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Abstract

We review several topics concerning spectral approximations of time-dependent prob-
lems, primarily | the accuracy and stability of Fourier and Chebyshev methods for the
approximate solutions of hyperbolic systems.

To make these notes self contained, we begin with a very brief overview of Cauchy
problems. Thus, the main focus of the �rst part is on hyperbolic systems which are dealt
with two (related) tools: the energy method and Fourier analysis.

The second part deals with spectral approximations. Here we introduce the main in-
gredients of spectral accuracy, Fourier and Chebyshev interpolants, aliasing, di�erentiation
matrices ...

The third part is devoted to Fourier method for the approximate solution of periodic
systems. The questions of stability and convergence are answered by combining ideas from
the �rst two sections. In this context we highlight the role of aliasing and smoothing; in
particular, we explain how the lack of resolution might excite small scales weak instability,
which is avoided by high modes smoothing.

The forth and �nal part deals with non-periodic problems. We study the stability of
the Chebyshev method, paying special attention to the intricate issue of the CFL stability
restriction on the permitted time-step.
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TIME DEPENDENT PROBLEMS 3

1 TIME DEPENDENT PROBLEMS

1.1 Initial Value Problems of Hyperbolic Type

The wave equation,
wtt = a2wxx; (1.1.1)

is the prototype for PDE's of hyperbolic type. We study the pure initial-value problem associated with
(1.1.1), augmented with 2�-periodic boundary conditions and subject to prescribed initial conditions,

w(x; 0) = f(x); wt(x; 0) = g(x): (1.1.2)

We can solve this equation using the method of characteristics, which yields

w(x; t) =
f(x + at) + f(x � at)

2
+

1

2a

Z x+at

x�at

g(s)ds: (1.1.3)

We shall study the manner in which the solution depends on the initial data. In this context the
following features are of importance.

1. Linearity: the principle of superposition holds.

2. Finite speed of propagation: in
uence propagates with speed � a. This is the essential feature of
hyperbolicity. In the wave equation it is re
ected by the fact that the value of w at (x; t) is not
in
uenced by initial values outside domain of dependence (x� at; x+ at).

3. Existence for large enough set of admissible initial data: arbitrary C1
0 initial data can be pre-

scribed and the corresponding solution is C1
0 .

4. Uniqueness: the solution is uniquely determined for �1 < t <1 by its initial data.

5. Conservation of Energy. The wave equation (1.1.1) describes the motion of a string with kinetic

energy, 1
2�
R
w2
tdx, and potential one, 1

2T
R
w2
xdx; (T=� = a2). In order to show that the total

energy

ETotal =
1

2
�

Z
(w2

t + a2w2
x)dx;

is conserved in time we may proceed in one of two ways: either by the so called energy method
or by Fourier analysis.

1.1.1 The wave equation | hyperbolicity by the energy method

Rewrite (1.1.1) as a �rst order system

@

@t

�
u1
u2

�
=

�
0 a2

1 0

�
@

@x

�
u1
u2

�
;

�
u1
u2

�
=

2
6664
@w

@t

@w

@x

3
7775 ; (1.1.4)

or equivalently,
@u

@t
= A

@u

@x
: (1.1.5)

The essential ingredient here is the existence of a positive symmetrizer, H > 0,

HA =

�
0 a2

a2 0

�
� As = AT

s ; H =

�
1 0
0 a2

�
; (1.1.6)

so that multiplication by H on the left gives

Hut = Asux: (1.1.7)

c
1991,1992,1993,1994 Eitan Tadmor September 1996



4 TIME DEPENDENT PROBLEMS

Multiplying by uT we are led to
(u;Hut) = (u;Asux); (1.1.8)

and the real part of both sides are in fact perfect derivatives, for by the symmetry of H,

Re(u;Hut) =
1

2
(u;Hut) +

1

2
(Hut; u) =

1

2
(u;Hut) +

1

2
(ut;Hu) =

@

@t

�
1

2
(u;Hu)

�
;

and similarly, by the symmetry of As, we have

Re(u;Asux) =
1

2
(u;Asux) +

1

2
(Asux; u) =

@

@x

�
1

2
(u;Asu)

�
:

Hence, by integration over the 2�-period we end up with energy conservation, asserting

d

dt

Z
x

(w2
t + a2w2

x)dx =
d

dt

Z
x

(u;Hu)dx =

Z
x

@

@x
(u;Asu)dx = 0: (1.1.9)

We note that the positivity of H was not used in the proof and is assumed just for the sake of making
(u;Hu) an admissible convex \energy norm."

1.1.2 The wave equation | hyperbolicity by Fourier analysis

Fourier transform (1.1.5) to get the ODE

@û

@t
(k; t) = ikAû(k; t); (1.1.10)

whose solution is
û(k; t) = eikAtû(k; 0); (1.1.11)

where û(k; 0) is the Fourier transform of the initial data. Now, for

A = T�T�1; � =

� �a
a

�
; T =

� �a a
1 1

�
; (1.1.12)

we �nd
û(k; t) = Teik�tT�1û(k; 0); (1.1.13)

put di�erently, we have

T�1û(k; t) =

�
e�ikat 0
0 eikat

�
T�1û(k; 0) (1.1.14)

and hence (since the diagonal matrix inside the brackets on the right is clearly unitary), the L2-norm
of T�1û(k; t) is conserved in time,i.e.,

kT�1û(k; t)k2 = kT�1û(k; 0)k2; T�1 = � 1

2a

�
1 �a
�1 �a

�
: (1.1.15)

Summing over all modes and using Parseval's equality we end up with energy conservationZ
x

(w2
t + a2w2

x)dx = 4a2
Z
x

�
wt � awx
�2a

�2

+

�
wt + awx
�2a

�2

dx

= 4a2
Z
x

kT�1uk2dx = 8�a2
X
k

kT�1û(k; t)k2 = Const:

as asserted.
We note that the only tool used in the energy method was the existence of a positive symmetrizer for
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1.1 Initial Value Problems of Hyperbolic Type 5

A, while the only tool used in the Fourier method was the real diagonalization of A; in fact the two are
related, for if A = T�T�1, then with H = (T�1)�T�1 > 0 we have

HA = (T�1)��T�1 = As � AT
s ; � real diagonal: (1.1.16)

Energy conservation implies (in view of linearity) uniqueness, and serves as a basic tool to prove
existence. It will be taken as the de�nition of hyperbolicity. It implies and is implied by the qualitative
properties (1)|(4) which opened our discussion on page 3.

We now turn to consider general PDE's of the form

@u

@t
= P (x; t;D)u; P (x; t;D) =

dX
j=1

Aj(x; t)
@

@xj
; (1.1.17)

with 2�-periodic boundary conditions and subject to prescribed initial conditions, u(x; 0) = f(x).
Motivated by the example of the wave equation, we make the de�nition of

Hyperbolicity: We say that the system (1.1.17) is hyperbolic if the following a priori energy estimate
holds:

ku(x; t)kL2(x) � ConstT � ku(x; 0)kL2(x); �T � t � T: (1.1.18)

As we shall see later on, this notion of hyperbolicity is equivalent with energy conservation ( |
measured with respect to an appropriate renormed weighted 'energy'), in analogy with what we have
seen in the special case of the wave equation. Here are the basic facts concerning such systems.

1.1.3 Hyperbolic systems with constant coe�cients

We consider the 2�-periodic constant coe�cients system

@u

@t
= P (D)u; P (D) =

dX
j=1

Aj
@

@x
; Aj = constant matrices: (1.1.19)

De�ne the Fourier symbol associated with P (D):

P̂ (ik) = i

dX
j=1

Ajkj; k = (k1; k2; � � � ; kd)�Rd; (1.1.20)

which arises naturally when we Fourier transform (1.1.19),

@

@t
û(k; t) = P̂ (ik)û(k; t): (1.1.21)

Solving the ODE (1.1.21) we �nd, as before, that hyperbolicity amounts to

keP̂ (ik)tk � ConstT ; �T � t � T; for all k0s: (1.1.22)

For this to be true the necessary G�arding-Petrovski condition should hold, namely

jRe�[P̂ (ik)]j � Const: (1.1.23)

Example: For the wave equation, (1.1.4), �[P̂ (ik)] = �ika.
But the G�arding-Petrovski condition is not su�cient for the hyperbolic estimate (1.1.18) as told by the
counterexample

@

@t

�
u1
u2

�
=

�
a 1
0 a

�
@

@x

�
u1
u2

�
:
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6 TIME DEPENDENT PROBLEMS

As before, in this case we have �[P̂ (ik)] = �ika, hence the G�arding-Petrovski condition is ful�lled. Yet,
Fourier analysis shows that we need both ku1(x; 0)kL2(x) and k@u2@x (x; 0)kL2(x) in order to upperbound
ku1(x; t)kL2(x). Thus, the best we can hope for with this counterexample is an a priori estimate of the
form

ku(x; t)kL2(x) � ConstT � ku(x; 0)kH1(x); �T � t � T:
We note that in this case we have a "loss" of one derivative, and this brings us to the notion of
Weak Hyperbolicity: We say that the system (1.1.17) is weakly hyperbolic if there exists an s � 0 such
that the following a priori estimate holds:

ku(x; t)kL2(x) � ConstT � ku(x; 0)kHs(x); �T � t � T: (1.1.24)

The G�arding-Petrovski condition is necessary and su�cient for the system (1.1.19) to be weakly hy-
perbolic. A necessary and su�cient characterization of hyperbolic systems is provided by the Kreiss
matrix theorem: it states that (1.1.22) holds i� there exists a positive symmetrizer Ĥ(k) such that

Re[Ĥ(k)P̂ (ik)] � 0; 0 < m � Ĥ(k) �M; (1.1.25)

and this yields the conservation of the L2-weighted norm, ku(x; t)k2H = 2�
P

k kû(k)k2Ĥ(k)
; that is,

2�
X
k

(û(k; t)); Ĥ(k)û(k; t))

is conserved in time.

Remark: For an a priori estimate forward in time (0 � t � T ), it will su�ce to have

Re[Ĥ(k)P̂ (ik)] =
1

2
[Ĥ(k)P̂ (ik) + P̂ (ik)Ĥ(k)] � 0: (1.1.26)

Indeed, we have in this case

1

2

d

dt
(û(k); Ĥ(k)û(k)) � (Re[Ĥ(k)P̂ (ik)]û(k); û(k)) � 0;

and hence summing over all k's and using Parseval's equality

ku(x; t)k2L2(x) �
M

m
ku(x; 0)k2L2(x):

Two important subclasses of hyperbolic equations are the strictly hyperbolic systems | where P̂ (ik)
has distinct real eigenvalues so that P̂ (ik) can be real diagonalized

P̂ (k) = iT (k)�(k)T�1(k);

and as before, Ĥ(k) = (T�1(k))�T�1(k) will do; the other important case consists of symmetric hy-
perbolic systems which can be symmetrizer in the physical space, i.e. there exists an H > 0 such
that

HAj = Ajs = AT
js:

Most of the physically relevant systems fall into these categories.

Example: Shallow water equations (linearized)

@

@t

2
4 u
v
�

3
5+ A1

@

@x

2
4 u
v
�

3
5+ A2

@

@y

2
4 u
v
�

3
5 = 0;

with

A1 =

2
4 u0 0 1

0 u0 0
� 0 u0

3
5 ; A2 =

2
4 v0 0 0

0 v0 1
0 �0 v0

3
5 ;

can be symmetrized with

H =

2
4 �0

�0
1

3
5 :
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1.2 Initial Value Problems of Parabolic Type 7

1.1.4 Hyperbolic systems with variable coe�cients

We want to extend our previous analysis to linear systems of the form

@u

@t
= P (x; t;D)u: (1.1.27)

This is the motivation for the de�nition of hyperbolicity (1.1.18) in the context of constant coe�cient
problems: freeze the coe�cients and assume the hyperbolicity of the constant coe�cient problem(s),
ut = P (x0; t0; D)u, uniformly for each (x0; t0); then { in contrast to the notion of weak hyperbolicity,
the variable coe�cients problem is also hyperbolic. This result is based on the invariance of the notion
of hyperbolicity under low-order perturbations1.

As before the study of the variable coe�cients problem can be carried out by one of two ways:

� by the Fourier method { one characterize the hyperbolicity of (1.1.27) in terms of the algebraic
properties of the pseudodi�erential symbol, P̂ (x; t; ik) = e�ikxP (x; t;D)eikx;

� alternatively, we can also work directly in physical space with the energy method. For example,
if we assume that P (x; t;D) is semi-bounded, i.e., if

�Mkuk2L2(x) � Re(u; P (x; t;D)u)L2(x) �Mkuk2L2(x); 0 < M; (1.1.28)

then we have hyperbolicity (1.1.18).

Example: The symmetric hyperbolic case Aj(x; t) = AT
j (x; t): we can rewrite such symmetric

problems in the equivalent form

@u

@t
=

1

2

2
4X

j

Aj
@u

@xj
+
X
j

@

@xj
(Aju)

3
5+Bu; B = �1

2

X
j

@Aj

@xj
:

In this case the symmetry of the Aj 's implies that 1
2

hP
jAj

@u
@xj

+
P

j
@
@xj

(Aju)
i
is skew-adjoint, i.e.,

integration by parts gives 0
@u; 1

2

2
4X

j

Aj
@u

@xj
+
X
j

@

@xj
(Aju)

3
5
1
A
L2(x)

� 0:

Therefore we have
Re(u; P (x; t;D)u)L2(x) � Re(Bu; u)L2(x);

and hence the semi-boundedness requirement (1.1.28) holds withM = kReBk. Consequently, ifAj(x; t)
are symmetric (or at least symmetrizable) then the system (1.1.17) is hyperbolic.

1.2 Initial Value Problems of Parabolic Type

The heat equation,
ut = auxx; a > 0; (1.2.1)

is the prototype for PDE's of parabolic type. We study the pure initial-value problem associated with
(1.2.1), augmented with 2�-periodic boundary conditions and subject to initial conditions

u(x; 0) = f(x): (1.2.2)

We can solve this equation using Fourier transform which yields

û(k; t) = e�ak
2tf̂(k): (1.2.3)

1This is a rather strong notion of hyperbolicity; it restricts such hyperbolic system to be of �rst-order.
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8 TIME DEPENDENT PROBLEMS

It re
ects the dissipative e�ect (= the rapid decay of the amplitudes , jû(k; t)j, as functions of the high
wavenumbers, jkj � 1), which is the essential feature of parabolicity.

As before, we study the manner in which the solution depends on its initial data.

1. Linearity: the principal of superposition holds.

2. Uniqueness: the solution is uniquely determined for t > 0 by the explicit formula

u(x; t) =

Z 1

y=�1

Q(x� y; t)f(y)dy; Q(z) =
1p
4�at

e
�z2

4at > 0: (1.2.4)

3. Existence for large enough set of admissible initial data: bounded initial data f(x) can be

prescribed (and even f 's with jf(x)j � e�x
2
), and the corresponding solution is C1 { in fact

u(x; t > 0) is analytic because of exponential decay in Fourier space.

4. The maximum principle: follows directly from the representation of u(x; t) as a convolution of
f(x) with the unit mass positive kernel Q(z).

5. Energy decay: as in the hyperbolic case we may proceed in one of two ways: Fourier analysis and
the energy method.

1.2.1 The heat equation | Fourier analysis and the energy method

We start with

k @
s

@xs
u(x; t)jj2L2 � 2�

X
k

jf̂(k)j2 �max
k

[jkj2s � je�ak2tj2] � Const:t�s � kfk2L2 ; (1.2.5)

The last a priori estimate shows that the parabolic solution becomes in�nitely smoother than its initial
data ({ we "gain" in�nitely many s-derivatives), and at the same time these higher derivatives decay
faster as t " 1.

Alternatively, we can work with the energy method. Multiply (1.2.1) by u and integrate to get

1

2

d

dt
kuk2L2(x) � �akuxk2L2(x); (1.2.6)

and in general
1

2

d

dt
k@

su

@xs
k2L2 � �Const:k

@s+1u

@xs+1
k2L2 ; (1.2.7)

successive integration of (1.2.7) yields (1.2.5).

1.2.2 Parabolic systems

Turning to general case, we consider mth-order PDE's of the form,

@u

@t
= P (x; t;D)u; P (x; t;D) =

mX
jjj=0

Aj(x; t)D
j: (1.2.8)

We say that the system (1.2.8) is weakly parabolic of order � if

k @
s

@xs
u(x; t)kL2 � Const:t�jsj=�ku(x; 0)kL2(x): (1.2.9)
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1.3 Well-Posed Time-Dependent Problems 9

For problems with constant coe�cients this leads to the G�arding-Petrovski characterization of parabol-
icity of order �, requiring

Re�

2
4P̂ (ik) = mX

jjj=0

Aj(ik)
j

3
5 � �C1 � jkj� + C2:

Remark: Generically we have � = � = m the order of dissipation which is necessarily even.

The extension to problems with variable coe�cients case (with Lipschitz continuous coe�cients) may
proceed in one of two ways. Either, we freeze the coe�cients and Fourier analyze the corresponding
constant coe�cients problems; or we may use the energy method, e.g., integration by parts shows that
for

P (x; t;D) =
X
j

@

@xj

�
Aj(x; t)

@u

@xj

�
+ Bj

@u

@xj
+ Cu;

with Aj + A�j > � > 0; and Bj = B�
j , the corresponding systems (1.2.8) is parabolic of order 2.

Example: ut = auxx + uxxx is weakly parabolic of order two, yet it does not satisfy Petrovski
parabolicity.

1.3 Well-Posed Time-Dependent Problems

Hyperbolic and parabolic equations are the two most important categories of time-dependent problems
whose evolution process is well-posed. Thus, consider the initial value problem

@u

@t
= P (x; t;D)u: (1.3.1)

We assume that a large enough class of admissible initial data

u(x; t = 0) = f(x) (1.3.2)

there exists a unique solution, u(x; t). This de�nes a solution operator, E(t; � ) which describes the
evolution of the problem

u(t) = E(t; � )u(� ): (1.3.3)

Hoping to compute such solutions, we need that the solutions will depend continuously in their initial
data, i.e.,

ku(t)� v(t)k � ConstTku(0)� v(0)kHs 0 � t � T: (1.3.4)

In view of linearity, this amounts to having the a priori estimate (boundedness)

ku(t) � E(t; � )u(� )k � ConstT ku(� )kHs; 0 � t � T; (1.3.5)

which includes the hyperbolic and parabolic cases.

Counterexample: (Hadamard) By Cauchy-Kowalewski, the system

@u

@t
+ A

@u

@x
= 0; u =

�
u1
u2

�
; A =

�
0 +1
�1 0

�
;

has a unique solution for arbitrary analytic data, at least for su�ciently small time. Yet, with initial
data

u1(x; 0) =
sinnx

n
; u2(x; 0) = 0; (1.3.6)
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10 TIME DEPENDENT PROBLEMS

we obtain the solution

u1(x; t) =
cosh nt sinnx

n
; u2(x; t) =

sinhnt cos nx

n
(1.3.7)

which tends to in�nity ku(�; t)kn!1 ! 1, while the initial data tend to zero. Thus, the Laplace

equation, @2u1
@t2

+ @2u1
@x2

= 0; is not well-posed as an initial-value problem.

Finally, we note that a well-posed problem is stable against perturbations of inhomogeneous data
in view of the following

Duhammel's principle. The solution of the inhomogeneous problem

@u

@t
= P (x; t;D)u+ F (x; t) (1.3.8)

is given by

u(t) = E(t; 0)u(0) +

Z t

�=0
E(t; � )F (� )d�: (1.3.9)

Indeed, a straightforward substitution yields

@

@t
u(t) =

@

@t
[E(t; 0)u(0)] +

@

@t

�Z t

�=0

E(t; � )F (t)d�

�

= P (x; t;D)[E(t; 0)u(0)] +E(t; t)F (t) +

Z t

�=0

@

@t
[E(t; � )F (t)]d�

= P (x; t;D)[E(t; 0)u(0)+

Z t

�=0

E(t; � )F (� )d� ] + F (t) = P (x; t;D)u(t) + F:

This implies the a priori stability estimate

ku(t)k � ConstTku(0)kHs +ConstT

Z t

�=0

kF (� )kHsd�; 0 � t � T; (1.3.10)

as asserted.

c
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SPECTRAL APPROXIMATIONS 11

2 SPECTRAL APPROXIMATIONS

2.1 The Periodic Problem | The Fourier Expansion

Consider the �rst order Sturm-Liouville (SL) problem

d

dx
� = ��(x); 0 � x � 2�; (2.1.1)

augmented with periodic boundary conditions

�(0) = �(2�): (2.1.2)

It has an in�nite sequence of eigenvalues, �k = ik, with the corresponding eigenfunctions �k(x) = eikx.
Thus, (�k = ik; �k = eikx) are the eigenpairs of the di�erentiation operator D � d

dx in L2[0; 2�), and
they form a complete system in this space | completeness in the sense described below.

Let the space L2[0; 2�) be endowed with the usual Euclidean inner product

(w1(x); w2(x)) �
Z 2�

0

w1(x)w2(x)dx: (2.1.3)

Note that �k(x) = eikx are orthogonal with respect to this inner product, for

(eikx; eijx) =

�
0 j 6= k;

keikxk2 = 2� j = k:
(2.1.4)

Let w(x)�L2[0; 2�) be associated with its spectral representation in this system, i.e., the Fourier expan-
sion

w(x) �
1X

k=�1

ŵ(k)�k(x); ŵ(k) =
(w; �k)

k�kk2 ; (2.1.5)

or equivalently,

w(x) �
1X

k=�1

ŵ(k)eikx; ŵ(k) =
1

2�

Z 2�

�=0

w(�)e�ik�: (2.1.6)

The truncated Fourier expansion

SNw �
NX

k=�N

ŵ(k)eikx; (2.1.7)

denotes the spectral-Fourier projection of w(x) into �N{the space of trigonometric polynomials of degree
� N : 2

SNw = ŵ(0) +
NX
k=1

[ŵ(k)eikx + ŵ(�k)e�ikx]

= ŵ(0) +
NX
k=1

[ŵ(k) + ŵ(�k)] cos kx+ i[ŵ(k) � ŵ(�k)] sin kx

=
NX
k=0

0âk cos kx+ b̂k sin kx;

(2.1.8)

2
P

0

(and respectively,
P

00

) indicate summation with 1
2 of the �rst (and respectively, the �rst and the last) terms.
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12 SPECTRAL APPROXIMATIONS

here âk and b̂k are the usual Fourier coe�cients given by

âk = ŵ(k) + ŵ(�k) = 1

�

Z 2�

0

w(�) cos k�d�;

b̂k = i[ŵ(k)� ŵ(�k)] = 1

�

Z 2�

0

w(�) sin k�d�:

(2.1.9)

Since w � SNw is orthogonal to the �N -space:

(w � SNw; eikx) = 2�ŵ(k) � 2�ŵ(k) = 0; jkj � N; (2.1.10)

it follows that for any pN��N we have (see Figure 2.1 )

kw � pNk2 = kw � SNwk2 + kSNw � pNk2: (2.1.11)

Hence, SNw solves the least-squares problem

PP
PPi

..........
..........

