
Optimizing Execution of Component-based Applications using Group Instances �
Michael D. Beynony, Tahsin Kurcz, Alan Sussmany, Joel Saltzyzy UMIACS and Dept. of Computer

Science
University of Maryland

College Park, MD 20742

z Dept. of Pathology
Johns Hopkins Medical Institutions

Baltimore, MD 21287fbeynon,kurc,als,saltzg@cs.umd.edu
Abstract

Applications that query, analyze and manipulate very
large data sets have become important consumers of re-
sources. With the current trend toward collectively using
heterogeneous collections of disparate machines (the Grid)
for a single application, techniques used for tightly coupled,
homogeneous machines are not sufficient. Recent research
on programming models for developing applications in the
Grid has proposed component-based models as a viable ap-
proach, in which an application is composed of multiple in-
teracting computational objects. We have been developing
a framework, called filter-stream programming, for building
data-intensive applications in a distributed environment. In
this model, the processing structure of an application is rep-
resented as a set of processing units, referred to as filters. In
earlier work, we studied the effects of filter placement across
heterogeneous host machines on the performance of the ap-
plication. In this paper, we develop the problem of schedul-
ing instances of a filter group running on the same set of
hosts. A filter group is a set of filters collectively perform-
ing a computation for an application. In particular, we seek
the answer to the following question: should a new instance
be created, or an existing one reused? We experimentally in-
vestigate the effects of instantiating multiple filter groups on
performance under varying application characteristics.

1. Introduction

For the past several years we have witnessed a shift in
how computational resources are used. As wide-area net-
works connecting computational resources get faster, an in-
creasing number of applications are making collective use of�This research was supported by the National Science Foundation under
Grants #ACI-9619020 (UC Subcontract #10152408) and #ACI-9982087,
and by the Office of Naval Research under Grant #N66001-97-C-8534.

computational resources across a wide-area network. There
is a large body of research on building such computational
grids and providing support for enabling execution of ap-
plications in a Grid environment. One of the consequences
of the ability to use collections of powerful computers is
that scientific and engineering simulations are generating
unprecedented amounts of experimental data. In addition,
vast amounts of data are being gathered by advanced sensors
attached to various instruments such as satellites and mi-
croscopes at geographically distributed institutions. The re-
sult is very large datasets distributed across a wide-area net-
work. The possibilities become even more intriguing when
we note that disks continue to become larger and cheaper,
making it possible to configure a large disk-based storage
system at relatively low cost. For example, a PC cluster with
800GB storage space can be built with 5 PCs, each with two
80GB EIDE disks, for about $8K using off-the-shelf compo-
nents. Given this low price, many such disk collections can
be set up at multiple widely separated locations, giving rise
to islands of data, where cheap archival storage systems are
used to hold large locally generated datasets.

Applications that query, analyze and manipulate very
large data sets are relatively well understood when using
tightly coupled parallel machines or homogeneous clusters.
With the current trend toward collective use of heteroge-
neous collections of disparate machines (the Grid) for a sin-
gle application, the same techniques that work well for good
performance in a tightly coupled, homogeneous environ-
ment are not sufficient. The Grid provides a powerful envi-
ronment, yet introduces many unique challenges for appli-
cations. First, computational and storage resources can be
at distributed locations in a wide-area network. Second, the
characteristics, capacity and power of resources, including
storage, computation, and network, can vary widely. Third,
the distributed resources can be shared by many applica-
tions. These characteristics have several implications for
developing efficient applications. An application should be

structured to accommodate the heterogeneous nature of the
Grid. Moreover, the application should be optimized in its
use of shared resources and be adaptive to changes in their
availability. For instance, it may not be efficient or feasible
to perform all processing at a data server when its load be-
comes high. In this case, the efficiency of the application
depends on its ability to perform application processing on
the data as it progresses from the data source(s) to the client,
and on the ability to move all or part of its computations to
other machines that are well suited for the computation.

