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Limited availability of mobile technology to disinfect drinking water at low cost led to 

the current research of using titanium dioxide (TiO2) photocatalysis for drinking water 

disinfection. New UV light emitting diodes (LEDs) have potential for application in this 

technology.  The research was divided into three parts: immobilization of TiO2, 

optimization of coating and reactor using methyl orange and investigating disinfection 

efficiency for Escheriachia coli (ATCC 25922). Thin TiO2 films supplemented with 

Degussa P25, coated on glass beads and calcinated at 500 oC had 9.9 μm maximum and 2 

μm average thickness, 0.28 m2/g BET surface area and was dominated by the anatase 

TiO2 phase. A reactor with LEDs degraded methyl orange with a first order rate constant 

of 0.39 hr-1 and 3 log10 E. coli removal was noted in 240 mins. With anticipated drops in 

LED cost, use of LEDs for TiO2 photocatalysis remains a promising disinfection 

technology. 
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CHAPTER 1 

INTRODUCTION 

 

A reliable source of water for drinking is a necessity for all humans. Municipal 

water supplies are part of the permanent infrastructure that supports day-to-day life and 

operations. Water supplies for military operations, however, must be mobile and cannot 

rely on complex fixed infrastructure. Additionally, natural water supplies may be subject 

to severe environmental contamination through both microbial pathogens and by the 

presence of organic and inorganic materials, including harmful chemicals. Thus, there is 

a need for mobile units to purify water to adequate quality for drinking.  

Among the conventional physical and chemical methods for disinfecting water, 

chlorination has been used over the past century as a reliable, easy and relatively cheap 

method of treatment. Although its bacterial inactivation effects have been proven, a great 

concern is that chemical risks could be enhanced due to the by-products (trihalomethane 

compounds) formed during the disinfection processes.  Certain types of bacteria, viruses 

and protozoa, e.g., Cryptosporidium, Gardia Lamblia, Legionella, Mycobacterium or 

Yersinia (Dunlope et al., 2002; Kim et al., 2002) cannot be efficiently removed or 

degraded from water using chlorination. Thus, there is a need to use an advanced 

oxidation process (AOP) to generate a reliable source of water keeping the cost of 

operation low. AOP techniques are becoming well established for destruction of 

unwanted chemicals or microorganisms. Of all the AOPs, semiconductor photocatalysis 

has been viewed as an effective means of producing highly effective oxidant. 
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Semiconductor photocatalysis has been applied to variety of problems related to 

environmental interests in addition to water and air purification. 

Semiconductors like TiO2, ZnO, Fe2O3, CdS and ZnS (Hoffmann et al., 1995, 

Mills and Le Hunte, 1997) can act as sensitizers for light induced redox reactions due to 

their electronic formations, which are characterized by a filled electron valence band and 

an empty conduction band. However, of these semiconductors TiO2 has proven to be the 

most suitable for photocatalysis applications. TiO2 is photocatalytically active, 

biologically and chemically inert, does not undergo photocorrosion and chemical 

corrosion and it is inexpensive. 

The present work focused on achieving the following goals: 

1. Developing a method to prepare catalytically-active TiO2 and immobilize it on a 

support media. Immobilization of catalyst on the support media in a fixed bed will 

allow re-use of the catalyst, increase the exposure of catalyst to light and eliminate 

the need of filtering TiO2 for its reuse. 

2. Design and construct a low power, portable and highly efficient photocatalytic 

oxidation reactor using TiO2 as catalyst and ultraviolet light emitting diodes (UV 

LED) as the source of photons. The designed reactor will be operated as a packed bed 

plug flow type photocatalytic oxidation (PCO) reactor. The reactor should be able to 

provide treated water (treatment period not to exceed 30 min) meeting with drinking 

water standards (Escheriachia coli concentrations less than 1 colony forming unit/ 

100 ml of treated sample as per EPA water quality standards). 
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This research has been divided into two major phases to achieve the goals. This 

first is the preparation of TiO2 sol and optimization of coating on the support media to 

allow reuse of catalyst. Glass beads were used as support media due to following reasons: 

• It is chemically and biologically inert 

• High transmission of light 

• Easy availability 

• Inexpensive 

Since the sol gel method is a relatively easy method that produces consistent TiO2 

sol, it were employed in producing TiO2, which were further coated onto the glass beads 

by a thermal immobilization process. Thermal immobilization results in quick adhering 

of TiO2 onto the support media along with the phase change from amorphous TiO2 to 

crystalline anatase/rutile TiO2. The PCO reactor were packed with coated glass beads to 

maximize the exposure of the catalyst to light and pathogens in the flowing water, but 

still keep the catalyst immobilized, and thus, the catalyst can be reused. 

In the reactor construction second phase, two reactors were constructed with 

different light sources. A prototype reactor of the actual PCO reactor was constructed and 

illuminated with four desktop 15 watt ultraviolet tubes. This reactor was used to optimize 

the TiO2 preparation and coating methods, while the actual portable PCO reactor was 

illuminated with ultraviolet LEDs emitting a specific wavelength. The LEDs in the 

portable reactor were configured in such a way that the total operating power of reactor 

was near that of an automobile battery (12 volts). This configuration of LEDs resulted in 

a significant decrease in power consumption as compared to conventionally used light 

sources. 
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Formaldehyde and methyl orange experiments were performed in the prototype to 

evaluate the photocatalytic activity of TiO2 prepared by a sol gel method and coated by a 

thermal immobilization process. Once the data for methyl orange were analyzed, 

photocatalytic degradation rate constants were evaluated using various degradation rate 

relationships. To evaluate the development of kinetic rates of photocatalysis in the 

prototype reactor, experimental runs were conducted for methyl orange and E. coli at 

varying illumination times. Based on the experimental results of the E. coli and methyl 

orange experiments for the prototype PCO reactor, similar experiments will be conducted 

for the portable PCO reactor using methyl orange as a test chemical. An empirical 

relationship between the rate constants for the prototype reactor and the portable reactor 

were computed for methyl orange degradation experiments. The rate constant 

relationship and the rate constant for E. coli degradation in prototype reactor were used to 

manipulate the time required for the project goal, a 3 log10 removal of E. coli in the 

portable reactor with less than 30 min of treatment time and 3 to 4 liters of drinking 

water. 
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CHAPTER 2 

BACKGROUND 

The semiconductor driven photocatalysis process has been extensively studied 

over the last 25 years for the removal of pathogens (Blake et al., 1999, Maness et al., 

1999, Dunlop et al., 2002, Cho et al., 2003, Ibanez et al., 2003, Sun et al., 2003), organic 

contaminants (Smith et al., 1975, Ohko et al., 1999, Sakthivel et al., 2002, Arana et al., 

2004, Bao et al., 2004), and inorganic pollutants (Vohra and Davis, 2000) in water and 

air. Although various types of semiconducting materials are available for the 

photocatalysis process, only few of them are suitable for photocatalytic processes. For a 

semiconductor to successfully and be environmentally useful, it must be: 

1. Photocatalytically active 

2. Biologically and chemically inert 

3. Inexpensive 

4. Workable within the near visible light / UV light spectrum 

5. Reusable 

 

2.1. TITANIUM DIOXIDE (TIO2) SEMICONDUCTOR PHOTOCATALYSIS 

TiO2 has two crystalline forms, anatase and rutile, with band gap energies of 3.2 

eV and 3.0 eV, respectively (Blake et al., 1999). TiO2 in the anatase form appears to be 

the most photoactive and most practical of the semiconductors for widespread use in 

environmental applications such as water, wastewater, hazardous waste and air treatment 

(Mills et al., 1997). TiO2 is non-toxic, insoluble under most conditions, inexpensive, 
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chemically inert and absorbs UV light. Although there are many different sources of 

TiO2, Degussa P25 has effectively become a research standard because it has: 

1. A well defined nature (i.e., typically 70:30 mixture of anatase: rutile, BET surface 

area of about 50 m2/g, average particle size of 30 nm) 

2. Substantially higher photocatalytic activity, than most other available samples (Mills 

et al., 1997) 

Activation of a semiconductor (TiO2) occurs when a photon with energy 

(wavelength λ≤ 388 nm for TiO2) strikes the semiconductor and is absorbed. The 

electrons from the valence band (evb
-) are excited to the conduction band (ecb

-), leaving an 

electron vacancy (hole - h+) behind in the valence band (Figure 2.1). Electron (e-) - hole 

(h+) pairs so formed can interact in 3 different ways (Halmann 1996, Hoffmann et al., 

1996, Huang et al., 2000, Mills et al., 1997, Oppenlander 2002); 

1. Recombine and dissipate the input energy as heat (Eq. 2.1) 

2. Get trapped in metastable surface states 

3. Migrate to the semiconductor surface and cause oxidation/reduction reactions by 

charge transfer to species adsorbed onto the semiconductor 

In the absence of suitable e- and h+ scavengers, the energy stored is dissipated 

within a few nanoseconds by recombination (Hoffmann et al., 1995, Linsebigler et al., 

1995, Mills et al., 1997). If a suitable scavenger or surface site is available to trap the 

electron or hole, recombination is prevented and a subsequent redox reaction takes place.  
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Red ox

Red
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Ox red
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(+2.7V) 

Ecb 
(- 0.5V) 

Figure 2.1. Primary steps involved in semiconductor photocatalysis. Values in 
parenthesis are for TiO2 vs normal hydrogen electrode 
(Hoffmann et al., 1995) 

The negatively charged electrons require an acceptor species to be present such that they 

can be scavenged and, thus, prevented from participating in deleterious e--h+ 

recombination processes (Eq 2.2). Molecular oxygen (Eq 2.3) functions as an electron 

scavenger and thus generates superoxide ions (O2
•-). The superoxide (Eq 2.4 to 2.6) can 

further produce hydrogen peroxide at the TiO2 water interface. Hydrogen peroxide (Eq 

2.7 & 2.9) in turn generates the hydroxyl radical (OH•). Valence band holes (Eq 2.9) 

react with the surface adsorbed OH- ions, producing OH•. The OH• radicals, being 

electron deficient, are very powerful oxidants and thus oxidize the organic substrate, 

resulting in intermediate compound formation and eventually resulting in CO2 and H2O 

formation (Wei et al., 1994; Hoffmann et al., 1995; Lisenbigler et al., 1995; Halmann, 

1996; Sunada et al., 1998; Cho et al., 2003; Sun et al., 2003). 

 

+−≤ +⎯⎯⎯ →⎯ vbcb
nm heTiO  388  

2
λ            [2.1] 
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heateh cbvb →+ −+                               [2.2] 

−•− →+ 22 OeO cb          [2.3] 

•+−• →+ 22 HOHO             [2.4] 

−−• →+ 22 HOeHO cb             [2.5] 

222 OHHHO →+ +−              [2.6] 

2222 OOHOHOOH ++→+ −•−•                      [2.7] 

−•− +→+ OHOHeOH cb22                   [2.8] 

•−+ →+ OHOHhvb              [2.9] 

 

The kinetics of photodegradation of organic pollutants sensitized by TiO2, on 

steady state illumination fit a Langmuir-Hinshelwood kinetic scheme (Eq 2.10) (Mills 

and Le Hunte 1997; Nam et al., 2002) with the rate given by: 

 

Ck
Ckk

dt
dC

2

21

1+
−=        [2.10] 

 

where, k1 is a rate constant (mg/L-hr), k2 is a second rate constant (L/mg) and t is the 

illumination period (hr) 

The lower limit for L-H kinetics (i.e., k2C << 1) corresponds to pseudo first order 

kinetics (Eq 2.11) while the upper limit for L-H kinetics (i.e., k2C >> 1) corresponds to a 

pseudo zero order kinetic expression (Eq 2.12). 
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1k
dt
dC

−=           [2.11] 

Ckk
dt
dC

21−=                            [2.12] 

 

Work done by numerous authors has attempted to understand various factors that 

would govern successful design and operation of a PCO reactor. Factors governing 

efficiency of PCO reactor are listed in Table 2.1. 

 

Table 2.1. Factors to be considered during different stages of reactor design and 
configuration to maximize the efficiency of PCO reactor 

Parameter / Method Importance 
TiO2 sol preparation method Ease of coating on support media 

Support media Adhesion, ease of coating, cost of support 
media, surface characteristics 

Coating method Adhesion, thickness and uniformity of TiO2 
coating 

Calcination temperature Crystallinity of structure and form of TiO2 
(anatase or rutile) 

Reactor design (LED wavelength 
and orientation, packed bed column 
orientation, type of column used 
and size of column) 

Efficiency of PCO 

Experimental parameters (dissolved 
oxygen, pH, temperature, light 
intensity, initial concentration of 
pollutant) 

Reactor optimization 

Type of pollutant (pathogen, 
organic, inorganic chemical) 

PCO efficiency changes depending on type 
of pollutant 

 

Demessie et al. (1999), Ban et al. (2003) and Addamo et al. (2004) discussed 

different methods of preparing and coating TiO2 onto support media and concluded that 

different methods result in differences in morphology, crystal phase, particle aggregate 

size and activity of the TiO2 catalyst. 
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 Leonard et al. (1999) coated TiO2 powder onto 3 different support materials 

(glass beads, zeolite and activated charcoal) by a sonication process. With repeated use of 

catalyst, the change in zero order rate constant of isopropanol for the glass beads (12.0 to 

12.1 mg/ l-min) was negligible as compared to that of zeolite (14.1 to 12.7 mg/ l –min) 

and activated charcoal (19.4 to 12.1 mg/l –min), demonstrating higher stability of coated 

TiO2 to adhere on the surface of glass beads. The zero order rate constant values (k activated 

charcoal  > k zeolite > k glass beads ) for the first trial only, proves that increasing surface area of 

catalyst increases photocatalytic activity. A similar study done by Sakthivel et al. (2002) 

compared two support media (glass beads – GB, and aluminum beads - AB). The results 

showed that the maximum number of dye (acid brown 14) molecules adsorbed per gram 

of TiO2-AB (1.124 x 10-4) was five times higher than that adsorbed per gram of TiO2-GB 

(0.207 x 10-4). This indicates that the support media plays an important role by allowing 

the adsorbent (chemical or pathogen) to adsorb on the surface. This creates a high 

concentration environment around the catalyst and hence increases the degradation rate. 

Guillard et al. (2002) proved that adhesion of TiO2 coating onto a support media 

was better for sol gel coating as compared to P25 TiO2 coating. Films of titanium dioxide 

were produced on silicon wafers, on soda lime glass and on Pyrex glass plates using 

different sol gel methods. The P25 TiO2 coatings were easily detached upon wiping with 

paper and were pulled off in a single Scotch tape test, while the sol gel coatings were not 

damaged when wiped with several types of paper, either wet or dry or with a solvent. 

Films could not be removed even after 10 successive Scotch tape tests and were abraded 

with difficulty by fingernail. 
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Kim et al. (2002), Ahn et al. (2003), Hamid et al. (2003) and Lee et al. (2003) 

reported that varying the temperature during calcination of TiO2 could change the 

morphology of TiO2. They found that calcination temperature between 400 oC and 600 oC 

would yield the anatase form of TiO2. The UV – VIS spectra of calcined TiO2 thin films 

over a wavelength range of 300 – 1000 nm, at two catalyst concentrations of 1 M and 3 

M, showed that TiO2 thin films prepared at 400 oC and 600 oC had maximum 

transparency (60 % to 80 % for 350 – 400 nm range). X- Ray Diffraction (XRD) patterns 

also showed that the TiO2 material calcined at 300 oC was amorphous, while TiO2 

calcined at 400 oC and 600 oC were mainly nano–crystalline anatase types. An increase in 

intensities of anatase peaks was noted as the temperature was increased from 400 oC to 

600 oC, implying an improvement in crystallinity. Increasing the temperature above 800 

oC would result in phase change from the anatase to the rutile form. The XRD analysis 

done by various authors (Burnside et al., 1998; Demessie et al., 1999; Kim et al., 2002; 

Hamid and Rehman, 2003; Lee et al., 2003; Ryu et al., 2003; Addamo et al., 2004; Lee et 

al., 2004) indicated peak anatase formation for temperatures above 400 oC, while for 300 

oC; no anatase peaks were observed (Figure 2.2). For temperatures above 800 oC, rutile 

peaks started showing in the XRD, which indicates the start of phase change around 900 

oC. Thus it can be said that for calcination, temperatures of 400 oC to 600 oC should 

provide adequate ratio of anatase/rutile. 
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Figure 2.2. XRD pattern for TiO2 prepared by sol gel dip coating 
and titanium-isopropoxide as precursor (Kim et al., 2002) 

 

Guillard et al. (2002) examined the effects of TiO2 film thickness coated on glass 

support media by different sol gel methods and found that photocatalytic degradation of 

malic acid was faster with the increase in thickness of coating, with the maximum 

occurring at 2 μm. Similar results were also obtained by Lee et al. (2004), where they 

found that the sterilization ratio (1 – C/C0) for G. lamblia increased linearly up to 5 layers 

(200 nm per coating) of coating and there after decreased. Thus there is a linear 

relationship between photocatalytic activity and the thickness of coatings. The increase in 

thickness of coating resulting in increased photocatalytic activity could be simply 

attributed to the increase in the number of active sites and in the amount of photons 

adsorbed by TiO2, while the decrease in photocatalytic activity with increase in thickness 

of coating after a threshold value can be attributed to decrease in transparency of the film. 

Though different methods of TiO2 preparation may lead to different threshold values for 
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the maximum thickness of coating, the thickness of coating should be enough to enhance 

the photodegradation capability. 

Dijkstra et al. (2001) proved that in a packed bed reactor (2 mm and 1.3 mm 

diamete ion 

collabo

hieved 

•- or 

ce 

of oxygen (approx. 1.0 log for air sparging and 2.5 log for O2 sparging for 90 min 

r glass beads packed), the Reynolds number had no influence on the degradat

rate of formic acid. Their results indicate that there would be no mass transfer limitations 

occurring in a packed bed reactor. From the qualitative analysis provided by Dijkstra et 

al. (2001), the beads situated farther away from the lamp will be irradiated with lower 

light intensity, therefore resulting in lower activity (Figure 2.3). 

