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This dissertation studies privacy and security problems from an information-

theoretic point of view. We study the privacy problem via the private information

retrieval (PIR) problem with a focus on its interactions with available side informa-

tion. We study the security problem via the wiretap channel with a focus on the

design of practical coding schemes to achieve information-theoretically achievable

random-coding based secrecy rates.

First, we consider the problem of PIR from N non-colluding and replicated

databases when the user is equipped with a cache that holds an uncoded fraction r

from each of the K stored messages in the databases. We consider the case where

the databases are unaware of the cache content. We investigate D∗(r) the optimal

download cost normalized with the message size as a function of K, N , r. For a

fixed K, N , we develop converses and achievability schemes for the D∗(r) curve.

The largest additive gap between our achievability and the converse bounds is 1
6
.

Our results show that the download cost can be reduced beyond memory-sharing if

the databases are unaware of the cached content.



Second, we consider the same setting under a more restricted model where

the databases know the user cache content partially. The user receives an uncoded

fraction r from each of the K stored messages, with the r
N

fraction of it coming from

the nth database. The side information obtained from the nth database is known by

the nth database and is unknown by the remaining databases. We investigate the

optimal normalized download cost D∗(r), and develop converses and achievability

schemes for D∗(r). The largest additive gap between our achievability and the

converse bounds is 5
32

for this case. We observe that the achievable download cost

here is larger than that in the previous case due to the partial knowledge of the

databases regarding the cache content.

Third, we consider the problem of PIR with private side information (PSI)

when the cache content is partially known by the databases. Here, a cache-enabled

user of cache-size M possesses side information in the form of full messages that are

partially known by the databases. The user wishes to download a desired message

privately while keeping the identities of the side information messages that the user

did not prefetch from a database private against that database. We characterize the

exact capacity of PIR with PSI under partially known PSI condition. We show that

the capacity of PIR with partially known PSI is the same as the capacity of PIR

with fully unknown PSI.

Fourth, we consider PIR with PSI under storage constraints where a cache-

enabled user of cache-size S possesses side information in the form M messages that

are unknown to the databases, where M > S. We address the problem of which

uncoded parts of M messages the user should keep in its constrained cache of size S



in order to minimize the download cost during PIR subject to PSI. We characterize

the exact capacity of this PIR-PSI problem under the storage constraint S. We

show that a uniform caching scheme which caches equal amounts from all available

M messages achieves the lowest normalized download cost.

Fifth, we consider the PIR problem from decentralized uncoded caching data-

bases. Here, the contents of the databases are not fixed a priori, and we design

the probability distribution adopted by each database in the decentralized caching

phase in order to minimize the expected normalized download cost in the retrieval

phase. We characterize the exact capacity of this problem, and show that uniform

and random caching results in the lowest normalized download cost.

Next, we focus on security of communication by designing practical coding

schemes to achieve the information-theoretically achievable random-coding based se-

crecy rates. By applying two recently developed techniques for polar codes, namely,

universal polar coding and polar coding for asymmetric channels, we propose a polar

coding scheme to achieve the secrecy capacity of the general (non-degraded) wiretap

channel. We then apply this coding scheme to achieve the best-known secrecy rates

for the multiple access wiretap channel, and the broadcast and interference channels

with confidential messages.
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CHAPTER 1

Introduction

In today’s communication networks, the end-users are equipped with large memories,

and the data transmitted in the network has shifted from real-time generated data

like voice to pre-generated content like movies. These two factors together have

enabled caching techniques, which store data in user cache a priori in order to

reduce the peak-hour network traffic load. In the meanwhile, privacy has become

an important consideration for users, who wish to download data from publicly

accessable databases as privately and as efficiently as possible. This is studied under

the subject of private information retrieval (PIR). From an information-theoretic

point of view, cached data can be regarded as a form of side information. In the

first part of this thesis, we study privacy of users in caching networks, by studying

the PIR problem in the presence of side information (SI).

The problem of PIR was introduced by Chor et al. [1] to investigate the privacy

of users while downloading data from public databases. The PIR problem has

become a major research area within the computer science literature subsequently,

see e.g., [2–5]. In the classical form of the problem [1], a user requests to download

1



a message (or a file) from N non-communicating and replicated databases where

each database contains the same set of K messages such that no database can

distinguish individually which message has been retrieved. The user performs this

task by preparing N queries, one for each database, such that the queries do not

reveal the user’s interest in the desired message. Each database responds truthfully

to the received query by an answer string. The user reconstructs the desired message

from the collected answer strings. A naive PIR scheme is to download all of the

K messages from a database. However, this trivial PIR scheme is quite inefficient

from the retrieval rate perspective, which is defined as the number of desired bits

per bit of downloaded data. Consequently, the aim of the PIR problem is to retrieve

the desired message correctly by downloading as few bits as possible from the N

databases under the privacy constraint.

Recently, the PIR problem is revisited by information theorists with early

examples [6–11]. In the information-theoretic re-formulation of the problem, the

length of the message L is assumed to be arbitrarily large to conform with the

traditional Shannon-theoretic arguments, and the upload cost is neglected as it

does not scale with the message length. This formulation provides an absolute

privacy guarantee by ensuring statistical independence between the queries and the

identity of the desired message. In the influential paper by Sun and Jafar [12],

the notion of PIR capacity is introduced, which is the supremum of PIR rates over

all achievable retrieval schemes. In [12], the authors characterize the capacity of

classical PIR. In [12], a greedy iterative algorithm is proposed for the achievability

scheme and an induction based converse is provided to obtain an exact result. The
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achievable scheme is based on an interesting correspondence between PIR and blind

interference alignment [13] as observed earlier in [14]. Sun and Jafar show that in

order to privately retrieve a message, the optimal total downloaded bits normalized

with the message size is D
L

= 1+ 1
N

+· · ·+ 1
NK−1 . Consequently, the PIR capacity is the

reciprocal of this optimal normalized download cost, i.e., C = (1+ 1
N

+· · ·+ 1
NK−1 )−1.

Following the work of [12], the fundamental limits of many interesting variants

of the classical PIR problem have been considered [15–52], such as: PIR with T

colluding databases (TPIR) [15, 23], where any T of N databases might collude;

robust PIR (RPIR) [15,26,30], where some databases may fail to respond; symmetric

PIR (SPIR) [16], which adds the constraint that the user should only learn the

desired message; MDS-coded PIR (CPIR) [17], where the contents of the databases

are not replicated, but coded via an MDS code; PIR under message size constraint

L (LPIR) [18]; multi-round PIR, where the queries are permitted to be a function of

the answer strings collected in previous rounds [20]; multi-message PIR (MPIR) [24],

where the user wishes to jointly retrieve P messages; PIR from Byzantine databases

(BPIR), where B databases are outdated or worse adversarial [27].

In Chapter 2, we study cache-aided PIR with unknown and uncoded prefetch-

ing. Recently, reference [28] has considered cache-aided PIR, where the user has

local cache memory of size rKL bits and it can store any function of the K mes-

sages subject to this memory size constraint. With the assumption that the cache

content is known by all the N databases, reference [28] characterizes the optimal

download cost. The achievability scheme is based on memory-sharing1 and the con-

1Memory-sharing, introduced in [28], is an achievability concept similar to the classical achiev-
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verse bound is obtained with the aid of Han’s inequality. To privately retrieve a

message, the optimal total downloaded bits normalized with the message size is

D(r)
L

= (1− r)(1 + 1
N

+ · · ·+ 1
NK−1 ). The result is quite pessimistic as it implies that

the cached bits cannot be used as side information within the retrieval scheme and

the user must download the uncached portion of the file (the remaining L(1 − r)

bits) using the original PIR scheme in [12]. The reason is that the databases are

fully knowledgeable about the cached bits and can infer which message is desired if

the user exploits these cached bits as side information in any form.

The above discussion motivates us to investigate the other extreme where the

databases are fully unaware of the cache content, i.e., when the prefetched bits

are unknown to all of the N databases (in contrast to having the cache content

as public knowledge at all the N databases as in [28]). In this case, the user can

leverage the cached bits as side information without sacrificing the privacy constraint

as the databases are unaware of the cached bits. This poses an interesting question:

What is the optimal way to exploit the cached bits as side information in order to

minimize the normalized download cost, and what is the corresponding gain beyond

memory-sharing if any? The assumption of unknown prefetching can be interpreted

in practice as the prefetching phase is performed via an external database which does

ability concept of time-sharing. Reference [28, Lemma 1] first shows that the download cost D(S)
is a convex function of the cache memory size S. That is, for two different cache sizes S1 and S2,
we have D(αS1 + (1 − α)S2) ≤ αD(S1) + (1 − α)D(S2). Reference [28, Lemma 1] shows this by
dividing the messages into two independent parts of sizes αL and (1 − α)L and correspondingly
scaling the cache memory sizes with α and (1−α), and applying two different PIR schemes to the
two independent parts of the message. This implies that memory-sharing between zero caching
(and requiring the download cost in [12]) and caching all the messages (and requiring zero down-
load cost), a normalized download cost of (1−r)

(
1 + 1

N + · · · , 1
NK−1

)
is achievable with a caching

ratio of r, which is linear in r.
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not participate in the retrieval phase. We further assume that the cache content is

uncoded, which is a common assumption in the caching literature [53–55].

In this chapter, we consider PIR with unknown and uncoded prefetching,

i.e., we assume that the cache content is unknown to all databases, and the cache

supports only direct (uncoded) portions of all messages (smaller subfiles). We aim

to characterize the optimal tradeoff between the normalized download cost D(r)
L

and

the caching ratio r. For the outer bound, we explicitly determine the achievable

download rates for specific K + 1 caching ratios. Download rates for any other

caching ratio can be achieved by proper memory-sharing between the nearest two

explicit points. This implies that the outer bound is a piece-wise linear curve which

consists of K line segments. For the inner bound, we extend the techniques of [12,28]

to obtain a piece-wise linear curve which also consists of K line segments. We show

that the inner and the outer bounds match exactly at three of the K line segments

for any number of messages K. This means that we characterize the optimal tradeoff

for the very low (r ≤ 1
1+N+N2+···+NK−1 ) and the very high (r ≥ K−2

(N+1)K+N2−2N−2)

caching ratios. As a direct corollary, we fully characterize the optimal download

cost caching ratio tradeoff for K = 3 messages. For general K, N and r, we

show that for fixed N , the outer bound monotonically increases as K increases.

To characterize the worst-case gap between the inner and the outer bounds, we

determine the asymptotic achievability bound as K → ∞ for fixed N , r. We then

show that the asymptotic gap monotonically decreases in N . Therefore, the worst-

case gap happens at N = 2 and K →∞. By maximizing this over r, we show that

the largest gap between the achievability and the converse bounds is 1
6
. Our results

5



show the benefits of the cached content when the databases are unaware of it over

the scenario in [28] where the databases are fully aware of the cached content.

In Chapter 3, we study cache-aided PIR with partially known uncoded prefetch-

ing, which is closely related to our formulation in Chapter 2. In Chapter 2, the

databases are assumed to be completely unaware of the side information. How-

ever, this may be practically challenging to implement. In Chapter 3, we consider

a more natural model which uses the same set of databases for both prefetching

and retrieval phases. Therefore, different from Chapter 2, here each database gains

partial knowledge about the side information, that is the part it provides during the

prefetching phase. Our aim is to determine if there is a rate loss due to this partial

knowledge with respect to the fully unknown case in Chapter 2, and characterize

this rate loss as a function of K, N and r.

We consider the PIR problem with a two-phase scheme, namely, prefetching

phase and retrieval phase. In the prefetching phase, the user caches an uncoded r
N

fraction of each message from the nth database. The nth database is aware of these

KLr
N

bit side information, while it has no knowledge about the cached bits from the

other (N − 1) databases. We aim at characterizing the optimal tradeoff between

the normalized download cost D(r)
L

and the caching ratio r. For the outer bound,

we explicitly determine the achievable download rates for specific K + 1 caching

ratios. Download rates for any other caching ratio can be achieved by memory-

sharing between the nearest explicit points. Hence, the outer bound is a piece-wise

linear curve which consists of K line segments. For the inner bound, we extend

the techniques of [12] and Chapter 2 to obtain a piece-wise linear curve which also

6



consists of K line segments. We show that the inner and the outer bounds match

exactly at three line segments for any K. Consequently, we characterize the optimal

tradeoff for the very low (r ≤ 1
NK−1 ) and the very high (r ≥ K−2

N2−3N+KN
) caching

ratios. As a direct corollary, we fully characterize the optimal download cost caching

ratio tradeoff for K = 3 messages. For general K, N and r, we show that the worst-

case additive gap between the inner and the outer bounds is 5
32

.

In Chapter 4, we study PIR with partially known private side information

(PSI). This chapter is most closely related to [28, 32, 33, 50] and Chapters 2 and 3

here. These works investigate the PIR problem when the user (retriever) possesses

some form of side information about the contents of the databases. However, the

models of [28, 32, 33, 50] and Chapters 2 and 3 differ in three important aspects,

namely, 1) the structure of the side information, 2) the presence or absence of privacy

constraints on the side information, and 3) the databases’ awareness of the side

information at its initial acquisition. Here, structure of the side information refers

to whether the side information is in the form of full messages or parts of messages

or whether messages are mixed through functions (coded/uncoded); privacy of the

side information refers to whether the user further aims to keep the side information

private from the databases; and databases’ awareness of the side information refers

to whether the databases knew the initially prefetched side information.

Specifically, reference [28] studies the capacity of the cache-aided PIR where

the user caches rLK bits in the form of any arbitrary function of the K messages,

where L is the message size, and 0 ≤ r ≤ 1 is the caching ratio. Reference [32]

considers the case where brKc full messages are cached, and Chapters 2 and 3
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consider the case where a random r fraction of the symbols of each of K messages is

cached. Reference [28] assumes that the cache content is perfectly known by all the

databases, and hence there is no need to protect the privacy of the cached content.

Reference [28] motivates [32] and Chapter 2 to study the other extreme when the

databases are completely unaware of the side information at its initial acquisition.

Reference [32] further introduces another model where the cached content (in

the form of full messages) which is unknown to the databases at the time of initial

prefetching, must remain unknown throughout the PIR, i.e., the queries of the user

should not leak any information about the cached content to the databases. The ex-

act capacity for this problem is settled in [33] to be C =
(
1 + 1

N
+ · · ·+ 1

NK−M−1

)−1
.

The optimal achievable scheme in this case starts from the traditional achievable

scheme without side information in [12] and reduces the download cost by utilizing

the reconstruction property of MDS codes. Reference [32] also considers the case of

no privacy constraint on the cached content. The exact capacity for this problem

is settled in [50] to be C =
(

1 + 1
N

+ · · ·+ 1

N
d K
M+1

e−1

)−1
. We note that there is no

privacy constraint on the cached content in Chapters 2 and 3 here.

In Chapter 4, we take a deeper look at the issue of awareness or otherwise

unawareness of the databases about the cached content at its initial acquisition. We

first note that it is practically challenging to make the side information completely

unknown to the databases at its initial acquisition as assumed in [32, 33, 50] and

Chapter 2. One way to do this could be to employ one of the databases for prefetch-

ing the side information and exclude it from the retrieval process. Therefore, for

the remaining N − 1 databases, the side information is completely unknown. This
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solution is strictly sub-optimal as the capacity expression in [33] (shown as C in

the previous paragraph) is monotonically decreasing in N . We also note that the

other extreme of the problem, where the databases are fully aware of the cached

content [28], is discouraging as the user cannot benefit from the cached side infor-

mation. Therefore, a natural model is to use the databases for both prefetching

and retrieval phases, such that the databases gain partial knowledge about the side

information available to the user, which makes it possible for the user to exploit the

remaining side information that is unknown to each individual database to reduce

the download cost during the retrieval process. This poses the following questions:

Can we propose efficient joint prefetching-retrieval strategies that exploit the limited

knowledge of each database to drive down the download cost? How much is the loss

from the fully unknown case in [32,33]?

In this chapter, we investigate the PIR problem when the user and the databases

engage in a two-phase scheme. In the prefetching phase, the user caches mn full mes-

sages out of the K messages from the nth database under a total cache memory size

constraint
∑N

n=1mn ≤ M . Hence, each database has a partial knowledge about

the side information possessed by the user, namely, the part of the side information

that this database has provided during the prefetching phase. In the retrieval phase,

the user wants to retrieve a message (which is not present in its memory) without

leaking any information to any individual database about the desired message or

the remaining side information messages that are unknown to each database. The

goal of this work is to design a joint prefetching-retrieval scheme that minimizes the

download cost in the retrieval phase.
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To that end, we first derive a general lower bound for the normalized download

cost that is independent of the prefetching strategy. Then, we prove that this bound

is attainable using two achievable schemes. The first achievable scheme, which is

proposed in [33] for completely unknown side information, is a valid achievable

scheme for our problem with partially known side information for any prefetching

strategy.2 We provide a second achievable scheme for the case of uniform prefetching,

i.e., mn = M
N
∈ N, which requires smaller sub-packetization and smaller field size for

realizing MDS codes. While the first achievable scheme [33] requires a message size of

L = NK , the second achievable scheme proposed here requires a message size of L =

NK−M
N , which scales down the message size by an exponential factor N

M
N , which in

turn simplifies the achievable scheme and minimizes the total number of downloaded

bits without sacrificing from the capacity. We prove that the exact capacity of this

problem is C =
(
1 + 1

N
+ · · ·+ 1

NK−M−1

)−1
. Surprisingly, this is the same capacity

expression for the PIR problem when the databases are completely unaware of the

side information possessed by the user as found in [33] recently. Therefore, our result

implies that there is no loss in the capacity if the same databases are employed in

both prefetching and retrieval phases.

In Chapter 5, we consider the PIR problem with PSI for a cache-enabled user

under a cache storage size constraint. The goal of the PIR-PSI problem is to devise

the most efficient retrieval scheme under the joint desired message and side infor-

mation privacy constraints. The system operates in two phases, a prefetching phase

and a retrieval phase. In the prefetching phase, the user can access M messages,

2We thank Dr. Hua Sun for pointing this out.
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and has a local cache storage of S messages (SL symbols), where S ≤M . For each

of these M messages, the user caches the first Lri symbols out of the total L sym-

bols for i = 1, . . . ,M . The caching scheme is subject to a memory size constraint,

i.e.,
∑M

i=1 ri = S. Note that in [36] and Chapters 2 and 3, for each message, the

user randomly chooses Lr symbols out of the total L symbols to cache. In [36]

and Chapters 2 and 3, to reliably reconstruct the desired message, the user should

record the indices of the cached symbols within each message. In contrast, here,

we consider the case where the user caches the first Lri symbols of each message

instead of random Lri symbols; this saves the user extra storage overhead. The

databases are aware of the caching scheme, but do not know the identities of the

cached messages, i.e., the databases know M and ri for i = 1, . . . ,M , but do not

know the identities of the cached messages. In the retrieval phase, the user wishes to

jointly keep the identities of the cached messages and the desired message private.

We call this model as PIR-PSI under a storage constraint.

For any given caching scheme, i.e., for given M and (r1, r2, . . . , rM), we charac-

terize the optimal normalized download cost to be D∗ = 1+ 1
N

+ 1
N2 + · · ·+ 1

NK−1−M +

1−rM
NK−M + 1−rM−1

NK−M+1 + · · ·+ 1−r1
NK−1 , where without loss of generality r1 ≥ r2 ≥ · · · ≥ rM .

Based on this capacity result, we prove two important facts: First, for a fixed mem-

ory size S and fixed number of accessible messages M , uniform caching achieves

the lowest normalized download cost, where uniform caching means ri = S
M

, for

i = 1, . . . ,M . Second, for a fixed memory size S, among all the K−dSe+1 uniform

caching schemes, the uniform caching scheme which caches K messages achieves the

lowest normalized download cost. That is, in order to optimally utilize the limited
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user cache memory, if the user has access to M files, it should keep SL/M bits

(equal amounts) from each message in its cache memory; and second, if possible,

the user should aim to have access to all K messages, i.e., M = K yields the lowest

download cost.

In Chapter 6, we study PIR from decentralized uncoded caching databases.

Currently, most of the previous works on the PIR problem consider the case where

the contents of the databases are fixed a priori in an uncontrollable manner, and a

vast majority of them consider the case of replicated databases where each database

stores the same set of K files. In this chapter, we modify these two assumptions.

Coded caching refers to the problem of placing files in users’ local storage

caches ahead of time properly and designing efficient delivery schemes at the time

of specific user requests in such a way to minimize the traffic during the delivery

phase. In the original setup [53], a server with K files connects to N users through

an error-free shared link, where each user has a local memory which can store up

to M files. The system operates in two phases. In the placement phase, the server

places the files into each user’s local memory. In the delivery phase, each user

requests a file from the server, and the server aims to satisfy all the requests with

the lowest traffic load. If the set of users in the two phases are identical, the server

can arrange the content in each user’s local memory in an optimized manner, which is

called centralized coded caching. Reference [53] proposes a symmetric batch caching

scheme, which is shown to be optimal for the case of centralized uncoded placement

in [55]. If the set of users in the two phases varies, the server cannot arrange the files

in user caches in a centralized manner. Instead, the server treats each user identically
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and independently which is called decentralized coded caching [54]. Reference [54]

proposes a uniform and random caching scheme, which is shown to be optimal for

the case of decentralized uncoded placement in [55]. Many interesting variants of

coded caching problem have been investigated in [56–70].

The references that are most closely related to this chapter are [38, 43]. Ref-

erences [38, 43] formulate a new type of PIR problem where the content of each

database is not fixed a priori, but can be optimized to minimize the download cost.

These papers bring PIR and coded caching problems together in a practically rele-

vant and theoretically interesting manner. In their problem setting, there is a data

center (server) containing all the K files where each file is of size L bits, and the

system operates in two phases. In the caching phase, there are N databases in the

system with a common storage size constraint µ, i.e., each database can at most store

µKL bits, 1
N
≤ µ ≤ 1. In the retrieval phase, a user accesses the N databases, and

wishes to download a desired file privately. They consider the problem of optimally

storing content from the data center to the databases in the caching phase in such

a way that the normalized download cost during the retrieval phase is minimized.

They focus on the centralized uncoded caching case, i.e., the set of users in the two

phases are identical so that the data center can assign the files to each database in

a centralized manner, and caching is uncoded in that each database stores a sub-

set of the bits from the data center (no coding), i.e., each database stores µKL

bits out of the total KL bits. Surprisingly, they show that the symmetric batch

caching scheme proposed in [53] results in the lowest normalized download cost in

the retrieval phase.
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In this chapter, we consider the PIR problem from decentralized uncoded

caching databases. In our problem setting, the system also operates in two phases

as in [38, 43]. However, the set of databases active in the two phases are different,

and we do not know in advance which databases the user can access in the retrieval

phase. Therefore, we consider a decentralized setting for the caching phase, i.e., the

data center treats each database identically and independently, or equivalently, each

database chooses a subset of bits to store independently according to the same prob-

ability distribution. Here, we aim at designing the optimal probability distribution

in the caching phase and PIR scheme in the retrieval phase such that the normalized

download cost in the retrieval phase is minimized. Another main difference between

our work and references [38, 43] is that, in the caching phase, references [38, 43] re-

quire that the N databases altogether can reconstruct the entire K files, i.e., when

the user connects to the N databases, their collective content is equivalent to the

content in the data center, so the user can download any desired file. While this can

be guaranteed in the centralized setting, in the decentralized setting, where cache

placement is probabilistic, we cannot guarantee that any given N databases contain

all the bits that exist in the data center. Thus, in order to formulate a meaningful

PIR problem, we allow the user access the data center as well as the databases in the

retrieval phase. Finally, we remark about the relationship of the problem considered

in this chapter to another sub-branch of PIR literature that considers caching as

in [32, 33, 50] and in Chapters 2 and 3. There the user itself has a cache memory

where it stores a subset of the bits available in the databases. That problem is

unrelated to the setting considered in this chapter even though it is also referred to
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as PIR with caching; in essence, it is PIR with side information.

In this chapter, for PIR from decentralized caching databases, we show that

uniform and random caching scheme, originally proposed in [54] for decentralized

coded caching, results in the lowest expected normalized download cost in the re-

trieval phase. For the achievability, we apply the PIR scheme in [12] successively

for all resulting subfile parts. For the converse, we first apply the lower bound

derived in [43], which replaces the random variables for queries and answering

strings by the content of the distributed databases in a novel manner extending

the lower bounding techniques in [12, Lemma 5 and Lemma 6]. To compare dif-

ferent probability distributions in the caching phase, we focus on the marginal dis-

tributions on each separate bit. Then, by using the nature of decentralization and

uncoded caching, we further lower bound the normalized download cost. Finally,

we show the matching converse for the expected normalized download cost to be

D
L

=
∑N+1

n=1

(
N
n−1

)
µn−1(1 − µ)N+1−n (1 + 1

n
+ · · ·+ 1

nK−1

)
, which yields an exact ca-

pacity result for the problem.

Next, in the second part of this thesis, we study the wiretap channel with a fo-

cus on the design of practical coding schemes to achieve the information-theoretically

achievable random-coding based secrecy rates. The wiretap channel was first in-

troduced by Wyner [71], in which a legitimate transmitter (Alice) wishes to send

messages to a legitimate receiver (Bob) secretly in the presence of an eavesdropper

(Eve). Wyner [71] characterized the capacity equivocation region for the degraded

wiretap channel, in which the received signal at Eve is a degraded version of the

received signal at Bob. Later, Csiszár and Körner [72] characterized the capacity
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equivocation region for general, not necessarily degraded, wiretap channels. These

works are based on information-theoretic random-coding schemes.

Polar coding, invented by Arıkan [73], is the first code that provably achieves

the capacity of the binary-input discrete symmetric output channels (B-DMC). The

idea of polar coding has been extended to lossless source coding [74], lossy source

coding [75], and to multi-user scenarios, such as, multiple access channel [76–78],

broadcast channel [79,80], interference channel [81], and Slepian-Wolf coding prob-

lem [82].

On a B-DMC, polarization results in two kinds of sub-channels [73]. The first

kind is good sub-channels. The capacity for these sub-channels approaches 1 bit per

channel use. The second kind is bad sub-channels. The channel output for these

sub-channels is independent of the channel input; therefore the capacity for these

sub-channels approaches 0. In particular, if a B-DMC A is degraded with respect

to a B-DMC B, then the good sub-channels of A must be a subset of the good

sub-channels of B [83]. We call this the subset property.

Polar coding schemes for degraded wiretap channels with symmetric main and

eavesdropper channels are developed using the subset property in [84–87]. For de-

graded wiretap channels, the good sub-channels of Eve is a subset of the good

sub-channels of Bob. The polar coding scheme is designed to transmit the confusion

messages (random bits) on the sub-channels simultaneously good for Bob and Eve,

and to transmit the secret messages on the sub-channels only good for Bob. How-

ever, for non-degraded wiretap channels, the subset property no longer holds [88–92],

i.e., the good sub-channels of Eve is not necessary a subset of the good sub-channels
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of Bob. Moreover, the secrecy capacity achieving input distribution is not necessar-

ily a uniform distribution. Therefore, the polar coding schemes in [84–87] cannot

directly extend to the non-degraded wiretap channel.

By applying two recently developed techniques for polar codes, we can achieve

the secrecy capacity of the general wiretap channel. The first technique is universal

polar codes [91,92]. Universal polar coding allows us to align the good sub-channels

of Bob and Eve together. Therefore, we can artificially construct the subset prop-

erty for the non-degraded wiretap channel. Then, Alice transmits the random bits

on the sub-channels simultaneously good for Bob and Eve, and the secret message

on the sub-channels only good for Bob. The second technique is polar coding for

asymmetric models [93], which allows us to deal with the non-uniform input dis-

tribution. Different from B-DMC, polarization for asymmetric channels results in

three different kinds of sub-channels.

Another polar coding scheme for the general wiretap channel is provided in

[94], which uses a concatenated code consisting of two polar codes. The inner layer

ensures that the transmitted message can be reliably decoded by Bob, and the outer

layer guarantees that the message is kept secret from Eve. Our work jointly handles

these two goals in one shot. Hence, the decoding error probability of our scheme is

approximately O(2−n
1/2

), whereas it is O(
√
n2−n

1/4
) in [94]. Although the scheme

in [94] does not require to share randomness, for practical code construction, there

is still no efficient way to characterize the outer index set [94, Sec. III. C.], while

our coding scheme can be efficiently constructed by [89].

Next, we extend our coding scheme to several multiuser scenarios: multiple
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access wiretap channel (MAC-WTC) [95, 96], broadcast channel with confidential

messages (BC-CM) [97], and interference channel with confidential messages (IC-

CM) [97]. In the MAC-WTC, two transmitters wish to send independent messages

to the legitimate receiver in the presence of an eavesdropper. In the BC-CM3, the

transmitter wishes to send independent messages to two receivers, while keeping the

messages secret from the unintended receiver. In the IC-CM, two transmitters wish

to send independent messages to their respective receivers, and keep the messages

confidential from the other receiver.

To the best of our knowledge, there are no practical coding schemes for these

multiuser scenarios. For the MAC-WTC, we achieve the entire dominant face of

the best-known achievable region by combining the coding scheme for the general

wiretap channel we introduce here with the monotone chain rule [82]. For the BC-

CM, we introduce a double chaining construction to achieve the best-known inner

bound. Finally, we extend the coding scheme for the general wiretap channel to the

setting of IC-CM.

We acknowledge independent and concurrent papers which present similar

results on polar coding for general wiretap channels at the same conference; see

[98,99]. Reference [98] generalizes the polar coding scheme for strong secrecy in [100],

while in our work, we artificially construct the subset property to extend the polar

coding scheme in [84–87]. Interestingly, these two points of view lead to the same

3Although the naming of BC-CM is similar to [72], these two channel models are different. In
particular, [72] is a “single-user” wiretap channel, in the sense that there is only one message to be
secured; it is a generalization of [71] to non-degraded channels, together with the introduction of
a common message to be sent (insecurely) to both Bob and Eve. BC-CM [97], on the other hand,
has two messages each to be secured from the unintended receiver.
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chaining construction method [99]. However, the remaining parts of these three

works are different. References [98, 99] mainly deal with broadcast channel with

a confidential component [72]. However, we not only achieve the secrecy capacity

of [72] but also propose coding schemes to achieve the best-known inner bounds of

the multiuser models of MAC-WTC, BC-CM and IC-CM, which require different

constructions.

In Chapter 8, we conclude this dissertation.
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CHAPTER 2

Fundamental Limits of Cache-Aided Private Information Re-

trieval with Unknown and Uncoded Prefetching

2.1 Introduction

We consider the problem of private information retrieval (PIR) fromN non-colluding

and replicated databases when the user is equipped with a cache that holds an

uncoded fraction r from each of the K stored messages in the databases. We assume

that the databases are unaware of the cache content. We investigate D∗(r) the

optimal download cost normalized with the message size as a function of K, N ,

r. For a fixed K, N , we develop an inner bound (converse bound) for the D∗(r)

curve. The inner bound is a piece-wise linear function in r that consists of K line

segments. For the achievability, we develop explicit schemes that exploit the cached

bits as side information to achieve K − 1 non-degenerate corner points. These

corner points differ in the number of cached bits that are used to generate one side

information equation. We obtain an outer bound (achievability) for any caching

ratio by memory-sharing between these corner points. Thus, the outer bound is

also a piece-wise linear function in r that consists of K line segments. The inner
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and the outer bounds match in general for the cases of very low caching ratio and

very high caching ratio. As a corollary, we fully characterize the optimal download

cost caching ratio tradeoff for K = 3. For general K, N , and r, we show that the

largest gap between the achievability and the converse bounds is 1
6
. Our results show

that the download cost can be reduced beyond memory-sharing if the databases are

unaware of the cached content.

2.2 System Model

We consider a classic PIR problem with K independent messages W1, . . . ,WK . Each

message is of size L bits,

H(W1) = · · · = H(WK) = L, (2.1)

H(W1, . . . ,WK) = H(W1) + · · ·+H(WK). (2.2)

There are N non-communicating databases, and each database stores all the K

messages, i.e., the messages are coded via (N, 1) repetition code [17]. The user

(retriever) has a local cache memory whose content is denoted by a random variable

Z. For each message Wk of size L bits, the user randomly and independently caches

Lr bits out of the L bits to Z, where 0 ≤ r ≤ 1, and r is called the caching ratio

(See Fig. 2.1). Therefore,

H(Z) = KLr. (2.3)
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The caching ratio r is known to the databases. Since the user caches a subset of the

bits from each message, this is called uncoded prefetching. We denote the indices of

the cached bits by random variable H. For each message Wk, we have

H(Wk|Z,H) = L(1− r). (2.4)

Here, different from [28], we consider the case where none of the databases knows

the prefetched cache content.

After the uncoded prefetching phase, the user privately generates an index

θ ∈ [K], where [K] = {1, . . . , K}, and wishes to retrieve message Wθ such that

no database knows which message is retrieved. Note that during the prefetching

phase, the desired message is unknown a priori. Note further that the cached bit

indices H are independent of the message contents and the desired message index

θ. Therefore, for random variables θ, H, and W1, . . . ,WK , we have

H (θ,H,W1, . . . ,WK) = H (θ) +H (H) +H(W1) + · · ·+H(WK). (2.5)

Suppose θ = k. The user sends N queries Q
[k]
1 , . . . , Q

[k]
N to the N databases, where

Q
[k]
n is the query sent to the nth database for message Wk. The queries are generated

according to H and Z, but are independent of the realizations of the uncached

messages. Therefore,

I(W1, . . . ,WK ;Q
[k]
1 , . . . , Q

[k]
N |Z,H) = 0. (2.6)
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Figure 2.1: Cache-aided PIR with unknown and uncoded prefetching for N = 3,
K = 4 and r = 1

4
.

To ensure that individual databases do not know which message is retrieved, we

need to satisfy the following privacy constraint, ∀n ∈ [N ], ∀k ∈ [K],

(Q[1]
n , A

[1]
n ,W1, . . . ,WK) ∼ (Q[k]

n , A
[k]
n ,W1, . . . ,WK). (2.7)

Upon receiving the query Q
[k]
n , the nth database replies with an answering

string A
[k]
n , which is a function of Q

[k]
n and all the K messages. Therefore, ∀k ∈

[K],∀n ∈ [N ],

H(A[k]
n |Q[k]

n ,W1, . . . ,WK) = 0. (2.8)

After receiving the answering strings A
[k]
1 , . . . , A

[k]
N from all the N databases, the

user needs to decode the desired message Wk reliably. By using Fano’s inequality,

we have the following reliability constraint

H
(
Wk|Z,H, Q[k]

1 , . . . , Q
[k]
N , A

[k]
1 , . . . , A

[k]
N

)
= o(L), (2.9)
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where o(L) denotes a function such that o(L)
L
→ 0 as L→∞.

For a fixed N , K, and caching ratio r, a pair (D(r), L) is achievable if there

exists a PIR scheme for message of size L bits with unknown and uncoded prefetching

satisfying the privacy constraint (2.7) and the reliability constraint (2.9), where D(r)

represents the expected number of downloaded bits (over all the queries) from the

N databases via the answering strings A
[k]
1:N , i.e.,

D(r) =
N∑
n=1

H
(
A[k]
n

)
. (2.10)

In this work, we aim to characterize the optimal normalized download cost D∗(r)

corresponding to every caching ratio 0 ≤ r ≤ 1, where

D∗(r) = inf

{
D(r)

L
: (D(r), L) is achievable

}
, (2.11)

which is a function of the caching ratio r.

2.3 Main Results and Discussions

Our first result characterizes an outer bound (achievable rate) for the normalized

download cost D∗(r) for general K, N and r.

Theorem 2.1 (Outer bound) In the cache-aided PIR with uncoded and unknown

prefetching, for the caching ratios

rs =

(
K−2
s−1

)(
K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)iN

, (2.12)
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where s ∈ {1, 2, · · · , K − 1}, the optimal normalized download cost D∗(rs) is upper

bounded by,

D∗(rs) ≤ D̄(rs) =

∑K−1−s
i=0

(
K

s+1+i

)
(N − 1)iN(

K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)iN

. (2.13)

Moreover, if rs < r < rs+1, and α ∈ (0, 1) such that r = αrs + (1− α)rs+1, then

D∗(r) ≤ D̄(r) = αD̄(rs) + (1− α)D̄(rs+1). (2.14)

The proof of Theorem 2.1 can be found in Section 2.4. Theorem 2.1 im-

plies that there exist K + 1 interesting caching ratios denoted by rs, where s ∈

{1, 2, · · · , K − 1} in addition to r = 0 point (no caching) and r = 1 point (ev-

erything cached). The index s, which characterizes rs for these points, represents

the number of cached bits that can be used within one bit of the download (if this

downloaded bit uses cached bits as side information). For example, if s = 2, this

means that the user should use two of the cached bits as side information in the

form of mixture of two bits if the caching ratio is r2. The achievability scheme for

any other caching ratio r can be obtained by memory-sharing between the most

adjacent interesting caching ratios that include r. Consequently, the outer bound is

a piece-wise linear convex curve that connects the K + 1 interesting caching ratio

points including the (0, 1
C

) point, where C is the PIR capacity without caching found

in [12], and (1, 0) where everything is cached; here, in (x, y), x denotes the caching

ratio and y denotes the normalized download cost.
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Figure 2.2: Comparison between the optimal download cost for known prefetching
and the achievable download cost for unknown prefetching in (2.13) for K = 5 and
N = 2.

As a direct corollary for Theorem 2.1, we note that since the databases do not

know the cached bits, the download cost is strictly smaller than the case when the

databases have the full knowledge about the cached bits in [28]. We state and prove

this in the following corollary. As a concrete example, Figure 2.2 shows the gain

that can be achieved due to the unawareness of the databases about the cached bits.

