller index of this arbitrary direction can now be rewritten:

〈lmn〉
max(l,m, n)

=
〈lmn〉
n

= 〈 l
n

m

n
1〉 (3.10)

where:

−1 ≤ l

n
≤ 1 (3.11)

−1 ≤ m

n
≤ 1

After applying the aforementioned method, any arbitrary direction can be

projected onto a plane as shown in Fig. 3.2. After the projection, the first two

numbers of the indices will be the coordinates in the square, and the third number

will always be 1. To be more specific, the center of the square corresponds to the

〈001〉 family, the corners correspond to the 〈111〉 family, while the mid-points of the

sides correspond to the 〈011〉 family. Finally, the shaded triangle in the figure is the

irreducible wedge of all the unique orientations. Therefore, all other points in the

square can be represented by the points in the shaded triangle and be treated as a

family (e.g. [124], [214], [1̄24], [12̄4] and so on, all belong to the family 〈124〉).

The same analogy can be applied to Miller indices for planes. Several examples

of the projection are illustrated in Fig. 3.3.

Similarly, the center of the square corresponds to the {0, 0, 1} family, the cor-

ners correspond to the {1, 1, 1} family, while the mid-points of the sides correspond

to the {0, 1, 1} family.

Using the method described above, the BTP and STP under uniaxial strain

and biaxial strain under arbitrary orientation are calculated. The results are mapped
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Figure 3.2: Projection from Miller indices for directions of 2D coordinates inside a

square with the range of −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. Several examples of the

projection are also illustrated.

Figure 3.3: Projection from Miller Indices for planes to 2D coordinates inside a

square with the range of −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. Several examples of the

projection are also illustrated.
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Figure 3.4: BTP and STP vs. different orientations of the plane under uniaxial

strain. The values of the contour curve represent the values of BTP (top) or STP

(bottom) at the orientation represented by the coordinates of the point. The unit

for BTP is eV. The center of the graph has the Miller index of 〈001〉.
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Figure 3.5: BTP and STP vs. different orientations of the crystal direction under

biaxial strain. The values of the contour curve represent the value of BTP (top) or

STP (bottom) at the orientation represented by the coordinates of the point. The

unit for BTP is eV. The center of the graph has the Miller index of {001}.
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onto a contour graph on a square ranging from −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. The

simulation results are shown in Fig. 3.4 and Fig. 3.5.

The simulation results displayed in Fig. 3.4 and Fig.3.5 also show the optimal

orientations for both biaxial and uniaxial strain cases, as discussed in the previ-

ous section. 〈111〉 is the optimal direction for applying uniaxial strain to achieve

the transition, and {100} is the optimal plane for applying biaxial to achieve the

transition. Additionally, the dotted region in Fig. 3.4 means that the orientation

represented by the coordinates in the region cannot achieve the indirect-direct tran-

sition before either the direct or the indirect bandgap hits zero.

For both uniaxial and biaxial cases, the transition at the optimal orientation

is sensitive to any misalignment, as evidenced by the STP increasing and the BTP

decreasing with rather noticeable slopes in Fig. 3.4 and Fig. 3.5 when the point

moves away from the optimal orientation. To quantify this change, Fig. 3.6 and

Fig. 3.7 are plotted using the results from Fig. 3.4 and Fig. 3.5.

Fig. 3.6 contains the calculated BTP and STP values on the specific path

in Fig. 3.4. The x axis of the plot in Fig. 3.6 represents the selected path of the

directions (〈100〉-〈111〉-〈110〉), where 〈111〉 is the optimal direction for achieving the

transition for applying uniaxial strain. When tilting from the optimal direction of

〈111〉 towards 〈100〉, the average slopes of BTP and STP are 19.8meV/degree and

0.138%/degree, with a cutoff angle of approximately 25.0◦. When tilting from 〈111〉

towards 〈110〉, the average slopes of BTP and STP versus angle are approximately

17.6meV/degree and 0.117%/degree, with the cutoff angle of 28.1◦. At the 〈100〉

direction, the material is expected to achieve the transition at the strain level of
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Figure 3.6: BTP and STP under uniaxial strain on path 〈100〉-〈111〉-〈110〉. 〈111〉 is

the optimal direction for achieving the indirect-direct transition for applying uniaxial

strain.
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Figure 3.7: BTP and STP under biaxial strain on path {111}-{100}-{110}. {100}

is the optimal plane for achieving the indirect-direct transition for applying biaxial

strain.

8.28% and a BTP of 0.123 eV. However, this transition point behaves as an isolated

point on the curve in Fig. 3.6. This means that the transition phenomenon at this

direction is extremely sensitive to misalignment.

Fig. 3.7 contains the calculated BTP and STP values on the specific path in

Fig. 3.5. The x axis in Fig. 3.7 represents the selected path of the directions {111}-

{100}-{110}, where {100} is the optimal direction for achieving the transition for

applying uniaxial strain. When tilting from the optimal direction {100} towards

{111}, the average slopes of BTP and STP are 15.3meV/degree and 0.076%/degree.

When tilting from {100} towards {110}, the average slopes of BTP and STP versus

angle are approximately 9.9 meV/degree and 0.049%/degree. In contrast to the

uniaxial cases, when biaxial strain is applied to any arbitrary plane, the material is
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expected to produce the indirect-direct transition at sufficient amount of strain.

Both uniaxial and biaxial strain cases share some similarities with the indirect-

direct transition phenomenon around the optimal orientation, which has a relatively

high sensitivity to the misalignment with respect to optimal orientation. Nonethe-

less, in the biaxial strain case, if the applied plane is not chosen as the optimal {100}

plane, but the {110} plane, then the transition curve of BTP and STP, as is shown

in Figure. 3.7, is relatively smooth and flat around the {110} point, indicating a

rather high resistance against the possible misalignment along this specific orienta-

tion. In addition, the BTP at {110} is only 0.02eV smaller than that of {100} and

the STP at {110} is only 0.3% higher than that of {100}. The sacrifice is minimum

to switch the plane to apply the biaxial strain on {110} rather than {100} to gain

a better stability of the indirect-direct transition phenomenon.
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Chapter 4

Band Structure of Germanium-Tin (GeSn) alloy

Other than applying strain to Ge to transform it from an indirect bandgap

material to a direct material, this transition can also be achieved by alloying Ge

with Sn.

The band structure of a GeSn alloy is considered a deviation from the band

structure of a pure Ge material, with two factors contributing to the change: 1) the

change of the lattice constant of the alloy from pure Ge in the form of hydrostatic

strain, and 2) the change of the potential resulting from the alloying of Sn atoms

into Ge materials.

As discussed and showed in the previous chapter, the EPM can provide ac-

curate bandgaps once a proper pseudopotential is determined. The EPM is able

to provide the correct bandgap energy for group IV crystalline materials, including

Ge and Sn[6]. In this chapter, we build on the success of the EPM and present

a method that combines EPM and strain and perturbation theory. This approach

calculates the band structure of the Ge-Sn alloy and the influence of the fraction of

Sn on the bandgap.

In this method, we take advantage of the efficient computational requirement

of the EPM. The change of the lattice constant of the alloy is included in the EPM

calculation as a form of hydrostatic strain. The EPM calculation gives the band
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Table 4.1: Form factors for the calculation using EPM of Sn. |~G|2 are in unit of

(2π/aSn)2, where aSn is the lattice constant of Sn[7].

lattice constant Form factor

aSn |~G|2 3 8 11

6.489Å Vs(|~G|) -0.19Ry 0.008Ry 0.04Ry

structure and wave functions of the alloy under the effects of strain. In addition, we

treat the difference in the potential introduced by Sn as a perturbation of the system.

By comparing the energy difference resulting from the combination of changing

lattice constant and potential perturbation, the relationship between the bandgap

and the fraction of Sn in the alloy can be obtained.

4.1 Band Structure Calculation for Germanium (Ge) and Tin (Sn)

using the Empirical Pseudopotential Method (EPM)

The band structure calculation of Ge is conducted in Chapter 2 and the result

is shown again here in Fig. 4.1 (top).

By utilizing the EPM described in Chapter 2, we can perform the band struc-

ture calculation on Sn using the form factors listed in Table 4.1. The calculated

band structure for Sn is presented in Fig. 4.1 (bottom).

As shown in Fig. 4.1, Ge is an indirect bandgap material with the conduc-

tion band minimum located at the L point; while Sn is a semiconductor with zero

bandgap, with the conduction band minimum in touch with the valence band max-

imum at the Γ point, while the conduction at the L point is still above that at the
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Figure 4.1: Top: Calculation results of the band structure of Sn. Bottom: Calcula-

tion results of the band structure of Ge.
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Γ point. The sharp point of the conduction band minimum at the Γ point in the Sn

material is expected to lower the conduction band at the Γ point in Ge by alloying

Ge with Sn. Intuitively speaking, with an increasing Sn fraction, the Γ point in the

conduction band of the Ge band structure will eventually become lower in energy

than the L point in the conduction band, thus making Ge-Sn alloy a direct bandgap

material.

4.2 Volume Change for Germanium-Tin (GeSn) alloy

We first consider the effect of the introduction of volume change on the alloy

band structure.

Sn alloyed with Ge causes a change in the lattice constant, which introduces

a volume change to the crystal. Vagard’s Law states that the lattice constant of an

alloy is a linear interpolation of the two component elements with respect to their

mole fraction. Practically, there is a deviation from this linear interpolation and a

second order correction is necessary to accurately describe the lattice constant of the

alloy[14, 19]. The relationship between the lattice constant of GeSn and χ, where χ

is a fraction of Sn to the total number of atoms in the alloy, is expressed as[17]:

aGeSn(χ) = aGe · (1− χ) + θ · χ(1− χ) + aSn · χ (4.1)

where θ is called the bowing parameter, which is the coefficient for the second

order correction for Vegard’s Law.

The change in lattice constant is present in all directions in the crystal. Thus
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this change can be expressed in the form of a hydrostatic strain, which is given in

Eq. (4.2) and Eq. (4.3). As well as the mole fraction of Sn, the bowing parameter θ

also determines the strain, which is a coefficient for the second order correction to the

linear approximation of the change in lattice constant with respect to χ. However,

different values of the bowing parameter are found in the literature. Those extracted

from experiments range from 0.00882Å [17] to 0.221Å[19]. There are also various

published bowing parameter values based on first principle calculations[48].

Variation in published bowing parameters exists, despite the use of the same

growth method (as in Ref. [17] and Ref. [19]) or calculation method (as in Ref. [48]

and Ref. [49]). The reason for this variation is unknown. In Table 4.2, some pub-

lished bowing parameters are presented alongside the method used to obtain the

values.

Because of the wide range of values reported for different measurements and

calculation methods, we treat the bowing parameter as an independent quantity in

the band structure calculations of the Ge-Sn alloy. Thus, in addition to ascertaining

the effects of Sn concentration on Ge bandgap, we also used our work to evaluate the

proposed values of the bowing parameter. The lattice constant aGeSn(χ) in Eq. (4.1)

is therefore re-expressed as aGeSn(χ, θ).

The volume change is expressed in the form of hydrostatic strain, the tensor

form of which can be expressed as follows:
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Table 4.2: Reported bowing parameter (θ) and the corresponding used method.

Bowing Fabrication/Calculation

Parameter(Å) Method

0 Vegard’s Law

Chemical Vapor Deposition (CVD)[50]

0.00882 Molecular Beam Epitaxy (MBE)[17]

0.0713 DFT calculation with

Local Density Approximation (LDA)[48]

0.166 CVD[14]

0.211 MBE[19]

0.3 LDA DFT calculation[49]

¯̄ε(χ, θ) =


εxx(χ, θ) 0 0

0 εyy(χ, θ) 0

0 0 εzz(χ, θ)

 (4.2)

where,

εxx(χ, θ) = εyy(χ, θ) = εzz(χ, θ) =
aGeSn(χ, θ)− aGe

aGe
(4.3)

The strain tensor ¯̄ε is, therefore, also a function of parameters χ and θ. As a

result of the strain, the lattice is distorted. Subsequently, the lattice vectors (~a1,2,3)

and reciprocal lattice vectors (~b1,2,3) change accordingly. The changes in both sets

of vectors are expressed in Eq. (4.4) and Eq. (4.5).
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~a′1,2,3(χ, θ) = (1 + ¯̄ε(χ, θ))~a1,2,3 (4.4)

~b′1,2,3(χ, θ) = 2π
~a′2,3,1 × ~a′3,1,2

~a′1,2,3 · (~a′2,3,1 × ~a′3,1,2)
(4.5)

4.3 Accounting for Potential Energy Changed from Tin (Sn) Substi-

tution

In addition to changing volume, substituting Sn atoms for a fraction of the

Ge atoms will also change the potential energy of the valence electrons due to their

different nuclear and electronic charges.

Previous research highlights that approximately 90% of Sn is alloyed into Ge

substitutionally[19]. Therefore, the perturbation resulting from the substitution of

Sn is actually the potential difference between a Ge atom and a Sn atom at one

Ge site in the lattice. For the first order perturbation theory described above to

work, the pseudo-potentials of a single Ge atom and a single Sn atom are needed.

As both Ge and Sn are in group IV, and the pseudo-potential method is adequate

to produce the right information about the energy band structure, the perturbation

is considered to be the pseudo-potential difference between Ge and Sn.

Tables 2.2 and 4.1 give the form factors needed to calculate the band structure

of both Ge and Sn. These form factors are essentially the Fourier coefficients due to

the periodicity of the zinc-blende structure for Ge and Sn, which can thus be used to

reconstruct the space dependent pseudopotential of the crystal. However, the space

dependent pseudopotential extracted through the ”inverse” Fourier transformation
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can only give the pseudopotential of the periodic crystal. In order for our method

to work, we need to reconstruct the space dependent pseudopotential for just a

single atom from the periodic pseudopotential, so that we can extract the difference

between a single Ge atom and a single Sn atom. This difference can then be treated

as the perturbation to a pure Ge crystal.

4.3.1 Genetic Algorithm for Single Atom Pseudopotential

The single atom pseudopotential is obtained by applying a genetic algorithm.

The flowchart for implementing this is shown in Fig. 4.2.

The genetic algorithm mimics life’s evolutionary process. The ”life” tested in

the ”environment” is a single atom pseudopotential. The ”environment” that ”life”

depends on to survive is the space-dependent pseudopotential of the crystal. The

chosen process is evaluated by a fitness parameter, which determines the extent to

which a ”life” is adapted to the ”environment”. After the chosen process, the parent

”lives” are to pass on their DNA to the next generation of ”lives”. The probability

of a parent’s DNA being passed onto its child is determined by the fitness parameter.

The higher the fitness, the greater the probability of having its DNA passed on. A

single atom pseudopotential is discretized by sampling the pseudopotential at equal

intervals, from the nucleus to a cutoff radius. This set of sampled pseudopotential

is considered its ”DNA”.

A more detailed description is listed below:

Step 1: The first step of the genetic algorithm is to initialize a large pool of in-
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Figure 4.2: Flowchart of the genetic algorithm for extracting single atom pseudopo-

tential.
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dividuals with randomized DNA series. The bigger the pool, the greater the variety,

which gives a better chance for the species to find its best fit to the environment.

Too large of a pool will slow down the evolution process. However, if a pool is too

small, although the process is faster, the initial variety of DNA will put a constraint

on the speed of convergence. In this simulation, an initial population of 1000 is

chosen.

Step 2: Each single atom potential is used to calculate the crystal potential.

The crystal lattice is discretized within the primitive zone using a 20×20×20 mesh.

At each mesh point, the total potential is the sum of the single atom potentials of all

nearby atoms within the cut-off radius. For atoms beyond the cut-off radius, their

potential is considered to be zero. In this simulation, the cut-off radius is chosen as

the lattice constant of the Ge crystal.

Step 3: The calculated crystal potentials are compared to the testing crystal

potential calculated using the form factors at each mesh point.

Step 4: The inverse of the sum of the total absolute value of the difference

between the two crystals’ potentials is calculated and treated as the fitness parameter

for each individual. All fitness parameters are normalized to the sum of the fitness

parameters of each member of the population.