 

Outer 
wall 

 

Cho et al. (2003) studied how the OH• radical, acting either independently or in 

ration with other reactive oxygen species (ROS), is related to the inactivation of 

E. coli. For experiments with air sparging plus an OH• radical scavenger (30 mM 

methanol) and O2 sparging plus OH• radical scavenger, 0.5 log inactivation was ac

for 90 min illumination in both the cases. The 0.5 log inactivation was due to the 

presence of ROS; in the presence of OH• radical scavenger, other ROS such as O2

H2O2 could be formed. Considerable PCO inactivation of E. coli occurred in the presen

Inner 
wall 

Light 
illumination 

Figure 2.3. Qualitative light intensity profile in 
packed bed reactor (Dijkstra et al., 2001) 
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illumination), while in the absence of O2, no E. coli inactivation was achieved. These 

results can be used to explain that OH  are main the photoxidant for E. coli inactiva

Thus, more available dissolved oxygen molecules scavenge more conduction band 

electrons, reducing the chances of recombination reaction. The delayed Chick-Watson 

model [Eq 2-13] was applied to determine the concentration of OH  radical for E. co

inactivation. The results demonstrated a linear relationship between OH  radicals 

generated and E. coli inactivation, with 0.8 x 10  mg-min/l OH  radical production 

required for a 2 log E. coli inactivation. 
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where, N0 is the initial E. coli population (CFU/ml), N is the remaining E. coli population 

t time t (CFU/ml), C is the OH• concentration (mg/l), k is the inactivation rate constant 

terococcus faecium > 

Candid

 

ck 

 

a

with ozone (l-mg-1min-1), and T is the inactivation time (min). 

Kuhn et al. (2003) found the inactivation efficiencies decreased in the order: E. 

coli > Pseudomonas aeruginosa > Staphylococcus aureus > En

a albicans for photocatalytic oxidation using TiO2. Since the complexity and 

density of the cell wall increases in the same order of precedence: E. coli and P. 

aeruginosa having thin and slack cell walls (gram negative), S. aureus and E. faecium

having thicker and denser cell walls (gram positive), and C. albicans having a thi

eukaryotic cell wall, the primary step in inactivation of pathogens should consists of an
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attack by ROS on the cell wall, leading to puncture or inactivation. Thus the type of 

microorganism will greatly affect the inactivation efficiency of photocatalysis. 

Sun et al. (2003) examined the effects of initial dissolved oxygen (DO) on 

photocatalysis, and reported that an increase in DO results in increased photocatalytic 

degrad evel of 

y 

of 

on on the photocatalysis degradation rate (pseudo first order). 

Results

ted the 

ntensity on E. coli inactivation and found that the inactivation rate 

increas ill 

nd 

ly 

ation rates for E. coli, but this phenomenon was limited to a maximum DO l

25.25 mg/l. This limit was attributed to the fact that the TiO2 semiconductor surface ma

become highly hydroxylated to the extent of inhibiting the adsorption of E. coli mass 

cells at the active sites for initiating or participating in the PCO oxidation reactions in 

presence of excess DO. 

Wei et al. (1994), Dunlop et al. (2002) and Sun et al. (2003) studied the effects 

initial E. coli concentrati

 indicated that the removal rate increases with increase in E. coli influent 

concentration. This may be due to the increase of relative adsorption availability on the 

TiO2 surface as the probability for surface interaction would increase at high 

concentration. 

 Wei et al. (1994), Dunlop et al. (2002) and Cho et al. (2004) investiga

effects of light i

es with increase in light intensity. Wei et al. (1994) found that the rate of cell k

increased proportionally with increase in light intensity, while Cho et al. (2004) fou

that E. coli inactivation rate increases with increase in light intensity, it does not increase 

proportionally, i.e., E. coli inactivation with four lamps (6 x 10-5 Einstein/L-sec) was on

two times more efficient than that with one lamp (1.5 x 10-5 Einstein/L-sec). Thus the 
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proportionality would depend on the type of reactor, type and loading of TiO2, operatin

conditions, etc. 

With the 

g 

recent development in the field of laser technology, there is a great 

potenti  

aN) or 

 

Chen et al. (2005) explored the feasibility

photoc

y 

al for UV LEDs to become a viable source of UV light for photocatalysis. UV

LEDs are small in size, long lasting and highly efficient. Their wavelength spectra are 

narrow and can be designed for any required peak wavelength. A UV LED is a diode, 

which emits UV light by combining holes and electrons on the interface of two 

semiconductor materials (Chen et al. 2005). The aluminum gallium nitride (AlG

gallium nitride (GaN) LED chip is encapsulated in a metal glass package with UV 

transparent optical window (Figure 2.4). 

 

 

 
Figure 2.4. UV LED customized with heat sink, 
proprietary reflector, transparent windows to optimize 

) the output power from LED (Sensor Electronics

 of using UV LED as a light source for 

atalysis of perchloroethylene (PCE) in a rectangular stainless steel gas phase 

reactor.  They reported a 43% degradation of PCE in 64 seconds with 375 nm peak 

wavelength UV LEDs (Nishia, 16 LEDs with 1 mW output power) operated as a ver
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low (UV light output/catalyst coating area) ratio of only 49 μW/cm2 and Degussa P25 

loading of 0.69 mg/cm2. 

In short, it is possible to adopt TiO2 - sensitized photocatalysis under UV 

irradiation as an economical and effective disinfection technology for drinking water. 

Immobilizing TiO2 onto an inert support material like glass beads and packing them in a 

column would eliminate the need for filtration to remove the catalyst.  Because UV LEDs 

can be operated on DC power supply and have shown to degrade PCE in air (Chen et al. 

2003), the use of UV LEDs as light source for the treatment of water samples containing 

microorganisms can be applied.  

 

2.2. PCO MECHANISM FOR TARGET POLLUTANTS 

Though there is a long list of microorganisms and organic and inorganic 

compounds that can be removed or inactivated by photocatalysis, this work concentrated 

on using formaldehyde for initial study to examine photocatalytic activity of TiO2 

prepared and coated on glass beads. Methyl orange (MO) was further used to optimize 

the reactor design and configuration to achieve maximum photocatalytic degradation rate. 

Finally E. coli was used to prove that the constructed and optimized reactor can disinfect 

water to the required quality for drinking. 

 

2.2.1.Formaldehyde Degradation 

Formaldehyde is fairly soluble (55% - US Environmental Protection Agency - 

USEPA) in water and was used as an indicator of the photocatalytic activity of TiO2 

prepared by sol gel methods and coated by thermal immobilization processes. Arana et al. 
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(2004) reported that formaldehyde can be degraded via photocatalysis as a zero order 

reaction, while Christoskova et al. (2002) reported that catalytic oxidation of 

formaldehyde proceeds according to a pseudo first order kinetics. The degradation of 

formaldehyde (Eq. 2.14 to 2.17) in presence of O2 was also known to proceed via radical 

chain reactions on the surface of coated TiO2 with formic acid being an intermediate 

product (Ohko et al. 1998; Arana et al., 2004). 

 

•• +→+ HHCOOHOHHCHO   or     [2.14] +•+ +→+ HCHOhHCHO VB

++• +→++ HHCOOHOHhCHO VB 2                     [2.15] 

+•+ +→+ HHCOOhHCOOH VB                          [2.16] 

++• +→+ HCOhCHOO VB 2              [2.17] 

 

2.2.2.Methyl Orange Degradation 

Methyl orange is one of the most important classes of commercial dyes. It is 

stable to visible and near UV light and provides a useful probe for photocatalytic 

reactions (Brown et al., 1984; Nam et al., 2002; Bao et al., 2004). Because methyl orange 

turns yellow in an alkaline solution and red in acidic solution, it is easy to monitor and 

analyze by spectrophotometry. The mineralization, decolorization and decomposition of 

methyl orange over TiO2 have been well studied, showing a pseudo first order 

degradation pattern (Bao et al., 2004) 
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2.2.3. E. coliform (E. coli) Degradation 

The drinking water treatment industry uses a system of surrogate bacterial 

indicators in order to assess the efficiency of the disinfection process. E. coliforms has 

been the most studied microorganism. If this organism is not detected in the treated 

water, the water is regarded as free from fecal contamination (Dunlop et al., 2002). The 

USEPA has regulated that the E. coli concentration in drinking water should be less than 

1 colony forming unit (CFU)/100 ml (USEPA). Numerous experiments have been 

performed with E. coli and photocatalysis, and thus been proven that E. coli inactivation 

is pseudo –first order (Kuhn et al., 2003; Sun et al., 2003; Dunlop et al., 2004) 

It is believed that hydroxyl radicals are responsible for creating cleavages in E. 

coli and further for conversion of cleaved E. coli cells to dissolved organic radicals, 

which further undergo a chain of reactions to ultimately produce carbon dioxide (CO2) 

and water (H2O) (Wei et al., 1994; Lisenbigler et al., 1995; Halmann, 1996; Huang et al., 

2000; Cho et al., 2003; Sun et al., 2003): 

 

)().( cleavagecellcoliEOH →+•       [2.18] 

•+•• +→+ OHorganiccleavagecellOH )()(    [2.19] 

OHCOorganicOH 22)( +→+ +••      [2.20] 
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1. MATERIALS 

Titanium isopropoxide (TIP) (Fisher Scientific) was selected as precursor for 

hydrolysis of TiO2 as it has been widely used for producing TiO2 sol-gel with simple 

laboratory methods (Demessie et al., 1999; Kim et al., 2002; Lee et al., 2002; Ryu et al., 

2003; Lee et al., 2004). Degussa AG P-25 titanium dioxide (99.5 +%, non porous, 50 

m2/g, anatase/ rutile mix), isopropanol (Fisher Scientific), 1N HCl (Fisher Scientific) and 

deionized (DI) water (Hydro service reverse osmosis/ ion exchange apparatus Model 

LPRO – 20) were used along with TIP for formation of TiO2 sol and the sol was then 

coated on glass beads (1.0 to 1.2 mm average diameter, soda-lime silica glass, Potters 

Industries Inc). The coated TiO2 was calcined in a furnace (Fisher Scientific, Isotemp 

programmable muffler furnace) with a ramp heating of 5oC/min till the temperature 

reached 500oC, and was held at 500oC for 3 h. Adjustment in pH during the 

photocatalytic oxidation studies were made drop wise with 0.1 N NaOH. Formaldehyde 

(Fisher Scientific), methanol (Fisher Scientific) and E. coli (Escherichia coli (Migula) 

Castellani and Chalmers, ATCC 25922, FDA strain Seattle 1946, gram negative 

bacterium) have been used as influent pollutants to measure the photocatalytic activity. 

Whenever buffering of solution was required, it was done using a 0.1 M phosphate 

buffer. 

The prototype reactor was built using 4 XX-15A UV tubes (Spectroline, 365 nm 

peak wavelength with 1100 μW/cm2 output at 25 cm for two tubes) with two tubes on 
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each side housed in rugged anodized aluminum with specular aluminum reflectors to 

ensure maximum UV irradiation. A cardboard box was used to support the reactor and 

two metal stands used to hold the square quartz column (1 cm x 1 cm x 30 cm, Vitrocom, 

Inc.) filled with glass beads. A peristaltic pump (Cole Parmer) with solid state speed 

controller (Masterflex) and tubing (1/16” and 1/32” diameter Viton tubing) is used to 

control the flow rate through the reactor. 

For the construction of portable reactor, a solid base plate (Aluminum breadboard, 

Thorlabs), several mounting bases (BA1S, Thorlabs), post holders (PH1 and PH1, 

Thorlabs), posts (TR20/M, TR50/M and TR100/M, Thorlabs), pedestal pillar posts 

(RS12/M, RS25/M and RS50/M, Thorlabs) small V – clamps (VC1, Thorlabs), clamping 

forks (CF series, Thorlabs), UV LEDs (Roithner laser, 370 nm peak wavelength, 1 mW 

output LED and Sensor electronics, 340 nm peak wavelength, 0.5 mW output LEDs), 

laser mounts (SM1 series, Thorlabs), lens (BK7 with 25 mm focal point, Edmund optics), 

lens tubes (SM series, Thorlabs) and wires for LED power connections were employed. 

LEDs were mounted directly either on a circuit board or mounted on laser mounts and 

then fixed on the circuit board. Other components like the quartz column, peristaltic 

pump, speed controller, viton tubing were the same as above. 

 

3.2. ANALYTICAL TECHNIQUES 

For formaldehyde measurement and calibration, fresh Nash reagent (Smith et al., 

1975, Vohra et al., 2000) was prepared containing 15.0 g ammonium acetate (NH4OAc) 

and 0.2 ml acetyl acetone (C5H8O2) in DI water to make 50 ml volume. Formaldehyde 

standard solutions of known concentrations from 10 to 300 μM were prepared and 5 ml 
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of this solution was mixed with 2 ml of Nash reagent, which was then incubated at 60oC 

for 30 mins. Absorbance was measured with a Baush and Lomb Spectronic 21 MV 

Spectrophotometer at 415 nm. Formaldehyde concentrations varying from 10 – 300 μM 

were used for obtaining a calibration curve. The same method was used for measurement 

of formaldehyde concentrations in influent and effluent samples (Smith et al., 1975; 

Vohra et al., 2000). Analysis was done after collecting 10 ml of the sample. The samples 

are filtered using 0.2 μm filters (Pall Corporation) and refrigerated in dark bottles in order 

to avoid any further degradation, with the storage period not exceeding 6 hr. 

Methyl orange (VWR Scientific) concentration curves were obtained by 

measuring the absorbance of methyl orange stock solutions with concentration 5 – 50 

mg/L at pH 6 and 1.7 x 10-2 M NaClO4. Absorbance of methyl orange stock solution was 

measured with a Baush and Lomb Spectronic 21 MV Spectrophotometer at 510 nm 

wavelength (Brown et.al., 1984). The calibration chart was used to calculate the influent 

and effluent concentrations of methyl orange for various experiments performed. 

For E. coli measurements in influent and effluent water, freeze dried E. coli 

cultures were grown aerobically in BD Broth (Difco) at pH 7.0 and 35 oC for 48 hr and 

refrigerated for further use, with stock cultures transferred at a regular interval. Nutrient 

broth was autoclaved at 121 oC for 15 min before use at pH of 7.0 and ionic strength of 

1.7 x 10-2 M NaClO4. Serial dilutions were carried out in 9 ml tubes containing DI water 

at pH 7 and 1.7 x 10-2 M NaClO4 to achieve E. coli concentration of 104 - 106 CFU/ 100 

ml. The initial and final samples were plated onto BD agar (Difco), strictly following the 

Standard Plate Count (SPC) method (Eaton et al., 1995). When the samples were treated 

for higher HRTs (>30 min), the Membrane Filtration Method (MFM) (Eaton et al., 1995) 
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was used to measure E. coli counts. For this method, 10 ml samples were collected and 

passed through a 0.45 μM filter (Pall Corporation). The filter was placed over adsorbent 

pad (Pal Corporation) with nutrient agar.  The plates were incubated at 35 oC for 48 hr 

and colony forming units (CFUs) were visually identified using a colony counter and 

reported as average CFUs/100 ml. All samples were duplicated/ triplicated except for 

MFM. All apparatus was sterilized at 121oC for 15 min, or were washed with at least 

20% bleach for 10 mins to provide rapid decontamination. 

 

3.3. METHODS FOR PREPARING TiO2 SOL 

TiO2 was synthesized using sol gel method, with titanium (IV) isopropoxide as its 

precursor. TiO2 sol was prepared by adding 25 ml of isopropanol to a 50 ml beaker 

containing 3.6 ml of TIP. This mixture was stirred vigorously for 10 min using a 

magnetic stirrer. Subsequently, 7.3 ml of 1 N HCl was added after adding 0.9 ml of DI 

water and the mixture was rigorously stirred for 2 hr with the flask sealed with Parafilm 

to avoid any loss of isopropanol and/or water by evaporation during mixing (Dagan and 

Tomkiewics, 1993; Demessie et al., 1999; Kim et al., 2002; Hamid and Rehman, 2003). 

This mixture has a molar ratio of TIP: isopropanol: H2O: HCl of 1:27:5:20 (designated as 

mixture C). Similarly other sols with molar ratios 1:27:5:10 and 1:27:5:15 (designated as 

A and B, respectively) were prepared. The sols produced with molar ratios A and B were 

thick and highly viscous. The glass beads coated by using these molar ratios were not 

coated evenly and indicated flakes of coating. Sol produced from molar ratio C was less 

viscous and produced a transparent TiO2 coating surface. Furthermore three additional 

sols were produced with molar ratios 1:27:5:20, but with an addition of 0.25 g of TiONa 
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(Millennium Inorganic Chemicals formally known as SCM Chemicals), 0.25 g and 0.5 g 

of TiO2 (Degussa, P25) and designated as mixtures D, E and F, respectively. The 

additional TiO2 powder that was added to sols was assumed to help in increasing the 

photocatalytic activity by increasing catalyst loading and surface area. 

Glass beads are thoroughly washed with 0.1 N HCl prior to coating to etch the 

surface of glass beads, so that when the sol dries, titanium dioxide attaches well on the 

surface. By thoroughly washing beads with acid, impurities on the surface are removed 

which would hinder the binding of titanium dioxide (Sakthivel et al., 2002). After 

washing, the glass beads are dried completely before suspending them in sol to avoid 

change in the molar ratio of TIP: Water. The glass beads are coated via different methods 

and SEM micrographs are taken in order to compare the coating patterns. 