Corollary 2.1 (Unawareness gain) The achievable normalized download cost D̂(r)

in the cache-aided PIR with known prefetching [28]

D̂(r) = (1− r)
(

1 +
1

N
+ · · ·+ 1

NK−1

)
(2.15)

is strictly larger than the achievable normalized download cost D̄(r) in (2.13) for
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0 < r < 1, i.e., the databases’ unawareness contributes to reducing the download

cost beyond the memory-sharing scheme in [28].

Proof: For r = 0, the achievable download cost D̄(r) in (2.13) is
(
1 + 1

N
+ · · ·+ 1

NK−1

)
,

which is the same as (2.15). For r = 1, the achievable download cost D̄(r) in (2.13)

is 0, which is the same as (2.15). To show that D̂(r) in (2.15) is larger than D̄(r) in

(2.13) for 0 < r < 1, it suffices to show that there exists a caching ratio r such that

D̄(r) < D̂(r), since the other caching ratios can be achieved by the memory-sharing

scheme. Taking s = K − 1 in (2.12), we have rK−1 = 1
1+N

. For r = 1
1+N

, we have

D̄(r) = N
1+N

, and D̂(r) = N
1+N

(
1 + 1

N
+ · · ·+ 1

NK−1

)
. Therefore, for rK−1, we have

D̄(r) < D̂(r), which shows the sub-optimality of D̂(r) in (2.15) for the case of known

prefetching. �

Our second result characterizes an inner bound (converse bound) for the nor-

malized download cost D∗(r) for general K, N , r.

Theorem 2.2 (Inner bound) In the cache-aided PIR with uncoded and unknown

prefetching, the normalized download cost is lower bounded as,

D∗(r) ≥ D̃(r) = max
i∈{2,··· ,K+1}

(1− r)
K+1−i∑
j=0

1

N j
− r

K−i∑
j=0

K + 1− i− j
N j

, (2.16)

The proof of Theorem 2.2 can be found in Section 2.5. Theorem 2.2 implies

that the inner bound is also a piece-wise linear curve, which consists of K line

segments with decreasing slope as r increases. The points at which the curve changes
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its slope are given by,

r̃i =
1

1 +N +N2 + · · ·+NK−i , i = 1, · · · , K − 1. (2.17)

We note that ri in (2.12) and r̃i in (2.17) are the same for i = 1 and i = K − 1.

As a consequence of Theorem 2.1 and Theorem 2.2, we characterize the opti-

mal download cost caching ratio tradeoff for very low and very high caching ratios

in the following corollary. Here, by very low caching ratios we mean 0 ≤ r ≤

r1 = r̃1 = 1
1+N+N2+···+NK−1 , and by very high caching ratios we mean rK−2 =

K−2
(N+1)K+N2−2N−2 ≤ r ≤ 1. Note that, in the very high caching ratios, we have two

segments, one in rK−2 ≤ r ≤ rK−1 and the other in rK−1 ≤ r ≤ 1. Therefore, in

the inner and outer bounds, each composed of K line segments, the first (very low

r) and the last two (very high r) segments match giving exact result. This is stated

and proved in the next corollary.

Corollary 2.2 (Optimal tradeoff for very low and very high caching ratios)

In the cache-aided PIR with uncoded and unknown prefetching, for very low caching

ratios, i.e., for r ≤ 1
1+N+N2+···+NK−1 , the optimal normalized download cost is given

by,

D∗(r) = (1− r)
(

1 +
1

N
+ · · ·+ 1

NK−1

)
− r

(
K − 1 +

K − 2

N
+ · · ·+ 1

NK−2

)
(2.18)

On the other hand, for very high caching ratios, i.e., for r ≥ K−2
(N+1)K+N2−2N−2 , the
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optimal normalized download cost is given by,

D∗(r) =


(1− r)

(
1 + 1

N

)
− r, K−2

(N+1)K+N2−2N−2 ≤ r ≤ 1
1+N

1− r, 1
1+N
≤ r ≤ 1

. (2.19)

Proof: First, from (2.12) and (2.17), let us note that

r1 = r̃1 =
1

1 +N +N2 + · · ·+NK−1 , (2.20)

rK−2 =
K − 2

(N + 1)K +N2 − 2N − 2
, (2.21)

rK−1 = r̃K−1 =
1

1 +N
. (2.22)

Then, we note from (2.13) that

D̄(r1) =

∑K−2
i=0

(
K
2+i

)
(N − 1)iN(

K−2
0

)
+
∑K−2

i=0

(
K−1
1+i

)
(N − 1)iN

(2.23)

=

N
(N−1)2

[
NK −∑1

i=0

(
K
i

)
(N − 1)i

](
K−2
0

)
+ N

(N−1)1
[
NK−1 −∑0

i=0

(
K−1
i

)
(N − 1)i

] (2.24)

=
N
[
NK − 1−K(N − 1)

]
(N − 1)2 +N(N − 1) [NK−1 − 1]

(2.25)

=
NK+1 −KN2 + (K − 1)N

NK+1 −NK −N + 1
(2.26)

Further, we note from (2.16), by choosing i = 2 and using r = r1, that

D̃(r1) ≥ (1− r1)
K+1−2∑
j=0

1

N j
− r1

K−2∑
j=0

K − 1− j
N j

(2.27)
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=

(
1− N − 1

NK − 1

)
NK − 1

NK −NK−1 −
N − 1

NK − 1

N

1−N

(
−K +

NK − 1

NK −NK−1

)
(2.28)

=
NK −N
NK − 1

NK − 1

NK −NK−1 +
N

NK − 1

(
−K +

NK − 1

NK −NK−1

)
(2.29)

=
NK −N

NK −NK−1 +N

( −K
NK − 1

+
1

NK −NK−1

)
(2.30)

=
NK+1 −KN2 + (K − 1)N

NK+1 −NK −N + 1
(2.31)

= D̄(r1) (2.32)

Thus, since D̃(r1) ≤ D̄(r1) by definition, (2.32) implies D̃(r1) = D̄(r1).

Similarly, from (2.13),

D̄(rK−2) =

∑1
i=0

(
K

K−1+i

)
(N − 1)iN(

K−2
K−3

)
+
∑1

i=0

(
K−1
K−2+i

)
(N − 1)iN

(2.33)

=
N2 + (K − 1)N

N2 + (K − 2)N + (K − 2)
, (2.34)

and from (2.16) by choosing i = K and using r = rK−2,

D̃(rK−2) ≥ (1− rK−2)
1∑
j=0

1

N j
− rK−2

0∑
j=0

1− j
N j

(2.35)

=

(
N2 + (K − 2)N

N2 + (K − 2)N + (K − 2)

)(
1 +

1

N

)
− K − 2

N2 + (K − 2)N + (K − 2)

(2.36)

=
N2 + (K − 1)N

N2 + (K − 2)N + (K − 2)
(2.37)

= D̄(rK−2) (2.38)
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implying D̃(rK−2) = D̄(rK−2).

Finally, from (2.13),

D̄(rK−1) =
N

1 +N
, (2.39)

and from (2.16) by choosing i = K + 1 and using r = rK−1,

D̃(rK−1) ≥
N

1 +N
= D̄(rK−1) (2.40)

implying D̃(rK−1) = D̄(rK−1).

Therefore, D̃(r) = D̄(r) at r = r1, r = rK−2 and r = rK−1. We also note that

D̃(0) = D̄(0) and D̃(1) = D̄(1). Since both D̄(r) and D̃(r) are linear functions of

r, and since D̃(0) = D̄(0) and D̃(r1) = D̄(r1), we have D̃(r) = D̄(r) = D∗(r) for

0 ≤ r ≤ r1. This is the very low caching ratio region. In addition, since D̃(rK−2) =

D̄(rK−2), D̃(rK−1) = D̄(rK−1) and D̃(1) = D̄(1), we have D̃(r) = D̄(r) = D∗(r) for

rK−2 ≤ r ≤ 1. This is the very high caching ratio region. �

As an example, the case of K = 4 and N = 2 is shown in Figure 2.3. In this

case, r1 = r̃1 = 1
15

, rK−2 = 1
5
, and rK−1 = r̃K−1 = 1

3
. Therefore, we have exact

results for 0 ≤ r ≤ 1
15

(very low caching ratios) and 1
5
≤ r ≤ 1 (very high caching

ratios). We have a gap between the achievability and the converse for medium

caching ratios in 1
15
≤ r ≤ 1

5
. More specifically, line segments connecting (0, 15

8
) and

( 1
15
, 22
15

); connecting (1
5
, 1) and (1

3
, 2
3
); and connecting (1

3
, 2
3
) and (1, 0) are tight.
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Figure 2.3: Inner and outer bounds for K = 4 and N = 2. For the (x, y) points in
this figure, x denotes the caching ratio r and y denotes the normalized download
cost D

L
.

Finally, we characterize the exact tradeoff curve for any N , r for the special

case of K = 3 in the following corollary.

Corollary 2.3 (Optimal tradeoff for K = 3) In the cache-aided PIR with un-

coded and unknown prefetching with K = 3 messages, the optimal download cost

caching ratio tradeoff is given explicitly as (see Figure 2.4),

D∗(r) =


(1− r)

(
1 + 1

N
+ 1

N2

)
− r

(
2 + 1

N

)
, 0 ≤ r ≤ 1

1+N+N2

(1− r)
(
1 + 1

N

)
− r, 1

1+N+N2 ≤ r ≤ 1
1+N

1− r, 1
1+N
≤ r ≤ 1

(2.41)

Proof: The proof follows from the proof of Corollary 2.2. Note that in this case,

from (2.20) and (2.21), r1 = rK−2 = 1
1+N+N2 ; and from (2.22), r2 = rK−1 = 1

1+N
.

Thus, we have a tight result for 0 ≤ r ≤ r1 = 1
1+N+N2 (very low caching ratios) and
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Figure 2.4: Optimal download cost caching ratio tradeoff for the case of K = 3
messages.

a tight result for rK−2 = r1 = 1
1+N+N2 ≤ r ≤ 1, i.e., a tight result for all 0 ≤ r ≤ 1.

We have three segments in this case: [0, r1], [r1, r2] and [r2, 1] with three different

line expressions for the exact result as given in (2.12)-(2.13) and written explicitly

in (2.41). �

2.4 Achievability Proof

Our achievability scheme is based on the PIR schemes in [12,28]. Similar to [12], we

apply the following three principles recursively: 1) database symmetry, 2) message

symmetry within each database, and 3) exploiting undesired messages as side infor-

mation. Different from [12], we start the PIR scheme from the third principle due to

the availability of pre-existing side information as a result of uncoded prefetching.

These cached bits can be exploited right away as side information without compro-

33



mising the privacy constraint as the databases do not know them. We begin the

discussion by presenting the case of K = 3 and N = 2 as a motivating example to

illustrate the main ideas of our achievability scheme.

2.4.1 Motivating Example: The Optimal Tradeoff Curve for K = 3

Messages and N = 2 Databases

In this example, we show the achievability for K = 3 and N = 2. We know from

Corollary 2.3 that the inner and the outer bounds match for this case. The optimal

download cost caching ratio tradeoff is shown in Figure 2.4. We note that there

are 4 corner points. Two of them are degenerate, corresponding to r = 0, r = 1

caching ratios. For r = 0, the user has no cached bits and is forced to apply the

achievable scheme in [12] that achieves D̄(0) = 7
4

= 1
C

. For r = 1, the user has

already cached the entire desired file and does not download any extra bits from

the databases, i.e., D̄(1) = 0. We have two other corner points, corresponding to

r1 = 1
1+N+N2 = K−2

(N+1)K+N2−2N−2 = 1
7
, and r2 = 1

1+N
= 1

3
. In the sequel, we show

the achievability of these two corner points.

2.4.1.1 Caching Ratio r1 = 1
7

Let s be the number of cached bits that are mixed together to form side information

equation. The first corner point corresponds to s = 1. This means that the user

exploits every bit in the cache individually as a side information. Using the notation

in [24], we can say that the user starts downloading from round 2 that sums bits
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from every two messages together. We next show how s = 1 suffices to achieve

r1 = 1
7
, D̄(1

7
) = 8

7
for K = 3 and N = 2; see Figure 2.4.

We use ai, bi, and ci to denote the bits of messages W1, W2 and W3, respec-

tively. We assume that the user wants to retrieve message W1 privately without

loss of generality. We initialize the process by permuting the indices of messages

W1,W2,W3 randomly and independently. The steps of the retrieval can be followed

in Table 2.1. The user has already cached one bit from each message, i.e., a1, b1,

c1 as denoted by Z in Table 2.1. We start from the third principle by exploiting

each bit in the cache as an individual side information. The user downloads a2 + b1

and a3 + c1 from the first database (DB1). Then, we apply the first principle, and

the user downloads a4 + b1 and a5 + c1 from the second database (DB2) to satisfy

the database symmetry. Next, we apply the second principle to ensure the message

symmetry within the queries. The user downloads b2 + c2 from DB1, and b3 + c3

from DB2. At this point, all side information corresponding to the cached bits have

been exploited. Next, we apply the third principle, since undesired message mixes

are available in the form of b2 + c2 and b3 + c3. The user downloads a6 + b3 + c3

from DB1. Finally, we apply the first principle of database symmetry, and the user

downloads a7 + b2 + c2 from DB2. Now, the iterations stop, since all the undesired

side information is used and the symmetry across databases and symmetry within

the queries is attained. We summarize the process in the query table in Table 2.1.

Since the databases do not know the local cache memory Z, and for each

database, the user’s queries are symmetric across messages, the privacy constraint

(2.7) is satisfied. The decodability can be easily checked as the user can cancel out
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Table 2.1: Query table for K = 3, N = 2 and r1 = 1
7

s DB1 DB2
s = 1 a2 + b1 a4 + b1

a3 + c1 a5 + c1
b2 + c2 b3 + c3

a6 + b3 + c3 a7 + b2 + c2

Z = (a1, b1, c1)

b1, c1 which it has previously cached, and also cancel b2 + c2 and b3 + c3 which are

previously downloaded, to obtain a2, · · · , a7. Since a1 is already cached, the user

has a1, · · · , a7. Here, L = 7 and the user has cached 1 bit from each message. There

are total of 8 downloads. Hence r = 1
7
, and D̄(1

7
) = 8

7
.

2.4.1.2 Caching Ratio r2 = 1
3

For the second non-degenerate corner point, we have s = 2. This means that each

2 bits from the cache are mixed together to form a side information equation. We

next show how s = 2 suffices to achieve r2 = 1
3
, D̄(1

3
) = 2

3
for K = 3 and N = 2; see

Figure 2.4.

Let [a1, a2, a3], [b1, b2, b3], and [c1, c2, c3] denote a random permutation of the

3 bits of messages W1, W2 and W3, respectively. Suppose the user caches a1, b1, c1

in advance and wants to retrieve message W1 privately. We start from the third

principle. The user downloads a2 + b1 + c1 from the first database (DB1). Then,

we apply the first principle, and the user downloads a3 + b1 + c1 from the second

database (DB2). Now, the iterations stop, since all the undesired side information is

used and the symmetry across databases and messages is attained. We summarize
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the process in the query table in Table 2.2. In this case L = 3, hence r = 1
3
, and

the normalized download cost is D̄(1
3
) = 2

3
.

Table 2.2: Query table for K = 3, N = 2 and r2 = 1
3

s DB1 DB2
s = 2 a2 + b1 + c1 a3 + b1 + c1

Z = (a1, b1, c1)

2.4.1.3 Caching Ratio r = 1
5

So far, we have characterized all the corner points by varying s = 1, 2 and achieved

the points corresponding to caching ratios rs in addition to the degenerate caching

ratios r = 0 and r = 1; see Figure 2.4. An achievable scheme for any other caching

ratio can be obtained by memory-sharing between the two nearest corner points.

As an example, we next consider the caching ratio r = 1
5
.

The achievability scheme for this case is a combination of the achievability

schemes in Sections 2.4.1.1 and 2.4.1.2. Observe that by choosing L = 10, the

achievable schemes in Sections 2.4.1.1 and 2.4.1.2 can be concatenated to achieve

the caching ratio r = 1
5
. In this case, the user caches a1, a2, b1, b2, c1, c2 and wants to

retrieve message W1 privately. For cached bits a1, b1, c1, we apply the same process

as in Section 2.4.1.1, i.e., we use s = 1 and use every cached bit as individual side

information equation. For cached bits a2, b2, c2, we apply the same process as in

Section 2.4.1.2, and choose s = 2, which implies that we use the mixture of two

cached bits as a side information equation. We summarize the process in the query

table in Table 2.3.
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Table 2.3: Query table for K = 3, N = 2 and r = 1
5

s DB1 DB2

s = 1
a3 + b1 a5 + b1
a4 + c1 a6 + c1
b3 + c3 b4 + c4

a7 + b4 + c4 a8 + b3 + c3
s = 2 a9 + b2 + c2 a10 + b2 + c2

Z = (a1, a2, b1, b2, c1, c2)

Here, we have L = 10, therefore r = 1
5
, and D̄(1

5
) = 10

10
= 1. In fact, by applying

[28, Lemma 1] and taking α = 7
10

, we can show that the normalized download cost of

this example can be obtained from the download costs obtained in Sections 2.4.1.1

and 2.4.1.2, as D̄(1
5
) = D̄(1

7
· 7
10

+ 1
3
· 3
10

) = 7
10
D̄(1

7
) + 3

10
D̄(1

3
) = 7

10
· 8
7

+ 3
10
· 2
3

= 1.

2.4.2 Achievable Scheme for the Corner Points for Arbitrary K, N

For fixed N and K, there are K − 1 non-degenerate corner points (in addition to

degenerate caching ratios r = 0, r = 1). The caching ratios corresponding to these

non-degenerate corner points are indexed by s, which enumerate the number of

cached bits that are involved in the side information mixture. Hence, rs is given by

rs =

(
K−2
s−1

)(
K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)iN

, (2.42)

where s ∈ {1, 2, . . . , K− 1}. We choose the length of the message to be L(s) for the

corner point indexed by s, where

L(s) =

(
K − 2

s− 1

)
+

K−1−s∑
i=0

(
K − 1

s+ i

)
(N − 1)iN (2.43)
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bits per message. The details of the achievable scheme are as follows:

1. Initialization: The user permutes each message randomly and independently.

The user caches randomly and privately
(
K−2
s−1

)
bits from each message. Set

the round index to i = s+ 1, where the ith round involves downloading sums

of every i combinations of the K messages.

2. Exploiting side information: If i = s+ 1, the user mixes s bits from the cache

bits to form one side information equation. Each side information equation is

added to one bit from the uncached portion of the desired message. Therefore,

the user downloads
(
K−1
s

)
equations in the form of a desired bit added to a

mixture of s cached bits from other messages. On the other hand, if i > s+ 1,

the user exploits the
(
K−1
i−1

)
(N − 1)i−s−1 side information equations generated

from the remaining (N − 1) databases in the (i− 1)th round.

3. Symmetry across databases: The user downloads the same number of equations

with the same structure as in step 2 from every database. Consequently, the

user downloads
(
K−1
i−1

)
(N − 1)i−s−1 bits from every database, which are done

either using the cached bits as side information if i = s + 1, or the side

information generated in the (i− 1)th round if i > s+ 1.

4. Message symmetry: To satisfy the privacy constraint, the user should down-

load equal amount of bits from all other messages. Therefore, the user down-

loads
(
K−1
i

)
(N − 1)i−s−1 undesired equations from each database in the form

of sum of i bits from the uncached portion of the undesired messages.
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5. Repeat steps 2, 3, 4 after setting i = i+ 1 until i = K.

6. Shuffling the order of queries: By shuffling the order of queries uniformly, all

possible queries can be made equally likely regardless of the message index.

This guarantees the privacy.

2.4.2.1 Decodability, Privacy, and the Achievable Normalized Down-

load Cost

Decodability: It is clear that the side information in each round is either con-

structed from the cached bits (if i = s+ 1) or obtained from the remaining (N − 1)

databases in the (i − 1)th round. Consequently, the user can cancel out these side

information bits in order to decode the uncached portion of the desired message (the

remaining L(1− r) bits).

Privacy: The randomized mapping of the cached and the uncached portions of the

messages and the randomization of the order of queries guarantees privacy as in [12].

Normalized Download Cost: We now calculate the total number of downloaded

bits for the caching ratio r in (2.42). First, we exploit s bits of side information.

Therefore, each download is a sum of s+ 1 bits. Since the second principle enforces

symmetry across K messages, we download
(
K
s+1

)
bits from a database. Due to the

first principle enforcing symmetry across databases, in total, we download
(
K
s+1

)
N

bits. Since we utilize s bits of side information of undesired messages for each

download, for each undesired message we use
(K−1

s )s
K−1 =

(
K−2
s−1

)
bits, which is the
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amount of bits we cached in advance for each message. Next, each download is a

sum of s+ 2 bits since the available side information is in the form of sums of s+ 1

bits. Due to message symmetry and (N − 1) available side information from other

(N−1) databases, we download
(
K
s+2

)
(N−1) bits from each database. Due to the first

principle enforcing symmetry across databases, in total, we download
(
K
s+2

)
(N−1)N

bits. Next, each download is the sum of s+3 bits since the available side information

is in the form of sums of s + 2 bits. Note that in the previous iteration, each

database provides (N − 1) sets of side information, and each database exploits

the side information from the other (N − 1) databases. Therefore, we download(
K
s+3

)
(N−1)2 bits from each database. Due to the first principle enforcing symmetry

across databases, in total, we download
(
K
s+3

)
(N − 1)2N bits. By continuing in this

manner, the total number of downloaded bits is,

D(rs) =
K−1−s∑
i=0

(
K

s+ 1 + i

)
(N − 1)iN. (2.44)

Now, we calculate the number of desired bits we have downloaded in this

process. At the beginning of the iteration, each download is a sum of s + 1 bits.

If the download includes a desired bit, the other s bits are from the local cache

memory. Therefore, we download
(
K−1
s

)
desired bits from each database, and thus

we download a total of
(
K−1
s

)
N desired bits. Next, each download is a sum of

s + 2 bits. If the download includes a desired bit, the other s + 1 bits are from

the side information of undesired bits. For each database, there are (N − 1) sets

of side information obtained from the previous iteration with one set from each
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database. Therefore, we download
(
K−1
s+1

)
(N − 1) bits from each database, and thus

we download a total of
(
K−1
s+1

)
(N − 1)N desired bits. Next, each download is a sum

of s + 3 bits. If the download includes a desired bit, the other s + 2 bits are from

the side information of undesired bits. For each database, there are (N − 1)2 sets

of side information obtained from the previous iteration with (N − 1) sets from one

database. Therefore, we download
(
K−1
s+2

)
(N − 1)2N desired bits from this iteration.

In the end, the number of desired bits we downloaded is L(s)−
(
K−2
s−1

)
, where L(s)

is given in (2.43). Finally, the normalized download cost is,

D̄(rs) =
D(rs)

L(s)
=

∑K−1−s
i=0

(
K

s+1+i

)
(N − 1)iN(

K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)iN

. (2.45)

2.4.3 Achievable Scheme for Non-Corner Points for Arbitrary K, N

For caching ratios r which are not exactly equal to (2.42) for some s, we first find

an s such that rs < r < rs+1, and combine the achievability schemes of rs and

rs+1. Then, we can write the achievable normalized download cost as a convex

combination of D̄(rs) and D̄(rs+1) using [28, Lemma 1] as follows,

D̄(r) = αD̄(rs) + (1− α)D̄(rs+1), (2.46)

where r = αrs + (1− α)rs+1 and rs is defined in (2.42), and D̄(r) is given in (2.45).
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2.5 Converse Proof

In this section, we derive an inner bound for the cache-aided PIR with uncoded and

unknown prefetching. The inner bound is tight in general for very high and very

low caching ratios, and in particular, the inner bound is tight everywhere for K = 3.

We extend the techniques presented in [12, 28] to our problem. We first need the

following lemma, which characterizes a lower bound on the length of the undesired

portion of the answer strings as a consequence of the privacy constraint.

Lemma 2.1 (Interference lower bound) For the cache-aided PIR with unknown

and uncoded prefetching, the interference from undesired messages within the answer

strings D(r)− L(1− r) is lower bounded by,

D(r)− L(1− r) + o(L) ≥ I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Z,H

)
(2.47)

for all k ∈ {2, . . . , K}.

If the privacy constraint is absent, the user downloads only L(1−r) bits in order

to decode the desired message, however, when the privacy constraint is present, it

should download D(r). The difference D(r)−L(1− r) corresponds to the undesired

portion of the answer strings. Lemma 2.1 shows that this portion is lower bounded

by the mutual information between the answer strings and the messages Wk:K after

knowing the first W1:k−1 messages and the cached bits. Lemma 2.1 provides K − 1

lower bounds on D(r) − L(1 − r) by changing the index k from 2 to K. Each of
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these K − 1 bounds contributes a different line segment for the final inner bound.

Note that Lemma 2.1 is an extension to [12, Lemma 5] if k = 2, r = 0.

Proof: We start with the right hand side of (2.47),

I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Z,H

)
= I

(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N ,Wk−1|W1:k−2, Z,H

)
− I (Wk:K ;Wk−1|W1:k−2, Z,H)

(2.48)

For the first term on the right hand side of (2.48), we have

I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N ,Wk−1|W1:k−2, Z,H

)
= I

(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−2, Z,H

)
+ I

(
Wk:K ;Wk−1|Q[k−1]

1:N , A
[k−1]
1:N ,W1:k−2, Z,H

)
(2.49)

(2.9)
= I

(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−2, Z,H

)
+ o(L) (2.50)

(2.5),(2.6)
= I

(
Wk:K ;A

[k−1]
1:N |W1:k−2, Z,H, Q[k−1]

1:N

)
+ o(L) (2.51)

= H
(
A

[k−1]
1:N |W1:k−2, Z,H, Q[k−1]

1:N

)
−H

(
A

[k−1]
1:N |W1:k−2, Z,H, Q[k−1]

1:N ,Wk:K

)
+ o(L)

(2.52)

(2.9)
= H

(
A

[k−1]
1:N |W1:k−2, Z,H, Q[k−1]

1:N

)
−H

(
Wk−1, A

[k−1]
1:N |W1:k−2, Z,H, Q[k−1]

1:N ,Wk:K

)
+ o(L) (2.53)

≤ H
(
A

[k−1]
1:N |W1:k−2, Z,H, Q[k−1]

1:N

)
−H

(
Wk−1|W1:k−2, Z,H, Q[k−1]

1:N ,Wk:K

)
+ o(L)

(2.54)

(2.5),(2.6)
= H

(
A

[k−1]
1:N |W1:k−2, Z,H, Q[k−1]

1:N

)
−H (Wk−1|Z,H) + o(L) (2.55)
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= H
(
A

[k−1]
1:N |W1:k−2, Z,H, Q[k−1]

1:N

)
− L(1− r) + o(L) (2.56)

≤ D(r)− L(1− r) + o(L) (2.57)

where (2.50), (2.53) follow from the reliability constraint of Wk−1, (2.51) follows

from the independence of the queries Q
[k−1]
1:N and the messages Wk:K given Z and H,

(2.54) follows from the chain rule and the non-negativity of the entropy function,

(2.55) is due to the fact that given Z and H, Wk−1 is statistically independent

of (W1:k−2,Wk:K , Q
[k−1]
1:N ), (2.56) follows from the uncoded nature of the cache, and

(2.57) follows from conditioning reduces entropy.

For the second term on the right hand side of (2.48), we have

I (Wk:K ;Wk−1|W1:k−2, Z,H)

= H (Wk−1|W1:k−2, Z,H)−H (Wk−1|W1:k−2,Wk:K , Z,H) (2.58)

= (L− Lr)− (L− Lr) (2.59)

= 0 (2.60)

Combining (2.48), (2.57), and (2.60) yields (2.47). �

In the following lemma, we prove an inductive relation for the mutual infor-

mation term on the right hand side of (2.47).

Lemma 2.2 (Induction lemma) For all k ∈ {2, . . . , K}, the mutual information
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term in Lemma 2.1 can be inductively lower bounded as,

I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Z,H

)
≥ 1

N
I
(
Wk+1:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Z,H

)
+
L(1− r)− o(L)

N
− (K − k + 1)Lr.

(2.61)

Lemma 2.2 relates the mutual information between Wk:K and the answer

strings to the same mutual information term with Wk+1:K , i.e., it shifts the term by

one message. Since the two terms have the same structure, Lemma 2.2 constructs

an inductive relation.

We obtain an explicit lower bound for I(Wk:K ;Q
[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Z,H) by

applying this lemma K − k + 1 times, and therefore characterize an explicit lower

bound on D(r)−L(1− r). We do this in Lemma 2.3 by combining Lemma 2.1 and

Lemma 2.2. Lemma 2.2 reduces to [12, Lemma 6] if r = 0.

Proof: We start with the left hand side of (2.61),

I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Z,H

)
= I

(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N , Z,H|W1:k−1

)
− I(Wk:K ;Z,H|W1:k−1) (2.62)

= I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1

)
+ I

(
Wk:K ;Z,H|W1:k−1, Q

[k−1]
1:N , A

[k−1]
1:N

)
− I(Wk:K ;Z,H|W1:k−1) (2.63)

≥ I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1

)
− I(Wk:K ;Z,H|W1:k−1) (2.64)

where (2.64) follows from the non-negativity of mutual information.
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For the first term in (2.64), we have

NI
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1

)
≥

N∑
n=1

I
(
Wk:K ;Q[k−1]

n , A[k−1]
n |W1:k−1

)
(2.65)

(2.7)
=

N∑
n=1

I
(
Wk:K ;Q[k]

n , A
[k]
n |W1:k−1

)
(2.66)

≥
N∑
n=1

I
(
Wk:K ;A[k]

n |W1:k−1, Q
[k]
n

)
(2.67)

(2.8)
=

N∑
n=1

H
(
A[k]
n |W1:k−1, Q

[k]
n

)
(2.68)

≥
N∑
n=1

H
(
A[k]
n |W1:k−1,H, Q[k]

1:N , A
[k]
1:n−1, Z

)
(2.69)

(2.8)
=

N∑
n=1

I
(
Wk:K ;A[k]

n |W1:k−1,H, Q[k]
1:N , A

[k]
1:n−1, Z

)
(2.70)

= I
(
Wk:K ;A

[k]
1:N |W1:k−1,H, Q[k]

1:N , Z
)

(2.71)

(2.5),(2.6)
= I

(
Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k−1, Z,H

)
(2.72)

(2.9)
= I

(
Wk:K ;Wk, Q

[k]
1:N , A

[k]
1:N |W1:k−1, Z,H

)
− o(L) (2.73)

= I
(
Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Z,H

)
+ I (Wk:K ;Wk|W1:k−1, Z,H)− o(L) (2.74)

= I
(
Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Z,H

)
+ L(1− r)− o(L) (2.75)

= I
(
Wk+1:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Z,H

)
+ L(1− r)− o(L) (2.76)

where (2.65), (2.69) follow from the non-negativity of mutual information, (2.66)

follows from the privacy constraint, (2.67) follows from the chain rule and the non-

negativity of the mutual information, (2.68), (2.70) follow from the fact that the

answer string A
[k]
n is a deterministic function of (Q

[k]
n ,W1:K), (2.71) follows from the
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chain rule, (2.72) follows from the statistical independence of (Q
[k]
1:N ,Wk:K) given

(Z,H), (2.73) is consequence of the decodability of Wk from (Q
[k]
1:N , A

[k]
1:N), and (2.75)

is due to the uncoded assumption of the cached bits.

For the second term in (2.64), we have

I(Wk:K ;Z,H|W1:k−1)

= H (Wk:K |W1:k−1)−H(Wk:K |W1:k−1, Z,H) (2.77)

= (K − k + 1)L− (K − k + 1)L(1− r) (2.78)

= (K − k + 1)Lr (2.79)

where (2.79) follows from the uncoded nature of the cached bits.

Combining (2.64), (2.76), and (2.79) yields (2.61). �

Now we are ready to derive the general inner bound for arbitrary K, N , r.

To obtain this bound, we use Lemma 2.1 to find K lower bounds on the length of

the undesired portion of the answer strings D(r) − L(1 − r). Each lower bound is

obtained by varying the index k in the lemma from k = 2 to k = K. Next, we

inductively lower bound each result of Lemma 2.1 by using Lemma 2.2, precisely

(K − k + 1) times, to get K explicit lower bounds. This is stated in the following

lemma.

Lemma 2.3 For N and K, we have

D(r) ≥ L(1− r)
K+1−k∑
j=0

1

N j
− Lr

K−k∑
j=0

K + 1− k − j
N j

− o(L), (2.80)
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where k = 2, . . . , K + 1.

Proof: We have

D(r) + o(L)

(2.47)

≥ L(1− r) + I
(
Wk:K ; , Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Z,H

)
(2.81)

(2.61)

≥ L(1− r) +
L(1− r)− o(L)

N
− (K − k + 1)Lr

+
1

N
I
(
Wk+1:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Z,H

)
(2.82)

(2.61)

≥ L(1− r)
[
1 +

1

N
+

1

N2
+ o(L)

]
− Lr

[
(K − k + 1) +

(K − k)

N

]
+

1

N2
I
(
Wk+2:K ;Q

[k+1]
1:N , A

[k+1]
1:N |W1:k+1, Z,H

)
(2.83)

(2.61)

≥ . . . (2.84)

(2.61)

≥ L(1− r)
K+1−k∑
j=0

1

N j
− Lr

K−k∑
j=0

K + 1− k − j
N j

+ o(L), (2.85)

where (2.81) follows from Lemma 2.1 starting from general index k, and the remain-

ing bounding steps correspond to successive application of Lemma 2.2. �

We conclude the converse proof by dividing by L and taking the limit as

L→∞, then for k = 2, · · · , K + 1, we have

D∗(r) ≥ (1− r)
K+1−k∑
j=0

1

N j
− r

K−k∑
j=0

K + 1− k − j
N j

(2.86)
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Finally, (2.86) gives K intersecting line segments, therefore, the normalized

download cost is lower bounded by their maximum value

D∗(r) ≥ max
i∈{2,··· ,K+1}

(1− r)
K+1−i∑
j=0

1

N j
− r

K−i∑
j=0

K + 1− i− j
N j

. (2.87)

2.6 Further Examples

2.6.1 K = 4 Messages, N = 2 Databases

For K = 4 and N = 2, we show the achievable PIR schemes for caching ratios

r1 = 1
15

in Table 2.4, r2 = 1
5

in Table 2.5, and r3 = 1
3

in Table 2.6. The achievable

normalized download costs for these caching ratios are 22
15

, 1 and 2
3
, respectively. We

show the normalized download cost and caching ratio trade off curve in Figure 2.3.

Table 2.4: Query table for K = 4, N = 2 and r1 = 1
15

s DB1 DB2
s = 1 a2 + b1 a5 + b1

a3 + c1 a6 + c1
a4 + d1 a7 + d1
b2 + c2 b4 + c4
b3 + d2 b5 + d4
c3 + d3 c5 + d5

a8 + b4 + c4 a11 + b2 + c2
a9 + b5 + d4 a12 + b3 + d2
a10 + c5 + d5 a13 + c3 + d3
b6 + c6 + d6 b7 + c7 + d7

a14 + b7 + c7 + d7 a15 + b6 + c6 + d6

Z = (a1, b1, c1, d1)

50



Table 2.5: Query table for K = 4, N = 2 and r2 = 1
5

s DB1 DB2
s = 2 a3 + b1 + c1 a6 + b1 + c1

a4 + d1 + b2 a7 + d1 + b2
a5 + c2 + d2 a8 + c2 + d2
b3 + c3 + d3 b4 + c4 + d4

a9 + b4 + c4 + d4 a10 + b3 + c3 + d3

Z = (a1, a2, b1, b2, c1, c2, d1, d2)

Table 2.6: Query table for K = 4, N = 2 and r3 = 1
3

s DB1 DB2
s = 3 a2 + b1 + c1 + d1 a3 + b1 + c1 + d1

Z = (a1, b1, c1, d1)

2.6.2 K = 4 Messages, N = 3 Databases

For K = 4 and N = 3, we show the achievable PIR schemes for caching ratios

r1 = 1
40

in Table 2.7, r2 = 2
17

in Table 2.8, and r3 = 1
4

in Table 2.9. We show the

normalized download cost and caching ratio trade off in Figure 2.5. The achievable

normalized download costs for these caching ratios are 27
20

, 18
17

and 3
4
, respectively. By

comparing Figure 2.5 with Figure 2.3, we observe that, for fixed K, as N grows, the

gap between the achievable bound and the converse bound shrinks. This observation

will be specified in Section 2.7.

2.6.3 K = 5, K = 10 and K = 100 Messages, N = 2 Databases

For N = 2, we show the numerical results for the inner and outer bounds for K = 5,

K = 10 and K = 100 in Figures 2.6, 2.7 and 2.8. For fixed N as K grows, the gap

between the achievable bound and converse bound increases. This observation will
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Table 2.7: Query table for K = 4, N = 3 and r1 = 1
40

s DB1 DB2 DB3

s
=

1 a2 + b1 a5 + b1 a8 + b1
a3 + c1 a6 + c1 a9 + c1
a4 + d1 a7 + d1 a10 + d1
b2 + c2 b4 + c4 b6 + c6
b3 + d2 b5 + d4 b7 + d6
c3 + d3 c5 + d5 c7 + d7

a11 + b4 + d4 a17 + b2 + c2 a23 + b2 + c2
a12 + b5 + d4 a18 + b3 + d2 a24 + b3 + d2
a13 + c5 + d5 a19 + c3 + d3 a25 + c3 + d3
a14 + b6 + c6 a20 + b6 + c6 a26 + b4 + c4
a15 + b7 + d6 a21 + b7 + d6 a27 + b5 + d4
a16 + c7 + d7 a22 + c7 + d7 a28 + c5 + d5
b8 + c8 + d8 b10 + c10 + d10 b12 + c12 + d12
b9 + c9 + d9 b11 + c11 + d11 b13 + c13 + d13

a29 + b10 + c10 + d10 a33 + b8 + c8 + d8 a37 + b8 + c8 + d8
a30 + b11 + c11 + d11 a34 + b9 + c9 + d9 a38 + b9 + c9 + d9
a31 + b12 + c12 + d12 a35 + b12 + c12 + d12 a39 + b10 + c10 + d10
a32 + b13 + c13 + d13 a36 + b13 + c13 + d13 a40 + b11 + c11 + d11

Z = (a1, b1, c1, d1)

be elaborated in Section 2.7.