@
@

@
@
@

�
�
�
�
�
�
�
�
�
��

"
"

"
"

"
"

"
"
"

�
�
�
�
��

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ �N

w

pN
SNw

Figure 2.1: Least-squares approximation

kw � SNwk = min
pN ��N

kw � pNk (2.1.12)

i.e., SNw is the best least-squares approximation to w. Moreover, (2.1.11) with pN = 0 yields

kSNwk2 = kwk2 � kw � SNwk2 � kwk2 (2.1.13)

and by letting N !1 we arrive at Bessel's inequality

2�
1X

k=�1

jŵ(k)j2 �
1X

k=�1

jŵ(k)j2k�kk2 � kwk2: (2.1.14)

Remark: An immediate consequence of (2.1.14) is the Riemann-Lebesgue lemma, asserting that

ŵ(k) =
1

2�

Z 2�

0

w(�)e�ik�d��! 0
k!1

; for any w�L2[0; 2�):

The system f�k = eikxg is complete in the sense that for anyw(x)�L2[0; 2�) we have Parseval's equality:

2�
1X

k=�1

jŵ(k)j2 �
1X

k=�1

jŵ(k)j2k�kk2 = kwk2; (2.1.15)

c
1991,1992,1993,1994 Eitan Tadmor September 1996



2.1 The Periodic Problem | The Fourier Expansion 13

which in view of (2.1.13), is the same as

lim
N!1

kSNw �w(x)k = 0: (2.1.16)

Thus completeness guarantee that the spectral projections '�ll in' the relevant space.
The last equality establishes the L2 convergence of the spectral-Fourier projection, SNw(x), to w(x),
whose di�erence can be (upper-)bounded by the following

Error Estimate:

kw � SNwk2 = kwk2 � kSNwk2 =
X
jkj>N

jŵ(k)j2k�kk2 = 2�
X
jkj>N

jŵ(k)j2:

We observe that the RHS tends to zero as a tail of a converging sequence, i.e.,Z 2�

0

jw(x)�
NX

k=�N

ŵ(k)eikxj2dx = 2�
X
jkj>N

jŵ(k)j2�! 0
N!1

: (2.1.17)

The last equality tells us that the convergence rate depends on how fast the Fourier coe�cients, ŵ(k),
decay to zero, and we shall quantify this in a more precise way below.

Remark. What about pointwise convergence? The L2-convergence stated in (2.1.17) yields pointwise
a.e. convergence for subsequences; one can show that in fact

a:e: lim
p!1

jw(x)� SNpw(x)j = 0; inf
p

Np+1

Np
> 1: (2.1.18)

The ultimate result in this direction states that , w(x) = a:e: limN!1 SNw(x) (no subsequences) for
all w�L2[0; 2�], though a.e. convergence may fail if w(�) is only L1[0; 2�]-integrable.

The question of pointwise a.e. convergence is an extremely intricate issue for arbitrary L2-functions.
Yet, if we agree to assume su�cient smoothness, we �nd the convergence of spectral-Fourier projection
to be very rapid, both in the L2 and the pointwise sense. To this we proceed as follows.

2.1.1 Spectral accuracy

De�ne the Sobolev space Hs[0; 2�) consisting of 2�-periodic functions for which their �rst s-derivatives
are L2-integrable; set the corresponding Hs-inner product as

(w1; w2)Hs =
sX

p=0

Z 2�

0

Dpw1(x)Dpw2(x)dx: (2.1.19)

The essential ingredient here is that the system feikxg { which was already shown to be complete in
L2[0; 2�) � H0[0; 2�), is also a complete system in Hs[0; 2�) for any s � 0. For orthogonality we have

(eikx; eijx)Hs =

8>>><
>>>:

0 j 6= k;

2�
sX

p=0

k2p j = k:
(2.1.20)

The Fourier expansion now reads

w(x) �
1X

k=�1

ŵs(k)e
ikx (2.1.21)

where the Fourier coe�cients, ŵs(k), are given by

ŵs(k) =
(w(x); eikx)Hs

(eikx; eikx)Hs

: (2.1.22)

c
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14 SPECTRAL APPROXIMATIONS

We integrate by parts and use periodicity to obtain

(w(x); eikx)Hs =
sX

p=0

Z 2�

0

Dpw(x)Dpeikxdx =

=
sX

p=0

(�1)p
Z 2�

0

w(x)D2peikxdx

=
sX

p=0

(�1)p(�ik)2p
Z 2�

0

w(�)e�ik�d�

and together with (2.1.20) we recover the usual Fourier expansion we had before, namely

ŵs(k) � ŵ(k) = 1

2�

Z 2�

�=0

w(�)e�ik�d�: (2.1.23)

The completion of feikxg in Hs[0; 2�) gives us the Parseval's equality (compare (2.1.15)) which in turn
implies

kw � SNwk2Hs =
X
jkj>N

jŵs(k)j2keikxk2Hs =
X
jkj>N

"
jŵ(k)j2 � 2�

sX
p=0

k2p

#
�

sX
p=0

N2p � 2� �
X
jkj>N

jŵ(k)j2 =
sX

p=0

N2p � kw� SNwk2:
(2.1.24)

Since

Const1(1 +N2)s=2 �
 

sX
p=0

N2p

! 1
2

� Const2(1 +N2)
s
2 ; (2.1.25)

we conclude from (2.1.24), that for any w�Hs[0; 2�) we have

kw � SNwk � Consts � 1

N s
; w�Hs[0; 2�): (2.1.26)

Note that Consts = Const1 � kw�SNwkHs�! 0
N!1

. This kind of estimate is usually referred to by saying

that the Fourier expansion has spectral accuracy:

Spectral Accuracy | the error tends to zero faster than any �xed power of N , and is restricted only
by the global smoothness of w(x).

We note that as before, this kind of behavior is linked directly to the spectral decay of the Fourier
coe�cients. Indeed, by Cauchy-Schwartz inequality

jŵ(k)j = jŵs(k)j � kwkHs � keikxkHs

keikxk2Hs

� 1

(2�
Ps

p=0 k
2p)

1
2

kwkHs

� Const � 1

(1 + jkj2) s2 :
(2.1.27)

In fact more is true. By Parseval's equality

kwk2Hs =
1X

k=�1

jŵ(k)j2keikxk2Hs = 2�
1X

k=�1

 
sX

p=0

k2p

!
jŵ(k)j2;

c
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2.1 The Periodic Problem | The Fourier Expansion 15

and hence by the Riemann-Lebesgue lemma, the product (1 + jkj2) s2 jŵ(k)j is not only bounded (as
asserted in (2.1.27), but in fact it tends to zero,

(1 + jkj2) s2 jŵ(k)j�! 0
k!1

:

Thus, ŵ(k) tends to zero faster than jkj�s for all w(x)�Hs. This yields spectral convergence, for

kw � SNwk2 = 2�
X
jkj>N

jŵ(k)j2 � Const:
X
jkj>N

1

(1 + jkj2)s � Const:
1

N2s�1

i.e., we get slightly less than (2.1.26),

kw � SNwk � Const:
1

N s� 1
2

�! 0
N!1

s � 1:

Moreover, there is a rapid convergence for derivatives as well. Indeed, if w(x)�Hs[0; 2�) then for
0 < � < s we have

kw � SNwk2H� =
X
jkj>N

(2�
�X

p=0

k2p)jŵ(k)j2

� Const:
X
jkj>N

(1 + jkj2)� jŵ(k)j2

� Const:
X
jkj>N

(1 + jkj2)s
(1 +N2)s��

jŵ(k)j2 �

� Const:
X
jkj>N

(2�
Ps

p=0 k
2p)

(1 +N2)s��
jŵ(k)j2 =

� Const:
kw� SNwk2Hs

N2(s��)
:

Hence

kw� SNwkH� � Consts � 1

N s��
; � � s; w�Hs[0; 2�) (2.1.28)

with Consts � kw � SNwkHs�! 0
N!1

: Thus, for each derivative we \lose" one order in the convergence

rate.
As a corollary we also get uniform convergence of SNw(x) for H

1[0; 2�)-functions w(x), with the
help of Sobolev-type estimate

max
0�x�2�

jv(x)j � Const:kvkH1 : (2.1.29)

(Proof: Write v(x) = v(x0) +
R x
x0
v0(x)dx with v(x0) � 1

2�

R 2�
0 v(x)dx, and use Cauchy-Schwartz to

upper bound the two integrals on the right.)

Utilizing (2.1.29) with v(x) = w(x)� SNw(x) we �nd
max

0�x�2�
jw(x)� SNw(x)j � Const:kw � SNwkH1 �

� Consts
1

N s�1
�! 0
N!1

; w�Hs[0; 2�); Consts ! 0; s � 1:

(2.1.30)

In particular, we conclude that for any w�Hs[0; 2�); s > 1 we have, (in fact, s > 1=2 will do {
consult (2.5.22) below)

w(x) =
1X

k=�1

ŵ(k)eikx; w�Hs[0; 2�); s > 1: (2.1.31)
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16 SPECTRAL APPROXIMATIONS

In closing this section, we note that the spectral-Fourier projection, SNw(x), can be rewritten in
the form

SNw(x) =
NX

k=�N

ŵ(k)eikx =
1

2�

Z 2�

�=0

w(�)
NX

k=�N

eik(x��)d� =

=

Z 2�

�=0

DN (x� �)w(�)d�

(2.1.32)

where

DN (x� �) = 1

2�

NX
k=�N

eik(x��) =
1

2�

sin
�
N + 1

2

�
(x� �)

sin
�
x��
2

� :

Thus, the spectral projection is given by a convolution with the so-called Dirichlet kernel,

DN (x) =
1

2�

sin
�
N + 1

2

�
x

sin x
2

: (2.1.33)

Now (2.1.30) reads

jw(x)�DN (x) �w(x)j � Consts � 1

N s�1
; Consts � kwkHs : (2.1.34)

2.2 The Periodic Problem | The Fourier Interpolant

We have seen that given the \moments"

ŵ(k) =
1

2�

Z 2�

�=0

w(�)e�ik�d�; �N � k � N; (2.2.1)

we can recover smooth functions w(x) within spectral accuracy. Now, suppose we are given discrete
data of w(x): speci�cally, assume w(x) is known at equidistant collocation points 3

w� = w(x�); x� = r + �h; � = 0; 1; � � �; 2N: (2.2.2)

Without loss of generality we can assume that r|which measures a �xed shift from the origin, satis�es

0 � r < h � 2�

2N + 1
: (2.2.3)

Given the equidistant values w�, we can approximate the above \moments," ŵ(k), by the trapezoidal
rule

~w(k) =
h

2�

2N+1X
�=0

00w�e
�ikx� � 1

2N + 1

2NX
�=0

w�e
�ikx� : (2.2.4)

Using ~w(k) instead of ŵ(k) in (2.1.7), we consider now the pseudospectral approximation

 Nw =
NX

k=�N

~w(k)eikx: (2.2.5)

The error, w(x)�  Nw(x), consists of two parts:

w(x)�  Nw(x) =
X
jkj>N

ŵ(k)eikx +
X
jkj�N

[ŵ(k) � ~w(k)]eikx:

3We treat here the case of an odd number of 2N + 1 collocation points. We get even in x2.2.3

c
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2.2 The Periodic Problem | The Fourier Interpolant 17

The �rst contribution on the right is the truncation error

TNw(x) � (I � SN )w(x) =
X
jkj>N

ŵ(k)eikx:

We have seen that it is spectrally small provided w(x) is su�ciently smooth. The second contribution
on the right is the aliasing error

ANw(x) =
X
jkj�N

[ŵ(k)� ~w(k)]eikx: (2.2.6)

This is pure discretization error; to estimate its size we need the

Poisson's Summation Formula (Aliasing). Assume w(x)�H1[0; 2�). Then we have

~w(k) =
1X

p=�1

eip(2N+1)rŵ(k + p(2N + 1)): (2.2.7)

The proof of (2.2.7) is based on the pointwise representation of w(x)�H1[0; 2�) by its Fourier ex-
pansion (2.1.31),

~w(k) =
1

2N + 1

2NX
�=0

w(x�)e
�ikx� =

1

2N + 1

2NX
�=0

2
4 1X
j=�1

ŵ(j)eijx�

3
5 e�ikx� : (2.2.8)

Since w(x) is assumed to be in H1, the summation on the right is absolutely convergent

1X
j=�1

jŵ(j)j �
0
@X

j

(1 + j2)jŵ(j)j2 �
X
j

1

1 + j2

1
A

1
2

� Const:kwkH1 ; (2.2.9)

and hence we can interchange the order of summation

~w(k) =
1

2N + 1

1X
j=�1

ŵ(j)
2NX
�=0

ei(j�k)x� : (2.2.10)

Straightforward calculation yields

1

2N + 1

2NX
�=0

ei(j�k)(r+�h) = ei(j�k)r � 1

2N + 1
�
2NX
�=0

ei(j�k)�
2�

2N+1 =

= ei(j�k)r � 1

2N + 1

8>><
>>:

ei(j�k)
2��(2N+1)

2N+1 � 1

ei(j�k)
2�

2N+1 � 1
= 0 j � k 6= 0[mod 2N + 1]

2N + 1; j � k = p � (2N + 1):

(2.2.11)

and we end up with the asserted equality

~w(k) =
1X

j=�1

ŵ(j) � 1

2N + 1

2NX
�=0

ei(j�k)x� =
1X

p=�1

ŵ(k + p(2N + 1)) � eip�(2N+1)r:
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18 SPECTRAL APPROXIMATIONS

2.2.1 Aliasing and spectral accuracy

We note that once w(x) is assumed to be smooth, it is completely determined ( { in the pointwise
sense) by its Fourier coe�cients ŵ(k); so are its equidistant values w� � w(x�) and so are its discrete
Fourier coe�cients ~w(k). The aliasing formula shows that ~w(k) are determined in terms of ŵ(k), by
folding back high modes on the lowest ones, due to the discrete resolution of the moments of w(x): all
modes = k[mod2N + 1] are aliased to the same place since they are equal on the gridpoints

ei(k+p(2N+1))x� = eip(2N+1)r � eikx� : (2.2.12)

Let us rewrite (2.2.7) in the form

~w(k) = ŵ(k) +
X
p6=0

eip(2N+1)r � ŵ(k + p(2N + 1)):

Returning to the aliasing error in (2.2.6), we now have

ANw(x) =
X
jkj�N

2
4X
p 6=0

eip�(2N+1)r � ŵ(k + p � (2N + 1))

3
5 eikx: (2.2.13)

We note that the truncation error TNw(x) lies outside �N , while the aliasing error ANw(x) lies in �N ,
hence by Hs-orthogonality

kw(x)�  Nw(x)k2Hs =

=

truncationz }| {X
jkj>N

(1 + jkj2)s � jŵ(k)j2 +
aliasingz }| {X

jkj�N

(1 + jkj2)s � j
X
p6=0

eip(2N+1)r � ŵ(k + p(2N + 1))j2:
(2.2.14)

Both contributions involve only the high amplitudes { higher than N in absolute value; in fact they
involve precisely all of these high amplitudes. This leads us to aliasing estimate

X
jkj�N

(1 + jkj2)sj
X
p6=0

eip(2N+1)r � ŵ(k + p(2N + 1))j2 �

X
jkj�N

X
p6=0

(1 + jk+ p(2N + 1)j2)sjŵ(k + p(2N + 1))j2�� max
jkj�N

X
p 6=0

�
1 + jkj2

1 + jk+ p � (2N + 1)j2
�s
�

kTNw(x)k2Hs �
X
p6=0

�
1 + N2

1 + 4p2N2

�s
:

(2.2.15)
We conclude that the aliasing error is dominated by the truncation error (at least for any s > 1

2 ),

kANw(x)kHs � Consts � kTNw(x)kHs ; s >
1

2
: (2.2.16)

Augmenting this with our previous estimates on the truncation error we end up with spectral accuracy
as before, namely

kw �  NwkH� � Consts � 1

N s��
; w�Hs[0; 2�); s � � > 1

2
: (2.2.17)
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2.2 The Periodic Problem | The Fourier Interpolant 19

2.2.2 Fourier di�erentiation matrix

We observe that  Nw(x) is nothing but the trigonometric interpolant of w(x) at the equidistant points
x = x�:

 Nw(x)jx=x� =
NX

k=�N

"
1

2N + 1

2NX
�=0

w(x�)e
�ikx�

#
eikx� =

=
2NX
�=0

w(x�) � 1

2N + 1

NX
k=�N

eik(���)h = w(x�):

(2.2.18)

This shows that  N is in fact a  dospectral projection, which in the usual sin-cos formulation reads

 Nw =
NX
k=0

0~ak cos kx+ ~bk sin kx

�
~ak
~bk

�
=

2

2N + 1

2NX
�=0

w(x�)

�
cos kx�
sin kx�

�
:

(2.2.19)

Thus, trigonometric interpolation provides us with an excellent vehicle to perform approximate dis-
cretizations with high (= spectral) accuracy, of di�erential and integral operations. These can be
easily carried out in Fourier space where the exponentials serve as eigenfunction. For example, suppose
we are given the equidistant gridvalues, w�, of an underlying smooth (i.e., also periodic!) function
w(x); w(x)�Hs[0; 2�). A second-order accurate discrete derivative is provided by center di�erencing

dw

dx
(x = x�) =

w�+1 �w��1
2h

+ O(h2):

Note that the error in this case is, O(h2) � w(3)(�)h2, no matter how smooth w(x) is. Similarly, fourth
order approximation is given (via Richardson's extrapolation procedure) by

dw

dx
(x = x�) =

8[w�+1 � w��1]� [w�+2 � w��2]
12h

+ O(h4):
The pseudospectral approximation gives us an alternative procedure: construct the trigonometric in-
terpolant

 Nw(x) =
NX

k=�N

~w(k)eikx; ~w(k) =
1

2N + 1

2NX
�=0

w�e
�ikx� : (2.2.20)

Di�erentiation in Fourier space amounts to simple multiplication, since the exponentials are eigenfunc-
tions of di�erentiation,

d

dx
 Nw(x) =

NX
k=�N

~w(k)ikeikx; (2.2.21)

and we approximate

dw

dx
(x = x�) =

d

dx
 Nw(x)jx=x� + spectrally small error: (2.2.22)

Indeed, by our estimates we have for w(x)�Hs[0; 2�); s > 1;

max
0�x�2�

j d
dx
w(x)� d

dx
 Nw(x)j � Const:kw(x)�  Nw(x)kH2 � Consts

N s�2
(2.2.23)

which veri�es the asserted spectral accuracy. Similar estimates are valid for higher derivatives. To carry
out the above recipe, one proceeds as follows: starting with the vector of gridvalues, ~w = (w0; � � � ; w2N ),
one computes the discrete Fourier coe�cients

~w(k) =
1

2N + 1

2NX
�=0

w�e
�ikx� ; �N � k � N; (2.2.24)
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20 SPECTRAL APPROXIMATIONS

or, in matrix formulation2
64 ~w(�N )

...
~w(N )

3
75 = F

2
64 w0

...
w2N

3
75 ; Fk� =

1

2N + 1
e�ikx� ; (2.2.25)

then we di�erentiate
~w(k)! ik ~w(k); (2.2.26)

or in matrix formulation2
64 ~w(�N )

...
~w(N )

3
75! �

2
64 ~w(�N )

...
~w(N )

3
75 ; � =

2
64 �iN . . .

iN

3
75 ; (2.2.27)

and �nally, we return to the \physical" space, calculating

NX
k=�N

ik ~w(k)eikx� ; � = 0; 1; � � � ; 2N; (2.2.28)

or in matrix formulation2
66664

dw

dx
(x0)

...
dw

dx
(x2N)

3
77775 = F � � (2N + 1)

2
64 �iN ~w(�N )

...
iN ~w(N )

3
75 ; (2N + 1)F �

�k = eikx� : (2.2.29)

The summary of these three steps is2
64 w0(x0)

...
w0(x2N )

3
75 =  D

2
64 w0

...
w2N

3
75 ;  D � (2N + 1)F ��F; (2.2.30)

where  D represents the discrete di�erentiation matrix, and similarly  Ds for higher derivatives.

Note: Since (2N + 1)F �F = I2N+1 (interpolation!) we apply  Ds = (2N + 1)F ��sF . How does this
compare with �nite di�erences and �nite-element type di�erencing?

In periodic second-order di�erencing we have

FD2 =
1

2h

2
666664

0 1 � � � 0 �1
�1 0 0
...

. . .
...

0 0 1
1 0 � � � �1 0

3
777775 ;

fourth order di�erencing yields

FD4 =
1

12h

2
666666664

0 8 �1 � � � 1 �8
�8 0 1

1
.. .

...
... �1
�1 0 8
8 �1 � � � 1 �8 0

3
777777775
:
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2.2 The Periodic Problem | The Fourier Interpolant 21

In both cases the second and fourth order di�erencing takes place in the physical space. The corre-
sponding di�erencing matrices have �nite bandwidth and this re
ects the fact that these di�erencing
methods are local. Similarly, �nite-element di�erencing,

1

6
w0��1 +

4

6
w0� +

1

6
w0�+1 =

w�+1 � w��1
2h

corresponds to a di�erencing matrix

FE4 =

2
666666664

4

6

1

6
� � � 1

6

1

6

.. .
1

6

1

6
� � � 1

6

4

6

3
777777775

�1

� 1
2h

2
666664

0 1 � � � 0 �1
�1 0 0
...

. . .
...

0 0 1
1 0 � � � �1 0

3
777775 :

We still operate in physical space with O(N ) operations (tridiagonal solver) and locality is re
ected by
a very rapid (exponential decay) away from main diagonal. Nevertheless, if we increase the periodic
center di�erences stencil to its limit then we end up with global pseudospectral di�erentiation

d

dx
 Nw(x�) =

NX
k=�N

 
ik

2N + 1

2NX
�=0

w�e
�ikx�

!
eikx� ; (2.2.31)

recall the Dirichlet kernel (2.1.33)

NX
k=�N

eikx = e�iNx e
i(2N+1)x � 1

eix � 1
=

sin(N + 1
2)x

sin x
2

; (2.2.32)

and its derivative,

NX
k=�N

ikeikx =
d

dx

sin(N + 1
2)x

sin x
2

=
(N + 1

2 ) cos(N + 1
2)x sin

x
2 � 1

2 cos
x
2 sin(N + 1

2 )x

sin2 x
2

(2.2.33)

so that
NX

k=�N

ikeik(���)h =
(N + 1

2) cos[(N + 1
2)(� � �)h]

sin(x��x�2 )
: (2.2.34)

Hence (2.2.31), (2.2.34) give us

w0(x�) � d

dx
 Nw(x�) =

2NX
�=0

1

2

(�1)���
sin(

x��x�
2 )

�w�; [ D]�� = ���
(�1)���

2 sin(
x��x�

2 )
: (2.2.35)

In this case  D is a full (2N + 1) � (2N + 1) matrix whose multiplication requires O(N2) operations;
however, we can multiply  D[w] e�ciently using its spectral representation from (2.2.30),

 D = (2N + 1)F ��F:

Multiplication by F and F � can be carried out by FFT which requires only O(N logN ) operating and
hence the total cost here is almost as good as standard \local" methods, and in addition we maintain
spectral accuracy.