 

3.4. TiO2 COATING METHODS 

3.4.1. Suspension Method 

In this method the ratio of the mass of beads (grams) to the volume of sol 

(milliliter) was kept constant at 2; so as to completely submerge the glass beads in sol 

(Kim et al., 2002; Sakthivel et al., 2002; Lee et al., 2004). Figure 3.1 describes the entire 

process of coating TiO2 onto the glass beads. After initial preparation of sol and mixing it 

for 2 hrs and preparation of glass beads, the required amount of sol and glass beads are 

mixed in a beaker in such a way that the beads are submerged in sol.  The mixture was 

then allowed to dry for 24 hr to produce an amorphous TiO2 thin film on the glass 

substrate, which was then converted to a microcrystalline TiO2 after heating in air at 

500oC for 3 hours. After heating the beads are allowed to cool to room temperature and 
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then washed thoroughly with deionized water. The beads can now be either used for 

experiments if uniformly coated or another coat may be applied. Samples are obtained 

from single and double coats to check the uniformity of coating achieved. 

 

 

Cleaning and etching 
with 0.1 N HCl

Preparation of Beads Preparation of Coating Sol 

Mixing for 2 hr 

Multiple Coating 

Drying for 24 hr 

Heating 

Washing 

Characterization 

Suspending 

Figure 3.1. Flow diagram for coating of titanium dioxide on glass beads 

3.4.2. Ceramic Funnel Method 

Characterization indicated that at least two coats are required to completely cover 

the surface of glass beads using Method 1. Also, since this method takes almost 3 days to 

produce a batch of beads, a newer method to reduce the drying period of the sol was 

used. Figure 3.2 describes the experimental setup, where the glass beads are filled in a 

hollow ceramic funnel and TiO2 sol was poured in the funnel until the beads are 
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completely submerged in sol. Hot air was allowed to flow through the funnel packed with 

beads suspended in sol until the solution evaporates. This process of adding sol in parts 

was repeated 3 to 4 times, which resulted in the total volume of sol used equal to the 

mass of beads to be coated (3 – 4 times results in 70 g of beads coated by 70 ml of sol). 

The beads are transferred to a furnace and heated at a 5 oC/min ramp up to 500 oC, and 

held at this temperature for 2 h. Subsequently they are allowed to cool at room 

temperature and then washed thoroughly with DI water. 

Figure 3.2. Experimental setup for Coating of beads 
using ceramic funnel method 

Hot Plate

 

Controlled 
flow of air in 
heating flask

Tube carrying 
heated air 

Porous ceramic 
flask filled with 
glass beads and sol 

 

3.4.3. Ceramic Funnel Method With Etching 

In selected cases, glass beads were coated via Method 2, and after the beads were 

cooled to room temperature they were etched with dilute 0.1 N HCl, followed by washing 

thoroughly with DI water (Nakato et al., 1995). This process helped in roughening the 

catalyst surface and removing loosely bound TiO2.  Method 3 was also used for coating 

beads prepared by sol mixtures D, E and F and further tested for photocatalytic activity. 
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3.5. TIO2 COATING ANALYSIS 

The glass beads coated using various sol mixtures and by different methods were 

analyzed by Environmental Scanning Electron Microscope (ESEM, Electroscan E3, 

Philips), BET surface area analyzer (Nova 2100), X-Ray Diffraction (XRD, Siemens 

D5000) and mass of TiO2 coated on the glass beads measurement using precision balance 

(Mettler Toledo). 

 

3.5.1. Environmental Scanning Electron Microscope (ESEM) Analysis 

ESEM analysis was done using an Electroscan E3 (Philips) for uncoated glass 

beads and glass beads coated with Mixture C by Method 1 (washed and unwashed with 

DI, single and double coat). Also this procedure was used for comparing the uniformity 

of coating done by Methods 1, 2 and 3, showing the effect of supplemental TiO2 added 

during sol gel synthesis process and calculating the thickness of coating. 

 

3.5.2. BET Surface Area Analysis 

The BET surface area was determined for four different samples in Nova 2100 

BET surface area analyzer, i.e., uncoated beads, glass beads coated by Mixture C by 

Method 2, glass beads coated with Mixture F by Method 3, and glass beads coated with 

Mixture F by Method 3 used for photocatalytic experiment and gently washed with DI 

water. The procedure for operating NOVA 2100 BET analyzer is explained in brief 

below: 

1. Plug vacuum pump, open the nitrogen gas tank and turn on the instrument 

2. Weigh sample and put it in the degas station 
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3. Start degassing and continue for 45 mins at 100 oC, unload degasser and weight the 

sample again 

4. If the weight measure before and after degassing is significantly different, degasses 

again 

5. Otherwise proceed to analysis, by placing the sample in analysis station 

6. Fill reservoir with liquid nitrogen and start the analysis 

7. The instrument will display the results once the analysis is over 

8. Switch off the instrument, vacuum pump and nitrogen gas tank 

 

3.5.3. X- Ray Diffraction Analysis 

The XRD analysis (Siemens D5000) for glass beads coated with TiO2 did not 

provide any possible peaks, so the XRD analysis was done for powder prepared from 

Mixture C, Mixture F and Degussa P25, all calcinated at 500 oC with 5 oC/min of ramp 

heating. The X-ray diffraction pattern was obtained by measuring in the 2θ range 

between 20o and 80o, with a step size of 0.1o.  

 

3.5.4. Coated TiO2 Mass Calculations 

The mass of TiO2 coated on glass beads was found by measuring the difference 

between the cumulative mass of uncoated glass beads as a function of the number of 

beads and the cumulative mass of glass beads coated with Mixture F by Method 3 as a 

function of number of beads using a precision balance (Mettler Toledo). Before 

measuring the weight of beads, the beads were placed overnight in oven at 100 oC to dry 
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them completely. The data was further used to estimate a possible thickness of the 

coating. 

 

3.6. EXPERIMENTS ANALYZING PHOTOCATALYTIC EFFICIENCY 

The photocatalytic oxidation (PCO) experiments were conducted in different 

types of reactor configurations based on the progress of work. Once TiO2 was 

successfully coated onto the glass beads, the evaluation of photocatalytic activity of 

coated TiO2 was required. In order to evaluate the TiO2 catalyst activity, 

photodegradation experiments were performed using formaldehyde, methyl orange and 

E. coli.  

A rough experiment was performed using a round flask (250 ml volume), with an 

initial formaldehyde concentration of 100 μM. The reactor was loaded with 200 g/L of 

glass beads coated with Mixture C by Method 1, which were kept in suspension by 

rigorous stirring using a magnetic stirrer. The reactor was illuminated with four 15W UV 

tubes. Due to the attrition caused by magnetic stirrer on the glass beads, loss of coating 

was observed after each experiment and thus, a change in reactor configuration was 

required. A new reactor with a packed bed column was employed. 

TiO2 coated glass beads were packed in a cylindrical or square column and the 

column was placed vertically in one configuration and horizontally in another. A 

peristaltic pump was used to control various flow rates through the column. All the 

connections were sealed with Parafilm to avoid any leakage and the column was 

connected to the influent tank by Viton tubing. Parafilm was covered by aluminum foil to 

avoid splitting of parafilm due to the effects of UV directly or indirectly through heat. 
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The flow rate through the column was measured by measuring the volume of sample 

collected over a period of time. The packed bed volume of the column was calculated 

from the difference between the volume of the empty reactor and the volume of glass 

beads packed in the reactor. To cross check the volume of the packed bed reactor, the 

column was packed with glass beads and was filled using a graduated cylinder with DI 

water until the fluid started overflowing. The volume poured in the column was measured 

as the difference in the volumes in the graduated cylinder. The error in the values was 

less than 5%. The hydraulic retention time (HRT) of column is the time a given fluid 

element takes to pass through the packed column and was calculated by dividing the 

reactor packed bed volume by the measured flow rate. 

The influent sample was constantly mixed using a magnetic stirrer and the pH of 

influent samples was maintained at 5.0 (formaldehyde), 6.0 (methyl orange) or 7.0 (E. 

coli) ± 0.2 with 0.1 N HCl and 0.1 N NaOH. The ionic strength was maintained at 1.7 x 

10-2 M NaClO4 and the initial temperature averaged 25 ± 2 oC. A continuous flow of 

oxygen was maintained in the influent tank throughout the experiment to achieve 

saturation of dissolved oxygen. Since oxygen plays an important role of preventing 

electron-hole recombination reaction, it is very important to keep the influent sample 

saturated with oxygen. All apparatus components were washed with DI water and oven 

dried or autoclaved to avoid any contamination. The column was illuminated from all 

directions to avoid any possibility of limitation of light intensity as explained by Dijkstra 

et al. (2001). Experiments with controls; (i) UV and column packed with uncoated glass 

beads and (ii) No UV with column packed with glass beads coated with Mixture F by 

Method 3, were conducted. Each reactor was equipped with an external aluminum foil 
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cover to avoid UV loss. All the readings for the experiments performed were taken after 

at least 1.5 – 2.0 HRTs to reach steady state conditions. 

 

3.6.1. Formaldehyde Photodegradation Using Vertically Oriented Prototype Reactor 

The vertically oriented packed bed plug flow type reactor (Figure 3.3) is equipped 

with a circular glass column filled with glass beads coated with TiO2 sol Mixture C by 

Method 1. Uncoated samples of the same beads were used for controls. Occasionally two 

columns were connected in series to increase the total HRT of the reactor. The column 

was placed in a vertical orientation with influent entering the column from the bottom 

and the effluent being collected from the top of column. The column was illuminated 

using four 15W UV tubes; the influent sample was saturated with oxygen; the pH was 

held at 5.0 ± 0.2 and ionic strength was 1.7 x 10-2 M NaClO4. 

 

3.6.2. E. coli Photodegradation in Prototype Reactor 

The formaldehyde experiments provided proof of coated TiO2 as 

photocatalytically active. Experiments with E. coli were performed for check of the 

disinfection efficiency of the reactor shown in Figure 3.3. The column was packed with 

glass beads coated with TiO2 sol Mixture C using Method 1 and was loaded with 105 – 

107 CFU/100 ml of initial E. coli. The pH of influent sample was maintained at 7.0 ± 0.2 

and ionic strength of solution was maintained at 1.7 x 10-2 M NaClO4. All parts of the 

apparatus were disinfected by washing in at least 20% bleach for 10 min or sterilized by 

autoclaving before using to avoid any external contamination. 
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The vertical orientation of reactor being unstable and also caused higher hydraulic 

pressure which further resulted in rupture of seals. Therefore, the reactor was oriented 

horizontally for further experiments. Our goals were to use LEDs, which would be more 

like individual focused point sources as compared to the dispersed UV tubes, using a 

square quartz column instead of circular column, which would provide more surface area 

to be illuminated for the LEDs. 

The prototype reactor experiments were performed at 7.0 ±0.2 pH, 1.7 x 10-2 M 

NaClO4 ionic strength, saturated DO and an initial E. coli of 105 – 107 CFU/100 ml. Dark 

and lighted controls were also performed to indicate the effect of photocatalysis on 

disinfection. The reactor is shown in Figures 3.4 through 3.6. 

 

Circular glass column 
packed with TiO2 
coated glass beads 

 

O2 Supply 

Magnetic 

Aluminum foil casing 

Sample 
Collection 

500 ml 
Sample 

 

Influent HRT 
control by 
peristaltic 

pump 
4 x 15 W UV tube

Figure 3.3. Schematic diagram of vertical packed bed PCO 
reactor 
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3.6.3. Methyl Orange Photodegradation 

After a rigorous construction and optimization phase, a final prototype reactor 

configuration was achieved, shown in Figure 3.4. The reactor was oriented horizontally 

with a square quartz column packed with glass beads coated with Mixture C, D, E or F by 

Method 2 or 3 and illuminated with four 15W UV tubes. The temperature of the reactor 

was maintained between 25 ± 5 oC by passing air over the column and UV tubes. Figure 

3.5 shows the top view of the column held in between the UV tubes. The distance 

between the column and UV tubes was kept at 2 -3 cm so as to avoid any dark patches in 

the column and to prevent loss of light. The glass beads were packed in the quartz 

column and sealed using square polyvinyl caps (Caplugs).  

Methyl orange has been often used as a reliable model pollutant in photocatalytic 

reactor research. Since methyl orange turns yellow in an alkaline solution and red in 

acidic solution, it is also suitable for monitoring the photodegradation process (Brown et 

al., 1984; Nam et.al., 2002; Bao et.al., 2004). The influent and effluent pH was 

maintained at 6.0 ± 0.2 with 0.1 N HCl and 0.1 N NaOH. Since the total volume of acid, 

base used was less than 5 ml (for influent tank) and 1 ml (for effluent samples); it did not 

affect the concentration of methyl orange. The ionic strength of the solution was fixed at 

1.7 x 10-2 M NaClO4, with influent concentration of methyl orange between 15 mg/L and 

30 mg/L. 
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3.6.3.1. Methyl Orange Photodegradation Using Prototype Reactor 

Figure 3.6 shows the experimental setup for methyl orange experiments using 4 x 

15 W UV tubes. For different experiments the column was packed with glass beads 

coated with TiO2 prepared from TiO2 sol Mixtures C, D, E and F by Method 2 or 3. 

Experiments were performed for different HRTs to evaluate the photocatalytic oxidation 

kinetics. Data were also analyzed for the reproducibility of TiO2 coating method and to 

check the loss of TiO2 coating by using the catalyst for prolonged periods of time. An 

experiment to check the loss of coating after the photocatalytic experiment was 

performed where beads were removed from the column and washed gently with DI water 

for various HRTs. 

 

4 x 15 W UV 
tube 

Magnetic Stirrer 

Influent HRT 
control by 
Peristaltic 

Pump 

O2 Supply PFR packed with 
glass beads 

Sample 
Collection 

 

500ml 
Sample 

 

Figure 3.6. Schematic diagram of horizontal continuous packed bed plug 
flow PCO reactor 

 
 
 
3.6.3.2. Methyl Orange Photodegradation Using Portable Reactor 

After the design and testing of the reactor with UV tubes was successfully carried 

out, design of the portable reactor with UV LEDs was done. The design constituted of 

using a base plate for providing a even base to mount different components, combinations 
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of LEDs as UV sources, a DC power supply (Agilent E 3646A), lenses (Edmund Optics 

Inc.) and focusing units (Thorlabs Inc.) to focus incident light from top, bottom and sides 

of the column to concentrate the incident light (Figure 3.7). The lenses (BK7 material) 

used for focusing the UV lights were not UV coated and thus caused reduced 

transmission through the lenses (80% to 50% for a wavelength range of 375 nm to 350 

nm - Edmund optics). Due to the loss of light to such a great extent, the design was 

changed and the column was directly illuminated by LEDs (340 nm or/and 370 nm 

wavelength) placed less than 1 cm away from the outer surface of column (Figure 3.9). 

Due to the limitations of HRT through new reactor using it as flow through reactor (0.15 

ml/min – minimum achievable flow rate), the reactor was operated as a batch type 

recirculating reactor to have longer illumination period. 

Two different configurations were designed to work as recirculating reactors. 

Initially a packed bed reactor (PBR) and mixed storage reactor (MSR) were connected in 

a series recirculating configuration (Figure 3.8). Once a steady flow rate through the 

packed bed reactor was maintained, the influent tube was connected with the MSR to 

operate the system as a batch type recirculating system. Since minimal mixing through 

the length of reactor is expected, the column filled with glass beads behaves like a plug 

flow PBR. The effluent collecting reactor is mixed using a magnetic stirrer and the flow 

coming in and going out of the reactor are constant, therefore the reactor behaves like a 

MSR. In the MSR there is no reaction occurring but only dilution of effluent occurs. The 

total combined volume to be treated in a single batch was 21 ml and the volume in the 

MSR was been kept constant at 5 ml, while the total volume of sample undergoing 

photocatalytic oxidation in PBR is 6.15 ml. As the reactor was a combination of PBR and 
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MSR, the mathematics became very complex for deriving the equation for rate constant. 

Since only the PBR is illuminated degradation occurs in the PBR, while in the MSR only 

dilution of the effluent occurs with the PBR effluent. The degradation kinetics should be 

assumed to follow usual photocatalytic degradation kinetics of Langmuir – Hinshelwood 

(Dijkstra et al., 2001).  

The second configuration consisted of only the PBR operated as a recirculating 

reactor, with other operating conditions remaining the same. Once the flow rate was 

maintained at 0.35 ± 0.5 ml/min, the column outlet was connected to the inlet tube and 

the UV LEDs were powered. The total volume of the reactor was decreased from 21 ml 

to 16 ml. Since only the PBR is operated in a recirculated configuration, the degradation 

kinetics should also follow the lower limit of Langmuir – Hinshelwood kinetics, i.e., 

pseudo first order kinetics, as seen for the prototype reactor. 

Due to comparatively high power input for UV LED 340 (0.5 watts input power), 

the LEDs were placed in metal sockets which would absorb the heat generated due to the 

power dissipation and the LEDs were cooled by passing air over them. The UV LEDs 

were operated at fixed input currents with UV LED 340 operated at 100 mA each, while 

the UV LED 370 were operated at 15 mA or 25 mA each based on the progress of work. 

The operating characteristics of two UV LEDs used are given in Table 3.1. 

Table 3.1. Characteristics of Light Emitting Diodess (Roithner  laser, UV LED370 
and Sensor Technology, UV LED340) 

Type of LED 
Power 
dissipation 
(mW) 

Output power 
(mW) 

Operating 
current 
(mA) 

Half 
angle 
(degree) 

UV LED340 150 @ 30 mA 0.5 @ 20 mA 100 30o

UV LED370 60 @ 15 mA 1.0 @ 10 mA 25 110o
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Figure 3.9. Top close-up view of portable PCO reactor with UVLED 340 
and UVLED 370 placed along the sides, top and bottom to illuminate the 
column 
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Figure 3.10 represents a schematic diagram for the both the configuration where 

the PBR and MFR are connected in series and the PBR with direct recirculation. The 

second configuration can be obtained by removing the MFR and connecting the outlet 

from PBR to the inlet of PBR, shown in Figure 3.10. The column was packed with beads 

coated with TiO2 prepared from sol Mixture F by Method 3. Experiments were performed 

with a combination of UV LEDs for different operation periods to evaluate the 

photocatalytic degradation rates.  