2.6.4 K = 5, K = 10 and K = 100 Messages, N = 3 Databases

For N = 3, we show the numerical results for the inner and outer bounds for K = 5,

K = 10 and K = 100 in Figures 2.9, 2.10 and 2.11. For fixed N as K grows, the

gap between the achievable bound and converse bound increases. This observation

will be further clarified in Section 2.7.
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Table 2.8: Query table for K = 4, N = 3 and r2 = 2
17

s DB1 DB2 DB3

s
=

2 a3 + b1 + c1 a6 + b1 + c1 a9 + b1 + c1
a4 + d1 + b2 a7 + d1 + b2 a10 + d1 + b2
a5 + c2 + d2 a8 + c2 + d2 a11 + c2 + d2
b3 + c3 + d3 b4 + c4 + d4 b5 + c5 + d5

a12 + b4 + c4 + d4 a14 + b3 + c3 + d3 a16 + b3 + c3 + d3
a13 + b5 + c5 + d5 a15 + b5 + c5 + d5 a17 + b4 + c4 + d4

Z = (a1, a2, b1, b2, c1, c2, d1, d2)

Table 2.9: Query table for K = 4, N = 3 and r3 = 1
4

s DB1 DB2 DB3
s = 3 a2 + b1 + c1 + d1 a3 + b1 + c1 + d1 a4 + b1 + c1 + d1

Z = (a1, b1, c1, d1)

2.7 Gap Analysis

In this section, we analyze the gap between the achievability and converse bounds for

general N , K, and r, and show that the worst-case gap, which happens when N = 2

and K →∞, is at most 1
6
. We start this section with an interesting property for the

monotonicity of the achievable bounds. We first see an example. For N = 2, K = 4,

K = 5 and K = 6, the achievable bounds are shown in Figure 2.12. The achievable

bound for K = 6 is above the achievable bound for K = 5, and the achievable

bound for K = 5 is above the achievable bound for K = 4. By denoting r
(K)
s as

the caching ratio with total K messages and parameter s (see (2.12)), we observe

that (r
(5)
1 , D̄(r

(5)
1 )) falls on the line connecting (r

(4)
0 , D̄(r

(4)
0 )) and (r

(4)
1 , D̄(r

(4)
1 )). This

observation is general, (r
(K+1)
s , D̄(r

(K+1)
s )) falls on the line connecting (r

(K)
s−1, D̄(r

(K)
s−1))

and (r
(K)
s , D̄(r

(K)
s )). We state and prove this observation in the following lemma.
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Figure 2.5: Inner and outer bounds for K = 4 and N = 3.

Lemma 2.4 (Monotonicity of the achievable bounds) In cache-aided PIR with

uncoded and unknown prefetching, for fixed number of databases N , if the number

of messages K increases, then the achievable normalized download cost increases.

Furthermore, we have

r(K+1)
s = αr

(K)
s−1 + (1− α)r(K)

s , (2.88)

D̄(r(K+1)
s ) = αD̄(r

(K)
s−1) + (1− α)D̄(r(K)

s ), (2.89)

where 0 ≤ α ≤ 1.

Proof: To show (2.89) is equivalent to show

D̄(r(K+1)
s )− D̄(r(K)

s ) = α
(
D̄(r

(K)
s−1)− D̄(r(K)

s )
)
, (2.90)
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Figure 2.6: Inner and outer bounds for K = 5 and N = 2.

where D̄
(
r
(K)
s−1

)
> D̄

(
r
(K)
s

)
. From (2.88), we have

α =
r
(K)
s − r(K+1)

s

r
(K)
s − r(K)

s−1

. (2.91)

Therefore, to show (2.90) is equivalent to show

(
r(K)
s − r(K)

s−1

) (
D̄(r(K+1)

s )− D̄(r(K)
s )

)
=
(
r(K)
s − r(K+1)

s

) (
D̄(r

(K)
s−1)− D̄(r(K)

s )
)
.

(2.92)

Let D̄(r
(K)
s ) = D

(K)
s

L
(K)
s

, where

L(K)
s =

(
K − 2

s− 1

)
+

K−1−s∑
i=0

(
K − 1

s+ i

)
(N − 1)iN, (2.93)

D(K)
s =

K−1−s∑
i=0

(
K

s+ 1 + i

)
(N − 1)iN. (2.94)
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Figure 2.7: Inner and outer bounds for K = 10 and N = 2.

To show (2.92) is equivalent to show

[(
K−2
s−1

)
L
(K)
s

−
(
K−2
s−2

)
L
(K)
s−1

][
D

(K+1)
s

L
(K+1)
s

− D
(K)
s

L
(K)
s

]
=

[(
K−2
s−1

)
L
(K)
s

−
(
K−1
s−1

)
L
(K+1)
s

][
D

(K)
s−1

L
(K)
s−1

− D
(K)
s

L
(K)
s

]
,

(2.95)

which is obtained by using (2.12), (2.13), (2.93) and (2.94). Expanding (2.95), we

have

(
K−2
s−1

)
L
(K)
s

D
(K+1)
s

L
(K+1)
s

−
(
K−2
s−2

)
L
(K)
s−1

D
(K+1)
s

L
(K+1)
s

+

(
K−2
s−2

)
L
(K)
s−1

D
(K)
s

L
(K)
s

=

(
K−2
s−1

)
L
(K)
s

D
(K)
s−1

L
(K)
s−1

−
(
K−1
s−1

)
L
(K+1)
s

D
(K)
s−1

L
(K)
s−1

+

(
K−1
s−1

)
L
(K+1)
s

D
(K)
s

L
(K)
s

. (2.96)

56



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

D L

 

 

Achievability
Converse

Figure 2.8: Inner and outer bounds for K = 100 and N = 2.

Multiplying L
(K)
s L

(K)
s−1L

(K+1)
s to both side of (2.96), we have

(
K − 2

s− 1

)
D(K+1)
s L

(K)
s−1 +

(
K − 1

s− 1

)
D

(K)
s−1L

(K)
s +

(
K − 2

s− 2

)
D(K)
s L(K+1)

s

=

(
K − 2

s− 1

)
D

(K)
s−1L

(K+1)
s +

(
K − 2

s− 2

)
D(K+1)
s L(K)

s +

(
K − 1

s− 1

)
D(K)
s L

(K)
s−1. (2.97)

By using (2.93) and (2.94), we further have

(
K − 2

s− 1

)[K−s∑
i=0

(
K + 1

s+ 1 + i

)
(N − 1)iN

]

×
[(

K − 2

s− 2

)
+

K−s∑
i=0

(
K − 1

s− 1 + i

)
(N − 1)iN

]

+

(
K − 1

s− 1

)[K−s∑
i=0

(
K

s+ i

)
(N − 1)iN

]

×
[(

K − 2

s− 1

)
+

K−1−s∑
i=0

(
K − 1

s+ i

)
(N − 1)iN

]
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Figure 2.9: Inner and outer bounds for K = 5 and N = 3.

+

(
K − 2

s− 2

)[K−1−s∑
i=0

(
K

s+ 1 + i

)
(N − 1)iN

]

×
[(

K − 1

s− 1

)
+

K−s∑
i=0

(
K

s+ i

)
(N − 1)iN

]

=

(
K − 2

s− 1

)[K−s∑
i=0

(
K

s+ i

)
(N − 1)iN

]

×
[(

K − 1

s− 1

)
+

K−s∑
i=0

(
K

s+ i

)
(N − 1)iN

]

+

(
K − 2

s− 2

)[K−s∑
i=0

(
K + 1

s+ 1 + i

)
(N − 1)iN

]

×
[(

K − 2

s− 1

)
+

K−1−s∑
i=0

(
K − 1

s+ i

)
(N − 1)iN

]

+

(
K − 1

s− 1

)[K−1−s∑
i=0

(
K

s+ 1 + i

)
(N − 1)iN

]

×
[(

K − 2

s− 2

)
+

K−s∑
i=0

(
K − 1

s− 1 + i

)
(N − 1)iN

]
. (2.98)
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Figure 2.10: Inner and outer bounds for K = 10 and N = 3.

By canceling same terms on both sides, we have

(
K − 2

s− 1

)[K−s∑
i=0

(
K + 1

s+ 1 + i

)
(N − 1)i

][
K−s∑
i=0

(
K − 1

s− 1 + i

)
(N − 1)i

]

+

(
K − 1

s− 1

)[K−s∑
i=0

(
K

s+ i

)
(N − 1)i

][
K−1−s∑
i=0

(
K − 1

s+ i

)
(N − 1)i

]

+

(
K − 2

s− 2

)[K−1−s∑
i=0

(
K

s+ 1 + i

)
(N − 1)i

][
K−s∑
i=0

(
K

s+ i

)
(N − 1)i

]

=

(
K − 2

s− 1

)[K−s∑
i=0

(
K

s+ i

)
(N − 1)i

][
K−s∑
i=0

(
K

s+ i

)
(N − 1)i

]

+

(
K − 2

s− 2

)[K−s∑
i=0

(
K + 1

s+ 1 + i

)
(N − 1)i

][
K−1−s∑
i=0

(
K − 1

s+ i

)
(N − 1)i

]

+

(
K − 1

s− 1

)[K−1−s∑
i=0

(
K

s+ 1 + i

)
(N − 1)i

][
K−s∑
i=0

(
K − 1

s− 1 + i

)
(N − 1)i

]
. (2.99)
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Figure 2.11: Inner and outer bounds for K = 100 and N = 3.

By using the fact that
(
K
s

)
=
(
K−1
s

)
+
(
K−1
s−1

)
, we have

(
K − 2

s− 1

)[K−s∑
i=0

((
K

s+ 1 + i

)
+

(
K

s+ i

))
(N − 1)i

]

×
[
K−s∑
i=0

(
K − 1

s− 1 + i

)
(N − 1)i

]

+

((
K − 2

s− 1

)
+

(
K − 2

s− 2

))[K−s∑
i=0

(
K

s+ i

)
(N − 1)i

]

×
[
K−1−s∑
i=0

(
K − 1

s+ i

)
(N − 1)i

]

+

(
K − 2

s− 2

)[K−1−s∑
i=0

(
K

s+ 1 + i

)
(N − 1)i

]

×
[
K−s∑
i=0

((
K − 1

s+ i

)
+

(
K − 1

s+ i− 1

))
(N − 1)i

]

=

(
K − 2

s− 1

)[K−s∑
i=0

(
K

s+ i

)
(N − 1)i

]

×
[
K−s∑
i=0

((
K − 1

s+ i

)
+

(
K − 1

s+ i− 1

))
(N − 1)i

]
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Figure 2.12: Outer bounds for N = 2, K = 4, K = 5 and K = 6.

+

(
K − 2

s− 2

)[K−s∑
i=0

((
K

s+ 1 + i

)
+

(
K

s+ i

))
(N − 1)i

]

×
[
K−1−s∑
i=0

(
K − 1

s+ i

)
(N − 1)i

]

+

((
K − 2

s− 1

)
+

(
K − 2

s− 2

))
×
[
K−1−s∑
i=0

(
K

s+ 1 + i

)
(N − 1)i

][
K−s∑
i=0

(
K − 1

s− 1 + i

)
(N − 1)i

]
. (2.100)

Since the left hand side of (2.100) is equal to the right hand side of (2.100), (2.89)

holds.

To show α ≥ 0, since r
(K)
s > r

(K)
s−1 in (2.91), it suffices to show that r

(K)
s ≥

r
(K+1)
s . From (2.12), it is equivalent to show that

(
K−2
s−1

)(
K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)iN

≥
(
K−1
s−1

)(
K−1
s−1

)
+
∑K−s

i=0

(
K
s+i

)
(N − 1)iN

. (2.101)
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By using the fact that
(
K
s

)
=
(
K−1
s

)
+
(
K−1
s−1

)
, we have

(
K−2
s−1

)(
K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)iN

≥
(
K−2
s−1

)
+
(
K−2
s−2

)(
K−2
s−1

)
+
(
K−2
s−2

)
+
∑K−s

i=0

[(
K−1
s+i

)
+
(
K−1
s+i−1

)]
(N − 1)iN

(2.102)

which is equivalent to

(
K−2
s−1

)(
K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)iN

≥
(
K−2
s−2

)(
K−2
s−2

)
+
∑K−s

i=0

(
K−1
s+i−1

)
(N − 1)iN

. (2.103)

By using (2.12), (2.103) is equivalent to

r(K)
s ≥ r

(K)
s−1. (2.104)

Since (2.104) holds, we have α ≥ 0. Furthermore, α ≤ 1 can be proved similarly.

For fixed N , since D̄(r
(K+1)
0 ) > D̄(r

(K)
0 ), the achievable normalized download cost

monotonically increases. �

The following lemma provides an asymptotic upper bound for the achievable

normalized download cost as a smooth function in (r,N). From this expression, we

characterize the worst-case gap between the outer and the inner bounds to be 1
6
.

Lemma 2.5 (Asymptotics and the worst-case gap) In cache-aided PIR with

uncoded and unknown prefetching, as K → ∞, the outer bound is tightly upper
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bounded by,

D̄(r) ≤ N(1− r)2
(N − 1) + r

(2.105)

Hence, the worst-case gap is 1
6
. The asymptotic unawareness multiplicative gain

over memory-sharing in [28] is 1−r
1+ r

N−1
≤ 1.

Proof: We write the outer bound D̄(rs) as

D̄(rs) =

∑K−1−s
i=0

(
K

s+1+i

)
(N − 1)iN(

K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)iN

(2.106)

=

∑K−1−s
i=0 ( K

s+1+i)(N−1)i∑K−1−s
i=0 (K−1

s+i )(N−1)i

(K−2
s−1 )∑K−1−s

i=0 (K−1
s+i )(N−1)iN

+ 1
(2.107)

=
ψ1(N,K, s)

ψ2(N,K, s) + 1
. (2.108)

Denote λ = s
K

. To upper bound ψ1(N,K, s),

ψ1(N,K, s) =

∑K−1−s
i=0

(
K

s+1+i

)
(N − 1)i∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i

(2.109)

=

∑K−1−s
i=0

K
s+1+i

(
K−1
s+i

)
(N − 1)i∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i

(2.110)

≤
∑K−1−s

i=0
K
s

(
K−1
s+i

)
(N − 1)i∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i

=
1

λ
. (2.111)

We upper bound the reciprocal of ψ2(N,K, s) as,

1

ψ2(N,K, s)
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=
K−1−s∑
i=0

(
K−1
s+i

)
(N − 1)i(
K−2
s−1

) N (2.112)

=
K−1−s∑
i=0

(K − 1)(K − 1− s)(K − 2− s) · · · (K − i− s)
s(s+ 1)(s+ 2) · · · (s+ i)

N(N − 1)i (2.113)

≤
K−1−s∑
i=0

K(K − s)i
si+1

N(N − 1)i (2.114)

=

(1−λ)K−1∑
i=0

(1− λ)i

λi+1
N(N − 1)i (2.115)

=
N

λ

(1−λ)K−1∑
i=0

(
(1− λ)(N − 1)

λ

)i
. (2.116)

Now, if λ > 1− 1
N

, then (1−λ)(N−1)
λ

< 1. Hence, as K →∞, 1
ψ2(N,K,s)

converges to

lim
K→∞

1

ψ2(N,K, s)
≤ N

λ

∞∑
i=0

(
(1− λ)(N − 1)

λ

)i
(2.117)

=
N

λ
· 1

1− (1−λ)(N−1)
λ

(2.118)

=
N

Nλ− (N − 1)
. (2.119)

Moreover, (2.113) can be lower bounded by keeping the first εK terms in the

sum for any ε such that 0 < ε < 1− λ,

1

ψ2(N,K, s)

≥
εK∑
i=0

(K − 1)(K − 1− s)(K − 2− s) · · · (K − i− s)
s(s+ 1)(s+ 2) · · · (s+ i)

N(N − 1)i (2.120)

≥
εK∑
i=0

(K − 1)(K − εK − s)i
(s+ εK)i+1

N(N − 1)i (2.121)

=
εK∑
i=0

(1− 1
K

)((1− (λ+ ε))i

(λ+ ε)i+1
N(N − 1)i. (2.122)

64



Similarly, by taking K →∞, for any 0 < ε < 1− λ, we have

lim
K→∞

1

ψ2(N,K, s)
≥ N

λ+ ε

∞∑
i=0

(
(1− (λ+ ε))(N − 1)

λ+ ε

)i
(2.123)

=
N

N(λ+ ε)− (N − 1)
. (2.124)

Since ε is arbitrarily chosen, then as K → ∞, ε → 0, we have ψ2(N,K, s) →

Nλ−(N−1)
N

.

Consequently, as K →∞, rs converges to

rs → r = lim
K→∞

(
K−2
s−1

)(
K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)iN

(2.125)

= lim
K→∞

ψ2(N,K, s)

ψ2(N,K, s) + 1
(2.126)

=
Nλ− (N − 1)

Nλ+ 1
. (2.127)

Note that if λ = 1 − 1
N

, then r = 0, while if λ = 1, then r = 1
1+N

. This means

that the restriction in the limit to have λ > 1 − 1
N

is without loss of generality as

λ > 1− 1
N

corresponds to the entire range of r other than the 1−r matching bound.

We can write λ as

λ =
r + (N − 1)

N(1− r) . (2.128)
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Substituting in (2.108), we have the following upper bound on D̄(r)

D̄(r) ≤
1
λ

Nλ−(N−1)
N

+ 1
(2.129)

=
N

λ(Nλ+ 1)
(2.130)

=
N

r+(N−1)
N(1−r)

(
r+(N−1)
(1−r) + 1

) (2.131)

=
N2(1− r)2

(r + (N − 1))2 + (1− r)(r + (N − 1))
(2.132)

=
N2(1− r)2

Nr +N(N − 1)
(2.133)

=
N(1− r)2

(N − 1) + r
. (2.134)

The memory-sharing scheme in [28] achieves N
N−1(1− r) if K →∞, hence the

asymptotic unawareness gain is given by the multiplicative factor 1−r
1+ r

N−1
≤ 1.

For the inner bound, we note that the ith corner point is given by,

r̃i =
1

1 +N + · · ·+N i
, i = 1, · · · , K − 1. (2.135)

Therefore, although there exist K linear bounds, it suffices to consider only a small

number of them, as the remaining bounds are concentrated around r = 0. Denote

the gap between the inner and the outer bounds by ∆(N,K, r). We note that

the gap ∆(N,∞, r) is a piece-wise convex function for 0 ≤ r ≤ 1 since it is the

difference between a convex function D̄(r) and a piece-wise linear function. Hence,

the maximizing caching ratio for the gap exists exactly at the corner points r̃i and

it suffices to examine the gap at these corner points.
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For the outer bound, we have

D̄(r̃i) ≤
N
(
1− 1

1+N+···+N i

)2
(N − 1) + 1

1+N+···+N i

(2.136)

=
N(1 +N +N2 + · · ·+N i − 1)2

(N − 1)(1 +N + · · ·+N i)2 + (1 +N + · · ·+N i)
(2.137)

=
N2(1 +N + · · ·+N i−1)2

N i(1 +N + · · ·+N i)
. (2.138)

Furthermore, for the inner bound, we have

D̃(r̃i) =

(
1 +

1

N
+ · · ·+ 1

N i

)
− 1

1 +N + · · ·+N i

(
i+ 1 +

i

N
+ · · ·+ 1

N i

)
(2.139)

=
1 +N + · · ·+N i

N i
− (i+ 1)N i + iN i−1 + · · ·+ 1

N i(1 +N + · · ·+N i)
(2.140)

=
(1 +N + · · ·+N i)2

N i(1 +N + · · ·+N i)
− (1 + 2N + 3N2 + · · ·+ (i+ 1)N i)

N i(1 +N + · · ·+N i)
(2.141)

Consequently, we can upper bound the asymptotic gap at the corner point r̃i

as

∆(N,∞, r̃i) = D̄(r̃i)− D̃(r̃i) (2.142)

≤ N2(1 +N + · · ·+N i−1)2 − (1 +N + · · ·+N i)2

N i(1 +N + · · ·+N i)

+
(1 + 2N + 3N2 + · · ·+ (i+ 1)N i)

N i(1 +N + · · ·+N i)
(2.143)

=
−1− 2N(1 +N + · · ·+N i−1))

N i(1 +N + · · ·+N i)

+
(1 + 2N + 3N2 + · · ·+ (i+ 1)N i)

N i(1 +N + · · ·+N i)
(2.144)
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=
N2 + 2N3 + · · ·+ (i− 1)N i

N i(1 +N + · · ·+N i)
(2.145)

=
1

N i−2 + 2
N i−3 + · · ·+ (i− 1)

1 +N + · · ·+N i
(2.146)

Hence, ∆(N,∞, r̃i) is monotonically decreasing in N . Therefore,

∆(N,K, r) ≤ ∆(2,∞, r)

≤ max
i

(2)2 + 2(2)3 + · · ·+ (i− 1)(2)i

2i(1 + 2 + · · ·+ 2i)
(2.147)

For the case N = 2, we note that all the inner bounds after the 6th corner point

are concentrated around r = 0 since r̃i ≤ 1
127

for i ≥ 6. Therefore, it suffices to

characterize the gap only for the first 6 corner points. Considering the 6th corner

point which corresponds to r̃6 = 1
127

= 0.0078, and D̄(r) ≤ 2 trivially for all r,

and D̃( 1
127

) = 1.8898. Hence, ∆(2,∞, r) ≤ 0.11, for r ≤ 1
127

. Now, we focus on

calculating the gap at r̃i, i = 1, · · · , 6. Examining all the corner points, we see that

r = 1
15

is the maximizing caching ratio for the gap (corresponding to i = 3), and

∆(2,∞, 1
15

) ≤ 1
6
, which is the worst-case gap. �

2.8 Conclusion

In this chapter, we studied the cache-aided PIR problem from N non-communicating

and replicated databases, when the cache stores uncoded bits that are unknown to

the databases. We determined inner and outer bounds for the optimal normal-

ized download cost D∗(r) as a function of the total number of messages K, the
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number of databases N , and the caching ratio r. Both inner and outer bounds

are piece-wise linear functions in r (for fixed N , K) that consist of K line seg-

ments. The bounds match in two specific regimes: the very low caching ratio

regime, i.e., r ≤ 1
1+N+N2+···+NK−1 , where D∗(r) = (1 − r)

(
1 + 1

N
+ · · ·+ 1

NK−1

)
−

r
(
(K − 1) + K−2

N
+ · · ·+ 1

NK−2

)
; and the very high caching ratio regime, where

D∗(r) = (1− r)(1 + 1
N

)− r, for K−2
(N+1)K+N2−2N−2 ≤ r ≤ 1

1+N
and D∗(r) = 1− r, for

r ≥ 1
1+N

. As a direct corollary for this result, we characterized the exact tradeoff

between the download cost and the caching ratio for K = 3. For general K, N ,

and r, we showed that the largest gap between the achievability and the converse

bounds is 1
6
. The outer bound shows significant reduction in the download cost

with respect to the case when the cache content is fully known at all databases [28],

which achieves D∗(r) = (1− r)(1 + 1
N

+ · · ·+ 1
NK−1 ) by memory-sharing.

The achievable scheme extends the greedy scheme in [12] so that it starts with

exploiting the cache bits as side information. For fixed K, N , there are K − 1

non-degenerate corner points. These points differ in the number of cached bits

that contribute in generating one side information equation. The achievability for

the remaining caching ratios is done by memory-sharing between the two adjacent

corner points that enclose that caching ratio r. For the converse, we extend the

induction-based techniques in [12,28] to account for the availability of uncoded and

unknown prefetching. The converse proof hinges on developing K − 1 lower bounds

on the length of the undesired portion of the answer string. By applying induction

on each bound separately, we obtain the piece-wise linear inner bound.
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CHAPTER 3

Cache-Aided Private Information Retrieval with Partially

Known Uncoded Prefetching: Fundamental Limits

3.1 Introduction

We consider the problem of private information retrieval (PIR) fromN non-colluding

and replicated databases, when the user is equipped with a cache that holds an un-

coded fraction r of the symbols from each of the K stored messages in the databases.

This model operates in a two-phase scheme, namely, the prefetching phase where

the user acquires side information and the retrieval phase where the user privately

downloads the desired message. In the prefetching phase, the user receives r
N

un-

coded fraction of each message from the nth database. This side information is

known only to the nth database and unknown to the remaining databases, i.e., the

user possesses partially known side information. We investigate the optimal nor-

malized download cost D∗(r) in the retrieval phase as a function of K, N , r. We

develop lower and upper bounds for the optimal download cost. The bounds match

in general for the cases of very low caching ratio (r ≤ 1
NK−1 ) and very high caching

ratio (r ≥ K−2
N2−3N+KN

). We fully characterize the optimal download cost caching
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Database 1

W1

W2

W3

W4

Database 2

W1

W2

W3

W4

Cache-enabled User

Figure 3.1: Cache-aided PIR with partially known and uncoded prefetching for
N = 2, K = 4 and r = 1

4
.

ratio tradeoff for K = 3. For general K, N , and r, we show that the largest additive

gap between the achievability and the converse bounds is 5
32

.

3.2 System Model

We consider a PIR problem with N non-communicating databases. Each database

stores an identical copy of K statistically independent messages, W1, . . . ,WK . Each

message is L bits long,

H(W1) = · · · = H(WK) = L, (3.1)

H(W1, . . . ,WK) = H(W1) + · · ·+H(WK). (3.2)
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The user (retriever) has a local cache memory which can store up to KLr bits,

where 0 ≤ r ≤ 1, and r is called the caching ratio. There are two phases in this

system: the prefetching phase and the retrieval phase.

In the prefetching phase, for each message Wk, the user randomly and inde-

pendently chooses Lr bits out of the L bits to cache. The user caches the Lr bits of

each message by prefetching the same amount of bits from each database, i.e., the

user prefetches KLr
N

bits from each database. ∀n ∈ [N ], where [N ] = {1, 2, . . . , N},

we denote the indices of the cached bits from the nth database by Hn and the cached

bits from the nth database by the random variable Zn. Therefore, the overall cached

content Z is equal to (Z1, . . . , ZN), and H(Z) =
∑N

n=1H(Zn) = KLr. We further

denote the indices of the cached bits by H. Therefore, we have H =
⋃N
n=1Hn,

where Hn1 ∩ Hn2 = ∅, if n1 6= n2. Since the user caches a subset of the bits from

each message, this is called uncoded prefetching. Here, we consider the case where

database n knows Hn, but it does not know H\Hn. We refer to Z as partially known

prefetching ; see Fig. 3.1.

In the retrieval phase, the user privately generates an index θ ∈ [K], and wishes

to retrieve message Wθ such that it is impossible for any individual database to

identify θ. Note that during the prefetching phase, the desired message is unknown

a priori. Therefore, the cached bit indices H are independent of the desired message

index θ. Note further that the cached bit indices H are independent of the message

contents. Therefore, for random variables θ, H, and W1, . . . ,WK , we have

H (θ,H,W1, . . . ,WK) = H (θ) +H (H) +H(W1) + · · ·+H(WK). (3.3)
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The user sends N queries Q
[θ]
1 , . . . , Q

[θ]
N to the N databases, where Q

[θ]
n is the

query sent to the nth database for message Wθ. The queries are generated according

to H, which are independent of the realizations of the K messages. Therefore,

I(W1, . . . ,WK ;Q
[θ]
1 , . . . , Q

[θ]
N ) = 0. (3.4)

To ensure that individual databases do not know which message is retrieved, we

need to satisfy the following privacy constraint, ∀n ∈ [N ], ∀θ ∈ [K],

(Q[1]
n , A

[1]
n ,W1, . . . ,WK ,Hn) ∼ (Q[θ]

n , A
[θ]
n ,W1, . . . ,WK ,Hn), (3.5)

where A ∼ B means that A and B are identically distributed.

After receiving the query Q
[θ]
n , the nth database replies with an answering

string A
[θ]
n , which is a function of Q

[θ]
n and all the K messages. Therefore, ∀θ ∈

[K],∀n ∈ [N ],

H(A[θ]
n |Q[θ]

n ,W1, . . . ,WK) = 0. (3.6)

After receiving the answering strings A
[θ]
1 , . . . , A

[θ]
N from all the N databases, the

user needs to decode the desired message Wθ reliably. By using Fano’s inequality,

we have the following reliability constraint

H
(
Wθ|Z,H, Q[θ]

1 , . . . , Q
[θ]
N , A

[θ]
1 , . . . , A

[θ]
N

)
= o(L), (3.7)
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where o(L) denotes a function such that o(L)
L
→ 0 as L→∞.

For a fixed N , K, and caching ratio r, a pair (D(r), L) is achievable if there

exists a PIR scheme for message of size L bits long with partially known uncoded

prefetching satisfying the privacy constraint (3.5) and the reliability constraint (3.7),

where D(r) represents the expected number of downloaded bits (over all the queries)

from the N databases via the answering strings A
[θ]
1:N , where A

[θ]
1:N = (A

[θ]
1 , . . . , A

[θ]
N ),

i.e.,

D(r) =
N∑
n=1

H
(
A[θ]
n

)
. (3.8)

In this work, we aim at characterizing the optimal normalized download cost D∗(r)

corresponding to every caching ratio 0 ≤ r ≤ 1, where

D∗(r) = inf

{
D(r)

L
: (D(r), L) is achievable

}
, (3.9)

which is a function of the caching ratio r.

3.3 Main Results

We provide a PIR scheme for general K, N and r, which achieves the following

normalized download cost, D̄(r).

Theorem 3.1 (Outer bound) In the cache-aided PIR with partially known un-
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coded prefetching, for the caching ratio

rs =

(
K−2
s−1

)(
K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i+1

, (3.10)

and length of the message

L(s) = N

(
K − 2

s− 1

)
+

K−1−s∑
i=0

(
K − 1

s+ i

)
(N − 1)i+1N, (3.11)

where s ∈ {1, 2, · · · , K − 1}, the optimal normalized download cost D∗(rs) is upper

bounded by,

D∗(rs) ≤ D̄(rs) =

∑K−1−s
i=0

(
K

s+1+i

)
(N − 1)i+1(

K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i+1

. (3.12)

Moreover, if rs < r < rs+1, and α ∈ (0, 1) such that r = αrs + (1− α)rs+1, then

D∗(r) ≤ D̄(r) = αD̄(rs) + (1− α)D̄(rs+1). (3.13)

The proof of Theorem 3.1 is provided in Section 3.4. The outer bound in

Theorem 3.1 is a piece-wise linear curve, which consists of K line segments. These

K line segments intersect at the points rs.

We characterize an inner bound (converse bound), which is denoted by D̃(r),

for the optimal normalized download cost D∗(r) for general K, N , r.

Theorem 3.2 (Inner bound) In the cache-aided PIR with partially known un-
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coded prefetching, the normalized download cost is lower bounded as,

D∗(r) ≥ D̃(r)

= max
i∈{2,··· ,K+1}

(1− r)
K+1−i∑
j=0

1

N j
− r

(
1− 1

N

)K−i∑
j=0

K + 1− i− j
N j

(3.14)

= max
i∈{2,··· ,K+1}

K+1−i∑
j=0

1

N j
− (K + 2− i)r. (3.15)

The proof of Theorem 3.2 is provided in Section 3.5. The inner bound in

Theorem 3.2 is also a piece-wise linear curve, which consists of K line segments.

Interestingly, these K line segments intersect at the points as follows,

r̃i =
1

NK−i , i = 1, · · · , K − 1. (3.16)

The outer bounds provided in Theorem 3.1 and the inner bounds provided

in Theorem 3.2 match for some caching ratios r as summarized in the following

corollary.

Corollary 3.1 (Optimal tradeoff for very low and very high caching ratios)

In the cache-aided PIR with partially known uncoded prefetching, for very low caching

ratios, i.e., for r ≤ 1
NK−1 , the optimal normalized download cost is given by,

D∗(r) =

(
1 +

1

N
+ · · ·+ 1

NK−1

)
−Kr. (3.17)

On the other hand, for very high caching ratios, i.e., for r ≥ K−2
N2−3N+KN

, the optimal
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normalized download cost is given by,

D∗(r) =


1 + 1

N
− 2r, K−2

N2−3N+KN
≤ r ≤ 1

N

1− r, 1
N
≤ r ≤ 1

. (3.18)

Proof: From (3.10) and (3.16), we have

r1 = r̃1 =
1

NK−1 , (3.19)

rK−2 =
K − 2

N2 − 3N +KN
, (3.20)

rK−1 = r̃K−1 =
1

N
. (3.21)

For the outer bound of the case of very low caching ratios, from (3.12), we

have

D̄(r1) =

∑K−2
i=0

(
K
2+i

)
(N − 1)i+1(

K−2
0

)
+
∑K−2

i=0

(
K−1
1+i

)
(N − 1)i+1

(3.22)

=

1
(N−1)

∑K−2
i=0

(
K
2+i

)
(N − 1)i+2

NK−1 (3.23)

=

1
(N−1)

(
NK − 1−K(N − 1)

)
NK−1 (3.24)

=
NK −KN +K − 1

NK −NK−1 . (3.25)

For the inner bound of the case of very low caching ratios, from (3.14), by choosing

i = 2 and using r = r1, we have

D̃(r1) ≥ (1− r1)
K−1∑
j=0

1

N j
− r1

(
1− 1

N

)K−2∑
j=0

K − 1− j
N j

(3.26)

77



=

(
1− 1

NK−1

)
1− 1

NK

1− 1
N

− 1

NK−1

(
1− 1

N

)
K − K

N
− 1 + 1

NK(
1− 1

N

)2 (3.27)

=
1(

1− 1
N

)[(1− 1

NK−1

)(
1− 1

NK

)
− 1

NK−1

(
K − K

N
− 1 +

1

NK

)]

(3.28)

=
NK −KN +K − 1

NK −NK−1 = D̄(r1). (3.29)

Thus, since D̃(r1) ≤ D̄(r1) by definition, (3.29) implies D̃(r1) = D̄(r1).

For the outer bound of the case of very high caching ratios, from (3.12), we

have

D̄(rK−2) =

∑1
i=0

(
K

K−1+i

)
(N − 1)i+1N

N
(
K−2
K−3

)
+
∑1

i=0

(
K−1
K−2+i

)
(N − 1)i+1N

(3.30)

=
N2 +KN − 2N −K + 1

N2 − 3N +KN
, (3.31)

and for the inner bound of the case of very high caching ratios, from (3.14) by

choosing i = K and using r = rK−2,

D̃(rK−2) ≥ (1− rK−2)
1∑
j=0

1

N j
− rK−2

(
1− 1

N

) 0∑
j=0

1− j
N j

(3.32)

= 1 +
1

N
− 2rK−2 (3.33)

=
N2 +KN − 2N −K + 1

N2 − 3N +KN
= D̄(rK−2) (3.34)

implying D̃(rK−2) = D̄(rK−2).
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Finally, from (3.12), D̄(rK−1) = N−1
N

, and from (3.14) by choosing i = K + 1

and using r = rK−1,

D̃(rK−1) ≥
N − 1

N
= D̄(rK−1) (3.35)

implying D̃(rK−1) = D̄(rK−1).

Therefore, D̃(r) = D̄(r) at r = r1, r = rK−2 and r = rK−1. In addition to

that D̃(0) = D̄(0) and D̃(1) = D̄(1). Since both D̄(r) and D̃(r) are linear functions

of r, and since D̃(0) = D̄(0) and D̃(r1) = D̄(r1), we have D̃(r) = D̄(r) = D∗(r) for

0 ≤ r ≤ r1. This is the very low caching ratio region. In addition, since D̃(rK−2) =

D̄(rK−2), D̃(rK−1) = D̄(rK−1) and D̃(1) = D̄(1), we have D̃(r) = D̄(r) = D∗(r) for

rK−2 ≤ r ≤ 1. This is the very high caching ratio region. �

We use the example of K = 4, N = 2 to illustrate Corollary 3.1 (see Fig-

ure 3.2). In this case, r1 = r̃1 = 1
8
, rK−2 = 1

3
, and rK−1 = r̃K−1 = 1

2
. Therefore,

we have exact results for 0 ≤ r ≤ 1
8

(very low caching ratios) and 1
3
≤ r ≤ 1 (very

high caching ratios). We have a gap between the achievability and the converse for

medium caching ratios in 1
8
≤ r ≤ 1

3
. More specifically, line segments connecting

(0, 15
8

) and (1
8
, 11

8
); connecting (1

3
, 5
6
) and (1

2
, 1
2
); and connecting (1

2
, 1
2
) and (1, 0) are

tight.

For the case K = 3, we have exact tradeoff curve for any N , r as shown in the

following corollary.