Recent research on programming models for develop-
ing applications in the Grid has converged on the use of
component-based models [?, ?, ?, ?, ?, ?], in which an ap-
plication is composed of multiple interacting computational
objects. In the DataCutter project [?, ?, ?], we are devel-
oping a framework, called filter-stream programming, for
developing data-intensive applications in a distributed en-
vironment. This model represents components of a data-
intensive application as a set of filters, which are designed
to be efficient in their use of resources. Data exchange be-
tween any two filters is described via streams, which are uni-
directional pipes that deliver data in fixed size buffers.

In earlier work [?], we investigated the effects of place-
ment decisions on the overall performance of data-intensive
applications. Our results show that careful decomposition
of the application processing structure into filters and place-
ment of filters can have a significant impact on performance.
The choice of placement represents a degree of freedom
in affecting application performance by placing filters with
affinity to data sources near the sources, minimizing com-
munication volume on slow links, co-locating filters with
large communication volume, and placing computationally
intensive filters on less loaded hosts.

In this work, we are concerned with the problem of
scheduling instances of filter groups, which more generally
applies to any distributed component system allowing dis-
tributed execution. A filter group is a set of filters collec-
tively performing a computation for an application. In par-
ticular we try to answer the following question: should a
new instance be created, or an existing one reused? When a
new filter group instance is created, resources are allocated
to be used for processing new work. In contrast, reuse of
an existing filter group instance will share the previously al-
located resources with this new work. The basic tradeoff is
between the cost of allocating more resources vs. the queu-
ing delays caused by sharing resources. This instance cre-
ation decision should be made carefully to avoid overload-
ing shared resources such as memory and processors, while
still achieving good performance for the application. Our
overall objective is to develop methodologies to automate
the instance creation and scheduling process. In this paper,
as a first step toward this goal, we investigate changes in
overall application performance when multiple filter group

instances are instantiated. We present experimental results
under varying application scenarios.

2. DataCutter

DataCutter is a middleware infrastructure designed to
provide support for subsetting and user-defined processing
of large multi-dimensional datasets across a wide-area net-
work. It provides two core services, an indexing service
and a filtering service, on top of which application-specific
services can be implemented. The indexing service pro-
vides support for accessing subsets of datasets via multi-
dimensional range queries. To ensure scalability to very
large datasets, DataCutter uses a multi-level hierarchical in-
dex scheme. The filtering service provides support for ex-
ecuting application-specific processing as a set of compo-
nents, called filters, in a wide-area Grid environment. For
this paper, we will only consider the DataCutter filtering ser-
vice.

2.1. Application Model

Applications are invoked by the user, and start out as a
single process on some host machine. This process is called
the console process. The console process can use the Data-
Cutter filtering service to instantiate and execute collections
of user-defined components, called filters, on other hosts.
The style of interaction between the filters and the console
process is referred to as the application model, and is defined
along two axes.

Detached vs. Pass-Thru The interaction between the
console process and any filters created is divided into two
cases. Detached is where filter output data is not handled by
the console process. For example, output data may be pro-
cessed in some manner within the filters, and consumed out-
right, or written to a disk file. Sorting of out-of-core data is
an example of this type, where output is written directly by a
filter to a file. In contrast, Pass-Thru is where filter output is
consumed by the console process. Pass-Thru resembles an
elaborate remote procedure call (RPC) or remote method in-
vocation (CORBA, Java RMI), where the result is collected
in the same process that initiated the remote call.

Stand-Alone vs. Client-Server This describes the en-
tity that initiated the work that drives the filters. Stand-
Alone represents cases where the console process initiates
the work. An example of this is a simulation code that de-
cides on new processing and the required data based on a
current set of data. In contrast, Client-Server is the case
where one process sends work to the console process, which,
acting like a front-end, passes the work to the filters for

2

processing. The work description in the Client-Server case
is commonly referred to as a query. Database and image
servers are common examples.

2.2. Filters and Streams

A filter is a user-defined object with methods to carry out
application-specific processing on data. A filter is specified
by the application code to execute, and the layout of input
and output streams it will use. Currently, filter code is ex-
pressed using a C++ language binding by sub-classing a fil-
ter base class. This provides a well-defined interface be-
tween the filter code and the filter service. The interface
for filters consists of an initialization function, a processing
function, and a finalization function.

class MyFilter : public DC Filter Base t f
public:

int init (int argc, char *argv[]) f : : : g;
int process (stream t st[]) f : : : g;
int finalize (void) f : : : g;g

A stream is an abstraction used for all filter communi-
cation, and specifies how filters are logically connected. A
stream also denotes a supply of data to and from the storage
media, or a flow of data between two separate filters, or be-
tween a filter and a client. There are two kinds of streams
in DataCutter: file streams and pipe streams. A file stream
is used to access files. A pipe stream is the means of uni-
directional data flow between two filters, from upstream fil-
ter to downstream filter. Bi-directional data exchange can be
achieved by creating two pipe streams in opposite directions
between two filters.