 

MSR with 5 ml 
excess volume  

PBR 

UV LEDs 

Direct recirculation Recirculation with MFR 

Influent HRT 
control by 
Peristaltic 

Pump 

Figure 3.10. Schematic diagram of horizontal continuous portable 
recirculating PCO reactor using two different configurations 

 

 

3.6.4. E. Coli Photodegradation Using Portable Reactor 

With the portable reactor designed as a direct recirculating reactor, experiments 

for E. coli were performed in the portable reactor with pH = 7.0 ± 0.2, ionic strength = 

1.7 x 10-2 M NaClO4 and DO saturated with oxygen (Figure 3.10). Control experiments 

performed with the portable reactor did not yield consistent results. There could have 

been number of reasons due to which the consistency of experiments was not achieved. 
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But to prove that LEDs can be used as a viable source of UV light for water disinfection, 

two quartz cuvettes were filled with glass beads and water sample, and sealed with 

parafilm. The cuvettes were placed in the LED configuration shown in Figure 3.9 and 

illuminated for 5 hrs. The total volume of sample treated in each quartz cuvette was 1.8 

ml, and once the experiments were over the glass beads were transferred to a sterile test 

tube and 1.8 ml sterile water was added to the test tube. The sample was then shaken 

gently to mix the water sample and detach any E. coli colony from the surface of glass 

beads, if attached. The samples were then plated as per the standard plate count 

technique. Dark and lighted control experiments were also performed to prove the 

photocatalytic effect of the UV LED light source. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1. COATING METHOD 

 The suspension method required 24 hrs to provide a single layer of coat. The 

ceramic funnel method was used to reduce the coating time to less than 3 hrs and to make 

the process efficient by maximizing the use of sol gel. Etching of glass beads was done to 

remove loosely attached TiO2 particles (P25), which would otherwise be washed out over 

prolonged period of use in PCO. Etching of coated beads would also result in roughening 

of the surface and thus result in higher number of active sites for reaction. 

 

4.2. COATING CHARACTERIZATION 

4.2.1. Environmental Scanning Electron Microscope (ESEM) Analysis 

ESEM was used to take micrographs of coated and uncoated glass beads to 

compare different coating methods, the uniformity of coating and thickness of coating. 

An ESEM micrograph of an uncoated glass bead is shown in Figure 4.1. Comparing 

Figure 4.1 with other coating micrographs will help in identifying the bead coating 

characteristics. 

ESEM micrographs of the glass beads coated using Method 1, are shown in 

Figures 4.2 and 4.3. Figure 4.2.a shows unwashed beads and Figure 4.2.b shows washed 

(with DI) beads; Figure 4.3.a shows beads with single coating and Figure 4.3.b shows 

beads with two coatings. 
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50 μm50 μm

Figure 4.1. Uncoated glass beads serving as reference to 
other ESEM micrographs of coated glass bead 

 

 

Looking at Figure 4.1 and Figure 4.2, the glass beads appear to be coated with 

TiO2 in the latter. Comparing Figures 4.2.a and 4.2.b, it can be seen that the surface of the 

coating on glass beads which are not washed is uneven with flakes of TiO2 weakly 

Figure 4.2.a. Unwashed Beads Figure 4.2.b. Washed beads 

50 μm 50 μm 

Figure 4.2. Comparison of single - coated unwashed and washed beads to 
analyze the effect of washing beads. TiO2 coatings were prepared by Method 1. 
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attached to the glass surface. This flaky coating was removed when thoroughly washed 

with water, as seen in Figure 4.2.b. 

Comparison of Figures 4.3.a and 4.3.a shows that the additional layering produces 

significant difference between coating patterns on the glass beads. In Figure 4.3.a, the 

surface was not as smooth as can be seen in Figure 4.3.b with two coating layers. Thus, it 

was concluded that two layers of TiO2 are to be applied in order to have complete and 

smooth coating on the glass beads surface. 

 

 

Figure 4.3.a. Single Coat Figure 4.3.b. Double Coat 
Figure 4.3. Comparison between glass beads coated with TiO2 by Method 1 
with single coating and double coating for analysis of coating uniformity 

50 μm 50 μm

Due to the long time required for coating the glass beads, a more mature method 

(Method 2) was evolved from the previous experiments. In this method, due to rapid 

drying by hot air, the total process time from producing sol to washing of coated glass 

beads was reduced to 6 to 8 hr from nearly 3 days. Along with saving of process time, the 

process remains simple since after the sol was dried, the ceramic funnel was directly 
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placed in an oven for calcination. Thus, even if the beads agglomerate after drying, they 

are easily separated after calcination. 

Comparison of the two micrographs in Figures 4.4.a and 4.4.b shows some 

difference in the uniformity of coating. Figure 4.4.2 shows glass beads coated with 

Mixture C by Method 2 which seems to be more uniform with lesser irregularities. Thus, 

by using the newer method, along with increase in uniformity of coating, the total time 

for coating process was reduced to less than 6 hr. 

 

50 μm 50 μm

Figure 4.4.a. Bead coated with 
Method 1, double coat 

Figure 4.4. Comparing micrographs of beads coated with TiO2 by two 
different methods to check for the uniformity in coating 

Figure 4.4.b. Beads coated with 
Method 2, three coats 

 

Figure 4.5.a again shows the glass beads coated with TiO2 prepared (Mixture C) 

without supplemental TiO2 powder (Degussa P25) by Method 2. The bright white dots in 

Figure 4.5.b result from the supplemental TiO2 powder attached to the glass beads coated 

by Method 3, added during sol gel preparation (Mixture F). Thus, this attached TiO2 

powder should assist in increasing the specific surface area and roughness of the catalyst, 

which in turn was expected to enhance the rate of the photocatalytic reaction. 
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50 μm 50 μm 

Figure 4.5.b. Beads coated with 
Mixture F by Method 3 

 

lass bead coated  2 was analyzed 

under ESEM. Figure 4.6 shows the cross section of a coated glass bead. The coating 

thickne

 

A cross section of a g with Mixture C by Method

ss varies as seen in Figure 4.6.a, with 9.9 μm as maximum thickness of coating as 

measured by ESEM (Figure 4.6.b). 

Figure 4.5.a. Beads coated with 
Mixture C by Method 2  

50 

Figure 4.5. The effect of supplemental TiO2 (Degussa P25) powder to sol gel 
preparation 

μm 10 μm

Figure 4.6.a. Cross section showing 
varying thickness 

Figure 4.6.b. Cross section showing 
maximum thickness of 9.9 μm 

Figure 4.6. ESEM micrograph of cross section of a glass bead coated with 
Mixture C and Method 2. 
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4.2.2. BET Surface Area Analysis 

The BET surface areas were found for uncoated beads, beads coated with sol gel 

Mixture C and Method 2, beads coated with sol gel Mixture F and Method 3 and beads 

coated with sol gel Mixture F and Method 3 used once for a photocatalytic experiment. 

Table 4.1 below presents the BET surface area values for the four different cases. 

 

Table 4.1. BET surface area of glass beads uncoated, coated with Mixture C and 
Method 2 and coated with Mixture F and Method 3. 

BET Surface Area 
(m2/g) Type of Beads 

Uncoated Beads 0.005 
Beads Coated with Mixture C and Method 2 0.091 
Beads Coated with Mixture F and Method 3 0.284 
Beads Coated with Mixture F and Method 3 

hotocatalysis 
experiment 

0.200 and used once for a p

 

es 

h 

ce 

rea can be attributed to the TiO2 coating (with and without supplemental TiO2 powder) 

elp 

in increasing catalyst expo h in turn would increase the chances of 

photocatalytic reaction. T ea of glass beads which have been used once 

for photoca ich have en used 

decreases b  et al. (2002b) found that glass 

) coated with T erging the beads into the TiO2 solution was 

gradually removed and resulted in complete loss after 100 hr of flowing water through 

From Table 4.1, it can be seen that the BET surface area of coated beads increas

by a factor of 2 (Beads Coated with Mixture C and Method 2) and 55 (Beads Coated wit

Mixture F and Method 3) as compared to the uncoated beads. This increase in surfa

a

which results in a porous and rough surface. Thus the increase in surface area should h

sure to UV whic

he BET surface ar

talytic experiment as compared to the ones wh  not be

y 25%, indicating a loss of attached TiO2. Kim

iO2 by submbeads (6 mm
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the glas

 is 

ch is 

se 

im et 

l. (2002a), Hamid and Rehman (2003) and Lee et al. (2003) were similar to the XRD 

e type TiO2. 

s beads in a packed bed reactor. A similar effect could have also resulted in 

decrease in the BET surface area and thereafter reduced photocatalytic efficiency. 

 

4.2.3. X- Ray Diffraction Analysis 

The XRD analysis of powder prepared from Mixture C and Method 2, Mixture F 

and Method 3, and Degussa P25 calcinated at 500 oC with 5 oC/min of ramp heating

shown in Figure 4.7. The XRD pattern for TiO2 prepared from Mixture C and Method 2 

predominantly indicates the anatase phase of TiO2 with a sharp peak at 25 oC, whi

the major peak for the anatase structure. The XRD pattern for Mixture F prepared by 

Method 3 shows a combination of P25 and Mixture C with predominance of the anata

phase. Since the mass of TiO2 due to sol gel is 2.0 g, while 0.5 g of P25 is added, the 

Mixture F is dominated by TiO2 due to sol gel, which has been characterized by a 

dominated anatase phase. The XRD patterns observed by Demessie et al. (1999), K

a

patterns observed for Mixture C, i.e., well-crystallized anatas
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Figure 4.7. XRD graphs for powder prepared from Degussa P25, Mixture F and 
Mixture C 
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4.2.4. Coated TiO2 Mass Calculations 

Uncoated and coated glass beads were washed with DI water and oven dried at 

100 oC before they were weighed on a precision balance (Mettler Toledo Precision 

Balance) and a cumulative mass/number of beads ratio was obtained.  Table 4.2 shows 

the data for calculating the mass of TiO2 coated onto the glass beads. 

 

Table 4.2. Analysis for calculating mass of TiO2 coated on the surface of glass beads 
using Method 3 and TiO2 prepared using Mixture F.  Cumulative mass of beads has 
been measured and average and standard deviation values are obtained. 

Number 
of Beads 

Mass of 
Uncoated 

Glass Beads 
(g) 

Mass of 
Uncoated 

Glass Bead 
(g/bead) 

Mass of Glass 
Beads with 
TiO2+Sol 

(g) 

Mass of Coated 
Glass Bead 

(g/bead) 

50 0.0924 0.001848 0.0955 0.00191 
100 0.1834 0.00182 0.184 0.00177 
200 0.3617 0.001783 0.3629 0.001789 
300 0.5373 0.001756 0.5442 0.001813 
400 0.7199 0.001826 0.7258 0.001816 
500 0.9016 0.001817 0.913 0.001872 
550 1.0813 0.001797 1.1054 0.001924 
650 1.1754 0.001882 1.1995 0.001882 

Average  0.001816  0.001847 
Standard 
Deviation  0.000036  0.000054 

Difference = TiO2 mass/ glass bead 3.1 x 10-5 g/bead 
Mass of glass beads in column (measured), Mgb 46 ± 1 g 

Number of glass beads in column, Ngb = Mgb/Difference 25205 ± 1005 
TiO2 loaded in the column = Ngb x Difference 0.78 ± 0.03 g 

 

The mass of uncoated bead is 0.001816 ±0.000036 g/bead (Table 4.2), while that 

of the coated bead is 0.001847 ± 0.000054 g/bead. Therefore, the mass of TiO2 coated on 

the surface of the glass bead packed in the column averages 3.1 x 10-5 g/bead. 
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Another separate set of calculations were performed to cross check this value of 

mass of  

ater 

l of TIP 

 52 ml of Isopropanol, 18 ml of 1N HCl and 2 ml of DI water. This volumetric ratio 

 g of glass 

be ± 0. e unc er (1.0 .19 ±

87 ± 6% of TiO2 is ered. Th of 0.5 g De a P25, would ly add 

to th s of TiO  on the  glass bead

sed on t ption that all the beads are coated evenly, the 2 

coated on the glass beads can be f  to appro he thicknes g. 

The eter of th eads v en 1.0 to  (Potters In  an 

average diameter of 1.1 mm of uncoated bead and 4.0 g/cm3 as the densi 3.84 

– 4.26, Fisher Scientific), the thickness of the coating is calculated as 2.0 s 

compare

Using the BET surface area for glass ith re 3 

nd the total mass of TiO2 coated on the beads, the surface area covered by a unit mass of 

TiO2 lo

. For the glass beads 

coated with Mixture C by Method 2, the BET surface area is 0.09 m2/g of beads. Thus, 

 coated TiO2 where, after coating the glass beads, the powdered TiO2 which was

not attached to glass beads was collected from the ceramic funnel and from the DI w

used for washing beads. The mass of powder TiO2 measured was 1.0 ± 0.1 g. In this 

preparation, 70 ml of sol gel synthesis Mixture F was prepared by mixing 7.5 m

to

should provide 0.025 moles (2 g) of TiO2. Thus, a total of 2.5 g (sol + P25) is used to 

coat 70 g of beads, while the summation of mass of TiO2 actually coated on 70

ads (1.19 14 g) and th oated powd  ± 0.1 g) is 2  0.15 g . Thus, about 

recov e addition guss fractional

e mas 2 coated surface of s. 

Ba he assum mass of TiO

urther used x  timate s of coatin

diam e glass b aries betwe  1.2 mm c.). Taking

ty of TiO2 (

± 0.1 μm a

d to 9.9 μm found using ESEM. 

 beads coated w Mixtu  F by Method 

a

aded can be calculated. The BET surface area equals 0.284 m2/g. Since the mass 

of TiO2 loaded is 3.1 x 10-5 g/bead and the bead mass is 0.001847 ± 5.4 x 10-5 g/bead, the 

area covered per gram of loaded TiO2 equals 16.9 ± 1.0 m2/g of TiO2
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the area

oss 

4.3.1.  

d 

 

f 77 μM, pH 5.0 ± 0.2, ionic strength 1.7 x 10-2 

M NaC

 covered per gram of loaded TiO2 equals 5.0 ± 0.3 m2/g of TiO2. The two values 

of area covered per mass of coated TiO2 for two different methods indicate that the latter 

method would have an increased number of active sites. 

 

4.3. EXPERIMENTS ANALYZING PHOTOCATALYTIC EFFICIENCY 

The results of various experiments performed were analyzed to check (i) the 

photocatalytic activity of coated TiO2, (ii) the consistency of the coating method, (iii) l

of coating due to repeated use of catalyst, (iv) disinfection efficiency and (v) relationships 

between two reactors to show the effects of light source on the pollutant removal 

efficiency 

 

Formaldehyde Photodegradation Using Vertically Oriented Prototype Reactor

Initially, formaldehyde was used to confirm the photocatalytic activity of coate

TiO2. The glass beads used as supporting media were coated with Mixture C by Method

1. For the control run with uncoated glass beads, two columns were connected in series 

with a flow rate of 0.35 ml/min from each column to give a total HRT of 60 min and 

loaded with formaldehyde concentration o

lO4 and sample saturated with O2. The experiment yielded no significant 

degradation of formaldehyde (76 μM effluent concentration). Formaldehyde degradation 

experimental results are shown in Table 4.3, using the vertically oriented prototype 

reactor with a circular column. The data set shows each point as an individual sample 

measurement for the same experiment taken after at least 1.5 – 2 HRTs, so as to achieve 

steady state conditions. 
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Table 4.3. Formaldehyde photodegradation using vertically oriented prototype 

experiments with 0.23 ml/min flow rate have not been
reactor and glass beads coated with Method 1. The values for single column 

 recorded due to failure in 
connections. 

Single Column Double Column 

 Concentration  Concentration
Formaldehyde Formaldehyde 

 Flow Rate 
Q 

(ml/ m
HRT 

V/Q 

Initial

C0 

Final 

C (μM) 

HRT 

V/Q 

Initial 

C0 

Final 

C 
0 

(μM) 
in) t = 

(min) 

Conc.

(μM) 

Conc.  

(μM) 

C-C0 t = 

(min) 

Conc.

(μM) 

Conc. 

(μM) 

C-C

0.23 46 - - - 92 135 95.4 -39.6 
0.23 46 - - - 92 143 97.1 -45.9 
0.23 46 - - - 92 136 89.6 -46.4 
0.28 38 150 132 -18 76 143 100 -33 
0.28 38 150 128 -22 76 143 113 -30 
0.28 38 150 130 -20 76 143 107 -36 

 

functio

Due to slight difference in the influent concentration (C0), a graph of (C – C0) as a 

n of HRT ( t ) (Figure 4.8) is plotted. The formaldehyde degradation data show a 

straight line relationship, which resembles zero order degradation, as seen by Arana et al. 