We have seen how the pseudospectral di�erentiation works in the physical space. Next, let's examine
how the standard �nite-di�erence/element di�erencing methods operate in the Fourier space. Again,
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22 SPECTRAL APPROXIMATIONS

the essential ingredient is that exponentials play the role of eigenfunctions for this type of di�erencing.
To see this, consider for example the usual second order centered di�erencing, D2(h), for which we have

D2(h)e
ikxjx=x� =

eikx�+1 � e�ikx��1
2h

=
i sin(kh)

h
eikxjx=x� ; (2.2.36)

The term i sin(kh)
h

is called the \symbol" of center di�erencing. By superposition we obtain for arbitrary
grid function (represented here by its trigonometric interpolant)

 Nw(x) =
NX

k=�N

~w(k)eikx (2.2.37)

that

w�+1 � w��1
2h

= D2(h) Nw =
NX

k=�N

~w(k)D2(h)e
ikxjx=x�

=
NX

k=�N

i sin(kh)

h
~w(k)eikxjx=x� :

(2.2.38)

It is second-order accurate di�erencing since its symbol satis�es

i sin(kh)

h
= ik +O(k3h2): (2.2.39)

Note that for the low modes we have O(h2) error (the less signi�cant high modes are di�erenced with
O(1) error but their amplitudes tend rapidly to zero). Thus we have

k d
dx
 Nw �D2(h) Nwk2 =

NX
k=�N

jk � sin(kh)

h
j2j ~w(k)j2

� Const:h4
X
jkj�N

(1 + jkj2)3j ~w(k)j2 � Const:h4 � k Nwk2H3 ;

(2.2.40)

and this estimate should be compared with the usual���� ddxw(x�) � w�+1 �w��1
2h

���� � Const:h2 � max
x��1�x�x�+1

���w(3)(x)
��� :

The main di�erence between these two estimates lies in the fact that the last estimate is local, i.e.,
we need the smoothness of w(x) only in the neighborhood of x = x� , and not in the whole interval,
x��1 � x � x�+1. The analogue localization in the Fourier space will be dealt later.

Similarly, we have for fourth order di�erencing the symbol

i
1

3

�
4
sinkh

h
� sin 2kh

2h

�
= ik +O(k5h4):

In general, we encounter di�erence operators whose matrix representation, D,

D = [djk] � N � j; k � N; (2.2.41)

is periodic and antisymmetric (here [`] � `[mod 2N + 1]),

(i) periodicity : djk = d[k�j]

(ii) antisymmetry : djk = �dkj:
(2.2.42)
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2.2 The Periodic Problem | The Fourier Interpolant 23

Matrices satisfying the periodicity property are called circulant, and they all can be diagonalized by
the unitary Fourier matrix

D = U��U; U = (2N + 1)
1
2 � F; U�U = I2N+1: (2.2.43)

Indeed, with p� q = ` we have

[U�DU ]jk =
1

2N + 1

NX
p;q=�N

eijxp � d[p�q]e�ikxq =

=
1

2N + 1

NX
`;q=�N

eij[r+(q+`)h]d[`]e
�ik(r+qh)

=
1

2N + 1

NX
`;q=�N

eij`hd[`] �
NX

q=�N

e�i(k�j)�(r+qh)

=

8>>><
>>>:

0 j 6= k;

NX
`=�N

eik`hd[`] j = k;

(2.2.44)

and using the antisymmetry we end up with symbols �k

� = diag(��N ; � � � ; �N ); �k = 2i
NX
`=1

d` sin(k`h): (2.2.45)

As an example, we obtain for the (linear) �nite-element di�erencing system

�k = i
sin kh

h

�
4

6
+

1

6
eikh +

1

6
e�ikh

�
=

=
6i

h
� sin(kh)

4 + 2 cos(kh)
= ik +O(h4):

(2.2.46)

This corresponds to di�erentiation of the forth-order Pad�e expansion.

In general, the symbols are trigonometric polynomials or rational functions in the \dual variable,"
kh, which has \exact" representation on the grid in terms of translation operator (polynomials or
rational functions), and accuracy is determined by the ability to approximate the exact di�erentiation
symbol, ik, for jkhj � 1, consult Figure 2.2.
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�k=i
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�k(FD2) �k(FD4) �k(FE4) �k(FD264)

Figure 2.2: The symbols of center di�erencing

2.2.3 Fourier interpolant revisited on an even number of gridpoints

We assume w(x) is known at the 2N gridpoints x� = r + �h � = 0; 1; � � � ; 2N � 1,

w� = w(x�) � = 0; 1; � � �; 2N � 1 (2.2.47)

with h � 2�
2N = �

N , and 0 � r < h is �xed. We use the trapezoidal rule to approximate the Fourier
coe�cients ŵ(k) in (2.2.1)

~w(k) =
1

2�

2NX
�=0

00w�e
�ikx�h =

1

2N

2N�1X
�=0

w�e
�ikx� (2.2.48)

to obtain the pseudospectral approximation

 Nw =
NX

k=�N

00 ~w(k)eikx: (2.2.49)

Note: We now have only 2N pieces of discrete data at the di�erent 2N grid points
x0; x1; � � � ; x2N�1 and they correspond to 2N waves, as we have a \silent" last mode, i.e., with r =
0; k = N; Im[eikx]x=x� = i sin �� = 0. Thus  Nw is well-de�ned; in view of (2.2.49) it is the unique
interpolant of w(x) at the 2N gridpoints x = x�:

 Nw(x)jx=x� =
NX

k=�N

00

"
1

2N

2N�1X
�=0

w(x�)e
�ikx�

#
eikx�

=
2N�1X
�=0

w(x�) � 1

2N

NX
k=�N

00eik(���)h = w(x�):

(2.2.50)
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The aliasing relation in this case reads { compare (2.2.7)

~w(k) =
1X

p=�1

eip2Nrŵ(k + 2pN ) (2.2.51)

and spectral convergence follows { compare with (2.2.16)

kANw(x)kHs � Consts � kTNw(x)kHs ; s >
1

2
: (2.2.52)

In the usual sin-cos formulation it takes the form

 Nw =
NX
k=0

00~ak cos kx+ ~bk sin kx;

�
~ak
~bk

�
=

1

N

2N+1X
�=0

w(x�)

�
cos kx�
sin kx�

�
; 0 � k � N: (2.2.53)

Noting that ~bN = 0 we have 2N free parameters f~a0; f~ak;~bkgN�1k=1 ; ~aNg to match our data at fx�g2N�1�=0 .

2.3 The (Pseudo)Spectral Fourier Expansions { Exponential Accuracy

We have seen that the spectral and the pseudospectral approximations enjoy what we called \spectral
accuracy" { that is, the convergence rate is restricted solely by the global smoothness of the data. The
statement about \in�nite" order of accuracy for C1 functions is an asymptotic statement. Here we
show that in the analytic case the error decay rate is in fact exponential.

To this end, assume that

w(z) =
1X

k=�1

ŵ(k)eikz; jIm zj � � < �0; (2.3.1)

is 2�-periodic analytic in the strip ��0 < Im z < �0. The error decay rate in both the spectral and
pseudospectral cases is determined by the decay rate of the Fourier coe�cients ŵ(k). Making the
change of variables � = eiz we have for

v(�) = w(z = +i`n�); (2.3.2)

the power series expansion

v(�) =
1X

k=�1

ŵ(k)�k: (2.3.3)

By the periodic analyticity of w(z) in the strip jImzj � � < �0; v(�) is found to be single-valued analytic
in the corresponding annulus

e��0 < j�j < e�0 ; (2.3.4)

whose Laurent expansion is given in (2.3.3):

ŵ(k) =
1

2�i

Z
j�j=r

v(�)��(k+1)d�; e��0 < r < e�0 : (2.3.5)

This yields exponential decay of the Fourier coe�cients

jŵ(k)j � M (�)e�k�; M (�) = max
jImzj��

jw(z)j; 0 < � < �0: (2.3.6)

We note that the inverse implication is also true; namely an exponential decay like (2.3.6) implies the
analyticity of w(z). Inserting this into (2.1.17) yields

kw � SNwk2 = 2�
X
jkj>N

jŵ(k)j2 �

� 2� �M2(�) �
X
jkj>N

e�2k� = 2�
M2(�)

e2� � 1
� e�2N�

(2.3.7)
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and similarly for the pseudospectral approximation

kw �  Nwk2 � Const:
M2(�)

e2� � 1
� e�2N�: (2.3.8)

Note that in either case the exponential factor depends on the distance of the singularity (lack of
analyticity) from the real line. For higher derivatives we likewise obtain

kw � SNwk2H� + kw �  Nwk2H� � Const:N2� �M2(�) � e
�2N�

e2n � 1
: (2.3.9)

We can do even better, by taking into account higher derivatives, e.g.,

kŵ(k) =
1

2�i

Z
j�j=r

dv

d�
(�)��kd�; (2.3.10)

so that with

Ms(�) = e2s�
sX

j=0

max
j�j=e�

jv(j)(�)j; (2.3.11)

we have
kjŵ(k)j �M1(�)e

�k� ; (2.3.12)

and hence

kw � SNwk2H� + kw �  Nwk2H� � Const:M2
�(�)

e�2N�

e2� � 1
: (2.3.13)

2.4 The Non-Periodic Problem | The Chebyshev Expansion

We start by considering the second order Chebyshev ODE

�
p
1� x2 d

dx
(
p
1� x2 d

dx
 ) = � (x); �1 � x � 1: (2.4.1)

This is a special case of the general Sturm-Liouville (SL) problem

L = � 1

!(x)

d

dx

�
p(x)

d 

dx

�
+

1

!(x)
q(x) (x) = � (x); p; q; ! � 0: (2.4.2)

Noting the Green identity

(L ; �)!(x) =

Z b

a

�(p 0)0�+ q � = p(x)[ ; �]jba + ( ;L�)!(x); [ ; �] �  �0 � � 0; (2.4.3)

we �nd that L is (formally) self-adjoint provided certain auxiliary conditions are satis�ed. In the
nonsingular case where p(a) � p(b) 6= 0, we augment (2.4.2) with homogeneous boundary conditions,

 (a) = �(a) = 0;  (b) = �(b) = 0: (2.4.4)

Then L is self-adjoint in this case with a complete eigensystem (�k;  k(x)): each
w(x)�L!(x)[a; b] has the \generalized" Fourier expansion

w(x) �
1X
k=0

ŵ(k) k(x); ŵ(k) =
(w(x);  k(x))!
k k(x)k2!

(2.4.5)

with Fourier coe�cients

ŵ(k) =
1

k kk2!

Z b

a

w(x) k(x)!(x)dx: (2.4.6)
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The decay rate of the coe�cients is algebraic: indeed

ŵ(k) =
1

k kk2!
� 1
�k

(L k; w)! =

=
1

k kk2!
� 1
�k

�
p(x) � [ k; w]jba + ( k; Lw)!

�
=

=
1

k kk2!
� 1
�k

�
p(x) � [ k; w]jba+

1

�k
(L k; Lw)!

�
= : : :

=
1

k kk2!

8<
:p(x) �

s�1X
j=0

1

�s+1k

[ k; L
(j)w]jba +

1

�jk
( k; L

(s)w)!

9=
; ;  0k(x)jx=a;b <1:

(2.4.7)

The asymptotic behavior of the eigenvalues for nonsingular SL problem is

�k �
2
4 �kR b

a

q
!(x)
p(x)

dx

3
52 � Const:k2

and hence, unless w(x) satis�es an in�nite set of boundary restrictions, we end with algebraic decay of
ŵ(k)

ŵ(k) � 1

k kk2!
� �p(x)

�k
�  0k(x)w(x)jba �

Const:

k2
:

This leads to algebraic convergence of the corresponding spectral and pseudospectral projections.
In contrast, the singular case is characterized by, p(a) = p(b) = 0; in this case L is self-adjoint

independent of the boundary conditions (since the Poisson brackets [ , ] drop), and we end up with the
spectral decay estimate | compare (2.1.22)

ŵ(k) =
1

k kk2!
� 1
�sk
� ( k; L(s)w)! � 1

�sk

kL(s)wk!
k kk! ; (2.4.8)

Thus, the decay of ŵ(k) is as rapid as the smoothness of w(x) permits.
As a primary example for this category of singular SL problems we consider the Jacobi equation

associated with weights of the form (1� x)�(1 + x)�; �; � > �1,

� d

dx

�
(1� x2)!(x)d 

dx

�
= �!(x) (x); ! = (1 � x)�(1 + x)�; �1 � x � 1: (2.4.9)

We now focus our attention on the Chebyshev-SL problem (2.4.1) corresponding to � = � = �1=2.
The transformation

x = cos �;
d

dx
=

1
dx
d�

� d
d�

= � 1p
1� x2

d

d�
(2.4.10)

yields

� d2

d�2
�(�) = ��(�); �(�) �  (cos �); (2.4.11)

and we obtain the two sets of eigensystems

(�k = k2; �k = cos k�); (2.4.12)

and
(�k = k2; �k = sin k�):

The second set violates the boundedness requirement which we now impose

j 0k(�1)j � Const:; (2.4.13)
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and so we are left with
(�k = k2;  k(x) = cos(k cos�1 x)): (2.4.14)

The trigonometric identity

cos(k + 1)� = 2 cos � cos k� � cos(k � 1)�

yields the recurrence relation

 k+1(x) = 2x k(x)�  k�1(x);  0(x) � 1;  1(x) = x; (2.4.15)

hence,  k(x) are polynomials of degree k { these are the Chebyshev polynomials

Tk(x) = cos(k cos�1 x) (2.4.16)

which are orthonormal w.r.t. Chebyshev weight !(x) = (1� x2)� 1
2 ,

(Tk(x); Tj(x))! =

Z 1

�1

Tk(x)Tj(x)p
1� x2 dx =

8>>>>><
>>>>>:

0 j 6= k;

kTkk2! =
�

2
j = k > 0;

kT0k2! = � j = k = 0:

(2.4.17)

In analogy with what we had done before, we consider now the Chebyshev-Fourier expansion

w(x) �
1X
k=0

ŵ(k)Tk(x); ŵ(k) =
(w(x); Tk(x))!
kTkk2!

: (2.4.18)

To get rid of the factor 1
2 for k = 0 we may also write this as

w(x) �
1X
k=0

0ŵ(k)Tk(x);

ŵ(k) =
(w(x); Tk(x))!

�=2
=

2

�

Z 1

�1

w(x) cos(k cos�1 x)dxp
1� x2 =

2

�

Z �

�=0

w(cos �) cos k� d�:

(2.4.19)

Thus, we go from the interval [�1; 1] into the 2�-periodic circle by even extension, with Fourier expan-
sion of w(cos �), compare (2.1.9),

ŵ(k) =
1

�

Z 2�

�=0

w(cos �) cos k�d� =
2

�

Z �

�=0

w(cos �) cos k�d�:

Another way of writing this employs a symmetric doubly in�nite Fourier-like summation, where

w(x) � 1

2

1X
k=�1

ŵ(k)Tk(x) (2.4.20)

with T�k(x) � Tk(x) and

ŵ(k) =
2

�

Z 1

�1

w(x)Tk(x)p
1� x2 dx; �1 < k <1: (2.4.21)

The Parseval identity re
ects the completeness of this system

kw(x)k2T �
Z

w2(x)dxp
1� x2 =

1

4

2
4�jŵ(0)j2 + �

2

X
k 6=0

jŵ(k)j2
3
5

=
�

4

1X
k=0

jŵ(k)j2
(2.4.22)
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which yields the error estimate

kw � SNwk2T =
�

4

X
k>N

jŵ(k)j2:

2.4.1 Spectral accuracy

In order to measure the spectral convergence of Chebyshev expansion, we have to estimate the decay
rate of Chebyshev coe�cients in terms of the smoothness of w(x) and its derivatives; to this end we need
Sobolev like norms. Unlike the Fourier case, fTk(x)g is not complete with respect to Hs { orthogonality
is lost because of the Chebyshev weight. So we can proceed formally as before, see (2.1.24),

kw� SNwk2T = 2�
X
k>N

jŵ(k)j2 �
X
k>N

(1 + jkj2)s
(1 + N2)s

jŵ(k)j2 (2.4.23)

i.e., if we de�ne the Chebyshev-Sobolev norm

kwk2Hs
T
=

1X
k=0

(1 + jkj2)sjŵ(k)j2;

then we have spectral accuracy

kw � SNwkT � Consts � 1

N s
; w�Hs

T [�1; 1]:

In fact the Hs
T space can be derived from an appropriate inner product in the real space as done in

Fourier expansion. The correct inner product | expressed in terms of L = �p1� x2 d
dx (
p
1� x2 d

dx �),
is given by (in analogous manner to (2.1.19))

(w1; w2)H2s
T
=

sX
p=0

(Lpw1; L
pw2)T =|{z}

x=cos�

sX
p=0

Z 2�

�=0

d2p

d�2p
w1(cos �)

d2p

d�2p
w2(cos �)d�; (2.4.24)

so that

(Tk; Tj)H2s
T
=

8>>><
>>>:

0 j 6= k;

�

2

sX
p=0

k4p; j = k (with � factor at j = k = 0):
(2.4.25)

Hence the Fourier coe�cients in this Hilbert space behave like

(w(x); Tk)H2s
T
�

1X
k=0

(1 + k2)2sŵ(k); (2.4.26)

and the corresponding norm is equivalent to

kwk2H2s
T

�
1X
k=0

(1 + k2)2sjŵ(k)j2: (2.4.27)

The reason for the squared factors here is due to the fact that L is a second order di�erential operator,
unlike the �rst-order D = d

dx in the Fourier case, i.e.,

1X
k=0

(1 + jkj2)2sjŵ(k)j2 �
sX

p=0

kLpwk2T (2.4.28)

involves the �rst 2s-derivatives of w(x) { appropriately weighted by Chebyshev weight. This completes
the analogy with the Fourier case, and enables us to estimate derivative as well-compare (2.1.28),

kw� SNwkH�
T
� Consts

1

N s��
; � � s; w�Hs

T [�1; 1]: (2.4.29)
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2.5 The Non-Periodic Problem | The Chebyshev Interpolant

Next, let's discuss the discrete setup. Since we seek an even extension of the upper semi-circle we
consider the case of even number of grid points { equally distributed along the unit circle. There are
two main choices: one choice is to consider only the interior points, �� = (� + 1

2
) �
N+1

(here, h = �
N+1

and r = h
2 ). This yields the so called Gauss-Chebyshev points, consult x2.5.1 below,

x� = cos(
(� + 1=2)�

N + 1
); � = 0; 1; : : : ; N: (2.5.1)

The second choice takes into account also the �1-boundaries, considering �� = � �
N (here, h = 2�

2N and
r = 0), which yield the so called Gauss-Lobatto-Chebyshev points { consult x2.5.2 below,

x� = cos(
��

N
); � = 0; 1; � � �; N: (2.5.2)

2.5.1 Chebyshev interpolant at Gauss gridpoints

We consider the Chebyshev-Fourier expansion, (2.4.19)

w(x) �
1X
k=0

0ŵ(k)Tk(x); ŵ(k) =
2

�

Z 1

�1

w(x)Tk(x)dxp
1� x2 : (2.5.3)

We want to collocate the Chebyshev-Fourier coe�cients at the Gauss quadrature points. Here we
invoke the

Gauss quadrature rule. Let �k(x) be an orthogonal family of k-degree polynomials in L2
![�1; 1],

where !(x) = (1 � x)�(1 + x)� with �; � > �1 4. Let �1 < x1 < x2 < : : :xN < 1 be the N zeros
of �N (x). Then, there exist positive weights, f! = !GgNj=1 such that for all polynomials p(x) of
degree� 2N � 1 we have Z 1

�1

!(x)p(x)dx =
NX
j=1

!jp(xj); !j = !Gj : (2.5.4)

Remark. To compute the Gauss weights we set p(x) = �N (x)
x�xk

in (2.5.4). Since p(xj) = 0 8j 6= k, (2.5.4)
yields

!k =
1

�0N (xk)

Z 1

�1
!(x)

�N (x)

x� xk dx; 1 � k � N: (2.5.5)

Equivalently, the corresponding weights are given by

!j =
�AN+1k�Nk2!(x)

AN�N+1(xj)�0N (xj)
; �N (x) = ANx

N + : : : ; j = 1; 2; : : : ; N: (2.5.6)

To verify (2.5.4) we express p(x) as p(x) = t(x)�N (x) + r(x) for some (N � 1)-degree polynomials,
t(x) and r(x). The choice of weights in (2.5.5) guarantees that (2.5.4) is valid for all polynomials of

degree� N � 1, since the latter are spanned by f�N (x)
x�xk

gNk=1. This, together with the fact that �N (x) is

L2
!(x)-orthogonal to all polynomials of degree� N � 1, implies

Z 1

�1

!(x)p(x)dx =

Z 1

�1

!(x)r(x)dx =
NX
j=1

!jr(xj) =
NX
j=1

!jp(xj): (2.5.7)

Example. The N -degree Gauss-Chebyshev quadrature rule (based on the N + 1 collocation points,

x� = cos(�+1=2)�N+1 ); � = 0; 1; : : : ; N ) reads

Z 1

�1

f(x)dxp
1� x2) =

�

N + 1

NX
�=0

f(x�) + E; x� := cos(
(� + 1

2)�

N + 1
); � = 0; 1; : : : ; N; (2.5.8)

4� = � = �1=2 correspond to Chebyshev family, � = � = 0 correspond to Legendre, etc.
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2.5 The Non-Periodic Problem | The Chebyshev Interpolant 31

with an error term, E = 2�
22N+2(2N+2)!

f (2N+2)(�), which vanishes for all polynomials of degree� 2N +1.