Step 5: During the crossover process, the normalized fitness parameter is the

probability of the member to be selected as a parent. For each child, two parents

are randomly chosen based on their fitness parameters. The ”DNA” for the child

is the average of both parents’ ”DNA”. To increase the variety of the ”DNA”

pool, each inherited child has a possibility of its ”DNA” being mutated. For this
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simulation, a mutation rate of 10% is selected. To increase the convergence of the

simulation, the mutation method at first is chosen as each gene of the ”DNA” will

be altered randomly between 0 and 0.1 eV. Later on when the simulation is close

to convergence, the method will be changed to that only one gene of the ”DNA” is

altered by 0.01eV every time.

Step 6: After each iteration, the convergence criteria are tested. If the cri-

teria are met, the simulation is terminated. If not, steps 2 - 6 are repeated until

convergence or maximum iteration. For this simulation, the convergence criterion is

chosen that the maximum difference between the calculated crystal potentials and

the testing crystal potentials at all the mesh points is below 0.5 eV.

During the process described above, the single-atom pseudopotentials for Ge

and Sn are obtained, respectively. The RMS values for the differences are 0.77meV

for Ge lattice and 0.82meV for Sn lattice. Fig. 4.3 presents the pseudopotentials of

Ge and Sn as well as the difference between the two (∆V ).

4.3.2 First-Order Perturbation Theory Accounting for Potential En-

ergy Changed from Tin (Sn) Substitution

For an unperturbed Hamiltonian H0, the time-independent Schrödinger equa-

tion gives rise to a series of eigenstates φ
(0)
n with corresponding eigenvalues E

(0)
n ,

where the superscript (0) indicates quantities that are for the unperturbed system,

as seen in Eq. (4.6). After the introduction of the perturbation ∆V , the first-order

correction to the unperturbed energy can be calculated using first-order perturba-
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Figure 4.3: Pseudo-potential of Ge and Sn and the potential difference between Sn

and Ge (∆V ) versus radial distance from the nucleus.

tion theory, in the form of Eq. (4.7).

E(0)
n =

〈
φ(0)
n |H0|φ(0)

n

〉
(4.6)

E(1)
n =

〈
φ(0)
n |∆V |φ(0)

n

〉
(4.7)

The wave function (namely φ
(0)
n ) needed in Eq. (4.7) is obtained by solving

Eq. (2.5), using EPM with the lattice constant aGeSn adjusted according to Eq. (4.1)

with specified mole fraction χ and bowing parameter θ. Eq. (2.5) is solved at k-

points in the first BZ, which gives E0
n(k) and φ0

n(k). The obtained wave function φ
(0)
n
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and the extracted perturbation ∆V are then substituted in Eq. (4.7) to calculate

the energy difference resulting from the perturbation. The solution coming out of

Eq. (4.7) is an energy shift in the unperturbed band structure.

4.4 Results and Analysis

The substitution of Sn atoms into the Ge lattice influences the band structure,

which mainly consists of two parts: 1) the induced hydrostatic ”strain” caused by

the volume change and 2) the potential difference between a Sn atom and a Ge atom

at each Ge substitutional site in the crystal.

4.4.1 Volume Change

The relationships between the energy bandgaps (both direct and indirect) and

the hydrostatic strain are shown in Fig. 4.4, where the intercept of the two curves

indicates the indirect-direct bandgap transition.

As shown in Fig. 4.4, both direct and indirect bandgaps decrease with in-

creasing hydrostatic strain (or volume change in our case). Intuitively speaking, the

increased volume due to the alloying of Sn causes the separation between Ge atoms

to be bigger. The bigger spacing between atoms results in more loosely bound va-

lence electrons and thus a smaller bandgap. We calculated the bandgap, including

the effects of volume change, using the method described previously in this chapter.

From the calculations, we observe that the indirect-direct transition is expected to

occur at a strain level of 0.86% (corresponding to the intercept of the two curves).
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As mentioned above, the bowing parameter may differ from sample to sample, which

results in the difference in Sn fraction required to achieve this specific volume change

(the ”induced” hydrostatic strain). In Fig. 4.4(inset), the fraction of alloyed Sn re-

quired to cause the 0.86% hydrostatic strain is plotted versus the bowing parameter,

which is the same results as presented in Table 3.2 for the hydrostatic strain case.

For the bowing parameters ranging from 0 Å to 0.3 Å, the resulting Sn fraction

varies from 5.85% to 4.36%, to introduce the 0.86% hydrostatic strain to achieve

the indirect to direct transition.
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Figure 4.4: The direct and indirect bandgaps versus the tensile hydrostatic strain

is plotted. The intercept of the two curves indicates the transition point from

the indirect to direct bandgap which is at 0.0086 (0.86%) strain. At this point

the bandgap is 0.636eV. In the inset, the fraction of Sn required to achieve this

particular volume change versus the bowing parameter is shown.

In Fig. 4.5, we show the Ge band structure of pure Ge as calculated by the
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lence band (denoted ”TVB”) and No.5 being the bottom conduction band (denoted
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Figure 4.6: Band shift (or energy change) of TVB and BCB solely due to volume

change with respect to the original band structure (middle) with 4.67% of Sn and

bowing parameter of 0.166Å.

EPM. In Fig. 4.5, the curves labeled ”1” - ”4” are the valence bands, while those

labeled ”5” - ”8” are the conduction bands. Band number ”4” is the top-most

valence band (TVB), while band number ”5” is the bottom-most conduction band
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bation with respect to the original band structure (bottom) with 4.67% of Sn and

bowing parameter of 0.166Å.

(BCB), and these are the bands we are concerned with for the SWIR absorption.

Fig. 4.6 shows the changes in the band structure along the high symmetry

directions due to the volume change, introduced by alloying Ge with 4.67% Sn with

a bowing parameter of 0.166Å. We see from Fig. 4.6 that this level of Sn fraction

reduces the energy of the conduction band at the Γ point by ∼0.2eV, while reducing

energy at the original minimum or the L point by only 0.02eV, which helps achieve

the transition from indirect to direct. With higher mole fraction of Sn, the induced

hydrostatic strain will be sufficient enough to make the transition. This, of course,

is without the consideration of the potential difference between a Ge atom and a Sn

atom, which will be discussed in the next section.
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4.4.2 Potential Difference between Germanium (Ge) and Tin (Sn)

In this section we discuss the effect of the change in potential energy of the

valence electrons that results from the substitution of a small percentage of Ge by

Sn atoms.

The specific band shift we calculated as due to the potential difference is

typically a few tenths of an eV, and is shown in Fig. 4.7. (Note that the total band

structure of the GeSn alloy is the summation of Fig. 4.5, Fig. 4.6 and Fig. 4.7.)

The curve labeled ”BCB-Shift” in Fig. 4.7 shows how the BCB changes with

respect to the original band structure (Fig. 4.5), according to the methodology

described in Section 4.3. Under the example case of 4.67% of Sn with bowing

parameter of 0.166Å, the influence of the potential difference between Ge and Sn

pushes the conduction minimum up at both the Γ and L points, raising the Γ point

by 0.225eV and the L point by 0.157eV. This means that the potential difference

counteracts the influence of the volume change on the band structure, but not enough

to totally diminish the influence of the volume change. This, of course, results in a

higher fraction of Sn being required to achieve the indirect-direct bandgap transition.

Reviewing the shapes of the potentials of Ge, Sn and the perturbation (∆V )

that were already shown in Fig. 4.3, the Sn potential has a shallower, yet narrower,

potential well when compared to that of Ge. Intuitively speaking, a shallower po-

tential well tends to decrease the separation of the electron energy levels, while on

the other hand, a narrower potential well tends to separate the energy levels further

apart. The two effects appear to counteract each other. Which effect is dominant
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depends firmly on the shape of the perturbation, and therefore could differ from case

to case. Here, the localization effect of the perturbation is larger than the lowering

of the Ge potential well, thus causing an increase of the bandgaps.

4.4.3 Combined Volume Change and Perturbation Effects

In Fig. 4.8, the bandgap (both direct and indirect) variation with respect to

the fraction of alloyed Sn is plotted, taking into account both the volume change and

potential difference, with three specific bowing parameters (θ = 0Å, θ = 0.15Å, θ =

0.3Å). Fig. 4.8 illustrates that the Sn fraction required to achieve the indirect-direct

bandgap transition decreases when bowing parameter increases. The relationship

between the required Sn fraction at the transition point and the bowing parameter

is plotted in Fig. 4.9 (solid curve). The simulation results show that the required Sn

fraction ranges from 5.81% to 8.75% as the bowing parameter ranges from 0.3Å to

0Å, respectively. Fig. 4.9 also shows (dashed curve) the change of BTP versus

the bowing parameter. This curve reveals that there is a negligible change in the

transition point bandgap as the bowing parameter varies, and the BTP remains at

approximately 0.62eV for different bowing parameter values.

4.4.4 Comparison with Reported Experiments

There have been several experimental data reported concerning the fraction of

Sn required to achieve the indirect-direct transition. These data are either obtained

entirely from experiments or partially based on experimental data with the help of
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interpolation.

Ref. [51] reports a value (6%) for the Sn content required to achieve the tran-

sition, as well as the range of possible error (< 11%). This measurement overlaps

with the results of the present work (ranging from 5.81% to 8.75%). The specific

agreement between the results is unknown due to the lack of information about the

bowing parameter of the samples measured in Ref. [51].

Ref. [20] provides measurements of Sn fractions, lattice constants (vertical and

lateral), residual strain and the direct bandgap of various samples. The researchers

observed that samples with a Sn fraction > 9% give photoluminescence signals

similar to those of materials with a direct bandgap.

To further compare the results of this experiment and our work, we calculated

the direct bandgap using their reported sample parameters, and compared the values

we obtained to the reported measurements of the direct bandgap in Ref. [20].

In Ref. [20], the lattice constants (both parallel and perpendicular to the sub-

strate crystal plane), the mole fraction of Sn, and the residual strain are reported.

With this information, we used the method described in Section 4.4.1 to obtain an es-

timation of the bowing parameter. After performing the calculations using Ref. [20]

data as input, we extracted a bowing parameter for their material of approximately

0.056Å.

Having obtained the bowing parameter, and using the reported Sn fraction

and the residual strain, we calculated the direct bandgap of each sample measured

in Ref. [20]. In Table 4.3, the Ge-Sn alloy samples measured in Ref. [20] are listed

with the fraction of Sn, as well as the biaxial strain and direct energy bandgaps
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Table 4.3: Comparison of the measurements of the samples reported in Ref. [20]

and the calculated values of this work using the EPM with the inclusion of volume

change and perturbation.

Reported Values Calculation

from Ref. [20] from this work

Sample %Sn residue Emeas.
a Ecalc.

b Relative

No. biaxial strain (eV) (eV) difference

1 10.3 -0.52% 0.562 0.591 5.13%

2 11.5 -0.41% 0.548 0.552 0.75%

3 13.0 -0.71% 0.515 0.531 3.04%

a Emeas. represents the measured value of the direct bandgap of the samples

reported in Ref. [20]

b Ecalc. represents the calculated value of the direct bandgap using the method

from this work.

(labeled Emeas.). Alongside we show our calculated direct bandgaps (labeled Ecalc.),

as well as the relative difference between our calculations and the measurements.

The corresponding direct bandgap values between the measurements and our

calculations have relative differences of less than 6%, with the lowest relative er-

ror being only 0.75%. This agreement between our calculation and the reported

experimental measurements provides a reasonable verification of our method.
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Chapter 5

Scattering Mechanisms for Monte Carlo (MC) Simulation

Previous chapters focus on the band structure engineering of Ge, which discuss

the two methods, applying strain and alloying with Sn, that can transform Ge from

an indirect bandgap material to a direct bandgap one, so that Ge can be further

utilized in SWIR detector application.

Starting from this chapter, we will discuss the other post-Si material, GaN.

GaN has a high breakdown voltage and relatively high carrier mobility[28]. These

properties give GaN an advantage in the realm of high power application.

GaN can also form a heterostructure with AlGaN, which can give rise to a

2DEG layer at the interface without intentionally doping either material. The 2DEG

layer has an even higher mobility compared to the that of the bulk GaN, which allows

the heterostructure to be utilized for the application of the high electron mobility

transistors (HEMT).

In this chapter, there will be detailed descriptions of the scattering mechanisms

and the means of calculating the scattering rate for each mechanism.

A scattering mechanism describes how an electron can transfer from one state

(denoted ~k) to another state (denoted ~k′). During a phonon related scattering event,

an electron is expected to either gain or lose energy, by either absorbing or emitting

a phonon, depending on the type of scattering mechanism. Eq. 5.1 describes the
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transition rate S(~k, ~k′) from state ~k to state ~k′[54].

S(~k, ~k′) =
2π

h̄
|〈~k′|H ′|~k〉|2δ(E~k′ − E~k ∓ h̄ω) (5.1)

where,

H ′ is the perturbation potential;

E~k and E~k′ are the corresponding energy for state ~k and ~k′, respectively.

h̄ω is the energy changed during the scattering event.

The δ function in Eq. 5.1 expresses the conservation of energy. The minus sign

indicates an absorption of a phonon with energy of h̄ω while the plus sign indicates

an emission of a phonon with energy of h̄ω. For future reference, wherever there is a

”±” or ”∓” sign, the upper sign is for absorption and the lower sign is for emission.

If integrating S(~k, ~k′) over all possible final states ~k′ which satisfy the conser-

vation of energy, we can obtain the scattering rate W (~k), which is more commonly

used in MC simulations. This is expressed in Eq. 5.2[54]:

W (~k) =
Ω

(2π)3

∫
S(~k, ~k′)d~k′ (5.2)

=
2π

h̄

Ω

(2π)3

∫
|〈~k′|H ′|~k〉|2δ(E~k′ − E~k ∓ h̄ω)d~k′

where,

Ω is the volume of the crystal.

In the MC simulation for GaN, several scattering mechanisms are considered.

The dominant mechanisms for bulk GaN are: acoustic scattering, piezoelectric scat-

tering, polar optical scattering, impurity scattering and intervalley scattering. As for
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2DEG, only acoustic scattering, piezoelectric scattering and polar optical scattering

are considered. Impurity scattering is neglected for two reasons: (1) the density

of 2DEG is very high which provides a screening effect against the impurities; and

(2) the formation of 2DEG does not require any intentional doping in the material,

which lowers the possibility of being scattered by impurities. As for intervalley scat-

tering, considering that the energy that 2DEG can obtain while remain inside the

potential well is usually below 0.5eV, which is far below the lowest energy (>1.9eV)

required to be scattered into higher valleys.

The following sections will describe the calculation of each scattering mecha-

nism in detail.

5.1 Acoustic Phonon Scattering

The acoustic phonon scattering mechanism is caused by acoustic phonons, or

longitudinal acoustic (LA) phonons, to be more specific. Phonons are essentially

the vibration of the crystal, which periodically changes the potential of the lattice

that the electrons feel. This perturbation is the cause of electron being scattered

from one state to another.

5.1.1 Acoustic Phonon Scattering Rate for Bulk Electrons

The transition rate for acoustic phonon absorption/emission scattering is ex-

pressed in Eq. 5.3[23]:
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S(~k, ~k′) =
πΞ2

dq
2

ρω~qΩ

(
n~q +

1

2
∓ 1

2

)
δ(~k′ − ~k ∓ ~q)δ(E~k′ − E~k ∓ h̄ω~q) (5.3)

where,

Ξd is called the deformation potential, which has units of J . This indi-

cates how much the phonons change the potential of the lattice;

~q is the wave vector of the phonon;

q is the absolute value of ~q;

q2 = (~k′ −~k)2 = 2k2(1− cosθ) with θ being the angle between ~k′ and ~k.

ω~q is the angular frequency of the phonon’s oscillation;

ρ is the density of the material;

n~q is the number of acoustic phonons, as given by the Bose-Einstein

distribution;

The first and second δ functions in Eq. 5.3 express the conservation of mo-

mentum and energy, respectively, which are expressed in Eq. 5.4 and Eq. 5.5:

~k′ = ~k ± ~q (5.4)

E~k′ = E~k ± h̄ω~q (5.5)

The ± sign denotes the absorption or emission of a phonon.