(2004) for formaldehyde degradation using suspended Degussa P25 as catalyst in a 250 

ml glass vessel reactor at pH 5.0. The rate constant for formaldehyde degradation base

on a zero order reaction can be found by: 

 

d 

tkCC −= 0

 

where, k is the zero order rate constant (μM/min), 

                                                          [4.1]  

t  is the hydraulic retention time (min), 

C is the concentration of formaldehyde at time t  (μM) and C0 is the initial concentration 

of formaldehyde (μM). 
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4.3.2. E. coli Degradation Using Prototype Re

E. coli degradation was carried out in a vertically oriented packed bed plug flow 

-2

able 4.4 shows the bactericidal activity of TiO2 photocatalyst 

and confirms that it was possible to deactivate this bacterium. From Table 4.4, a 

 Data fitting was carried out using MS Excel and Eq. 4.1 to calculate a zero order 

degradation rate constant (k) of 0.5 μM/min and R2 = 0.952. The formaldehyde 

degradation rate constant can be used to indicate the photoactivity of coated TiO2 on 

glass beads. Thus based on these results, similar experiments were conducted to evaluate

degradation of E. coli. 

actor 

reactor. The circular column was packed with glass bead coated with Mixture C by 

Method 1. The pH was kept at 7.0 ± 0.2, ionic strength = 1.7 x 10  M NaClO4 and DO 

saturated with oxygen. T

-60

-50

0

0 2 0 80
H min)

o 
(u

-40

-30

C
 - 

C

-20

-10
M

)

0 4 60 100
RT (

F  4.8. F alde  deg tion e using vertically oriented prototype 
reactor and glass beads coated by with ture  Method 1. pH 5.0 ± 0.2, ionic 
strength 1.72 x 10-2 M NaClO4, DO saturated with O2, data evaluated using MS Excel. 

igure orm hyde rada  curv
 Mix C by
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reduction in number of CFU/100 ml of E. coli was seen, indicating photocatalytic 

disinfection. Disinfection requires killing and inactivation of bacteria; the goal of this 

research is to achieve a reduction of 3-5 log10 units within 30 min of treatment period. A 

5 log10 reduction is considered as an acceptable disinfection (Kuhn et al., 2003), while in 

our case the maximum degradation seen was 2.28 log10 removal in 35 mins. 

Various factors like catalyst contact surface area, incident light intensity and 

dissolved oxygen have to be considered to increase the efficiency of the process. If the 

data are critically analyzed, the readings seem to be somewhat inconsistent (for the same 

effluent, sample duplicates or triplicates yield different results), which may be due to 

hu

 

Table 4.4. E. coli degradation for vertically oriented prototype PCO reactor and 

4
s based 

O  

man error encountered while counting CFUs. 

glass beads coated with Mixture C by Method 1. Samples were either duplicated or 
triplicated. pH = 7.0 ± 0.2, Ionic Strength = 1.72 x 10-2 M NaClO , DO saturated 
with O2. The values in bold represent average values of E. coli concentration
on number of replicates. C/C  is calculated based on the average values of E. coli
concentrations 

E. coli concentration  Flow 

(ml/min) 0 
(CFU/100 ml) (CFU/100 ml) 

Rate HRT 
(min) 

Initial Conc. 
C

Final Conc. 
C C/CO

Log 
(C/Co) 

2.0 x 105 1.3 x 104

3.5 x 105 1.1 x 104

1.5 x 105 1.8 x 1040.37 29 

104

7.0 x 10-2 -1.15 

2.0 x 105 1.4 x 
1.5 x 10 7.5 x 1046

3.7 x 106 1.3 x 105

1.3 x 10 2.0 x 106 5

3.7 x 106 2.0 x 105
0.33 32 

2.5 x 106 1.5 x 105

6.1 x 10 -1.22 -2
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Table 4.4. (Continued) Experimental data for E. coli photocatalytic degradation in 
vertically oriented prototype reactor 

E. coli concentration  Flow 
Rate 

(ml/min) (min) C
HRT Initial Conc. 

(CFU/100 ml) 

Final Conc. 

(CFU/100 ml) 

Log 
0 C C/CO (C/Co) 

1.0 x 10 8.4 x 105 3

2.3 x 105 7.8 x 103

2.7 x 10 8.5 x 105 3

2.1 x 10 9.0 x 105 3
0.31 34 4.4 x 10

1.9 x 105 8.4 x 103

-2 -1.35 

1.1 x 10 6.8 x 106 4

1.3 x 106 7.0 x 1040.30 35 
1.2 x 10 6.9 x 10

5.8 x 10
6 4

 -2 -1.24

4.0 x 106 2.1 x 104

4.0 x 10 2.2 x 106 40.30 35 
4.0 x 106 2.1 x 104

5.2 x 10 -2.2-3 8 

 

Once the prototype reactor was used to optimize the coating method and sol 

 

 

riments perform ctor with glass beads coated with 

Mixture F by . 

Based on the resu unlo ho et al. (2003) and Sun 

et 03), the tocataly oli is characterized by pseud er kin

behavior. Due to different input concentrations, it would be awkward to plot E. coli 

concentration as a function o  a lineariz (C/CO) as a function of HRT 

should provide a pseudo first order kinetic fit. 

 

preparation using methyl orange as target pollutant, E. coli experiments were again 

conducted to check the disinfection efficiency of the optimized reactor. The experiments

were performed under similar conditions as explained in Experiment 2. Table 4.5 presents

the data for expe ed for the optimized rea

Method 3

lts o y Dbtained b p e 2), Ct al. (200

al. (20  pho sis of E. c o first ord etic 

f HRT, so ed plot of 

tkCC −= exp0               [4.2] 
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where, k is the first order rate constant (min-1) and t  is the hydraulic retention time 

(m  and C being the initial f E. coli (CFU/100 ml). 

Table 4.5. Experimental da coli photocatalytic degradation with dark and 
light control in the horizontally oriented proto tor packed with glass beads 
coated with Mixture F by M nder pH 2, 1.7 x ClO  
strength and saturated DO. The values in bold t average values of E. coli 
concentrations. C/CO is calculated based on the average values of E. coli 
concentrations 

in), C0 and final concentration o

 

ta for E. 
type reac

ethod 2 u of 7.0 ± 0.  10-2 M Na 4 ionic
 represen

E. coli Concentration 
Flow Rate 
(ml/min) 

HRT 
(min) 

Initial Conc. 
CO

(CFU/100 ml) 

Final Conc. 
C 

Log C/CO (C/Co) 
(CFU/100 ml) 

DARK CONTROL 
9.5 x 106 6.8 x 105

1.1 x 106 7.2 x 1050.89 12.1 
1.0 x 106 7.0 x 105

6.8 x 10-1 -0.17 

59.5 x 10 8.5 x 105

1.1 x 106 8.1 x 1050.42 25.7 
1.0 x 106 8.3 x 105

8.1 x 10-1 -0.09 

2.2 x 105 1.5 x 105

2.8 x 105 3.0 x 1050.40 27.0 
2.5 x 105 2.2 x 105

-19.0 x 10 -0.05 

LIGHTED CONTROL 
3.0 x 106 5.5 x 105

4.0 x 106 3.5 x 1050.60 18.0 
3.5 x 106

1.3 x 10-1 -0.89 
4.5 x 105

6.0 x 106 8.5 x 105

8.0 x 106 8.0 x 105

- 9.0 x 1050.49 22.0 

7.0 x 106 8.5 x 105

-11.2 x 10 -0.92 

6 2.0 x 103.0 x 10 5

4.0 x 106 2.0 x 1050.36 30 
3.5 x 106 2.0 x 105

5.7 x 10-1 -1.24 

PHOTOCATALYSIS 
2.6 x 106 1.0 x 106

2.8 x 106 7.5 x 1050.86 12.5 
2.7 x 106

3.2 x 10-1 -0.49 
8.7 x 105

8.3 x 106 1.5 x 106

8.7 x 106 1.6 x 1060.71 15.2 
8.5 x 106

1.9 x 10-1

1.6 x 106
-0.73 
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Table 4.5. (continued) Experimental data for E. coli photocatalytic degradation 
in horizontally oriented prototype reactor 

E. coli Concentration 
Flow Rate 
(ml/min) 

HRT 
(min) 

Initial Conc. 
CO

(CFU/100 ml) 

Log Final Conc. C/COC (C/Co) 
(CFU/100 ml) 

3.5 x 106 2.0 x 104

4.5 x 106 3.0 x 1040.55 19.5 
4.0 x 106 2.5 x 104

6.3 x 10-3 -2.20 

3.0 x 106 1.0 x 104

5.0 x 106 1.2 x 1040.46 23.3 
4.0 x 106

2.8 x 10-4 -2.56 
1.1 x 104

1.1 x 107 3.0 x 104

1.3 x 107 5.0 x 1040.42 
 

25.7 
 1.2 x 107

3.3 x 10-3

4.0 x 104
-2.48 

3.0 x 106 4.0 x 103

5.0 x 106 5.0 x 1030.41 26.3 
4.0 x 106 4.5 x 103

1.1 x 10-3 -2.95 

1.1 x 107 1.5 x 104

1.3 x 107 1.2 x 1040.35 30.9 
1.2 x 107 1.3 x 104

1.3 x 10-3 -2.95 

5.6 x 105 5.0 x 102

6.0 x 105 7.0 x 102

- 6.5 x 1020.34 31.7 

5.8 x 105 6.2 x 102

1.1 x 10-3 -2.97 

1.2 x 107 3.4 x 102

1.4 x 107 - 0.25 43.2 
1.3 x 107 3.4 x 102

2.8 x 10-5 -4.56 

 

Figure 4.9 presents the linearized plot for E tocatalytic degradation as a 

function of HRT.  Following an initial lag phase in the first 10 min (as als  seen by 

Dunlop et al. (2002) and Cho et al. (2003)), the rate of disinfection followed pseudo first 

order kinetics, as also seen by K . (2003) a t al. (2002b). The pseudo first 

order rate constant for the phot experime und to be 0.29 min-1, while 

for the light control experiment as 0.066  for dark control experiments 

the r l was l n 0.2 lo 7 mins o

. coli pho

o

uhn et al nd Kim e

ocatalytic nt was fo

 the rate w  min-1 and

emova ess tha g10 after 2 f HRT. 
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4.3.3. Methyl Orange Photodegradation Using Horizontally Oriented Prototype 

Reactor 

 To modify the reactor and increase the efficiency of the PCO, degradation of 

methyl orange was performed to examine the different factors which can affect the 

process. Table 4.6 shows data for various experiments performed for methyl orange 

degradation and the efficiencies for the 5 different experimental sets are co . A 

remarkable change in fractional degradation (1-C/C0) between the experim formed 

without supplemental TiO2 (i.e., Mixture C and Method 2; 34% for 20 min HRT) and 

with the supplement TiO2 powder (i.e., Mixture F and Method 3; 78% for 2 HRT) 

to the sol gel synthesis was seen. These results indicate that addition of TiO owder 

increases the PCO rate, which may be attributed to the increased surface area and the 

roughness of coating. 

 

Table 4.6. Photocatalytic degradation of methyl orange over glass beads coated with 
different sol mixtures and coating methods in horizontally oriented pr
reactor. pH = 6.0 ± 0.2, Ionic Strength = 1.72 x 10-2 M NaClO4, DO saturated with 
O2. 

Methyl Orange Concentration 

mpared

ents per

0 min 

2 P25 p

ototype 

Flow Rate 
(ml/min) 

HRT 
(min) 

Initial Conc. 
C0

(mg/L) 

Final Conc. 
C 

(mg/L) 
0C/C

Mixture C and Method 2 
2.50 4.5 31.3 28.9  0.92
0.91 12.4 31.3 23.9  0.77
0.50 22.6 31.3 21.6  0.69
0.50 22.6 31.3 20.8  0.66
0.45 25.1 31.3 19.7  0.63
0.45 25.1 31.3 19.1  0.61
0.20 56.5 31.3 12.7  0.41

Mixture C and Method 2 
1.47 7.4 20.3 17.5 0.86 
1.32 8.2 20.3 17.2 0.84 
0.53 21.5 20.5 13.6 0.66 
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Table 4.6. (continued) Photocatalytic degradation of methyl orange in 
horizontally oriented prototype reactor 

Methyl Orange Concentration 
F

0

low Rate 
(ml/min) 

HRT 
(min) 

Initial Conc. 
C

(mg/L) 

Final Conc. 
C 

(mg/L) 

C/C0

0.53 21.5 20.5 13.8 0.67 
0.47 24.1 20.5 12.6 0.62 
0.47 24.1 20.5 12.2 0.60 
0.15 74.6 20.3 7.2 0.36 

Mixture E and Method 3 
0.81 14.0 28.9 28.9 0.55 
0.81 14.0 28.9 16.0 0.55 
0.41 27.8 28.9 15.9 0.22 
0.41 27.8 28.9 6.30 0.22 

Mixture D and Method 3 
0.73 15.5 30.1 15.9 1.00 
0.73 15.5 30.1 16.2 0.53 
0.54 20.9 30.1 10.5 0.54 
0.54 20.9 30.1 10.5 0.35 
0.50 22.6 30.1 8.80 0.35 
0.16 70.5 30.1 1.00 0.29 

Mixture F and Method 3 
0.96 11.8 32.7 21.9 0.67 
0.96 11.8 32.7 18.7 0.57 
0.75 15.1 32.7 13.1 0.40 
0.75 15.1 32.7 13.4 0.41 
0.52 21.9 32.7 7.20 0.22 
0.52 21.9 0.26 32.7 8.50 

M  F anixture d Method 3 – Glass beads reused 
1.54 7.0 28 2  4.9 0.89 
0.54 20.0 28 16.9 0.61 
0.41 26.3 0.52 28 14.6 
0.31 35.0 28 10.3 0.37 

 

These dat lotted in Figure 4.10. It can be seen that when sample was illu d, an 

initial fas dation ed, follow  a steady decay, o seen by N  al. 

2002) and Bao et al. (2004) for m

a are p minate

t degra occurr ed by  as als am et

ethyl orange degradation. 
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Thus, the photodegradation of methyl orange in water can be described according to 

Figure 4.10 as pseudo first order degradation. The first order degradation rate constant 

can be found by using following equation: 

 

)(
0 exp tkCC −=       [4.3] 

 

Based on Eq. 4.3, a pseudo –first order linearized graph can be plotted fo  as a 

function of HRT (

r log C/C0

t ), as shown in Figure 4.11. The values of rate constant (k) are listed 

in Table 4.7 with their respective R2 values (obtained using MS Excel). 

 
Table 4.7. Pseudo first order methyl orange degradation rate constant values for 
different photocatalytic experiments performed in horizontally orien type 
reactor. pH = 6.0 ± 0.2, Ionic Strength = 1.72 x 10-2 M NaClO4, DO saturated with 
O2. 

Method k (min-1) 

ted proto

R2

Mixture C and Method 2 – Low Concentration 0.016 4 0.913
Mixture C and Method 2 –  High Concentration 0.018 54 0.97

Mixture D and Method 3 0.050 926 0.9
Mixture E and Method 3 0.055 0 0.973
Mixture F and Method 3 0.062 8 0.907

Mixture F and Method 3 – Reused after one 
photocatalytic experiment 0.027 0.9818 

 

From Table 4.7, it can be seen that the first order rate constant va ure 

F and Method 3 is greater by a factor of 3.5 as compared to that of Mixtu hod 

2. If the 3 experiments with Mixtures D, E and F are compared, it can be re 

has been an incremental change in the rate constant values, but the value lly 

different and can be easily affected by the number of readings taken whi  the 

rate constant.

lues for Mixt

re C and Met

 seen that the

s are margina

le calculating
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Over many years of research, P25 has been found to be the most photocatalyt ti

form of TiO2 (Mills and Le Hunte, 1997; Lee et al., 2002; Bao et al., 2004). T

increase in photocatalytic activity can be attributed to the supplemental P25 T  

during sol gel synthesis, which not only is photocatalytically active but also h

increasing the total TiO2 surface area. 

The results obtained from the BET experiments indicate a reduced BET surface 

area (by a factor of 1.4) for glass beads which have been used once as compa

glass beads which have not been used before for photocatalytic experiment. To illustrate 

that the coated TiO2 gets etched from the surface of glass beads not due to photocatalysis 

but due to the abrasion created while packing, unpacking the column and washing them 

with DI water, similar methyl orange experiments were conducted at various HRTs. Data 

for the experiment are presented in Table 4.6 and are plotted in Figure 4.10. Figure 4.11 

gives linearized data for C/CO as a function of HRT and the slope of the line provide the 

rate constant, which was equal to 0.027 min-1, calculated using MS Excel. Thus, the first 

order rate constant decreased by a factor of 1.8 for the used glass beads as co

the unused glass beads coated with Mixture F by Method 3. 

To examine the reproducibility of coated TiO2 experiments in the prototype PCO 

reactor, several experiments were performed using separate batches of glass beads coated 

with Mixture F and Method 3 for each experiment. The results for the experim

given in Table 4.8 and plotted in Figure 4.12. Since methyl orange degradation has been 

described as a first order reaction, the data can be further linearized to predict er 

rate constant (Figure 4.13). Except for one experiment (32.7 mg/L), all exper e 

performed with initial concentration of 30.5 ± 0.2 mg/L. Therefore the combi

ic ac ve 

hus, the 

iO2 added

elps in 

red to the 

mpared to 

ents are 

 a first ord

iments wer

ned rate 



constant was calculated by using influent concentration of 30.5 mg/L for all the three data 

sets. Figure 4.12 shows that the first order kinetic model (Eq. 4.3) gives a good fit to the 

experimental data and the value of rate constant from the linearized graph was found to 

be 0.05 min-1 with an R2 value of 0.9248, indicating a good fit to the data. 

 

Table 4.8. Photocatalytic degradation of methyl orange under identical 
experimental conditions using TiO2 prepared with Mixture F and beads coated by 
Metho
with O2. 

d 3. pH = 6.0 ± 0.2, Ionic Strength = 1.72 x 10-2 M NaClO4 and DO saturated 

Methyl orange concentration 
Flow rate HRT Initial Conc. 

(mg/L) 

Final Conc. 

(mg/L) 
(ml/min) (min) C0 C C/C0

DARK CONTROL 
0.74 15 30.6 30.6 1.00 
0.46 23 30.6 30.5 1.00 
0.37 29 30.6 30.5 1.00 
0.26 41 30.6 30.5 1.00 

LIGHT CONTROL 
0.78 14 30.8 30.4 0.99 
0.34 32 30.8 29.7 0.96 
0.28 39 30.8 29.5 0.96 
0.25 43 30.8 29.4 0.95 

PHOTOCATALYSIS BATCH -1 
0.96 11.2 32.7 21.9 0.67 
0.96 11.2 32.7 18.7 0.57 
0.75 14.4 32.7 13.1 0.40 
0.75 14.4 32.7 13.4 0.41 
0.52 20.9 32.7 7.2 0.22 
0.52 20.9 32.7 8.5 0.26 

PHOTOCATALYSIS BATCH -2 
2.22 5 30.7 25.3 0.82 
0.90 12 30.7 18.3 0.60 
0.55 19 30.7 12.5 0.41 
0.39 27 30.7 5.9 0.19 
0.30 36 30.7 3.6 0.12 
0.14 75 30.7 1.1 0.04 

PHOTOCATALYSIS BATCH -3 
1.30 8 30.2 21.9 0.72 
0.80 13 30.2 16.9 0.56 
0.50 21 30.2 13.5 0.45 
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, TiOResults for the control experiments showed negligible (UV alone or 

no removal (glass beads coated with Mixture F by Method 3) of methyl orange. 