All transfers to and from streams are through a provided
buffer abstraction. A buffer represents a contiguous mem-
ory region containing useful data. Streams transfer data in
fixed size buffers. The size of a buffer is determined in the
init call; a filter discloses a minimum and an optional max-
imum value for each of its streams. The actual size of the
buffer allocated by the filtering service is guaranteed to be
at least the minimum value. The optional maximum value
is a preferred buffer size hint to the filtering service. The
size of the data in a buffer can be smaller than the size of
the buffer. Therefore, the buffer contains a pointer to the
start, the length of the portion containing useful data, and the
maximum size of the buffer. In the current prototype imple-
mentation we use TCP for stream communication, but any
point-to-point communication library could be added, such
as Nexus [?].

3. Application Execution

The process of manually restructuring an application us-
ing the filter-stream model is referred to as decomposing the

application. In choosing the appropriate decomposition, we
need to consider the complete dataflow path from data gen-
eration to ultimate consumption and the target machine con-
figuration, which can be a distributed collection of hetero-
geneous machines. The main goal is to achieve efficient use
of limited resources in a distributed and heterogeneous en-
vironment. Once the application is decomposed into a set
of filters, the filters need to be placed on the set of host ma-
chines accessible to the application, and be instantiated to
carry out application-specific processing.

3.1. Unit of Work

Filter operation progresses as a sequence of cycles, that
each handle a single application-defined unit-of-work. An
example of a unit-of-work would be a spatial query for an
image processing application that describes a region within
an image to retrieve and process. A work cycle starts when
the filtering service calls the init function, which is where
any required resources such as memory or disk scratch space
are pre-allocated. Next the process function is called to con-
tinually read data arriving on the input streams in buffers
from the sending filters. A special marker is sent after the
last buffer to mark the end for the current unit-of-work. The
finalize function is called after all processing is finished for
the current unit-of-work, to allow release of allocated re-
sources such as scratch space. When a work cycle is com-
pleted, these interface functions may be called again to pro-
cess another unit-of-work (see Figure 1).

A B
uow 0uow 1uow 2

buf buf buf buf

S

Figure 1. Data buffers and end-of-work mark-
ers on a stream.

3.2. Placement

Filters are the unit of placement, and each filter can po-
tentially be executed on a different host. In addition, a fil-
ter’s location may change at unit-of-work boundaries dur-
ing the course of execution. Note this does not imply true
migration of code and state, but rather placement can be re-
computed and the original filter can be stopped on the orig-
inal hosts and a new one created with a different placement,

3

with a single buffer transfer supported per filter for appli-
cation controlled restoration of state. This approach avoids
many of the details and overhead involved in check-pointing
and process migration [?]. Filters need to be structured ap-
propriately to handle such events. For cases when a filter has
some affinity to a particular host, the filter can be pinned to
a particular host, so that the filter will always be placed on
that host.

The basic idea behind the use of the filter-stream pro-
gramming model is to somewhat constrain the behavior of a
generic message passing application, so that the application
can expose information that is useful for improving perfor-
mance in several ways. (1) Filters are location-independent,
because stream names are used to specify filter to filter con-
nectivity rather than endpoint location on a specific host.
This allows the placement of filters on hosts to be controlled
by the filtering service. For example, two filters with a large
communication volume between should not be placed on
opposite ends of a slow wide-area network connection. (2)
Filters are expected to disclose and be granted memory and
disk scratch space, instead of using unconstrained dynamic
memory allocation. The granted scratch space is allocated
on behalf of the filter by the runtime system when the fil-
ter is instantiated. For example, a filter can be run on a ma-
chine with enough memory to avoid paging, and two filters
requesting large scratch space can be placed on separate ma-
chines.