For parabolic and spherical energy bands, by substituting Eq. 5.4 into Eq. 5.5,

we can combine the two δ-functions into a single one as follows:
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δ
(
~k′ − ~k ∓ ~q

)
δ
(
E~k′ − E~k ∓ h̄ω~q

)
= δ

(
h̄2q2

2m∗
± h̄2kq cosθ′

2m∗
∓ h̄ω~q

)
(5.6)

where,

m∗ is the effective mass of electrons;

θ′ is the polar angle between ~k and ~q ;

Regarding acoustic phonons of small ~q, the dispersion relationship between ω~q

and ~q is almost linear and can be expressed in the following expression:

ω~q
q

= vs =

√
cL
ρ

(5.7)

where,

vs is the velocity of longitudinal elastic waves;

cL is the elastic constant of the material.

The above expression for the transition rate of acoustic scattering can be

simplified, as acoustic phonon energy is much lower than the thermal energy at

room temperature. Therefore, the acoustic phonon scattering can be considered no

energy loss or gain if h̄ω~q is assumed to be zero. In this case, n~q can be approximated

as n~q ≈ kBTL/h̄ω~q ≈ n~q + 1, with TL being the temperature of the lattice. Eq. 5.3

can be written as follows:
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S(~k, ~k′) ≈ πΞ2
dq

2

ρω~qΩ
· kBTL
h̄ω~q

· δ
(
h̄2q2

2m∗
± h̄2kq cosθ′

m∗

)
=

πΞ2
dq

2

ρω~qΩ
· kBTL
h̄ω~q

· m
∗

h̄2kq
δ
( q

2k
± cos θ′

)
=

πΞ2
dkBTLq

h̄ω2
~qρΩ

· k

2E~k
· δ
( q

2k
± cos θ′

)
=

πΞ2
dkBTL
h̄cLΩ

· k

2qE~k
· δ
( q

2k
± cos θ′

)
(5.8)

Substitute Eq. 5.8 into Eq. 5.2, we can calculate the scattering rate for acoustic

scattering as follows:

W (~k) =
Ω

(2π)3

∫
S(~k, ~k′)d~k′

=
Ξ2
dkBTL

16π2h̄cL
· k
E~k
·
∫

1

q
δ
( q

2k
± cos θ′

)
d~q (5.9)

The integration over ~q can be carried out in spherical coordinates:

Iq =

∫
1

q
δ
( q

2k
± cos θ′

)
d~q

=

∫ ∞
0

∫ π

0

∫ 2π

0

1

q
δ
( q

2k
± cos θ′

)
q2 sinθ′ dφ dθ′ dq

=

∫ ∞
0

∫ 1

−1

∫ 2π

0

q δ
( q

2k
± cos θ′

)
dφ d(cosθ′) dq (5.10)

The integrations over φ and over θ′ are straightforward. The limits of the

integration over q is limited due to the existence of the δ function. We have assumed

h̄ω~q ≈ 0, thus qmin and qmax can be obtained as follows:
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qmin = 0

qmax = 2k (5.11)

Thus we can obtain the following:

Iq = 2π

∫ qmax

qmin

q dq

= 2π(
q2
max

2
− q2

min

2
) = 4πk2 (5.12)

Therefore, the scattering rate can be obtained as follows:

W (~k) =
Ξ2
dkBTL

16π2h̄cL
· k
E~k
· 4πk2

=
πΞ2

dkBTL
2h̄cL

N(E~k) (5.13)

where:

N(E~k) is the density of states, which has units of m−3J−1, as expressed in

Eq. 5.14.

N(E~k) =
(2m∗)3/2

√
E~k

2π2h̄3 (5.14)

Eq. 5.13 expresses both the absorption and emission of an acoustic phonon.

The energy change during the acoustic scattering is assumed to be zero. Therefore,

the total acoustic scattering rate is considered the sum of both absorption and

emission, as is expressed in Eq. 5.15.
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W (~k) =
πΞ2

dkBTL
h̄cL

N(E~k) (5.15)

5.1.2 Acoustic Phonon Scattering Rate for 2D Electron Gas (2DEG)

For 2DEG, the electrons are confined in one direction (denoted z), while still

considered free electrons in the other two directions (denoted x and y). The wave

functions for 2DEG can be expressed as follows:

Ψ(~r) = ψn(z)ei
~k‖· ~r‖ (5.16)

where:

ψn(z) is wave function in the z direction

~k‖ is the wave vector in parallel to the xy plane

Due to the quantum confinement in the z direction, the transition rate from

state ~k to state ~k′ for 2DEG is different from that of the bulk electrons, as is expressed

in Eq. 5.17, with the assumption that the energy change during scattering is zero

(namely h̄ω = 0). The transition rate for acoustic phonon absorption/emission

scattering for 2DEG is expression as follows[22]:

Sm,n(~k′, ~k) =
2π

h̄

Ξ2
dkBTL
cLΩ

|Gm,n(qz)|2 δ
(
~k‖′ − ~k‖ ∓ ~q‖

)
δ
(
E~k′ − E~k

)
(5.17)

where,

qz is the projection of ~q onto the z direction, which satisfies ~q = ~q‖ + ~qz;
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m is the where initial state ~k resides, which is the mth subband;

n is the where initial state ~k′ resides, which is the nth subband. The nth

subband may be the same as the mth subband, indicating that the scattering

event happens within the same subband;

Gm,n(qz) is the interference term between two subbands wave functions,

ψm(z) and ψn(z). It is unitless and is expressed in Eq. 5.18.

Gm,n(qz) =

∫ ∞
−∞

ψm(z)eiqzzψn(z)dz (5.18)

The first δ function in Eq. 5.17 expresses the conservation of momentum on

the xy plane, which differs from the one shown in Eq. 5.1.

The combination of the two δ functions is achieved in a manner similar to that

described in the previous section:

E~k = Em +
h̄2(k‖)

2

2m∗
(5.19)

E~k′ = En +
h̄2(k′‖)

2

2m∗
(5.20)

Em is the minimum energy of the mth subband;

En is the minimum energy of the nth subband;

Therefore Sm,n(~k′, ~k) is rewritten as:

Sm,n(~k′, ~k) =
2π

h̄

Ξ2
dkBTL
cLΩ

|Gm,n(qz)|2

×δ
(
h̄2

2m∗
q2
‖ ±

h̄2

m∗
k‖q‖cosθ

′ + En − Em
)

(5.21)
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where θ′ is the angle between ~k‖ and ~q‖.

The integration over ~k′ to obtain the scattering rate is carried out in a different

manner to that described in the previous section, as shown in the following equation:

Wm,n(~k) =
Ω

(2π)3

∫
S(~k′, ~k)d~k′

=
Ω

(2π)3

2π

h̄

Ξ2
dkBTL
cLΩ

∫ ∫ ∫
|Gm,n(qz)|2

δ

(
h̄2

2m∗
q2
‖ ±

h̄2

m∗
k‖q‖cosθ

′ + En − Em
)
dqzq‖dq‖dθ

′

=
1

h̄(2π)2

Ξ2
dkBTL
cL

∫
|Gm,n(qz)|2dqz∫ ∫

δ

(
h̄2

2m∗
q2
‖ ±

h̄2

m∗
k‖q‖cosθ

′ + En − Em
)
q‖dq‖dθ

′ (5.22)

The second integration in the above equation is carried out as follows:

Iq =

∫ ∫
δ

(
h̄2

2m∗
q2
‖ ±

h̄2

m∗
k‖q‖cosθ

′ + En − Em
)
q‖dq‖dθ

′ (5.23)

=

∫ ∫
δ

(
h̄2

2m∗
q2
‖ ±

h̄2

m∗
k‖q‖cosθ

′ + En − Em
)

1

|sinθ|
q‖dq‖d(cosθ′)

=

∫ ∫
m∗

h̄2k‖q‖
δ

(
cosθ′ ± m∗(En − Em)

h̄2k‖q‖
±

q‖
2k‖

)
1

|sinθ|
q‖dq‖d(cosθ′)

=
m∗

h̄2k‖

∫ ∫
δ

(
cosθ′ ± m∗(En − Em)

h̄2k‖q‖
±

q‖
2k‖

)
1

|sinθ|
dq‖d(cosθ′)

=
m∗

h̄2k‖

∫
1

|sin
(
θ′(q‖)

)
|
dq‖

where θ′(q‖) is the value for θ′ being evaluated at q‖ by equaling the argument

inside the δ function in Equ. 5.23 to 0, as shown below:

cosθ′ ± m∗(En − Em)

h̄2k‖q‖
±

q‖
2k‖

= 0 (5.24)
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which gives the evaluated cos
(
θ′(q‖)

)
as follows:

cos
(
θ′(q‖)

)
= ∓m

∗(En − Em)

h̄2k‖q‖
∓

q‖
2k‖

(5.25)

Continuing the integration:

Iq =
m∗

h̄2k‖

∫
1

|sin
(
θ′(q‖)

)
|
dq‖ (5.26)

=
m∗

h̄2k‖

∫
1√

1− |cos
(
θ′(q‖)

)
|2
dq‖

=
m∗

h̄2k‖

∫
1√

1− |m∗(En−Em)

h̄2k‖q‖
+

q‖
2k‖
|2
dq‖

Recall Equ. 5.19, and plug it into the Iq:

Iq =
m∗

h̄2k‖

∫
1√

1− |
m∗(En−E~k)

h̄2k‖q‖
+

k‖
2q‖

+
q‖

2k‖
|2
dq‖ (5.27)

=
m∗

h̄2k‖
· k‖ arcsin

q2
‖ − k‖

(
k‖ + 2

m∗(E~k
)

h̄2k‖

)
2

3
2

√
m∗k2‖(E~k

)

h̄2

∣∣∣∣∣∣
q‖,max

q‖,min

The limit for q‖ is evaluated using Equ. 5.24, where the value for cosθ is limited

between -1 and 1:

q‖,min =


k‖ −

√
2m∗(E~k

−En)

h̄
, En > Em

−k‖ +

√
2m∗(E~k

−En)

h̄
, En < Em

(5.28)

q‖,max = k‖ +

√
2m∗(E~k − En)

h̄
(5.29)
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The square roots in the expressions for both q‖,min and q‖,max also imply that

E~k > En needs to be satisfied for Equ. 5.28 and 5.29 to be valid.

By substituting Equ. 5.28 and 5.29 back into Equ. 5.27, we can obtain the

expression for the integration:

Iq =
m∗

h̄2k‖
· k‖ arcsin

q2
‖ − k‖

(
k‖ + 2

m∗(E~k
)

h̄2k‖

)
2

3
2

√
m∗k2‖(E~k

)

h̄2

∣∣∣∣∣∣
q‖,max

q‖,min

(5.30)

=


m∗

h̄2k‖
· k‖ ·

[
π
2
−
(
−π

2

)]
, E~k > En

0, E~k < En

=


πm∗

h̄2
, E~k > En

0, E~k < En

= π2 ·N2D(E~k)

where Nn(E~k) is the 2D density of states of the nth subband, which has units

of m−2J−1, as expressed as follows:

N2D(E~k) =


m∗

πh̄2
, E~k > En

0, E~k < En

(5.31)

By carrying out the rest of the integration, we can obtain the scattering rate

from the mth subband to the nth subband:

Wm,n(~k) =
Ξ2
dkBTL
4h̄cL

φ(m,n) Nn(E~k) (5.32)
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where φ(m,n), which has units of m−1, is given by the following:

φ(m,n) =

∫ ∞
−∞
|Gm,n(qz)|2dqz (5.33)

5.2 Piezoelectric Scattering

As mentioned in the previous chapter, GaN is a piezoelectric material along

the c-axis (〈0001〉 direction). The lattice vibrations in the material can also cause

polarization waves. The polarization waves can interact strongly with electrons,

causing polar scattering of electrons. Polar scattering may be due to either acoustic

or optical phonons. As mentioned previously, phonons are vibrations of the lattice.

In a piezoelectric material, this vibrations can also change the potential of the lattice

due to the reverse piezoelectric effect. Therefore, polar acoustic phonon scattering

can also be called piezoelectric scattering, which is the term used in this paper. The

scattering rate due to piezoelectric scattering mechanism is derived here, while polar

optical scattering will be discussed further in the next section.

5.2.1 Piezoelectric Scattering Rate for Bulk Electrons

The energy change due to piezoelectric scattering is also assumed zero. The

transition rate from state ~k to ~k′ is expressed as follows[21]:

S(~k′, ~k) =
2π

h̄

h̄q2

ρΩω

(
ehpz
ε∞

)2
kBTL
h̄ω

1

q2 + q2
D

δ
(
~k′ − ~k ∓ ~q

)
δ
(
E~k′ − E~k

)
(5.34)

where:

e is the elementary charge;
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hpz is the piezoelectric constant of the material.

ε∞ is the optical dielectric constant of the material

1/qD is known as the Debye length, given by
√
e2n0/(εskBT ), with n0

being the equilibrium electron density at a temperature T .

The scattering rate can be obtained by integrating over all possible final state

~k′.

W (~k) =
Ω

(2π)3

∫
S(~k′, ~k)d~k′

=
2π

h̄

h̄q2

ρΩω

(
ehpz
ε∞

)2
kBTL
h̄ω

1

q2 + q2
D

∫
δ
(
~k′ − ~k ∓ ~q

)
δ
(
E~k′ − E~k

)
d~k′

=
kBTL

(2π)2h̄cL

(
ehpz
ε∞

)2 ∫
1

q2 + q2
D

δ

(
h̄2q2

2m∗
± h̄2kq cosθ′

m∗

)
d~q (5.35)

where θ′ is the polar angle between ~k and ~q .

Integration over ~k′ is switched to integration over ~q because it is more conve-

nient in our case and because d~k′ = d~q.

The integration in the equation above can be carried out under spherical co-

ordinates:
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Iq =

∫
1

q2 + q2
D

δ

(
h̄2q2

2m∗
± h̄2kq cosθ′

m∗

)
d~q

=

∫ ∫ ∫
1

q2 + q2
D

δ

(
h̄2q2

2m∗
± h̄2kq cosθ′

m∗

)
q2 sinθ′ dφ dθ′ dq

= 2π

∫ ∫
q2

q2 + q2
D

δ

(
h̄2q2

2m∗
± h̄2kq cosθ′

m∗

)
sinθ′ dθ′ dq

= 2π

∫ ∫
q2

q2 + q2
D

m∗

h̄2kq
δ
( q

2k
± cos θ′

)
d(cosθ′)dq

=
2πm∗

h̄2k

∫ ∫
q

q2 + q2
D

δ
( q

2k
± cos θ′

)
d(cosθ′)dq

=
2πm∗

h̄2k
ln(q2 + q2

D)

∣∣∣∣qmax

qmin

(5.36)

Both qmin and qmax are the same the ones in Equ. 5.11. Thus the integration

gives:

Iq =
2πm∗

h̄2k
ln(q2 + q2

D)

∣∣∣∣qmax

qmin

=
2πm∗

h̄2k
ln

(
1 +

4k2

q2
D

)
(5.37)

Thus the scattering rate is expressed as follows:

W (~k) =
kBTL

(2π)2h̄cL

(
ehpz
ε∞

)2
2πm∗

h̄2k
ln

(
1 +

4k2

q2
D

)
=

kBTL
4πh̄cL

(
ehpz
ε∞

)2
k

E~k
ln

(
1 +

4k2

q2
D

)
(5.38)
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5.2.2 Piezoelectric Scattering Rate for 2D Electron Gas (2DEG)

The transition rate from state ~k to ~k′ is expressed as follows[22]:

Sm,n(~k′, ~k) =
2π

h̄

h̄q2

ρΩω

(
ehpz
ε∞

)2
kBTL
h̄ω

1

q2 + q2
D

×|Gm,n(qz)|2δ
(
~k′‖ − ~k‖ ∓ ~q‖

)
δ
(
E~k′ − E~k

)
=

2π

h̄

kBTL
ΩcL

(
ehpz
ε∞

)2
1

q2 + q2
D

|Gm,n(qz)|2

×δ
(
h̄2

2m∗
q2
‖ ±

h̄2

m∗
k‖q‖cosθ

′ + En − Em
)

(5.39)

where θ′ is the angle between ~k‖ and ~q‖.