2 alone) 
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Comparing the combined rate constant (0.050 min-1) obtained from Figure 4.13 with the 

individual rate constants for the 3 experiments with glass beads coated w ixture F 

and Method 3, the rate constants vary from 0.065 min-1 (R2 = 0.9632) to 0.039 min-1 (R2 = 

0.9881). To calculate the rate constants (for 0.039 and 0.065 min-1) only 3 HRT values 

were used in the experiment, which can produce some inaccuracy. For batch 2, the 

experiment with more data, the rate constant value 0.048 min-1 (R2 = 0.9509) is very close 

to the combined rate constant 0.05 min-1 (R2 = 0.9248). 

Thus, it can be concluded that supplementing TiO2 powder during the sol gel 

synthesis process not only increases BET surface area by a factor of 1.4 but also results in 

increased roughness on the coated surface as observed in the ESEM micrograph (Figure 

4.5) and an increase in the first order methyl orange degradation rate by a factor of 1.6. 

 

4.3.4. Methyl Orange Photodegradation Using Portable Reactor 

The experimental results of methyl orange degradation in the prototype PCO 

reactor indicated that supplementation of TiO2 powder into the sol gel sy

enhances the photocatalytic degradation. A batch of beads prepared by using sol gel 

Mixture F and coating Method 3 was packed in the square quartz column and placed in 

the portable LED reactor. The column was operated as a packed bed plug flow reactor 

while a small mixed reactor (5 ml) was connected in series with the packed bed column 

(Figure 3.10). The combined reactor was operated as a recirculating batch reactor with a 

flow rate of 0.35 ± 0.5 ml/min. 

Experiments performed with two combinations of LEDs: (i) 12 UV LED340

operati

ith M

nthesis process 

 

ng at 100 mA with 6 on each side with 3 LEDs in series each, and (ii) 12 UV 
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LED340 operating at 100 mA + 12 UV LED370 operating at 15 mA each, with 6 UV 

LED340 on the sides and 6 UV LED370 on top and bottom with 3 LEDs in series on 

each side. Methyl orange degradation results are provided in Table 4.9. The experimental 

condition in both experiments performed remained the same, i.e. pH = 6.0 ± 0.2, ionic 

strength = 1.7 x 10-2 M NaClO4 and DO saturated with oxygen. 

The actual illumination period in this reactor is the time that a sample is exposed 

to illumination during the whole experiment. Thus, the actual illumination period is the 

ratio of  

l 

e 3.4 times less than the clock time (i.e., the total volume of sample through the reactor 

or the reactor 

operate  

wer) 

2 

 

 model can be used to fit the data. Since it is known that 

methyl 004, 

 

 the total amount of sample circulating through the reactor (i.e., sum of sample

volume in PCO reactor, mixed storage reactor and tubing) and the volume of sample 

under the illuminated portion  (i.e., 6.15 ml), multiplied by the total illumination period. 

Thus, for the reactor operated as indirect recirculation, the actual illumination period wil

b

of 21 ml divided by 6.15 ml as the illuminated volume of sample). F

d as direct recirculation, the ratio would be 2.6 times less than the actual clock

time (i.e., 16 ml as the total volume divided by 6.15 ml as the illuminated volume). 

A relationship can be seen between the increase in number of LEDs (input po

and the amount of methyl orange degraded, i.e., compare experimental conditions 1 and 

(Table 4.9). It can be seen (Figure 4.14) that with the increase in the number of LEDs in

experiment 2 to twice the number in experiment 1, almost twice the amount of methyl 

orange can be degraded in same time. Due to the small number of data points, either a 

zero order or a first order kinetic

 orange degradation follows first order kinetics (Nam et al., 2002, Bao et al., 2

Section 4.3.3), the data can be linearized to find a rate constant for both experimental

 72



-1sets. The rate constant evaluated for experiment 1 was found out to be 0.12 hr  and for

experiment 2 the rate constant was 0.20 hr

 

Table 4
recirculation to illustrate the effect of light intensity. Glass beads coated with 

10  M NaClO4 and DO saturated with O2. 

concentration C/C0

-1 with the R2 values of 0.9597 and 0.9928, 

respectively (Figure 4.15). The difference between the two rate constants can be 

attributed to the effect of increased light intensity. 

 

.9. Methyl orange degradation using portable reactor with indirect 

Method 3 and TiO2 prepared by Mixture F, pH = 6.0 ± 0.2, Ionic Strength = 1.72 x 
-2

Methyl orange 

(mg/L) Conditions 
Input 
Power 

(W) 

Experimental 
Time  
(hr) 

illumination 

(hr) conc. 

Actual 

period Initial 

C

Final 

C 
conc.  

0

0 0 16.3 16.3 1.00 
6 1.8 16.3 13.8 0.85 
8 2.4 16.3 11.9 0.73 

12 UV 

100 mA each 
LED340 @ 6.0 

10 2.9 16.3 11.7 0.72 
0 0 16.3 16.3 1.00 
6 1.8 16.3 11.9 0.73 
8 2.4 16.3 10.1 0.62 

12 UV 

100 mA + 12 

@ 15 mA each 

6.6 

55 

LED340 @ 

UV LED370 
10 2.9 16.3 8.90 0.

 
 

ht 

Further experiments were performed in the portable reactor with indirect 

recirculation (i.e., using mixed storage reactor) and direct recirculation (i.e., no storage). 

For both experiments 12 UV LED340 (operating at 100 mA each, 6.0 W input power) 

and 16 UV LED370 (operating at 25 mA each, 1.4 W input power) were used as the lig

sources and the data for those experiments are provided in Table 4.10. 
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Figure 4.15. Linearized graph for methyl orange degradation indicating a faster 

egradation with increased number of LEDs. pH = 6.0 ± 0.2, Ionic Strength = 1.72 x 
10-2 M NaClO4 and DO saturated with O2 and data evaluated using MS Excel. 
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Table 4.10. Photocatalytic degradation of methyl orange under identical 
experimental conditions using TiO2 prepared with Mixture F and beads coated by 
Method 3 for portable reactor operated as (i) indirect recirculation and (ii) direct 
circulation. 12 UV LED340 (operated at 100 mA each) + 16 UV LED370 (operated 
at 25 mA each) were used as UV light source. The direct circulation data includes 
data of control experiments. pH = 6.0 ± 0.2, Ionic Strength = 1.72 x 10-2 M NaClO4 
and DO saturated with O2. Each data point represents separate experiment 
performed under identical conditions. 

Methyl orange concentration Illumination 
period 
(Hr) 

Actual 
illumination 

period 
(Hr) 

Initial Conc. 
C0

(mg/L) 

Final Conc. 
C 

(mg/L) 

C/Co 

PHOTOCATALSIS – INDIRECT RECIRCULATION 
10 2.9 30.7 17.1 0.56 
15 4.4 30.7 12.9 0.42 
20 5.9 30.7 9.3 0.30 
25 7.3 30.7 5.2 0.17 
30 8.8 30.7 2.6 0.08 
35 10.3 30.7 0.3 0.01 
40 11.7 30.7 0.2 0.01 

DARK CONTROL – DIRECT RECIRCULATION 
5 2.1 30.7 30.6 1.00 
10 4.1 30.7 30.5 1.00 
15 6.2 30.7 30.4 0.99 

LIGHT CONTROL – DIRECT RECIRCULATION 
5 2.1 31.1 30.7 0.98 
10 4.1 31.1 30.4 0.98 
15 6.2 31.1 30.3 0.97 

PHOTOCATALYSIS – DIRECT RECIRCULATION 
2.5 1.0 29.5 19.4 0.66 
5 2.1 29.5 13.0 0.44 

7.5 3.1 29.5 10.1 0.34 
10 4.1 29.5 7.1 0.24 

12.5 5.1 29.5 4.0 0.13 
15 6.2 29.5 2.2 0.07 

 

The concentration of methyl orange as a function of actual illumination period is 

plotted in Figure 4.16. The data for photocatalysis with direct recirculation should follow 

rea of the PCO reactor and it has been shown to follow first order kinetics in the 

a pseudo first order degradation as the only reaction that takes place is in the illuminated 

a
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prototype reactor. For indirect recirculation, the graph shows that the rate is so

between zero and first order, and would be difficult to be reliably determined. Since the

is only dilution occurring in the mixed storage reactor, the rate becomes slower for the 

reactor when operated as indirect recirculation. The reason the portable reactor wa

mewhere 

re 

s 

ini d to o ith ind  the effluent again 

with D n doing s ple in the m d storage react tarted evap . 

After trial and er ment with the 

indirect recirculation did not fit, and after not considering the 10.8 hr and 12.4 hr readings 

for data ng, a first ord netic model fi ata fairly well, as shown in Figure 4.17. 

The rate constant for methyl orange catalysis in p ble reactor ed 

under in ct recir -1 2 ile fo eactor 

operated under direct recirculation yielded a rate constant of 0.39 hr-1 with an ue of 

0.9815. s, the d  as di

recirculation can be compared to the prototype reactor using the experimental data and 

calculating the num

 

tially configure

O, but i

perate w

o the sam

irect recirculation was to saturate

ixe or s orating

ror data fitting using a L-H model, the data for the experi

 fitti er ki t the d

photo orta operat

dire culation was 0.24 hr  with an R  value of 0.9418, wh r the r

R  val2

 Thu egradation rate obtained for portable reactor operated rect 

ber of photons each reactor uses to achiev iven degradation rate. e the g
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4.3.5. E. coli Photodegradation Using Portable Reactor 

Based on the results of methyl orange experiments in the direct recircu

portable reactor and the E. coli experiments in the prototype reactor, E. 

photocatalytic degradation in the portable reactor under direct recirculation configuration 

was examined. The results for some of the control experiments in the direct recirculation 

system indicated higher than 3 log10 removal of E. coli apparently due to

filtration, while for some experiments the results indicated growth of mo 10 E. 

coli. Due to such inconsistency in the results, instead of packing coated  a 

column and using a flow through system, glass beads were packed in two quartz cuvettes 

and photocatalysis experiments for batch systems were performed. The 

photocatalytic experiments are presented in Table 4.11. 

An average of 0.28 log10 removal of E. coli was recorded due to . 

The E. coli die over 5 hrs of treatment period without undergoing any ty , 

which can be possibly due to lack of nutrients. The natural decay of E. c

the experiments and the results indicated included the degradation due t y. 

In Figure 4.18, a 30 min HRT was required for a 3 log10 removal in the prototype reactor 

(data obtained from Table 4.5). Assuming that the E. coli degradation in the portable 

reactor will follow the same first order kinetics, 3 log10 removal require ion 

period of 240 min.  
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coli 

 removal by 

re than 2 log
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Table 4.11. Experimental data for E. coli photocatalytic degradation in portable 
reactor nic 
strength and saturated DO. The values in bold represent average values of E. coli 

 
concentrations. Natural decay of E. coli is obtained from measuring the influent 

is included in the readings for the E. coli experiments. 

 with dark and light control under pH of 7.0 ± 0.2, 1.7 x 10-2 M NaClO4 io

concentrations. C/CO is calculated based on the average values of E. coli

sample before and after the experiment was conducted. The effect of natural decay 

E. coli Concentration  Actual 

period C
illumination 

(min) 

Initial Conc. 

(CFU/100 ml) 

Final Conc. 

(CFU/100 ml) 

) C C/C Log (C/CO O
O

NATURAL DECAY 
7.0 x 106 4.0 x 106

7.5 x 10 3.5 x 106 60 
7.3 x 10 3.8 x 10

5.2 x 10 -0.29 -1

6 6

1.3 x 10 5.5 x 107 6

1.4 x 10 9.0 x 107 60 
1.4 x 10 7.3 x 10

5.4 x 10 -0.27 -1

7 6

DARK CONTROL 
7.0 x 10 1.1 x 106 6

8.0 x 10 1.2 x 106 60 
7.5 x 10

1.6 x 10 -0.80 -1

6 1.2 x 106

7.0 x 10 8.0 x 106 5

8.0 x 106 9.0 x 105 1.1 x 10-10 
7.5 x 10

-0.95 
6 8.5 x 105

LIGHT CONTROL 
6 46.0 x 10 1.0 x 10

8.0 x 106 3.3 x 104 3.1 x 10-3 -2.51 300 
7.0 x 106 2.2 x 104

6.0 x 10 8.0 x 106 4

8.0 x 106  -2300 
6 4

1.1 x 10 -1.94 
7.0 x 10 8.0 x 10

PHOTOCATALYSIS 
4.0 x 10 4.0 x 106 2

3.2 x 106  
3.6 x 106 4.0 x 102

1.1 x 10-4 -3.95 300 

4.0 x 106 8.0 x 102

3.2 x 106  300 
3.6 x 106 8.0 x 102

2.2 x 10-4 -3.65 
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The major difference to achieve a 3 log10 removal was space time (i.e., 30 min vs 

240 min), which has also been seen by Chen et al. (2005), where perchloroethylene was 

degraded in air for two different light sources (i.e., 16 UV LED375 operating at 1 mW 

each resulted in 43% PCE conversion in 64 s, and 300 mW black light resul  

PCE conversion in 8 s). Even though the time required for a 3 log10 E. coli r the 

portable reactor is not satisfactory, the results prove that it is possible to use 

light source for photocatalysis as a technology to disinfect drinking water. 

 

4.4. COMPARISION BETWEEN PROTOTYPE AND PORTABLE P

REACTOR 

Using the data obtained from the prototype reactor experiments for m  

and the portable reactor under direct recirculation experiments, along with v

assumptions, a relationship between input power, output power and methyl o

degradation can be obtained. The generalized assumptions for obtaining thes

relationships are: 

1. All the photons emitted from the LED or the UV tube as calculated a

absorbed at the TiO2 surface and result in e- and h+, which further res

generation of OH• 

2. Each OH• generated degrades one molecule of methyl orange 

3. The output power of LED and UV tubes calculated is correct 

Thus using the energy wavelength relationship, and using the actual 

output power for LEDs or UV tubes, the number of photons per unit time ca

calculated as (Stumm and Morgan, 1996): 

ted in 90%

emoval in 

LEDs as 

CO 

ethyl orange

arious 

range 

e 

s being 

ult in 

input or 

n be 
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λ/hcE lTheoritica =                                                       [4.4

 

where, E

] 

 

 power for 

UV LE s is straight forward to calculate since it is the current at which they were 

s 1.4 W 

for UV LED 370 and 6.0 W for UV LED 340, while the output power calculated by 

linearly

.e., 60 

ing a 

cm2, at a 

ing that the UV tubes radiate light radially 

wit UV 

tubes would be 7.77 W

cylinder of 45 cm  diameter). Thus at a distance of 2.5 cm (i.e., at the 

colu  x 5 cm). 

Now  twice the light that 

the colu

op and 

). Thus the total exposed output power is 1.1 

Theoritical is the energy of a photon (Watt-sec/photon), h is Plank’s constant (6.6 x

10-34 2 8 W-sec ), c is the velocity of light in vacuum (3 x 10  m/sec) and λ is the wavelength 

of light (m). 

P  is the input or output power for LEDs or UV lights. The inputActual

D

operated multiplied by the operating voltage. The total input power for LEDs wa

 increasing the values given in Table 3.1, for UV LED 370 was calculated as 0.04 

W and for UV LED 340 as 0.03 W. The input power for each UV tube was 15 W (i

W total, Spectronics Corp.), while the output power for a set of two UV tubes radiat

dispersed light (i.e., 320 nm to 400 nm, peak wavelength 365 nm) is 1100 μW/

distance of 25 cm (Spectronics Corp.). Assum

h 365 nm as a single wavelength, at 25 cm distance the total output power of two 

 (1100 μW/cm2 x π x 45 cm x 50 cm, intensity x surface area of 

 length and 25 cm

mn surface) the light intensity would be 0.011 W/cm2 (7.77 W/ π x 45 cm

, assuming that the column face parallel to the UV tubes receives

mn faces that are perpendicular to the UV tubes, each face receives 0.275 W (i.e., 

0.011 W/cm2 x 25 cm length x 1 cm width for each face, same for all faces since t

bottom face are illuminated from both sides
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W. Based on these values, the number of photons per unit time for each type of light 

source is calculated by Eq. 4.5 and is presented in T

 

able 4.12: 

lTheoritica

Actual
P

P
N =                                                                      [4.5]

E
 

 

Table 4.12. Number of photons for each type of light source for calculating the 
efficien

E P No. of photons/sec  

cy of the reactors 

Light source Theoritical Actual ConditionWatt-sec/photon Watt NP= PActual/ETheoritical
5.4 x 10-19 1.4 2.7 x 1018 Input power UV LED 370 5.4 x 10-19 160.04 7.4 x 10 Output power 
5.8 x 10-19 6.2 1.1 x 1019 Input power UV LED 340 5.8 x 10-19 160.03 5.1 x 10 Output power 
5.4 x 10 60 1.1 x 10 Input power -19 20

UV Tubes 5.4 x 10-19 181.1 2.0 x 10 Output power 
 
 

Now to find the efficiency based on the assumption that each photon which is 

radiated from the source results in generation of OH , which in turn results in degradation

of one molecule of methyl orange, an equation to represent number of molecules of 

methyl orange degraded (N

•  

M) as a function of time can be given as: 

 

ARWM NVMCCN )( 0−=                                                          [4.6] 

ARW
kt

M NVMCN )exp1(0
−−=                                                     [4.7

 

where, C

] 

0 is the initial concentration of methyl orange (30 mg/L), C is the concentration 

of methyl orange at time t (mg/L), MW is the molecular weight of methyl orange (327 
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 is the volume of reactor (10.8 ml), Ag/mol), VR N is the Avogadro’s number (6.02 x 1

molecules/mole) 

023 

ince for both the reactors, an initial concentration around 30 mg/L is used, for 

the efficiency calculations, an initial concentration of 30 m

calculations.  The number of molecules in the reactor obtained by using equation [4.7] is 

divided by the number of photons/sec obtained from the ratio of PActual/ETheoritical (Table 

ers 

V n t p e re W 

ectiv e portab actor, th  output p sum 

tput ndividu Ds, whi  and 0

re

Table 
portable reactor 

t 0 η  = tN /N η  = tN /N

S

g/L has been used in the 

4.12). Table 4.13 represents efficiencies calculated based on the input and output pow

of LEDs and U  tubes. The input a d outpu o er f e pw or th rototyp actor are 60 

and 1.1 W, resp ely. For th le re e input and owers are the 

of input and ou powers of i al LE ch are 7.6 W .07 W, 

spectively. 