Applying the latter to the Fourier-Chebyshev coe�cients in (2.5.3) we arrive at discrete Chebyshev
coe�cients, ~w(k) which yield

 Nw(x) =
NX
k=0

0 ~w(k)Tk(x); ~w(k) =
2

N + 1

NX
�=0

w(x�)Tk(x�): (2.5.9)

We claim that  Nw(x) is the N -degree algebraic interpolant of w(x) at Chebyshev points fx�gN�=0. To
see this we employ the

Christo�el-Darboux identity. There holds

NX
k=0

�k(x)�k(y)

k�k(x)k2!
=

AN+1

ANk�N (x)k2!
�N+1(x)�N (y) � �N (x)�N+1(y)

x� y : (2.5.10)

We omit the straightforward proof of the general case (| which is based on the three step recurrence
relations for orthogonal polynomials), and concentrate on the Chebyshev expansion in which case
Christo�el-Darboux formula reads

NX
k=0

0Tk(x)Tk(y) =
TN+1(x)TN (y) � TN (x)TN+1(y)

2(x� y) : (2.5.11)

Using this we �nd that  Nw(x) interpolates w(x) at Chebyshev points as asserted. Indeed we have

 Nw(xi) =
NX
k=0

0 2

N

NX
�=0

w(x�)Tk(x�)Tk(xi) =

=
2

N + 1

NX
�=0

w(x�)
NX
k=0

0Tk(x�)Tk(xi) =

=
2

N + 1

NX
�=0

w(x�)

8><
>:

TN+1(x�)TN (xi) � TN (x�)TN+1(xi)

2(x� � xi) = 0; � 6= i

T 0N+1(xi)TN (xi)

2
=
N + 1

2
; � = i

9>=
>; = w(xi):

(2.5.12)
We want to estimate the error between w(x) and its Chebyshev interpolant  Nw(x). As in the periodic
Fourier case, we use here the aliasing relation

~w(k) =
1X

p=�1

ŵ(k + 2p(N + 1)); (2.5.13)

which follows from the straightforward computation. One concludes that the aliasing errors are domi-
nated by the spectrally small truncation error (2.4.29), and spectral convergence follows.

2.5.2 Chebyshev interpolant at Gauss{Lobatto gridpoints

The starting point is the Gauss-Lobatto quadrature rule. We make a short intermezzo on this issue. If
f�kg is an L2

!-orthogonal family of k-degree polynomials, then by utilizing 5 Jacobi equation (2.4.9),
one �nds that f�0k+1g is k-degree family which is orthogonal with respect to the weight (1 � x2)!(x).
Applying Gauss rule to the latter we �nd that there exist discrete gauss weights !Gj such that

Z 1

�1

(1� x2)w(x)r(x)dx =
NX
j=1

wG
j r(xj); for all r��2N�1:

5Utilizing = integration by parts in this case.
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This is in fact a special case of the Gauss-Lobatto-Jacobi quadrature rule which is exact for all p��2N+1.
Indeed, all such p's can be expressed as p(x) = (1 � x2)r(x) + `(x) with r(x) in �2N�1, and a linear
`(x) = p(�1)1�x2 + p(1)1+x2 . The last equality tells us thatR 1

�1w(x)p(x)dx =
PN

j=1 w
G
j r(xj) +

R 1
�1w(x)`(x) =

=
PN

j=1

wGj
1�x2

j

p(xj) +
R 1
�1
w(x)`(x) �PN

j=1

wGj
1�x2

j

`(xj) = I + II + III:

Thus, we have

I =
NX
j=1

wL
j p(xj); wL

j �
wG
j

1� x2j
; (2.5.14)

and the two expressions, II + III, amount to a linear combination of p(�1) and p(1);
II + III = wL

0 p(x0) +wL
N+1p(xN+1); x0 � �1 < x1 < : : : < xN < 1 � xN+1: (2.5.15)

We conclude with
Gauss-Lobatto quadrature rule. Let �k(x) be an orthogonal family of k-degree polynomials in

L2
![�1; 1], where !(x) = (1�x)�(1+x)� with �; � > �1 Let �1 = x0 < x1 < x2 < : : :xN < xN+1 = 1

be the N + 2 extrema of �N+1(x). Then, there exist positive weights fwj = wL
j gN+1

j=0 such that

Z 1

�1

w(x)p(x)dx =
N+1X
j=0

wjp(xj); for all p��2N+1; !j = !Lj : (2.5.16)

Example. The Gauss-Lobatto-Chebyshev quadrature rule (corresponding to !(x) =
p
1� x2 and

x� = cos(�h); � = 0; 1; : : : ; N ) is nothing but the familiar trapezoidal rule | indeed starting with
(2.4.19), we have

ŵ(k) =
2

�

Z �

�=0

w(cos �) cos k�d� ! 2

�

NX
�=0

00w(cos ��) cos k�� � �
N
; (2.5.17)

and we end up with the discrete Chebyshev coe�cients

~w(k) =
2

N

NX
�=0

00w�Tk(x�); 0 � k � N: (2.5.18)

This corresponds to the Fourier interpolant with an even number of equidistant gridpoints �� (consult
(2.2.48)), for

~w(k) =
1

2�

2NX
�=0

00w�e
�ik��h =

1

�

NX
�=0

w�
�
e�ik�� + eik��

� 2�
2N

=

=
2

N

NX
�=0

00w� cos(k��):

Then one may construct the Chebyshev interpolant at these N + 1 gridpoints

 Nw(x) =
NX
k=0

00 ~w(k)Tk(x): (2.5.19)

We have an identical aliasing relation (compare (2.2.51)),

~w(k) =
1X

p=�1

ŵ(k + 2pN ): (2.5.20)
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2.5 The Non-Periodic Problem | The Chebyshev Interpolant 33

(Veri�cation: insert the Chebyshev expansion evaluated at x� into (2.5.18),

~w(k) =
2

N

NX
�=0

00

2
4 1X
j=0

0ŵ(j)Tj(x�)

3
5Tk(x�) = 2

N

1X
j=0

0ŵ(j)

"
NX
�=0

00Tj(x�)Tk(x�)

#
;

to calculate the summation on the right we employ the identity 2Tj(x)Tk(x) � Tj+k(x) + Tjj�kj(x)
which yields

~w(k) =
1X
j=0

0ŵ(j)

"
�jk + �j0�k0 +

1X
p=1

�j;2pN�k

#
;

and (2.5.20) follows.) The spectral Chebyshev estimate (2.4.29) together with the aliasing relation
(2.5.20) yield the  dospectral convergence estimate, (compare (2.2.17))

kw(x)�  Nw(x)kH�
T
� Consts � 1

N s��
; w�Hs

T ; s � �; (2.5.21)

where Consts � kwkHs
T
.

Example: We have the Sobolev embedding of H�
T � L1 with � > 1=2,

jw(x)j � 1

2

1X
k=�1

jŵ(k)j � 1

2

 X
k

(1 + k2)� jŵ(k)j2 �
X
k

1

(1 + k2)�

! 1
2

� Const� � kwkH�
T
; � > 1

2 :

(2.5.22)

Consequently,

max
x
jw(x)�  Nw(x)j � Consts � 1

N s��
; Consts � kwkHs

T
; s � � > 1

2
:

In particular, with s = N + 1 we obtain an improved estimate6 for the near min-max approximation
collocated at x� = cos

��
� + 1

2

�
�
N

�
,

max
x
jw(x)�  Nw(x)j � Const:kwkHN+1

T

� e�N

(N + 1)!
:

2.5.3 Exponential convergence of Chebyshev expansions

We brie
y mention the exponential convergence in the analytic case. To this end we employ Bernstein's
regularity ellipse, Er, with foci �1 and sum of its semi axis = r. Denoting

M (�) = max
z�Er
jw(z)j; r = e� : (2.5.23)

We have

Theorem 2.1 Assume w(x) is analytic in [-1,1] with regularity ellipse whose sum of semiaxis = r0 =
e�0 > 1. Then

kw(x)�  Nw(x)k2H� + kw(x)� SNw(x)k2H� � Const:
M2(�)

e2� � 1
�N2�e�2N�:

6This should be compared with the straightforward 'familiar' bound kw(N+1)kL1
2�N

(N+1)! .
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Proof: The transformation z = (�+ ��1)=2 takes Er0 from the z-plane into the annulus r�10 < j�j < r0

in the �-plane. Hence, v(�) = 2w
�
z = �+��1

2

�
admits the power expansion

v(�) = 2w

�
� + ��1

2

�
=

1X
k=�1

ŵ(k)�k; r�10 < j�j < r0 = e�0 ; (2.5.24)

indeed, setting � = ei� and recalling ŵ(�k) = ŵ(k), the above expansion clearly describes the real
interval [-1,1]

w(z = cos �) =
1X
k=0

0ŵ(k) cos k�: (2.5.25)

Using the Laurent expansion in (2.5.24)

ŵ(k) =
1

2�i

Z
j�j=r

�(�)

�k+1
d�; e��0 < r < e�0 ; (2.5.26)

hence
jŵ(k)j � M (�)e�k� (2.5.27)

and the result follows along the lines of (2.3.7)-(2.3.8).

2.5.4 Chebyshev di�erentiation matrix

We conclude with a discussion on Chebyshev di�erencing. Starting with grid values w� at Chebyshev
points x� = cos

�
� �
N

�
, one constructs the Chebyshev interpolant

 Nw(x) =
NX
k=0

00 ~w(k)Tk(x); ~w(k) =
2

N

NX
�=0

00w� cos(k cos
�1 x�): (2.5.28)

One can compute ~w(k); 0 � k � N , e�ciently via the cos-FFT with O(N logN ) operations. Next, we
di�erentiate in Chebyshev space

d

dx
 Nw(x) =

NX
k=0

00 ~w(k)
d

dx
Tk(x): (2.5.29)

In this case, however, Tk(x) is not an eigenfunction of d
dx ; instead

d
dxTk(x) { being a polynomial of

degree � k � 1, can be expressed as a linear combination of fTj(x)gk�1j=0 (in fact Tk(x) is even/odd for
even/odd k0s): with c0 = 2; ck>0 = 1 we obtain

d

dx
Tk(x) = k

X
0�j<k
k�j odd

2

cj
Tj(x); (2.5.30)

and hence
d

dx
 Nw(x) =

NX
k=0

00k ~w(k)
X

0�j<k
k�j odd

2

cj
Tj(x): (2.5.31)

Rearranging we get (here,
P

0 indicates halving the last term)

d

dx
 Nw(x) =

N�1X
k=0

~w0(k)Tk(x); ~w0(k) =
2

ck

NX
p�k+1
p+k odd

0p ~w(p) (2.5.32)

and similarly for the second derivative

~w00(k) =
2

ck

X
p�k+2
p+k even

p(p2 � k2) ~w(p): (2.5.33)
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The amount of work to carry out the di�erentiation in this form is O(N2) operations which destroys the
N logN e�ciency. Instead, we can employ the recursion relation which follows directly from (2.5.32)

~w0(k + 1) = ~w0(k � 1) � ck�1 � 2k ~w(k): (2.5.34)

To see this in a di�erent way we note that

sin(k + 1)� = sin(k � 1)� + 2 sin � cos k�;

which leads to
1

k + 1

dTk+1
dx

=
1

k � 1

dTk�1
dx

+ 2Tk(x);

and hence

d

dx
 Nw(x) =

NX
k=0

00k ~w(k)
1

k
T 0k(x) =

=
1

2

NX
k=0

00( ~w0(k � 1)� ~w0(k + 1))
1

k
T 0k(x) = � summation by parts

=
1

2

NX
k=0

002 ~w0(k)Tk(x) =
NX
k=0

00 ~w0(k)Tk(x)

as asserted. In general we have

~w(s)(k + 1) = ~w(s)(k � 1)ck�1 � 2k ~w(s�1)(k): (2.5.35)

With this, ~w(k) can be evaluated using O(N ) operations, and the di�erentiated polynomial at the grid
points is computed using another cos-FFT employing O(N logN ) operations

d

dx
 Nw(x)jx=x� =

NX
k=0

00 ~w0(k) cos kx�; (2.5.36)

with spectral/exponential error

max
x=x�

j d
dx
w(x) � d

dx
 Nw(x)j �

8><
>:

Consts � 1

N s��

3

2
< � < s;

Const� � e�N�

: (2.5.37)

The matrix representation of Chebyshev di�erentiation,DT , takes the almost antisymmetric form (here
ck = 1 except for c0 = cN = 2)

(DT )jk =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

cj
ck

(�1)j+k
xj � xk j 6= k;

� xj
2(1� x2j )

j = k 6= (0; N );

2N2 + 1

6
j = k = 0;

�2N
2 + 1

6
j = k = N:
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3 THE FOURIER METHOD

3.1 The Spectral Fourier Approximation

We begin with the simplest hyperbolic equation { the scalar constant-coe�cients wave equation

@u

@t
= a

@u

@x
(3.1.1)

subject to initial conditions
u(x; 0) = f(x); (3.1.2)

and periodic boundary conditions.
This Cauchy problem can be solved by the Fourier method: with f(x) =

P1
�1 f̂ (k)eikx we obtain

after integration of (3.1.1),
@

@t
û(k; t) = ikaû(k; t); (3.1.3)

with solution
û(k; t) = eikatf̂ (k); (3.1.4)

and hence
u(x; t) =

X
k

eikatf̂ (k)eikx =
X
k

f̂ (k)eik(x+at) = f(x + at): (3.1.5)

Thus the solution operator in this case amounts to a simple translation

E(t; � )u(x; � ) = u(x+ a(t� � ); t); kE(t; � )k = 1: (3.1.6)

This is re
ected in the Fourier space, see (3.1.4), where each of the Fourier coe�cients has the same
change in phase and no change in amplitude; in particular, therefore, we have the a priori energy bound
(conservation)

ku(�; t)k2 = 2�
X
k

jû(k; t)j2 = 2�
X
k

jf̂ (k)j2 = kf(�)k2: (3.1.7)

We want to solve this equation by the spectral Fourier method. To this end we shall approximate
the spectral Fourier projection of the exact solution SuN � SNu(x; t). Projecting the equation (3.1.1)
into the N -space we have

@uN
@t

= SN

�
a
@u

@x

�
: (3.1.8)

Since SN commutes with multiplication by a constant and with di�erentiation we can write this as

@uN
@t

= a
@uN
@x

: (3.1.9)

Thus uN = SNu satis�es the same equation as the exact solution does, subject to the approximate
initial data

uN (t = 0) = SNf: (3.1.10)

The resulting equations amount to 2N + 1 ordinary di�erential equations (ODEs) for the amplitudes
of the projected solution

d

dt
ûN (k; t) = ikaûN (k; t); �N � k � N; (3.1.11)

subject to the initial conditions
ûN (k; 0) = f̂ (k): (3.1.12)

Since these equations are independent of each other, we can solve them directly, obtaining

ûN (k; t) = eikatf̂ (k) (3.1.13)
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and the approximate solution takes the form

uN (x; t) =
NX

k=�N

f̂ (k)eik(x+at): (3.1.14)

Hence, the approximate solution uN (x; t) = fN (x+ at) satis�es

u(x; t)� uN (x; t) = E(t; 0)f(x) �E(t; 0)SNf(x) (3.1.15)

and therefore, it converges spectrally to the exact solution, compare (2.1.26),

ku(t)� uN (t)k � kE(t; 0)(I � SN )f(x)k �

� k(I � SN )f(x)k � ConstkfkHs � 1

N s
:

(3.1.16)

Similar estimates holds for higher Sobolev norms; in fact if the initial data is analytic then the conver-
gence rate is exponential. In this case the only source of error comes from the initial data, that is we
have the error equation

@

@t
[u� uN ] = a

@

@x
[u� uN ] (3.1.17)

subject to initial error
u� uN (t = 0) = f � fN : (3.1.18)

Consequently, we have the a priori estimate of this constant coe�cient wave equation

ku� uN (t)k � ConstTkf � fNk � Const:kfkHs � 1

N s
ConstT = 1: (3.1.19)

Now let us turn to the scalar equation with variable coe�cients

@u

@t
= a(x; t)

@u

@x
; a(x; t) = 2� � periodic: (3.1.20)

This hyperbolic equation is well-posed: by the energy method we have

1

2

d

dt

Z
x

u2(x; t)dx =

=
R
a(x;t)(u2=2)xdxz }| {Z
ua(x; t)uxdx = �1

2

Z
ax(x; t)u

2(x; t)dx; (3.1.21)

and hence
ku(x; t)kL2(x) � ConstT � kf(x)k (3.1.22)

with
ConstT = eMT ; M = max

x;t
[�ax(x; t)]: (3.1.23)

In other words, we have for the solution operator

kS(t; � )u(� )kL2(x) � eM(t��)ku(� )kL2(x) (3.1.24)

and similarly for higher norms. As before, we want to solve this equation by the spectral Fourier
method. We consider the spectral Fourier projection of the exact solution uN = SNu(x; t); projecting
the equation (3.1.20) we get

@

@t
uN = SN

�
a(x; t)

@u

@x

�
: (3.1.25)

Unlike the previous constant coe�cients case, now SN does not commute with multiplication by a(x; t),
that is, for arbitrary smooth function �(x; t) we have (suppressing time dependence)

SNa(x)�(x) =
NX

k=�N

0
@ 1X
j=�1

â(k � j)�̂(j)
1
A eikx (3.1.26)
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while

a(x)SN�(x) =
1X

k=�1

0
@ NX
j=�N

â(k � j)�̂(j)
1
A eikx: (3.1.27)

Thus, if we exchange the order of operations we arrive at

@uN
@t

= a(x; t)
@uN
@x
� [a(x; t)SN � SNa(x; t)]@u

@x
: (3.1.28)

While the second term on the right is not zero, this commutator between multiplication and Fourier
projection is spectrally small, i.e.,

kSNa(x)�(x)� a(x)SN�(x)kL2(x) =

k(SN � I)a(x)�(x) + a(x)(I � SN )�(x)kL2(x) �

� Const:ka(x)�(x)kHs � 1

N s
+ Const:ka(x)kL1(x) � k�(x)kHs � 1

N s

(3.1.29)

and so we intend to neglect this spectrally small contribution and to set as an approximate model
equation for the Fourier projection of u(x; t)

@vN
@t

= a(x; t)
@vN
@x

: (3.1.30)

The second term may lie outside the N-space, and so we need to project it back, thus arriving at our
�nal form for the spectral Fourier approximation of (3.1.20)

@vN
@t

= SN

�
a(x; t)

@vN
@x

�
: (3.1.31)

Again, we commit here a spectrally small deviation from the previous model, for

k(I � SN )a�(x)kL2(x) � Constka(x)�(x)kHs � 1

N s
: (3.1.32)

The Fourier projection of the exact solution does not satisfy (3.1.22)-(3.1.23), but rather a near-by
equation,

@uN
@t

= SN

�
a(x; t)

@uN
@x

�
+ FN (x; t) (3.1.33)

where the local truncation error, FN (x; t) is given by

FN (x; t) = SN

�
a(x; t)(I � SN )@u

@x

�
: (3.1.34)

The local truncation error is the amount by which the (projection of) the exact solution misses our
approximate mode (3.1.31); in this case it is spectrally small by the errors committed in (3.1.29) and
(3.1.19). More precisely we have

kFN (x; t)kL2(x) � ka(x; t)kL2(x) � kukHs+1
1

N s
; (3.1.35)

depending on the degree of smoothness of the exact solution. We note that by hyperbolicity, the later is
exactly the degree of smoothness of the initial data, i.e., by the hyperbolic di�erential energy estimate

kFN (x; t)kL2(x) � ka(x; t)kL2(x) � kfkHs+1 � 1

N s
(3.1.36)

and in the particular case of analytic initial data, the truncation error is exponentially small.
From this point of view, the spectral approximation (3.1.31) satis�es an evolution model which

deviates by a spectrally small amount from the equation satis�ed by the Fourier projection of the exact
solution (3.1.33). This is in addition to the spectrally small error we commit initially, as we had before

vN (t = 0) = SN f � fN : (3.1.37)
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3.1.1 Stability and convergence

We now raise the question of convergence. That is, whether the accumulation of spectrally small errors
while integrating (3.1.31) rather than (3.1.33), give rise to an approximate solution vN (x; t) which is
only spectrally away from the exact projection uN (x; t). We already know that the distance between
uN (x; t) and the exact solution u(x; t) { due to the spectrally small initial error { is spectrally small as
we have seen in the previous constant coe�cient case.

To answer this convergence question we have to require the stability of the approximate model
(3.1.31). That is, we say that the approximation (3.1.31) is stable if it satis�es an a priori energy
estimate analogous to the one we have for the di�erential equation

kvN (t)k � Const:eMtkvN (0)k: (3.1.38)

Clearly, such a stability estimate is necessary in any computational model. Otherwise, the evolution
model does not depend continuously on the (initial) data, and small rounding errors can render the
computed solution useless. On the positive side we will show that the stability implies the spectral
convergence of an approximate solution uN (x; t).7 Indeed the error equation for eN (t) = uN (t)� vN (t)
takes the form

@eN
@t

= SN

�
a(x; t)

@eN
@x

+ FN (x; t)

�
: (3.1.39)

Let EN (t; � ) denote the evolution operator solution associated with this approximate model. By the
stability estimate (3.1.38),

kEN (t; � )vN (� )k � ConsteM(t��)kvN (� )k: (3.1.40)

Hence, by (3.1.40) together with Duhammel's principle we get for the inhomogeneous error equation
(3.1.39)

eN (t) = EN (t; 0)eN (0) +

Z t

�=0

EN (t; � )FN (� )d� (3.1.41)

and

keN (t)k � Const:eMt

�
keN (0)kL2(x) +

Z t

�=0

kFN (x; � )kL2(x)d�
�
: (3.1.42)

In our case eN (0) = fN � SfN = 0, and the truncation error FN (x; � ) is spectrally small; hence

keN � uN (t)� vN (t)k � Const:eMt � 1

N s
(3.1.43)

where the constant depends on ka(x; t)kL1(!) and kfkHs+1 , i.e., restricted solely by the smoothness of
the data. In the particular case of analytic data we have exponential convergence

keN (t) � uN (t)� vN (t)k � Const:eMt � e��N : (3.1.44)

Adding to this the error between uN (t) and u(t) ({ which is due to the spectrally small error in the
initial data between fN and f) we end up with

ku(t)� vN (t)k � Const:eMt �
8<
:

1
Ns for Hs+1 initial data

e��N for analytic initial data
: (3.1.45)

To summarize, we have shown that our spectral Fourier approximation converges spectrally to the exact
solution, provided the approximation (3.1.31) is stable.