3.3. Filter Groups

Once the placement is decided, filters must be instanti-
ated to carry out application specific processing on the data.
In many cases, resources are shared by multiple applica-
tions. In addition, an application or a set of applications may
use the same filters or group of filters for executing multi-
ple workloads. For instance, in a collaborative visualization
environment, requests from multiple users can use the same
set of filters, which collectively implement a visualization
pipeline. Therefore, the number of instances of filters or fil-
ter groups to be created and the scheduling of filter instances
are important decisions that affect overall performance.

The DataCutter filtering service provides the abstraction
of a filter group to the console process. A filter group is a
set of running filters that are logically related and are used
together to perform a computation. For example, an applica-
tion’s console process may implement filters for performing
various image processing operations: anti-alias, subsam-
ple, reduce-colors, and clip. One such logically related set
of filters could be a processing chain that first subsamples,
then clips. This description of two filters could then be ex-
ecuted as a filter group.

Multiple concurrent filter groups are supported by the
DataCutter runtime system. This includes multiple filter

groups that represent the same set of filters and streams,
and/or filter groups comprised of different filters with dif-
ferent stream connectivity. Each filter within a filter group
is executed in a separate thread of control (i.e. a POSIX
thread) to allow for concurrent execution. The console pro-
cess can then append work to any running instance it has cre-
ated. Work is handled in FIFO order by an instance. There
is no ordering between work appended to concurrent filter
instances. The current implementation requires a running
filter to be a member of exactly one filter group. Figure 2
provides a summary illustration of a filter group comprised
of filters A and B with a single stream S for communication.
This filter group is instantiated twice, each using a different
placement. The filters for the first instance are all located
on host1, and denoted by subscript 0, and the filters for the
second instance are located on both hosts, denoted by sub-
script 1.

host1

A0, A1

Application

B0

host2

Application

B1

S0
S1

Figure 2. Two identical filter group instances
running with different placement.

In deciding how many instances to create, the basic trade-
off is between host resources and latency. If a new work
item is appended to an existing instance, this can potentially
add queuing delay to the response time of the new work item
due to FIFO processing of previous work items. Creating a
new instance in this case will avoid the queuing delay, but
does so by concurrently running another filter that can satu-
rate shared resources such as processors, physical memory,
disk, etc. Since each concurrent instance processes its as-
signed workload independent of other instances, an applica-
tion must be able to handle out-of-order delivery of results
from a batch of work requests.

4. Experimental Results

In this section, we present experimental results on a
Linux PC cluster, containing two-processor SMP nodes,
connected via switched Gigabit Ethernet. We employed a
PC cluster primarily to achieve a controlled environment for
the experiments and to isolate the effects of changes in the
availability of resources that are out of our control, such as

4

variance in the network bandwidth due to other users in a
wide-area network.

in
out

out
process

Filter

Figure 3. Application emulator filter model.

Output StreamsInput Streams

buf bufbuf

buf

bufbuf

A

in
out

Figure 4. Use of fixed-size buffers.

We have implemented a filter emulator, that abstracts the
processing and data handling we have seen through imple-
menting various DataCutter applications. The advantage of
using a filter emulator is we can easily adjust application
characteristics to fully explore the large space of potential
application filters. The emulator itself assumes a particular
model of filter operation, as seen in Figure 3. An emulated
filter operates in strict dataflow style: the filter (1) blocks to
read sufficient input on all its input streams, (2) performs
computation on the input, and (3) generates some amount
of output data to write to all its output streams. All input
and output operations are performed using fixed size buffers
(Figure 4).

In the experiments, we used a simple application that im-
plements three filters connected as a linear chain. P - the
producer that reads blocks of data from a local disk, F - an
inline filter that process the data in some manner reducing its
size by half, and C - a consumer that finishes the processing
of the data and discards it. These three filters form a filter
group.