 

4.13. Input and output efficiencies as a function of time for prototype and 

Time 

(min) 

C-C
(mg/L) 

Input Efficiency 
I M P (Input Power)

(%) 

Output Efficiency 
O M P (Output Power)

(%) 
PROTOTYPE REACTOR 

5 6.5 4.0E-04 2.2E-02 
10 11.6 3.6E-04 1.9E-02 
15 15.6 3.2E-04 1.7E-02 
20 18.7 2.9E-04 1.6E-02 
25 21.2 2.6E-04 1.4E-02 
30 23.1 2.3E-04 1.3E-02 
PORTABLE REACTOR OPERATED AS DIRECT RECIRCULATION 

60 9.7 5.77E-04 6.06E-02 
120 16.3 4.88E-04 5.12E-02 
180 20.8 4.17E-04 4.37E-02 
240 23.8 3.60E-04 3.78E-02 
300 25.8 3.14E-04 3.30E-02 
360 27.2 2.77E-04 2.90E-02 
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Using the input and output power and rate constants for the prototype and 

portable reactors with direct recirculation, ratios comparing the input to output power and 

rate con

:1, 

 

 

40 nm) 

ponding lower efficiency. 

 different UV light sources. 
Relationship Ratio 

stants for the two types of light sources are presented in Table 4.14. Looking at 

the input power ratio for the UV tubes and UV LEDs, it can be seen that the ratio is 8

while the output power ratio is 16:1. When this ratio is compared with the ratio of the rate

constants for both reactors for methyl orange degradation under identical conditions, the

ratio calculated is 8:1. The input to output power ratio for UV tubes (55:1) is higher than 

that for the UV LED370 (35:1), while UV LED340 has the highest ratio (207:1), 

corresponding to higher loss of power due to heat conversion. The reason for higher loss 

of power in heat is the lower wavelength at which the UV LED340 operates (3

and the corres

 

Table 4.14. Comparison of powers and rate constants for methyl orange 
experiments with

Inpu o out  reactt power t put power for prototype or 55:1 
Input power to output power for UV LED340  207:1
Input power to output power for UV LED370 35:1 

Input po for prototype r portable reactor wer eactor to 8:1 
Output p  for prototype  portable reactor ower reactor to 16:1 
Rate con for prototype  portable reactor stant reactor to 8:1 

 

From the power output and rate constant ratios, and Table 4. be said that 

the LEDs (operating together) are at l as efficient as comp t of the UV 

tubes.  could veral reasons ference, for example: the output is single 

wavelength for LEDs as compared to wavelength for UV lting in a 

ighly sed bea all area ca

surface of TiO2. Also, there could be several reasons for the slower removal rate in the 

13, it can 

east twice ared to tha

There  be se  for this dif

 dispersed  tubes, resu

h focu m on a very sm using fewer photons being absorbed at the 
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portabl tio is 

r 

 

 

ere operated under identical conditions, i.e., pH 

 6.0 ± 0.2, Ionic Strength = 1.72 x 10-2 M NaClO4 and DO saturated with O2. Figure 

he rate 

constant ratio equal to 8:1 for rtable reactor. The protot ctor can be 

further used a tant in th

Fro n the po e reactor, 

240 min o able 4. he number of 

photons emitted in 240 min by the UV LEDs is 1.9 x 1023 photons. The results of 

experiments performed by Dunlop et al. (2002) amd Cho et al. (2003) indicate that the 

first order E. coli degradation rate increased linearly with increase in light intensity, while 

Lee et al. (2002) determined a linear relationship for the photon rate (μE/sec, measured 

using potassium ferrioxalate actinometry) as a function of number of UV lamps (6 W, 

low pressure mercury lamp). 

e PCO reactor as compared to the prototype reactor; (i) the output power ra

1:16 for portable to prototype reactor, while the degradation ratio is 1:8. This indicates 

that the UV LEDs may not be emitting the required number of photons/sec to generate 

enough OH•, even though the portable reactor is more efficient (Table 4.13), which as pe

Cho et al. (2003) are the primary species causing E. coli degradation. (ii) the other reason 

that would hinder the degradation rate is that the LEDs are focused over a very small area

and thus they concentrate a high number of photons in that area, resulting in concentrated 

e- - h+ pairs, which would further favor higher e- - h+ recombination. 

Figure 4.19 shows a comparison for methyl orange degradation with two different

UV light sources, (i) Prototype reactor, and (ii) Portable reactor operating as a direct 

recirculating reactor. Both the reactors w

=

4.19 show that both the data sets follow first order degradation kinetics with t

 prototype to po ype rea

s a reference for reaching the required rate cons e portable reactor. 

m the E. coli photocatalytic degradation experiment i rtabl

f HRT is required to achieve a 3 log10 removal. From T 12, t
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Using the rate constant values for methyl orange degradation in the portable 

reactor operated under indirect recirculation configuration and extrapolation, the numbe

of additional UV LED370s can be calculated to achieve any required first order methyl 

orange degradation rate constant. Use of UV LED370 has been selected based on the 

input to output ratio which is lower (35:1) than that of UV LED340 (207:1). 

Table 4.15 shows the rate constants for methyl orange degradation in the portable 

reactor under indirect recirculation configuration. Using these data and plotting the rate 

constant (hr

r 

.20, a linear 

relation

-1) as a function of input power (W) as shown in Figure 4

ship between input power and rate constant for methyl orange degradation 

illuminated by UV LEDs (340 and 370) operating together can be given as: 

 

41.009.0 −= PkC                                                           [4

 

where, k

.8] 

operati

C is the first order rate constant (hr-1) for combined LEDs and P is the input 

power for UV LEDs (Watts) with R2 equal to 0.9378. The relationship for UV LED370 

ng alone is given as: 

 

Pk I 1.0=                                                              

 

where, k

     [4.9] 

I is the first order rate constant (hr-1) for UV LED370 operating alone and P is 

the input power for UV LED370 (Watts) with R2 equal to 0.9207. 
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Table 4.15. Rate constants for methyl orange degradation for portable reactor 
under indirect recirculation with UV LEDs operated at different input pow  
Values in parenthesis represent input powers and rate constants for UV LED370 
only. 

Operating conditions Input power 
W 

Rate constant 
h

ers.

r-1

12 UV LED340 @ 100 mA each 6.2 (0) 0.12 (0) 
12 UV LED340 @ 100 mA + 12 UV LED370 @ 

15 mA each 6.8 (0.6) 0.20 (0.08) 

12 UV LED340 @ 100 mA + 16 UV LED370 @ 
25 mA each 7.6 (1.4) 0.245 (0.12) 

 

From Table 4.14, since UV LED370 are efficient as compared to the UV 40 

in power conversion, using Eq. 4.9, 240 UV LED370’s operating at 25 mA eac

required to achieve a methyl orange degradation rate of 0.036 min-1 in a portable reactor 

operated under indirect recirculation configuration. When the same reactor is operated 

under direct recirculation the reactor becomes efficient and the rate of methyl o

degradation becomes faster. 

 LED3

h are 

range 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 2 4 6

UV LEDs operating together

Input power (W)

R
at

e 
co

ns
ta

nt
 (h

r-1
) UV LED370 alone

Figure 4.20. First order rate constant for methyl orange degradation in p
reactor operated as indirect recirculation. The rate constant values for U
operating alone are presented in parenthesis in Table 4.14. 

8

 
table or

V LED370 
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The ratio of the rate constant for the portable reactor operated under direct 

recirculation configuration to indirect recirculation configuration remains constant at 1.6 

(i.e., 0.39/0.24). stant calculated E

portable re ulation (0.03 with the  

gives the rate constan or operated under direc tion w

LEDs, giving 0.06 m adation rate is fast enough to overcom

limitations and recirculation can be avoided. 

Thus, if the 0.05 min  degradation rate constant for methyl orange in the 

prototype reactor corresponds to 30 min of HRT for 3 log10 removal of E. coli, the 0.06 

min  degradation rate constant for methyl orange in portable reactor operated under 

identical conditions, should result a 3 log10 removal of E. coli in 25 min (30 min x 0.05 

min /0.06 min ) of HRT with 240 UV LED370s operating at 25 mA each. 

 Multiplying the rate con  for 240 UV L Ds for the 

-1) 1.6 factoractor operated under indirect recirc 6 min

t for the react t recircula ith 240 UV 

in-1. This degr e the flow rate 

-1

-1

-1 -1
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

The increasing concern of providing drinking water for military personnel in 

hostile areas, even in harshest conditions, and the limited availability of any kind of 

mobile technology to disinfect water to drinking water standards at low cost led to the 

current research. The primary goal of this research was to design and construct a portable 

PCO water decontamination unit to maximize the integration of TiO2 into a columnar 

reactor with UV light emitting diodes (LEDs). The secondary goal was to examine the 

removal of microbial pathogens (E. coli) from unsanitary water conditions using the 

designed reactor. Even though the use of UV light (254 nm to 375 nm range) has been 

shown to drive TiO2 photocatalysis, the use of UV LEDs with wavelength 340 nm and 

370 nm as light sources for TiO2 photocatalysis has not been proven to decontaminate 

drinking water.  The entire project was divided into three phases – immobilization of 

TiO2 onto glass beads, optimization of the TiO2 coating method and reactor using 

prototype reactor and design, and construction and testing of the portable reactor for 

water decontamination. All the objectives were met and the specifics of the conclusions 

are listed below. 

TiO2 was immobilized on to glass beads by two different methods, the suspension 

method and the ceramic funnel method with and without etching. The ceramic funnel 

method reduced the overall coating time to less than 3 hrs as compared to the suspension 

method which take 24 hrs for coating one layer. Etching the coated glass beads with 0.1 

N HCl roughened the catalyst surface and remove any loosely bound TiO2. 
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Formaldehyde was used as a test pollutant for initial photocatalytic experiments but due 

to the complex measurement procedure methyl orange was used as the test pollutant for 

optimizing the reactors (prototype and portable) with experimental conditions, pH = 6.0 ± 

0.2, ionic strength = 1.7 x 10-2 M NaClO4 and saturated DO, while, E. coli was used as a 

test microbial pathogen for disinfection experiments with pH = 7.0 ± 0.2 being the only 

change in experimental condition. 

ESEM micrographs indicated that the coating methods were successful in 

uniformly coating TiO2 onto the glass beads having varying thickness with 9.9 μm as 

maximum. Due to the supplemental P25 powder the BET surface area increased by a 

factor of 55 over uncoated glass beads as compared to the increased surface area by 

factor of 18 without supplemental P25. Further analysis of the coated TiO2 mass revealed 

that the thickness calculated from the mass of coated TiO2 was 2.0 ± 0.1 μm, which 

supports the ESEM micrograph (Figure 4.6.b) indicating varying thickness. X-ray 

diffraction analysis for the powder form of TiO2 prepared by Mixture C and Mixture F 

was dominated by the anatase phase as expected. The calculations for the mass of TiO2 

coated onto the glass beads resulted in 3.1 x 10-5 g of TiO2/bead loaded in the column 

with 13.1 m2 as the total catalyst contact surface area in the column. 

 Due to operating troubles and low catalyst efficiency, optimization of the reactor 

by changing the configuration from vertical to horizontal reduced failures of column 

joints and use of a quartz square column resulted in increase in column surface area for 

higher illumination. Using new sol gel supplemented with TiO2 powder to increase the 

BET surface area was incorporated. Methyl orange degradation for glass beads coated 

with Mixture C by Method 2 and with Mixture F by Method 3 followed a first order 
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kinetics with rate constants equal to 0.018 min-1 and 0.049 min-1 and R2 values of 0.9754 

and 0.9243, respectively. Thus the increase in rate constant can be attributed to the 

increased surface area due to the supplemental TiO2 added in Mixture F and not due to 

the higher photocatalytic activity of Degussa P25. The increase in surface area is almost 

linear to the increase in degradation rate (i.e., BET surface area increases by a factor of 

3.0 while rate constant increases by a factor of 2.7). The consistency of the coating 

method was also analyzed by running three different experiments under identical 

conditions and the data was linearized to calculate a combined rate constant of 0.05 min-1 

with the R2 value of 0.9248. 

 After initial design failure using lenses for the construction of the portable reactor, 

the LEDs were focused directly on the quartz column to achieve maximum illumination. 

Due to the flow rate limitations the reactor was designed as an indirect recirculation 

reactor to re-saturate the effluent with DO but since doing so resulted in loss of sample 

due to evaporation, a direct recirculation reactor was designed. The portable reactor 

operated in direct recirculation mode (rate constant equal to 0.39 hr-1 with R2 value of 

0.9815) was more efficient (i.e., by a factor of 1.6) in degrading methyl orange as 

compared to the indirect recirculation mode (rate constant equal to 0.24 hr-1 with R2 value 

of 0.9418 ). 

The results for E. coli photocatalytic degradation experiments in the prototype 

reactor indicated that E. coli degradation followed first order degradation kinetics but 

only after a 10 min lag period. The damage to the cell wall occurs initially with reactive 

oxygen species (ROS) attack and subsequently peroxidation of the E. coli occurs (Kuhn 

et al. 2003). E. coli with damaged cell walls can possibly re-grow and thus result in an 
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initial lag period. The rate constant for the prototype reactor was calculated to be 0.29 

min-1 and a 3 log10 removal was achieved in 30 mins. Due to inconsistent results for the 

control experiments in the direct recirculating portable reactor, separate batch 

experiments in quartz cuvettes were performed. Two sets of experiments were performed 

which showed that a 3 log10 E. coli removal was achieved in 240 mins. 

When the two reactors are compared, i.e., prototype and portable reactor with 

direct recirculation based on the input power, output power and degradation of methyl 

orange based on first order kinetics, the portable reactor using LEDs as light source was 

found to be more efficient by a factor of 3 based on output efficiency. When the results of 

the portable reactor are linearly extrapolated and two different types of LEDs are 

considered to result in a first order methyl orange degradation, 240 LEDs (UV LED370, 

24 pairs with 4 LEDs in series operated at 25 mA each) are required to achieve a 0.06 

min-1 methyl orange degradation rate in the portable reactor with an input power of 21.6 

W, and thus eliminating the need of recycling the effluent. Thus, if the 0.05 min-1 

degradation rate constant for methyl orange in prototype reactor corresponds to 30 min of 

HRT for 3 log10 removal of E. coli, the 0.06 min-1 degradation rate constant for methyl 

orange in portable reactor operated under identical conditions as prototype reactor should 

result a 3 log10 removal of E. coli in 25 mins of HRT. 

The main scope of the research was to determine whether the LEDs can be used 

as viable light source for PCO. The promising results of methyl orange degradation and 

E. coli deactivation for the PCO reactor operated with LEDs as light source and the 

interpretations made will help in further for the development of efficient and low cost 
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photocatalytic technology. The outcome of current project garners support for use of 

LEDs as light source in PCO. 