Is the approximation (3.1.31) stable? That is, do we have the a priori estimate (3.1.38)? To show
this we try to follow the steps that lead to the analogue estimate in the di�erential case, compare
(3.1.21). Thus, we multiply (3.1.31) by vN (x; t) and integrate over the 2�-period, obtaining

1

2

d

dt

Z
x

v2N (x; t)dx = +

Z
x

vN (x; t)SN

�
a(x; t)

@vN
@x

�
dx: (3.1.46)

7We note that in the previous constant coe�cient case, the approximate model coincides with the di�erential case,
hence the stability estimate was nothing but the a priori estimate for the di�erential equation itself.
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But vN (x; t) is orthogonal to (I � SN )
�
a(x; t)@vN@x

�
so adding this to the right-hand side of (3.1.46) we

arrive at
1

2

d

dt

Z
x

v2N (x; t) =

Z
x

vN (x; t)a(x; t)
@vN
@x

dx (3.1.47)

and we continue precisely as before to conclude, similarly to (3.1.22)-(3.1.23), that the stability estimate
(3.1.38) holds

kvN (t)k � Const:eMtkvN (0)k; M = max
x;t

[�ax(x; t)]: (3.1.48)

In the constant coe�cient case the Fourier method amounts to a system of (2N+1) decoupled ODE's
for the Fourier coe�cients of vN = uN which were integrated explicitly. Let's see what is the case with
problems having variable coe�cients say, for simplicity, a � a(x). Fourier transform (3.1.22)-(3.1.23)

we obtain for v̂(k; t) = v̂N (k; t) { the kth-Fourier coe�cient of vN (x; t) =
PN

k=�N v̂(k; t)e
ikx,

dv̂(k; t)

dt
=

NX
j=�N

â(k � j)ijv̂(j; t); �N � k � N: (3.1.49)

In this case we have a (2N +1)� (2N +1) coupled system of ODE's written in the matrix-vector form,
consult (2.2.46)

d

dt
v̂(t) = Â�v̂(t); v̂(t) =

2
64 v̂(�N; t)

...
v̂(N; t)

3
75 Âkj = â(k � j);� = diag(ik): (3.1.50)

We can solve this system explicitly (since a (�) was assumed not to depend on time)

v̂(t) = eÂ�tv̂(0); (3.1.51)

that is, we obtain an explicit representation of the solution operator

EN (t; � ) = F�1
N eÂ�(t��)FN ; Â = ÂN ;� = �N (3.1.52)

where FN denote the spectral Fourier projection

FNvN (x) =

2
64 v̂(�N )

...
v̂(N )

3
75 : (3.1.53)

We note that in view of Parseval's identity kFNvN (x)k2 = kvN (x)kL2(x) (modulo factorization factor),

hence, stability amounts to having the a priori estimate on the discrete symbol ÊN (t; � ) = eÂN�(t��),
requiring

keÂN�(t��)k � Const:eM(t��): (3.1.54)

The essential point of stability here, lies in having a uniform bound for the RHS of (3.1.54) | a bound
which is independent of the order of the system; for example, the 'naive' straightforward estimate of
the form

keÂN�(t��)k � ekÂNk�k�k(t��) (3.1.55)

will not su�ce for that purpose because k�Nk "
N!11. The essence of the a priori estimate we obtained

in (3.1.22)-(3.1.23), and likewise in (3.1.47), was that the (unbounded) operator P (x; t;D) � a(x; t)@x
is semi-bounded, i.e.,

Re

�
a(x; t)

@

@x

�
=

1

2

�
a(x; t)

@

@x
� @

@x
(a(x; t)�)

�
= �1

2
ax(x; t); (3.1.56)
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namely, (compare (1.1.28)) �
Re

�
a(x; t)

@

@x

�
u; u

�
L2(x)

�Mkuk2L2(x) (3.1.57)

and likewise for Re
�
SN
�
a(x; t) @

@x

��
. In the present form this is expressed by the sharper estimate of

the matrix exponent,8 compare (3.1.55)

keÂN�(t��)k � ekReÂN�k�(t��): (3.1.58)

This time, kReÂN�k like the Re[P (x; t;D)], is bounded. Indeed, [ReÂ�]kj = 1
2
[â(k�j)ij+ â(j � k)ik],

and since a(x; t) is real (hyperbolicity!) then â(p) = â(�p), i.e.,

[ReÂ�]kj =
1

2
i(j � k)â(k � j) � N � j; k � N: (3.1.59)

Thus, ReÂ� is a (possibly complex-valued) Toeplitz matrix, namely its (k; j) entry depends solely on
its distance from the main diagonal k � j; we leave it as an exercise (utilizing our previous study on
circulant matrices in (2.2.43)) { to see that its norm does not exceed the sum of the absolute values
along the, say, zeroth (j = 0) row, i.e.,

kReÂN�k � 1

2

NX
k=N

jkâ(k)j (3.1.60)

which is bounded, uniformly with respect to N , provided a(x; t) is su�ciently smooth, e.g., we can take
the exponent M to be

M =
1

2

NX
k=�N

jkâ(k)j � 1

2

qX
k4ja(k)j2 �

NX
k=�N

1

k2
�

� �

6
� kaxx(x; t)kL2(x)

(3.1.61)

which is only slightly worse than what we obtained in (3.1.48).
A similar analysis shows the convergence of the spectral-Fourier method for hyperbolic systems.

For example, consider the N �N symmetric hyperbolic problem

@u

@t
= A(x; t)

@u

@x
+ B(x; t)u; with symmetric A(x; t): (3.1.62)

We note that if the system is not in this symmetric form, then (in the 1-D case) we can bring it to the
symmetric form by a change of variables, i.e., the existence of a smooth symmetric H(x; t) such that
H(x; t)A(x; t) is symmetric, implies that for w(x; t) = T�1(x; t)u(x; t) with H = (T�1)�T�1 we have,
compare (1.1.16)

@w

@t
= T�1(x; t)A(x; t)T (x; t)

@w

@x
+C(x; t)w(x; t) (3.1.63)

where T�1(x; t)A(x; t)T (x; t) � T �(x; t)H(x; t)A(x; t)T (x; t) is symmetric, and C(x; t) = B(x; t) +
@T�1

@t
(x; t)� T�1(x; t)A(x; t)@T

@x
(x; t). The spectral Fourier approximation of (3.1.62) takes the form

@vN
@t

= SN

�
A(x; t)

@uN
@x

�
+ SNB(x; t)vN (x; t): (3.1.64)

Its stability follows from integration by parts, for by orthogonality

1

2

d

dt

Z
x

v2N (x; t)dx =

Z
vNA(x; t)

@vN
@x

dx+

Z
uNB(x; t)uNdx �M

Z
x

v2N (x; t)dx (3.1.65)

8To see this, use Duhammel's principle for dv̂

dt
= ReÂ�v̂(t) + F (t) where F (t) = iImÂ�eÂ�t or integrate directly.
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where

M = max
x;t

�
�@A(x; t)

@x
+ReB(x; t)

�
(3.1.66)

and hence

kvN (t)kL2(x) � eMtkvN (0)k: (3.1.67)

The approximation (3.1.64) is spectrally accurate with (3.1.62) and hence spectral convergence follows.
The solution of (3.1.64) is carried out in the Fourier space, and takes the form

d

dt
v̂(k; t) =

NX
j=�N

Â(k � j; t)ijv̂(j; t); �N � k � N; (3.1.68)

which form a coupled (2N+1)�(2N+1) system of ODE's for the (2N+1)-vectors of Fourier coe�cients
v̂(k; t).

There are two di�culties in carrying out the calculation with the spectral Fourier method. First, is
the time integration of (3.1.68); even in the constant coe�cient case, it requires to the computation of

the exponent eÂ��t which is expensive, and in the time-dependent case we must appeal to approximate
numerical methods for time integration. Second, to compute the RHS of (3.1.68) we need to multiply
an (2N + 1)� (2N + 1) matrix, Â� by the Fourier coe�cient vector which requires O(N2) operations.
Indeed, since Â is a Toeplitz matrix and � is diagonal, we can still carry out this multiplication
e�ciently, i.e., using two FFT's which requires O(N logN ) operations. Yet, it still necessitates carrying
out the calculation in the Fourier space. We can overcome the last di�culty with the pseudospectral
Fourier method.

Before leaving the spectral method, we note that its spectral convergence equally applies to any
PDE

@u

@t
= P (x; t;D)u (3.1.69)

with semi-bounded operator P (x; t;D), e.g., the symmetric hyperbolic as well as the parabolic operators.
Indeed, the spectral approximation of (3.1.69) reads

@vN
@t

= SNP (x; t;D)vN : (3.1.70)

Multiply by vN and integrate { by orthogonality and semi-boundedness we have

1

2

d

dt

Z
x

v2N (x; t)dx = Re(vN ; P (x; t;D)vN) �M
Z
M

v2N (x; t)dx: (3.1.71)

Hence stability follows and the method converges spectrally.

3.2 The Pseudospectral Fourier Approximation

We return to the scalar constant coe�cient case

@u

@t
= a

@u

@x
(3.2.1)

subject to periodic boundary conditions and prescribed initial data

u(x; 0) = f(x): (3.2.2)

To solve this problem by the pseudospectral Fourier method, we proceed as before, this time projecting
(3.2.1) with the pseudospectral projection  N , to obtain for uN =  Nu(x; t)

@uN
@t

=  N

�
a
@uN
@x

�
: (3.2.3)
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Here,  N commutes with multiplication by a constant, but unlike the spectral case, it does not commute
with di�erentiation, i.e., by the aliasing relation (2.2.3) we have

 N
@�

@x
=

NX
k=�N

( ~k�(k))eikx =
NX

k=�N

X
j

i[k + j(2N + 1)]�̂[k+ j(2N + 1)]eikx

where as
@

@x
 N� =

NX
k=�N

(k~�(k)eikx =
NX

k=�N

ik
X
j

�̂[k + j(2N + 1)]eikx:

The di�erence between these two expressions is a pure aliasing error, i.e., we have for  N = SN +AN ,
see (2.2.13)

 N
d�

dx
� d

dx
( N�) �

�
AN ;

d

dx

�
� =

NX
k=�N

X
j 6=0

i[k + j(2N + 1)]�̂(k + j(2N + 1)]eikx

which is spectrally small. Sacri�cing such spectrally small errors, we are led to the pseudospectral
approximation of (3.2.1)

@vN
@t

= a
@vN
@t

(3.2.4)

subject to initial conditions
vN (t = 0) =  N f: (3.2.5)

Here, vN = vN (x; t) is an N-degree trigonometric polynomial which satis�es a nearby equation satis�ed
by the interpolant of the exact solution  Nu(x; t). That is, uN �  Nu(x; t) satis�es (3.2.4) modulo
spectrally small truncation error

@uN
@t

= a
@uN
@x

+ FN (x; t); FN (x; t) = a N

�
@

@x
(I �  N )u

�
(3.2.6)

where by (3.2.3), FN (x; t) = a
�
 N

@u
@x � @

@x( Nu)
�
, and by (2.2.17) it is indeed spectrally small

kFN (x; t)k � jaj k @
@x

[(I �  N )u]k] � jaj kukHs+1
1

N s
: (3.2.7)

The stability proof of (3.2.4) follows along the lines of the spectral stability, and spectral convergence
follows using Duhammel's principle for the stable numerical solution operator. That is, the error
equation for eN = uN � vN is

@eN
@t

= a
@eN
@x

+ FN (x; t) (3.2.8)

whose solution is

eN (t) = EN (t; 0)(fN �  Nf) +
Z t

�=0

EN (t; � )FN (x; � )d�: (3.2.9)

Hence, by stability

keN (t)k � Const:eMt � kukHs+1

1

N s
� Const:eMtkfkHs+1 � 1

N s
; (3.2.10)

this together with the estimate of the pseudospectral projection yields

ku(t)� vN (t)k � Const:eMt �
8<
:

1
Ns for Hs+1 initial data

e��N for analytic initial data
: (3.2.11)

To carry out the calculation of (3.2.4) we can compute the discrete Fourier coe�cients ~v(k; t) which
obey the ODE,

dv̂

dt
(k; v) = ikav̂(k; t); (3.2.12)
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as was done with the spectral case; alternatively, we can realize our approximate interpolant vN (x; t)
at the 2N + 1 equidistant points x� = �h, and (3.2.4) amounts to a coupled (2N + 1) { ODE system
in the real space

dvN
dt

(x� ; t) = a
@vN
@x

(x = x�; t) � = 0; 1; � � � ; 2N: (3.2.13)

vN (x�; 0) = f(x�): (3.2.14)

3.2.1 Is the pseudospectral approximation with variable coe�cients stable?

Let us turn to the variable coe�cient case,

@u

@t
= a(x; t)

@u

@x
: (3.2.15)

The pseudospectral approximation takes the form

@vN
@t

=  N

�
a(x; t)

@vN
@x

�
(3.2.16)

subject to initial conditions
vN (x�; 0) = f(x�):

It can be solved as a coupled ODE system in the Fourier space, and at the same time it can be realized
at the 2N + 1 so-called collocation points

dvN (x�; t)

dt
= a(x� ; t)

@vN
@x

(x = x� ; t); (3.2.17)

with initial conditions
vN (x�; t = 0) = f(x� ):

The truncation error of this model is spectrally small in the sense that uN =  Nu satis�es

@uN
@t

=  N

�
a(x; t)

@uN
@x

�
+ FN (x; t) (3.2.18)

where

FN (x; t) =  N

�
a(x; t)

@u

@x

�
�  N

�
a(x; t)

@

@x
( Nu)

�
(3.2.19)

is spectrally small

kFN (x; t)k � k N
�
a(x; t)

@

@x
[(I �  N )u]k �

�

� eCst � kfkHs+1 � 1

N s
; Cs � k@s+2x a(x; t)kL1:

(3.2.20)

Hence, if the approximation (3.2.11) is stable then spectral convergence follows. Is the approximation
(3.2.11) stable? The presence of aliasing errors makes this stability question an intricate one { here is
a brief explanation.

Trying to follow the di�erential and spectral setup, we should multiply by vN (x; t), integrate by
parts and hope for the best. However, here vN (x; t) is not orthogonal to (I� N )[� � �] (| otherwise this
would enable us to estimate

R
vN (x; t)a(x; t)

@vN
@x

(x; t)dx in terms of
R
x
v2N (x; t)dx and we are done);

more precisely, for I� N = I�SN �AN we only have that
R
vN (I�SN )[� � �]dx = 0; yet

R
vNAN [� � �]dx

leaves us with an additional contribution which is not necessarily bounded in terms of
R
x
v2N (x; t)dx,

and this argument fails short of a straightforward stability proof by Gronwall's inequality. To shed a
di�erent light on this di�culty, we can turn to the Fourier space; we write (3.2.16) in the form

@vN
@t

= a(x)
@vN
@x

(3.2.21)
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and Fourier transform to get for the kth Fourier coe�cient

d

dt
~v(k; t) =

NX
j=�N

~a(k � j; t)ij~v(j; t) (3.2.22)

i.e.,
d

dt
~v(t) = ~AN�~v(t) ~Akj =

X
p

â[k � j + p(2N + 1)]: (3.2.23)

This time, Re ~AN� is unbounded. This di�culty appears when we con�ne ourselves to the discrete
framework: multiplying (3.2.17) by v(xv; t) and trying to sum by parts we arrive at

1

2

d

dt

X
�

v2N (x� ; t) =
X
�

a(x�; t)v(x� ; t)
@v

@x
(x�; t)

=
X
�

@

@x

�
1

2
a(x; t)v2(x; t)

������
x=x�

�
X
�

1

2
a0(x� ; t)v

2
N (x�; t);

(3.2.24)

but the �rst term on the right does not vanish in this case { it equals, by the aliasing relation, to

2�

2N + 1

X
�

@

@x

�
1

2
a(x; t)v2(x; t)

������
x=x�

=

Z
@

@x
[� � �] +

X
p6=0

ip � (2N + 1)
1

2
^av2[p � (2N + 1)] (3.2.25)

and a loss of one derivative is re
ected by the factor 2N +1 inside the right summation. This does not
prove an instability as much as it shows the failure of disproving it along these lines.

3.3 Aliasing, Resolution and (weak) Stability

3.3.1 Weighted L2-stability

We now turn to consider the intriguing case where a(x) may change sign9. In this section we take a
rather detailed look at the prototype case of a(x) = sin(x):

@

@t
uN (x; t) =

@

@x
 N [sin(x)uN (x; t)] : (3.3.1)

We shall show that the solution operator associated with (3.3.1) is also similar to a unitary matrix
| consult (3.3.17) below for the precise statement. This in turn leads to the announced weighted
L2-stability. It should be noted, however, that the similarity transformation in this case involves the
ill-conditioned N �N Jordan blocks; as the condition number of the latter may grow linearly with N ,
this in turn implies weak L2-instability.

We begin by noting that the Fourier approximation (3.3.1) admits a rather simple representation in
the Fourier space, using the (2N+1)-vector of its Fourier coe�cients, û(t) := (û�N (t); : : : ; ûN (t)). With
the periodic extension of ûk(t) 8k 2 Z in mind we are able to express the interpolant of sin(x)uN (x; t)
as

 N [sin(x)uN (x; t)] =
NX

k=�N

1

2i
[ûk�1(t) � ûk+1(t)]eikx;

so that the Fourier approximation (3.3.1) then reads

d

dt
ûk(t) =

k

2
[ûk�1(t) � ûk+1(t)]; �N � k � N; (3.3.2)

9If a(x) > 0, then (3.2.21) is semi-bounded (and hence stable) in the weighted L2
A�1

-norm, with A =

diagfa(x0); : : : ; a(x2N )g.
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augmented by the aliasing boundary conditions,

û�(N+1)(t) = ûN (t) � û�N (t); ûN+1(t) = û�N (t) � ûN (t): (3.3.3)

Thus, in the Fourier space, our approximation is converted into the system of ODE's

d

dt
û(t) = �Âû(t); �jk = k�jk; Â =

1

2

2
6666664

0 �1 0 : : : �1
1 0 �1 0

0 1
.. .

. . .
...

...
. . . 0 �1

�1 0 : : : 1 0

3
7777775 : (3.3.4)

We shall study the stability of (3.3.1) in terms of its unitarily equivalent Fourier representation
in (3.3.4), which is decoupled into its real and imaginary parts, û(t) = a(t) + ib(t). According to
(3.3.2)-(3.3.3), the real part of the Fourier coe�cients, ak(t) := IRe ûk(t), satis�es

d

dt
ak(t) =

k

2
[ak�1(t)� ak+1(t)] ; �N � k � N; (3.3.5)

augmented with the boundary conditions

a�(N+1)(t) = a�N (t); aN+1(t) = aN (t): (3.3.6)

The imaginary part of the Fourier coe�cients, bk(t) := IIm ûk(t), satisfy the same recurrence relations
as before

d

dt
bk(t) =

k

2
[bk�1(t) � bk+1(t)] ; �N � k � N; (3.3.7)

the only di�erence lies in the augmenting boundary conditions which now read

b�(N+1)(t) = �b�N (t); bN+1(t) = �bN (t): (3.3.8)

The weighted stability of the ODE systems (3.3.5) and (3.3.7) is revealed upon change of variables.
For the real part in (3.3.5) we introduce the local di�erences,

��k (t) := ak(t)� ak+1(t);

for the imaginary part in (3.3.7) we consider the local averages,

�+k (t) := bk(t) + bk+1(t):

Di�erencing consecutive terms in (3.3.5) while adding consecutive terms in (3.3.7) we �nd

d

dt
��k (t) =

k

2
��k�1(t)�

k + 1

2
��k+1(t) �

1

2
��k (t); �N � k � N � 1: (3.3.9)

The motivation for considering this speci�c change of variables steams from the side conditions in
(3.3.6) and (3.3.8), which are now translated into zero boundary values

���(N+1)(t) = ��N (t) = 0: (3.3.10)

Observe that (3.3.9),(3.3.10) amount to a �xed translation of antisymmetric ODE systems for ��(t) :=
(���N (t); : : : ; �

�
N�1(t)) and �

+(t) := (�+�N (t); : : : ; �
+
N�1(t)), that is, we have

d

dt
��(t) =

1

2
(�I + S)��(t); (3.3.11)
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where S denotes the antisymmetric matrix

S =

2
666664

0 N�1 0 : : :

1�N 0
. . . 0

0
.. .

. . . 1
... 0 �1 0

3
777775�

2
666664

0 �1 0 : : :

1 0
.. . 0

0
.. .

. . . 1�N
... 0 N�1 0

3
777775 :

The solution of these systems is expressed in terms of the unitary matrix U (t) = e
1
2St,

��(t) = e�t=2U (t)��(0); U�(t)U (t) = I2N : (3.3.12)

The explicit solution given in (3.3.12) shows that our problem | when expressed in terms of the
new variables ��(t), is clearly L2-stable,

k��(t)k = e�t=2k��(0)k:

Remark. We note that this L2-type argument carries over for higher derivatives, that is, the W�-norms
of ��(t) remain bounded,

k�kW� := k���k =
 X

k

jkj2�j�kj2
! 1

2

; �jk = k�jk: (3.3.13)

We want to interpret these L2-type stability statements for the ��-variables in term of the original
variables | the real and imaginary parts of the system (3.3.4). This will be achieved in term of simple
linear transformations involving the N �N Jordan blocks

J� =

2
66664

1 �1 : : : 0

0 1
. . .

...
...

. . . �1
0 : : : 0 1

3
77775 :

To this end, let us assume temporarily that the initial conditions have zero average, i.e., that

a0(0) � 1

2N + 1

X
�

u(x�; 0) = 0: (3.3.14)

According to (3.3.5), a0(t) remains zero 8t, and so will be temporarily ignored. Then, if we let

~a(t) := (a�N (t); : : : ; a�1(t); a1(t); : : : ; aN (t))

denote the 'punctured' 2N -vector of real part associated with (3.3.4), it is related to the 2N -vector of
local di�erences, ��(t), through

��(t) = T�~a(t); T� := J� 	 J t�:

This enables us to rewrite the solution given in (3:3:12)� as

T�~a(t) = e�t=2U (t)T�~a(0): (3.3.15)

Similarly, since b0(t) � IIm 1
2N+1

P
� u(x�; t) = 0 in the real case, it will be temporarily ignored. Then,

the 'punctured' 2N -vector of imaginary part associated with (3.3.4),

~b(t) := (b�N (t); : : : ; b�1(t); b1(t); : : : ; bN�1(t));
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is related to the 2N -vector of local averages, �+(t), through

�+(t) = T+~b(t); T+ := J+ � J t+;
which enables us to rewrite the solution given in (3:3:12)+ as

T+~b(t) = et=2U (t)T+~b(0): (3.3.16)

The equalities (3.3.15) and (3.3.16) con�rm our assertion in the beginning of this section, namely,

Assertion. The solution operator associated with the Fourier approximation, (3.3.1),(3.3.14), is similar
to the unitary matrix ~U (t) := U (t)� U (t), in the sense that

~u(t) = T�1 ~U (t)T ~u(0); ~u(t) := et=2~a(t) � e�t=2~b(t); T := T� � T+: (3.3.17)

We are now in a position to translate this similarity into an appropriate weighted L2-stability.
On the left of (3.3.15) we have a weighted L2-norm of ~a(t); kT�~a(t)k � k~a(t)kT t

�
T� . Also, U (t)

being a unitary matrix has an L2-norm = 1, hence the right hand side of (3.3.15) does not exceed,
e�t=2kT�~a(0)k � e�t=2k~a(0)kT t

�
T� , and therefore ~a(t) = IRe (û�N (t); : : : ; û�1; û1(t); : : : ; ûN (t)) satis�es

k~a(t)kT t�T� � e
�t=2k~a(0)kT t�T� ; T t�T� = J t�J� � J�J t�:

Expanding the last inequality by augmenting it with the zero value of a0(t) we �nd the weighted
L2-stability of the real part

ka(t)kH� � e�t=2ka(0)kH� ; H� = J t�J� � 1� J�J t�: (3.3.18)

Similarly, (3.3.16) gives us the weighted stability of the imaginary part

kb(t)kH+ � et=2kb(0)kH+ ; H+ = J t+J+ � 1� J+J t+: (3.3.19)

Summarizing (3.3.18) and (3.3.19) we have shown

Theorem 3.1 (Weighted stability) Consider the Fourier method (3.3.1) subject to initial conditions
with zero mean, (3.3.14). Then the following weighted L2-stability estimate holds

jjjuN(t)jjjH � et=2jjjuN(0)jjjH: (3.3.20)

Here jjjuN(t)jjjH denotes the weighted L2-norm

jjjuN(t)jjjH := kIRe û(t)� IIm û(t)kH ; (3.3.21)

where the weighting matrix H := H� �H+ > 0 is given by

H� := J t�J� � 1� J�J t� =

2
666666666666666666664

1 �1
�1 2 �1

.. .
. . .