Corollary 3.2 (Optimal tradeoff for K = 3) In the cache-aided PIR with par-

tially known uncoded prefetching with K = 3 messages, the optimal download cost

79



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

D L

 

 

Achievability
Converse

(1/2, 1/2)

(1,0)

(1/4, 1)

(0,15/8)

(1/8, 11/8)

(1/3, 5/6)

Figure 3.2: Inner and outer bounds for K = 4, N = 2.

caching ratio tradeoff is given explicitly as,

D∗(r) =


1 + 1

N
+ 1

N2 − 3r, 0 ≤ r ≤ 1
N2

1 + 1
N
− 2r, 1

N2 ≤ r ≤ 1
N

1− r, 1
N
≤ r ≤ 1

. (3.36)

Proof: The proof follows from the proof of Corollary 3.1. Note that in this case,

from (3.19) and (3.20), r1 = rK−2 = 1
N2 ; and from (3.21), r2 = rK−1 = 1

N
. Thus, we

have a tight result for 0 ≤ r ≤ r1 = 1
N2 (very low caching ratios) and a tight result

for rK−2 = r1 = 1
N2 ≤ r ≤ 1, i.e., a tight result for all 0 ≤ r ≤ 1. We have three

segments in this case: [0, r1], [r1, r2] and [r2, 1] with three different line expressions

for the exact result as given in (3.10)-(3.12) and written explicitly in (3.36). �
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3.4 Achievable Scheme

In this section, we present an achievable scheme for the outer bounds provided

in Theorem 3.1. Our achievable scheme is based on [12, 28] and Chapter 2. We

first provide achievable schemes for the caching ratios rs in (3.10) by applying the

principles in [12]: 1) database symmetry, 2) message symmetry within each database,

and 3) exploiting undesired messages as side information. For an arbitrary caching

ratio r 6= rs, we apply the memory-sharing scheme in [28]. Since the cached content

is partially known by the databases, the achievable scheme is different from that in

Chapter 2. We first use the case of K = 3, N = 2 to illustrate the main ideas of our

achievability scheme.

3.4.1 Motivating Example: K = 3 Messages and N = 2 Databases

We permute the bits of messages W1,W2,W3 randomly and independently, and use

ai, bi, and ci to denote the bits of each permuted message, respectively. We assume

that the user wants to retrieve message W1 privately without loss of generality.

3.4.1.1 Caching Ratio r1 = 1
4

We choose the message size as 8 bits. In the prefetching phase, for caching ratio r1 =

1
4
, the user caches 2 bits from each message. Therefore, the user caches 1 bit from

each database for each message. Therefore, Z1 = (a1, b1, c1) and Z2 = (a2, b2, c2).

In the retrieval phase, for s = 1, we first mix 1 bit of side information with

the desired bit. Therefore, the user queries a3 + b2 and a4 + c2 from database 1.
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Note that database 1 knows that the user has prefetched Z1. Therefore, the user

does not use side information Z1 to retrieve information from database 1. To keep

message symmetry, the user further queries b3 + c3 from database 1. Similarly, the

user queries a5 + b1, a6 + c1 and b4 + c4 from database 2. Then, the user exploits the

side information b4+c4 to query a7+b4+c4 from database 1 and the side information

b3+c3 to query a8+b3+c3 from database 2. After this step, no more side information

can be used and the message symmetry is attained for each database. Therefore,

the PIR scheme ends here. The decodability of message W1 can be shown easily,

since the desired bits are either mixed with cached side information or the side

information obtained from the other database. Specifically, for the downloaded bits

from database 1, the user can decode a3 and a4 from a3 +b2 and a4 +c2, since b2 and

c2 are in the cache. The user can decode a7 from a7 + b4 + c4, since b4 + c4 is the side

information obtained from database 2. A similar decoding procedure applies to the

downloaded bits from database 2. Overall, the user downloads 8 bits. Therefore,

the normalized download cost is 1. We summarize the queries in Table. 3.1.

Table 3.1: Query table for K = 3, N = 2, r1 = 1
4
.

s DB1 DB2
s = 1 a3 + b2 a5 + b1

a4 + c2 a6 + c1
b3 + c3 b4 + c4

a7 + b4 + c4 a8 + b3 + c3

Z1 = (a1, b1, c1) Z2 = (a2, b2, c2)
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3.4.1.2 Caching Ratio r2 = 1
2

We choose the message size as 4 bits. In the prefetching phase, for caching ratio r2 =

1
2
, the user caches 2 bits from each message. Therefore, the user caches 1 bit from

each database for each message. Therefore, Z1 = (a1, b1, c1) and Z2 = (a2, b2, c2).

In the retrieval phase, for s = 2, we first mix 2 bits of side information with the

desired bit. Therefore, the user queries a3 + b2 + c2 from database 1. Similarly,

the user queries a4 + b1 + c1 from database 2. After this, no more side information

can be used and the message symmetry is attained for each database. Therefore,

the PIR scheme ends here. The user can decode a3 and a4 from a3 + b2 + c2 and

a4 + b1 + c1, since b1, b2, c1 and c2 are in the cache. Overall, the user downloads 2

bits. Therefore, the normalized download cost is 1
2
. We summarize the queries in

Table. 3.2.

Table 3.2: Query table for K = 3, N = 2, r2 = 1
2
.

s DB1 DB2
s = 2 a3 + b2 + c2 a4 + b1 + c1

Z1 = (a1, b1, c1) Z2 = (a2, b2, c2)

3.4.1.3 Caching Ratio r = 1
3

We choose the message size as 12 bits. In the prefetching phase, for caching ratio

r = 1
3
, the user caches 4 bits from each message. Therefore, the user caches 2

bits from each database for each message. Therefore, Z1 = (a1, a2, b1, b2, c1, c2) and

Z2 = (a3, a4, b3, b4, c3, c4). In the retrieval phase, we combine the achievable schemes
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in Section 3.4.1.1 and 3.4.1.2 as shown in Table 3.3. The normalized download cost

is 5
6
. By applying [28, Lemma 1] and taking α = 2

3
, we can show that D̄(1

3
) =

D̄(2
3
· 1
4

+ 1
3
· 1
2
) = 2

3
D̄(1

4
) + 1

3
D̄(1

2
) = 2

3
· 1 + 1

3
· 1
2

= 5
6
.

Table 3.3: Query table for K = 3, N = 2, r = 1
3
.

s DB1 DB2
s = 1 a5 + b3 a7 + b1

a6 + c3 a8 + c1
b5 + c5 b6 + c6

a9 + b6 + c6 a10 + b5 + c5
s = 2 a11 + b4 + c4 a12 + b2 + c2

Z1 = (a1, a2, b1, b2, c1, c2) Z2 = (a3, a4, b3, b4, c3, c4)

3.4.2 Achievable Scheme

We first present the achievable scheme for the caching ratios rs given in (3.10).

Then, we apply the memory-sharing scheme provided in [28] for the intermediate

caching ratios.

3.4.2.1 Achievable Scheme for the Caching Ratio rs

For fixed K and N , there are K − 1 non-degenerate corner points (in addition to

degenerate caching ratios r = 0 and r = 1). The caching ratios, rs, corresponding to

these non-degenerate corner points are indexed by s, which represents the number of

cached bits used in the side information mixture at the first round of the querying.

For each s ∈ {1, 2, . . . , K − 1}, we choose the length of the message to be L(s) for
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the corner point indexed by s, where

L(s) = N

(
K − 2

s− 1

)
+

K−1−s∑
i=0

(
K − 1

s+ i

)
(N − 1)i+1N. (3.37)

In the prefetching phase, for each message the user randomly and indepen-

dently chooses N
(
K−2
s−1

)
bits to cache, and caches

(
K−2
s−1

)
bits from each database for

each message. Therefore, the caching ratio rs is equal to

rs =
N
(
K−2
s−1

)
N
(
K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i+1N

. (3.38)

In the retrieval phase, the user applies the PIR scheme in Algorithm 1.

Since the desired bits are added to the side information which is either obtained

from the cached bits (if t = s + 1) or from the remaining (N − 1) databases in the

(t − 1)th round when t > s + 1, the user can decode the uncached portion of the

desired message by canceling out the side information bits. In addition, for each

database, each message is queried equally likely with the same set of equations,

which guarantees privacy as in [12]. Therefore, the privacy constraint in (3.5) and

the reliability constraint in (3.7) are satisfied.

We now calculate the total number of downloaded bits for the caching ratio

rs in (3.38). For the round t = s + 1, we exploit s cached bits to form the side

information equation. Therefore, each download is a sum of s + 1 bits. For each

database, we utilize the side information cached from other N − 1 databases. In

addition to the message symmetry step enforcing symmetry across K messages, we
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Algorithm 1 PIR scheme

1. Initialization: Set the round index to t = s+ 1, where the tth round involves
downloading sums of every t combinations of the K messages.

2. Exploiting side information:

if t = s + 1, then for the first database, the user forms queries by mixing s
undesired bits cached from the other N −1 databases in the prefetching phase
to form one side information equation. Each side information equation is added
to one bit from the uncached portion of the desired message. Therefore, for
the first database, the user downloads

(
K−1
s

)
(N − 1) equations in the form of

a desired bit added to a mixture of s cached bits from other messages.

else if t > s + 1, then for the first database, the user exploits the(
K−1
t−1

)
(N − 1)t−s side information equations generated from the remaining

(N − 1) databases in the (t− 1)th round.

3. Symmetry across databases: The user downloads the same number of equations
with the same structure as in step 2 from every database. Consequently, the
user decodes

(
K−1
t−1

)
(N − 1)t−s desired bits from every database, which are

done either using the cached bits as side information if t = s + 1, or the side
information generated in the (t− 1)th round if t > s+ 1.

4. Message symmetry: To satisfy the privacy constraint, the user should down-
load the same amount of bits from other messages. Therefore, the user down-
loads

(
K−1
t

)
(N − 1)t−s undesired equations from each database in the form of

sum of t bits from the uncached portion of the undesired messages.

5. Repeat steps 2, 3, 4 after setting t = t+ 1 until t = K.

6. Shuffling the order of queries: By shuffling the order of queries uniformly, all
possible queries can be made equally likely regardless of the message index.
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download
(
K
s+1

)
(N − 1) bits from a database. Due to the database symmetry step,

in total, we download
(
K
s+1

)
(N − 1)N bits. For the round t = s + i > s + 1, we

exploit s + i − 1 undesired bits downloaded from the (t − 1)th round to form the

side information equation. Due to message symmetry and database symmetry, we

download
(

K
s+1+i

)
(N − 1)i+1N bits. Overall, the total number of downloaded bits is,

D(rs) =
K−1−s∑
i=0

(
K

s+ 1 + i

)
(N − 1)i+1N. (3.39)

By canceling out the undesired side information bits using the cached bits for the

round t = s+1, we obtain
(
K−1
s

)
(N−1)N desired bits. For the round t = s+i > s+1,

we decode
(
K−1
s+i

)
(N − 1)i+1N desired bits by using the side information obtained

in (t − 1)th round. Overall, we obtain L(s) − N
(
K−2
s−1

)
desired bits. Therefore, the

normalized download cost is,

D̄(rs) =
D(rs)

L(s)

=

∑K−1−s
i=0

(
K

s+1+i

)
(N − 1)i+1N

N
(
K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i+1N

. (3.40)

3.4.2.2 Achievable Scheme for the Caching Ratios not Equal to rs

For caching ratios r which are not exactly equal to (3.38) for some s, we first find

an s such that rs < r < rs+1. We choose 0 < α < 1 such that r = αrs + (1−α)rs+1.

By using the memory-sharing scheme in [28, Lemma 1], we achieve the following
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normalized download cost,

D̄(r) = αD̄(rs) + (1− α)D̄(rs+1). (3.41)

3.5 Converse Proof

In this section, we derive an inner bound for the cache-aided PIR with partially

known uncoded prefetching. We extend the techniques in [12] and Chapter 2 to our

problem. The main difference between this proof and that in Chapter 2 is the usage

of privacy constraint given in (3.5).

Lemma 3.1 (Interference lower bound) For the cache-aided PIR with partially

known uncoded prefetching, the interference from undesired messages within the an-

swering strings D(r)− L(1− r) is lower bounded by,

D(r)− L(1− r) + o(L) ≥ I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Z,H

)
(3.42)

for all k ∈ {2, . . . , K}.

The proof of Lemma 3.1 is similar to Lemma 2.1 in Chapter 2. In the following

lemma, we prove an inductive relation for the mutual information term on the right

hand side of (3.42).

Lemma 3.2 (Induction lemma) For all k ∈ {2, . . . , K}, the mutual information
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term in Lemma 3.1 can be inductively lower bounded as,

I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Z,H

)
≥ 1

N
I
(
Wk+1:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Z,H

)
+
L(1− r)

N
+

1−N
N

(K − k + 1)Lr − o(L). (3.43)

Lemma 3.2 is a generalization of [12, Lemma 6] and Lemma 2.2 in Chapter 2,

and it reduces to [12, Lemma 6] when r = 0. Compared to Lemma 2.2 in Chapter 2,

the lower bound in (3.43) is increased by (K−k+1)Lr
N

, since the cached content is

partially known by the databases.

Proof: We start with the left hand side of (3.43),

I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Z,H

)
= I

(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N , Z,H|W1:k−1

)
− I(Wk:K ;Z,H|W1:k−1). (3.44)

For the first term on the right hand side of (3.44), we have

I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N , Z,H|W1:k−1

)
=

1

N
NI
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N , Z,H|W1:k−1

)
(3.45)

≥ 1

N

N∑
n=1

I
(
Wk:K ;Q[k−1]

n , A[k−1]
n , Zn,Hn|W1:k−1

)
(3.46)

=
1

N

[
N∑
n=1

I
(
Wk:K ;Q[k−1]

n , A[k−1]
n |W1:k−1, Zn,Hn

)
+

N∑
n=1

I (Wk:K ;Zn,Hn|W1:k−1)

]

(3.47)
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=
1

N

[
N∑
n=1

I
(
Wk:K ;Q[k−1]

n , A[k−1]
n |W1:k−1, Zn,Hn

)
+N × (K − k + 1)Lr

N

]

(3.48)

(3.5)
=

1

N

N∑
n=1

I
(
Wk:K ;Q[k]

n , A
[k]
n |W1:k−1, Zn,Hn

)
+

(K − k + 1)Lr

N
(3.49)

(3.3),(3.4)
=

1

N

N∑
n=1

I
(
Wk:K ;A[k]

n |W1:k−1, Zn,Hn, Q
[k]
n

)
+

(K − k + 1)Lr

N
(3.50)

(3.6)
=

1

N

N∑
n=1

H
(
A[k]
n |W1:k−1, Zn,Hn, Q

[k]
n

)
+

(K − k + 1)Lr

N
(3.51)

≥ 1

N

N∑
n=1

H
(
A[k]
n |W1:k−1, Z,H, Q[k]

1:N , A
[k]
1:n−1

)
+

(K − k + 1)Lr

N
(3.52)

(3.6)
=

1

N

N∑
n=1

I
(
Wk:K ;A[k]

n |W1:k−1, Z,H, Q[k]
1:N , A

[k]
1:n−1

)
+

(K − k + 1)Lr

N
(3.53)

=
1

N
I
(
Wk:K ;A

[k]
1:N |W1:k−1, Z,H, Q[k]

1:N

)
+

(K − k + 1)Lr

N
(3.54)

(3.3),(3.4)
=

1

N
I
(
Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k−1, Z,H

)
+

(K − k + 1)Lr

N
(3.55)

(3.7)
=

1

N
I
(
Wk:K ;Wk, Q

[k]
1:N , A

[k]
1:N |W1:k−1, Z,H

)
+

(K − k + 1)Lr

N
− o(L) (3.56)

=
(K − k + 1)Lr

N
+

1

N

[
I (Wk:K ;Wk|W1:k−1, Z,H)

+ I
(
Wk:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Z,H

)]
− o(L) (3.57)

=
(K − k + 1)Lr

N
+
L(1− r)

N
+

1

N
I
(
Wk+1:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Z,H

)
− o(L),

(3.58)

where (3.46) follows from the non-negativity of mutual information, (3.48) is due

to the fact that from the nth database, the user prefetches KLr
N

bits, (3.49) follows

from the privacy constraint, (3.50) and (3.55) follow from the independence of Wk:K

and Q
[k]
n , (3.51) and (3.53) follow from the fact that the answering string A

[k]
n is
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a deterministic function of (W1:K , Q
[k]
n ), (3.52) follows from conditioning reduces

entropy, and (3.56) follows from the reliability constraint.

For the second term on the right hand side of (3.44), we have

I(Wk:K ;Z,H|W1:k−1)

= H (Wk:K |W1:k−1)−H(Wk:K |W1:k−1, Z,H) (3.59)

= (K − k + 1)Lr (3.60)

where (3.60) follows from the uncoded nature of the cached bits.

Combining (3.44), (3.58) and (3.60) yields (3.43). �

Now, we are ready to derive the general inner bound for arbitrary K, N , r. To

obtain this bound, we use Lemma 3.1 to find K lower bounds by varying the index

k in the lemma from k = 2 to k = K, and by using the non-negativity of mutual

information for the Kth bound. Next, we inductively lower bound each term of

Lemma 3.1 by using Lemma 3.2 (K − k + 1) times to get K explicit lower bounds.

Lemma 3.3 For fixed N , K and r, we have

D(r) ≥ L(1− r)
K+1−k∑
j=0

1

N j
− Lr

(
1− 1

N

)K−k∑
j=0

K + 1− k − j
N j

+ o(L), (3.61)

where k = 2, . . . , K + 1.
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Proof: We have

D(r)
(3.42)

≥ I
(
Wk:K ;Q

[k−1]
1:N , A

[k−1]
1:N |W1:k−1, Z,H

)
+ L(1− r)− o(L) (3.62)

(3.43)

≥ 1

N
I
(
Wk+1:K ;Q

[k]
1:N , A

[k]
1:N |W1:k, Z,H

)
+ L(1− r)

(
1 +

1

N

)
− Lr

(
1− 1

N

)
(K − k + 1)− o(L) (3.63)

(3.43)

≥ 1

N2
I
(
Wk+2:K ;Q

[k+1]
1:N , A

[k+1]
1:N |W1:k+1, Z,H

)
+ L(1− r)

[
1 +

1

N
+

1

N2

]
− Lr

(
1− 1

N

)[
(K − k + 1) +

(K − k)

N

]
− o(L) (3.64)

(3.43)

≥ . . . (3.65)

(3.43)

≥ L(1− r)
K+1−k∑
j=0

1

N j
− Lr

(
1− 1

N

)K−k∑
j=0

K + 1− k − j
N j

+ o(L), (3.66)

where (3.62) follows from Lemma 3.1, and the remaining steps follow from the

successive application of Lemma 3.2. �

We conclude the converse proof by dividing by L and taking the limit as

L→∞. Then, for k = 2, · · · , K + 1, we have

D∗(r) ≥ (1− r)
K+1−k∑
j=0

1

N j
− r

(
1− 1

N

)K−k∑
j=0

K + 1− k − j
N j

. (3.67)

Since (3.67) gives K intersecting line segments, the normalized download cost is

lower bounded by their maximum value as follows

D∗(r) ≥ max
i∈{2,··· ,K+1}

(1− r)
K+1−i∑
j=0

1

N j
− r

(
1− 1

N

)K−i∑
j=0

K + 1− i− j
N j

. (3.68)
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3.6 Further Examples

3.6.1 K = 4 Messages, N = 2 Databases

For K = 4 and N = 2, we present achievable PIR schemes for caching ratios r1 = 1
8

in Table 3.4, r2 = 1
3

in Table 3.5, and r3 = 1
2

in Table 3.6. The PIR schemes aim to

retrieve message W1, where we use ai to denote its bits. The achievable normalized

download costs for these caching ratios are 11
8

, 5
6

and 1
2
, respectively. The plot of

the inner and outer bounds can be found in Figure 3.2.

Table 3.4: Query table for K = 4, N = 2 and r1 = 1
8
.

s DB1 DB2
s = 1 a3 + b2 a6 + b1

a4 + c2 a7 + c1
a5 + d2 a8 + d1
b3 + c3 b5 + c5
b4 + d3 b6 + d5
c4 + d4 c6 + d6

a9 + b5 + c5 a12 + b3 + c3
a10 + b6 + d5 a13 + b4 + d3
a11 + c6 + d6 a14 + c4 + d4
b7 + c7 + d7 b8 + c8 + d8

a15 + b8 + c8 + d8 a16 + b7 + c7 + d7

Z1 = (a1, b1, c1, d1) Z2 = (a2, b2, c2, d2)

3.6.2 K = 5, K = 10 and K = 100 Messages, N = 2 Databases

For N = 2, we show the numerical results for the inner and outer bounds for K = 5,

K = 10 and K = 100 in Figures 3.3, 3.4 and 3.5. For fixed N as K grows, the gap

between the achievable bound and converse bound increases. This observation will
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Table 3.5: Query table for K = 4, N = 2, r2 = 1
3
.

s DB1 DB2
s = 2 a5 + b3 + c3 a8 + b1 + c1

a6 + d3 + b4 a9 + d1 + b2
a7 + c4 + d4 a10 + c2 + d2
b5 + c5 + d5 b6 + c6 + d6

a11 + b6 + c6 + d6 a12 + b5 + c5 + d5

Z1 =

(
a1, a2, b1, b2,
c1, c2, d1, d2

)
Z2 =

(
a3, a4, b3, b4,
c3, c4, d3, d4

)
Table 3.6: Query table for K = 4, N = 2, r3 = 1

2
.

s DB1 DB2
s = 3 a3 + b2 + c2 + d2 a4 + b1 + c1 + d1

Z1 = (a1, b1, c1, d1) Z2 = (a2, b2, c2, d2)

be made specific in Section 3.7.

3.7 Gap Analysis

In this section, we analyze the gap between the achievable bounds given in (3.12)

and the converse bounds given in (3.14). We first observe that for fixed number

of databases N , as the number of messages K increases, the achievable normalized

download cost increases, and for large enough caching ratios r ≥ 1
N

, the PIR schemes

for different number of messages share the same normalized download cost 1 − r.

In addition to the monotonicity, the achievable normalized download cost for K + 1

messages has a special relationship with the achievable normalized download cost for

K messages. We first use an example to illustrate this property. For N = 2, K = 3,

K = 4, and K = 5, the achievable bounds are shown in Figure 3.6. The achievable

bound for K = 5 is above the achievable bound for K = 4, and the achievable
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Figure 3.3: Inner and outer bounds for K = 5, N = 2.

bound for K = 4 is above the achievable bound for K = 3. By denoting r
(K)
s as

the caching ratio with total K messages and parameter s (see (3.10)), we observe

that (r
(5)
1 , D̄(r

(5)
1 )) falls on the line connecting (r

(4)
0 , D̄(r

(4)
0 )) and (r

(4)
1 , D̄(r

(4)
1 )). This

observation is general, (r
(K+1)
s , D̄(r

(K+1)
s )) falls on the line connecting (r

(K)
s−1, D̄(r

(K)
s−1))

and (r
(K)
s , D̄(r

(K)
s )). We summarize this result in the following lemma.

Lemma 3.4 (Monotonicity of the achievable bounds) In cache-aided PIR with

partially known uncoded prefetching, for fixed number of databases N , if the number

of messages K increases, then the achievable normalized download cost increases.

Furthermore, we have

r(K+1)
s = αr

(K)
s−1 + (1− α)r(K)

s , (3.69)

D̄(r(K+1)
s ) = αD̄(r

(K)
s−1) + (1− α)D̄(r(K)

s ), (3.70)
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Figure 3.4: Inner and outer bounds for K = 10, N = 2.

where 0 ≤ α ≤ 1.

The proof of Lemma 3.4 is similar to Chapter 2[Lemma 4].

After showing the monotonicity of the achievable bounds, we show that as

K → ∞, the asymptotic upper bound for the achievable bounds is given as in

the following lemma. With this asymptotic upper bound, we conclude that the

worst-case additive gap is 5
32

.

Lemma 3.5 (Asymptotics and the worst-case additive gap) In cache-aided

PIR with partially known uncoded prefetching, as K →∞, the outer bound is upper

bounded by,

D̄(r) ≤ N

N − 1
(1− r)2 (3.71)

Hence, the worst-case additive gap is 5
32

.
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Figure 3.5: Inner and outer bounds for K = 100, N = 2.

The detailed proof of Lemma 3.5 is provided in Section 3.10. We note that the outer

bound is monotonically increasing in K. Therefore, we first derive an asymptotic

upper bound as K → ∞ for the outer bound as in (3.71). Then, we show that

most of the K inner bounds concentrate around r = 0. Therefore, we only need to

consider a small number of the inner bounds for the worst-case gap analysis.

3.8 Comparisons with Other Cache-Aided PIR Models

In this section, we compare the normalized download costs between different cache-

aided PIR models subjected to same memory size constraint. We first use an exam-

ple of N = 2 and K = 12 (see Figure 3.7) to show the relative normalized download

costs for different models. In [32, 33], the user caches M full messages out of total

K messages. In order to compare with other cache-aided PIR schemes, we use M
K

as the caching ratio. Since the PIR schemes are only reported for the corner points
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Figure 3.6: Outer bounds for N = 2, K = 3, K = 4 and K = 5.

in [32, 33], we use dotted lines to connect the corner points. For [28], Chapter 2

and this work, since we can apply memory-sharing to achieve the download costs

between the corner points, we use solid lines to connect the corner points.

We first compare references [32,33], in which the user caches M full messages

out of K messages and the databases are unaware. In [33], the user not only wishes

to protect the privacy of the desired messages but also wishes to protect the privacy

of the cached messages. Note that the other works (Chapter 2, this chapter and

[28, 32]) only consider to protect the privacy of the desired messages. Since the

message privacy constraint is less restricted, reference [32] achieves lower normalized

download cost than reference [33]. The main difference between Chapter 4 and [33]

is that the databases are totally unaware of the cached M messages as in [33] or

the nth database is aware of some of M messages cached from the nth database

as in Chapter 4. Interestingly, these two models result in the same normalized
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Figure 3.7: Outer bounds for N = 2, K = 12 for different cache-aided PIR models.

download costs. Although the nth database’s awareness of some cached messages

might increase the download cost, at the same time the user does not need to protect

the privacy of these known messages from the nth database, which might reduce

the download cost.

We then compare reference [28], Chapter 2 and this work. The main difference

between these three works is the different level of awareness of the side information

the user cached. Reference [28] considers that all the databases are aware of the side

information the user cached. In contrast, Chapter 2 considers that all the databases

are unaware of the side information. This work considers that the nth database is

aware of the side information cached from the nth database. Corollary 2.1 in Chap-

ter 2 shows the unawareness gain. Therefore, Chapter 2 achieves lower normalized

download cost than [28]. The same proof technique in Corollary 2.1 in Chapter 2

can also show the partially unawareness gain. Therefore, this work also achieves
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Figure 3.8: Comparison between this work and Chapter 2 for N = 3 and K = 6.

lower normalized download cost than [28]. Since these three works consider only

the privacy of the desired message, different from [33] and Chapter 4, Chapter 2

achieves lower normalized download cost than this work. For high caching ratios

1
N
≤ r ≤ 1, the proposed scheme in this work and that in Chapter 2 share the same

normalized download cost 1− r.

We further compare Chapter 2 and this work in the following scenario. To ap-

ply the scheme in Chapter 2, for N databases, we choose one database for prefeching

and use the remaining N − 1 databases for retrieval. Therefore, the cached side in-

formation is completely unknown to the N−1 databases. We also apply the scheme

in this work for comparison. For a fixed caching ratio, we compare the normalized

download costs. For caching ratios 1
N
≤ r ≤ 1, the normalized download cost is

1 − r for both schemes. For caching ratios K−2
N2+KN−4N+1

< r < 1
N

, we can show

analytically that the normalized download cost in this work is lower than that in
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Chapter 2. For caching ratios 0 < r < 1
N

, from numerical results, we observe that

the scheme in this chapter achieves lower normalized download cost. For N = 3 and

K = 6, numerical results are shown in Figure 3.8.

3.9 Conclusion

In this chapter, we studied the cache-aided PIR problem from N non-communicating

and replicated databases, when the cache stores uncoded bits that are partially

known to the databases. We determined inner and outer bounds for the optimal

normalized download cost D∗(r) as a function of the total number of messages K,

the number of databases N , and the caching ratio r. Both inner and outer bounds

are piece-wise linear functions in r (for fixed N , K) that consist of K line segments.

The bounds match in two specific regimes: the very low caching ratio regime, i.e.,

r ≤ 1
NK−1 , and the very high caching ratio regime, where r ≥ K−2

N2−3N+KN
. As a direct

corollary for this result, we characterized the exact tradeoff between the download

cost and the caching ratio for K = 3. For general K, N , and r, we showed that the

largest additive gap between the achievability and the converse bounds is 5
32

. The

achievable scheme extends the greedy scheme in [12] so that it starts with exploiting

the cache bits as side information. For fixed K, N , there are K − 1 non-degenerate

corner points. These points differ in the number of cached bits that contribute

in generating one side information equation. The achievability for the remaining

caching ratios is done by memory-sharing between the two adjacent corner points

that enclose that caching ratio r. For the converse, we extended the induction-
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based techniques in [12] and Chapter 2 to account for the availability of uncoded

and partially prefetched side information at the retriever. The converse proof hinges

on developing K lower bounds on the length of the undesired portion of the answer

string. By applying induction on each bound separately, we obtained the piece-wise

linear inner bound.

3.10 Appendix

Proof: From (3.12), we rewrite D̄(rs) as

D̄(rs) =

∑K−1−s
i=0

(
K

s+1+i

)
(N − 1)i+1(

K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i+1

(3.72)

=

∑K−1−s
i=0 ( K

s+1+i)(N−1)i+1∑K−1−s
i=0 (K−1

s+i )(N−1)i+1

(K−2
s−1 )∑K−1−s

i=0 (K−1
s+i )(N−1)i+1

+ 1
=

ψ1(N,K, s)

ψ2(N,K, s) + 1
. (3.73)

Let λ = s
K

. We first upper bound ψ1(N,K, s),

ψ1(N,K, s) =

∑K−1−s
i=0

(
K

s+1+i

)
(N − 1)i+1∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i+1

(3.74)

=

∑K−1−s
i=0

K
s+1+i

(
K−1
s+i

)
(N − 1)i+1∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i+1

(3.75)

≤
∑K−1−s

i=0
K
s

(
K−1
s+i

)
(N − 1)i+1∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i+1

=
1

λ
. (3.76)

We then upper bound the reciprocal of ψ2(N,K, s) as,

1

ψ2(N,K, s)
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=
K−1−s∑
i=0

(
K−1
s+i

)
(N − 1)i+1(
K−2
s−1

) (3.77)

=
K−1−s∑
i=0

(K − 1)(K − 1− s) · · · (K − i− s)
s(s+ 1) · · · (s+ i)

(N − 1)i+1 (3.78)

≤ (N − 1)
K−1−s∑
i=0

K(K − s)i
si+1

(N − 1)i (3.79)

=
(N − 1)

λ

(1−λ)K−1∑
i=0

(
(1− λ)(N − 1)

λ

)i
. (3.80)

When λ > 1− 1
N

, (1−λ)(N−1)
λ

< 1. As K →∞, 1
ψ2(N,K,s)

is upper bounded by

lim
K→∞

1

ψ2(N,K, s)
≤ N − 1

λ

∞∑
i=0

(
(1− λ)(N − 1)

λ

)i
(3.81)

=
N − 1

Nλ− (N − 1)
. (3.82)

Now, we lower bound (3.78) by keeping the first εK terms in the sum for any

ε such that 0 < ε < 1− λ,

1

ψ2(N,K, s)

≥
εK∑
i=0

(K − 1)(K − 1− s) · · · (K − i− s)
s(s+ 1) · · · (s+ i)

(N − 1)i+1 (3.83)

≥ (N − 1)
εK∑
i=0

(K − 1)(K − εK − s)i
(s+ εK)i+1

(N − 1)i (3.84)

= (N − 1)
εK∑
i=0

(1− 1
K

)((1− (λ+ ε))i

(λ+ ε)i+1
(N − 1)i. (3.85)
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As K →∞, for any 0 < ε < 1− λ, we have

lim
K→∞

1

ψ2(N,K, s)
≥ N − 1

λ+ ε

∞∑
i=0

(
(1− (λ+ ε))(N − 1)

λ+ ε

)i
(3.86)

=
N − 1

N(λ+ ε)− (N − 1)
. (3.87)

From (3.87) and (3.82), as K →∞, by picking ε→ 0, we have

ψ2(N,K, s)→
N

N − 1
λ− 1. (3.88)

Furthermore, as K →∞, rs converges to

rs → r = lim
K→∞

(
K−2
s−1

)(
K−2
s−1

)
+
∑K−1−s

i=0

(
K−1
s+i

)
(N − 1)i+1

(3.89)

= lim
K→∞

ψ2(N,K, s)

ψ2(N,K, s) + 1
(3.90)

=
Nλ− (N − 1)

Nλ
= 1−

(
1− 1

N

)
1

λ
. (3.91)

Note that if λ = 1 − 1
N

, then r = 0, while if λ = 1, then r = 1
N

. Since we now

consider the gap in the region of 0 ≤ r ≤ 1
N

, without loss of generality, we consider

λ > 1− 1
N

. We express λ as

λ =
1− 1

N

1− r . (3.92)

Continuing (3.73), by using (3.76), (3.88) and (3.92), we have the following
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upper bound on D̄(r)

D̄(r) ≤
1
λ
N
N−1λ

=
1

λ2

(
1− 1

N

)
=

N

N − 1
(1− r)2. (3.93)

Now, we compare the inner bound in (3.14) with the outer bound derived in

(3.93). Note that the inner bound in (3.14) consists of K line segments, and these

K line segments intersect at the following K − 1 points given by,

r̃i =
1

N i
, i = 1, · · · , K − 1. (3.94)

As i increases, r̃i concentrates to r = 0. Therefore, for these K line segments, we

only need to consider small number of them for the worst-gap analysis. Denote

the gap between the inner and the outer bounds by ∆(N,K, r). We note that

the gap ∆(N,∞, r) is a piece-wise convex function for 0 ≤ r ≤ 1 since it is the

difference between a convex function D̄(r) and a piece-wise linear function. Hence,

the maximizing caching ratio for the gap exists exactly at the corner points r̃i and

it suffices to examine the gap at these corner points.

For the outer bound, by plugging (3.94) into (3.93), we have

D̄(r̃i) ≤
N

N − 1

(
1− 1

N i

)2

=
1− ( 1

N
)i

1− 1
N

(
1− 1

N i

)
. (3.95)

Furthermore, for the inner bound, we have

D̃(r̃i) =(1− ri)
(

1 +
1

N
+ · · ·+ 1

N i

)
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− ri
(

1− 1

N

)(
i+

(i− 1)

N
+ · · ·+ 1

N i−1

)
(3.96)

=− ri
[(

1 +
1

N
+ · · ·+ 1

N i

)
+

(
1− 1

N

)(
i+

(i− 1)

N
+ · · ·+ 1

N i−1

)]

+

(
1 +

1

N
+ · · ·+ 1

N i

)
(3.97)

=− ri(i+ 1) +

(
1 +

1

N
+ · · ·+ 1

N i

)
(3.98)

=
1− ( 1

N
)i+1

1− 1
N

− ri(i+ 1) =
1− ( 1

N
)i+1

1− 1
N

− i+ 1

N i
(3.99)

Consequently, we can upper bound the asymptotic gap at the corner point r̃i

as

∆(N,∞, r̃i) = D̄(r̃i)− D̃(r̃i) ≤
1

N i

[
i− 1− ( 1

N
)i

1− 1
N

]
(3.100)

Hence, ∆(N,∞, r̃i) is monotonically decreasing in N . Therefore,

∆(N,K, r) ≤ ∆(2,∞, r) ≤ max
i

1

2i

[
i− 1− (1

2
)i

1− 1
2

]
(3.101)

For the case N = 2, we note that all the inner bounds after the 7th corner point

are concentrated around r = 0 since r̃i ≤ 1
128

for i ≥ 7. Therefore, it suffices to

characterize the gap only for the first 7 corner points. Considering the 7th corner

point which corresponds to r̃6 = 1
128

, and D̄(r) ≤ 2 trivially for all r, and D̃( 1
128

) =

1.9297. Hence, ∆(2,∞, r) ≤ 0.07, for r ≤ 1
127

. Now, we focus on calculating the

gap at r̃i, i = 1, · · · , 7. Examining all the corner points, we see that r = 1
8

is the

maximizing caching ratio for the gap (corresponding to i = 3), and ∆(2,∞, 1
8
) ≤ 5

32
,
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which is the worst-case additive gap. �
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CHAPTER 4

The Capacity of Private Information Retrieval with Partially

Known Private Side Information

4.1 Introduction

We consider the problem of private information retrieval (PIR) of a single message

out of K messages from N replicated and non-colluding databases where a cache-

enabled user (retriever) of cache-size M possesses side information in the form of

full messages that are partially known to the databases. In this model, the user and

the databases engage in a two-phase scheme, namely, the prefetching phase where

the user acquires side information and the retrieval phase where the user downloads

desired information. In the prefetching phase, the user receives mn full messages

from the nth database, under the cache memory size constraint
∑N

n=1mn ≤ M . In

the retrieval phase, the user wishes to retrieve a message such that no individual

database learns anything about the identity of the desired message. In addition,

the identities of the side information messages that the user did not prefetch from

a database must remain private against that database. Since the side informa-

tion provided by each database in the prefetching phase is known by the provid-
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Figure 4.1: PIR with partially known PSI for N = 2, K = 4 and M = 2.

ing database and the side information must be kept private against the remaining

databases, we coin this model as partially known private side information. We char-

acterize the capacity of the PIR with partially known private side information to be

C =
(
1 + 1

N
+ · · ·+ 1

NK−M−1

)−1
=

1− 1
N

1−( 1
N
)K−M

. Interestingly, this result is the same if

none of the databases knows any of the prefetched side information, i.e., when the

side information is obtained externally, a problem posed by Kadhe et al. [32] and

settled by Chen-Wang-Jafar [33] recently. Thus, our result implies that there is no

loss in using the same databases for both prefetching and retrieval phases.
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4.2 System Model

We consider a classic PIR problem with K independent messages W1, . . . ,WK , where

each message consists of L symbols,

H(W1) = · · · = H(WK) = L, H(W1, . . . ,WK) = H(W1) + · · ·+H(WK).