In this paper, filter placement is statically chosen for each
execution; each filter in a filter group is placed on a sep-
arate cluster node to isolate its effects. We used the same
set of nodes to instantiate new instances of the filter group
so that when multiple instances were created more than one
filter threads are executed on the corresponding nodes. All
the filters were parameterized to create three application sce-
narios based on the ratio of computation to communication
and I/O. (1) I/O intensive is where the ratio is less than 1,
(2) balanced is where the ratio is about equal, and (3) Cpu
intensive in which the ratio is larger than 1. The emulator
parameter values selected are shown in Table 1. They were
chosen to achieve the desired application behavior on the ex-

perimental platform, and to control running time of the ex-
periments. For example, the F filter in the I/O intensive case
will read 256kb from the input stream and write 128kb to the
output stream (transform size), and take 0sec for processing
the dataflow cycle (computation).

Response times were collected for each unit-of-work of
a single run. In the figures, min, max and avg are the mini-
mum, maximum and average response time across all units-
of-work for the entire run, respectively. all is the complete
time from the submission of the first unit-of-work to the
completion of the last unit-of-work in an entire run. Note
that max will be equivalent to all for experiments where all
units-of-work are issued in a single batch. Which response
time metric an application would attempt to minimize will
depend on what is most important for that application. For
example, a console process that is able to inject a set of work
into running instances all at once, and cannot make progress
until all responses are completed will need the lowest all
metric. If in contrast, an application injects a single unit-of-
work at a time and waits for a response before generating the
next unit-of-work, then the max metric should be optimized.
For most of the discussion that follows, we focus on the all
metric.

Vary number of instances: Figure 5 shows the change
in the response time with varying number of filter group in-
stances for the three application scenarios. In these exper-
iments, the number of instances was varied from 1 to 64.
The workload was fixed at 64 units-of-work, all of which
were submitted round-robin to the instances at the start of
execution. As is seen from the figure, the performance of
the application improves as more instances are created. This
is expected since the total workload is partitioned across
more filter groups. However, after an optimal point, the re-
sponse time starts to increase because additional filter in-
stances consume and eventually overload the available sys-
tem resources such as cpu time.

Vary batch size: Figures 6 shows the response time and
the optimal number of instances when 64 units-of-work are
submitted in various batch sizes per instance. The optimal
value is selected based on the lowest all response time value.
A batch is appended to each filter instance after the previous
batches have finished. While not shown in these figures, the
general trend is that increasing the batch size for a fixed num-
ber of filter group instances improves performance. This is
expected because doubling the batch size will result in one
fewer latency penalty seen when waiting for all batch work
to complete before issuing more work. As seen from the fig-
ure, the optimal number of instances changes as the number
of batches is varied with no simple pattern. In addition, the
optimal number of instances changes across the applications
for a given set of batches.

5

Component Parameters I/O Intensive Balanced Cpu Intensive
Console total bytes per unit-of-work 8 mb 1 mb 8 kb

buffer size for all transfers 128 kb 32 kb 128 bytes
P producer I/O: const+per kb 0 + 0/kb ms 10 + 1/kb ms 100 + 10/kb ms

transform size: in, out 0, 256 kb 0, 64 kb 0, 256 bytes
computation: const+per buf+per kb 0 + 0/buf + 0/kb ms 100 + 10/buf + 5/kb ms 100 + 20/buf + 10/kb ms

F transform size: in, out 256 kb, 128 kb 64 kb, 32 kb 256 bytes, 128 bytes
computation: const+per buf+per kb 0 + 0/buf + 0/kb ms 100 + 10/buf + 5/kb ms 100 + 20/buf + 10/kb ms

C transform size: in, out 128 kb, 0 32 kb, 0 128 bytes, 0
computation: const+per buf+per kb 0 + 0/buf + 0/kb ms 100 + 10/buf + 5/kb ms 100 + 20/buf + 10/kb ms

Table 1. Emulator parameters for console and filters for the t hree application scenarios.

Number of Filter Group Instances

1 2 4 8 16 32 64

R
es

po
ns

e
T

im
e

(s
ec

)

0

5

10

15

20

25

30

35

40

min mean max all

(a) I/O intensive application

Number of Filter Group Instances

1 2 4 8 16 32 64

R
es

po
ns

e
T

im
e

(s
ec

)

0
50

100
150
200
250
300
350
400
450
500
550
600
650

min mean max all

(b) Balanced application

Number of Filter Group Instances

1 2 4 8 16 32 64

R
es

po
ns

e
T

im
e

(s
ec

)

0

50

100

150

200

250

300

350

400

450

min mean max all

(c) Cpu intensive application

Figure 5. Change in response time for application scenarios , as number of filter group instances are
varied. All 64 units-of-work are appended round-robin to fil ter group instances at the beginning.