. . .

. . .
. . . �1
�1 2

1
2 �1
�1 2 �1

...
. . .

. . .

. . .
. . . �1
�1 1

3
777777777777777777775

:
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We close this section by noting three possible extensions of the last weighted stability result.
Duhammel's principle gives us

1. Inhomogeneous terms. Let uN (t) � uN (�; t) denote the solution of the inhomogeneous Fourier
method

@

@t
uN (x; t) =

@

@x
 N [sin(x)uN (x; t)] + FN (x; t): (3.3.22)

Then there exists a constant, C(t), such that the following weighted L2-stability estimate holds

jjjuN(t)jjjH � C(t)

�
jjjuN(0)jjjH + max

0���t
jjjFN(� )jjjH

�
: (3.3.23)

Our second corollary shows that the weighted L2-stability of the Fourier method is invariant under low
order perturbations.

2. Low order terms. Let uN (t) � uN (�; t) denotes the solution of the Fourier method

@

@t
uN (x; t) =

@

@x
 N [sin(x)uN (x; t)] +  N [p(x)uN (x; t)] ; p�L1[0; 2�): (3.3.24)

Then there exists a constant, C(t), such that the following weighted L2-stability estimate holds

jjjuN(t)jjjH � C(t)jjjuN(0)jjjH: (3.3.25)

In our third corollary we note that the last two weighted L2-stability results apply equally well to higher
order derivatives, which brings us to

3. Weighted W�-Stability. Let uN (t) � uN (�; t) denote the solution of the Fourier method

@

@t
uN (x; t) =

@

@x
 N [sin(x)uN (x; t)] : (3.3.26)

Then there exist positive de�nite matrices, H
(�)
� , and a constant C�, such that the following weighted

W�-stability estimate holds
jjjuN(t)jjjW�

H
� C�(t)jjjuN(0)jjjW�

H
(3.3.27)

Here jjjuN(t)jjjW�
H

denotes the weighted W�-norm

jjjuN(t)jjj2W�
H
:= k��IRe û(t)k2

H
(�)
�

+ k��IIm û(t)k2
H
(�)
+

: (3.3.28)

The last results enable to put forward a complete weighted L2-stability theory. The following
assertion contains the typical ingredients.

Assertion. The Fourier method

@

@t
uN (x; t) =  N [sin(x)

@

@x
uN (x; t)]; (3.3.29)

satis�es the following weighted W�-stability estimate

kuN (�; t)kW�
H
� C�(t)kuN (�; 0)kW�

H
: (3.3.30)

This last assertion con�rms the weighted stability of the Fourier method in its non-conservative trans-
port form.
Sketch of the Proof. We rewrite (3.3.29) in the 'conservative form'

@

@t
uN (x; t) =

@

@x
 N [sin(x)uN (x; t)] +

�
 N sin(x);

@

@x

�
uN (x; t);

where [ N sin(x); @
@x
] :=  N (sin(x)

@
@x
�) � @

@x
( N sin(x)�) denotes the usual commutator between in-

terpolation and di�erentiation. The weighted L2-stability stated in Theorem 2.1 tells us that this
commutator is bounded in the corresponding weighted operator norm. Therefore, we may treat the
right hand side of (3.3.29) as a low order term and weighted L2-stability (� = 0) follows in view of the
second corollary above. The case of general � > 0 follows with the help of the third corollary. .
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2N+1 65 129 257 513 1205

kuN (t)k
kuN (0)k 570 2003 5535 15028 39798

Table 3.1: Ampli�cation of kuN (t)k at t = 10,
subject to initial data ûk(0) = i sin(k�=N ).

3.3.2 Algebraic stability and weak L2-instability

In this section we turn our attention to the behavior of the Fourier method (3.3.1) in terms of the
L2-norm. Table 3.1 suggests that when measured with respect to the standard (weight-free) L2-norm,
the Fourier approximation may grow linearly with the number of gridpoints N .

The main result of this section asserts that this is indeed the case.

Theorem 3.2 (Weak instability) There exist constants, C1(t) and C2(t), such that the following
estimate holds

C1(t)N � keDAtk � C2(t)N: (3.3.31)

The right hand side of (3.3.31) tells us that the Fourier method may amplify the L2-size of its initial
data by an ampli�cation factor � O(N ) | that is , the Fourier method is algebraically stable. The
left hand side of (3.3.31) asserts that this estimate is sharp in the sense that there exist initial data for
which this O(N ) ampli�cation is attained | that is, the Fourier method is weakly L2- unstable.

We turn to the proof of the algebraic stability. Let uN (t) denote the solution of the Fourier method
(3.3.1) subject to arbitrary initial data, uN (0). We claim that we can bound the ratio kuN (t)k=kuN (0)k
in terms of the condition number, �(H), of the weighting matrix H, �(H) := kHk � kH�1k. Indeed

kuN (t)k = kIRe û(t)� IIm û(t)k �pkH�1k � jjjuN(t)jjjH �

� C(t)
pkH�1k � jjjuN(0)jjjH �

� C(t)
p
kHk � kH�1k � kIRe û(0)� IIm û(0)k =

= C(t)
p
�(H) � kuN (0)k:

(3.3.32)

Here, the �rst and last equalities are Parseval's identities; the second and forth inequalities are straight-
forward by the de�nition of a weighted norm; and the third is a manifestation of the weighted L2-
stability stated in Theorem 3.1.

The estimate (3.3.32) requires to upper-bound the condition number of the weighting matrixH. We
recall that the weighting matrixH is the direct sum of the matrices H� given in (3.3.18)-(3.3.19), whose
L2-norms equal the squared L2-norms of the corresponding Jordan blocks, kH�k � kJ�k2; kH�1

� k �
kJ�1� k2: Inserting this into (3.3.32) we arrive at

keDAtk := sup
uN (0) 6=0

kuN (t)k
kuN (0)k � C(t)�(J); J := J� � J+: (3.3.33)

Thus it remains to upper bound the condition number of the Jordan blocks, J�. For the sake of
completeness we include a brief calculation of the latter. The inverse of J� are upper-triangular
Toeplitz matrices, �

J�1�
�
jk

=

�
(�1)j�k k � j;
0 k < j;

(3.3.34)
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for which we have,

kJ�1� wk2 =
NX

j=�N

j
X
k�j

(�1)j�kwkj2 �
NX

j=�N

X
k

jwkj2
X
k�j

1 � 2N2kwk2: (3.3.35)

This means that kJ�1� k �
p
2N , and together with the straightforward upper-bound, kJ�k � 2, the

right hand side of the inequality (3.3.31) now follows with C2(t) = 2
p
2C(t).

The above O(N )-algebraic stability is essentially due to the O(N ) upper-bound on the size of the
inverses of Jordan blocks stated in (3.3.35). Can this upper-bound be improved? an a�rmative answer
to this question depends on the regularity of the data, as shown by the estimate

kJ�1� wk2 =
NX

j=�N

j
X
k�j

(�1)j�kwkj2 �
NX

j=�N

X
k

jkj2�jwkj2
X
k�j

jkj�2�;

which yields an O(N (1��)+) bound for W�-data,

kJ�1� wk � CN;�N
(1��)+kwkW� ; kwkW� :=

 X
k

jkj2�jwkj2
!1=2

:

Noting that the rest of the arguments in the proof of algebraic stability are invariant with respect to
the W�-norm (| in particular, the weighted W�-stability stated above), we conclude the following
extension of the right inequality in (3.3.31).

Corollary 3.1 (Weak W�-stability estimate) There exist constants Cs;�; s; � � 0, such that the
following estimate holds

kuN (�; t)kWs � CN;s;�N
(1��)+kuN (�; 0)kWs+� : (3.3.36)

Here CN;s;� =

�
Const � plogN � = 1

2 ; 1;
� Cs;� otherwise:

Corollary 3.1 tells us how the smoothness of the initial data is related to the possible algebraic growth;
actually, for W�-initial data with � > 1, there is no L2-growth. However, for arbitrary L2 data
(s = � = 0) we remain with the O(N ) upper bound (3.3.35), and this bound is indeed sharp for, say,
wk � (�1)k. (In fact, the latter is reminiscent of the unstable oscillatory boundary wave we shall meet
later in (3.3.54)).

These considerations lead us to the question whether the linear L2-growth upper-bound o�ered by
the right hand side of (3.3.31) is sharp. To answer this question we return to take a closer look at the
real and imaginary parts of our system (3.3.2).
We recall that according to (3.3.5) the real part, ak(t) = IRe ûk(t), satis�es,

d

dt
ak(t) =

k

2
[ak�1(t)� ak+1(t)] ; �N � k � N:

Summing by parts against ak(t) we �nd

1

2

d

dt

NX
k=�N

a2k(t) =
1

2

NX
k=�N+1

ak(t)ak�1(t) � N

2
[a�(N+1)(t)a�N (t) + aN+1(t)aN (t)]:

The boundary conditions (3.3.6), a�(N+1)(t) � a�N (t) = aN+1(t) � aN (t) = 0, imply that the second

term on the right is positive; using Cauchy-Schwartz to upper bound the �rst term yields d
dt
ka(t)k2 �

ka(t)k2, which in turn implies that the real part of the system (3.3.2) is L2-stable

ka(t)k � et=2ka(0)k; a(t) = IRe û(t):
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Imaginary part of Fourier coe�cients, IIm ûk(t), computed with �t = 1
5N at

(a) t = 0 and t = 0:1 with N = 200 (b) t = 0 and t = 0:1 with N = 400
(c) t = 1: with N = 100 (d) t = 1: with N = 200

Figure 3.1: Fourier Solution of ut = (sin(x)u)x; ûk(0) = �3k(� � �k)3=20; �k = k���.
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In contrast to the L2-bounded real part, it will be shown below that the imaginary part of our
system experiences an L2 linear growth, which is responsible for the algebraically weak L2-instability
of the Fourier method.

The imaginary part of our system, b(t) = IIm ûk(t), satis�es the same recurrence relations as before

d

dt
bk(t) =

k

2
[bk�1(t) � bk+1(t)] ; �N � k � N; (3.3.37)

the only di�erence lies in the augmenting boundary conditions which now read

b�(N+1)(t) = �b�N (t); bN+1(t) = �bN (t) = 0: (3.3.38)

Trying to repeat our argument in the real case, we sum by parts against bk(t),

1

2

d

dt

NX
k=�N

b2k(t) =
1

2

NX
k=�N+1

bk(t)bk�1(t)� N

2
[b�(N+1)(t)b�N (t) + bN+1(t)bN (t)]; (3.3.39)

but unlike the previous case, the judicious minus sign in the augmenting boundary conditions (3.3.38)
leads to the lower bound

d

dt
kb(t)k2 � �kb(t)k2 + N [b2�N(t) + b2N (t)]: (3.3.40)

This lower bound indicates (but does not prove!) the possible L2-growth of the imaginary part. Figure
3.1 con�rms that unlike the L2-bounded real part, the behavior of the imaginary part is indeed markedly
di�erent | it consists of binary oscillations which form a growing modulated wave as jkj " N . These
binary oscillations suggest to consider vk(t) := (�1)kbk(t), in order to gain a better insight into the
growth of the underlying modulated wave. Observe that (3.3.37)-(3.3.38) then recasts into the centered
di�erence scheme

d

dt
vk(t) = �k

vk+1(t)� vk�1(t)
2��

; �k := k��; 0 � k � N; �� :=
1

N + 1
2

; (3.3.41)

which is augmented with �rst order homogeneous extrapolation at the 'right' boundary

vN+1(t)� vN (t) = 0: (3.3.42)

We note in passing that fig The bk(t)'s, and hence the vk(t)'s, are symmetric | in this case they
have an odd extension for �N � k � 0; fiig No additional boundary condition is required at the
left characteristic boundary �0 = 0; and �nally, fiiig Though (3.3.41)-(3.3.42) are independent of the
frequency spacing | in fact any �� = O(1=N ) will do, yet the choice of �� = (N + 1

2
)�1 will greatly

simplify the formulae obtained below. These simpli�cations will be advantageous throughout the rest
of this section.

Clearly, the centered di�erence scheme (3.3.41) could be viewed as a consistent approximation to
the linear wave equation

@

@t
v(�; t) = �

@

@�
v(�; t); 0 � � � 1:

The essential point is that � = 1 is an in
ow boundary in this case, and that the boundary condition
(3.3.42) is in
ow-dependent in the sense that it is consistent with the interior in
ow problem. Such
in
ow-dependent boundary condition renders the related constant coe�cient approximation unstable.

To show that there is an O(N )-growth in this case requires a more precise study, which brings us
to the proof of the weak L2-instability. We decompose the imaginary components, bk(t), as the sum
of two contributions | a stable part, sk(t), associated with the evolution of the initial data; and an
unstable part, !k(t), which describes the unstable binary oscillations propagating from the boundaries
into the interior domain,

bk(t) � sk(t) + !k(t):
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Here, s(t) := (s1(t); : : : ; sN (t)) is governed by an out
ow centered di�erence scheme which is comple-
mented by stable boundary extrapolation,8>><

>>:
d

dt
sk(t) + �k

sk+1(t) � sk�1(t)
2��

= 0; 0 � k � N; �� :=
1

N + 1
2

sk(0) = bk(0);
sN+1(t) = sN (t):

(3.3.43)

As before, we exploit symmetry to con�ne our attention to the 'right half' of the problem, 0 � k � N .
A straightforward L2-energy estimate con�rms that this part of the imaginary components is L2-

stable, ks(t)k � e�tkb(0)k. In fact, the scheme (3.3.43) retains high-order stability in the sense that

ks(t)kW� =

 
NX
k=0

jkj2�jsk(t)j2
!1=2

� Const�;t � kb(0)kW� ; 8� � 0: (3.3.44)

We close our discussion on the so called "s"-part by noting that (3.3.43) is a second-order accurate
approximation to the initial-value problem8>>><

>>>:
@

@t
s(�; t) = �

@

@�
s(�; t); � � 0;

s(�; 0) = b(�); b(�) :=
�1

2N + 1

2NX
�=0

uN (x�; 0) sin(���);
(3.3.45)

Observe that the initial condition b(�) is nothing but a trigonometric interpolant in the frequency 0�-
space', which coincides with the initial value of the imaginary components, b(�k) = IIm ûk(0) � bk(0).
Using the explicit solution of this initial value problem, we end up with a second order convergence
statement which reads10

sk(t) = b(�ke
�t) + O(��)2; t � 0: (3.3.46)

We now turn our attention to the unstable oscillatory part, !k(t) = (�1)N�kvk(t). It is governed
by an in
ow centered di�erence scheme,8<

:
d

dt
vk(t) = �k

vk+1(t) � vk�1(t)
2��

; 0 � k � N;
vk(0) � 0;

(3.3.47)

which is coupled to the previous stable "s"-part (3.3.43), through the boundary condition

vN+1(t) � vN (t) = sN+1(t) + sN (t): (3.3.48)

The boundary condition (3.3.48) is the �rst-order accurate extrapolation we met earlier in (3.3.42) |
but this time, with the additional inhomogeneous boundary data. And as before, a key ingredient in
the L2-instability is the fact that such boundary treatment is in
ow-dependent.
Speci�cally, we claim: the in
ow-dependent extrapolation on the left of (3.3.48) re
ects the boundary
values on the right of (3.3.48), which 'in
ow' into the interior domain with an amplitude ampli�ed by
a factor of order O(N ).
To prove this claim we proceed as follows. Forward di�erencing of (3.3.47) implies that rk+1

2
(t) :=

vk+1(t)� vk(t) satisfy the stable di�erence scheme8>><
>>:

d

dt
rk+1

2
(t) =

�k+ 3
2
rk+ 3

2
(t)� �k�1

2
rk�1

2
(t)

2��
�
rk+ 3

2
(t)� 2rk+1

2
(t) + rk�1

2

4
; k � N � 1;

rk+ 1
2
(0) � 0;

rN+ 1
2
(t) = sN+1(t) + sN (t) � 2sN (t):

(3.3.49)

10The last equality should be interpreted of course in the W�-sense, with � limited by the initial W�-smoothness of
bk(0).
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Clearly, this di�erence scheme is consistent with, and hence convergent to the solution of the initial-
boundary value problem 8><

>:
@

@t
r(�; t) =

@

@�
(�r(�; t)); 0 � � � 1;

r(�; 0) � 0
r(1; t) = 2sN (t):

(3.3.50)

Observe that r(�; t) describes a boundary wave which is prescribed on the �N+ 1
2
= 1 boundary of

the computed spectrum, r(1; t) = 2sN (t), and propagates into the interior domain of lower frequencies
� < 1,

r(�; t) =

8<
:

2

�
sN (t+ ln �); t + ln � � 0;

0; t + ln � � 0:
(3.3.51)

We conclude that the forward di�erences, rk+ 1
2
(t) = vk+1(t) � vk(t), form a second-order accurate

approximation of this boundary wave,

rk+ 1
2
(t) = r(�k+ 1

2
; t) +O(��)2; �k+ 1

2
= (k +

1

2
)��:

Returning to the original variables, !k(t) � (�1)kPk�1
j=0 rj+1

2
(t), the latter equality reads

!k(t) = (�1)k
k�1X
j=0

r(�j+ 1
2
; t) + O(k(��)2) =

=
(�1)k
��

R(�k; t) + O(��); R(�k; t) :=

Z �k

e�t
r(�; t)d�;

(3.3.52)

which con�rms our above claim regarding the ampli�cation of a boundary wave by a factor of O(1=�� �
N ).

The a priori estimates (3.3.44) and (3.3.52) provide us with precise information on the behavior
of the imaginary components, b(t) = s(t) + !(t): their initial value at t = 0 propagate by the stable
"s"-part and reaches the boundary of the computed spectrum at �N+ 1

2
= 1 with the approximate

boundary values of (3.3.46), sN (t) = b(e�t) + O(��); the latter propagate into the interior spectrum

as a boundary wave of the form (3.3.51), r(�; t) =
2

�
b(

1

�et
), whose primitive in (3.3.52) describes the

unstable oscillatory "!"-part of the solution. Added all together we end up with

bk(t) = b(�ke
�t) +

8<
:

2(�1)k
��

Z 1

��e�t=�k

b(�)
d�

�
; e�t � �k � 1

0 ; 0 � �k � e�t

9=
; +O(��): (3.3.53)

Thus, the unstable "!"-part contributes a wave which is modulated by binary oscillations; the ampli-
tude of these oscillations start with O(1=�� � N ) ampli�cation near the boundary of the computed
spectrum, �N � 1, and decreases as they propagate into the interior domain of lower frequencies. More-
over, for any �xed t > 0, only those modes with wavenumber k such that e�t < jkj=N � 1, are a�ected
by the unstable "!" part. Put di�erently, we state this as

Corollary 3.2 (Weak instability revisited) For any �xed t > 0, the Fourier method (3.3.1) expe-
riences a weak instability which a�ects only a �xed fraction of the computed spectrum. Yet, the size of
this �xed fraction, 1� e�t, approaches unity exponentially fast in time.

There are two di�erent cases to be considered, depending on the smoothness of the initial data.

1. Smooth initial data. If the initial data uN (x; 0) are su�ciently smooth, then bk(0) = IIm ûk(0)
are rapidly decaying as jkj " N , and hence | by the W�-stability of the "s"-part in (3.3.44), this
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Imaginary part of Fourier coe�cients, IIm ûk(t), computed at t = 3 with �t = 1
10N and

(a) with N = 100 (b) with N = 200 (c) with N = 800

Figure 3.2: Fourier solution of ut = (sin(x)u)x; ûk(0) � i
k3 .
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rapid decay is retained later in time for sk(t); t > 0. This implies that the discrete boundary wave
| governed by the stable scheme (3.3.49), is negligibly small, rk+1

2
(t) � 0, because its boundary

values are, 2sN (t) � 0. We conclude that in the smooth case, kb(t)k � kb(0)k+ O(1) remains of
the same size as its initial data, kb(0)k.
Figure 3.2 demonstrates this result for a prototype case of smooth initial data in Besov B3

1(L1)
| in this case, initial data with cubically decaying imaginary components, bk(0) � jkj�3. As told
by (3.3.53), the temporal evolution of these components should include an ampli�ed oscillatory
boundary wave, !k(t) � (�1)kk3N�5, consult Remark 3 below. This O(N ) ampli�cation is
con�rmed by the quadratic decay of the boundary amplitudes, !N (t). Note that despite this
ampli�cation, the boundary wave and hence the whole Fourier solution remain L2 bounded in
this smooth case.
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Imaginary part of Fourier coe�cients, IIm ûk(t); (� ��) computed at t = 0:5 vs. sk(t) + !k(t); (ooo),
(a) with N = 100 (b) with N = 200

Figure 3.3: Fourier solution of ut = (sin(x)u)x; ûk(0) = i sin(�k); �k = k���.

2. Nonsmooth initial data. We consider initial data uN (x; 0) with very low degree of smoothness
beyond their mere L2-integrability, e.g., for b(�) = N�1=2(1� �), the corresponding components
of IIm ûk(0) = N�1=2(1 � k

N ), are square summable but slowly decaying as jkj " N . Since b(0)
serves as initial data for the stable "s"-part in (3.3.43), the components of sk(t) will remain square
summable for t > 0, but will remain slowly decaying as jkj " N . In particular, this means that
sN (t) = O(N�1=2) can be used to create the O(N�1=2) boundary wave r(�; t) dictated by (3.3.50).
According to (3.3.52), the ampli�ed primitive of this boundary wave, (�1)kR(�k; t)=�� � N1=2,
will serve as the leading order term of the unstable part. We conclude that the imaginary part
kb(t)k will be ampli�ed by a factor of O(N ) relative to the size of its nonsmooth initial data
kb(0)k, which con�rms the left hand side of the inequality (3.3.31).