(4.1)

There are N non-communicating databases, and each database stores all the K

messages. The user (retriever) has a local cache memory which can store up to M

messages.

There are two phases: a prefetching phase and a retrieval phase. In the

prefetching phase, ∀n ∈ [N ], where [N ] = {1, 2, . . . , N}, the user caches mn out

of total K messages from the nth database. We denote the indices of the cached

messages from the nth database as Hn. Therefore, |Hn| = mn. We denote the

indices of all cached messages as H,

H =
N⋃
n=1

Hn, (4.2)

where Hn1 ∩ Hn2 = ∅, if n1 6= n2. Due to the cache memory size constraint, we

require

|H| =
N∑
n=1

mn ≤M. (4.3)
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Since the user caches mn messages from the nth database, Hn is known to the nth

database. Since the databases do not communicate with each other, Hn is unknown

to the other databases. We use m = (m1, . . . ,mN) to represent the prefetching

phase. After the prefetching phase, the user learns |H| messages, denoted as WH =

{Wi1 , . . . ,Wi|H|}. We refer to WH as partially known private side information; see

Fig. 4.1.

In the retrieval phase, the user privately generates a desired message index

θ ∈ [K] \ H, and wishes to retrieve message Wθ such that no database knows

which message is retrieved. Since the desired message index θ and cached message

indices H are independent of the message contents, for random variables θ, H, and

W1, . . . ,WK , we have

H (θ,H,W1, . . . ,WK) = H (θ,H) +H(W1) + · · ·+H(WK). (4.4)

In order to retrieve Wθ, the user sends N queries Q
[θ,H]
1 , . . . , Q

[θ,H]
N to the N

databases, where Q
[θ,H]
n is the query sent to the nth database for message Wθ given

the user has partially known private side information WH. The queries are gener-

ated according to H, which is independent of the realizations of the K messages.

Therefore, we have

I(W1, . . . ,WK ;Q
[θ,H]
1 , . . . , Q

[θ,H]
N ) = 0. (4.5)

To ensure that individual databases do not know which message is retrieved
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and also do not know the cached messages from other databases, i.e., to guarantee

the privacy of (θ,H \Hn), we need to satisfy the following privacy constraint, ∀n ∈

[N ], ∀H,H′ such that |H| = |H′| ≤ M , Hn ⊂ H, Hn ⊂ H′, and ∀θ ∈ [K] \ H,

∀θ′ ∈ [K] \H′,

(Q[θ,H]
n , A[θ,H]

n ,W1, . . . ,WK ,Hn) ∼ (Q[θ′,H′]
n , A[θ′,H′]

n ,W1, . . . ,WK ,Hn), (4.6)

where A ∼ B means that A and B are identically distributed.

Upon receiving the query Q
[θ,H]
n , the nth database replies with an answering

string A
[θ,H]
n , which is a function of Q

[θ,H]
n and all the K messages. Therefore, ∀θ ∈

[K] \H,∀n ∈ [N ],

H(A[θ,H]
n |Q[θ,H]

n ,W1, . . . ,WK) = 0. (4.7)

After receiving the answering strings A
[θ,H]
1 , . . . , A

[θ,H]
N from all the N databases,

the user needs to decode the desired message Wθ reliably. By using Fano’s inequality,

we have the following reliability constraint

H
(
Wθ|WH,H, Q[θ,H]

1 , . . . , Q
[θ,H]
N , A

[θ,H]
1 , . . . , A

[θ,H]
N

)
= o(L), (4.8)

where o(L) denotes a function such that o(L)
L
→ 0 as L→∞.

For fixedN , K, and pretching scheme m = (m1, . . . ,mN), a pair (D(m), L(m))

is achievable if there exists a PIR scheme for messages of size L(m) symbols long

with partially known private side information satisfying the privacy constraint (4.6)
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and the reliability constraint (4.8), where D(m) represents the expected number of

downloaded symbols (over all the queries) from the N databases via the answering

strings A
[θ,H]
1:N , where A

[θ,H]
1:N = (A

[θ,H]
1 , . . . , A

[θ,H]
N ), i.e.,

D(m) =
N∑
n=1

H
(
A[θ,H]
n

)
. (4.9)

In this work, for fixed N , K, and M , we aim to characterize the optimal normalized

download cost D∗, where

D∗ = inf
m:(4.3)

{
D(m)

L(m)
: (D(m), L(m)) is achievable

}
. (4.10)

4.3 Main Results

We characterize the exact normalized download cost for the PIR problem with par-

tially known private side information as shown in the following theorem.

Theorem 4.1 In the PIR problem with partially known private side information

under the cache memory size constraint |H| ≤M , the optimal normalized download

cost is

D∗ = 1 +
1

N
+ · · ·+ 1

NK−M−1 (4.11)

=
1− ( 1

N
)K−M

1− 1
N

. (4.12)
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The converse proof for Theorem 4.1 is given in Section 4.4, and the achiev-

ability proof for Theorem 4.1 is given in Section 4.5. Theorem 4.1 does not assume

any particular property for the prefetching strategy, i.e., m is arbitrary except for

satisfying the memory size constraint. We have a few remarks.

Remark 4.1 Theorem 4.1 implies that C = 1
D∗

=
1− 1

N

1−( 1
N
)K−M

. Surprisingly, this

capacity expression is exactly the same as the capacity for the PIR problem with

completely unknown private side information in [33]. This implies that there is

no loss in capacity due to employing the same databases for both prefetching and

retrieval phases. The reason for this phenomenon is that although each database

has a partial knowledge about some of the cached messages at the user, the privacy

constraint on this known side information is relaxed.

Remark 4.2 The normalized download cost in Theorem 4.1 is the same as the nor-

malized download cost for the classical PIR problem [12] if the number of messages

is K −M . That is, a cache of size M messages effectively reduces the total number

of messages by M . Noting that the download cost in [12] monotonically increases

in the number of messages, the effective reduction in the number of messages by the

cache size results in a significant reduction in the download cost due to the presence

of side information at the user even though it is partially known by the databases

and it needs to be kept private against other databases.

Remark 4.3 The optimal prefetching strategy exploits the entire cache memory of

the user as the capacity expression is monotonically increasing in M .
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Remark 4.4 In Section 4.5, we present the capacity achieving schemes for the

partially known private side information. We note that, in general the PIR scheme

in [33] is a valid achievable scheme for our problem as well. Nevertheless, in the

special case of uniform prefetching, i.e., mn = M
N

= m ∈ N, we provide a different

achievable scheme that exploits the prefetching uniformity to work with message size

L = NK−m = NK−M
N in contrast to L = NK needed for the scheme in [33], i.e.,

the message size is decreased by an exponential factor N
M
N . Furthermore, we note

that although both schemes need an MDS code to reduce the number of downloaded

equations, we note that the field size needed to realize this MDS code is significantly

smaller with our scheme (if M
N
∈ N) compared with the field size needed in the

scheme in [33]. This implies that although uniform prefetching does not affect the

PIR capacity, it significantly simplifies the achievable scheme.

4.4 Converse Proof

In this section, we derive a general lower bound for the normalized download cost D∗

given in (4.10). We extend the techniques presented in [12, 33] to the PIR problem

with partially known private side information.

For the prefetching vector m = (m1, . . . ,mN) satisfying (4.3), we note that

satisfying the memory size constraint with equality leads to a valid lower bound on

(4.10). Consequently, we first consider the case
∑N

n=1mn = M̃ ≤ M , i.e., we study

the case when the user learns M̃ messages after the prefetching phase. Since we

do not specify the prefetching strategy m in advance, the following lower bound is
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valid for all m such that
∑N

n=1mn = M̃ . Without loss of generality, we relabel the

M̃ cached messages as W1,W2, . . . ,WM̃ , i.e., H = {1, 2, . . . , M̃} and WH = W1:M̃ .

We first need the following lemma, which characterizes a lower bound on the length

of the undesired portion of the answering strings as a consequence of the privacy

constraint on the retrieved message.

Lemma 4.1 (Interference lower bound) For the PIR with partially known pri-

vate side information, the interference from undesired messages within the answering

strings, D − L, is lower bounded by,

D − L+ o(L) ≥ I
(
WM̃+2:K ;H, Q[M̃+1,H]

1:N , A
[M̃+1,H]
1:N |WH,WM̃+1

)
. (4.13)

If the privacy constraint is absent, the user downloads only L symbols for

the desired message, however, when the privacy constraint is present, it should

download D symbols. The difference between D and L, i.e., D − L, corresponds

to the undesired portion of the answering strings. Note that Lemma 4.1 is an

extension of [12, Lemma 5] if M̃ = 0, i.e., the user has no partially known private

side information. Lemma 4.1 differs from its counterpart in Chapter 2 [Lemma 1]

in two aspects, namely, the left hand side is D(r) − L(1 − r) in Chapter 2 as the

user requests to download the uncached bits only, and the bound in Chapter 2

[Lemma 1] constructs K − 1 distinct lower bounds by changing k in contrast to one

bound here as it always starts from WM̃+2. Finally, we note that a similar argument

to Lemma 4.1 can be implied from [33].
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Proof: We start with the right hand side of (4.13),

I
(
WM̃+2:K ;H, Q[M̃+1,H]

1:N , A
[M̃+1,H]
1:N |WH,WM̃+1

)
= I

(
WM̃+2:K ;H, Q[M̃+1,H]

1:N , A
[M̃+1,H]
1:N ,WM̃+1|WH

)
− I

(
WM̃+2:K ;WM̃+1|WH

)
.

(4.14)

For the first term on the right hand side of (4.14), we have

I
(
WM̃+2:K ;H, Q[M̃+1,H]

1:N , A
[M̃+1,H]
1:N ,WM̃+1|WH

)
= I

(
WM̃+2:K ;H, Q[M̃+1,H]

1:N , A
[M̃+1,H]
1:N |WH

)
+ I

(
WM̃+2:K ;WM̃+1|H, Q

[M̃+1,H]
1:N , A

[M̃+1,H]
1:N ,WH

)
(4.15)

(4.8)
= I

(
WM̃+2:K ;H, Q[M̃+1,H]

1:N , A
[M̃+1,H]
1:N |WH

)
+ o(L) (4.16)

(4.4),(4.5)
= I

(
WM̃+2:K ;A

[M̃+1,H]
1:N |WH,H, Q[M̃+1,H]

1:N

)
+ o(L) (4.17)

= H
(
A

[M̃+1,H]
1:N |WH,H, Q[M̃+1,H]

1:N

)
−H

(
A

[M̃+1,H]
1:N |WH,H, Q[M̃+1,H]

1:N ,WM̃+2:K

)
+ o(L) (4.18)

(4.8)
= H

(
A

[M̃+1,H]
1:N |WH,H, Q[M̃+1,H]

1:N

)
−H

(
A

[M̃+1,H]
1:N ,WM̃+1|WH,H, Q[M̃+1,H]

1:N ,WM̃+2:K

)
+ o(L) (4.19)

≤ H
(
A

[M̃+1,H]
1:N |WH,H, Q[M̃+1,H]

1:N

)
−H

(
WM̃+1|WH,H, Q[M̃+1,H]

1:N ,WM̃+2:K

)
+ o(L) (4.20)

(4.4),(4.5)
= H

(
A

[M̃+1,H]
1:N |WH,H, Q[M̃+1,H]

1:N

)
−H

(
WM̃+1|WH,WM̃+2:K

)
+ o(L) (4.21)

= H
(
A

[M̃+1,H]
1:N |WH,H, Q[M̃+1,H]

1:N

)
− L+ o(L) (4.22)

≤ H
(
A

[M̃+1,H]
1:N

)
− L+ o(L) (4.23)

117



≤ D − L+ o(L), (4.24)

where (4.16), (4.19) follow from the decodability of WM̃+1 given(
H, Q[M̃+1,H]

1:N , A
[M̃+1,H]
1:N ,WH

)
, (4.17) follows from the independence of WM̃+2:K and(

H, Q[M̃+1,H]
1:N

)
, (4.21) follows from the independence of WM̃+1 and

(
H, Q[M̃+1,H]

1:N

)
,

and (4.24) follows from the independence bound.

For the second term on the right hand side of (4.14), we have

I
(
WM̃+2:K ;WM̃+1|WH

)
= H

(
WM̃+1|WH

)
−H

(
WM̃+1|WH,WM̃+2:K

)
(4.25)

= L− L = 0. (4.26)

Combining (4.14), (4.24), and (4.26) yields (4.13). �

In the following lemma, we prove an inductive relation for the mutual infor-

mation term on the right hand side of (4.13).

Lemma 4.2 (Induction lemma) For all k ∈ {M̃ + 2, . . . , K}, the mutual infor-

mation term in Lemma 4.1 can be inductively lower bounded as,

I
(
Wk:K ;H, Q[k−1,H]

1:N , A
[k−1,H]
1:N |WH,WM̃+1:k−1

)
≥ 1

N
I
(
Wk+1:K ;H, Q[k,H]

1:N , A
[k,H]
1:N |WH,WM̃+1:k

)
+
L− o(L)

N
. (4.27)

Lemma 4.2 is a generalization of [12, Lemma 6] to our setting. The main

difference between Lemma 4.2 and [33] is that in order to apply the partial pri-

vacy constraint, the random variable H should be used in its local form Hn as it
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corresponds to the partial knowledge of the nth database.

Proof: We start with the left hand side of (4.27),

I
(
Wk:K ;H, Q[k−1,H]

1:N , A
[k−1,H]
1:N |WH,WM̃+1:k−1

)
=

1

N
×N × I

(
Wk:K ;H, Q[k−1,H]

1:N , A
[k−1,H]
1:N |WH,WM̃+1:k−1

)
(4.28)

≥ 1

N

N∑
n=1

I
(
Wk:K ;Hn, Q

[k−1,H]
n , A[k−1,H]

n |WH,WM̃+1:k−1
)

(4.29)

≥ 1

N

N∑
n=1

I
(
Wk:K ;Q[k−1,H]

n , A[k−1,H]
n |WH,WM̃+1:k−1,Hn

)
(4.30)

(4.6)
=

1

N

N∑
n=1

I
(
Wk:K ;Q[k,H]

n , A[k,H]
n |WH,WM̃+1:k−1,Hn

)
(4.31)

(4.4),(4.5)
=

1

N

N∑
n=1

I
(
Wk:K ;A[k,H]

n |WH,WM̃+1:k−1,Hn, Q
[k,H]
n

)
(4.32)

(4.7)
=

1

N

N∑
n=1

H
(
A[k,H]
n |WH,WM̃+1:k−1,Hn, Q

[k,H]
n

)
(4.33)

≥ 1

N

N∑
n=1

H
(
A[k,H]
n |WH,WM̃+1:k−1,H, Q

[k,H]
1:N , A

[k,H]
1:n−1

)
(4.34)

(4.7)
=

1

N

N∑
n=1

I
(
Wk:K ;A[k,H]

n |WH,WM̃+1:k−1,H, Q
[k,H]
1:N , A

[k,H]
1:n−1

)
(4.35)

=
1

N
I
(
Wk:K ;A

[k,H]
1:N |WH,WM̃+1:k−1,H, Q

[k,H]
1:N

)
(4.36)

(4.4),(4.5)
=

1

N
I
(
Wk:K ;H, Q[k,H]

1:N , A
[k,H]
1:N |WH,WM̃+1:k−1

)
(4.37)

(4.8)
=

1

N
I
(
Wk:K ;Wk,H, Q[k,H]

1:N , A
[k,H]
1:N |WH,WM̃+1:k−1

)
− o(L)

N
(4.38)

=
1

N
I
(
Wk:K ;Wk|WH,WM̃+1:k−1

)
+

1

N
I
(
Wk:K ;H, Q[k,H]

1:N , A
[k,H]
1:N |WH,WM̃+1:k

)
− o(L)

N
(4.39)

=
1

N
I
(
Wk+1:K ;H, Q[k,H]

1:N , A
[k,H]
1:N |WH,WM̃+1:k

)
+
L− o(L)

N
, (4.40)
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where (4.29) follows from the non-negativity of mutual information, (4.31) follows

from the privacy constraint, (4.32) follows from the independence of the messages

and the queries, (4.33), (4.35) follow from the fact that answer strings are deter-

ministic functions of the messages and the queries, (4.34) follows from the fact that

conditioning reduces entropy, (4.37) follows from the independence of Wk:K and(
H, Q[k,H]

1:N

)
, (4.38) follows from the reliability constraint on Wk, and (4.40) follows

from the independence of Wk and (WH,WM̃+1:k−1). �

Now, we are ready to derive the lower bound for arbitrary K, N , and M̃ . This

can be obtained by applying Lemma 4.1 and Lemma 4.2 successively.

Lemma 4.3 For fixed N , K, and M̃ ≤M , we have

D ≥ L

(
1 +

1

N
+ · · ·+ 1

NK−M̃−1

)
− o(L). (4.41)

Proof: We have

D
(4.13)

≥ L+ I
(
WM̃+2:K ;H, Q[M̃+1,H]

1:N , A
[M̃+1,H]
1:N |WH,WM̃+1

)
− o(L) (4.42)

(4.27)

≥ L+
L

N
+

1

N
I
(
WM̃+3:K ;H, Q[M̃+2,H]

1:N , A
[M̃+2,H]
1:N |WH,WM̃+1:M̃+2

)
− o(L)

(4.43)

(4.27)

≥ L+
L

N
+

L

N2
+

1

N
I
(
WM̃+4:K ;H, Q[M̃+3,H]

1:N , A
[M̃+3,H]
1:N |WH,WM̃+1:M̃+3

)
− o(L) (4.44)

(4.27)

≥ . . . (4.45)

(4.27)

≥ L

(
1 +

1

N
+ · · ·+ 1

NK−M̃−1

)
− o(L), (4.46)
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where (4.42) follows from Lemma 4.1, (4.43)-(4.46) follow from applying Lemma 4.2

starting from k = M̃ + 2 to k = K, which differs from [12] in terms of the starting

point of the induction. �

We conclude the converse proof by dividing by L and taking L→∞ in (4.41),

to have

D∗ ≥ 1 +
1

N
+ · · ·+ 1

NK−M̃−1
. (4.47)

Finally, we note that the right hand side of (4.47) is monotonically decreasing in

M̃ . Since M̃ ≤ M , the lowest lower bound is obtained by taking M̃ = M , which

yields the final converse bound,

D∗ ≥ 1 +
1

N
+ · · ·+ 1

NK−M−1 . (4.48)

Remark 4.5 We note that if (4.48) is tight, any prefetching strategy m such that∑N
n=1mn < M is strictly suboptimal. Furthermore, the lower bound in (4.48) is the

same for all prefetching strategies m satisfying
∑N

n=1mn = M . In Section 4.5, we

show that this lower bound is tight.

4.5 Achievability Proof

We first note that the achievability scheme proposed in [33] for the PIR problem

with completely unknown private side information also works for the PIR problem

with partially known private side information here. The PIR scheme in [33] is based
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on MDS codes and consists of two stages. The first stage determines the systematic

part of the MDS code according to the queries generated in [12], which protects the

privacy of the desired message, i.e., in the first stage, the user designs the queries

such that no information is leaked about which message out of the K messages is

the desired one. In the second stage, the user reduces the number of the downloaded

equations by downloading the parity part of the MDS code only. For the case of

partially known private side information here, two privacy constraints should be

satisfied: the desired message privacy constraint and the side information privacy

constraint. For the desired message, we note that the user should guarantee that the

queries designed to retrieve any of the K−mn messages should be indistinguishable

at the nth database (i.e., with the exception of the mn messages that the nth

database has provided). Due to the first stage, the privacy of the desired message

holds as it was designed to protect the privacy of all K messages, which is more

restricted. Furthermore, the PIR scheme in [33] also protects the privacy of the side

information. The scheme in [33] ensures that the queries do not reveal the identity of

the M messages that are possessed by the user as side information. In our model, we

note that we need to protect the privacy of M−mn messages from the nth database,

as the remaining mn messages are known to the nth database. Since the privacy

constraint imposed on the side information in our model is less restricted than [33],

using the scheme in [33] satisfies the privacy constraint of the side information in our

case as well. That is, the nth database cannot infer which other M −mn messages

the user holds. The PIR scheme in [33] achieves the normalized download cost in

Theorem 4.1. The PIR scheme in [33] requires a message size of NK symbols. In the
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following, we propose another achievability scheme which requires a message size of

NK−M
N , if mn = M

N
∈ N. Thus, this scheme requires smaller sub-packetization and

smaller field size for the MDS code.

Our PIR scheme for partially known private side information is based on the

PIR schemes in [12, 33]. To protect the privacy of the partially known private side

information and the privacy of the desired message, similar to [12], we apply the

following three principles recursively: 1) database symmetry, 2) message symmetry

within each database, and 3) exploiting undesired messages as side information. We

reduce the download cost by utilizing the reconstruction property of MDS codes by

exploiting partially known private side information as in [33]. The side information

enables the user to request reduced number of equations as a consequence of the

user’s knowledge of M messages from the prefetching phase. Nevertheless, to protect

the privacy of the side information, the user actually queries MDS coded symbols

which is mixture of K−mn messages. The main difference between our achievability

scheme and that in [12, 33] is that since the nth database knows that the user has

prefetched mn messages, the user does not need to protect the privacy for these mn

messages from the nth database. This effectively reduces the number of messages

that the scheme in [33] needs to operate on to K −mn messages in contrast to K

in [33]. When M
N
∈ N, we show that if the user caches the same number of messages

from each database, i.e., mn = M
N

, for all n, then the lower bound in (4.11) is

achievable by this scheme. This scheme reduces the message size requirement from

L = NK in [33] to L = NK−M
N here, simplifying the achievable scheme.
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4.5.1 Motivating Examples

4.5.1.1 N = 2 Databases, K = 4 Messages, and M = 2 Cached

Messages

Assume that each message is of size 8 symbols. We use ai, bi, ci and di, for i =

1, . . . , 8, to denote the symbols of messages W1, W2, W3 and W4, respectively. In

this example, in the prefetching phase, the user caches message W3 from database

1, and message W4 from database 2; and in the retrieval phase, the user wishes to

retrieve message W1 privately. The user first generates the query table in Table 4.1.

In Table 4.1, the user queries 7 symbols. Since the user knows d1 from the cached

message W4, in order to use the partially known private side information, the user

can in fact reduce the number of queries to 6 equations per database by ignoring

d1. However, if the user simply does not download d1, it compromises the privacy

of W4 at database 1. Alternatively, the user queries the MDS coded version of the 7

symbols. By using these 7 symbols as the systematic part, we can use a (13, 7) MDS

code. By downloading the 6 parity symbols, the user can reconstruct the whole 7

symbols utilizing the knowledge of d1. Therefore, the normalized download cost for

our achievability scheme is 6+6
8

= 3
2
, which matches the lower bound in (4.11) for

this case.

For database 1, the query table in Table 4.1 induces the same distribution on

the messages W1, W2 and W4. Therefore, we guarantee the privacy of the desired

message. The reliability constraint can also be verified. Note that b2 is downloaded
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from database 2, and d2 is downloaded in the prefetching phase. Therefore, a3 and

a4 are decodable. By getting b4 + c3 from database 2, the user can get b4 due to the

private side information W3. Therefore, the user can decode a7 from a7 + b4 + d4.

Similar arguments follow for database 2.

Table 4.1: Query table for K = 4, N = 2, M = 2.

DB1 DB2
a1 a2
b1 b2
d1 c1

a3 + b2 a5 + b1
a4 + d2 a6 + c2
b3 + d3 b4 + c3

a7 + b4 + d4 a8 + b3 + c4

WH1={W3} WH2={W4}

4.5.1.2 N = 2 Databases, K = 5 Messages, and M = 2 Cached

Messages

Assume that each message is of size 16 symbols. We use ai, bi, ci, di and ei,

for i = 1, . . . , 16, to denote the symbols of messages W1, W2, W3, W4, and W5,

respectively. In this example, in the prefetching phase, the user caches message W4

from database 1, and message W5 from database 2; and in the retrieval phase, the

user wishes to retrieve message W1 privately. The user first generates the query

table in Table 4.2. In Table 4.2, the user queries 15 symbols. Since the user knows

e1 from the cached message W5, in order to use the partially known private side

information, the user in fact queries the MDS coded version of the 15 symbols. By

using these 15 symbols as the systematic part, we can use a (29, 15) MDS code. By
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downloading the 14 parity symbols, the user can reconstruct the whole 15 symbols.

Therefore, the normalized download cost for our achievability scheme is 14+14
16

= 7
4
,

which matches the lower bound in (4.11) for this case.

For database 1, the query table in Table 4.2 induces the same distribution

on the messages W1, W2, W3 and W5. Therefore, we guarantee the privacy of the

desired message. The reliability constraint can also be verified. Note that b2, c2

are downloaded from database 2, and e2 is downloaded in the prefetching phase.

Therefore, a3, a4 and a5 are decodable. By getting b6 +d3 from database 2, the user

can get b6 due to the private side information W4. Similarly, c6 is also decodable.

Therefore, the user can decode a10 from a10 + b6 + e5 and a11 from a11 + c6 + e6. By

getting b8 + c8 + d7 from database 2, the user can get b8 + c8 due to the private side

information W4. Therefore, the user can decode a15 from a15 + b8 + c8 + e8. Similar

arguments follow for database 2.

4.5.2 General Achievable Scheme for M
N ∈ N

Let M
N

= m. In the prefetching phase, the user caches m messages from each

database. To achieve the lower bound shown in (4.11), in the retrieval phase, we

choose the message size as L = NK−m symbols. The details of the achievable scheme

are as follows:

1. Initialization: The user permutes each message randomly and independently.

After the random permutation, we use Ui(j) to denote the jth symbol of the

permuted message Wi. Suppose the user wishes to retrieve Wθ privately. We
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Table 4.2: Query table for K = 5, N = 2, M = 2.

DB1 DB2
a1 a2
b1 b2
c1 c2
e1 d1

a3 + b2 a6 + b1
a4 + c2 a7 + c1
a5 + e2 a8 + d2
b3 + c3 b5 + c5
b4 + e3 b6 + d3
c4 + e4 c6 + d4

a9 + b5 + c5 a12 + b3 + c3
a10 + b6 + e5 a13 + b4 + d5
a11 + c6 + e6 a14 + c4 + d6
b7 + c7 + e7 b8 + c8 + d7

a15 + b8 + c8 + e8 a16 + b7 + c7 + d8

WH1={W4} WH2={W5}

then prepare the query table by first querying Uθ(1) from database 1. Set the

round index to r = 1.

2. Symmetry across databases: The user queries the same number of equations

with the same structure as database 1 from the remaining databases.

3. Message symmetry: For each database, to satisfy the privacy constraint, the

user should query equal amount of symbols from all other K −m messages.

Since the user has cached m messages from each database in the prefetching

phase, the user does not need to protect the privacy for these m messages. For

the rth round, the user queries sums of every r combinations of the K − m

messages.

4. Exploiting side information: For database 1, the user exploits the side infor-
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mation equations obtained from the other (N − 1) databases to query sum of

r + 1 combinations of the K −m messages, where sum of r combinations is

the side information. If the r combinations contain the cached message from

database 1, we replace the overlapping symbols through the symbols cached

from other databases.

5. Repeat steps 2, 3, 4 after setting r = r + 1 until r = K −m+ 1.

6. Shuffling the order of queries: By shuffling the order of queries uniformly, all

possible queries can be made equally likely regardless of the message index.

This guarantees the privacy of the desired message.

7. Downloading MDS parity parts: Now, the query table is finished. For each

database, let p be the number of queried symbols in the query table, and

let q be the number of queried symbols which are determined by the side

information the user cached in the prefetching phase. Apply a (2p − q, p)

MDS code to the queried symbols by letting the p symbols to be the systematic

part. Finally, the user downloads the parity parts of the MDS-coded answering

strings which are p− q symbols for each database.

4.5.3 Normalized Download Cost

We now calculate the total number of downloaded symbols. We first calculate p,

which is the number of queried symbols in the query table for each database,

p =

(
K −m

1

)
+

(
K −m

2

)
(N − 1) + · · ·+

(
K −m
K −m

)
(N − 1)K−m−1 (4.49)
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=
1

N − 1

[(
K −m

1

)
(N − 1) +

(
K −m

2

)
(N − 1)2 + . . .

+

(
K −m
K −m

)
(N − 1)K−m

]
(4.50)

=
1

N − 1

(
NK−m − 1

)
, (4.51)

where
(
K−m
r

)
in (4.49) corresponds to the queries of sums of every r combinations

of the K −m messages, and (N − 1)r−1 corresponds to the number of sets of the

available side information from other (N − 1) databases.

We then calculate q, which is the number of queried symbols which are deter-

mined by the side information the user cached in the prefetching phase,

q =

(
(N − 1)m

1

)
+

(
(N − 1)m

2

)
(N − 1) + · · ·+

(
(N − 1)m

(N − 1)m

)
(N − 1)(N−1)m−1

(4.52)

=
1

N − 1

[(
(N − 1)m

1

)
(N − 1) + · · ·+

(
(N − 1)m

(N − 1)m

)
(N − 1)(N−1)m

]
(4.53)

=
1

N − 1

(
N (N−1)m − 1

)
, (4.54)

where
(
(N−1)m

r

)
in (4.52) corresponds to the queries which can be determined by the

partially known private side information, and (N−1)r−1 corresponds to the number

of sets of queries consisting of r combinations.

Next, we calculate the number of symbols for the desired message,

L = N

[(
K −m− 1

0

)
+

(
K −m− 1

1

)
(N − 1) + . . .
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+

(
K −m− 1

K −m− 1

)
(N − 1)K−m−1

]
(4.55)

= N ×NK−m−1 = NK−m, (4.56)

where
(
K−m−1
r−1

)
in (4.55) corresponds to the queries containing the desired mes-

sage and (N − 1)r−1 corresponds to the number of sets of queries consisting of r

combinations.

Therefore, the normalized download cost becomes,

D

L
=
N(p− q)

L
(4.57)

=
N
N−1

(
NK−m − 1

)
− N

N−1

(
N (N−1)m − 1

)
NK−m (4.58)

=
N

N − 1
× NK−m −N (N−1)m

NK−m (4.59)

=
1

1− 1
N

×
[

1−
(

1

N

)K−M]
, (4.60)

which matches the lower bound in (4.11).

Remark 4.6 Note that although our achievable scheme and the scheme in [33] are

both using MDS coding to exploit the available side information, the field size re-

quirements for realizing the MDS codes are different. For the scheme of [33], a

(2p̃ − q̃, p̃) MDS code is used, where p̃ = 1
N−1(NK − 1) and q̃ = 1

N−1(NM − 1).

This requires larger field size than the (2p− q, p) MDS code used in our scheme (if

M
N
∈ N), since 2p̃− q̃ > (2p− q).
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4.6 Conclusion

In this chapter, we have introduced a new PIR model, namely, PIR with partially

known private side information as a natural model for studying practical PIR prob-

lems with cached side information. In this model, the user and the databases engage

in a caching/PIR scenario which consists of two phases, namely, prefetching phase

and retrieval phase. The nth database provides the user with mn side information

messages in the prefetching phase such that
∑N

n=1mn ≤ M , hence, each database

has partial knowledge about the side information in contrast to full knowledge in [28]

and no knowledge in [32,33] and Chapter 2. Based on this side information, the user

designs a retrieval scheme that does not reveal the identity of the desired message

or the identities of the remaining M −mn messages to the nth database. For this

model, we determined the exact capacity to be C =
1− 1

N

1−( 1
N
)K−M

. The capacity is

attained for any prefetching strategy that satisfies the cache memory size constraint

with equality. The achievable scheme in [33] can also be used for this model. We

further proposed another PIR scheme which requires smaller sub-packetization and

field size for the case of uniform prefetching. Uniform prefetching, when feasible, is

optimal. Interestingly, the capacity expression we derive for this problem is exactly

the same as the capacity expression for the PIR problem with completely unknown

side information [33]. Therefore, our result implies that there is no loss in employing

the same databases for prefetching and retrieval purposes.
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CHAPTER 5

The Capacity of Private Information Retrieval with Private

Side Information Under Storage Constraints

5.1 Introduction

We consider the problem of private information retrieval (PIR) of a single message

out of K messages from N replicated and non-colluding databases where a cache-

enabled user (retriever) of cache-size S possesses side information in the form of

uncoded portions of the messages that are unknown to the databases. The identities

of these side information messages need to be kept private from the databases, i.e.,

we consider PIR with private side information (PSI). We characterize the optimal

normalized download cost for this PIR-PSI problem under the storage constraint S

as D∗ = 1 + 1
N

+ 1
N2 + · · · + 1

NK−1−M + 1−rM
NK−M + 1−rM−1

NK−M+1 + · · · + 1−r1
NK−1 , where ri is

the portion of the ith side information message that is cached with
∑M

i=1 ri = S.

Based on this capacity result, we prove two facts: First, for a fixed memory size S

and a fixed number of accessible messages M , uniform caching achieves the lowest

normalized download cost, i.e., ri = S
M

, for i = 1, . . . ,M , is optimum. Second, for

a fixed memory size S, among all possible K − dSe + 1 uniform caching schemes,
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the uniform caching scheme which caches M = K messages achieves the lowest

normalized download cost.

5.2 System Model

We consider a system consisting of N non-communicating databases and a user (re-

triever). Each database stores the same set of K independent messages W1, . . . ,WK ,

and each message is of size L symbols, i.e.,

H(W1) = · · · = H(WK) = L, H(W1, . . . ,WK) = H(W1) + · · ·+H(WK).

(5.1)

The user has a local cache memory which is of size SL symbols, where S ∈ [0, K].

There are two phases in the system: the prefetching phase and the retrieval phase.

In the prefetching phase, the user can randomly access M messages out of

total K messages, where M ≥ S. For each of the M accessed messages, the user

caches the first Lri symbols out of the total L symbols for i = 1, . . . ,M . The caching

scheme is subject to a memory size constraint of S, i.e.,

M∑
i=1

ri = S. (5.2)

We denote the indices (identities) of the cached M messages as H, and denote WH

as the cached messages. Therefore, |H| = M , and H(WH) = SL.

Note that M and (r1, . . . , rM) specify a caching scheme. If r1 = · · · = rM , we
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call this a uniform caching scheme. For fixed S, there are K−dSe+1 uniform caching

schemes depending on the number of accessible messages since M ≥ S. For instance,

if there are K = 3 messages in the databases and S = 1.5, then since M ≥ S, M can

take one of two possible values: either 2 or 3. Thus, there are two uniform caching

schemes depending on the value of M . Note, K − dSe+ 1 = 3− d1.5e+ 1 = 2.

We assume that all the databases are aware of the caching scheme but are

unaware of which messages are cached. For example, if S = 2, M = 3, and we

say that the user has applied a uniform caching scheme, the databases know that

the user has chosen 3 messages out of the total K messages to cache, and for each

chosen message, the user has cached the first 2
3
L symbols out of the total L symbols.

However, the databases do not know which messages are cached by the user.

In the retrieval phase, the user privately generates an index θ ∈ [K] =

{1, . . . , K}, and wishes to retrieve message Wθ such that it is impossible for any indi-

vidual database to identify θ. At the same time, the user also wishes to keep the in-

dices of the M cached messages private, i.e., in the retrieval phase the databases can-

not learn which messages are cached. For random variables θ, H, and W1, . . . ,WK ,

we have

H (θ,H,W1, . . . ,WK) = H (θ) +H (H) +H(W1) + · · ·+H(WK). (5.3)

In order to retrieve message Wθ, the user sends N queries Q
[θ,H]
1 , . . . , Q

[θ,H]
N to

the N databases, where Q
[θ,H]
n is the query sent to the nth database for message Wθ.

Note that the queries are generated according to H, which are independent of the
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realization of the K messages. Therefore,

I(W1, . . . ,WK ;Q
[θ,H]
1 , . . . , Q

[θ,H]
N ) = 0. (5.4)

Upon receiving the query Q
[θ,H]
n , the nth database replies with an answering string

A
[θ,H]
n , which is a function of Q

[θ,H]
n and all the K messages. Therefore, ∀θ ∈ [K],∀n ∈

[N ],

H(A[θ,H]
n |Q[θ,H]

n ,W1, . . . ,WK) = 0. (5.5)

After receiving the answering strings A
[θ,H]
1 , . . . , A

[θ,H]
N from all the N databases, the

user needs to decode the desired message Wθ reliably. By using Fano’s inequality,

we have the following reliability constraint

H
(
Wθ|WH,H, Q[θ,H]

1 , . . . , Q
[θ,H]
N , A

[θ,H]
1 , . . . , A

[θ,H]
N

)
= o(L), (5.6)

where o(L) denotes a function such that o(L)
L
→ 0 as L→∞.