Vary scratch memory use: Finally, we fixed the num-
ber of instances at 4 and set the total amount of work to
16, and examined the effect of varying the total amount of
scratch memory allocated by filters on a host. As expected,
the application takes a major performance penalty when the
amount of scratch space in use exceeds the 256MB of phys-
ical memory available on the host (see Figure 7). As was
seen in the other experiments, these results also vary across
application types.

The premise of this paper is that optimizing performance
depends on the ability to dynamically create additional filter
group instances as needed. To achieve this goal, the costs in-
volved in instance creation and assigning work to instances
must be as low as possible. The time to create a new instance
in all the experiments described, which requires validating
the layout of filters and sending a command from the con-
sole to the remote host to execute a given filter, is on aver-
age 0:59sec on the PC cluster. Assigning work is simpler,
requiring sending the work buffer to remote hosts containing
filters for the instance, and is on average 0:0074sec. These
times do not include the time in the remote process for ac-
tually creating the filter object and thread, or for appending
the work to a filter’s work queue. The overall design of Dat-

aCutter has minimal barriers and other blocking operations,
such that most operations are asynchronous, and block only
when absolutely necessary. In particular, creating a new fil-
ter group instance is overlapped with the console process
creating the next filter instance or with assigning work to
existing filter instances. This approach is essential for any
practical Grid framework that supports adaptivity.

The experimental platform was chosen to provide a de-
gree of experimental repeatability, and to be able to isolate
certain desired effects, while minimizing the impact of out-
side forces (such as background jobs, cross traffic, network
contention, etc.). The results are relatively stable, and the
lessons learned should still apply to a non-dedicated Grid
environment. A problem that has not been addressed is that
network characteristics can have a significant impact on per-
formance. To address this, we have recently installed Nist-
Net [?] on the PC cluster, which is a network emulator for
wide-area networks. Appropriately configured, NistNet will
allow us to emulate a wide-area network between any two
host pairs in our cluster. This does not perturb either the
sender or the receiver, because a special gateway node in
the cluster does all the buffering and delaying, resulting in a
controlled experimental platform that both provides repeata-

6

Batch Size (Optimal Num Instances)

1 (16) 2 (8) 4 (4) 8 (8) 16 (4) 32 (2) 64 (1)

R
es

po
ns

e
T

im
e

(s
ec

)

0

5

10

15

20

25

30

35

40

min mean max all

(a) I/O intensive application

Batch Size (Optimal Num Instances)

1 (8) 2 (8) 4 (8) 8 (2) 16 (2) 32 (2) 64 (1)

R
es

po
ns

e
T

im
e

(s
ec

)

0
50

100
150
200
250
300
350
400
450
500
550
600
650

min mean max all

(b) Balanced application

Batch Size (Optimal Num Instances)

1 (8) 2 (32) 4 (8) 8 (4) 16 (4) 32 (2) 64 (1)

R
es

po
ns

e
T

im
e

(s
ec

)

0

50

100

150

200

250

300

350

400

450

min mean max all

(c) Cpu intensive application

Figure 6. Change in the response time for application scenar ios, as batch size is varied. For a given
batch size, lowest “all” response time is used to choose the o ptimal number of filter group instances.
The numbers in parentheses are the optimal number of instanc es for the corresponding batch size.

Total Scratch Memory Allocated

0mb 64mb 128mb 192mb 256mb 320mb

R
es

po
ns

e
T

im
e

(s
ec

)

0
50

100
150
200
250
300
350
400
450
500
550
600

min mean max all

(a) I/O intensive application

Total Scratch Memory Allocated

0mb 64mb 128mb 192mb 256mb 320mb

R
es

po
ns

e
T

im
e

(s
ec

)

0

50

100

150

200

250

300

350

min mean max all

(b) Balanced application

Total Scratch Memory Allocated

0mb 64mb 128mb 192mb 256mb 320mb

R
es

po
ns

e
T

im
e

(s
ec

)

0

50

100

150

200

250

300

350

400

450

min mean max all

(c) Cpu intensive application

Figure 7. Change in the response time for application scenar ios, as the total amount of scratch
memory across filters is varied. For this experiment, the num ber of units-of-work is 16, and the
number of filter groups instances is fixed at 4.

bility and also a controlled form of the real, chaotic Grid en-
vironment. For the final version of this paper, we plan to
complete a version of our experiments using NistNet.