The scattering rate can be obtained by integrating over all possible final state

~k′, as shown below:

Wm,n(~k) =
Ω

(2π)3

∫
S(~k′, ~k)d~k′

=
Ω

(2π)3

2π

h̄

kBTL
ΩcL

(
ehpz
ε∞

)2 ∫ ∫ ∫
|Gm,n(qz)|2

× 1

q2
‖ + q2

z + q2
D

δ

(
h̄2

2m∗
q2
‖ ±

h̄2

m∗
k‖q‖cosθ

′ + En − Em
)
q‖dq‖dθ

′dqz

=
kBTL

(2π)2h̄cL

(
ehpz
ε∞

)2 ∫ ∫ ∫
|Gm,n(qz)|2

q‖
q2
‖ + q2

z + q2
D

1

|sinθ′|

× m∗

h̄2k‖q‖
δ

(
cosθ′ ± m∗(En − Em)

h̄2k‖q‖
±

q‖
2k‖

)
dq‖d(cosθ′)dqz

=
kBTL

(2π)2h̄cL

(
ehpz
ε∞

)2
m∗

h̄2k‖

∫ ∫ ∫
|Gm,n(qz)|2

q2
‖ + q2

z + q2
D

1

|sinθ′|

δ

(
cosθ′ ± m∗(En − Em)

h̄2k‖q‖
±

q‖
2k‖

)
dq‖d(cosθ′)dqz

=
kBTL

(2π)2h̄cL

(
ehpz
ε∞

)2
m∗

h̄2k‖∫ ∫ ∫
|Gm,n(qz)|2

q2
‖ + q2

z + q2
D

1

|sin
(
θ′(q‖)

)
|
dq‖dqz (5.40)
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where sin
(
θ′(q‖)

)
is evaluated by solving the equation as follows with cosθ′

ranging from -1 to 1:

cosθ′ ± m∗(En − Em)

h̄2k‖q‖
±

q‖
2k‖

= 0 (5.41)

The integration over q‖ and qz cannot be separated due to the existence of the

term 1/(q2
‖ + q2

z + q2
D), therefore numerical integration is usually needed to evaluate

Eq. 5.40.

5.3 Polar Optical Scattering

As mentioned in the previous section, polar optical scattering is due to the

polarization waves caused by the optical phonons.

5.3.1 Polar Optical Scattering Rate for Bulk Electrons

The transition rate for polar optical scattering is expressed as follows[21]:

S(~k′, ~k) =
πe2ω0

εpΩ

1

q2

[
n(ω0) +

1

2
∓ 1

2

]
δ
(
~k′ − ~k ∓ ~q

)
δ (Ek′ − Ek ∓ h̄ω0) (5.42)

where:

ω0 is the angular frequency of the polar optical phonon;

n(ω0) is the number of the optical phonons;

1/εp = 1/ε∞ − 1/εs, and ε∞ and εs are the optical and static dielectric

constants of the material, respectively.
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The scattering rate can be obtained by integrating over all possible states ~k′.

Considering that d~k′ = d~q, it is more convenient to integrate over ~q, as expressed

below:

W (~k) =
Ω

(2π)3

∫
πe2ω0

εpΩ

1

q2

[
n(ω0) +

1

2
∓ 1

2

]
×δ
(
~k′ − ~k ∓ ~q

)
δ (Ek′ − Ek ∓ h̄ω0) d~q

=
Ω

(2π)3

πe2ω0

εpΩ

[
n(ω0) +

1

2
∓ 1

2

]
∫

1

q2
δ

(
h̄2q2

2m∗
± h̄2kq cosθ′

m∗
∓ h̄ω0

)
d~q (5.43)

The δ function is dealt with in the manner as described in Sec. 5.1.1. The

integration is carried out in a polar coordinate with θ′ being the polar angle between

~k and ~q.

Iq =

∫
1

q2
δ

(
h̄2q2

2m∗
± h̄2kq cosθ′

m∗
∓ h̄ω0

)
d~q

=

∫ 2π

0

∫ π

0

∫ ∞
0

1

q2
δ

(
h̄2q2

2m∗
± h̄2kq cosθ′

m∗
∓ h̄ω0

)
q2sinθ′dqdθ′dφ

=

∫ 2π

0

∫ π

0

∫ ∞
0

m∗

h̄2k

1

q
δ

(
cosθ′ − m∗ω0

h̄kq
± q

2k

)
dqd(cosθ′)dφ

=
2πm∗

h̄2k
ln

(
qmax
qmin

)
(5.44)

The range of q is determined by the δ function’s argument equaling zero and

cosθ′ ranging from -1 to 1, which gives the following:
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qmin = k

[
1−

(
1± h̄ω0

E~k

)1/2
]

(5.45)

qmax = k

[
1 +

(
1± h̄ω0

E~k

)1/2
]

(5.46)

5.3.2 Polar Optical Scattering Rate for 2D Electron Gas (2DEG)

The transition rate from ~k′ to ~k is expressed as follows[22]:

Sm,n(~k′, ~k) =
πe2ω0

εpΩ

1

q2

[
n(ω0) +

1

2
∓ 1

2

]
|Gm,n(qz)|2

×δ
(
~k′ − ~k ∓ ~q

)
δ (Ek′ − Ek ∓ h̄ω0)

=
πe2ω0

εpΩ

1

q2

[
n(ω0) +

1

2
± 1

2

]
|Gm,n(qz)|2

δ

(
h̄2

2m∗
q2
‖ ±

h̄2

m∗
k‖q‖cosθ

′ + En − Em ∓ h̄ω
)

(5.47)

where Gm,n(qz) is the same as that described in Eq. 5.18 and θ′ is the angle

between ~k‖ and ~q‖.

The scattering rate is obtained by integrating over all possible k′ states in the

nth subband.
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Wm,n(~k) =
e2ω0

8π2εp

[
n(ω0) +

1

2
∓ 1

2

] ∫ ∫ ∫
1

q2
‖ + q2

z

|Gm,n(qz)|2

×δ
(
h̄2

2m∗
q2
‖ ±

h̄2

m∗
k‖q‖cosθ

′ + En − Em ∓ h̄ω
)
dqzq‖dq‖dθ

′

=
m∗

h̄2k‖

e2ω0

8π2εp

[
n(ω0) +

1

2
∓ 1

2

] ∫ ∫ ∫
1

q2
‖ + q2

z

|Gm,n(qz)|2

×δ
(
q‖

2k‖
± cosθ′ + m∗

h̄2k‖q‖(En − Em ∓ h̄ω)

)
dqzdq‖dθ

′

=
m∗

h̄2k‖

e2ω0

8π2εp

[
n(ω0) +

1

2
∓ 1

2

] ∫ qmax
‖

qmin
‖

Fm,n(q‖)

|sin θ′(q‖)|
dq‖ (5.48)

where,

Fm,n(q‖) =

∫ ∞
−∞

1

q2
‖ + q2

z

|Gm,n(qz)|2dqz (5.49)

The integration over q‖ and qz cannot be separated due to the existence of

the term 1/(q2
‖ + q2

z), therefore numerical integration is usually needed to evaluate

Eq. 5.48.

5.4 Impurity Scattering

The perturbation potential for impurity scattering is expressed as a screened

Coulombic potential, thus the transition rate is expressed as follows[21, 24, 23]:

S(~k′, ~k) =
2π

h̄

NIZ
2e4

Ωε2s

δ(E~k′ − E~k)
(q2 + q2

D)2
(5.50)

where,

Ze is the charge on the impurity atom;

NI is the impurity concentration;
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q2 = (~k′ −~k)2 = 2k2(1− cosθ) with θ being the angle between ~k′ and ~k.

The scattering rate of impurity scattering can be obtained by integrating over

all possible ~k′ states, as expressed below:

W (~k) =
Ω

(2π)3

2π

h̄

NIZ
2e4

Ωε2s

∫ 2π

0

∫ π

0

∫ ∞
0

(k′)2sinθδ(E~k′ − E~k)
(2k2[1− cosθ] + q2

D)
2dk

′dθdφ

=
Ω

(2π)3

2π

h̄

NIZ
2e4

Ωε2s
2π

∫ −1

1

sinθ

(2k2[1− cosθ] + q2
D)

2dθ

×
∫ ∞

0

(k′)2δ

(
h̄2(k′)2

2m∗
− h̄2k2

2m∗

)
dk′

=
NIZ

2e4

2πh̄ε2s
× 2

q2
D(4k2 + q2

D)
× m∗k

h̄2

=
πNIZ

2e4

h̄ε2s

N(E~k)

q2
D(4k2 + q2

D)
(5.51)

5.5 Intervalley Scattering

For the GaN MC simulation, multiple valleys (Γ1, Γ3 and U) are included.

Γ1 is the lowest valley, where low energy electrons sit in k-space. When electrons

gain sufficient energy, they can be scattered into higher valleys by optical phonon

scattering.

The transition rate from ~k to ~k′ is expressed as follows[23]:
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Si,j(~k′, ~k) =
πD2

ijZj

ρωijΩ

[
n(ωij +

1

2
∓ 1

2
)

]
× δ(~k′ − ~k ∓ ~q) δ

(
Ej,~k′ − Ei,~k ∓ h̄ωij −∆Eji

)
=

πD2
ijZj

ρωijΩ

[
n(ωij +

1

2
∓ 1

2
)

]
δ

(
h̄2k2

2

(
1

m∗j
− 1

m∗i

)
± h̄2kq

mj

cosθ′ +
h̄2q2

2mj

∓ h̄ωij + ∆Eji

)
(5.52)

where,

i and j represent the initial valley and the final valley, respectively;

m∗i and m∗j are the effective masses of electrons in valley i and valley j,

respectively;

Dij is the intervalley deformation potential, which describes the optical

phonon that can scatter electrons from valley i to valley j;

θ′ is the polar angle between ~k and ~q ;

Zj is the number of equivalent final valleys;

∆Eij is the energy difference from the bottom of valley j to the bottom

of valley i;

The scattering rate can be obtained by integrating over possible final states in

valley j:
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W (~k) =
Ω

(2π)3

∫
S(~k′, ~k)d~k′

=
D2
ijZj

8π2ρωij

[
n(ωij +

1

2
∓ 1

2
)

] ∫
δ

(
h̄2k2

2

(
1

m∗j
− 1

m∗i

)
± h̄

2kq

mj

cosθ′ +
h̄2q2

2mj

∓ h̄ωij + ∆Eji

)
d~q (5.53)

where the integration over ~q can be carried out in a polar coordinate:

Iq =

∫
δ

(
h̄2k2

2

(
1

m∗j
− 1

m∗i

)
± h̄2kq

mj

cosθ′ +
h̄2q2

2mj

∓ h̄ωij + ∆Eji

)
d~q

=

∫ 2π

0

∫ π

0

∫ ∞
0

δ

(
h̄2k2

2

(
1

m∗j
− 1

m∗i

)
± h̄

2kq

mj

cosθ′ +
h̄2q2

2mj

∓ h̄ωij + ∆Eji

)
q2sinθ′dqdθ′dφ

= 2π

∫ 1

−1

∫ ∞
0

mj

h̄2kq
δ

(
k

2q

(
1− mj

mi

)
± cosθ′

+
q

2k
+

mj

h̄2kq
(∆Eji ∓ h̄ωij)

)
q2dqd(cosθ′)

=
πmj

h̄2k

(
q2
max − q2

min

)
(5.54)

where θ′ is the polar angle between ~k and ~q , and qmax and qmin are obtained

by equating the argument of the δ function with cosθ′ ranging from -1 to 1, which

are given as follows:

qmax = k + k

[
mj

mi

− mj

mi

∆Eji ∓ h̄ωij
E~k

]1/2

(5.55)

qmax = k − k
[
mj

mi

− mj

mi

∆Eji ∓ h̄ωij
E~k

]1/2

(5.56)
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Thus:

Iq =
2πk3

E~k

(
mj

mi

)3/2 [
1− ∆Eji ∓ h̄ωij

E~k

]1/2

= 4π3Nj(E~k ± h̄ωij −∆Eji) (5.57)

where Nj is the density of state in valley j.

Therefore, the scattering rate is expressed as follows:

W (~k) =
D2
ijZj

8π2ρωij

[
n(ωij +

1

2
∓ 1

2
)

]
4π3Nj(E~k ± h̄ωij −∆Eji)

=
πD2

ijZj

2ρωij

[
n(ωij +

1

2
∓ 1

2
)

]
Nj(E~k ± h̄ωij −∆Eji) (5.58)

5.6 Scattering Angle Selection

The calculation of the scattering rates for different mechanisms determines

the probability of each mechanism occurring during the scattering event. After a

scattering event, an scattering angle is also needed, which determines the direction

that the electron is scattering into[54].

Recall Equ. 5.2, which describes the scattering rate for bulk electrons. It is

also repeated here:

W (~k) =
Ω

(2π)3

∫
S(~k, ~k′)d~k′ (5.59)

=
2π

h̄

Ω

(2π)3

∫
|〈~k′|H ′|~k〉|2δ(E~k′ − E~k ∓ h̄ω)d~k′

As shown in all the detailed derivations of all the bulk scattering mechanisms,

Equ. 5.59 is carried out in spherical coordinates:
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W (~k) =
2π

h̄

Ω

(2π)3

∫
|〈~k′|H ′|~k〉|2δ(E~k′ − E~k ∓ h̄ω)d~k′ (5.60)

=

∫ ∫ ∫
Ω

h̄(2π)2
|〈~k′|H ′|~k〉|2δ(E~k′ − E~k ∓ h̄ω) (k′)2 sinθ dφ dθ dk′

=

∫ π

0

(
2π

∫
Ω

h̄(2π)2
|〈~k′|H ′|~k〉|2δ(E~k′ − E~k ∓ h̄ω) (k′)2 sinθ dk′

)
dθ

Integration over φ is straight forward since the argument of the integration

does not have φ dependence. The outer integration of the equation above is the

integration over θ. If we replace the definite integration over θ from 0 to π by an

indefinite integration, then W (~k) becomes W (θ,~k), a function of θ and ~k, as in:

W (θ,~k) =

∫ θ

0

F (θ,~k)dθ (5.61)

where:

F (θ,~k) =

(
2π

∫
Ω

h̄(2π)2
|〈~k′|H ′|~k〉|2δ(E~k′ − E~k ∓ h̄ω) (k′)2 sinθ dk′

)
(5.62)

To get the scattering angle, a random number r is generated between 0 and

1. By solving:

r =
W (θ,~k)

W (~k)
=

∫ θ
0
F (θ,~k)dθ∫ π

0
F (θ,~k)dθ

(5.63)

we can obtain a value for θ, which is the scattering angle corresponding to the

randomly generated number r.

A similar method can also be applied to obtain the scattering angle for 2D

scattering, except that the integration is carried out in polar coordinates:
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Wm,n(k) =
Ω

(2π)3

∫
S(~k′, ~k)d~k′

=

∫ ∫ ∫
Ω

(2π)3
S(~k′, ~k)dqzq‖dq‖dθ

=

∫ π

0

(∫ ∫
Ω

(2π)3
S(~k′, ~k)dqzq‖dq‖

)
dθ

=

∫ π

0

Fm,n(θ,~k)dθ (5.64)

Again, we replace the definite integration over θ from 0 to π by an indefinite

integration, then Wm,n(~k) becomes Wm,n(θ,~k):

Wm,n(θ,~k) =

∫ θ

0

Fm,n(θ,~k)dθ (5.65)

Then the scattering angle can be obtained by solving the equation as follows:

r =
Wm,n(θ,~k)

Wm,n(~k)
=

∫ θ
0
Fm,n(θ,~k)dθ∫ π

0
Fm,n(θ,~k)dθ

(5.66)

where r is a randomly generated number between 0 and 1.

Considering that it may not the possible to get an analytical expression for

F (θ,~k), numerical evaluation may be necessary to solve Equ. 5.63 and 5.66.