To ensure that individual databases do not know which message is retrieved

and to keep the M cached messages private, we have the following privacy constraint,

∀n ∈ [N ], ∀θ, θ′ ∈ [K], ∀H,H′ ⊂ [K] such that |H| = |H′| = M ,

(Q[θ,H]
n , A[θ,H]

n ,W1, . . . ,WK) ∼ (Q[θ′,H′]
n , A[θ′,H′]

n ,W1, . . . ,WK), (5.7)

where A ∼ B means that A and B are identically distributed.
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For a fixedN , K, S and caching scheme (r1, . . . , rM), a pair (D,L) is achievable

if there exists a PIR scheme for the message which is of size L symbols satisfying

the reliability constraint (5.6) and the privacy constraint (5.7), where D represents

the expected number of downloaded bits (over all the queries) from the N databases

via the answering strings A
[θ,H]
1:N , where A

[θ,H]
1:N = (A

[θ,H]
1 , . . . , A

[θ,H]
N ), i.e.,

D =
N∑
n=1

H
(
A[θ,H]
n

)
. (5.8)

In this work, we aim at characterizing the optimal normalized download cost D∗,

where

D∗ = inf

{
D

L
: (D,L) is achievable

}
. (5.9)

We use an example shown in Fig. 5.1 to illustrate the system model. Consider

a user wanting to download a message from N = 3 non-communicating databases,

each storing the same set of K = 5 messages. Assume that the user is already in

possession of M = 3 messages through some unspecified means; the user may have

obtained these from another user, or it may have prefetched them from another

database. The databases do not know the identities of these messages, but they

know that the user has access to M = 3 messages. (For this example, say these

messages are W2, W4 and W5.) However, the user has limited local storage with

size S = 1 message. What should the user keep in order to minimize the download

cost of the desired message during the PIR phase while keeping the identities of
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both desired and cached messages private? Should the user keep 1 full message in

its cache and discard the other 2 messages, shown as caching option 1 in Fig. 5.1?

Should the user choose 2 messages, store half of each chosen message and discard

the remaining 1 message, shown as caching option 2 in Fig. 5.1? Or, should the

user keep all 3 messages and store a portion of each? In that case, what portions

of messages should the user store? E.g., should it store 25% of W2, 25% of W4 and

50% of W5, shown as caching option 3, or should it store 1
3

of all 3 messages, shown

as caching option 4 in Fig. 5.1?

Different caching schemes result in different download costs for the PIR-PSI

problem. Intuition may say that if portions of many messages are kept in the cache,

then the user will need to protect many identities from the databases due to the

PSI requirement, which may seem disadvantageous. On the other hand, intuition

may also say that keeping portions of many messages may improve the diversity

of side information for the PIR phase, which may seem advantageous. What is

the optimum way to utilize the user’s limited cache memory? In this chapter, we

characterize the optimal normalized download cost for any given caching strategy,

and determine the optimal caching strategy under a given storage constraint.

5.3 Main Results and Discussions

We characterize the exact normalized download cost for PIR-PSI under a storage

constraint in the following theorem.

Theorem 5.1 In PIR-PSI under a storage constraint, the optimal normalized down-

137



Database 1

W1

W2

W3

W4

Database 2 Database 3

local storage (S = 1, M = 3)

W2

caching option 1 caching option 2

W2 W4

caching option 3 caching option 4

W4

W1

W2

W3

W4

W1

W2

W3

W4

W2 W4

W5 W5 W5

W5 W2 W5

Figure 5.1: PIR-PSI under a storage constraint. Here N = 3, K = 5, S = 1, and
M = 3.

load cost is

D∗ = 1 +
1

N
+

1

N2
+ · · ·+ 1

NK−1−M +
1− rM
NK−M +

1− rM−1
NK−M+1

+ · · ·+ 1− r1
NK−1 (5.10)

where r1 ≥ r2 ≥ · · · ≥ rM without loss of generality.

The converse proof for Theorem 5.1 is given in Section 5.4, and the achiev-

ability proof for Theorem 5.1 is given in Section 5.5.

Remark 5.1 For S = 0, by letting ri = 0, for i = 1, . . . ,M , (5.10) reduces to

D∗ = 1 +
1

N
+

1

N2
+ · · ·+ 1

NK−1 , (5.11)

which is the optimal normalized download cost of the original PIR problem as shown

in [12].
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Remark 5.2 For S ∈ [K] and M = S, by letting ri = 1 for i = 1, . . . ,M , (5.10)

reduces to

D∗ = 1 +
1

N
+

1

N2
+ · · ·+ 1

NK−1−M , (5.12)

which is the optimal normalized download cost of the PIR with PSI problem as shown

in [33]. We can further generalize the result to the PIR with partially known PSI as

shown in Chapter 4. Note further that for M > S, ( 1−rM
NK−M + 1−rM−1

NK−M+1 + · · ·+ 1−r1
NK−1 )

is the penalty to the download cost under the storage constraint.

Corollary 5.1 For fixed M ≥ S, uniform caching scheme achieves the lowest nor-

malized download cost.

Proof: The user has access to M messages. To achieve a low normalized download

cost in (5.10), we need to solve the following optimization problem,

min
αi,i=1,...,M

αM
1

NK−M + αM−1
1

NK−M+1
+ · · ·+ α1

1

NK−1

s.t. αM + αM−1 + · · ·+ α1 = M − S,

1 ≥ αM ≥ αM−1 ≥ · · · ≥ α1 ≥ 0, (5.13)

which is obtained by replacing 1 − ri in (5.10) with αi for i = 1, . . . ,M . We prove

by contradiction that the minimum is achieved when αM = αM−1. Suppose not,

then we have optimum α∗M > α∗M−1. Choose δ =
α∗M−α

∗
M−1

3
, and let α′M = α∗M − δ,

α′M−1 = α∗M−1 + δ. Then, with α′M and α′M−1, we achieve a lower normalized
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download cost than with α∗M and α∗M−1, which gives a contradiction. Therefore,

we have αM = αM−1. Intuitively, note that the coefficient of αM is larger than

the coefficient of αM−1 in the objective function in (5.13). Therefore, in order to

minimize the objective function, we need to choose αM as small as possible. But,

since αM needs to be larger than αM−1 according to the constraint set of (5.13),

the smallest αM we can choose is αM = αM−1. Using similar arguments, we also

have αM−1 = αM−2 = · · · = α1. Therefore, uniform caching achieves the lowest

normalized download cost for fixed M . �

Corollary 5.2 For fixed S, among all the K − dSe + 1 uniform caching schemes,

the uniform caching scheme with M = K achieves the lowest normalized download

cost.

Proof: For the uniform caching scheme M , the user caches the first S
M
L symbols of

each chosen message. From (5.10), the normalized download cost is

D∗(M) = 1 +
1

N
+

1

N2
+ · · ·+ 1

NK−1−M +

(
1− S

M

)(
1

NK−M + · · ·+ 1

NK−1

)
.

(5.14)

Considering the difference of the normalized download costs between D∗(M + 1)

and D∗(M),

D∗(M + 1)−D∗(M)

= 1 +
1

N
+

1

N2
+ · · ·+ 1

NK−2−M +

(
1− S

M + 1

)(
1

NK−M−1 + · · ·+ 1

NK−1

)
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−
[
1 +

1

N
+

1

N2
+ · · ·+ 1

NK−1−M +

(
1− S

M

)(
1

NK−M + · · ·+ 1

NK−1

)]
(5.15)

= − S

M + 1

(
1

NK−M−1 + · · ·+ 1

NK−1

)
+

S

M

(
1

NK−M + · · ·+ 1

NK−1

)
(5.16)

= − S

M + 1
× 1

NK−M−1 +

(
S

M
− S

M + 1

)(
1

NK−M + · · ·+ 1

NK−1

)
(5.17)

=
S

M(M + 1)

(
1

NK−M + · · ·+ 1

NK−1

)
− S

M(M + 1)
× M

NK−M−1 (5.18)

≤ 0. (5.19)

Thus, the uniform caching scheme with M = K achieves the lowest normalized

download cost among all possible uniform caching schemes. �

Corollary 5.3 For fixed S, among all possible caching schemes, the uniform caching

scheme with M = K achieves the lowest normalized download cost.

Proof: From Corollary 5.1, we know that for fixed M , uniform caching scheme

achieves the lowest normalized download cost. From Corollary 5.2, we know that

among all uniform caching schemes, the uniform caching scheme with M = K

achieves the lowest normalized download cost. Combining these two corollaries, we

conclude that among all possible caching schemes, the uniform caching scheme with

M = K achieves the lowest normalized download cost. �
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5.4 Converse Proof

In this section, we provide a lower bound for PIR-PSI under a storage constraint.

In the following, without loss of generality, we relabel the messages according to

H, such that W1:M are the messages accessed by the user in the prefetching phase,

where W1:M = (W1,W2, . . . ,WM). Here, Wi denotes the message whose first Lri

symbols are cached by the user, for i = 1, 2, . . . ,M , and without loss of generality,

r1 ≥ r2 ≥ · · · ≥ rM .

We first need the following lemma, which develops a lower bound on the length

of the undesired portion of the answering strings as a consequence of the privacy

constraint.

Lemma 5.1 (Interference lower bound) For PIR-PSI under a storage constraint,

the interference from undesired messages within the answering strings, D − L, is

lower bounded by,

D − L+ o(L) ≥ I
(
W1:K−1;Q

[K,H]
1:N , A

[K,H]
1:N |WH,H,WK

)
. (5.20)

If the privacy constraint is absent, the user downloads only L symbols of

the desired message, however, when the privacy constraint is present, it should

download D symbols. The difference between D and L, i.e., D − L, corresponds to

the undesired portion of the answering strings. Note that Lemma 5.1 is an extension

of [12, Lemma 5], where M = 0, i.e., the user has no PSI. Lemma 5.1 differs from

its counterpart in Chapter 2 [Lemma 1] in two aspects; first, the left hand side is

142



D(r) − L(1 − r) in Chapter 2 as the user requests to download the uncached bits

only, and second, Chapter 2 [Lemma 1] constructs K − 1 distinct lower bounds

by changing k, in contrast to only one bound here. In addition, we note that a

similar argument to Lemma 5.1 can be implied from [33] and Chapter 4. The main

difference between Lemma 5.1 and [33] and Chapter 4 is that WH refers to parts of

messages here, while in [33] and Chapter 4, WH refers to full messages.

Proof: We start with the right hand side of (5.20),

I
(
W1:K−1;Q

[K,H]
1:N , A

[K,H]
1:N |WH,H,WK

)
≤ I

(
W1:K−1;Q

[K,H]
1:N , A

[K,H]
1:N ,WK |WH,H

)
.

(5.21)

For the right hand side of (5.21), we have

I
(
W1:K−1;Q

[K,H]
1:N , A

[K,H]
1:N ,WK |WH,H

)
= I

(
W1:K−1;Q

[K,H]
1:N , A

[K,H]
1:N |WH,H

)
+ I

(
W1:K−1;WK |Q[K,H]

1:N , A
[K,H]
1:N ,WH,H

)
(5.22)

(5.6)
= I

(
W1:K−1;Q

[K,H]
1:N , A

[K,H]
1:N |WH,H

)
+ o(L) (5.23)

(5.3),(5.4)
= I

(
W1:K−1;A

[K,H]
1:N |WH,H, Q[K,H]

1:N

)
+ o(L) (5.24)

= H
(
A

[K,H]
1:N |WH,H, Q[K,H]

1:N

)
−H

(
A

[K,H]
1:N |WH,H, Q[K,H]

1:N ,W1:K−1

)
+ o(L)

(5.25)

≤ D −H
(
A

[K,H]
1:N |WH,H, Q[K,H]

1:N ,W1:K−1

)
+ o(L) (5.26)

(5.6)
= D −H

(
A

[K,H]
1:N ,WK |WH,H, Q[K,H]

1:N ,W1:K−1

)
+ o(L) (5.27)
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≤ D −H
(
WK |WH,H, Q[K,H]

1:N ,W1:K−1

)
+ o(L) (5.28)

(5.3),(5.4)
= D − L+ o(L) (5.29)

where (5.23), (5.27) follow from the decodability ofWK given
(
Q

[K,H]
1:N , A

[K,H]
1:N ,WH,H

)
,

(5.24), (5.29) follow from the independence of W1:K and Q
[K,H]
1:N given H, and (5.26)

follows from the independence bound. Combining (5.21) and (5.29) yields (5.20).

�

For the conditional mutual information term on the right hand side of (5.20),

we have

I
(
W1:K−1;Q

[K,H]
1:N , A

[K,H]
1:N |WH,H,WK

)
=
∑
h

p(h)I
(
W1:K−1;Q

[K,h]
1:N , A

[K,h]
1:N |Wh, h,WK

)
(5.30)

=
∑
h

p(h)I
(
W1:K−1;Q

[K,h]
1:N , A

[K,h]
1:N |Wh,WK

)
. (5.31)

where we have written the mutual information in (5.20) as an expectation over all

possible caching scheme realizations, as the databases do not know which messages

are cached.

In the following lemma, we develop an inductive relation for the mutual infor-

mation term on the right hand side of (5.31).

Lemma 5.2 (Fractional induction lemma) For all k ∈ {1, . . . , K−1}, the mu-
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tual information term in (5.31) can be inductively lower bounded as,

I
(
W1:k;Q

[k+1,h]
1:N , A

[k+1,h]
1:N |Wh,Wk+1:K

)
≥ 1

N
I
(
W1:k−1;Q

[k,h]
1:N , A

[k,h]
1:N |Wh,Wk:K

)
+
L

N
(1− rk)− o(L), (5.32)

where rk = 0 when k > M .

Lemma 5.2 is a generalization of [12, Lemma 6] to our setting. The main

difference between Lemma 5.2 and [12, Lemma 6] is that the cached PSI results in

a different induction relation.

Proof: We start with the left hand side of (5.32),

I
(
W1:k;Q

[k+1,h]
1:N , A

[k+1,h]
1:N |Wh,Wk+1:K

)
=

1

N
×N × I

(
W1:k;Q

[k+1,h]
1:N , A

[k+1,h]
1:N |Wh,Wk+1:K

)
(5.33)

≥ 1

N

N∑
n=1

I
(
W1:k;Q

[k+1,h]
n , A[k+1,h]

n |Wh,Wk+1:K

)
(5.34)

(5.7)
=

1

N

N∑
n=1

I
(
W1:k;Q

[k,h]
n , A[k,h]

n |Wh,Wk+1:K

)
(5.35)

≥ 1

N

N∑
n=1

I
(
W1:k;A

[k,h]
n |Wh,Wk+1:K , Q

[k,h]
n

)
(5.36)

(5.5)
=

1

N

N∑
n=1

H
(
A[k,h]
n |Wh,Wk+1:K , Q

[k,h]
n

)
(5.37)

≥ 1

N

N∑
n=1

H
(
A[k,h]
n |Wh,Wk+1:K , Q

[k,h]
1:N , A

[k,h]
1:n−1

)
(5.38)

(5.5)
=

1

N

N∑
n=1

I
(
W1:k;A

[k,h]
n |Wh,Wk+1:K , Q

[k,h]
1:N , A

[k,h]
1:n−1

)
(5.39)

=
1

N
I
(
W1:k;A

[k,h]
1:N |Wh,Wk+1:K , Q

[k,h]
1:N

)
(5.40)
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(5.3),(5.4)
=

1

N
I
(
W1:k;Q

[k,h]
1:N , A

[k,h]
1:N |Wh,Wk+1:K

)
(5.41)

(5.6)
=

1

N
I
(
W1:k;Wk, Q

[k,h]
1:N , A

[k,h]
1:N |Wh,Wk+1:K

)
− o(L) (5.42)

=
1

N
I (W1:k;Wk|Wh,Wk+1:K) +

1

N
I
(
W1:k;Q

[k,h]
1:N , A

[k,h]
1:N |Wh,Wk:K

)
− o(L)

(5.43)

=
1

N
I
(
W1:k;Q

[k,h]
1:N , A

[k,h]
1:N |Wh,Wk:K

)
+
L

N
(1− rk)− o(L), (5.44)

where (5.34) and (5.36) follow from the chain rule and the non-negativity of mutual

information, (5.35) follows from the privacy constraint, (5.37), (5.39) follow from the

fact that answer strings are deterministic functions of the messages and the queries,

(5.38) follows from the fact that conditioning reduces entropy, (5.41) follows from

the independence of W1:K and Q
[k,h]
1:N , (5.42) follows from the reliability constraint

on Wk, and (5.44) is due to the fact that H (Wk|Wh,Wk+1:K) = L(1− rk), where if

k /∈ h then rk = 0. �

By applying Lemma 5.2 recursively to the right hand side of (5.31)

I
(
W1:K−1;Q

[K,h]
1:N , A

[K,h]
1:N |Wh,WK

)
(5.32)

≥ 1

N
I
(
W1:K−2;Q

[K−1,h]
1:N , A

[K−1,h]
1:N |Wh,WK−1:K

)
+
L

N
− o(L) (5.45)

(5.32)

≥ 1

N2
I
(
W1:K−3;Q

[K−2,h]
1:N , A

[K−2,h]
1:N |Wh,WK−2:K

)
+

L

N2
+
L

N
− o(L) (5.46)

(5.32)

≥ . . . (5.47)

(5.32)

≥ 1

NK−1−M I
(
W1:M ;Q

[M+1,h]
1:N , A

[M+1,h]
1:N |Wh,WM+1:K

)
+

L

NK−1−M + · · ·+ L

N2
+
L

N
− o(L) (5.48)

(5.32)

≥ 1

NK−M I
(
W1:M−1;Q

[M,h]
1:N , A

[M,h]
1:N |Wh,WM :K

)
+

L

NK−M (1− rM)

146



+
L

NK−1−M + · · ·+ L

N2
+
L

N
− o(L) (5.49)

(5.32)

≥ . . . (5.50)

(5.32)

≥ L(1− r1)
NK−1 + · · ·+ L(1− rM)

NK−M + · · ·+ L

N2
+
L

N
− o(L). (5.51)

Note that in (5.45) to (5.48), we apply the fractional induction lemma with r = 0,

since WM+1:K are not cached in Wh. In (5.49) to (5.51), rk > 0 for the fractional

induction lemma, since W1:M are cached in Wh partially.

By combining (5.20), (5.31), and (5.51), and dividing by L on both sides, we

obtain a lower bound for the normalized download cost as

D∗ ≥ 1 +
1

N
+

1

N2
+ · · ·+ 1

NK−1−M +
1− rM
NK−M +

1− rM−1
NK−M+1

+ · · ·+ 1− r1
NK−1 , (5.52)

which proves (5.10).

5.5 Achievability Proof

Our achievability scheme is based on the PIR schemes in [12] and [33]. For the

portion of the messages not cached by the user, we use the PIR scheme in [12],

which applies the following three principles recursively: 1) database symmetry, 2)

message symmetry within each database, and 3) exploiting undesired messages as

side information. For the portion of the messages cached by the user, we use the

PIR scheme in [33], which is based on MDS codes and consists of two stages: The

first stage determines the systematic part of the MDS code according to the queries

147



generated in [12]. In the second stage, the user reduces the download cost by

downloading the parity part of the MDS code only. By applying the two PIR

schemes, the user retrieves the desired message privately while keeping the cached

messages private.

5.5.1 Motivating Examples

5.5.1.1 N = 2 Databases, K = 5 Messages, M = 2 Accessed Mes-

sages, and S = 1 with Uniform Caching

In this example, in the prefetching phase, the user randomly chooses two messages

to cache, say W1 and W4. Since S = 1 and the user uses uniform caching scheme,

the user caches the first half of W1 and the first half of W4. We note that the

databases are aware of the caching scheme, i.e., the databases know that two out of

five messages are chosen by the user, and the first halves of the chosen messages are

cached. However, the databases do not know which are the two chosen messages.

In the retrieval phase, assume that the user wishes to retrieve message W3

privately. For the first half portion of the message, i.e., for the symbols in the

interval [0, L
2
], since the user has cached messages W1 and W4, the user applies the

PIR scheme in [33] with M = 2. The total download cost for the first half portion

of the message, as shown in (5.12), is

L

2
×
(

1 +
1

2
+

1

25−1−2

)
. (5.53)
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For the remaining half portion of the message, i.e., for the symbols in the interval

[L
2
, L], since the user has not cached any messages, the user applies the PIR scheme

in [12]. The total download cost for the remaining half portion of the message, as

shown in (5.11), is

L

2
×
(

1 +
1

2
+

1

22
+

1

23
+

1

25−1

)
. (5.54)

The overall download cost is the sum of (5.53) and (5.54). Therefore, the

optimal normalized download cost is 59
32

, which can also be obtained through (5.10)

by letting r1 = 1
2

and r2 = 1
2
. Note that since we have applied the PIR scheme in [33]

to retrieve the first half portion of the message, the databases cannot learn which

messages are cached by the user. In addition, both PIR schemes in [12] and [33] keep

the identity of the desired message private. Therefore, the combination of these two

PIR schemes is a feasible PIR scheme for PIR-PSI a under storage constraint [18].

5.5.1.2 N = 2 Databases, K = 5 Messages, S = 1, M = 3 with

r1 = 1
2 , and r2 = r3 = 1

4

In this example, see Fig. 5.2, in the prefetching phase, since r1 = 1
2
, the user first

randomly chooses one message to cache, say W3, and the user caches the first half

of W3. Since r2 = r3 = 1
4
, the user then randomly chooses two other messages to

cache, say W2 and W5, and the user caches the first 1
4

portions of W2 and W5. Note

that S = 1 and 1
2
× 1 + 1

4
× 2 = 1, and the local cache memory size constraint is

satisfied. We note that the databases are aware of the caching strategy, i.e., the
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PIR in [12]

PIR in [33], M = 1

PIR in [33], M = 3

W1

W2

W3

W4

W5

W2

W4

W1

W3

W5

Figure 5.2: Achievable scheme: K = 5, S = 1, and M = 3 with r1 = 1
2
, and

r2 = r3 = 1
4
.

databases know that three out of five messages are chosen by the user, and for one

of the chosen message, the first half of the message is cached, and for the remaining

two chosen messages, the first 1
4

portions are cached. However, the databases do

not know which three messages are chosen.

In the retrieval phase, assume that the user wishes to retrieve message W1

privately. For the first 1
4

portion of messages, i.e., for the symbols in the interval

[0, L
4
], since the user caches messages W2, W3 and W5, the user applies the PIR

scheme in [33] with M = 3. The total download cost for the first 1
4

portion of the

message, as shown in (5.12), is

L

4
×
(

1 +
1

25−1−3

)
. (5.55)
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For the following 1
4

portion of messages, i.e., for the symbols in the interval [L
4
, L
2
],

since the user caches message W3, the user applies the PIR scheme in [33] with

M = 1. The total download cost for the second 1
4

portion of the message, as shown

in (5.12), is

L

4
×
(

1 +
1

2
+

1

22
+

1

25−1−1

)
. (5.56)

For the last half portion of messages, i.e., for the symbols in the interval [L
2
, L], since

the user has not cached any messages, the user applies the PIR scheme in [12]. The

total download cost for the last half portion of the message, as shown in (5.11), is

L

2
×
(

1 +
1

2
+

1

22
+

1

23
+

1

25−1

)
. (5.57)

The overall download cost is the sum of (5.55), (5.56) and (5.57). Therefore,

the optimal normalized download cost is 29
16

, which can also be obtained through

(5.10) by letting r1 = 1
2
, and r2 = r3 = 1

4
. Note that by applying the PIR scheme

in [33] to retrieve the first 1
4

portion and the middle 1
4

portion of the message, the

databases cannot learn which messages have been cached by the user. In addition,

both PIR schemes in [12] and [33] hide the identity of the desired message. Therefore,

the combination of these two PIR schemes is a feasible PIR scheme for PIR-PSI

under a storage constraint [18].
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5.5.2 General Achievable Scheme

We now describe the general achievable scheme for r1 ≥ r2 ≥ · · · ≥ rM . We

first consider the first rM fraction of messages, i.e., for the symbols in the interval

[0, LrM ]. Since r1 ≥ r2 ≥ · · · ≥ rM , the user caches M messages for this portion.

The user applies the PIR scheme in [33] which results in the download cost

LrM ×
(

1 +
1

N
+ +

1

N2
+ · · ·+ 1

NK−1−M

)
. (5.58)

Following the same logic, for the symbols in the interval [Lri, Lri−1], i ≥ 2, the user

caches i messages for this portion. The user applies the PIR scheme in [33] which

results in the download cost

L(ri−1 − ri)×
(

1 +
1

N
+ +

1

N2
+ · · ·+ 1

NK−i

)
. (5.59)

Lastly, for the symbols in the interval [Lr1, L], the user caches no messages for this

portion. The user applies the PIR scheme in [12] which results in the download cost

L(1− r1)×
(

1 +
1

N
+ +

1

N2
+ · · ·+ 1

NK−1

)
. (5.60)

The overall download cost is the sum of (5.58), (5.59) for i = 2, 3, . . . ,M , and

(5.60), which is (5.10). By applying the PIR scheme in [33] to retrieve symbols in

the interval of [0, Lr1], the databases cannot learn which messages have been cached

by the user. In addition, both PIR schemes in [12] and [33] protect the identity
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of the desired message. Therefore, the combination of these two PIR schemes is a

feasible PIR scheme for PIR-PSI under a storage constraint [18].

5.6 Conclusion

In this chapter, we have introduced a new PIR model, namely PIR-PSI under a

storage constraint. In this model, the user randomly chooses M messages and

caches the first ri portion of the chosen messages for i = 1, . . . ,M subject to the

memory size constraint
∑M

i=1 ri = S. In the retrieval phase, the user wishes to

retrieve a message such that no individual database can learn the identity of the

desired message and the identities of the cached messages. For each caching scheme,

i.e., (r1, . . . , rM), we characterized the optimal normalized download cost to be D∗ =

1+ 1
N

+ 1
N2 +· · ·+ 1

NK−1−M + 1−rM
NK−M + 1−rM−1

NK−M+1 +· · ·+ 1−r1
NK−1 . In addition, we showed that,

for a fixed memory size S, and a fixed number of accessible messages M , uniform

caching achieves the lowest normalized download cost, where uniform caching means

ri = S
M

, i = 1, . . . ,M . Then, we showed that, for a fixed memory size S, among all

K −dSe+ 1 uniform caching schemes, the uniform caching scheme caching M = K

messages achieves the lowest normalized download cost. Finally, we conclude that

for a fixed memory size S, the uniform caching scheme caching K messages achieves

the lowest normalized download cost.
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CHAPTER 6

The Capacity of Private Information Retrieval from Decen-

tralized Uncoded Caching Databases

6.1 Introduction

We consider the private information retrieval (PIR) problem from decentralized un-

coded caching databases. There are two phases in our problem setting, a caching

phase, and a retrieval phase. In the caching phase, a data center containing all

the K files, where each file is of size L bits, and several databases with storage

size constraint µKL bits exist in the system. Each database independently chooses

µKL bits out of the total KL bits from the data center to cache through the same

probability distribution in a decentralized manner. In the retrieval phase, a user (re-

triever) accesses N databases in addition to the data center, and wishes to retrieve

a desired file privately. We characterize the optimal normalized download cost to be

D
L

=
∑N+1

n=1

(
N
n−1

)
µn−1(1−µ)N+1−n (1 + 1

n
+ · · ·+ 1

nK−1

)
. We show that uniform and

random caching scheme which is originally proposed for decentralized coded caching

by Maddah-Ali and Niesen [54], along with Sun and Jafar retrieval scheme [12]

which is originally proposed for PIR from replicated databases surprisingly result in
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the lowest normalized download cost. This is the decentralized counterpart of the

recent result of Attia, Kumar and Tandon [43] for the centralized case. The con-

verse proof contains several ingredients such as interference lower bound, induction

lemma, replacing queries and answering string random variables with the content of

distributed databases, the nature of decentralized uncoded caching databases, and

bit marginalization of joint caching distributions.

6.2 System Model

We consider a system consisting of one data center and several databases. The data

center stores K independent files, labeled as W1, W2, . . . , WK , where each file is of

size L bits. Therefore,

H(W1) = · · · = H(WK) = L, H(W1, . . . ,WK) = H(W1) + · · ·+H(WK).

(6.1)

Each database has a storage capacity of µKL bits, where 0 ≤ µ ≤ 1.

The system operates in two phases: In the caching phase, we consider the case

of uncoded caching, i.e., each database stores a subset of bits from the data center.

Due to the storage size constraint, each database at most stores µKL bits out of

the total KL bits from the data center. Here, we denote ith database as DBi and

use random variable Zi to denote the stored content in DBi. Therefore, the storage
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size constraint for DBi is

H(Zi) ≤ µKL. (6.2)

We consider the decentralized setting for the caching phase, i.e., each database

chooses a subset of bits to store independently according to the same probability

distribution, denoted by PH . Rigorously, let random variable Hi denote the indices

of the stored bits in DBi. For N databases, the decentralized caching scheme H can

be specified as

P(H = (H1, . . . , HN)) =
N∏
i=1

PH(Hi). (6.3)

In the retrieval phase, the user accesses N databases and the data center. We

note that we do not know in advance which N databases are available or which N

databases the user will have access to. Here, we also assume that in the retrieval

phase, the data center and N databases do not communicate with each other (no

collusion). To simplify the notation, we use DB0 to denote the data center, and

therefore Z0 = (W1, . . . ,WK) since the data center stores all the K files. The user

privately generates an index θ ∈ [K] = {1, . . . , K}, and wishes to retrieve file Wθ

such that it is impossible for either the data center or any individual database to

identify θ. For random variables θ, and W1, . . . ,WK , we have

H (θ,W1, . . . ,WK) = H (θ) +H(W1) + · · ·+H(WK). (6.4)
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In order to retrieve file Wθ, the user sends N + 1 queries Q
[θ]
0 , . . . , Q

[θ]
N to DB0, . . . ,

DBN , where Q
[θ]
n is the query sent to DBn for file Wθ. Note that the queries are

independent of the realization of the K files. Therefore,

I(W1, . . . ,WK ;Q
[θ]
0 , . . . , Q

[θ]
N ) = 0. (6.5)

Upon receiving the query Q
[θ]
n , DBn replies with an answering string A

[θ]
n , which is

a function of Q
[θ]
n and Zn. Therefore, ∀θ ∈ [K], ∀n ∈ {0} ∪ [N ],

H(A[θ]
n |Q[θ]

n , Zn) = 0. (6.6)

After receiving the answering strings A
[θ]
0 , . . . , A

[θ]
N from DB0, . . . , DBN , the

user needs to decode the desired file Wθ reliably. By using Fano’s inequality, we

have the following reliability constraint

H
(
Wθ|Q[θ]

0 , . . . , Q
[θ]
N , A

[θ]
0 , . . . , A

[θ]
N

)
= o(L), (6.7)

where o(L) denotes a function such that o(L)
L
→ 0 as L→∞.

To ensure that individual databases do not know which file is retrieved, we

have the following privacy constraint, ∀n ∈ {0} ∪ [N ], ∀θ ∈ [K],

(Q[1]
n , A

[1]
n ,W1, . . . ,WK) ∼ (Q[θ]

n , A
[θ]
n ,W1, . . . ,WK), (6.8)

where A ∼ B means that A and B are identically distributed.
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Given that each file is of size L bits, for a fixed K, µ and decentralized caching

probability distribution PH , let H denote the indices of the cached bits in the N

databases available in the retrieval phase. The probability distribution of H is spec-

ified in (6.3). Let D
[θ]
H represent the number of downloaded bits via the answering

strings A
[θ]
0:N , where A

[θ]
0:N = (A

[θ]
0 , . . . , A

[θ]
N ). Then,

D
[θ]
H =

N∑
n=0

H
(
A[θ]
n

)
. (6.9)

We further denote DH as the expected number of downloaded bits with respect to

different file requests, i.e., DH = Eθ

[
D

[θ]
H

]
. Finally, we denote D as the expected

number of downloaded bits with respect to different realization of the cached bit

indices, i.e., D = EH [DH]. A pair (D,L) is achievable if there exists a PIR scheme

satisfying the reliability constraint (6.7) and the privacy constraint (6.8). The opti-

mal normalized download cost D∗ is defined as

D∗ = inf

{
D

L
: (D,L) is achievable

}
. (6.10)

In this work, we aim at characterizing the optimal normalized download cost and

finding the optimal decentralized caching probability distribution.

Next, we illustrate the system model and the problem considered with a simple

example of K = 3 files and N = 2 databases in the retrieval phase; see Fig. 6.1.

Consider a data center storing K = 3 files where each file is of size 4 bits. In the

caching phase, there are 4 databases in the system, and each database can at most
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Data center

Database 1 Database 2 Database 3 Database 4

Caching phase
a1a2a3a4

b1 b2 b3 b4

c1 c2 c3 c4

a1a2a3a4

caching option 1

caching option 2

a3 b1 b4 c2

caching option 3

a1a2 b1 c1

User
Retrieval phase

Figure 6.1: PIR from decentralized caching databases with K = 3, N = 2, and
µ = 1

3
.

store 4 bits. Each database can always store the first file, which is of size 4 bits, as

caching option 1 in Fig. 6.1. Or each database can uniformly and randomly choose

4 bits out of total 12 bits from the data center to store. One of the realization is

shown as caching option 2 in Fig. 6.1. Each database can also choose 2 bits from

the first file and 1 bit each from the remaining two files to store, where one of the

realization is shown as caching option 3 in Fig. 6.1. We require each database to

use the same probability distribution to choose the bits to store in order to satisfy

the decentralized requirement. In this example, we assume that the user can access

the data center and N = 2 databases in the retrieval phase, say the first and the

third database, and the user wishes to download a file privately. Our questions are

as follows: What is the optimal probability distribution to use in the caching phase?

What is the optimal PIR scheme to use in the retrieval phase? How can we jointly
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design the schemes in the two phases such that the expected normalized download

cost is the lowest in the second phase?

6.3 Main Results and Discussions

We characterize the optimal normalized download cost for PIR from decentralized

uncoded caching databases in the following theorem.

Theorem 6.1 For PIR from decentralized uncoded caching databases with K files,

where each file is of size L bits, N databases in addition to a data center available

in the retrieval phase, and a storage size constraint µKL, 0 < µ < 1, bits for each

database, the optimal normalized download cost is

D

L
=

N+1∑
n=1

(
N

n− 1

)
µn−1(1− µ)N+1−n

(
1 +

1

n
+ · · ·+ 1

nK−1

)
. (6.11)

The achievability scheme is provided in Section 6.4, and the converse proof is

shown in Section 6.5. We first use the following example to show the main ingredients

of Theorem 6.1.

6.3.1 Motivating Example: K = 3 and N = 2

In this example, we consider the case where the data center stores K = 3 indepen-

dent files labeled as A, B, and C, where each file is of size L bits. In the caching

phase, several databases with storage capacity of 3µL bits are present in the system.

We will show that the optimal normalized download cost is D
L

= 17
18
µ2− 5

2
µ+3 when

160



N = 2 databases in addition to the data center are available in the retrieval phase.

6.3.1.1 Achievability Scheme

In the caching phase, to satisfy the storage size constraint, each database randomly

and uniformly stores 3µL bits out of total 3L bits from the data center. Each

database operates independently through the same probability distribution resulting

in decentralized caching.

In the retrieval phase, suppose N = 2 databases, labeled as DB1 and DB2,

in addition to the data center, labeled as DB0, are available to the user, and the

user wishes to retrieve file A privately. Let us first focus on one file, say A. We can

partition file A into four subfiles

A = (A0, A0,1, A0,2, A0,1,2), (6.12)

where, for S ⊆ {0, 1, 2}, AS denotes the bits of file A which are stored in databases

in S. For example, A0 denotes the bits of file A only stored in DB0 and A0,2 denotes

the bits of file A stored in DB0 and DB2 and so on. Since each bit is stored in the

data center, 0 exists in the label of every partition. By the law of large numbers,

|AS| = Lµ|S|−1(1− µ)3−|S| + o(L), (6.13)

when the file size is large enough. We can do the same partitions for files B and C.

To retrieve file A privately, we first retrieve the subfile A0,1,2 privately. We
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apply the PIR scheme proposed in [12] to retrieve the subfile A0,1,2. Subfile A0,1,2 is

replicated in 3 databases and the total number of files is 3 since we also have B0,1,2

and C0,1,2. Therefore, we download

Lµ2

(
1 +

1

3
+

1

9

)
+ o(L) (6.14)

bits. We also need to retrieve the subfile A0,1 privately. Subfile A0,1 is replicated in

2 databases and the total number of files is 3 since we also have B0,1 and C0,1. By

applying the PIR scheme in [12], we download

Lµ(1− µ)

(
1 +

1

2
+

1

4

)
+ o(L) (6.15)

bits. Next, we need to retrieve the subfile A0,2 privately. Using [12], we download

Lµ(1− µ)

(
1 +

1

2
+

1

4

)
+ o(L) (6.16)

bits. Finally, we need to retrieve A0 privately. Using [12], we download

L(1− µ)2(1 + 1 + 1) + o(L) (6.17)

bits. By adding (6.14), (6.15), (6.16) and (6.17), we show that the normalized

download cost

17

18
µ2 − 5

2
µ+ 3 (6.18)
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is achievable.

6.3.1.2 Converse Proof

Here, we show that among all the decentralized caching probability distributions

PH , the lowest normalized download cost for N = 2 databases is as shown in (6.18).

Given a decentralized caching probability distribution PH , we have a resulting H in

the retrieval phase.