5. Related Work

All of the following work deals with data-intensive ap-
plications, and to varying degrees, how to execute them in a
wide-area environment. To our knowledge, this paper is the
first attempt to investigate the implications of using multi-
ple instances of the same components on the performance
of data-intensive applications in a Grid.

The ABACUS framework [?, ?] addresses the automatic
and dynamic placement of functions in data-intensive appli-
cations between clients and storage servers. This work is
closely related to DataCutter in that application components
are placed to improve performance, but ABACUS only sup-

port applications that are structured as a chain of function
calls, and the only possibilities for placement are the client
or server.

MOCHA [?] is a database middleware system designed
to interconnect data sources distributed over a wide area net-
work. MOCHA operates in the highly structured relational
database world, and can automatically deploy implementa-
tions of new data types to hosts for execution of queries.
The work shows how an optimizer customized to deal with
“data-inflating” and “data-reducing” operators, can improve
performance. MOCHA can leverage total knowledge about
query selectivities stored in its catalog, whereas DataCutter
deals with arbitrary application code with no such useful in-
formation.

ACDS [?] (Adapting Computational Data Streams) is
a framework that addresses construction and adaptation of
computational data streams in an application. Computa-

7

tional data streams model application processing as compu-
tational objects associated with data streams. A computa-
tional object performs filtering and data manipulation. Data
streams characterize data flow from data servers or from
running simulations to the clients of the application. The
runtime system of ACDS performs migration, splitting and
merging of streams to adapt for runtime variations such as
data volume and availability of resources.

The dQUOB [?] (dynamic QUery OBjects) system con-
sists of a runtime and compiler environment that allows an
application to insert computational entities, called quoblets
into data streams. The data streams targeted by the dQUOB
system are those used in large-scale visualizations, in video
streaming to a large number of end users, and in large vol-
umes of business transactions.

Dv [?] is a framework for developing applications for dis-
tributed visualization of large scientific datasets on a com-
putational grid. The Dv framework is based on the notion
of active frames. An active frame is an application-level
mobile object that contains application data, called frame
data, and a frame program that processes the data. Active
frames are executed by active frame servers running on the
machines at the client and remote sites.

6. Conclusions and Future Work

In this paper, we address the problem of scheduling fil-
ter groups in an application. A filter group is a set of fil-
ters collectively performing computation on data. Our ex-
perimental results show that as the number of instances in-
crease, the application performance improves because the
workload is partitioned across parallel instances. However,
the performance degrades after some optimal point because
more instances will eventually overload system resources.
In addition, we have demonstrated that application charac-
teristics such as the ratio of computation to communication,
and how the application injects work into the filter group in-
stances, can affect the optimal choice. Therefore, we con-
clude that overall application performance is dependent on
tailoring the number of filter group instances to application
and machine characteristics, and that scheduling of filter in-
stances is an important problem.

The DataCutter project is an ongoing attempt to provide
an application component framework and runtime support
for data-intensive applications, in a Grid environment. Our
long term goal is to develop methodologies and various an-
alytical cost models for selecting both a set of hosts and the
right number of filter group instances for a given applica-
tion. The cost models will be driven by important applica-
tion and configuration parameters that were demonstrated in
this paper and in previous work [?, ?]. We plan to continue
this initial study into the instance creation problem in a het-
erogeneous Grid environment and to develop emulators for

other application classes, which will be also be used to de-
velop and evaluate the cost models. Finally, we are extend-
ing DataCutter to allow instances of individual filters to be
shared among separate filter group instances. This will add
more dimensions to the filter group instance creation prob-
lem presented in this paper, because we can decide per-filter
whether to create a new instance or multiplex an existing
one.

8