5.7 Summary

Now that we have all the formulas to calculate the scattering rates for all the

scattering mechanisms, we can implement the MC method described in Chapter

1. By summing up the scattering rates from all the contributing mechanisms, we
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can determine the flight time for the electron to drift under the influence of the

applied electric field between scattering events. The percentage of each scattering

rate determines the probability for a corresponding scattering event to happen at

the end of the flight time.

The following chapters will describe the implementation of the MC method to

investigate the electron transport in both bulk and 2DEG system.
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Chapter 6

Investigation of Electron Transport in Bulk Gallium Nitride (GaN)

In this chapter, the electron transport properties in bulk GaN material is

investigated by using MC method. The process of implementing the MC method

is introduced in Chapter 1, as shown in the flowchart in Fig. 1.6. The formulas for

calculating the scattering rates for all the mechanisms included in the MC simulation

are described in detail in the previous chapter. In addition, to investigate the

high electric field performance of bulk GaN, a three-valley model is applied, which

consists of one conduction band minimum valley (denoted ”Γ1”) and two higher

energy valleys (denoted ”Γ3” and ”U”). The three valleys are illustrated in the

conduction band structure diagram for GaN as shown in Fig. 6.1. The parameters

for the three valleys are listed in Table. 6.1, alongside the scattering mechanism

parameters used in our MC simulation.

6.1 Calculation of the Scattering Rates and Analysis

As is mentioned previously, for our MC simulation for bulk GaN, the included

scattering mechanisms are: acoustic scattering, piezoelectric scattering, polar optical

scattering, impurity scattering and intervalley scattering.

The scattering rates for all the included mechanisms are calculated using the

formulas described in the previous chapter and the parameters presented in Table
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Table 6.1: Material properties of GaN and parameters for three-valley model for

MC[39].

Material Parameter

Mass density: ρ (kg/m3) 6150

Longitudinal sound velocity: vs (m/s) 6560

Acoustic Deformation Potential: Ξd (eV ) 8.3

Static dielectric constant: εs 8.9

High frequency dielectric constant: ε∞ 5.35

Piezoelectric constant: hpz (C/m2) 0.5

Optical phonon energy: h̄ω0 (meV ) 91.2

Intervalley deformation potential*: Div(109eV/cm) 1

Intervalley phonon energies: h̄ω0 (meV ) 91.2

Valley Γ1 Γ3 L−M

Effective mass (m0) 0.2 1 1

Intervalley energy separation (eV) 0 2 2.1

Nonparabolicity (eV−1) 0.189 0.065 0.029

*Note: Div applies for all the Dij’s in Equ. 5.58 for intervalley scattering

rate calculation.
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Figure 6.1: EPM calculated conduction band structure with the illustration of the

three-valley model (”Γ1”, ”Γ3” and ”U”) for MC simulation.

6.1. The calculation results are shown in Fig. 6.2 for all the included mechanisms

with the exception of impurity scattering, which is shown in Fig. 6.3 on its own to

compare the difference with different doping concentrations being considered. The

x axes in all graphs in Fig. 6.2 and 6.3 are electron energy with the reference as the

bottom of Γ1 valley.

Of all the scattering mechanisms included, polar optical scattering Spop (ab-

sorption and emission) is the dominant mechanism when the electron energy is

above 0.1 eV. Spop peaks around 1014s−1 at about 0.3 eV, then decays with further

increasing electron energy. Acoustic phonon scattering Sac shows a consistently in-

creasing trend with respect to the increasing electron energy and it is the second

most dominant scattering mechanism overall. Piezoelectric scattering Spz decreases

significantly with increasing electron energy and becomes negligible after the elec-

tron energy increases above 0.1 eV.
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Figure 6.2: The calculated scattering rates vs. electron energy for Γ1 valley, Γ3 valley

and U valley. The left-side graphs are a full range sweep of the electron energy(0-

4eV), with y axes set to the same range. The right-side graphs are zoom-in of the

left side graphs.
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Figure 6.3: The calculated impurity scattering rates vs. electron energy for Γ1 valley,

Γ3 valley and U valley under different impurity concentrations.

Figure 6.4: The calculated impurity scattering angle vs. generated random number

for Γ1 valley at electron energy of 0.002 eV under different impurity concentrations.
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The impurity scattering rates are dependent on the impurity concentration and

the carrier concentration. These two effects counteract each other. Higher impurity

concentration provides more scattering centers in the lattice while higher carrier

concentration provides heavier screening effect so the carriers won’t be influenced by

the impurities as much. The calculation results presented in Fig. 6.3 show that lower

impurity concentration gives higher scattering rate, indicating that the screening

effect of the carriers is playing stronger role at impurity scattering. The calculation

results also show a fast decaying of the scattering rate after the electron energy is

above 0.01 eV, which makes it more effective at low electric field simulation but

negligible at high electric field.

However, in the case of impurity scattering, higher scattering rate at lower

impurity concentration does not equal to lower drift velocity. To explain this, an

example of the selection of scattering angle based on a randomly generated number

between 0 and 1 is shown in Fig. 6.4, using method described in the previous chapter.

This figure is for the impurity scattering with electron energy of 0.002 eV. Four cases

of different impurity concentrations are presented and compared in the figure. We

can observe in Fig. 6.4, that when the impurity concentration is high, it is more

probable to have the electron being scattered at a wider angle, thus more probable

to be scattered in the direction against the acceleration under the electric field.

While when the impurity concentration is low, the electrons tend to be scattered

in the same direction as that before the impurity scattering event. This conserves

more acceleration rather than diminishes it as in the high impurity concentration

case.
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Whether the magnitude of the impurity scattering or the scattering angle

selection can win over each other cannot be determined at this point. The effect

of impurity scattering under different impurity concentration will be investigated in

the following section as well.

6.2 Set up for Bulk Gallium Nitride (GaN) Monte Carlo (MC) Sim-

ulation

A single MC simulation is set up with a specific electric field as its input. The

simulation begins with its first iteration with an initial total simulated time ttotal

of 10−9s. Each iteration adds 10% more to ttotal, that is, ttotal increases by 10%

after each iteration. The convergence criterion is defined such that the average drift

velocity does not change by more than 1% in five consecutive iterations. In addition

to the strict convergence criterion, 100 repeated simulations are run for one input

of electric field.

During the run of a single MC simulation, the information of the electron,

such as momentum (~k), electron energy (E) and the valley that the electron is in,

are updated and collected at equal interval time of 10−15s. The evolution of ~k is

governed by the equation below:

∆~k = −e
~F

τ
(6.1)

where:

e is the elementary charge;
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τ is the interval sampling time;

∆~k is the change of momentum ~k during the time period of τ ;

~F is the applied electric field.

The electron energy can be calculated once the updated momentum (~k) is

obtained:

E =
h̄2~k2

2m∗n
+ Egn (6.2)

where:

Subscript n represents the valley that the electron is in at the time of

sampling;

m∗n is the effective mass of valley n;

Egn is the bottom energy of valley n;

The instantaneous velocity at each sampling point of time is calculated using

the equation expressed as follows:

~v =
h̄

m∗n · [1 + 2α(E − Egn)]
· ~k (6.3)

where,

E is the total electron energy;

α is the nonparabolicity parameter of the valley.
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The drift velocity used in the convergence criterion is the average of all the

sampled values of instantaneous velocity. The valley occupation percentage for a

specific valley is defined as the percentage of the sampling points that record the

electron being in the chosen valley with respect to the total number of the sampling

points.

6.3 Results and Analysis

Fig. 6.5 shows an example of the sampled values of the electron energy during

the simulation of the applied electric field of 130kV/cm with the impurity concentra-

tion of 1017cm−3. To better examine the curve, the region near 0.1 ns in Fig. 6.5 is

enlarged and shown in the bottom figure. In this figure, the evolution of the electron

energy is more clear and the scattering events that happen during this time win-

dow are marked with red crosses. In between scattering events, the electron energy

changes parabolically, as expressed in Equ. 6.2. We can also observe the different

behaviors of different scattering mechanisms. Some of the scattering events result

in a sudden change of the energy. These scattering events are the ones associated

with absorption or emission of optical phonons, such as polar optical scattering and

intervalley scattering. While the others don’t change the electron energy during

the scattering event. Those are associated with the scattering mechanisms such as

acoustic phonon scattering, piezoelectric scattering and impurity scattering.

Fig. 6.6 shows the plot of the average electron energy versus the electric field.

The insets for Fig. 6.6 are the distribution of the electron energy (the probabil-
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Figure 6.5: (Top) The electron energy versus simulation time (ranging from 0

to 0.2ns) at the electrical field of 130kV/cm with the impurity concentration of

1017cm−3. (Bottom) Zoom-in of the top figure at around 0.1ns simulation time.

Every red cross mark represents a scattering event.

ity density of electron energy) at chosen electric fields (10kV/cm, 130kV/cm and

300kV/cm). The distribution of the electron energy resembles a Boltzmann distri-

bution. The inset for 10kV/cm is somewhat distorted, probably due to the limited

number of scattering events happening during the simulation time at such a low

electric field. When the electric field increases, the distribution curve is more spread

out and shifts more towards higher energy. The electrons are also more likely to
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Figure 6.6: The average electron energy versus the electric field (full range: 0 -

450kV/cm) with the impurity concentration of 1017cm−3. The insets are distribu-

tions of the sampled electron energies (the probability density of the electron energy)

at selected electric field of 10kV/cm, 130kV/cm and 300kV/cm

be scattered into a higher valley, which can be observed as the minor ”bump” at

higher energy in the inserted plot in Fig. 6.6 extracted at 130kV/cm. The ”bump”

is located at around 2 eV, which corresponds to the bottom energy of Γ3 valley. At

this level of electric field, a new ”Boltzmann-like” distribution begins to build up at

the Γ3 valley, which could also be mixed with the distribution at the U valley, con-

sidering that the difference between the bottoms of both valleys is only 0.1 eV. The

”bump” continues to grow as the electric field increases, even becomes dominant at

even higher electric fields, as shown in the inserted plot at 300 kV/cm in Fig. 6.6.

In Fig. 6.7, the valley occupation percentages for different valleys are plotted
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Figure 6.7: The valley occupation percentages for valleys Γ1, Γ3 and U versus the

electric field (full range: 0 - 450kV/cm) with the impurity concentration of 1017cm−3

with respect to different applied electric fields. At a low electric field, the average

electron energy is too low for the electrons to be scattered into higher valleys, thus

almost 100% of the time the electrons stay in the bottom-most Γ1 valley. With

an increasing electric field, the electrons are able to gain sufficient energy to be

scattered into other valleys. At even higher electric fields, a population inversion

occurs where more electrons stay at higher energy valleys. This coincides with the

observation of the probability density of the sampled electron energy at 300kV/cm

in the inset of Fig. 6.6, where the distribution mostly centers at 2eV, which is the

bottom energy of valley Γ3 and 0.1 eV away from the bottom of valley U .

Fig. 6.8 shows the plot of the drift velocity versus the electric field. The

insets for Fig. 6.8 are the instantaneous velocity distributions (probability density
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of the sampled values of instantaneous velocity) at selected electric fields (10kV/cm,

130kV/cm and 250kV/cm). At low electric fields (i.e. the inserted plot at 10kV/cm),

the velocity distribution, which resembles a Gaussian shape, is centered around 0

with a minor shift in the negative direction as the electric field, as expressed in

Equ. 6.1 and 6.3. With increasing applied electric field, the distribution is more

spread out. As shown in the inset at the electric field of 130kV/cm, the distribution

is shifted more towards the negative direction of the electric field. In addition,

there is a minor second hump next to the main hump, this is due to the increase

of the valley occupation percentages in valleys Γ3 and U. This increase in valley

occupation percentages in higher valleys is observed in Fig. 6.7, that at the electric

field of 130kV/cm, the valley occupation percentages of valleys Γ1 and U begin to

show a significant increase when compared to that in the lower electric field. At

higher electric fields, the electrons are scattered into other valleys, resulting in a

sudden change of the reference of the momentum. This causes the shape of the

velocity distribution at very high electric fields to be greatly distorted, which can

be observed in the inset of Fig. 6.7 selected at the electric field of 250kV/cm.

The full range MC simulation shows a velocity overshoot behavior, with the

peak velocity to be 2.83× 107cm/s at the applied electric field of 130kV/cm, and a

saturation velocity of approximately 1.4 × 107cm/s. The electric field at the peak

velocity coincides with that where the valley occupation percentages begin to change

significantly, as mentioned previously. Besides the change of the valley occupation

percentages of the valleys, the bigger effect that is in play is that the effective mass

in the higher valleys Γ1 and U is larger than that in the Γ1 valley. Having a higher
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Figure 6.8: The drift velocity versus the electric field (full range: 0 - 450kV/cm)

with the impurity concentration of 1017cm−3. The insets are the distribution of

the sampled instantaneous velocity (the probability density of the instantaneous

velocity) during the simulation at selected electrical fields of 10kV/cm, 130kV/cm

and 250kV/cm

effective mass means that the electron is more resistant to acceleration by the electric

field when in higher valleys, thus resulting in a slowing down in velocity and the

overshoot behavior in Fig. 6.8.

A comparison of the results in this work and the reported results in the liter-

ature is presented in Table 6.2.

Low-field mobility can also be obtained by extracting the slope of the curve

of the drift velocity versus the electric field at the low field range. In Fig. 6.9, the

values for mobility are extracted for different impurity concentration.

As mentioned previously, there are two competing effects for the impurity scat-
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Table 6.2: Comparison of simulated results for GaN electron transport properties

Peak velocity (cm/s) Saturation Velocity (cm/s) Ref.

2.83× 107 (@130kV/cm) 1.3 ∼ 1.4× 107 this work

3× 107 (@170kV/cm) 2× 107 [55]

2.9× 107 (@180kV/cm) 1.5× 107 [56]

3× 107 (@170kV/cm) 2× 107 [57]

tering mechanisms. One is the magnitude of the scattering rate and the other is the

scattering angle after the scattering events. Impurity scattering under low impurity

concentration has higher scattering rate but tends to conserve the acceleration of

the electron by scattering it into a smaller angle; while under high impurity concen-

tration, the impurity scattering has lower scattering rate but tends to scatter the

electron in a wider angle, thus more probable to scatter the electron in the opposite

direction of acceleration.

Fig. 6.9 shows that, when impurity concentration is low, the scattering tends

to conserve the acceleration, resulting in a higher mobility when compared to that

with high impurity concentration, despite that the scattering rate is higher with low

impurity concentration. This indicates that, in the case of impurity scattering, the

smaller scattering angle conserves more acceleration than the lower scattering rate,

which also makes the calculation of scattering angle a very important step in the

MC simulation.

The simulation results are also compared to a collection of reported experimen-

tal data. This work’s simulation results share a similar dependence on the impurity
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Figure 6.9: Bulk low-field mobility versus Impurity concentration extracted from

MC simulation. The experimental data sets Data.1∼4 are mobility values taken

from references [58],[59],[60] and [61]

concentration with the experimental data. There is also a overall up shift of the

simulation results when compared to the experimental data. This is probably due to

imperfections in the crystal that have not yet been accounted for in our simulations.
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Chapter 7

Investigation of Electron Transport in 2D Electron Gas (2DEG)

The quantitative changes to the electron transport properties of 2DEG with

respect to the change of the potential well shape is the subject of this part of the

research. To understand the relationship, we first need to quantitatively describe

the potential well, which is within the scope of the first 3 sections of this chapter.

After we establish the details of the shape of the potential well, we can then

input this information into our developed MC simulator, with modifications to suit

the quantized 2DEG wave functions. This will be explained in detail in the rest of

this chapter.

7.1 Quantum Confinement of 2D Electron Gas (2DEG)

As mentioned in Chapter 1, the AlGaN/GaN heterostructure gives rise to the

formation of a 2DEG layer at the interface. The accumulation of the electrons at

the interface also results in a quantum confinement in the direction perpendicular to

the interface. This confinement may cause changes in electron transport properties.

The most direct influence of the quantum confinement is the splitting of the

conduction band into subbands, as illustrated in Fig. 7.1. Because of the splitting,

the electrons no longer sit at the very bottom of the potential well, but at a certain

offset above the potential well minimum. The density of states inside the potential
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well becomes step-like rather than the smooth curve for the 3D density of states, as

illustrated in Fig. 7.2.