We lower bound DH first. In the retrieval phase, the stored content of DB0,

DB1, and DB2 are fixed and uncoded, i.e., Z0, Z1 and Z2 are fixed and uncoded. We

can apply the lower bound in [43, Eqn. (31)] as the lower bound for DH. Therefore,

DH ≥ L+
4

27

3∑
k=1

H(Wk) +
11

108

2∑
i=0

3∑
k=1

H(Wk|Zi) +
17

54

2∑
i=0

3∑
k=1

H(Wk|Z[0:2]\i) + o(L)

(6.19)

=
13

9
L+

11

108

2∑
i=1

3∑
k=1

H(Wk|Zi) +
17

54

3∑
k=1

H(Wk|Z1, Z2) + o(L) (6.20)

≥ 13

9
L+

11

108
(3L− 3µL+ 3L− 3µL) +

17

54

3∑
k=1

H(Wk|Z1, Z2) + o(L) (6.21)

=
37

18
L− 11

18
µL+

17

54
H(W1:3|Z1, Z2) + o(L), (6.22)

where (6.20) holds due to Z0 = (W1,W2,W3), and (6.21) holds due to (6.2). We

note that different H results in different Z1 and Z2.

We lower bound D now. From (6.22), we have

D = EH [DH] ≥ 37

18
L− 11

18
µL+

17

54
EH [H(W1:3|Z1, Z2)] + o(L). (6.23)
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Let random variables X
(n)
i,j , i = 1, . . . , L, j = 1, . . . , K, be the indicator functions

showing that the ith bit of file Wj is cached in DBn or not, i.e., X
(n)
i,j = 1 means

that the ith bit of file Wj is stored in DBn and X
(n)
i,j = 0 means that it is not stored

in DBn. For DB1 we have

X
(1)
1,1 + · · ·+X

(1)
L,1 +X

(1)
1,2 + · · ·+X

(1)
L,2 +X

(1)
1,3 + · · ·+X

(1)
L,3 ≤ 3µL (6.24)

due to the storage size constraint in (6.2). We note that PH induces probability

measures on random variables X
(n)
i,j , and let X

(n)
i,j = 1 with probability pi,j, where

we remove the superscript n since each database adopts the same probability distri-

bution PH to choose the cached bits due to the decentralized property. By taking

expectation on (6.24) and applying the linearity of expectation, we have

E[X
(1)
1,1 ] + · · ·+ E[X

(1)
L,3] ≤ 3µL, (6.25)

which yields

p1,1 + · · ·+ pL,3 ≤ 3µL. (6.26)

Let random variables Vi,j, i = 1, . . . , L, j = 1, . . . , K, be the indicator functions

showing that the ith bit of file Wj is not cached in DB1 and DB2, i.e., Vi,j = 1

means that the ith bit of file Wj is not stored in either DB1 or DB2. Therefore, we
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have

Vi,j = (1−X(1)
i,j )(1−X(2)

i,j ). (6.27)

Now, we can evaluate EH [H(W1:3|Z1, Z2)] in (6.23) as follows

EH [H(W1:3|Z1, Z2)] = E[V1,1 + · · ·+ VL,3] (6.28)

= E[V1,1] + · · ·+ E[VL,3] (6.29)

= (1− p1,1)2 + · · ·+ (1− pL,3)2. (6.30)

Therefore, continuing from (6.23), we have

D ≥ 37

18
L− 11

18
µL+

17

54

[
(1− p1,1)2 + · · ·+ (1− pL,3)2

]
+ o(L), (6.31)

where p1,1, . . . , pL,3 are subject to (6.26). To further lower bound the right hand

side of (6.31), we minimize the right hand side with respect to pi,j subject to (6.26).

Hence, we consider the following Lagrangian

L(p1,1, . . . , pL,3, λ) = (1− p1,1)2 + · · ·+ (1− pL,3)2 + λ (p1,1 + · · ·+ pL,3 − 3µL) .

(6.32)

From the KKT conditions, we have

λ = 2(1− pi,j), i = 1, . . . , L, j = 1, 2, 3. (6.33)
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Thus, we can further lower bound (6.31) by letting p1,1 = · · · = pL,3 = µ, and we

have

D

L
≥ 37

18
− 11

18
µ+

17

54

[
3(1− µ)2

]
+
o(L)

L
(6.34)

=
17

18
µ2 − 5

2
µ+ 3 +

o(L)

L
. (6.35)

Therefore, we show that the optimal normalized download cost is 17
18
µ2− 5

2
µ+3 when

N = 2 databases in addition to the data center are available in the retrieval phase.

To achieve the optimal normalized download cost, each database should randomly

and uniformly store the bits in the caching phase.

6.3.2 Further Examples and Numerical Results

Now, we use different scenarios to illustrate the optimal normalized download cost

in (6.11). We first consider the scenario where the data center contains K = 10 files,

each database with storage size constraint µ = 1
2
, and in the retrieval phase, the

user can access N = 0, . . . , 30 databases in addition to the data center. We plot the

expected normalized download cost versus different number of available databases

in Fig. 6.2. When N = 0, in order to download the desired file privately, the user

should download all the files in the data center, and this results in a download cost

of D
L

= K = 10. As the number of accessible databases increases, the normalized

download cost decreases. We next consider the scenario where the data center

contains K = 10 files, and the user can access N = 5 databases in addition to

the data center in the retrieval phase. We plot the expected normalized download
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Figure 6.2: PIR from different number of available databases in the retrieval phase
with K = 10 and µ = 1

2
.

cost versus different storage size constraint µ in Fig. 6.3. When µ = 0, in order

to download the desired file privately, the user should download all the files in the

data center resulting in D
L

= K = 10. As µ increases, the normalized download

cost decreases. Finally, we conclude this section with the following general remarks

about our main result.

6.3.3 Remarks

Remark 6.1 The achievability scheme consists of two parts, the design of the prob-

ability distribution in the caching phase and the PIR scheme in the retrieval phase.

We find that the uniform and random caching scheme, originally proposed in [54] for

decentralized coded caching, results in the optimal normalized download cost in the

retrieval phase. We remark here that the symmetric batch caching scheme, originally

proposed in [53] for centralized coded caching, also results in the optimal normalized
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Figure 6.3: PIR from N = 5 databases with different storage constraint µ with
K = 10.

download cost for PIR from centralized uncoded caching databases [43]. In the re-

trieval phase, according to the distribution of the subfiles, we apply the PIR scheme

proposed in [12] for all subfiles to retrieve the desired file.

Remark 6.2 For the converse, we first apply the lower bound derived in [43] which

introduces new ingredients in addition to the interference lower bound lemma and

induction lemma in [12, Lemma 5 and Lemma 6]. We note that in [43] the authors

replace random variables for queries and answering strings by the contents of the

distributed databases in a novel way which is crucial for the converse. With this re-

placement, we can account for different cached content in the caching phase resulting

in different lower bound in the normalized download cost in the retrieval phase. Due

to the nature of uncoded caching, this replacement facilitates further lower bound.

For the decentralized problem here, to compare different probability distributions in

the caching phase, we focus on the marginal distributions on each bit. This transfor-
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mation allows us to use linearity of expectation, and the nature of decentralization

and uncoded caching to further lower bound the expected normalized download cost.

Remark 6.3 A more directly related PIR problem from centralized uncoded caching

databases for our setting is the one where, in the caching phase, the data center

arranges the files in N databases in a centralized manner, and in the retrieval phase,

the user has access also to the data center in addition to the N databases. This is

different from the problem setting in [38, 43], since there the user can only access

the N databases in the retrieval phase. As a side note, we can show that symmetric

batch caching scheme is still optimal for this extended problem setting where the data

center also participates in the PIR stage. Rigorously, the optimal trade-off between

storage and download cost in this case is given by the lower convex envelope of the

following (µ,D(µ)) pairs, for t = 0, 1, . . . , N ,

(
µ =

t

N
,D(µ) =

K−1∑
k=0

1

(t+ 1)k

)
. (6.36)

To achieve this trade-off, the data center arranges the files into the N databases as

in [38, 43]. In the retrieval phase, the user accesses also the data center; therefore,

the subfiles are stored in one more database. For the converse, we no longer require

all the N databases to reconstruct the entire K files as in [38, 43]. Thus, while in

[38,43] the smallest allowable µ is µ = 1
N

, since the N databases need to reconstruct

the entire K files, here since the user can access the data center, the parameter µ

starts from 0. Now, we can compare PIR from centralized caching databases and

PIR from decentralized caching databases fairly, since in the retrieval phase, the
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Figure 6.4: PIR from centralized caching databases and decentralized caching
databases.

user can access the data center in both cases. We consider the case where K = 10

and N = 5, and plot the result in Fig. 6.4.

6.4 Achievability Scheme

The achievability scheme consists of two parts: the design of the probability distri-

bution used in the caching phase and the PIR scheme used in the retrieval phase. In

the caching phase, each database uniformly and randomly stores µKL bits from the

data center. The storage size constraint in (6.2) is satisfied directly. Each database

operates independently through the same probability distribution resulting in de-

centralized caching.

In the retrieval phase, suppose there are N databases in addition to the data
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center available to the user. Each file Wj can be expressed as

Wj =
⋃

{0}⊆S⊆{0,1,...,N}

Wj,S, (6.37)

where Wj,S represents the bits of file Wj which are stored in databases in S. Since

each bit must be stored in the data center, i.e., DB0, we have {0} ⊆ S. By the law

of large numbers,

|Wj,S| = Lµ|S|−1(1− µ)N+1−|S| + o(L), (6.38)

when the file size is large enough.

To retrieve the desired file, say Wj, privately, we retrieve each subfile, Wj,S,

privately. Subfile Wj,S is replicated in |S| databases, and for each of these |S|

databases, there are K subfiles, i.e., Wk,S, k = 1, . . . , K. We apply the PIR scheme

in [12] to retrieve Wj,S privately by downloading

Lµ|S|−1(1− µ)N+1−|S|
(

1 +
1

|S| + · · ·+ 1

|S|K−1
)

+ o(L) (6.39)

bits. We also note that there are
(

N
|S|−1

)
types of Wj,S. Therefore, the following

normalized download cost

D

L
=

N+1∑
n=1

(
N

n− 1

)
µn−1(1− µ)N+1−n

(
1 +

1

n
+ · · ·+ 1

nK−1

)
(6.40)

is achievable.
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6.5 Converse Proof

We first derive a lower bound for DH. Since in the retrieval phase the content of DB0,

. . . , DBN , are fixed to be Z0, . . . , ZN , we can use the lower bound derived in [43,

Eqn. (71)] to serve as the lower bound for DH. A key step to obtain [43, Eqn.(71)] is

to replace the query and answering string random variables with the content of each

database, i.e., replacement of Q
[k]
N and A

[k]
N with ZN . With this replacement, one

can account for different cached content in the caching phase resulting in different

lower bound in the normalized download cost in the retrieval phase. In addition,

due to the nature of uncoded caching, this replacement facilitates a further lower

bound. Moreover, to obtain [43, Eqn. (71)], the authors find interesting recursive

relationships to compactly deal with the nested harmonic sums. Therefore, from [43,

Eqn.(71)] we have

DH ≥ L+
N+1∑
l=1

(
N + 1

l

)(
1

l
+

1

l2
+ · · ·+ 1

lK−1

)
xl, (6.41)

where

xl ,
1

K
(
N+1
l

) ∑
{0}⊆S⊆[0:N ], |S|=l

H(W1:K,S), l ∈ [1 : N + 1], (6.42)

and W1:K,S represents the bits of files W1:K which are stored in databases in S.

In the following lemma, we develop a lower bound for E[xl].
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Lemma 6.1 For l ∈ [1 : N + 1], and xl given in (6.42), we have

E[xl] ≥ Lµl−1(1− µ)N+1−l

(
N
l−1

)(
N+1
l

) . (6.43)

Proof: By taking expectation on (6.42) and using the linearity of expectation, we

have

E[xl] =
1

K
(
N+1
l

) ∑
{0}⊆S⊆[0:N ], |S|=l

E[H(W1:K,S)]. (6.44)

Let random variables X
(n)
i,j , i = 1, . . . , L, j = 1, . . . , K, be the indicator functions

showing that the ith bit of file Wj is cached in DBn, n = 0, . . . , N , or not, i.e.,

X
(n)
i,j = 1 means that the ith bit of file Wj is stored in DBn and X

(n)
i,j = 0 means

that it is not stored in DBn. For DBn we have

X
(n)
1,1 + · · ·+X

(n)
L,1 + · · ·+X

(n)
1,K + · · ·+X

(n)
L,K ≤ µKL (6.45)

due to the storage size constraint in (6.2). We note that PH induces probability

measures on random variables X
(n)
i,j , and let X

(n)
i,j = 1 with probability pi,j, where

we remove the superscript n since each database adopts the same probability distri-

bution PH to choose the cached bits due to the decentralized caching property. By

taking expectation on (6.45) and applying the linearity of expectation, we have

E[X
(n)
1,1 ] + · · ·+ E[X

(n)
L,K ] ≤ µKL, (6.46)
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which yields

p1,1 + · · ·+ pL,K ≤ µKL. (6.47)

Let random variables Y S
i,j, i = 1, . . . , L, j = 1, . . . , K, be the indicator functions

showing that the ith bit of file Wj is cached in DBn, n ∈ S, i.e., Yi,j = 1 means that

the ith bit of the file Wj is stored in DBn, n ∈ S. Therefore, we have

Y S
i,j =

∏
n∈S

X
(n)
i,j

∏
n∈[0:N ]\S

(1−X(n)
i,j ). (6.48)

Now, we can evaluate E [H(W1:K,S)] in (6.44) as follows

E [H(W1:K,S)] = E[Y S
1,1 + · · ·+ Y S

L,K ] (6.49)

= E[Y S
1,1] + · · ·+ E[Y S

L,K ] (6.50)

= p
|S|−1
1,1 (1− p1,1)N+1−|S| + · · ·+ p

|S|−1
L,K (1− pL,K)N+1−|S|, (6.51)

where p1,1, . . . , pL,K are subject to (6.47). Now, continuing from (6.44), we have

E[xl] =
1

K
(
N+1
l

) ∑
{0}⊆S⊆[0:N ], |S|=l

pl−11,1 (1− p1,1)N+1−l + · · ·+ pl−1L,K(1− pL,K)N+1−l.

(6.52)

To further lower bound (6.52), we consider the following Lagrangian

L(p1,1, . . . , pL,K , λ) = pl−11,1 (1− p1,1)N+1−l + · · ·+ pl−1L,K(1− pL,K)N+1−l
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+ λ (p1,1 + · · ·+ pL,K − µKL) . (6.53)

From the KKT conditions, we have

λ = pl−1i,j (N + 1− l)(1− pi,j)N−l − (l − 1)pl−2i,j (1− pi,j)N+1−l, (6.54)

where i = 1, . . . , L, j = 1, . . . , K. Therefore, we can further lower bound (3.34) by

letting p1,1 = · · · = pL,K = µ, then we have

E[xl] ≥
1

K
(
N+1
l

) ∑
{0}⊆S⊆[0:N ], |S|=l

KLµl−1(1− µ)N+1−l (6.55)

= Lµl−1(1− µ)N+1−l

(
N
l−1

)(
N+1
l

) , (6.56)

which completes the proof. �

Finally, by taking expectation and applying Lemma 6.1 to (6.41), we obtain

D

L
≥ 1 +

N+1∑
l=1

(
N

l − 1

)(
1

l
+

1

l2
+ · · ·+ 1

lK−1

)
µl−1(1− µ)N+1−l (6.57)

= (µ+ (1− µ))N +
N+1∑
l=1

(
N

l − 1

)(
1

l
+

1

l2
+ · · ·+ 1

lK−1

)
µl−1(1− µ)N+1−l

(6.58)

=
N+1∑
l=1

(
N

l − 1

)(
1 +

1

l
+

1

l2
+ · · ·+ 1

lK−1

)
µl−1(1− µ)N+1−l (6.59)

which matches (6.40).
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6.6 Conclusion

We considered the PIR problem from decentralized uncoded caching databases.

Due to the nature of decentralization and the storage size constraint, we allowed

the user to access the data center in the retrieval phase to guarantee that the user

can reconstruct the entire desired file. We showed that uniform and random de-

centralized caching scheme, originally proposed in [54] for the problem of decen-

tralized coded caching, results in the lowest expected normalized download cost in

the PIR phase. We characterized the expected normalized download cost to be

D
L

=
∑N+1

n=1

(
N
n−1

)
µn−1(1 − µ)N+1−n (1 + 1

n
+ · · ·+ 1

nK−1

)
. For the achievability, we

applied the PIR scheme in [12] for all subfiles. For the converse, we first applied the

lower bound derived in [43], and to compare different probability distributions in

the caching phase, we focused on the marginal distributions on individual bits. By

using the nature of decentralization and uncoded caching, we further lower bounded

the normalized download cost. Finally, we showed the matching converse for the

expected normalized download cost, obtaining the exact capacity of the resulting

PIR problem.
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CHAPTER 7

Polar Coding for the General Wiretap Channel with Exten-

sions to Multiuser Scenarios

7.1 Introduction

Information-theoretic work for wiretap channels is mostly based on random coding

schemes. Designing practical coding schemes to achieve information-theoretic se-

crecy is an important problem. By applying two recently developed techniques for

polar codes, namely, universal polar coding and polar coding for asymmetric chan-

nels, we propose a polar coding scheme to achieve the secrecy capacity of the general

wiretap channel. We then apply this coding scheme to achieve the best-known inner

bounds for the multiple access wiretap channel (MAC-WTC), and the broadcast

and interference channels with confidential messages (BC-CM and IC-CM).
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7.2 System Model

7.2.1 Wiretap Channel Model

A wiretap channel consists of a legitimate transmitter who wishes to send messages

to a legitimate receiver secretly in the presence of an eavesdropper. Let X denote

the single-letter input to the main and eavesdropper channels. Let Y and Z denote

the corresponding single-letter outputs of the main and the eavesdropper channels,

respectively. W represents the message to be sent to Bob and kept secret from Eve

with W ∈ W = {1, · · · , 2nR}. Let Pe = Pr(Ŵ 6= W) denote the probability of error

for Bob’s decoding.

The equivocation rate is given by

1

n
H(W |Zn), (7.1)

which reflects the uncertainty of the message given the eavesdropper’s channel ob-

servation. A rate pair (R,Re) is achievable if for any ε > 0, as n→∞,

Pr(Ŵ 6= W) ≤ ε,
1

n
H(W |Zn) ≥ Re − ε. (7.2)

Perfect (weak) secrecy is achieved if R = Re [72]. Therefore, perfect secrecy is

achieved if 1
n
I(W ;Zn) → 0, and the secrecy capacity Cs is the highest achievable

perfect secrecy rate R, which is also the highest possible equivocation rate [72].

Csiszár and Körner characterized the secrecy capacity for the general wiretap chan-

178



nel as [72]

Cs = max
V→X→Y,Z

I(V ;Y )− I(V ;Z). (7.3)

7.2.2 Multiple Access Wiretap Channel

A MAC-WTC consists of two transmitters, one receiver and an eavesdropper. For

k ∈ 1, 2, the two transmitters, with channel inputs Xk, wish to send independent

messages Wk ∈ Wk = {1, · · · , 2nRk} to the legitimate receiver, with channel output

Y , in the presence of an eavesdropper, with channel output Z. A rate pair (R1, R2)

is achievable if for any ε > 0, as n→∞,

Pr(Ŵk 6= Wk) ≤ ε,
1

n
H(W1,W2|Zn) ≥ R1 +R2 − ε. (7.4)

The secrecy capacity region of the MAC-WTC is still an open problem. The best-

known achievable rate region is [95,96] (see also [101–103]):

R1 ≤ [I(V1;Y |V2, T )− I(V1;Z|T )]+,

R2 ≤ [I(V2;Y |V1, T )− I(V2;Z|T )]+,

R1 +R2 ≤ [I(V1, V2;Y |T )− I(V1, V2;Z|T )]+, (7.5)

for any distribution of the form

P (t)P (v1|t)P (v2|t)P (x1|v1)P (x2|v2)P (y, z|x1, x2). (7.6)
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7.2.3 Broadcast Channel With Confidential Messages

A BC-CM consists of a transmitter and two receivers. For k ∈ 1, 2, the transmitter

wishes to send independent messages, Wk ∈ Wk = {1, · · · , 2nRk}, to their respective

receiver k, while keeping the messages secret from the unintended receiver. Let X,

Y1, Y2 denote the single-letter input and outputs of the broadcast channel. A rate

pair (R1, R2) is achievable if for any ε > 0, as n→∞,

Pr(Ŵk 6= Wk) ≤ ε,
1

n
H(W1|Y n

2 ) ≥ R1 − ε,
1

n
H(W2|Y n

1 ) ≥ R2 − ε. (7.7)

The secrecy capacity region of the BC-CM is still an open problem. The best-known

achievable rate region [97] is:

R1 ≤ I(V1;Y1|T )− I(V1;V2|T )− I(V1;Y2|V2, T ),

R2 ≤ I(V2;Y2|T )− I(V1;V2|T )− I(V2;Y1|V1, T ), (7.8)

over all distributions of the form

P (t)P (v1, v2|t)P (x|v1, v2)P (y1, y2|x). (7.9)

7.2.4 Interference Channel With Confidential Messages

An IC-CM consists of two transmitters and two receivers. The two transmitters wish

to send independent messages to their respective receivers, and keep the messages
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confidential from the other receiver. For k ∈ 1, 2, let Xk, Yk denote the single-

letter input and output of the interference channel with messages Wk ∈ Wk =

{1, · · · , 2nRk}. A rate pair (R1, R2) is achievable if for any ε > 0, as n→∞,

Pr(Ŵk 6= Wk) ≤ ε,
1

n
H(W1|Y n

2 ) ≥ R1 − ε,
1

n
H(W2|Y n

1 ) ≥ R2 − ε. (7.10)

The secrecy capacity region of the IC-CM is still an open problem. The best-known

achievable rate region [97] is:

R1 ≤ I(V1;Y1|T )− I(V1;Y2|V2, T ),

R2 ≤ I(V2;Y2|T )− I(V2;Y1|V1, T ), (7.11)

over all distribution of the form

P (t)P (v1|t)P (v2|t)P (x1|v1)P (x2|v2)P (y1, y2|x1, x2). (7.12)

7.3 Existing Polar Coding Techniques

7.3.1 Polar Codes for Asymmetric Channels

Let PXY be the joint distribution of a pair of random variables (X, Y ), where X is a

binary random variable and Y is any finite-alphabet random variable. Let us define
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the Bhattacharyya parameter as follows:

Z(X|Y ) = 2
∑
y

PY (y)
√
PX|Y (0|y)PX|Y (1|y). (7.13)

Let Un = XnGn, where Xn denotes n independent copies of the random variable

X with X ∼ PX , and Gn = G⊗k where G =

1 0

1 1

 and ⊗ denotes the Kronecker

product of matrices for n = 2k. Reference [74] shows that as n → ∞, Ui is almost

independent of U i−1 and uniformly distributed, or otherwise Ui is almost determined

by U i−1. Therefore, [n], the index set {1, 2, . . . , n}, is almost polarized into two sets

HX and LX [80]:

HX = {i ∈ [n] : Z(Ui|U i−1) ≥ 1− δn}, (7.14)

LX = {i ∈ [n] : Z(Ui|U i−1) ≤ δn}, (7.15)

where δn = 2−n
β

and β ∈ (0, 1/2). Moreover,

lim
n→∞

1

n
|HX | = H(X), (7.16)

lim
n→∞

1

n
|LX | = 1−H(X). (7.17)

Let P be a discrete memoryless channel with a binary input X and finite

alphabet output Y . Here, P does not have to be a symmetric channel. Fix a

distribution PX for X. Reference [93] generalizes the above argument to achieve a
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rate close to I(X;Y ). Consider two subsets of [n], HX|Y and LX|Y ,

HX|Y = {i ∈ [n] : Z(Ui|U i−1, Y n) ≥ 1− δn}, (7.18)

LX|Y = {i ∈ [n] : Z(Ui|U i−1, Y n) ≤ δn}. (7.19)

Similar to (7.16) and (7.17), we have

lim
n→∞

1

n
|HX|Y | = H(X|Y ), (7.20)

lim
n→∞

1

n
|LX|Y | = 1−H(X|Y ). (7.21)

With (7.14) and (7.19), we define the following three sets

I = HX ∩ LX|Y , (7.22)

Fr = HX ∩ Lc
X|Y , (7.23)

Fd = Hc
X . (7.24)

In the following, we call the set I the information set, and sets Fr and Fd the frozen

set. Although we call them the frozen set, Fr and Fd have different operational

meanings which will be illustrated below. Note that for the symmetric channel

capacity achieving code design, Fd is an empty set [73].

To achieve rate I(X;Y ) for channel P , let us consider the following coding

scheme. First, the encoder transmits the information bits in the index set I. For

i ∈ I in (7.22), since i ∈ HX , Ui is almost independent of U i−1 and uniformly
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distributed. Therefore, the encoder can freely assign values to UI , where UI denotes

a sub-vector {Ui}i∈I . Moreover, since i ∈ LX|Y , Ui is almost determined by U i−1

and Y n, which means that given the channel output Y n, Ui can be decoded in a

successive manner.

Second, for i ∈ Fr in (7.23), Ui is almost independent of U i−1 and uniformly

distributed, and given the channel output Y n, Ui cannot be reliably decoded. The

encoder transmits UFr with a uniformly random sequence and the randomness is

shared between the transmitter and receiver.

Last, for i ∈ Fd in (7.24), Ui is almost determined by U i−1. The values of UFd

are computed in successive order through the following mapping:

ui = arg max
u∈{0,1}

PUi|U i−1(u|ui−1). (7.25)

By (7.16) and (7.20), it is easy to verify that

lim
n→∞

1

n
|I| = I(X;Y ). (7.26)

Moreover, by applying successive cancellation decoder, the block error probability

Pe can be upper bounded by [104]

Pe ≤
∑
i∈I

Z(Ui|U i−1, Y n) = O(2−n
β

) (7.27)

for any β ∈ (0, 1/2), with complexity O(n log n). Therefore, the rate I(X;Y ) is

achieved.
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7.3.2 Universal Polar Coding

Consider two B-DMCs P : X → Y and Q : X → Z, and assume that these two

channels have identical capacities, i.e., C(P ) = C(Q). Let Un = XnGn, and denote

P and Q as the information set defined in (7.22), i.e.,

P = {i ∈ [n] : Z(Ui|U i−1, Y n) ≤ δn}, (7.28)

Q = {i ∈ [n] : Z(Ui|U i−1, Zn) ≤ δn}, (7.29)

where δn = 2−n
β

and β ∈ (0, 1/2). Since we assume C(P ) = C(Q), we also have

|P| = |Q|.

In general, the differences P\Q andQ\P are not empty sets [88–90]; therefore,

it is not straightforward to apply standard polar coding to achieve the capacity of

the compound channel consisting of P and Q. Reference [91] proposes a method,

called chaining construction, to solve this problem.

Definition 7.1 (Chaining construction [91]) Let m ≥ 2. The m-chain of P and Q

is a code of length mn that consists of m polar blocks of length n. In each of the m

blocks, the set P ∩Q is set to be an information set. In the ith block, 1 ≤ i < m, the

set P\Q is also set to be an information set. Moreover, the set P\Q in the ith block

is chained to the set Q \ P in the (i + 1)th block in the sense that the information

is repeated in these two sets. All other indices are frozen. Therefore, in each block,

the set (P ∪ Q)c is frozen, and the set Q \ P in the 1st block and the set P \ Q in
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the mth block are frozen, too. The rate of the chaining construction is

|P ∩ Q|+ m−1
m
|P \ Q|

n
. (7.30)

Next, we discuss the decoding procedure for the compound channel consisting

of P and Q. If channel P is used, then we decode from the first block. On the other

hand, if channel Q is used, then we decode from the last block.

First, suppose that channel P is used and a code of length mn has been

received. For this case, we decode from the first block. In the 1st block, all the

information bits are put in the set P ; thus, the decoder can decode correctly. For the

2nd block, through chaining construction, the set P \ Q in the 1st block is chained

to the set Q \ P in the 2nd block, and the set (P ∪ Q)c is frozen. Equivalently,

the decoder only needs to decode the bits in the set P , which can be correctly

decoded. The same procedure holds until the (m− 1)th block. For the mth block,

the information bits are only put in the set P ∩Q, and the remaining part has been

determined. Hence, information bits can be reliably decoded.

Second, consider the case that channel Q is used. In this case, we decode

from the last block. In the mth block, since the information bits are put in the set

Q, reliable decoding is guaranteed. For the (m − 1)th block, due to the chaining

process, the set Q\P in the mth block is chained to the set P \Q in the (m− 1)th

block, and note that the set (P ∪ Q)c is frozen. The decoder only needs to decode

the information bits in the set Q, thus correct decoding is ensured. This procedure

is applied until the 2nd block. For the 1st block, information bits which have not

186



been determined fall in the set P ∩Q, thus the decoder can decode them correctly.

In summary, for a fixed m, if we let n→∞, we can achieve the rate in (7.30)

with arbitrary small error probability, which also means that the rate C(P )− 1
m
|P\Q|
n

can be achieved. Additionally, if we let m → ∞, then the rate C(P ), which is the

capacity of the compound channel consisting of channels P and Q, can be achieved.

7.3.3 Polar Coding for MAC Based on Monotone Chain Rules

Consider a two-user MAC (X1×X2, P (y|x1, x2),Y) with binary input alphabets X1

and X2. The capacity region of this channel is the union of convex hull of all rate

pairs satisfying

R1 ≤ I(X1;Y |X2),

R2 ≤ I(X2;Y |X1),

R1 +R2 ≤ I(X1, X2;Y ), (7.31)

over the distributions of the form P (x1)P (x2). The rate pairs satisfying R1 +R2 =

I(X1, X2;Y ) are said to be on the dominant face of the rate region.

Reference [82] gives a polar coding scheme that achieves the entire dominant

face based on the monotone chain rules. Consider Un
1 = Xn

1Gn and Un
2 = Xn

2Gn.

We call J2n as a monotone permutation of Un
1 U

n
2 if the elements of both Un

1 and Un
2

appear in increasing order in J2n. When we expand the mutual information term

I(Un
1 , U

n
2 ;Y n) according to the monotone permutation, we say that it follows the
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monotone chain rule

I(Un
1 , U

n
2 ;Y n) =

2n∑
i=1

I(Ji;Y
n|J i−1). (7.32)

Moreover, define the rates as follows

Rx =
1

n

∑
{i∈[2n]:Ji∈Un1 }

I(Ji;Y
n|J i−1),

Ry =
1

n

∑
{i∈[2n]:Ji∈Un2 }

I(Ji;Y
n|J i−1). (7.33)

Reference [82] shows that the rate pair (Rx, Ry) in (7.33) can be set arbitrarily close

to the rate pairs on the dominant face of (7.31) by the permutations of the form

J2n = (U i
1, U

n
2 , U

i+1:n
1 ), where U i+1:n

1 denotes U1,i+1, . . . , U1,n.

7.4 Polar Coding for the General Wiretap Channel

Assume now that we know the optimal distributions [105] to achieve the secrecy

capacity Cs in (7.3), i.e., we know the optimal V and X. For illustration, we

consider the case of a binary input channel, i.e., |X | = 2. The cardinality bound

for channel prefixing, V , is |V| ≤ 2. Although we focus on developing a coding

scheme for binary inputs below, there is no difficulty to extend the work to q-ary

inputs [106–109].
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7.4.1 The Scheme

Let Un = V nGn. Consider the following sets:

HV = {i ∈ [n] : Z(Ui|U i−1) ≥ 1− δn},

LV |Y = {i ∈ [n] : Z(Ui|U i−1, Y n) ≤ δn},

LV |Z = {i ∈ [n] : Z(Ui|U i−1, Zn) ≤ δn}, (7.34)

where δn = 2−n
β

and β ∈ (0, 1/2).

The set [n] can be partitioned into the following four sets:

GY ∧Z = HV ∩ LV |Y ∩ LV |Z ,

GY \Z = HV ∩ LV |Y ∩ LcV |Z ,

GZ\Y = HV ∩ LcV |Y ∩ LV |Z ,

BY ∧Z = Hc
V ∪ (LcV |Y ∩ LcV |Z). (7.35)

From a successive decoding point of view, the sub-channels corresponding to the set

GY ∧Z are simultaneously good for Bob and Eve. The sub-channels in the set GY \Z

are good for Bob but bad for Eve. On the other hand, the sub-channels in the set

GZ\Y are good for Eve but bad for Bob. Last, the sub-channels in the set BY ∧Z are

bad for both Bob and Eve.
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Similar to (7.22)–(7.24), we have:

IY = HV ∩ LV |Y ,

IZ = HV ∩ LV |Z ,

FYr = HV ∩ LcV |Y ,

FZr = HV ∩ LcV |Z ,

Fd = Hc
V . (7.36)

By (7.26), we have

lim
n→∞

1

n
|IY | = I(V ;Y ),

lim
n→∞

1

n
|IZ | = I(V ;Z). (7.37)

For the symmetric and degraded wiretap channel [84–87], GZ\Y is an empty

set, since the degraded property of the channel causes IZ ⊂ IY [83]. However, for

the general wiretap channel, GZ\Y is no longer an empty set, and |GZ\Y | cannot be

negligible [88–90].

Here, we consider the positive secrecy capacity case, thus, we have |GY \Z | >

|GZ\Y |. Choose a set, CY \Z , such that CY \Z ⊂ GY \Z and |CY \Z | = |GZ\Y |. Define

the set S as:

S = GY \Z \ CY \Z . (7.38)
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GY ∧Z S CY \Z1st block

2nd block

(m− 1)th

· · ·

mth block

GZ\Y BY ∧Z

GY ∧Z S CY \Z GZ\Y BY ∧Z

GY ∧Z S CY \Z GZ\Y BY ∧Z

GY ∧Z S CY \Z GZ\Y BY ∧Z

Figure 7.1: Chaining construction for the general wiretap channel.

From (7.37), we have

lim
n→∞

1

n
|S| = I(V ;Y )− I(V ;Z). (7.39)

We construct the code as follows. Consider an m-chain polar code in Defini-

tion 7.1. For 1 ≤ i < m, the set CY \Z in the ith block is chained to GZ\Y in the

(i + 1)th block as in Fig. 7.1. For each of the m blocks, the set BY ∧Z is set to be

frozen. Moreover, the set GZ\Y in the 1st block is set to be frozen in the sense that

GZ\Y ⊆ FYr , and the set CY \Z in the mth block is also set to be frozen in the sense

that CY \Z ⊆ FZr . In Fig. 7.1, we use a red cross to denote a frozen set.

We put the secret information bits in the set S in each block. Therefore, the set

S is used for secret message transmission. For blocks 1 ≤ i < m, we put uniformly

distributed random bits to CY \Z to serve as the confusion messages. Through the

chaining construction, the confusion messages are also chained to the set GZ\Y in
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block 1 < i ≤ m. Moreover, the set GY ∧Z in each block are also filled with random

bits to serve as confusion message. For the frozen sets, if the index belongs to FYr or

FZr , then we put uniformly distributed random bits and share the randomness with

the decoder (Bob and Eve). Last, if the index belongs to Fd, then we determine

the value according to the mapping defined in (7.25). We summarize the encoding

procedure as follows.

Encoding procedure:

For each block, put the secret information bits in US, and determine the bits in UFd

by (7.25).

For the 1st block,

1. Put uniformly distributed random bits to UGY ∧Z∪CY \Z .

2. Put uniformly distributed random bits to UFYr , and share the randomness with

the decoder.

For the jth block, 2 ≤ j < m,

1. Put uniformly distributed random bits to UGY ∧Z∪CY \Z .

2. Chaining construction: repeat the bits in CY \Z of the (j − 1)th block to the

bits in UGZ\Y .

3. Put uniformly distributed random bits to UFYr ∩FZr , and share the randomness

with the decoder.

For the mth block,
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1. Put uniformly distributed random bits to UGY ∧Z .

2. Chaining construction: repeat the bits in CY \Z of the (m− 1)th block to the

bits in UGZ\Y .

3. Put uniformly distributed random bits to UFZr , and share the randomness with

the decoder.

Note that in the chaining construction we require the bits in UGZ\Y equal

the bits in UCY \Z . Since we fill uniformly distributed random bits to UCY \Z , we

simultaneously fill random bits to UGZ\Y . Due to the fact that GZ\Y ∩ Fd = ∅, we

can freely choose the bits in this set.

Decoding procedure:

Bob decodes from the 1st block. If i ∈ Fd, then ûi = arg maxu∈{0,1} PUi|U i−1(u|ûi−1).

For the 1st block,

ûi =


ui, if i ∈ FYr ,

arg maxu∈{0,1} PUi|U i−1,Y n(u|ûi−1, yn), if i ∈ GY ∧Z ∪ CY \Z ∪ S.

(7.40)

For the jth block, 2 ≤ j < m,

ûi =


ui, if i ∈ FYr ∩ FZr ,

arg maxu∈{0,1} PUi|U i−1,Y n(u|ûi−1, yn), if i ∈ GY ∧Z ∪ CY \Z ∪ S,

ûi′ in the (j − 1)th block, where i′ ∈ CY \Z , if i ∈ GZ\Y .

(7.41)
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For the mth block,

ûi =


ui, if i ∈ FZr ,

arg maxu∈{0,1} PUi|U i−1,Y n(u|ûi−1, yn), if i ∈ GY ∧Z ∪ S,

ûi′ in the (m− 1)th block, where i′ ∈ CY \Z , if i ∈ GZ\Y .

(7.42)

7.4.2 Reliability

From (7.39), we know as n → ∞, our coding scheme can achieve the secrecy rate

in (7.3). Moreover, when Bob applies the decoding procedure described in Sec-

tion 7.4.1, according to (7.27), the block error probability of the whole m-chain

block can be upper bounded by

Pe ≤ (m− 1)
∑

i∈CY \Z

Z(Ui|U i−1, Y n) +m
∑

i∈GY ∧Z∪S

Z(Ui|U i−1, Y n) = O(2−n
β

)

(7.43)

for any β ∈ (0, 1/2) with complexity O(n log n). Thus, the secrecy rate in (7.3) is

achieved reliably.