 Further research should be directed in evaluation of using different types of 

transition metals like copper, iron, vanadium, silver, platinum and many more as dopants 

to broaden the adsorption spectra of TiO2 (Sokmen et al., 2001; Sakthviel et al. 2002; Yu 

et al. 2002; Zhao et al. 2004; Hou et al. 2006). Also the use of LEDs with higher wall 

power efficiency (i.e., ratio of output/input power) will result in low power loss due to 

heat as seen for UV LED370 (1:35) as compared to the UV LED340 (1:207). With higher 

wall power efficiency, greater number of photons can be delivered to the catalyst surface 

at low input power, resulting in higher photocatalytic efficiency. Testing the 

photocatalytic efficiency for different experimental conditions like pH, temperature (for 

extreme conditions), ionic strength (for brackish water to rain water), DO and turbidity of 

water (reduce the transmission of light through reactor and higher turbidity can clog the 

packed bed). Finally, evaluating the disinfection efficiency for pathogens other than E. 

coli is very important, since with the increase or decrease in complexity and density of 

cell wall the photocatalytic efficiency would also decrease or increase, respectively 

(Ibanez et al. 2003; Kuhn et al. 2003). Benefit – cost analysis would help in promoting 

the use of LEDs in PCO as a light source and waiting for the LED technology to develop 

further will result in reduced cost of LEDs. 
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APPENDIX 
 
 
APPENDIX A. Formaldehyde calibration curve using colorimetric method 

y = 0.0024x
R2 = 0.9979

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300 350

Formaldehyde concentration

A
bs

or
ba

nc
e

 
Formaldehyde calibration curve using Nash reagent at pH = 5.0 ± 0.2, measured at 
415 nm wavelength 
 
APPENDIX B. Methyl orange calibration curve using colorimetric method 

y = 0.0349x
R2 = 0.9998
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Methyl orange calibration curve at pH = 6.0 ± 0.2 measured at 510 nm wavelength. 
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APPENDIX C.  
(a) Table for Calculations for TiO2 coated on glass beads 

Number 
of Beads Mass of GB Mass/bead 

(g/bead) 
Number 
of Beads 

Mass of GB 
with TiO2+Sol 

Mass/bead 
(g/bead) 

      
50 0.0924 0.001848 50 0.0955 0.00191 
100 0.1834 0.00182 100 0.184 0.00177 
150  150   
200 0.3617 0.001783 200 0.3629 0.001789 
250  250  
300 0.5373 0.001756 300 0.5442 0.001813 

350  350  
400 0.7199 0.001826 400 0.7258 0.001816 

450  450  
500 0.9016 0.001817 500 0.913 0.001872 

600 1.0813 0.001797 600 1.1054 0.001924 
650 1.1754 0.001882 650 1.1995 0.001882 

 Average 0.001816   0.001847 

 Standard 
deviation 0.000036   0.000054 

    Difference  
 min 0.001780  0.000031 0.001793 
 max 0.001852  0.000017 0.001901 

 
(b) Table for calculating thickness of coating 
TiO2/g of bead = Difference in average value 

3.0875E-05   
   
Number of beads = Mass of beads/difference 

25205 ±1005  
density of TiO2 g/mm3  

0.004   
   
Volume of TiO2 mm3/bead = TiO2/g of bead / density 

0.00771875   
New bead volume (V) = Uncoated bead volume + volume of TiO2 on bead 

0.704275417   
New Diameter DC = (V x 4/pi)1/3

1.345749204   
1.104037297   
Thickness of coating x 2 = New diameter - uncoated diameter 0.0040373

Thickness in mm 0.00201865
Thickness in μm  

2.01864838   
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APPENDIX D. Table for calculating flow rate and hydraulic retention time  
Mass of 
beads 

Volume of 
reactor 

Total Length of 
reactor 

Total volume of 
beads 

Net Length of 
Reactor 

g ml cm ml cm 
46 30 30 17.41 26.7
46 30 30 17.41 15.6

     
Net mass of 
beads 

Actual Volume 
of beads 

Net volume of 
reactor 

Available 
Volume  

g ml ml ml  
40.25 15.23 26.25 11.02  
23.58 8.92 15.38 6.45  

 
 
APPENDIX E. Table to find number of photons emitted by UV light sources 
E=hc/λ h is planks constant = 4.1 E-15 eV-sec 
 c is velocity of light in vaccum = 3 x 108 m/s 
 1eV = 1.60218E-19 W-sec 
 λ = wavelength of light in m 

 
60W tubes intensity = 2200  μW/cm2 = 2.20E-03 (at 25 cm, given) 
60W tubes intensity = 22  mμW/cm2 (at 2.5 cm) 
4 lights 0.022 W/cm2    
2 lights 0.011 W/cm2   
Face area of column = 1cm x 25 cm 
Power on one column face P = 0.011 W/cm2 x 1 cm x 25 cm = 0.275 W 
On top and bottom face ½ light intensity as compared to column face facing 
UV lights but receive light from both sides so take 2P1/2 = P 
Total power on all 4 faces = P + P + 2P1/2 (Top) + 2 P1/2 (Bottom)

 = 0.275 x 4 = 1.1 
W 

 

λ c h E = hc/λ P actual Condition 
No. of 
Photons/sec 

m m/sec W-sec2
W - 
sec/photon W  =E/Pactual 

3.7E-07 3.0E+08 6.6E-34 5.4E-19 1.4 Input 2.7E+18
3.7E-07 3.0E+08 6.6E-34 5.4E-19 0.04 Output 7.4E+16
       
3.4E-07 3.0E+08 6.6E-34 5.8E-19 6.2 Input 1.1E+19
3.4E-07 3.0E+08 6.6E-34 5.8E-19 0.03 Output 5.1E+16
       
3.7E-07 3.0E+08 6.6E-34 5.4E-19 60 Input 1.1E+20
3.7E-07 3.0E+08 6.6E-34 5.4E-19 1.1 Output 2.0E+18
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APPENDIX F. Methyl orange experimental data for prototype reactor 
(a) For Mixture C & Method 2, Batch 1 
Flow Rate HRT Influent  Effluent C/Co 

ml/min min mg/L mg/L   
  0 31.3 31.3 1.00 

2.50 4.3 31.3 28.9 0.92 
0.91 11.9 31.3 23.9 0.77 
0.50 21.6 31.3 21.6 0.69 
0.50 21.6 31.3 20.8 0.66 
0.45 24.0 31.3 19.7 0.63 
0.45 24.0 31.3 19.1 0.61 
0.20 54.0 31.3 12.7 0.41 

Batch 2 
Flow Rate HRT Influent  Effluent C/C0 

ml/min min mg/L mg/L   
0 0.0 20.3 20.32 1.00 

1.47 7.4 20.3 17.5 0.86 
1.32 8.2 20.3 17.2 0.84 
0.53 20.6 20.5 13.6 0.66 
0.53 20.6 20.5 13.8 0.67 
0.47 23.0 20.5 12.6 0.62 
0.47 23.0 20.5 12.2 0.60 
0.15 71.3 20.3 7.2 0.36 

 
 
 
(b) For Mixture D and Method 3 
Flow Rate HRT Influent Effluent C/C0

ml/min min mg/L mg/L   
0.00 0 32.7 32.7 1.00 
0.96 11.2 32.7 21.9 0.67 
0.96 11.2 32.7 18.7 0.57 
0.75 14.4 32.7 13.1 0.40 
0.75 14.4 32.7 13.4 0.41 
0.52 20.9 32.7 7.2 0.22 
0.52 20.9 32.7 8.5 0.26 

 
(c) For Mixture E and Method 3 
Flow Rate HRT Influent Effluent C/C0

ml/min min mg/L mg/L   
0.00 0 28.9 28.9 1.00 
0.81 13.3 28.9 16.0 0.55 
0.81 13.3 28.9 15.9 0.55 
0.41 26.6 28.9 6.3 0.22 
0.41 26.6 28.9 6.3 0.22 
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(d) For Mixture F and Method 3 – Batch 1 
Flow 
Rate HRT Conc. %Deg 

Log 
(C/C0) 

ml/min min mg/L - - 
- 0 30.7 0 0.0

2.22 5 25.3 18 -0.1
0.9 12 18.3 40 -0.2

0.55 19 12.5 59 -0.4
0.39 27 5.9 81 -0.7
0.3 36 3.6 88 -0.9

0.142 75 1.1 96 -1.4
Batch 2 

Flow 
Rate HRT Conc. %Deg

Log 
(C/C0)

ml/min min mg/L - -
- 0 30.2 0 0.00

1.3 8 21.9 29 -0.14
0.8 13 16.9 45 -0.25
0.5 21 13.5 56 -0.35

Batch 3 
Flow 
Rate HRT 

Influent 
conc Effluent 

Log 
(C/C0)

ml/min min mg/L mg/L  
0.00 0 32.7 32.7 0.00 
0.96 11 32.7 21.9 -0.17 
0.96 11 32.7 18.7 -0.24 
0.75 14 32.7 13.1 -0.40 
0.75 14 32.7 13.4 -0.39 
0.52 21 32.7 7.2 -0.65 
0.52 21 32.7 8.5 -0.58 

 
(e) For: Mixture F and Method 3, beads used once for photocatalysis experiment, 
washed and reused. 
Flow Rate 

ml/min 
HRT 
min 

Concentration 
(mg/L) C/C0

 0.0 28 1.0 
1.54 7.0 24.9 0.9 
0.54 20.0 16.9 0.6 
0.41 26.3 14.6 0.5 
0.31 35.0 10.3 0.4 
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APPENDIX G. Methyl orange experiments for portable reactor 
 
Actual illumination period = (Experiment time x Volume of sample illuminated) / 
Total volume of the sample running through the reactor 
 
(a) For indirect recirculation 

Influent  
(mg/L) 

Effluent 
(mg/L) 

Experiment 
period (h) 

Actual 
Illumination 
Period (h) C/C0

32.7 32.7 0 0.0 1.00 
32.7 29.3 6 1.8 0.90 
32.7 26.6 7 2.1 0.82 
33.5 27.2 8 2.3 0.81 

12 led's operating 
at 340 nm 100 
mA each and 15V 
total 6 on each 
sides 6.5 inch of 
length covered 4 
parallel circuits 
each with 3 in  
series 34.9 27.4 10 2.9 0.79 
 

Influent 
(mg/L) 

Effluent  
(mg/L) 

Experiment 
period (h) 

Actual 
Illumination 
Period (h) C/C0

16.3 16.3 0 0.0 1.00 
16.3 13.8 6 1.8 0.85 
16.3 11.9 8 2.3 0.73 

12 led's operating 
at 340 nm 

100 mA each 
6 on each sides 

6.5 inch of length 
covered 16.3 11.7 10 2.9 0.72 

 

Influent 
(mg/L) 

Effluent  
(mg/L) 

Experiment 
period (h) 

Actual 
Illumination 
Period (h) C/C0

16.3 16.3 0 0.0 1.00 
16.3 11.9 6 1.8 0.73 
16.3 10.1 8 2.3 0.62 

12 led's operating at 
100 mA each 6 on 
each sides 6.5 inch 
of length covered 
12 LED's 370 nm  
wavelength at 15 
mA 4 led's in series 
with 3 in parallel 16.3 8.9 10 2.9 0.55 

 
 
(b) For indirect recirculation with 12 led's operating at 100 mA each 6 on each sides 
6.5 inch  of length covered 16 LED's 370nm  wavelength at  25mA 4 led's in series 
with 3 in parallel 

Experiment 
time 

Actual 
illumination 
period 

Actual 
illumination 
period Conc. C/Co 

hr hr minx 10 mg/L - 
0 0.0 0 30.7 1.00

10 2.9 18 17.1 0.56
15 4.4 26 12.9 0.42
20 5.9 35 9.3 0.30
25 7.3 44 5.2 0.17
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30 8.8 53 2.6 0.08
35 10.3 62 0.3 0.01
40 11.7 70 0.2 0.01

 
(c) For direct recirculation with 12 led's operating at 100 mA each 6 on each sides 
6.5 inch  of length covered 16 LED's 370nm  wavelength at  25mA 4 led's in series 
with 3 in parallel 

HRT 
Actual 

HRT 
Actual 

HRT Conc. C/Co
hr hr minx 10 mg/L -
0 0.0 0 29.5 1.00

2.5 1.0 6 19.4 0.66
5 2.1 12 13.0 0.44

7.5 3.1 18 10.1 0.34
10 4.1 25 7.1 0.24

12.5 5.1 31 4.0 0.13
15 6.2 37 2.2 0.07

 
(d) Doping With 0.5 g PbCl2 added to Mixture C 

Influent 
(mg/L) 

Effluent 
(mg/L) 

Experiment 
period (h) 

Actual 
Illumination 
Period (h) C/C0

0 15.2 0.0 0.0 0.00 
15.2 8.1 6.0 1.8 -0.63
15.2 4.6 8.0 2.3 -1.20

12 led's operating at 
100 mA each 6 on each 
sides 6.5 inch of length 
covered 12 LED's 
370nm wavelength at 
15mA 4 led's in series 
with 3 in parallel.  15.2 3.4 10.0 2.9 -1.49
      

Influent 
(mg/L) 

Effluent 
(mg/L) 

Experiment 
period  
(h) 

Actual 
Illumination 
Period (h) C/C0

     
0 15.2 0.0 0.0 0.00 
15.2 8.1 6.0 1.8 -0.63
15.1 7.0 8.0 2.3 -0.77

12 led's operating at 
100 mA each 6 on each 
sides 6.5 inch of length 
covered 8 LED's 
370nm wavelength on 
two sides at 20mA 4 
led's in series with 4 in 
parallel. 15.2 4.1 10.0 2.9 -1.30

 
APPENDIX H. E. coli experimental data for prototype reactor 
(a) Dark control with glass beads coated by Mixture F and Method 3 

Flow Rate 
(ml/min) 

HRT 
(min) 

Initial Count 
(CFU/100 

ml)

Final Count 
(CFU/100 

ml) C/Co 
Log 
(C/Co) 

2.20E+05 1.50E+05   
2.80E+05 3.00E+05   

0.40 27 2.50E+05 2.25E+05 9.00E-01 -0.05
0.42 25.7 9.50E+05 8.50E+05   
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 1.10E+06 8.00E+05   
 

 
1.03E+06 8.25E+05 8.05E-01 -0.09

      
9.50E+05 6.80E+05   
1.10E+06 7.20E+05   

0.89 12.1 1.03E+06 7.00E+05 6.83E-01 -0.17
 
(b) Light control experiment with UV tubes as light source and uncoated beads 
packed in column 

Flow Rate 
(ml/min) 

HRT 
(min) 

Initial Count 
(CFU/100 

ml)

Final Count 
(CFU/100 

ml) C/Co 
Log 
(C/Co) 

0.60 18 3.00E+06 5.50E+05   
  4.00E+06 3.50E+05   
 18 3.50E+06 4.50E+05 1.29E-01 -0.89 
      
0.49 22.0 6.00E+06 8.50E+05   
  8.00E+06 8.00E+05   
   9.00E+05   
 22.0 7.00E+06 8.50E+05 1.21E-01 -0.92 
      
0.36 30 3.00E+06 2.00E+05   
  4.00E+06 2.00E+05   
 30 3.50E+06 2.00E+05 5.71E-02 -1.24 

 
(c) Photocatalysis experiment with UV tubes as light source and glass beads coated 
with Mixture C and Method 2 
 

Flow 
Rate 

(ml/min) 

Hydraulic 
Retention 

Time (min) 
Initial Count 
(CFU/100 ml) 

Final Count 
(CFU/100 ml) Log(C/Co) 

ml/min min CFU/100 ml CFU/100 ml   
0.37 29 2.0E+05 1.3E+04 -1.2 
0.37 29 2.0E+05 1.1E+04 -1.3 
0.37 29 2.0E+05 1.8E+04 -1.0 
0.33 32 2.5E+06 7.5E+04 -1.5 
0.33 32 2.5E+06 1.3E+05 -1.3 
0.33 32 2.5E+06 2.0E+05 -1.1 
0.33 32 2.5E+06 2.0E+05 -1.1 
0.31 34 1.9E+05 8.4E+03 -1.4 
0.31 34 1.9E+05 7.8E+03 -1.4 
0.31 34 1.9E+05 8.5E+03 -1.3 
0.31 34 1.9E+05 9.0E+03 -1.3 
0.3 35 1.3E+06 6.8E+04 -1.3 
0.3 35 1.3E+06 7.0E+04 -1.3 
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0.3 35 4.0E+06 2.1E+04 -2.3 
0.3 35 4.0E+06 2.2E+04 -2.3 

 
(d) Photocatalysis experiment with UV tubes as light source and glass beads coated 
with Mixture F and Method 3 
 

Flow Rate 
(ml/min) 

HRT 
(min) 

Initial Count 
(CFU/100 

ml)

Final Count 
(CFU/100 

ml) C/Co 
Log 
(C/Co) 

2.60E+06 1.00E+06   
2.80E+06 7.50E+05   

0.86 12.5 2.70E+06 8.75E+05 3.24E-01 -0.49 
    

8.30E+06 1.50E+06   
8.70E+06 1.65E+06   

0.71 15.2 8.50E+06 1.58E+06 1.85E-01 -0.73 
    

3.50E+06 2.00E+04   
4.50E+06 3.00E+04   

0.55 19.5 4.00E+06 2.50E+04 6.25E-03 -2.20 
    

3.00E+06 1.00E+04   
5.00E+06 1.20E+04   

0.46 23.3 4.00E+06 1.10E+04 2.75E-03 -2.56 
    

1.40E+07 3.00E+04   
1.20E+07 5.00E+04   

0.42 26.0 1.30E+07 4.00E+04 3.08E-03 -2.51 
    

3.00E+06 4.00E+03   
5.00E+06 5.00E+03   

0.41 27.0 4.00E+06 4.50E+03 1.13E-03 -2.95 
    

1.10E+07 1.50E+04   
1.30E+07 1.20E+04   

0.35 30.9 1.20E+07 1.35E+04 1.13E-03 -2.95 
    

5.60E+05 5.00E+02   
6.00E+05 7.00E+02   

0.34 32.0 6.50E+02   
  5.80E+05 6.17E+02 1.06E-03 -2.97 
    

1.10E+07 3.40E+02   
1.40E+07   

0.25 43.2 1.25E+07 3.40E+02 2.72E-05 -4.57 
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(e) Photocatalysis for E. coli in portable reactor with UV LEDs as light source and 
glass beads coated by Mixture F and Method 3 
 
Illumination 
time 

Initial 
Count 

Final 
Count C/Co 

Log 
(C/Co) 

min CFU/100ml CFU/100ml    
7.00E+06 4.00E+06
7.50E+06 3.50E+06

300 7.3E+06 3.8E+06 5.17E-01 -0.29 
1.30E+07 5.50E+06
1.40E+07 9.00E+06

300 1.4E+07 7.3E+06 5.37E-01 -0.27 
NATURAL 

DECAY 
 

7.0E+06 1.1E+06
8.0E+06 1.2E+06

300 7.5E+06 1.2E+06 1.53E-01 -0.81 
     

7.0E+06 8.0E+05
8.0E+06 9.0E+05

300 7.5E+06 8.5E+05 1.13E-01 -0.95 
Dark 

Controls 
 

6.0E+06 1.0E+04
8.0E+06 3.3E+04

300 7.0E+06 2.2E+04 3.07E-03 -2.51 
     

6.0E+06 8.0E+04
8.0E+06  

300 7.0E+06 8.0E+04 1.14E-02 -1.94 
Lighted  
Controls 

 
4.0E+06 4.0E+02
3.2E+06  

300 3.6E+06 4.0E+02 1.11E-04 -3.95 
     

4.0E+06 8.0E+02
3.2E+06  

300 3.6E+06 8.0E+02 2.22E-04 -3.65 Photocatalysis
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