Figure 3.3 demonstrates this result for a prototype case of nonsmooth initial data with imaginary
components given by, bk(0) = sin(�k), that is, initial data represented by a strongly peaked dipole
at x�1; uN (x� ; 0) = (2N + 1)�j�j;1. According to (3.3.53), the evolution of these components in
time yields

bk(t) � sin(�ke
�t) + Constk

(�1)k
��

�
1� 1

�ke�t

�
+

+ O(��): (3.3.54)

In this case the O(N ) oscillatory boundary wave, (�1)k

��

�
1� 1

�ke�t

�
+
, is added to the O(1)-initial
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conditions, sin(�k), which is responsible for the L2-growth of order O(N ). This linear L2-growth
is even more apparent with the 'rough' initial data we met earlier in Figure 3.1.

Remarks
1. Smoothing. The last Theorem con�rms the L2-instability indicated previously by the lower

bound (3.3.40),
d

dt
kb(t)k2 � �kb(t)k2 +N

�
b2�N + b2N

�
:

By the same token, summation by parts of the imaginary part (3.3.39), leads to the upper bound

d

dt
kb(t)k2 � kb(t)k2 +N

�
b2�N + b2N

�
;

which shows that had the boundary values of the computed spectrum | which in this case consist of the
last single mode b�N (t), were to remain relatively small, then the imaginary part { and consequently
the whole Fourier approximation would have been L2-stable. For example, the rather weak a priori
bound will su�ce

jb�N(t)j � Cp
N
kb(0)k =) kb(t)k � e(1=2+C2)tkb(0)k: (3.3.55)

What we have shown (in the second part of Theorem 3.2) is that such an a priori bound does not hold
for general nonsmooth L2-initial data, where according to (3.3.53), bN (t) � O(N )kb(t)k.
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Imaginary part of Fourier coe�cients, IIm ûk(t) vs. k���, computed at t = 2
(a) with de-aliasing (N = 80 and N = 160) (b) without de-aliasing (N = 50 and N = 100)

Figure 3.4: Fourier solution of ut = (sin(x)u)x; û(�; 0) = sin(�).

We recall that there are various procedures which enforce stability of the Fourier method, without
sacri�cing its high order accuracy. One possibility is to use the skew-symmetric formulation { consult
x3.4 below. Another possibility is based on the observation that the current instability is due to the
in
ow-dependent boundary conditions (3.3.42) | or equivalently (3.3.38), and the origin of the latter
could be traced back to the aliasing relations (2.2.7). We can therefore de-alias and hence by (3.3.55)
stabilize the Fourier method by setting b�N (t) � 0, or more generally, û�N (t) � 0. De-aliasing could
be viewed as a robust form of high-frequency smoothing. This issue is dealt in x3.5 below. Figure
3.4a shows how the de-aliasing procedure (| setting b�N (t) � 0), stabilizes the Fourier method which
otherwise experiences the unstable linear growth in Figure 3.4b. With (3.3.55) in mind, we may interpret
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2N 64 128 256 512

kuN (t)k
kuN (0)k 366 712 1906 5152

Table 3.2: Ampli�cation of kuN (t)k at t = 5 with even number of gridpoints.
Here, @

@t
uN (x; t) =

@
@x
 N (sin(2x)uN (x; t)); uN (x; 0) = sin(x).

these procedures as a mean to provide the missing a priori decaying bounds on the highest mode(s) of
the computed spectrum, which in turn guarantee the stability of the whole Fourier approximation.

2. Smoothing cont'd { even number of gridpoints. The situation described in the previous remark
is a special case of the following assertion: Assume that a(x) consists of a �nite number, say m modes.
Then the corresponding Fourier approximation (3.2.16) is L2-stable, provided the last m modes were
�ltered so that the following a priori bound holds

NX
jkj>N�m

jûk(t)j2 � 1

N
kb(0)k2:

It should be noted that our present discussion of a(x) with m = 1 modes is a prototype case for the
behavior of the Fourier method, as long as the corresponding Fourier approximation is based on an
odd number of 2N + 1 gridpoints; otherwise the case of an even number of gridpoints is L2-stable.
The unique feature of this L2-stability is due to the fact that Fourier di�erentiation matrix in this

case, Djk =
(�1)j�k

2
cot(xj�xk

2
)(1 � �jk) | being even order antisymmetric matrix, must have zero as

a double eigenvalue, which in turn in
icts a 'built-in' smoothing of the last mode in this case, namely,

b�N (t) � 0: (3.3.56)

Table 3.2 con�rms the usual linear weak L2-instability already for a 2-wave coe�cient.

3. W�-initial data. Consider the case of su�ciently smooth initial data so that the imaginary compo-
nents decay of order �,

bk(0) � jkj��; � >
1

2
:

In this case, we may approximate the corresponding initial interpolant b(�) � (��=�)�, and (3.3.53)
tells us the Fourier approximation takes the approximate form

bk(t) =
e�t

k�
+

2(�1)k
��

Z 1

��e�t=�k

(��)�

��+1
d� +O(��) � e�t

k�
+
(�1)k
N��1

��
ket

N

��
� 1

�
+

+O(��):

Observe that kb(t)k � C�N
3
2��, (with C� � (e2�t � 1)=(2� + 1)), where as kb(0)kW� � pN . This

lower bound is found to be in complete agreement with the W�-stability statement of Corollary 3.1
(apart from the logN factor for � = 1) | an enjoyable sharpness.

3.3.3 Epilogue

On previous subsections we analyzed the stability of Fourier method in terms of two main ingredients:
weighted L2-stability on the one hand, and high frequencies instability on the other hand. Here we
would like to show how both of these ingredients contribute to the actual performance of the Fourier
method.
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60 THE FOURIER METHOD

We �rst address the issue of resolution. We were left with the impression that the weak L2-instability
is a rather 'rare occurrence', as it is excited only in the presence of nonsmooth initial data. But in fact,
the mechanism of this weak L2-instability will be excited whenever the Fourier method lacks enough
resolution.
In this context let us �rst note that the solution of the underlying hyperbolic problem may develop
large spatial gradients due to the almost impinging characteristics along the zeroes of the increasing
part of a(x). Consequently, the Fourier method might not have enough modes to resolve these large
gradients as they grow in time. This tells us that independent whether the initial data are smooth
or not, the computed approximation will then 'see' the underlying solution as a nonsmooth one, and
this lack of resolution will be recorded by a slower decay of the computed Fourier modes. The latter
will experience the high-frequency instability discussed earlier and this in turn will lead to the linear
L2-growth. Our prototype example of a(x) = sin(x) is case in point: according to Corollary 3.2, one
needs here at least N >> et modes in order to resolve the solution, for otherwise, (3.3.53) shows that
spurious O(N ) oscillations will contaminate the whole computed spectrum.

We conclude that the lack of resolution manifests itself as a weak L2-instability. This phenomenon
is demonstrated in Figures 3.5-3.9, describing the Fourier method (3.3.1) subject to (the perfectly
smooth ...) initial condition, u(x; 0) = sin(x). Figure 3.5 shows how the Fourier method with �xed
number of N = 64 modes propagates information regarding the steepening of the Fourier solution in
physical space, from low modes to the high ones. And, as this information is being transferred to the
high modes, their O(N ) ampli�cation become more noticeable as time progresses in Figures 3.5a-3.5d.
Consequently, though N = 64 modes are su�cient to resolve the exact solution at t � 2:7, Figure
3.6c-d shows that at later time, t = 3 and in particular t = 5, the under resolved Fourier solution with
64-modes will be completely dominated by the spurious centered spike. This loss of resolution requires
more modes as time progresses. Figure 3.7 shows how the Fourier method is able to resolve the exact
solution at t = 3:5, once 'su�ciently many' modes, N >> e3:5 are used, in agreement with Corollary
3.3. According to Figures 3.8 and 3.9, N = 512 >> e4 modes are required to correctly resolve the two
strong boundary dipoles at t = 4, yet at t = 8 the Fourier solution will be completely dominated by
the spurious centered spike.

Assuming that the Fourier method contains su�ciently many modes dictated by the requirement
of resolution, we now turn to the second issue of this section concerning the convergence of the Fourier
method.

Theorem 3.3 (Convergence rate estimate) Let uN (x; t) denotes the N -degree Fourier approxima-
tion of the corresponding exact solution u(x; t). Then the following error estimate holds

kuN (�; t)� u(�; t)kWs � Consts;�N
2��ku(�; 0)kWs+�; 8s + � >

1

2
: (3.3.57)

Remark. The requirement from the initial data to have at least W 1=2-regularity is clearly necessary in
order to make sense of its pointwise interpolant.

3.4 Skew-Symmetric Di�erencing

There are two main approaches to enforce stability at this point: skew-symmetric di�erencing and
smoothing. We discuss these issues in the next two subsections.

The essential argument of well-posedness for symmetric hyperbolic systems with constant coe�cients
is the fact that (say in the 1-D case) P (D) = A @

@x is a skew-adjoint operator. With variable coe�cients
this is also true, modulo low-order bounded terms, i.e.,

P (x; t;D) � A(x; t) @
@x

=
1

2

�
A(x; t)

@

@x
+

@

@x
(a(x; t)�)

�
� 1

2
Ax(x; t): (3.4.1)

The stability proofs of spectral methods follow the same line, i.e., we have in the Fourier space, compare
(3.1.50),

ÂN� =
1

2

h
ÂN�� �ÂN

i
+
1

2

h
ÂN�+ ��ÂN

i
(3.4.2)
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 (d) 

Imaginary part of Fourier coe�cients, IIm ûk(t), computed with N = 64 modes at
(a) t = 1:0 (b) t = 2:7
(c) t = 3:0 (d) t = 5:0

Figure 3.5: Fourier solution of ut = (sin(x)u)x; u(x; 0) = sin(x).
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 (d) 

Computed solution, uN (�; t), with N = 64 modes at
(a) t = 1:0 (b) t = 2:7
(c) t = 3:0 (d) t = 5:0

Figure 3.6: Fourier solution of ut = (sin(x)u)x; u(x; 0) = sin(x).
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 (a1) physical solution at t=3.5, N=50

-5

-4

-3

-2

-1

0

1

2

3

4

5

-50 -40 -30 -20 -10 0 10 20 30 40 50

 (a2) imaginary part of Fourier coeffecients at t=3.5, N=50
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 (b1) physical solution at t=3.5, N=100
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 (b2) Imaginary part of Fourier coeffecients at t=3.5, N=100
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 (c1) physical solution at t=3.5, N=200
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 (c2) Imaginary part of Fourier coeffecients at t=3.5, N=200

Approximate solution, uN (�; t) and imaginary part of its Fourier coe�cients, IIm ûk(t) at t = 3:5
(a) with N = 50 (b) with N = 100 (c) with N = 200

Figure 3.7: Fourier solution of ut = (sin(x)u)x; u(x; 0) = sin(x).
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 (a1) physical solution at t=4.0, N=64
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 (a2) imaginary part of Fourier coeffecients at t=4.0, N=64
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 (b1) physical solution at t=4.0, N=128
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  (b2) imaginary part of Fourier coeffecients at t=4.0, N=128
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 (c1) physical solution at t=4.0, N=512
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 (c2) imaginary part of Fourier coeffecients at t=4.0, N=512

Approximate solution, uN (�; t) and imaginary part of its Fourier coe�cients, IIm ûk(t) at t = 4:0
(a) with N = 64 (b) with N = 128 (c) with N = 512

Figure 3.8: Fourier solution of ut = (sin(x)u)x; u(x; 0) = sin(x).
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 (a1) physical solution at t=8.0, N=64
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  (a2) imaginary part of Fourier coeffecients at t=8.0, N=64
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 (b1) physical solution at t=8.0, N=128 
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 (b2) imaginary part of Fourier coeffecients at t=8.0, N=128
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 (c1) physical solution at t=8.0, N=512
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 (c2) imaginary part of Fourier coeffecients at t=8.0, N=512

Approximate solution, uN (�; t), and imaginary part of its Fourier coe�cients, IIm ûk(t) at t = 8:0
(a) with N = 64 (b) with N = 128 (c) with N = 512

Figure 3.9: Fourier solution of ut = (sin(x)u)x; u(x; 0) = sin(x).
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and stability amounts to show that the second term in (3.4.2) is bounded: for then we have in (3.4.2)
(as in ((3.4.1) ) a skew-adjoint term with an additional bounded operator. The di�culty with the
stability of pseudo-spectral methods arises from the fact that the second term on the right of (3.4.2) is
unbounded,

limN!1k1
2
( ~AN�+ �� ~AN )k " 1: (3.4.3)

To overcome this di�culty, we can discretized the symmetric hyperbolic system (again, say the 1-D
case)

@u

@t
= A(x; t)

@u

@x
(3.4.4)

when the spatial operator is already put in the \right" skew-adjoint form, compare (3.4.1),

@u

@t
=

1

2

�
A(x; t)

@u

@x
+

@

@x
(A(x; t)u)

�
� 1

2
Ax(x; t)u:

The pseudospectral approximation takes the form

@uN
@t

=
1

2

�
 N

�
A(x; t)

@uN
@x

�
+

@

@x
 N (A(x; t)uN )

�
� 1

2
 N (Ax(x; t)uN ): (3.4.5)

In the Fourier space, this gives us

d~v

dt
=

1

2
[ ~AN�+ � ~AN ]~v � 1

2

@AN

@x
~v: (3.4.6)

Now, ~AN�+ � ~AN is symmetric because � is, @AN
@x is bounded and stability follows.

3.5 Smoothing

We have already met the process of smoothing in connection with the heat equation: starting with
bounded initial data, f(x), the solution of the heat equation (1.2.1)

u(x; t) = Q � f(x); Q(x) =
1p
4�a

e
�x2

4at ; t > 0 (3.5.1)

represents the e�ect of smoothing f(x), so that u(�; t > 0)�C1 (in fact analytic) and u(x; t # 0) = f(x).
A general process of smoothing can be accomplished by convolution with appropriate smoothing

kernel Q(x)

f"(x) = Q"(x) � f(x) (3.5.2)

such that Q"(x) � f(x) is su�ciently smoother than f(x) is, and

Q"(x) � f(x)�!
"!0

f(x): (3.5.3)

With the heat kernel, the role of " is played by time t > 0. A standard way to construct such �lters is
the following. We start with a Cs-function supported on, say, (-1,1), such that it has a unit mass and
zero �rst r moments, Z 1

�1

Q(x)dx = 1;

Z 1

�1

xj�(x)dx = 0; j = 1; 2; � � � ; r: (3.5.4)

Then we set Q"(x) =
1
"Q
�
x
"

�
and consider

f"(x) = Q"(x) � f(x); " > 0: (3.5.5)
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Now, assume f is (r+ 1) { di�erentiable in the " neighborhood of x; then, since Q"(x) is supported on
(�"; ") and satis�es (3.5.4) as well, we have by Taylor expansion

f(x) �Q"(x) � f(x) =
Z
jyj�"

Q"(y)[f(x) � f(x � y)]dy =

=

Z
jyj�"

Q"(y)

2
4 rX
j=1

(�y)j
j!

f (j)(x) +
(�y)r+1
(r + 1)!

fr+1(�)

3
5 dy:

(3.5.6)

The �rst r moments of Q"(y) vanish and we are left with

jf(x) �Q"(x) � f(x)j � Const: max
jy�xj�"

jf (r+1)(y) � "r+1; (3.5.7)

i.e., f"(x) converges to f(x) with order r + 1 as "! 0. Moreover, f"(x) is as smooth as �(x) is, since

f"(x) =

Z
y

1

"
Q

�
x� y
"

�
f(y)dy (3.5.8)

has many bounded derivatives as Q has, i.e., starting with di�erentiable function f of order r + 1 in
the neighborhood of x, we end up with regularized function f"(x) in Cs; s > r.

Example: For C1 regularization { choose a unit mass C1 kernel, see Figure 3.10,

Q(x) =

8<
:

Q0e
� 1

1�x2 ; jxj < 1

0; jxj � 1

with Q0 such that

Z
Q(x)dx = 1: (3.5.9)

Then f"(x) = Q"(x) � f(x) is a C1 regularization of f(x) with �rst order convergence rate

jf(x) � f"(x)j � Const: max
jy�xj�"

jf 0(y)j � "! 0:

To increase the order of convergence, one requires more vanishingmoments, (3.5.4),(which yield more
oscillatory kernels). We note that this smoothing process is purely local | it involves "-neighboring
values of Cr+1 function f , in order to yield a Cs-regularized function f"(x) with f"(x)�!f(x). The
convergence rate here is r + 1.
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Figure 3.10: Unit mass molli�ers
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We can also achieve local regularization with spectral convergence. To this end we set

QN (x) =
1

�
�(
x

�
)Dm(

x

�
); �(0) = 1; (3.5.10)

where �(x) is a C1-function supported on (��; �). Figure 3.11 demonstrates such a molli�er. In this
case the support of the molli�er is kept �xed; instead, by increasing m | particularly, by allowing
m = mN to increase together with N , we obtain a highly oscillatory kernel whose monomial moments
satisfy (3.5.4) modulo a spectrally small error.
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Figure 3.11: A spectral unit mass molli�er

Consider now
fN (x) = QN � f(x): (3.5.11)

Then fN (x) is C1 because QN is; and the convergence rate is spectral, since by (2.1.34)

f(x) � QN � f(x) = f(x) �
Z
jyj��

Dm(y)�(y)f(x � �y)dy

= f(x) � �(y)f(x � �y)jy=0 + residual;

(3.5.12)

and since �(0) was chosen as �(0) = 1 we are left with a residual term which does not exceed

jresidualj � Const:k�(�)f(x � ��)kHs(��;�)
1

ms�1
; 8s > 0:

Thus, the convergence rate is as fast as the local smoothness of f permits;(in this case { the local
neighborhood [x� ��; x+ ��]). Of course, with � = � � 1 we recover the global C1-regularization due
to the spectral projection. The role of � was to localize this process of spectral smoothing.

We can as easily implement such smoothing in the Fourier space: For example, with the heat kernel
we have

û(k; t) = e�ak
2tf̂ (k) (3.5.13)

so that û(k; t) for any t > 0 decay faster than exponential and hence u(x; t > 0) belong to Hs for any
s (and by Sobolev embedding, therefore, is in C1 and in fact analytic). In general we apply,

f"(x) =
1X

k=�1

Q̂"(k)f̂ (k)e
ikx (3.5.14)
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such that for f"(x) to be in Hs we require

1X
k=��

(1 + jkj2)sjQ"(k)j2(f̂ (k)j2 � Const:

and r + 1 order of convergence follows with

j�̂"(k) � 1j � Const:("k)r+1: (3.5.15)

Indeed, (3.5.15) implies

jf(x) � f"(x)j � Const:"r+1
1X

k=��

jkr+1f̂ (k)eikxj

� Const: max jf (r+1)j � "r+1:

(3.5.16)

Note: Since �̂"(k) # 0 we can deal with any unbounded f by splitting
P

jkj�jk0j
+
P

jkj>jk0j
. To obtain

spectral accuracy we may use

Q̂N (k) =

8<
:
� 1; jkj < mN

� smoothly decay to zero mN � jkj � N
: (3.5.17)

Clearly QN � f(x) is C1 and the familiar Fourier estimates give us

jf(x) �QN � f(x)j �
X

jkj>mN

jf̂(k)eikxj � Const:kfkHs � 1

ms�1
N

:

We emphasize that this kind of smoothing in the Fourier space need not be local; rather Q"(x) or �N (x)
are negligibly small away from a small interval centered around the origin depending on " or 1

N . (This
is due to the uncertainty principle.)

The smoothed version of the pseudospectral approximation of (3.2.15) reads

@vN
@t

=  N (a(x; t)
@

@x
(Q � vN )) (3.5.18)

i.e., in each step we smooth the solution either in the real space (convolution) or in the Fourier space
(cutting high modes).11 We claim that this smoothed version is stable hence convergent under very
mild assumptions on the smoothing kernel QN (x). Speci�cally, (3.5.18) amounts in the Fourier space,
compare (3.2.3)

@~v

@t
= ~AN�QN ~v: (3.5.19)

The real part of the matrix in question is given by

[Re ~AN�QN ]kj = i(�k � �j)
X
p

â[k � j + p(2N + 1)]; �N � k; j � N (3.5.20)

where �QN = diagk(i�k)
i�k = ikQ̂N (k)

is interpreted as the smoothed di�erentiation operator. Now, looking at (3.5.20) we note:

1. For p = 0 we are back at the spectral analysis, compare (3.1.59), (3.1.60) and the real part of the
matrix in (3.5.20) { the aliasing free one { is bounded.

11Either one can be carried out e�ciently by the FFT.
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2. We are left with jpj = 1: in the unsmoothed version, these terms were unbounded since j�k��jj "
1 as k # �N or j " N . With the smoothed version, these terms are bounded (and stability
follows), provided we have

j�k = ikQ̂N (k)j�! 0
jkj"N

: (3.5.21)

For example, consider the smoothing kernel QN (x) where

Q̂N (k) =
sin kh

kh
; h =

2�

2N + 1
:

This yields the smoothed di�erentiation symbols

�k = i sin
kh

h
(3.5.22)

which corresponds to the second order center di�erencing in (2.2.36); stability is immediate by (3.5.21)
for

j�k �
sin 2�k

2N+1
2�k
2N+1

j�! 0
jkj"N

: (3.5.23)

Yet, this kind of smoothing reduces the overall spectral accuracy to a second one; a fourth order
smoothing will be

�k = i13
�
4 sin kh

h � sin 2kh
2h

�
;  ! Q̂N (k) =

�k
ik

�k =
6i
h

sin kh
4+2cos kh ;  ! Q̂N (k) =

�k
ik :

(3.5.24)

In general, the accuracy is determined by the low modes while stability has to do with high ones. To
entertain spectral accuracy we may consider smoothing kernels other than trigonometric polynomials
(� �nite di�erence), but rather, compare (3.5.17)

Q̂N (k) =

8<
:
� 1; jkj � mN

� smoothly decay to zero mN < jkj � N:
(3.5.25)

An increasing portion of the spectrum is di�erentiated exactly which yields spectral accuracy; the
highest modes are not ampli�ed because of the smoothing e�ect in this part of the spectrum.