Figure 7.1: (left) Sketch of the band alignment of GaN/AlGaN heterostructure

after the formation of 2DEG; (right) Zoom-in on the interface potential well and

the illustration of the subband wavefunctions. EF is the Fermi energy level, and E1,

E2 and E3 are the bottom energies of the 1st, 2nd and 3rd subbands.

The wave function is approximated by a product of a plane wave (ϕxy) parallel

to the interface and a quantized component (ϕn(z)) with a dependence of z direction

(defined as the direction perpendicular to the interface):

Ψ(~r) = ϕn(z)ϕxy = ϕn(z)ei(kxx+kyy) (7.1)

where:

n represents the nth subband;

kx and ky are the wave numbers for the x and y directions;

ϕxy is the xy component of the total wavefunction;
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Figure 7.2: Sketch of the density of state: 3D (solid) vs 2D (dash)

ϕn(z) is the z component of the total wavefunction at the nth subband.

The two components of the wave function are shown in Fig. 7.3. The wave

function in the xy plane is assumed to be free and takes the form of plane waves,

while the wave function in the z direction is determined by the shape of the potential

well.

The confining potential energy resembles a triangular potential well with a

transition energy level (Et). The triangular potential well has a steepness (labeled

Sint) of the side wall. Sint has units of J/m (or eV/nm for the convenience of

expression in this work), which is essentially the magnitude of the electric field

inside the potential well. Et is defined as the energy level beyond which the electron

is no longer confined along the z direction. A sketch of the potential well and its

approximated triangular structure are shown together in Fig. 7.3.

We then substitute Equ. 7.1 into the one particle Schrödinger equation Equ. 2.1.
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Figure 7.3: Sketch of the potential well for 2DEG at the heterostructure interface

with approximated triangular potential well. Sint is the steepness of the triangular

well and Et is the transition energy level. The two components (ϕxy and ϕn(z)) of

the wavefunction are also shown.

By applying separation of variables, the 3D Schrödinger equation is reduced to a

1D equation: (
− h̄2

2m∗
d2

dz2
+ Sintz

)
ϕn(z) = Enϕn(z) (7.2)

where:

m∗ is the effective mass of electrons in GaN;

Sint is the steepness of the approximated triangular potential well with

units of eV/nm;

En is the energy offset of the nth subband;

The total energy is expressed as:

E = En +
h̄2

2m∗
(k2
x + k2

y) (7.3)
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The solution for the 1D Schrödinger equation is given as follows[64, 65, 66, 67]:

ϕn(z) = A · Ai

((
2m∗Sint

h̄2

) 1
3
(
z − En

Sint

))
(7.4)

En =

(
h̄2

2m∗

) 1
3
(

3π

2

Sint
n− 1

4

) 2
3

(7.5)

where,

A is the normalization constant for the wave function;

Ai(x) is the Airy function with argument of x;

m∗ is the effective mass of electrons in GaN;

As mentioned above, the well is approximated by a triangular potential well,

which is quantified by its steepness (Sint) and the transition energy level (Et). Sint

determines where the subbands start (namely the values of En). By comparing En’s

and Et, one can determine how many subbands are included in the 2D triangular

potential well. Et is also used to determine what scattering mechanisms that the

electron experiences under MC simulation. If the electron energy is below Et, it

is considered under 2D scattering, while above Et is regarded as being in the 3D

scattering realm.

Two examples are shown in Fig. 7.4 for subband selection. Case (a) has

Sint = 0.057eV/nm and Et = 0.45eV ; Case (b) has Sint = 0.116eV/nm, Et =

0.75eV . After performing the calculation described in Equ. 7.4 and 7.5 to obtain

different subbands, the results are presented in Fig. 7.4. As shown in the figure,

the subbands that lie below Et are selected for 2D MC, i.e. the bottom 3 subbands

in Fig. 7.4(a) and the bottom 2 subbands in Fig. 7.4(b); while the ones sit above
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Figure 7.4: The approximated wave function |Ψ|2 for two example triangular po-

tential wells. The potential wells, which are the orange bold solid curves, are also

shown together with the wavefunctions. The parameters for the two potential wells

are: (a)Sint = 0.057eV/nm, Et = 0.45eV ; (b)Sint = 0.116eV/nm, Et = 0.75eV .

Et will be discarded and the electrons with energy higher than Et will be simulated

using bulk MC.

The MC method, which successfully simulated the electron transport for bulk

GaN, is modified for use in the 2DEG simulation.

We gave a detailed description of how to calculate the scattering rates for

different mechanisms in Chapter 5. To compare the scattering rates for 2D MC

and bulk MC, we calculated the two most dominant scattering mechanisms (three

if we split the polar optical scattering into absorption and emission components):

acoustic phonon scattering and polar optical scattering, for both bulk MC and 2D
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Figure 7.5: Scattering rate comparison between 3D scattering (blue) and 2D scat-

tering (orange) with electrons residing in the 1st subband (a), 2nd subband (b) and

3rd subband, respectively. The 2D scattering rates are calculated for a triangular

potential well with Sint = 0.116eV/nm and inclusion of three subbands.

MC. A specific potential slope of Sint = 0.116eV/nm with three included subbands

is also applied to the calculation of 2D scattering rates. They are compared to each

other side by side and are shown in Fig. 7.5.

As discussed in the previous section, the quantum confinement of the potential

well reduces the density of states of the electrons, resulting in a step-like curve. The

step-like property can also be observed in the scattering rate versus energy plot,

as shown in Fig. 7.5, reflecting the sudden change in the orange curves for the 2D

scattering rate versus electron energy.

The dominant scattering mechanism is polar optical emission for the 2DEG, as

it is for bulk GaN. For all three scattering types, the 2D scattering rates drop below

the 3D rates for sufficiently high electron energy. For the acoustic phonon scattering
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mechanism, the 2D rate is consistently smaller than for the 3D rate. However, for

the polar optical scattering, when electron energy is close to the bottom energy of

the subbands, the 2D rates are actually higher than 3D rates.

Therefore, it cannot be concluded simply by looking at the scattering rate plot

how quantum confinement affects the mobility of the electron, which indicates the

necessity of further comparing the electron transport properties between bulk GaN

and 2DEG.

7.2 Modeling of 2D Electron Gas (2DEG) Potential Well

The potential well formed at the interface of the heterostructure is largely a

triangular shape. To address the quantum effect of the potential well, the shape of

the well is approximated as a triangle with a threshold energy level, below which

is the bounded region, and above which is the free electron region. Therefore there

are two parameters to evaluate the potential well: 1) the slope of the potential well

and 2) the height of the well.

To quantify the triangular potential well approximation, we need to determine

its slope and height. We achieve this by calculating the carrier sheet density for a

triangular well and equating this to the sheet density for the exact solution as given

by the Poisson’s equation, using the following methodology.

1. We first solve the Poisson’s equation, for the AlGaN/GaN heterostructure,

which gives the conduction band minimum energy as a function of position Ec(z),

where z = 0 at the interface and increases away from the interface into the GaN
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region (as illustrated in Fig. 7.6).

2. The side wall of the potential well at the interface is approximated as an infinite

wall.

3. The height of the well (labeled Et in Fig. 7.6) extending into GaN is approx-

imated by the difference between the bottom of the well and the band at the

boundary of the GaN region.

4. We now calculate the slope of the well Sint.

4a). If the conduction band bends below the Fermi level (Ef ), the slope (Sint) of

the well is approximated using the Equ. 7.6, as shown in Fig. 7.6. We determine

the slope of the well by equating the carrier sheet density (σint) at the interface

given by the full Poisson’s solution to that by the triangular well approximation,

which in turn is given as follows:

σint =

∫ zf

0

ni · e
−(Ec(z)−Ef )

kT dz =

∫ Ef−Ec0
Sint

0

ni · e
−(zSint+Ec0−Ef )

kT dz (7.6)

where,

Ec(z) is the conduction energy minimum at location z;

zf is the location z evaluated where Ec(z) = Ef ;

ni is the intrinsic carrier concentration of GaN;

Ef is the Fermi energy level of the heterostructure;

Ec0 = Ec(z) at the interface of z = 0.

We then solve Equ. 7.6 for the slope (Sint).

4b). If the conduction band is above Ef , Sint is approximated as the first

derivative of the conduction band minimum at the interface with respect to the
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location z, as expressed in Equ. 7.7.

Sint =
dEc(z)

dz
|z=0 (7.7)

5. We then can calculate the width of the approximated well (labeled lw in Fig. 7.6),

which is obtained by dividing Et by Sint, as in lw = Et/Sint.

Figure 7.6: Band alignment for GaN/AlGaN heterostructure after the formation of

2DEG (top); zoom in on the interface potential well and the approximated well.

The shaded areas of both the real potential well and the approximated well are of

the same sheet carrier density, as is expressed in Equ. 7.6

Once we have ascertained the slope of the well, we can calculate the wave
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functions and energy levels of the heterostructure potential well. By approximating

the potential well near the interface as a triangular shaped well, the wave function

of the electron inside the potential well can be expressed using Airy functions, as

shown in Equ. 7.4 and Equ. 7.5, and again here.

En =

(
h̄2

2m∗

) 1
3
(

3π

2

Sint
n− 1

4

) 2
3

(7.8)

ψn(z) = A · Ai (ζ(z)) (7.9)

ζ(z) =

(
2m∗Sint

h̄2

) 1
3
(
z − En

Sint

)
(7.10)

Equ. 7.8 describes the separation of the subbands of the electrons inside the

approximated potential well, while Et determines how many subbands are inside the

well. Equ. 7.9 expresses the wave function along the z direction, which is necessary

for the calculation of the scattering rates associated with 2DEG.

7.3 Investigation of the Relationship Between 2D Electron Gas (2DEG)

and Potential Well Structure Parameters

To establish the relationship between the sheet density of the 2DEG (σint)

and the structural parameter of the potential well, a Poisson’s equation solver is

developed to calculate and evaluate the band alignment across the GaN/AlGaN

heterostructure and the potential well at the interface.

To study the relationship between σint and the potential well structure pa-

rameters, a set of variables for the heterostructure is chosen to be evaluated. The
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Table 7.1: GaN/AlGaN heterostructure parameters for Poisson’s equation solver.

parameter name value

x b 1 a, 0.6, 0.2

LGaN
c (µm) 1.0a, 1.2, 1.4, 2.0

LAlGaN
d (nm) 15, 20a, 25 ,30

Nint
e (cm−2) 1012, 5× 1012, 8× 1012, 1013 a,

2× 1013, 3× 1013, 4× 1013, 5× 1013

NGa
f (cm−3) 1013,1014,1015, 1016 a, 1017, 1018

a Default values for the structure, when other parameters are changed

according to the table.

b Mole fraction of Al in AlxGa1−xN

c GaN region length of GaN/AlGaN heterostructure

d AlGaN region length of GaN/AlGaN heterostructure

e Polarization induced interface charge sheet density

f GaN region body doping density

Figure 7.7: Schematic of the simulated AlGaN/GaN heterostructure
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heterostructure parameters and the simulated variables are presented in Table 7.1.

The parameters included in the simulations are: mole fraction of Al in AlGaN

(x), GaN region thickness (LGaN), AlGaN region thickness (LAlGaN), interface fixed

charge (Nint) and GaN region body doping concentration (NGa). The change in

x mostly affects the permittivity of AlGaN. The inclusion of Nint is to mimic the

effect of the polarization induced charge at the interface. The intentional doping in

GaN is unnecessary but the background doping concentration in GaN can vary and

is usually on the level of 1016cm−3[68, 69, 70]. Therefore it is necessary to see how

different body doping concentrations can affect the simulation. The schematic of

the simulated GaN/AlGaN is shown in Fig. 7.7.

Figure 7.8: (feft): Sint vs. σint. Each curve is calculated with one parameter

changing from the default value. The changed parameter is labeled as the legend of

the curve. (right): Sint vs. selected parameters in the right graph with σint chosen

at 3× 1012cm−2.
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In this simulation, the structural parameters of the heterostructure start with

the default values given in Table 7.1, which are labeled with superscript a. After

each calculation, the process of approximating the potential well mentioned in the

previous section is conducted to obtain the information of the triangular potential

well (Sint, Et, lw, and σint). By sweeping the boundary potential in the AlGaN

region, a series of Sint, Et, lw, and σint can be obtained. Such a process is repeated

by changing the value of one parameter at a time.

After the calculation, we plotted Sint versus σint to begin with in Fig. 7.8 (left)

to see if there exists a correlation between σint and Sint.

In Fig. 7.8 (left), each curve represents the results for a specific set of structural

parameters for the GaN/AlGaN heterostructure with sweeping of the boundary po-

tential. We can observe in Fig. 7.8 (left) that all the curves overlap from simulation

to simulation, with the only exceptions being when the altered parameter is NGa.

This indicates a strong correlation between Sint and σint despite the change of most

of the structural parameters presented in Table 7.1. The discrepancies between

the simulations are plotted in Fig. 7.8 (right), with the y axis being the param-

eters changed for the simulation and x axis being the Sint values exacted at σint

of 3 × 1012cm−2 from Fig. 7.8 (left). The significant deviation happens when NGa

increases above 1017cm−3, while the rest of the values stay at a constant level of

approximately 0.072 eV/nm with negligible differences between them.

What needs to point out here is that the chosen parameters in Table 7.1

are not entirely unrelated to each other. This work treats them as independent

parameters and changes their values individually. The relationships between the
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chosen parameters are ignored in this work due to the reasoning as follows.

A fixed correlation between σint and Sint is obtained by our calculations. This

fixed correlation stays true even if we treated the parameters independently, which is

a stronger constrain on the fixed correlation. Therefore, it is reasonable to conclude

that even we take into consideration that some of the parameters are related, we

can still obtain the same fixed correlation.

The only parameter that can alter this correlation is the body doping con-

centration in the GaN region (NGa). Nonetheless, as mentioned previously, the

GaN/AlGaN structure can achieve the 2DEG layer without any intentional doping

in either region, and the background body doping of state-of-the-art GaN can reach

below 1016cm−3 level [68, 69, 70], which is below the level of NGa that begins to

effect the fixed correlation between Sint and σint. The background doping concen-

tration won’t change for a specific manufacturing process and the intentional doping

is not desirable for the GaN/AlGaN heterostructure based devices. Therefore, it is

reasonable to assume that the body doping concentration of GaN region is a con-

stant instead of a variable. For the simplicity of further discussion, the body doping

concentration of NGa is fixed at 1016cm−3 for further simulations.

For an unchanged NGa, Sint and σint are correlated with each other with negli-

gible dependence on the structural parameters given in Table 7.1, with the exception

of NGa.

In Fig. 7.9, both the depth and the width of the approximated triangular

potential well (denoted Et and lw, respectively) are plotted versus σint. The process

is similar to that in Fig. 7.8, albeit without the calculations altering NGa for the
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Figure 7.9: Left: Et vs. σint. Right: lw vs. σint. Each curve is calculated with

one structural parameter changing from the default value. The curves with the

solid line represent the results of the structure with the default parameters given

in Table 7.1 and super-scripted with ”a”. The legend of each curve represents the

altered parameter.

reasoning given above.

In the simulated case, the curves overlap with each other with negligible differ-

ences between one another for both Et versus σint and lw versus σint, indicating that

both Et and lw have fixed correlations with σint. These two correlations also have

little dependence on the parameters given in Table 7.1, with the exception of NGa,

as it is for the correlation between Sint and σint. As shown in Fig. 7.9, Et increases

with increasing σint while lw decreases with increasing σint. Based on Equ. 7.6, Et
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affects σint exponentially. Therefore, the increasing trend of Et versus σint is more

dominant than the decreasing trend of lw versus σint.

7.4 Set up for 2D Electron Gas (2DEG) Monte Carlo (MC) Simula-

tion

As mentioned above, the potential well height Et divides the interface into two

regions of energy. The region below Et is considered to be inside the potential well,

where scattering mechanisms are coupled with the 2D wave functions described in

Equ. 7.9; while the region above Et is the bulk, in which electrons are subjected to

bulk, or 3D scattering mechanisms.