7.4.3 Equivocation Calculation

We first introduce necessary notation for the calculation of the equivocation rate.

In the encoding process, we consider m blocks each with block length n. Let Zmn

denote what Eve receives. For each block, we perform Un = V nGn, therefore, for

the total of m blocks, we have V mn and Umn.
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Let Ws denote the secret message, and W̃s denote the confusion message. Let

the subscript i of a set denote the set in the ith block. For example, Si denotes the

set S in the ith block, and GY ∧Zj denotes the set GY ∧Z in the jth block. Since secret

message is put in Si, 1 ≤ i ≤ m, we have Ws = ∪1≤i≤mUSi . Also, the confusion

message is put in GY ∧Zi, 1 ≤ i ≤ m and CY \Zj, 1 ≤ j < m. Therefore, we have

W̃s = ∪1≤i≤m,1≤j<mUGY ∧ZiUCY \Zj .

We can calculate the equivocation rate as follows:

H(Ws|Zmn) = H(Ws, W̃s|Zmn)−H(W̃s|Ws, Z
mn) (7.44)

= H(Ws, W̃s)− I(Ws, W̃s;Z
mn)−H(W̃s|Ws, Z

mn) (7.45)

≥ H(Ws, W̃s)− I(V mn;Zmn)−H(W̃s|Ws, Z
mn) (7.46)

= H(Ws) +H(W̃s)− I(V mn;Zmn)−H(W̃s|Ws, Z
mn) (7.47)

which is equivalent to

1

mn
I(Ws;Z

mn) ≤ 1

mn
I(V mn;Zmn) +

1

mn
H(W̃s|Ws, Z

mn)− 1

mn
H(W̃s). (7.48)

Note that in (7.44), to keep the notation concise we do not list the randomness shared

with the decoder (see the encoding procedure in Section 7.4.1) in the expression of

the conditional entropy. Here, (7.44) is due to the chain rule of conditional entropy,

(7.45) is due to the definition of mutual information, (7.46) comes from the data

processing inequality, (7.47) is due to the independence of the secret message and

the confusion message. In (7.48), we bound each term on the right hand side as
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follows:

For the first term, we have I(V mn;Zmn) ≤ ∑mn
i=1 I(Vi;Zi) ≤ mnI(V ;Z).

Therefore,

1
mn
I(V mn;Zmn) ≤ I(V ;Z).

To bound the second term, suppose Eve obtains Ws and Zmn, and wants to

decode W̃s. By symmetry of chaining construction, Eve can apply similar decoding

rule as described in Section 7.4.1. However, this time Eve decodes from the mth

block, then the block error probability of the whole m-chain block can be upper

bounded by

Pe ≤ (m− 1)
∑

i∈GZ\Y

Z(Ui|U i−1, Y n) +m
∑

i∈GY ∧Z

Z(Ui|U i−1, Y n) = O(2−n
β

) (7.49)

for β ∈ (0, 1/2). Hence, by applying Fano’s inequality, we have

H(W̃s|Ws, Z
mn) ≤ H(Pe) + Pe log |W̃s| < H(Pe) + Pe[mnI(V ;Z)]. (7.50)

Therefore, as n→∞, 1
mn
H(W̃s|Ws, Z

mn)→ 0.

For the last term, as n→∞, by (7.30) and (7.37), we have (m−1)nI(V ;Z) <

H(W̃s) < mnI(V ;Z). Hence, as m→∞, 1
mn
H(W̃s)→ I(V ;Z).

From the above, we know as n→∞ and m→∞, 1
mn
I(Ws;Z

mn)→ 0. Thus,

the weak secrecy constraint is achieved.
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7.5 Polar Coding for the Multiple Access Wiretap Channel

In this section, instead of achieving the corner point of (7.5) through standard polar

coding techniques [76], we show how to achieve the rate pairs on the dominant face

of (7.5), since reference [110] shows the former scheme is strictly suboptimal. Here,

we consider the positive rate case in (7.5), i.e., R1 > 0, R2 > 0 and R1 + R2 > 0.

We first consider a constant T in (7.5). Following the method given in [81, Sec. III.

B.], we can generalize the result to a T with arbitrary distribution. For k ∈ 1, 2, let

Vk be the corresponding alphabet of the channel prefixing Vk. As in Section 7.4, we

assume the cardinality for the channel prefixing Vk is |Vk| = 2 for illustration.

7.5.1 The Scheme

For a fixed input distribution in (7.6), consider two different MACs, the first MAC,

P , consisting of two users and Bob and the second MAC, Q, consisting of the two

users and Eve. In Fig. 7.2, we use a solid line to show the achievable region for the

first MAC, P , and a dotted line to represent the second MAC, Q. Consider two rate

pairs on the dominant faces of the channels P and Q, which we use blue and red

points to denote in Fig. 7.2.

Reference [82] shows that there exist monotone permutations J2n and K2n for

channels P and Q to achieve the blue and red points in Fig. 7.2. Since the blue rate

pair is greater than the red rate pair in the sense of both rate of user 1 and rate of

user 2, we can also achieve the red rate pair for channel P by the same monotone

chain J2n. In the following, we present a polar coding scheme such that we set the
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R1

R2

I(V1;Y |V2)I(V1;Y ) I(V1;Z|V2)

I(V2;Y |V1)

I(V2;Z|V1))

I(V1;Z)

I(V2;Y )

I(V2;Z)

Figure 7.2: General MAC regions.

rate of the confusion message as the red rate pair and the rate of the secret message

as the difference of the blue and red rate pairs.

For k ∈ 1, 2, let Un
k = V n

k Gn. Once we determine the distribution in (7.6),

similar to (7.34), we can define HVk . According to different monotone permutations,

J2n, we have different index sets for LVk|Y,J . We define them as follows:

LVk|Y,J = {i ∈ [n] : Z(Uk,i|Y n, J j−1) ≤ δn, Jj = Uk,i}, (7.51)

where δn = 2−n
β

and β ∈ (0, 1/2). Similarly, we can also define LVk|Z,K for another

monotone permutation, K2n.

The set [n] for the user k can be partitioned into the following sets:

G
(k)
Y ∧Z = HVk ∩ LVk|Y,J ∩ LVk|Z,K ,
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G
(k)
Y \Z = HVk ∩ LVk|Y,J ∩ LcVk|Z,K ,

G
(k)
Z\Y = HVk ∩ LcVk|Y,J ∩ LVk|Z,K ,

B
(k)
Y ∧Z = LVk ∪ (LcVk|Y,J ∩ L

c
Vk|Z,K). (7.52)

Since we consider the positive rate case in (7.5), we have |G(k)
Y \Z | > |G

(k)
Z\Y |.

Pick C
(k)
Y \Z ⊂ G

(k)
Y \Z , such that |C(k)

Y \Z | = |G
(k)
Z\Y |. Define the set S(k) as follows:

S(k) = G
(k)
Y \Z \ C

(k)
Y \Z . (7.53)

According to the result in [82], we have

lim
n→∞

1

n
(|S(1)|+ |S(2)|) = I(V1, V2;Y )− I(V1, V2;Z). (7.54)

The encoding procedure for the two users are similar. We show the encoding

procedure in Fig. 7.3 for user 1. For each user, we put the secret bits in the set

S(k) and put random bits as the confusion message in the sets G
(k)
Y ∧Z and C

(k)
Y \Z .

Moreover, we chain the bits in the set C
(k)
Y \Z in the ith block to the set G

(k)
Z\Y in the

(i + 1)th block. To guarantee correct decoding, we freeze the sets B
(k)
Y ∧Z in each

block, G
(k)
Z\Y in the 1st block, and C

(k)
Y \Z in the mth block. We use red crosses in

Fig. 7.3 to denote the frozen sets.

The decoding procedure is from the 1st block to the mth block according

to the monotone permutation J2n for Bob. For the 1st block, since the bits Bob

needs to decode are all in the sets G
(k)
Y ∧Z or G

(k)
Y \Z , they all can be decoded reliably.
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(1)
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· · ·
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G
(1)
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(1)
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G
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Y ∧Z S(1) C

(1)
Y \Z G

(1)
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(1)
Y ∧Z

G
(1)
Y ∧Z S(1) C

(1)
Y \Z G

(1)
Z\Y B

(1)
Y ∧Z

G
(1)
Y ∧Z S(1) C

(1)
Y \Z G

(1)
Z\Y B

(1)
Y ∧Z

Figure 7.3: Chaining construction for the MAC-WTC for user 1.

For the 2nd block, due to the chaining construction in the encoding procedure, the

remaining bits Bob needs to decode are also in the sets G
(k)
Y ∧Z or G

(k)
Y \Z . Therefore,

the correct decoding can also be guaranteed. The same procedure holds to the mth

block. Since the confusion message and the secret message can be decoded reliably,

we can guarantee that the rate in (7.54) can be achieved.

7.5.2 Equivocation Calculation

Following the notation given in Section 7.4.1, we show the equivocation rate cal-

culation. For k ∈ 1, 2, let W
(k)
s and W̃

(k)
s denote the secret message and the con-

fusion message sent by user k. Since we put the secret message in the set S(k) in

each block, we have W
(k)
s = ∪1≤i≤mUk,S(k)

i
. For the confusion message, W̃

(k)
s , we

have W̃
(k)
s = ∪1≤i≤m,1≤j≤(m−1)Uk,G(k)

Y ∧Zi
U
k,C

(k)
Y \Zj

. For simplicity of notation, we let

Ws = W
(1)
s ∪W (2)

s and W̃s = W̃
(1)
s ∪ W̃ (2)

s .
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Similar to (7.44)–(7.47), we can calculate the equivocation rate as follows:

H(Ws|Zmn) ≥ H(Ws) +H(W̃s)− I(V mn
1 , V mn

2 ;Zmn)−H(W̃s|Ws, Z
mn), (7.55)

which is equivalent to

1

mn
I(Ws;Z

mn) ≤ 1

mn
I(V mn

1 , V mn
2 ;Zmn) +

1

mn
H(W̃s|Ws, Z

mn)− 1

mn
H(W̃s).

(7.56)

To bound each term in (7.56), we only consider the second term since the first

and third terms are similar to bounding in (7.48). These two terms can be upper

bounded by ε, and ε → 0 as n → ∞ and m → ∞. For the second term, suppose

Eve obtains Ws and Zmn, and wants to decode W̃s. This time Eve decodes from the

mth block to the 1st block, and note that Eve decodes according to the monotone

permutation K2n. For the mth block, the bits that Eve needs to decode are in the

set G
(k)
Y ∧Z and G

(k)
Z\Y . Therefore, Eve can do the correct decoding. For the (m− 1)th

block, due to the chaining construction, the remaining bits that Eve needs to decode

are also in the set G
(k)
Y ∧Z and G

(k)
Z\Y . The same procedure holds to the 1st block. Since

Eve can do the correct decoding, we can bound this term through Fano’s inequality.

Therefore, we can guarantee the conditions in (7.4).
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7.6 Polar Coding for the Broadcast Channel with Confidential Mes-

sages

Before we show how to achieve the corner points of the rate region given in (7.8)

by double chaining method, we briefly review the result in [80], which shows how to

apply polar coding to achieve the rate pair (R1, R2) = (I(V1;Y1), I(V2;Y2)−I(V2;V1))

of the binning region. We first consider a constant T in (7.8). This result can be

generalized to T with arbitrary distribution [81, Sec. III. B.]. Again, we consider

binary code design for illustration.

7.6.1 Polar Coding for the Binning Region

Applying polar coding to achieve R1 = I(V1;Y1) is described in Section 7.3.1. Now,

we discuss how to achieve R2 = I(V2;Y2)−I(V2;V1) following [80]. Let Un
2 = V n

2 Gn.

Similar to (7.34), we can define HV2 and LV2|Y2 . Since V1 and V2 are dependent, by

thinking of V1 as the side information of V2, we can further define the set LV2|V1 .

Similar to (7.35), the set [n] can be partitioned into the following sets:

GY2∧V1 = HV2 ∩ LV2|Y2 ∩ LV2|V1 ,

GY2\V1 = HV2 ∩ LV2|Y2 ∩ LcV2|V1 ,

GV1\Y2 = HV2 ∩ LcV2|Y2 ∩ LV2|V1 ,

BY2∧V1 = Hc
V2
∪ (LcV2|Y2 ∩ LcV2|V1). (7.57)
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GY2∧V1 S CY2\V11st block

2nd block

(m− 1)th

· · ·

mth block

GV1\Y2 BY2∧V1

GY2∧V1 S

S

S

GY2∧V1

GY2∧V1

CY2\V1

CY2\V1

CY2\V1

GV1\Y2

GV1\Y2

GV1\Y2

BY2∧V1

BY2∧V1

BY2∧V1

Figure 7.4: Chaining construction for the second user to achieve the binning region
in a broadcast channel.

Roughly speaking, once the values for V1 is known, the bits corresponding

to the sets GY2∧V1 and GV1\Y2 can be determined. Since the second receiver ob-

serves Y2, it can decode the set GY2∧V1 and GY2\V1 . To guarantee that the second

receiver obtains the information bits in the set GV1\Y2 , pick CY2\V1 ⊂ GY2\V1 such

that |CY2\V1| = |GV1\Y2| to serve the chaining purpose of repeating the information

in the set GV1\Y2 . Last, we put the information bits for the second user in the set

S = GY2\V1 \ CY2\V1 . It can be verified that the rate of the second user is:

lim
n→∞

1

n
|S| = I(V2;Y2)− I(V2;V1). (7.58)

Consider the encoding procedure in Fig. 7.4. The information for the first

receiver, V1, is determined first. Since V1 has been determined, the set GY2∧V1 and

GV1\Y2 can also be determined from the 1st block to the mth block. It is important to
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note that V1 in the mth block is frozen and shared with the two receivers; therefore,

the sets GY2∧V1 and GV1\Y2 can be decoded with the information of V1 for the mth

block, which we use blue crosses to denote in Fig. 7.4. Same as before, the red crosses

denote the frozen sets in Fig. 7.4. By the chaining construction, for 1 ≤ i < m, we

repeat the determined value in the set GV1\Y2 in the ith block to the set CY2\V1 in

the (i+ 1)th block. Last, we put the information bits for the second receiver in the

set S in each block.

Decoding procedure for the second receiver starts from the mth block. For

the mth block, the second user only needs to decode the information in the set S

and CY2\V1 . To decode the (m − 1)th block, since the bits in the set GV1\Y2 can

be obtained from the mth block due to the chaining construction of the encoding

process, the second user only needs to decode the bits in the set GY2∧V1 and GY2\V1 .

The same procedure holds till the 1st block, and the information in the set S can

be decoded reliably.

7.6.2 The Scheme

Here, we introduce a double chaining method to achieve the double binning rate pair

(R1, R2) = (I(V1;Y1)− I(V1;V2)− I(V1;Y2|V2), I(V2;Y2)− I(V2;V1)− I(V2;Y1|V1)),

which is the corner point of (7.8) when T is a constant. Let Un
2 = V n

2 Gn. Once we

determine the distribution in (7.9), we can define HV2 , LV2|Y2 and LV2|V1 . We can

further define LV2|Y1,V1 as in Section 7.6.1. The set [n] can be partitioned into the
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following sets:

A = HV2 ∩ LV2|Y2 ∩ LV2|V1 ∩ LV2|V1,Y1 ,

B = HV2 ∩ LV2|Y2 ∩ LcV2|V1 ∩ LV2|V1,Y1 ,

C = HV2 ∩ LV2|Y2 ∩ LcV2|V1 ∩ LcV2|V1,Y1 ,

D = HV2 ∩ LcV2|Y2 ∩ LV2|V1 ∩ LV2|V1,Y1 ,

E = HV2 ∩ LcV2|Y2 ∩ LcV2|V1 ∩ LV2|V1,Y1 ,

F = Hc
V2
∪ (LcV2|Y2 ∩ LcV2|V1 ∩ LcV2|V1,Y1). (7.59)

Similarly, let Un
1 = V n

1 Gn. We can partition the set [n] for user 1 as (7.59) by

changing the subscript 2 to 1 and 1 to 2.

Similar to (7.36) and (7.37), we have

lim
n→∞

1

n
|A ∪B ∪ C| = I(V2;Y2),

lim
n→∞

1

n
|A ∪D| = I(V2;V1),

lim
n→∞

1

n
|B ∪ E| = I(V2;Y1|V1). (7.60)

Here, we consider the case R1 > 0 and R2 > 0. Therefore, we can pick C1 ⊂ C with

|C1| = |D|, C2 ⊂ C with |C2| = |E|, and C1 ∩ C2 = ∅. Define the set S as follows:

S = C \ (C1 ∪ C2). (7.61)
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By (7.60), we also have

lim
n→∞

1

n
|S| = I(V2;Y2)− I(V2;V1)− I(V2;Y1|V1). (7.62)

Now, we consider the encoding procedure. Assume we determine the informa-

tion for the first receiver, V1, at first. As described in Section 7.6.1, to guarantee

the correct decoding of the second user, V1 in the mth block is frozen and shared

with the two receivers. As shown in Fig. 7.5, the red crosses denote the frozen sets.

We put the secret message in the set S from the 1st block to the (m − 1)th block.

Later, we will show that the rate

R1 =

(
m− 1

m

)
[I(V1;Y1)− I(V1;V2)− I(V1;Y2|V2)] (7.63)

can be achieved. To guarantee the secrecy, we put the random bits in the set A,

B, D and E in the 1st block. To ensure the reliability for the user 1, we chain the

message in the sets D and E to the sets C1 and C2 in the 2nd block. The same

procedure holds till the (m− 2)th block. For the (m− 1)th block, we still chain the

sets D and E from the (m − 2)th block to the sets C1 and C2; however, we freeze

the set D and E in the (m− 1)th block to guarantee correct decoding for user 1.

For the second user, we put the secret message to the set S from the 1st block

to the mth block, and will show that the rate

R2 = I(V2;Y2)− I(V2;V1)− I(V2;Y1|V1) (7.64)
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A B1st block

2nd block

(m− 1)th

· · ·

mth block

D E FC1 C2S

A B D E FC1 C2S

A B D E FC1 C2S

A B D E FC1 C2S

Figure 7.5: Chaining construction for the BC-CM for user 1.

can be achieved. To guarantee the secrecy, we put the random bits to the sets B

and E as the confusion message from the 1st block to the (m− 1)th block. Since V1

has been determined, the sets A and D can also be determined with the knowledge

of V1. For the first chaining construction, for 1 ≤ i < m, we repeat the determined

value in the set D in the ith block to the set C1 in the (i+1)th block. For the second

chaining construction, for 1 ≤ i < m, we repeat the determined value in the set E

in the ith block to the set C2 in the (i + 1)th block. As described in Section 7.6.1,

V1 in the mth block is frozen and shared with the two receivers; thus, the sets A

and D can be decoded with the information of V1 for the mth block, which we use

blue crosses to denote in Fig. 7.6. Same as before, the red crosses denote the frozen

sets in Fig. 7.6. For the 1st block, we freeze the sets C1 and C2, and for the mth

block, we freeze the set E, to guarantee the reliability.

The decoding procedure for the two users are similar. They both decode from

the mth block to the 1st block. Let us use user 2 for illustration. For the mth block,

since user 2 knows V1, it can decode the sets A, B, C and D. Through the chaining
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(m− 1)th

· · ·
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D E FC1 C2S

A B D E FC1 C2S

A B D E FC1 C2S

A B D E FC1 C2S

Figure 7.6: Chaining construction for the BC-CM for user 2.

construction, the decoder only needs to decode the sets A, B and C in the (m−1)th

block. The same procedure holds till the 2nd block. For the 1st block, due to the

chaining construction and the frozen sets, the decoder only needs to decode the sets

A, B and S, which can be done reliably.

7.6.3 Reliability

The block error probability of the first and second user can be upper bounded by

Pe,1 ≤ (m− 2)
∑

i∈A∪B∪C

Z(U1,i|U i−1
1 , Y n

1 ) +
∑

i∈A∪B∪S

Z(U1,i|U i−1
1 , Y n

1 ) = O(2−n
β

),

Pe,2 ≤ (m− 2)
∑

i∈A∪B∪C

Z(U2,i|U i−1
2 , Y n

2 ) +
∑

i∈A∪B∪S

Z(U1,i|U i−1
2 , Y n

2 )

+
∑
i∈B∪C

Z(U1,i|U i−1
2 , Y n

2 ) = O(2−n
β

) (7.65)

for any β ∈ (0, 1/2) with complexity O(n log n). Therefore, the rate pair in (7.63)

and (7.64) can be achieved reliably. Thus, as m→∞, we can achieve the rate pair
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in (7.8).

7.6.4 Equivocation Calculation

Following the notation given in Section 7.4.3, we show the equivocation calculation

for receiver 2, and this result can be extended to receiver 1 by symmetry. Since we

put the secret message in the set S in each block, we have Ws,1 = ∪1≤i<mU1,Si . For

the confusion message, W̃s,1, we have W̃s,1 = ∪1≤i<m,1≤j<(m−1)U1,(A∪B)iU1,(D∪E)j .

We can calculate the equivocation rate as follows:

H(Ws,1|Y mn
2 ) ≥ H(Ws,1|Y mn

2 , V mn
2 , Tmn) (7.66)

= H(Ws,1, Y
mn
2 |V mn

2 , Tmn)−H(Y mn
2 |V mn

2 , Tmn) (7.67)

= H(Ws,1, V
mn
1 , Y mn

2 |V mn
2 , Tmn)−H(V mn

1 |Y mn
2 , V mn

2 , Tmn,Ws,1)

−H(Y mn
2 |V mn

2 , Tmn) (7.68)

= H(Ws,1, V
mn
1 |V mn

2 , Tmn) +H(Y mn
2 |V mn

1 , V mn
2 , Tmn,Ws,1)

−H(V mn
1 |Y mn

2 , V mn
2 , Tmn,Ws,1)−H(Y mn

2 |V mn
2 , Tmn) (7.69)

= H(Ws,1, V
mn
1 |V mn

2 , Tmn) +H(Y mn
2 |V mn

1 , V mn
2 , Tmn)

−H(V mn
1 |Y mn

2 , V mn
2 , Tmn,Ws,1)−H(Y mn

2 |V mn
2 , Tmn) (7.70)

= H(Ws,1, V
mn
1 |V mn

2 , Tmn)−H(V mn
1 |Y mn

2 , V mn
2 , Tmn,Ws,1)

− I(V mn
1 ;Y mn

2 |V mn
2 , Tmn) (7.71)

≥ H(V mn
1 |V mn

2 , Tmn)−H(V mn
1 |Y mn

2 , V mn
2 , Tmn,Ws,1)

− I(V mn
1 ;Y mn

2 |V mn
2 , Tmn) (7.72)
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where (7.66) is due to conditioning reduces entropy, and (7.67), (7.68) and (7.69) are

due to the chain rule of entropy. Due to the Markov chainWs,1 → (V mn
1 , V mn

2 , Tmn)→

Y mn
2 , we have

I(Ws,1;Y
mn
2 |V mn

1 , V mn
2 , Tmn) = 0. Hence, (7.70) holds. (7.71) is due to the def-

inition of conditional mutual information, and (7.72) is due to the chain rule of

entropy.

Consider the first term in (7.72)

H(V mn
1 |V mn

2 , Tmn) = H(V mn
1 |Tmn)− I(V mn

1 ;V mn
2 |Tmn). (7.73)

Therefore, we can lower bound the sum of the first and the third term in (7.72) as

(m− 2)nI(V1;Y1|T )−mnI(V1;V2|T )−mnI(V1;Y2|V2, T ). (7.74)

For the second term, H(V mn
1 |Y mn

2 , V mn
2 , Tmn,Ws,1) = H(W̃s,1|Y mn

2 , V mn
2 , Tmn,Ws,1).

Suppose receiver 2 knows Y mn
2 , V mn

2 and Ws,1, and tries to decode W̃s,1. From

Fig. 7.5, it can decode from the 1st block to the (m−1)th block, and the block error

probability can be upper bounded by O(2−n
β
) for β ∈ (0, 1/2). By applying Fano’s

inequality, we have H(W̃s,1|Y mn
2 , V mn

2 , Tmn,Ws,1) ≤ mnε. After we bound the three

terms as above, we have

H(Ws,1|Y mn
2 ) ≥ mn

[(
1− 2

m

)
I(V1;Y1|T )− I(V1;V2|T )− I(V1;Y2|V2, T )− ε

]
.

(7.75)
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Therefore, as n→∞ and m→∞, the secrecy constraints in (7.7) hold.

7.7 Polar Coding for the Interference Channel with Confidential Mes-

sages

In the following, we show how to achieve the corner points of the rate region given

in (7.11). By simple modification, this method can achieve the entire rate region.

Note that given T , V1 and V2 are independent as in (7.12). Therefore, achiev-

ing (7.11) is also equivalent to achieving the rate pair (R1, R2) = (I(V1;Y1) −

I(V1;Y2, V2), I(V2;Y2)−I(V2;Y1, V1)). We consider a constant T in (7.11), and binary

code design for illustration.

7.7.1 The Scheme

Here, we discuss the code design for user 1 only, as the code design method for the

two users is similar. Let Un
1 = V n

1 Gn. Once we determine the distribution in (7.12),

similar to (7.34), we can define HV1 and LV1|Y1 . We can further define

LV1|Y2,V2 = {i ∈ [n] : Z(U1,i|U i−1
1 , Y n

2 , V
n
2 ) ≤ δn}, (7.76)

where δn = 2−n
β

and β ∈ (0, 1/2).

By thinking of Y1 as Y and [Y2, V2] as Z in (7.35), we can partition the set [n]
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into the following:

GY1∧[Y2,V2] = HV1 ∩ LV1|Y1 ∩ LV1|[Y2,V2],

GY1\[Y2,V2] = HV1 ∩ LV1|Y1 ∩ LcV1|[Y2,V2],

G[Y2,V2]\Y1 = HV1 ∩ LcV1|Y1 ∩ LV1|[Y2,V2],

BY1∧[Y2,V2] = Hc
V1
∪ (LcV1|Y1 ∩ LcV1|[Y2,V2]). (7.77)

Similar to (7.36), we also have

IY1 = HV1 ∩ LV1|Y1 ,

I[Y2,V2] = HV1 ∩ LV1|[Y2,V2],

FY1r = HV1 ∩ LcV1|Y1 ,

F [Y2,V2]
r = HV1 ∩ LcV1|[Y2,V2],

Fd = Hc
V1
. (7.78)

Same as (7.37), we have

lim
n→∞

1

n
|IY1| = I(V1;Y1),

lim
n→∞

1

n
|I[Y2,V2]| = I(V1;Y2, V2). (7.79)

Here, we consider the caseR1 > 0; therefore, we have |GY1\[Y2,V2]| > |G[Y2,V2]\Y1|.

Pick a set, CY1\[Y2,V2], such that CY1\[Y2,V2] ⊂ GY1\[Y2,V2] and |CY1\[Y2,V2]| = |G[Y2,V2]\Y1|.
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GY1∧[Y2,V2] S CY1\[Y2,V2]1st block

2nd block

(m− 1)th

· · ·

mth block

G[Y2,V2]\Y1
BY1∧[Y2,V2]

GY1∧[Y2,V2] S CY1\[Y2,V2] G[Y2,V2]\Y1
BY1∧[Y2,V2]

GY1∧[Y2,V2] S CY1\[Y2,V2] G[Y2,V2]\Y1
BY1∧[Y2,V2]

GY1∧[Y2,V2] S CY1\[Y2,V2] G[Y2,V2]\Y1
BY1∧[Y2,V2]

Figure 7.7: Chaining construction for the IC-CM for user 1.

Last, we define the set S similar to (7.38) as

S = GY1\[Y2,V2] \ CY1\[Y2,V2]. (7.80)

From (7.79), we have

lim
n→∞

1

n
|S| = I(V1;Y1)− I(V1;Y2, V2). (7.81)

The polar coding scheme construction for IC-CM is almost the same as the

code design for the wiretap channel in Section 7.4.1. By replacing Y by Y1 and Z by

[Y2, V2] in Section 7.4.1, we can construct the codebook for user 1 shown in Fig. 7.7,

where the red crosses indicate that the sub-channels are frozen. Same as before, we

put the secret message in the set S, and put the random bits in the sets GY1∧[Y2,V2]

and CY1\[Y2,V2] as the confusion message. By replacing U by U1, UFYr by U
1,FY1r

, and

213



UFZr by U
1,F [Y2,V2]

r
as defined in (7.78), we can follow the same encoding and decoding

procedures given in Section 7.4.1. The secrecy rate R1 = I(V1;Y1)−I(V1;Y2, V2) can

be achieved reliably since the secret message in the set S can be correctly decoded

as described in Section 7.4.2, where the set S ensures the rate given in (7.81).

7.7.2 Equivocation Calculation

Following the notation given in Section 7.4.3, we show the equivocation calculation

for receiver 2, and this result can be extended to receiver 1 by symmetry. Since we

put the secret message in the set S in each block, we have Ws,1 = ∪1≤i≤mU1,Si . For

the confusion message, W̃s,1, we have W̃s,1 = ∪1≤i≤m,1≤j<mU1,GY1∧[Y2,V2]i
U1,CY1\[Y2,V2]j

.

We can calculate the equivocation rate as follows (see (7.66)–(7.72)):

H(Ws,1|Y mn
2 ) ≥H(V mn

1 |V mn
2 , Tmn)−H(V mn

1 |Y mn
2 , V mn

2 , Tmn,Ws,1)

− I(V mn
1 ;Y mn

2 |V mn
2 , Tmn). (7.82)

Now, we discuss each term in (7.82). Since given Tmn = tmn, V mn
1 and V mn

2 are

independent, we haveH(V mn
1 |V mn

2 , Tmn) = H(V mn
1 |Tmn), and I(V mn

1 ;Y mn
2 |V mn

2 , Tmn) =

I(V mn
1 ;Y mn

2 , V mn
2 |Tmn). Then, we can lower bound the sum of the first and third

term as

(m− 1)nI(V1;Y1|T )−mnI(V1;Y2, V2|T ). (7.83)

For the second term, H(V mn
1 |Y mn

2 , V mn
2 , Tmn,Ws,1) = H(W̃s,1|Y mn

2 , V mn
2 , Tmn,Ws,1).

Suppose receiver 2 knows Y mn
2 , V mn

2 and Ws,1, and tries to decode W̃s,1. From
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Fig. 7.7, it can decode from the mth block to the 1st block, and the block error

probability can be upper bounded by

Pe ≤ (m− 1)
∑

i∈G[Y2,V2]\Y1

Z(U1,i|U i−1
1 , Y n

2 ) +m
∑

i∈GY1∧[Y2,V2]

Z(U1,i|U i−1
1 , Y n

2 ) = O(2−n
β

)

(7.84)

for β ∈ (0, 1/2). Hence, by applying Fano’s inequality, we have

H(W̃s,1|Y mn
2 , V mn

2 , Tmn,Ws,1) ≤ H(Pe)+Pe log |W̃s| < H(Pe)+Pe[mnI(V1;Y2, V2|T )].

(7.85)

Therefore, as n→∞, H(W̃s,1|Y mn
2 , V mn

2 , Tmn,Ws,1)→ 0.

Finally, considering (7.83) and (7.85), we know that as n → ∞ and m → ∞,

the secrecy constraints in (7.10) hold.

7.8 Conclusion

We proposed practical coding schemes based on polar coding for the general wire-

tap channel, multiple access wiretap channel (MAC-WTC), broadcast channel with

confidential messages (BC-CM), and interference channel with confidential messages

(IC-CM). By applying the chaining construction and polar coding for asymmetric

channels, we proposed a polar coding scheme to achieve the secrecy capacity of

the general wiretap channel. Compared to the previous work, our construction has

better decoding error probability and it can be constructed more efficiently. For

the MAC-WTC, we combined our coding scheme for the general wiretap channel
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with the technique of monotone chain rule. For the BC-CM, we introduced dou-

ble chaining construction to guarantee the secrecy and achieve the binning rate.

For the IC-CM, we viewed the output of the channel as the actual output and the

intended message carrying signal, and applied our coding scheme for the general

wiretap channel.
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CHAPTER 8

Conclusions

In this dissertation, we studied the privacy problem via the PIR problem with a focus

on its interactions with available side information. We studied the security problem

via the wiretap channel with a focus on the design of practical coding schemes to

achieve information-theoretically achievable random-coding based secrecy rates.

In Chapter 2, we studied the cache-aided PIR problem fromN non-communica-

ting and replicated databases, when the cache stores uncoded bits that are unknown

to the databases. We determined inner and outer bounds for the optimal normalized

download cost D∗(r) as a function of the total number of messages K, the number

of databases N , and the caching ratio r. Both inner and outer bounds are piece-wise

linear functions in r (for fixed N , K) that consist of K line segments. For general K,

N , and r, we showed that the largest gap between the achievability and the converse

bounds is 1
6
. The outer bound shows significant reduction in the download cost with

respect to the case when the cache content is fully known at all databases [28].

In Chapter 3, we studied the cache-aided PIR problem when the cache stores

uncoded bits that are partially known to the databases. We determined inner and
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outer bounds for the optimal normalized download cost D∗(r). Both inner and

outer bounds are piece-wise linear functions in r that consist of K line segments.

The achievable scheme extends the greedy scheme in [12] so that it starts with

exploiting the cache bits as side information. For fixed K, N , there are K − 1

non-degenerate corner points. These points differ in the number of cached bits

that contribute in generating one side information equation. The achievability for

the remaining caching ratios is done by memory-sharing between the two adjacent

corner points that enclose that caching ratio r. For the converse, we extend the

induction-based techniques in [12] and Chapter 2 to account for the availability of

uncoded and partially known side information at the retriever. The converse proof

hinges on developing K lower bounds on the length of the undesired portion of

the answer string. By applying induction on each bound separately, we obtain the

piece-wise linear inner bound. For general K, N , and r, we showed that the largest

additive gap between the achievability and the converse bounds is 5
32

. We observed

that the achievable download cost here is larger than that in the previous case due

to the partial knowledge of the databases regarding the cache content.

In Chapter 4, we have introduced PIR with partially known private side in-

formation as a natural model for studying practical PIR problems with cached side

information. In this model, the nth database provides the user with mn side in-

formation messages in the prefetching phase such that
∑N

n=1mn ≤ M , hence, each

database has partial knowledge about the side information. Based on this side in-

formation, the user designs a retrieval scheme that does not reveal the identity of

the desired message or the identities of the remaining M −mn messages to the nth
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database. For this model, we determined the exact capacity to be C =
1− 1

N

1−( 1
N
)K−M

.

The capacity is attained for any prefetching strategy that satisfies the cache mem-

ory size constraint with equality. The achievable scheme in [33] can also be used for

this model. We further proposed another PIR scheme which requires smaller sub-

packetization and field size for the case of uniform prefetching. Uniform prefetching,

when feasible, is optimal. Interestingly, the capacity expression we derive for this

problem is exactly the same as the capacity expression for the PIR problem with

completely unknown side information [33]. Therefore, our result implies that there

is no loss in employing the same databases for prefetching and retrieval purposes.

In Chapter 5, we studied PIR-PSI under a storage constraint. In this model,

the user randomly chooses M messages and caches the first ri portion of the chosen

messages for i = 1, . . . ,M subject to the memory size constraint
∑M

i=1 ri = S. In

the retrieval phase, the user wishes to retrieve a message such that no individual

database can learn the identity of the desired message and the identities of the

cached messages. For each caching scheme, i.e., (r1, . . . , rM), we characterized the

optimal normalized download cost to be D∗ = 1 + 1
N

+ 1
N2 + · · ·+ 1

NK−1−M + 1−rM
NK−M +

1−rM−1

NK−M+1 + · · · + 1−r1
NK−1 . We conclude that for a fixed memory size S, the uniform

caching scheme caching K messages achieves the lowest normalized download cost.

In Chapter 6, we considered the PIR problem from decentralized uncoded

caching databases. We showed that uniform and random decentralized caching

scheme, originally proposed in [54] for the problem of decentralized coded caching,

results in the lowest expected normalized download cost in the PIR phase. We char-
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acterized the expected normalized download cost to be D
L

=
∑N+1

n=1

(
N
n−1

)
µn−1(1 −

µ)N+1−n (1 + 1
n

+ · · ·+ 1
nK−1

)
. For the achievability, we applied the PIR scheme

in [12] for all subfiles. For the converse, we first applied the lower bound derived

in [43], and to compare different probability distributions in the caching phase, we

focused on the marginal distributions on individual bits. By using the nature of

decentralization and uncoded caching, we further lower bounded the normalized

download cost. Finally, we showed the matching converse for the expected normal-

ized download cost, obtaining the exact capacity of the resulting PIR problem.

In Chapter 7, we proposed practical coding schemes based on polar coding for

the general wiretap channel, multiple access wiretap channel (MAC-WTC), broad-

cast channel with confidential messages (BC-CM), and interference channel with

confidential messages (IC-CM). By applying the chaining construction and polar

coding for asymmetric channels, we proposed a polar coding scheme to achieve the

secrecy capacity of the general wiretap channel. For the MAC-WTC, we combined

our coding scheme for the general wiretap channel with the technique of monotone

chain rule. For the BC-CM, we introduced double chaining construction to guaran-

tee the secrecy and achieve the binning rate. For the IC-CM, we viewed the output

of the channel as the actual output and the intended message carrying signal, and

applied our coding scheme for the general wiretap channel.

The contents of Chapter 2 are published in [111,112], Chapter 3 in [113,114],

Chapter 4 in [115, 116], Chapter 5 in [117, 118], Chapter 6 in [119] and Chapter 7

in [120,121].
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