As the potential well and charge density at the interface are described and

connected by Poisson’s equation, the shape of the potential well is correlated to

the charge density distribution. The correlation is partially shown in Fig. 7.10,

where Et is plotted against Sint. This curve provides values that can be used to

quantitatively describe the approximated potential well, thus providing input into

our 2D MC simulation.

In Fig. 7.10, the first three subbands energy are calculated using Equ. 7.8 and

are plotted against Sint. Together with the three curves of subbands energy is the

potential well height Et, as mentioned above. The curve of Et versus Sint can be

obtained because both Et and Sint have fixed correlations with σint. The two dashed

vertical black lines in Fig. 7.10 divide the plot into three regions R1, R2 and R3. In

R1, the potential well height curve (labeled ’Et’) sits above all three subband energy
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Figure 7.10: The first three subband energy levels (E1, E2, E3)and Et are plotted

against their correlated Sint. The black dash lines are located at Sint = 0.045eV/nm

and Sint = 0.018eV/nm, dividing the graph into regions R1, R2 and R3.

curves (labeled ’E1’, ’E2’ and ’E3’, respectively). In this case, when conducting the

MC simulation using Sint in region R1 as the potential well structural parameter,

three subbands should be included in the simulation. Similarly, when using Sint

in region R2, the bottom two subbands below Et should be included in the MC

simulation. Only the lowest subband is included in the MC simulation if choosing

Sint from region R3.

The scattering mechanisms included in the MC simulation are: acoustic phonon

scattering, polar optical scattering, piezoelectric scattering, impurity scattering (only

for bulk MC) and intervalley scattering (only for bulk MC). The parameters for the

included scattering mechanisms are given in Table 6.1. For our MC simulation, the

primary sweep will be the electric field being applied parallel to the interface of the
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heterostructure, ranging from 2kV/cm to 450kV/cm. Our secondary sweep is the

potential well slope Sint ranging from 0.03 eV/nm to 0.23 eV/nm.

The correlation between the approximated potential well slope Sint and the

potential well height Et shown in Fig. 7.10 above is used in the MC simulation. This

indicates that for a chosen Sint, there is only one corresponding Et, thus making

our secondary sweep of Sint sufficiently thorough to investigate the effects of the

potential well shape on the electron transport properties of 2DEG.

A single MC simulation is constructed in a manner similar to that of the bulk

MC simulation described in Chapter 6, albeit with two parameters used as input: a

Sint as the potential well parameter and a specific electric field.

7.5 Results and Analysis

The simulations are divided into two major parts: 1) a high electric field

simulation (10kV/cm to 450kV/cm) and 2) a low electric field simulation (2kV/cm

to 10kV/cm).

7.5.1 High Electric Field Simulation

In Fig. 7.11, the drift velocity is plotted against a range of electric field

from 10 to 450 kV/cm with selected potential well slopes Sint = 0.178, 0.072 and

0.030eV/nm, as well as the bulk MC simulation. The curves represent the average

values of all the repeated simulations. The bar at each simulated point is the upper

and bottom limits of all the repeated simulations.
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Figure 7.11: Velocity versus electric field at Sint = 0.03, 0.072, 0.178 eV/nm.
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Comparing the three selected 2D MC cases to the bulk MC case, we observe

an obvious shift upward of the drift velocity curves, especially in the range of <

150kV/cm. This indicates a higher drift velocity of 2DEG than that of free bulk

electrons. When comparing between the three 2D MC cases, we observe that smaller

Sint tends to give bigger drift velocity in the low electric field region (< 50kV/cm).

When the electric field increases above 50kV/cm, the larger Sint begins to give a

bigger drift velocity.

The drift velocity is affected by Sint in a different way in the low electric

field region (< 50kV/cm) than in the mid-region (50 ∼ 100kV/cm). This can be

explained if we revisit Fig. 7.10. By examining the difference between Et and E1,

we see that ∆E=Et-E1 tends to decrease with increasing Sint within the range of

interest (Sint > 0.02eV/nm). Although smaller Sint gives higher drift velocity in the

low electric field region, electrons need to gain sufficient energy to leave the potential

well (overcome ∆E) to further gain energy, thus achieving higher drift velocity. The

larger ∆E for smaller Sint appears to be ”trapping” the electron inside the potential

well, preventing them from going out of the potential well to gain more velocity.

This is shown in Fig. 7.12, where the subband occupation tends to decrease faster

with increasing electric field, when Sint of such a curve is bigger.

Around the electric field of ∼ 100kV/cm, the drift velocity curves reach a peak.

This peak velocity is called the ”overshoot velocity”. The reason for such behavior

is that the electrons begin to occupy the upper valleys (Γ3 and U). As noted in

Table 6.1, if electrons reside in the upper valleys, they have a bigger effective mass.

This ”heavier” effective mass causes electrons to have smaller velocity, with the same
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energy, when compared to electrons with smaller effective mass. When the electron

gains sufficient energy to surpass the lowest energy of the higher valleys, and is

scattered into those valleys, the electron becomes ”heavier” to be accelerated in the

electric field, resulting in a decrease in the drift velocity versus electric field curve.

A comparison of Fig. 7.11 and Fig. 7.12 reveals that the overshoot velocity happens

in the same electric field where valley occupation percentages in valleys Γ3 and U

begin to increase significantly. The effects of different Sint on peak velocity, and the

electric field in which the peak velocity occurs, are further shown in Fig. 7.13.

As shown in Fig. 7.13, peak velocity tends to increase and then flatten with

increasing potential well slope Sint. Peak velocity stabilizes when Sint > 0.11eV/nm.

Electric field at peak velocity, however, decreases and then flattens with increasing

Sint.

When the electric field increases even higher (> 250kV/cm), the difference

between cases with different Sint becomes increasingly smaller, until it is negligible

at the highest simulated electric field (450kV/cm). At this level of electric field,

almost all electrons are out of the potential well (as is shown in Fig. 7.12), in the

range of > 300kV/cm. Since the electrons are out of the well, the effects of Sint

on the drift velocity curves become negligible, thus explaining the ”converging”

behavior of the drift velocity curves in Fig. 7.11 in the high electric field region.
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Figure 7.13: (Blue curve) interpolated peak velocity versus Sint. (Red curve) electric

field to achieve peak velocity versus Sint.
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eV/nm.
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Figure 7.15: Mobility vs. electric field at Sint = 0.012, 0.058, 0.120, 0.222 eV/nm.

7.5.2 Low Electric Field Simulation

In Fig. 7.14, drift velocity is plotted against the applied electric field ranging

from 2kV/cm to 10kV/cm. Each point is the average value of multiple independent

simulations and the error bar represents the range of all simulation results. Four

cases with different Sint are selected with Sint = 0.012, 0.058, 0.120, 0.222 eV/nm,

respectively. The effect of Sint on drift velocity in the low electric field range is

briefly described in Section 7.5.1 and will be further discussed in this section.

In Fig. 7.14, we can again observe a continuous down shift of the drift velocity

curve with increasing Sint. Fig. 7.15 shows mobility versus the electric field. The

mobility is calculated by dividing the electric field by the drift velocity (µ = v/E).

Mobility tends to decrease with increasing electric field as well as with increasing

Sint, as shown in Fig. 7.15.
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Figure 7.16: Low-field mobility (µ0) vs. potential well slope (Sint).

A low field mobility µ0 is extracted from Fig. 7.15 for each applied Sint. It

is achieved by approximating each mobility versus electric field curve using linear

interpolation and tracing back to where electric field equals 0 to get the value. The

interpolated value is recorded as µ0 for each 2D MC simulation with a given Sint. The

results of µ0 versus Sint are shown in Fig. 7.16. The error bar represents the range

of results from multiple simulations. Fig. 7.16 shows that the low-field mobility µ0

decreases with increasing Sint. The simulated Sint ranging from 0.03 ∼ 0.23 eV/nm

gives a reasonable interface sheet density ranging from∼ 5×1010 to∼ 2.5×1013cm−2,

and the 2DEG layer has a µ0 of > 1170cm2/V s, which is a significant increase when

compared to bulk mobility which is evaluated at ∼ 800cm2/V s in our simulation.

As discussed in the previous sections, there is a fixed correlation between Sint

and σint, which is shown in Fig. 7.8. Because of this correlation, we switched the x
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Figure 7.17: Low-field mobility (µ0) vs. the density of 2DEG (Sint). The scattered

points are experimental measurements reported in the literature[59, 61, 71, 72, 73,

74, 75, 76, 77, 78, 79, 80]. The dashed line is the linear regression of the experimental

data.
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axis in Fig. 7.16 from Sint to σint, which allows us to directly compare our simulation

results with other experimentally measured low-field mobility with reported interface

sheet carrier density[59, 61, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80]. The rearranged µ0

versus σint is plotted in Fig. 7.17. The experimental measurements are also plotted

alongside our simulation in the figure as the scattered points. We also conducted a

linear regression on the collected experimental measurements, which is presented as

the dashed line in Fig. 7.17. A strong agreement is observed between our calculation

and the linear regression of the collected data, especially in the high sheet density

region (σint > 5× 1012cm−2).

139



Chapter 8

Gallium Nitride (GaN) Device Overview and Simulation

This work investigates the electron transport properties of 2DEG at the in-

terface of the GaN/AlGaN heterostructure. In the last chapter, we conducted MC

simulations on the 2DEG with consideration of the effects of the shape of the po-

tential well. We mentioned in Chapter 1 that the superior material properties of the

2DEG at the interface of the GaN/AlGaN heterostructure is utilized in applications

such as HEMTs. In this chapter, we use the simulation results from our in-house MC

simulator, notably mobility, and implement them in our chosen TCAD simulator to

investigate two of the GaN devices that include the GaN/AlGaN heterostructure:

lateral HEMT and vertical Current Aperture Vertical Electron Transistor (CAVET).

The TCAD simulator of our choice is the open source version of the Genius Semi-

conductor Device Simulator, which has the ability to conduct 2D device simulation;

implement drift-diffusion model and a range of mobility models, and so on (source:

https://github.com/cogenda/Genius-TCAD-Open).

The schematics of the two devices of interest are shown in Fig. 8.1 and Fig. 8.2.

The devices share a similar stacking of the GaN/AlGaN heterostructure near the

surface. A 2DEG layer is formed at the interface due to the process described in

Chapter 1. A lateral HEMT shown in Fig. 8.1 uses this 2DEG layer as the channel

to conduct from the source to the drain, and the current mostly flows laterally at the
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Figure 8.1: Schematic of a GaN/AlGaN based HEMT.

interface. A CAVET shown in Fig. 8.2 uses this 2DEG layer to connect the sources

to the drift region. Because the drain is at the back side of the wafer, the current

is drawn downwards towards the drain. The current is concentrated under the gate

by adding a current blockling layer (CBL) between the unintentionally doped (UID)

GaN layer and the drift region, with an aperture of n-type GaN to allow current to

flow through, so that the gate can have better control over the on/off state of the

device. The direction of the current flow when the device is on and conducting is

also illustrated in both figures.

Both lateral and vertical GaN devices have their advantages and disadvantages.

Lateral devices usually have low parasitic capacitance, thus we can expect lower

conduction loss and lower switching losses[81]. They are also easier to fabricate. It

is much easier for lateral devices to obtain bi-directional switching[82, 83]. However
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Figure 8.2: Schematic of a GaN/AlGaN based CAVET.

for lateral devices, increasing the breakdown voltage of the device causes an increase

in chip sizes. Also, the current flows near the device surface, thus the surface quality

affects the current flow. The existence of traps at the surface and interface is known

to cause current collapse phenomenon and an increase in dynamic on-resistance[84].

While on the other hand, vertical devices require high quality native substrate

(GaN substrate), which is very expensive at present. The fabrication of vertical

devices is more complex than that of lateral devices. The advantages of the vertical

devices are due to the increase in breakdown voltage increasing the thickness of the

device rather than the chip sizes. This contributes to a higher power density. In

addition, the current does not just flow on the interface, but also through the bulk

region, which is expected to have less current collapse[81].
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Table 8.1: Key parameters for the simulated HEMT.

Parameter Label Value

AlGaN layer thickness tAlGaN 30 nm

Gate to source length lgs 1 µm

Gate length lg 6 µ m

Gate to drain length lgd 2 µm

8.1 Device Simulation of High Electron Mobility Transistor (HEMT)

A device configuration for HEMT is set up in Genius. The meshing of the

simulated device is shown in Fig. 8.3. The key parameters are presented in Table 8.1.

The GaN region is doped with a concentration of 1016cm−3 as a typical background

doping concentration of the material. The AlGaN region is also doped 1016cm−3

as an assumption that AlGaN shares a similar background doping concentration as

that of GaN material. The thickness of the GaN layer is set at approximately 3

µm so that the connection of the substrate is considered sufficiently far from the

GaN/AlGaN heterostructure interface. In addition, the bottom of the substrate is

doped p-type with a concentration of 1015cm−3 to ensure a good insulation from the

surface active area. A sheet layer of fixed charge with a concentration of 1013cm−2 is

applied at the interface of the heterostructure to represent the polarization induced

charge. The device width in the third dimension is set at 1 µm.

The first simulation is done on this structure to obtain the drain current Id

versus gate voltage Vgs characteristic. The plot is shown in Fig. 8.4. Vgs ranges

from -15V to 0V, with a drain bias Vds of 0.02V. As shown in Fig. 8.4, the threshold
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Figure 8.3: Meshing for the simulation of the lateral HEMT and illustration of the

parameters presented in Table 8.1.
144



Figure 8.4: Id versus Vgs characteristic of the simulated lateral HEMT with

Vds=0.02V.

Figure 8.5: Sheet electron density at the heterostructure interface versus Vgs with

Vds=0.02V for the HEMT.
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Figure 8.6: Id versus Vds at various gate voltages of Vgs=0V, -2V, -4V, -6V, -8V and

-10V for the HEMT.

of the simulated device is approximately -6V, which indicates that this device is a

normally-on device. The interface carrier sheet density is also extracted and shown

in Fig. 8.5. At Vgs = 0V, the carrier sheet density is at the level of 1013cm−3,

indicating the existence of a conducting channel between the source and the drain.

A plot of Id versus Vds characteristics curves is also obtained. The results are

presented in Fig. 8.6. Vds ranges from 0V to 10V. Different curves represent different

applied gate voltages, which range from 0V to -10V. This plot resembles a typical

MOSFET I-V characteristics, with a linear region (low Vds) and a saturation region

(high Vds).

To better examine the device, a set of electron carrier profiles is presented in
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Figure 8.7: Electron concentration profiles for the HEMT under (a) Vgs = 0V and

Vds = 0V ; (b) Vgs = 0V and Vds = 30V ; (c) Vgs = −6V and Vds = 0V ; (d)

Vgs = −6V and Vds = 30V

Fig. 8.7. Fig. 8.7 (a) represents the simulation results for Vgs = 0 and Vds = 0;

Fig. 8.7 (b) represents those for Vgs = 0 and Vds = 30V ; Fig. 8.7 (c) represents

those for Vgs = −6 and Vds = 0V ; Fig. 8.7 (d) represents those for Vgs = −6 and

Vds = 30V . There is an inset for each figure, which is a zoom-in around the channel

region. At gate voltage of 0V, the electron concentration under the gate is at the

level of 1018cm−3, as shown in Fig. 8.7 (a) and (b). The different between the

two is that, in Fig. 8.7 (b), the channel region under the gate near the drain side
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is depleted of electrons due to the applied high drain voltage. This depletion of

electrons is called ”pinch-off”, and this is the reason for the saturation behavior of

the Id versus Vds characteristics.

In Fig. 8.7 (c) , due to the -6V applied on the gate, the electron concentration

under the gate is dropped to approximately 1015cm−3. The channel is closed due to

the low electron concentration. In Fig. 8.7 (d), under the drain voltage of 30V, the

depletion of electrons is even more severe when compared with the situation shown

in Fig. 8.7 (b). The large drain voltage is dropped across the widened depletion

region in the channel at the drain side gate edge. Such an extreme voltage drop

would also result in high electric field at this region, which is therefore a vulnerable

point, prone to breakdown at high drain voltage. One possible solution to this

breakdown is to extend the distance between the gate and the drain (lgd). However,

because this is a lateral device, increasing lgd means increasing the chip size, which

is not desirable for mass production.

8.2 Device Simulation of Current Aperture Vertical Electron Tran-

sistor (CAVET)

The CAVET shares some similarity with the HEMT on the stacking of layers,

with the exception where a layer of p-type GaN is inserted between the GaN drift

region and the UID GaN layer, as shown in Fig. 8.2. Also the drift region is usually

doped to ensure desired on-resistance and breakdown voltage. An aperture is opened

between the CBL regions to allow the current to flow through and to reach the drain.
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Table 8.2: Key parameters for the simulated CAVET.

Parameter Label Value

AlGaN layer thickness tAlGaN 30 nm

Gate to source length lgs 1 µm

Gate length lg 6 µ m

Gate to drain length lgd 2 µm

Channel to CBL thickness tcGaN 0.15 µm

CBL thickness tCBL 0.125 µm

Aperture width wap 2 µm

The aperture is usually achieved by masking the area for the aperture during the

implantation process for forming the p-type CBL region[81].

The meshing of the simulated CAVET is shown in Fig. 8.8. The key param-

eters for the device are presented in Table 8.2. Similar to the lateral HEMT, the

body doping concentration for AlGaN layer and substrate GaN is 1016cm−3. The

thickness of the substrate GaN is set at approximately 3 µm. The acceptor doping

concentration in the CBL region is set at 5× 1017cm−3. The donor doping concen-

tration in the aperture region and the drift region is 2×1016cm−3. The device width

in the third dimension is set at 1 µm.

Id versus Vgs characteristic is obtained through the simulation and is shown in

Fig. 8.9, together with the previously obtained Id versus Vgs characteristic for the

HEMT. By directly compare the two devices’ performances, we can observe that the

CAVET has a positive shift of the threshold with respect to that of the HEMT. This
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Figure 8.8: Meshing for the simulation of the vertical CAVET and illustration of

the parameters presented in Table 8.2.
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is due to the existence of the p-type GaN in the CBL region. The holes originating

in the CBL region partially deplete the electrons in the channel, thus lowering the

electron concentration and causing a positive shift in the threshold. This is also

shown in Fig. 8.10, which compares the electron sheet density at the middle point

of the channel of both the CAVET and the HEMT, where the electron sheet density

of the CAVET is consistently lower than that of the HEMT in the region where

Vg > −6V .

Other than the shift in threshold, there is a significant difference in the shape of

the Id versus Vgs characteristic when comparing both devices. The initial increase

of this characteristic curve of CAVET is bigger than that of HEMT. However at

around Vgs = −4V , the curve reaches a region with certain saturation. The initial

increase in the drain current is due to the difference in current flow along the channel

for the HEMT and the CAVET. In the CAVET, the current flows from the sources

at both ends of the channel to the center; while in the HEMT, the current flows only

from the source at one end of the channel all the way to the drain on the other end.

The CAVET structure has twice the current channel and only half the length of the

channel. This is why the initial increase of Id in Id versus Vgs characteristic curve

of the CAVET is bigger than that of the HEMT. When the gate voltage increases,

the increase of the current of the CAVET is now not only due to the increase in

channel electron density, but also limited by the electron density in the drift region,

which is not under the control of the gate. As the gate voltage rises even higher, the

current is mainly controlled by the electron density of the drift region, thus causing

the saturation behavior of the Id versus Vgs characteristic curve of the CAVET.
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Figure 8.9: Comparison of Id versus Vgs characteristic between the vertical CAVET

and the lateral HEMT with Vds=0.02V.

Figure 8.10: Comparison of Sheet electron density at the heterostructure interface

versus Vgs between the vertical CAVET and the lateral HEMT with Vds=0.02V.
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Figure 8.11: Id versus Vds at various gate voltages of Vgs=0V, -3V, -4V, -5V and

-6V for the CAVET.
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The Id versus Vds characteristics curves for the CAVET are also obtained

during the simulation. This is shown in Fig. 8.11. The drain voltage ranges from

0V to 10V. Different curves correspond to gate voltages of 0, -3V, -4V, -5V and

-6V. These curves are similar to those of the HEMT as shown in Fig. 8.6, with a

slight shift upwards, with the reason explained previously regarding the differences

in Id versus Vgs characteristic between the HEMT and the CAVET. In addition, the

saturation behavior is different. In the CAVET simulation, the saturation occurs

at a higher Vds voltage than that of the HEMT simulation. At a gate voltage of

Vg = 0V , the curving does not saturate within the simulated drain voltage range.

This could be due to the existence of the drift region. At a lower gate voltage, the

electron density under the gate is relatively low, thus easier to be depleted by high

drain bias, causing pinch-off and saturation of the current. At higher gate voltage,

however, the electron density under the gate is too high to be depleted by the drain

voltage. The drain voltage is dropped mostly along the drift region. The Id-Vds

curve behaves more like a resistor in this range. Therefore, there is not a clear

saturation for the Id versus Vds curve at higher gate bias.

To better illustrate this, the electron density profiles under different bias con-

ditions are shown in Fig. 8.12 (a)-(d), where Fig. 8.12 (a) represents the simulation

results for Vgs = 0 and Vds = 0; Fig. 8.12 (b) represents those for Vgs = 0 and

Vds = 30V ; Fig. 8.12 (c) represents those for Vgs = −6 and Vds = 0V ; Fig. 8.12 (d)

represents those for Vgs = −6 and Vds = 30V .

Comparing Fig. 8.12 (a) and (b), we observe that, at Vgs = 0V , the electron

density from the aperture to the drain remains at the doping concentration level
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Figure 8.12: Electron concentration profiles for the CAVET under (a) Vgs = 0V

and Vds = 0V ; (b) Vgs = 0V and Vds = 30V ; (c) Vgs = −6V and Vds = 0V ; (d)

Vgs = −6V and Vds = 30V
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without significant dropping being under high drain bias. This explains the ”non-

saturation” behavior at gate voltage of 0V in Fig. 8.6.

In Fig. 8.12 (c), the channel is cut off due to the gate voltage of -6V, notably

in the region where the gate overlaps with the CBL region. Under such conditions,

when the drain voltage increases, the depletion begins to extend into the aperture

region, and further into the drift region. This explains the saturation behavior of

the Id versus Vds characteristics of the device at low gate voltage. In addition, this

depletion region under high drain bias in the CAVET simulation is extended into

the drfit region, while the depletion region in the HEMT simulation is limited near

the gate to drain region. The extended depletion region of the CAVET is more

effective at dropping the drain voltage without giving rise to extremely high electric

field, which is problematic at causing breakdown of the device.

8.3 Summary

In this chapter, we conducted device simulations on two types of GaN devices

based on the GaN/AlGaN heterostructure: lateral HEMT and vertical CAVET.

Device performances are evaluated and compared between the two devices. The

lateral HEMT behaves similar to a typical MOSFET with a negative threshold

voltage, indicating it being a normally-on device. The vertical CAVET, which is

also a normally-on device in this simulation, has a saturation behavior in the Id-Vgs

characteristic and a non-saturation behavior in the Id-Vds characteristic under high

gate voltage. These behaviors don’t exist in the lateral HEMT simulation. They
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are both due to the existence of the bulk drift region in the CAVET, which is not

under the control of the gate. The drift region also helps extending the depletion

region under high drain voltage away from the channel, thus providing a longer path

to drop the applied drain voltage. The simulations conducted on both devices help

explaining the behaviors of the devices and can provide some preliminary insights

into designing GaN based devices.
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Chapter 9

Summary

This thesis looked into two promising post-silicon materials: Ge and GaN, and

investigated the key modeling issues of these two materials.

9.1 Summary of Germanium (Ge)

Ge is considered an excellent candidate for SWIR range photo detecting. How-

ever, it suffers from a high dark current due to its intrinsic indirect bandgap material

property. Two methods of transforming Ge from indirect to direct bandgap material

were investigated: applying strain and alloying with Sn.

EPM is utilized as the main method to conduct the band structure calculation.

To successfully model the band structure being influenced by applied strain, EPM

was combined with the theory of strain translation that deals with the changes in

lattice structure and pseudopotential as a result of applying strain to the crystal.

The method successfully revealed the optimal orientation to apply strain, with the

largest remaining bandgap at the transition point (denoted ”BTP”) and the least

required strain (denoted ”STP”). For uniaxial strain, the optimal direction is along

the 〈111〉 direction with a BTP of 0.41eV and an STP of 3.4%. For biaxial strain,

the optimal plane is the {100} plane with a BTP of 0.45eV and an STP of 2.1%.

For hydrostatic strain, a BTP is of 0.636eV and an STP is of 0.86%. The above
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results compare favorably with other reported calculations and experiments.

This thesis highlights a problem that arises if the strain-application method is

utilized to achieve direct bandgap Ge. This is the miscut angle of the substrate that

Ge will be grown atop. The necessity of the miscut angle is discussed in detail in

previous chapters. The work investigates how the transition phenomenon is affected

if the orientation of the applied strain deviates from its optimal orientation. The

simulation results map both BTP and STP along an arbitrary orientation onto a

unit contour graph. We also calculated the rate of change of BTP and STP if the

orientation tilts from its optimal position. During the process, one interesting fact

arose when applying biaxial strain. Despite {100} being the optimal orientation

for applying biaxial strain, {110} plane could be a better choice when it comes to

robustness against the misalignment from the desired orientation.

Due to the success of EPM in calculating the band structure of Ge, as well

as its low computational expenses, EPM is also utilized in the calculation of the

band structure of the GeSn alloy. The GeSn alloy is considered another possible

method of achieving a direct bandgap material. Its effects are divided into two

parts: 1) volume change (the lattice constant change due to the alloying), and 2)

the pseudopotential difference resulting from the substitution of Ge atoms by Sn

atoms at Ge sites. The inclusion in EPM of the strain translation theory developed

in the previous part is also used here. It is used to calculate how the volume change

(in the same form as the hydrostatic strain) affects the band structure of the Ge

lattice. To account for the effect of the pseudopotential difference between Ge and

Sn atoms, first order perturbation theory is utilized. The pure Ge lattice with the
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volume change is considered the unperturbed system, while the pseudopotential

difference is considered the perturbation of the system. One more parameter is

introduced in the simulation: the bowing parameter for the alloy lattice constant.

It has a wide range of reported values, differing from paper to paper. Our results

indicate that when the bowing parameter ranges from 0A to 0.3A, the required Sn

mole fraction to transform GeSn to a direct bandgap material ranges from 8.75%

to 5.81%. This shows good agreement with other experimentally measured results.

We also conducted a direct comparison with experiments, which provided sufficient

data to estimate the bowing parameter of their samples. Our calculation of the

direct bandgap for their samples with different Sn mole fractions shows agreement,

with the maximum relative difference to be only 5.13%.

In the future, we suggest to develop the methodologies to apply the strain on

the {110} plane and ensure that any misalignment tilts towards the {100} plane so

that it can obtain the most robustness against the misalignment arising during the

process, as suggested by our simulation. Also, the wide range of reported bowing

parameters that leads to a choice of treating the bowing parameter as an independent

variable in our work deserves our further attention. It will be very useful to help

guide future manufacturing process if we can establish the relationship between the

manufacturing process and the resulting bowing parameter of the GeSn alloy.
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9.2 Summary of Gallium Nitride (GaN)

GaN is a wide bandgap material. This material can form a heterostructure

with the ternary compound - AlGaN. The heterostructure can give rise to a layer

of electrons confined in a quasi-1D potential well. This quantized 2D electron gas

layer shows a different electron transport property when compared to the bulk ma-

terial. The potential well in which the 2DEG resides changes its shape with different

heterostructure configurations or boundary potentials. The effects of the change of

potential well on the property of 2DEG is in the scope of the second part of this

thesis. An MC simulator is developed to investigate the relationship between the

2DEG transport properties and the potential well shape.

The MC simulation for bulk GaN is conducted first with a three-valley model

and several scattering mechanisms including acoustic phonon scattering, piezoelec-

tric scattering, polar optical scattering, impurity scattering and intervalley scat-

tering. The simulation results reveal a drift velocity overshoot resulting from the

three-valley model where electrons experience larger effective mass in higher valleys.

The peak velocity is around 2.8×107cm/s and the saturation velocity is around

1.5×107cm/s. The low-field mobility is estimated to be approximately 800 cm2/V s

and tends to decrease with increasing doping concentration. These results are com-

pared to other similar MC simulations and reported experimental measurements,

and show reasonable agreement.

The MC simulator was then modified to accommodate the simulation of 2DEG

at the interface potential well. Inside the potential well, the wave functions are
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quantized and coupled to different scattering mechanisms in slightly different ways.

The differences between the scattering rates for bulk electron and those for 2DEG

are explained in detail in Chapter 5 and partially presented in Chapter 7. Outside

the potential well, the electrons are considered to be no longer quantized, and the

simulator applies 3D scattering rates.

To quantify the potential well, this work proposed a method to approximate

this to a triangular potential well with a potential well height. This method ensures

the same sheet carrier density inside both potential wells below Fermi level, and it

calculates the approximated potential well’s structural parameters (the slope of the

triangular well, the height of the well and the width of the well). The potential well is

fully investigated by calculating the band alignment across the heterostructure under

different configurations and different boundary potentials, and using the method to

extract the potential well structural parameters. The calculation results are grouped

together to reveal a fixed correlation between the carrier sheet density and potential

well structural parameters.

The fixed correlation is then fed into the 2D MC simulation. The simulation is

divided into two parts: high electric field simulation (10kV/cm-450kV/cm) and low

electric field simulation (2kV/cm-10kV/cm). In the high electric field simulation, at

a specific electric field, the drift velocity tends to decrease in the < 50kV/cm range,

but increase in the 50 - 100 kV/cm range, with increasing potential well slope. The

smaller slope tends to give higher drift velocity, but at the same time is easier for

electrons to be scattered out of the potential well, where the electrons experience

higher scattering rates and thus slower drift velocity. This is considered the reason
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for the crossover behavior of the curves of the drift velocity versus electric field with

different slopes.

A drift velocity overshoot is also observed in the simulation in the electric

field of ≈ 100kV/cm. However, the inclusion of the 2D scattering events tends to

affect this property as well. The peak velocity tends to increase with increasing

potential well slope, while the electric field at the peak velocity tends to decrease

with increasing slope. They both ”saturate” at approximately 0.11eV/nm of the

potential well slope.

When the electric field increases over 300 kV/cm, the differences between

different slopes become increasingly smaller, and are ultimately negligible at the

highest simulated electric field (450kV/cm).

In the low electric field simulation, it is observed that lower slope tends to

give larger drift velocity. Low-field mobility is extracted from drift velocity versus

electric field for different potential well slopes. As mentioned earlier, there is a fixed

correlation between the slope and the carrier sheet density inside the well. Because

of this, we can compare our calculation with various reported mobility values that

also note a measured carrier sheet density. There is a significant agreement between

our calculations and the linear regression in the collection of reported values, thus

helping verifying our method and results.

Two types of GaN based devices are simulated using Genius Semiconductor

Device Simulator. One is a lateral HEMT and the other is a vertical CAVET. Id

versus Vgs and Id versus Vds characteristics are obtained during the simulation. The

current of the HEMT is conducted solely through the channel formed at the interface
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of the GaN/AlGaN heterostructure. The drain current saturates at high drain

voltage bias due to the depletion of electrons at the gate edge near the drain. While

for the CAVET, the current flows through the interface channel to the aperture

between the CBL, to the drift region, then to the drain contact. The interface

channel affects the drain current in a similar way when compared to that of the

HEMT under low gate voltages, which shows the behavior of depletion of electrons

in the aperture, causing the saturation behavior of the Id versus Vds characteristics

when the drain voltage is high. While under high gate voltage, the drain current is

less limited by the channel electron concentration. The limit from the drift region

is more significant and the Id versus Vds does not have the saturation behavior at

Vgs = 0 with Vds ranges from 0 to 10V.
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