We close this section noting that if the di�erential model contains some dissipation { e.g., the
parabolic equation

@u

@t
=

@

@x

�
a(x; t)

@u

@x

�
; a(x; t) � � > 0; (3.5.26)

then stability follows with no extra smoothing. The parabolic dissipation compensates for the loss of
\one derivative" due to aliasing in �rst order terms. To see this we proceed as follows: multiply

@vN
@t

(x� ; t) =
@

@x

�
a(x� ; t)

@vN
@x

(x� ; t)

�
(3.5.27)

by vN (x�t) and sum to obtain

1

2

d

dt

X
�

v2N (x�; t) =
X
�

vN (x� ; t)
@

@x
(a(x�; t)

@vN
@x

(x�; t)): (3.5.28)

Suppressing excessive indices, vN (x�; t) � v�(t), we have for the RHS of (3.5.28)

X
�

v�
@

@x

�
a�(t)

@v�
@x

�
=

1

2

X
�

@

@x

�
a�(t)

@v2�
@x

�
�
X
�

a�(t)

�
@v�
@x

�2

: (3.5.29)
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Now, the �rst sum on the right gives us the usual loss of one derivative and the second are compensates
with gain of such quantity. Petrovski type stability (gain of derivatives) follows. We shall only sketch
the details here. Starting with the �rst term on the right of (3.5.29) we have

�

2N + 1

X @

@x

�
a�v�

@v�
@x

�
=

1

2

Z
@

@x
[� � �] + 1

2
� [aliasing errors] (3.5.30)

while for the second term

�
X

a�(t)

�
@v�
@x

�2

� ��
Z �

@vN
@x

(x; t)

�2
dx (3.5.31)

and this last term dominates the RHS of (3.5.30).
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4 THE CHEBYSHEV METHOD

4.1 Forward Euler | the CFL Condition

We are concerned here with fully-discrete spectral/pseudospectral approximations to initial-boundary
value problems associated with hyperbolic equations. In this context, the spectral (and respectively, the
pseudospectral) approximations consist of truncation (and, respectively, collocation) of N -term spatial
expansions, which are expressed in terms of general Jacobi polynomials; Chebyshev and Legendre ex-
pansions are the ones most frequently found in practice. We will show that such N -term approximations
are stable, provided their time step, �t, ful�lls the CFL-like condition, �t � Const �N�2.

To clarify the origin of such a CFL-like condition in our case, we recall that the Jacobi polynomials
are in fact the eigenfunctions of second-order singular Sturm-Liouville problems. Our arguments show
that the main reason for the above CFL limitation is the O(N2) growth of the N th eigenvalue associated
with these Sturm-Liouville problems.

We start with the scalar constant-coe�cient hyperbolic equation,

ut = aux; (x; t)�[�1; 1]� [0;1); a > 0; (4.1.1)

which is augmented with homogeneous conditions at the in
ow boundary,

u(1; t) = 0; t > 0: (4.1.2)

To approximate (4.1.1), we use forward Euler time-di�erencing on the left, and either spectral or
 dospectral di�erencing on the right. Thus, we seek a temporal sequence of spatial �N -polynomials,
vm = vN (x; tm = m�t), such that

vN (x; t
m +�t) = vN (x; t

m) + �t � v0N (x; tm) + �t � � (tm)qN (x): (4.1.3)

Here, qN (x) is a �N -polynomial which characterizes the speci�c (pseudo)spectral method we employ,
v0 denotes spatial di�erentiation, and � = � (tm) is a free scalar multiplier to be determined by the
boundary constraint

vN (x = 1; tm) = 0: (4.1.4)

We shall study the so called spectral tau method associated with general Jacobi polynomials

P
(�;�)
N (x); �; ��(�1; 1),

vN (x; t
m +�t) = vN (x; t

m) + �t � av0N (x; tm) + �t � � (tm)qN (x); qN (x) = P
(�;�)
N (x): (4.1.5)

Remark. The generality of our spectral formulation includes as a special case, the  dospectral Jacobi

methods which are collocated at the interior extrema of P (�;�)
N+1 ; �; ��(�1; 0), i.e.,

vN (x; t
m +�t) = vN (x; t

m) + �t � av0N (x; tm) + �t � � (tm)qN (x); qN (x) = P
(�;�)0

N+1 (x): (4.1.6)

Indeed, the spectral and  dospectral Jacobi methods are closely related since P
(�;�)0

N+1 (x) is a scalar

multiple of P
(�+1;�+1)
N (x). For example, � = � = 1

2 and � = � = �1
2 correspond to Chebyshev spectral

and psidospectral methods, respectively.
Let �1 < x1 < x2 < : : : < xN < 1 be the N distinct zeros of the forcing polynomial qN (x).

For Jacobi type methods, (4.1.5) and (4.1.6), the nodes fxjgNj=1 are the zeros of Jacobi polynomials
associated with the Gauss and Gauss-Lobatto quadrature rules, with minimal gridsize of order

�xmin = min(1 + x1; 1� xN ): (4.1.7)

The spectral approximation (4.1.3) restricted to these points reads

vN (xj; t
m+1) = vN (xj ; t

m) + �t � av0N (xj; tm); 1 � j � N; (4.1.8)
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and is augmented with the homogeneous boundary conditions

vN (1; t
m) = 0: (4.1.9)

Equations (4.1.8), (4.1.9) furnish a complete equivalent formulation of the spectral approximation
(4.1.3), (4.1.4). An essential ingredient in a stability theory of such approximations lies in the choice
of appropriate L2-weighted norms

kf(x)k2! =< f(x); f(x) >; < f(x); g(x) >=
NX
j=1

!jf(xj)g(xj): (4.1.10)

We now make the de�nition of

Stability. We say the approximation (4.1.8), (4.1.9) is stable if there exist discrete weights,

f!j > 0gNj=1, and a constant �0 independent of N , such that

kvN (�; t)k! � Const � e�0tkvN (�; 0)k!; (4.1.11)

and it is strongly stable if (4.1.11) holds with Const = 1 and �0 � 0,

kvN (�; t)k! � kvN (�; 0)k!: (4.1.12)

With this in mind we turn to our main stability result stating

Theorem 4.1 (Stability of the spectral and  dospectral Jacobi methods) Consider the spec-
tral approximations (4.1.8), (4.1.9), associated with the Jacobi tau method (4.1.5), or the  dospectral
Jacobi method (4.1.6). There exists a positive constant �0 � �0(�; �) > 0 independent of N such that
if the following CFL condition holds:

�t � a
�
�N�1 +

2

�xmin

�
� �0; (4.1.13)

then the approximation (4.1.8), (4.1.9) is strongly stable, and the following estimate is ful�lled:

kvN (�; t)k! � e��0atkvN (�; 0)k!: (4.1.14)

Notes.
1. The choice of L2-weighted norms. Theorem 4.1 deals with the stability of both the spectral

tau methods associated with P
(�;�)
N (x); �; ��(�1; 1), and the closely related  dospectral methods

associated with P
(�;�)0

N+1 (x); �; ��(�1; 0). In each case, there are (at least two) di�erent weighted

stability results, based on di�erent choices of discrete L2-weighted norms; these discrete weights f!jgNj=1
are given by

!j =
1 + xj
1� xjw

G
j ; fwG

j gNj=1 = Gauss� Jacobi weights in (2:5:5); (4.1.15)

!j = (1+xj)w
L
j ; fwL

j gNj=1 = (interior) Gauss� Lobatto Jacobi weights in (2:5:14; 2:5:15): (4.1.16)

2. The CFL condition. The CFL condition (4.1.13) places an O(N�2) stability restriction on the
time step �t. Indeed, this stability restriction involves two factors : the eigenvalues associated with
Jacobi equation (2.4.9),

�N�1 � �N�1(�; �) < (N + 1)2; �; ��(�1; 1); (4.1.17)

and the collocated Gauss nodes, which accumulate within O(N�2) neighborhoods near the boundaries,

1

�xmin
� Const �N2: (4.1.18)
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Thus, the CFL condition (4.1.13) boils down to

�t � aN2 � Const�;�: (4.1.19)

(For the practical range of parameters, �; ��[�1
2 ;

1
2 ], we have Const�;� � 1

5�0(�; �)).

3. The choice of a stability norm. The stability statement asserted in theorem (4.1) is formulated
in terms of discrete seminorms, k �k!, which are !-weighted by either (4.1.15) or (4.1.16). We note that
k � k! are in fact well-de�ned norms on the space of �N -polynomials satisfying the vanishing boundary
condition (4.1.9), i.e., corresponding to (4.1.15) or (4.1.16) we have12

kvN (�; t)k! �
Z 1

�1

w(x)
1 + x

1� xv
2
N (x; t)dx; vN (1; t) = 0; (4.1.20)

and in view of (2.5.16),

kvN (�; t)k! =

Z 1

�1

w(x)(1 + x)v2N (x; t)dx; vN (1; t) = 0: (4.1.21)

Moreover, in view of (4.1.18), one may convert the stability statement (4.1.14) into the usual L2-type
stability estimate at the expense of possible algebraic growth which reads

kvN (�; t)kw(x) � Const �N2e��0atkvN (�; 0)kw(x); kvN (�; t)k2w(x) =
Z 1

�1

w(x)v2N (x; t)dx: (4.1.22)

4. Exponential time decay. Let us integrate by parts the di�erential equation (4.1.1) against (1 +
x)u. Thanks to the homogeneous boundary condition (4.1.2) we �nd

d

dt

Z 1

�1

(1 + x)u2(x; t)dx � �a
2

Z 1

�1

(1 + x)u2(x; t)dx; (4.1.23)

and therefore,
ku(�; t)k1+x � e� 1

4 atku(�; 0)k1+x: (4.1.24)

This estimate corresponds to the special case of the stability statement (4.1.14) for the spectral Legendre
tau method (� = � = 0) weighted by (4.1.16). The exponential time decay indicated in (4.1.24), and
more generally in (4.1.14), is due to the special choice of !-weighted stability norms. The weights

fwjgNj=1 in (4.1.15), (4.1.16) involve the essential factors 1 + xj or
1+xj
1�xj

which amplify the in
ow

boundary values in comparison to the out
ow ones. Since in the current homogeneous case, vanishing
in
ow data is propagating into the domain, this results in the exponential time decay indicated in
(4.1.24) and likewise in the stability statement (4.1.14).

5. The in
ow problem. A stability statement similar to theorem 4.1 is valid in the in
ow case where
a < 0. Assume that the CFL condition (4.1.13) holds with �0 = �0(�; �), then (4.1.14) follows with

discrete weights !j =
1�xj
1+xj

wj or !j = (1 � xj)wj .

As we noted before, there are several variants of theorem 4.1; we quote below two of these variants.
6. Stability of the spectral tau method. The spectral Jacobi method (4.1.5) satis�es the stability

estimate (4.1.14) with

!j =
1 + xj
1� xjwj; fwj = wG

j (�; �)gNj=1 = Gauss � Jacobi weights; (4.1.25)

12Here we utilize the fact that the error term in Gauss quadrature (2.5.4) is proportional to an intermediate value of the

2N -th derivative, w(2N) (| e.g. consult (2.5.8)) in the present context the inequality follows, d
(2N)

dx(2N) (
1+x
1�xv

2
N
(x; t)) > 0.
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�0 � �0(�; �) =
8<
:

1
2(1 + �); �+ � � 0;

1
2(1� �); �+ � � 0:

�; ��(�1; 1): (4.1.26)

we proceed as follows. Squaring of (4.1.8) yields

kvN (�; tm+1)k2! = kvN (�; tm)k2!+

+2�t � a < vN (�; tm); v0N (�; tm) > +(�t � a)2kv0N (�; tm)k2! =

= kvN (�; tm)k2! + 2�t � aI + (�t � a)2II;

(4.1.27)

and we turn to estimate the two expressions, I and II, on the right of (4.1.27).
First let us note that since the �N -polynomial vN (x; t

m) vanishes at the in
ow boundary, (4.1.4),
we have

vN (x; t
m) = (1� x)p(x) for some p(x) � pN�1(x)��N�1: (4.1.28)

Also, a straightforward computation shows that�
w(x)

1 + x

1� x
�0

(1 � x)2 = [(� � �+ 2) � (� + �)x]w(x) � 4�0w(x); jxj � 1; (4.1.29)

where �0 = �0(�; �) is given in (4.1.26).
Now, since 1+x

1�xvN (x; t
m)v0N (x; t

m)��2N�1, the Gauss quadrature rule (2.5.4) implies

I �
NX
j=1

wj
1 + xj
1� xj vN (xj; t

m)v0N (xj; t
m) =

Z 1

�1

w(x)
1 + x

1� xvN (x; t
m)v0N (x; t

m)dx:

We integrate by parts the right-hand side of I, substitute vN (x; tm) = (1� x)p(x) from (4.1.28), and in
view of (4.1.29) we obtain

I = �1
2

Z 1

�1

�
w(x)

1 + x

1� x
�0

(1� x)2p2(x)dx � �2�0kpk2w(x): (4.1.30)

Next, let us consider the second expression, II, on the right of (4.1.27). As before, we substitute
vN (x; tn) = (1� x)p(x) from (4.1.28) and obtain

II � kv0N (�; tm)k2! =
NX
j=1

wj
1 + xj
1� xj [(1� xj)p

0(xj)� p(xj)]2 �

leq2
NX
j=1

wj(1� x2j )(p0(xj))2 + 2
NX
j=1

wj
1 + xj
1� xj p

2(xj) = II1 + II2:

To proceed we invoke the following

� Inverse inequality. For all p��N we have

kp0k(1�x2)w(x) �
p
�Nkpkw(x); p��N : (4.1.31)

Here, w(x) is any Jacobi weight, and �N is the corresponding N th eigenvalue.

To verify (4.1.31): one expands p(x) =
PN

k=0 akP
(�;�)
k (x) and p0(x) =

PN
k=0 akP

(�;�)0

k (x); starting

with the left-hand side of (4.1.31) and using the orthogonality of P
(�;�)
k w.r.t. (1 � x2)w(x) we

conclude

(LHS)2 =
NX
k=0

a2kkP (�;�)0

k k2(1�x2)w(x) =
NX
k=0

�ka
2
kkP (�;�)

k k2w(x) � �N (RHS)2;

and the assertion (4.1.31) follows.
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The inverse inequality (4.1.31) preceded by Gauss rule (2.5.4), imply

II1 � 2
NX
j=1

wj(1� x2j)(p0(xj))2 = 2kp0k2(1�x2)w(x) � 2�N�1kpk2w(x); p��N�1;

and this together with the obvious upper bound

II2 � 2
NX
j=1

wj
1 + xj
1� xj p

2(xj) � 4

�xmin
kpk2w(x);

give us

II �
�
2�N�1 +

4

�xmin

�
kpk2w(x): (4.1.32)

Equipped with (4.1.30) and (4.1.32), we return to (4.1.27) to �nd

kvN (�; tm+1)k2! � kvN (�; tm)k2! � 2�t � a
�
2�0 ��t � a

�
�N�1 +

2

�xmin

��
kpk2w(x): (4.1.33)

The CFL condition (4.1.26) implies that the expression in square brackets on the right is nonnegative,�
2�0 ��t � a

�
�N�1 +

2

�xmin

��
� �0 > 0; (4.1.34)

and hence strong stability holds.
In fact, one more application of Gauss quadrature yields

kpk2w(x) =
PN

j=1wjp
2(xj) =

PN
j=1wj

v2N (xj;t
m)

(1�xj)2
�

� PN
j=1wj

1+xj
1�xj

v2N (xj; t
m) = kvN (�; tm)k2!:

(4.1.35)

The inequalities (4.1.35), (4.1.34) together with (4.1.33) imply

kvN (�; tm+1)k2! � (1 � 2�0�t � a)kvN (�; tm)k2!; (4.1.36)

and the result (4.1.14) follows.

Since P
(�;�)0

N+1 is proportional to P
(�+1;�+1)
N , we conclude the stability of the  dospectral method

(4.1.6), with !j =
1+xj
1�xj

wG
j (�+ 1; � + 1) and �0 � �0(�; �) = ��

2 > 0.

As mentioned before, alternative variants of theorem 4.1 are possible. For example, one may employ
a stable norm weighted by !j = (1 + xj)wj (instead of the !j = 1+xj

1�xj
wj weights used before. This

yields the
Stability of the spectral-tau method revisited { The spectral Jacobi tau method (4.1.5). satis�es the

stability estimate (4.1.14) with !j = (1 + xj)w
G
j and

�0 = �0(�; �) =

8<
:
��

2 ; �+ � + 1 � 0;

1
2 (1� �); �+ � + 1 � 0;

�; ��(�1; 0): (4.1.37)

we omit the detailed derivation (| which as before, hinges on the exactness of Gauss quadrature
rule for 2N -polynomials), consult (2.5.4). If we replace the Gauss quadrature rule by the Gauss-Lobatto
one, we are led to stability of the  dospectral method (4.1.6) with !j = (1 + xj)wL

j (�; �)g and with
the same �0 given in (4.1.37).
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4.1.1 Problems with inhomogeneous initial-boundary conditions

We consider the inhomogeneous scalar hyperbolic equation

ut = aux + F (x; t); (x; t)�[�1; 1]� [0;1); a > 0; (4.1.38)

which is augmented with inhomogeneous data prescribed at the in
ow boundary

u(1; t) = g(t); t > 0: (4.1.39)

Using forward Euler time-di�erencing, the spectral approximation of (4.1.38) reads, at the N zeros of
qN (x),

vN (xj ; t
m+1) = vN (xj; t

m) + �t � av0N (xj ; tm) + �tF (xj; t
m); qN (xj) = 0; (4.1.40)

and is augmented with the boundary condition

vN (1; t
m) = g(tm): (4.1.41)

In this section, we study the stability of (4.1.40), (4.1.41) in the two cases of

Spectral Jacobi tau method : qN (x) = P
(�;�)
N (x); �; ��(�1; 1); (4.1.42)

and the closely related

 dospectral Jacobi method : qN (x) = P
(�;�)0

N+1 (x); �; ��(�1; 0): (4.1.43)

To deal with the inhomogeneity of the boundary condition (4.1.41), we consider the �N -polynomial

VN (x; t) = vN (x; t)� qN (x)

qN (1)
g(t): (4.1.44)

If we set

~F (x; t) = F (x; t) + a
q0N (x)

qN (1)
g(t); (4.1.45)

then VN (x; t) satis�es the inhomogeneous equation

VN (xj ; t
m+1) = VN (xj; t

m) + �t � aV 0
N (xj ; t

m) + �t ~F (xj; t
m); (4.1.46)

which is now augmented by the homogeneous boundary condition

VN (1; t
m) = 0: (4.1.47)

theorem 4.1 together with Duhammel's principle provide us with an a priori estimate of kVN (�; t)k!
in terms of the initial and the inhomogeneous data, kVN (�; 0)k! and k ~F (�; t)k!. Namely, if the CFL
condition (4.1.13) holds, then we have

kVN (�; t)k! � e��0atkVN (�; 0)k! +
X

0<tm�t

�t � e��0a(t�tm)k ~F (�; tm)k!: (4.1.48)

Since the discrete norm k � k! is supported at the zeros of qN (x), where VN (xj; t) = vN (xj; t), we
conclude

Theorem 4.2 (Stability with inhomogeneous terms) Consider the spectral approximation (4.1.40),
(4.1.41) associated with the Jacobi tau method (4.1.42) or the  dospectral Jacobi method (4.1.43). There
exists a positive constant �0 = �0(�; �) > 0 independent of N , such that if the following CFL condition
holds (consult (4.1.13)):

�t � a
�
�N�1 +

2

�xmin

�
� �0; (4.1.49)

then the approximation (4.1.40), (4.1.41) satis�es the stability estimate

kvN (�; t)k! � e��0atkvN (�; 0)k! +
X

0<tm�t

�t � e��0a(t�tm)

�
kF (�; tm)k! + a

kq0N (�)k!
jqN(1)j jg(t

m)j
�
: (4.1.50)
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The last theorem provides us with an a priori stability estimate in terms of the initial data, vN (�; 0),
the inhomogeneous data, F (�; t), and the boundary data g(t). The dependence on the boundary data

involves the factor of
kq0N (�)k!
jqN (1)j , which grows linearly with N , so that we end up with the stability

estimate

kvN (�; t)k! � e��0atkvN (�; 0)k! +
X

0<tm�t

�t � e��0a(t�tm) [kF (�; tm)k! + Const �N jg(tm)j] : (4.1.51)

An inequality similar to (4.1.51) is encountered in the stability study of �nite di�erence approximations
to mixed initial-boundary hyperbolic systems. We note in passing that the stability estimate (4.1.51)
together with the usual consistency requirement guarantee the spectrally accurate convergence of the
spectral approximation.

4.2 Multi-level and Runge-Kutta Time Di�erencing

We extend our forward Euler stability result for certain second- and third-order accurate multi-level
and Runge-Kutta time-di�erencing.

To this end, we view our �N -approximate solution at time level t; v(�; t), as an (N + 1)-dimensional
column vector which is uniquely realized at the Gauss collocation nodes (v(x1; t); : : :v(xN ; t); v(1; t)).

The forward Euler time-di�erencing (4.1.8) with homogeneous boundary conditions (4.1.9), reads

v(tm +�t) = [I +�t � aL]v(tm); a > 0; (4.2.1)

where L is an (N + 1) � (N + 1) matrix which accounts for the spatial spectral di�erencing together
with the homogeneous boundary conditions,

Lv(tm) = (v0(x1; t
m); : : : ; v0(xN ; t

m); 0): (4.2.2)

Theorem 4.1 tells us that if the CFL condition (4.1.13) holds, i.e., if

�t � a
�
�N�1 +

2

�xmin

�
� �0; (4.2.3)

then I +�t � aL is bounded in the !-weighted induced operator norm,

kI +�t � aLk! � e��0a��t: (4.2.4)

Let us consider an (s + 2)-level time di�erencing method of the form

v(tm +�t) =
sX

k=0

�k[I + ck�t � aL]v(tm�k); ck � 0; �k � 0;
sX

k=0

�k = 1: (4.2.5)

In this case, v(tm +�t) is given by a convex combination of stable forward Euler di�erencing, and we
conclude

Multi-level time di�erencing. Assume that the following CFL condition holds,

�t � a
�
�N�1 +

2

�xmin

�
� �0(�; �)

ck
; ck � 0; k = 0; 1; : : :; s: (4.2.6)

Then the spectral approximation (4.2.5) is strongly stable, and the following estimate holds

kvN (�; t)k! � e���atkvN (�; 0)k!; �� = min
k

�0
ck

> 0: (4.2.7)

Second and third-order accurate multi-level time di�erencing methods of the positive type (4.2.5)
take the particularly simple form

v(tm +�t) = �[I + c0�t � aL]v(tm) + (1� �)[I + cs�t � aL]v(tm�s); (4.2.8)
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Second-order time di�erencing � c0 cs

4-level method (s = 2) 3
4 2 0

5-level method (s = 3) 8
9

3
2 0

Third-order time di�erencing

5-level method (s = 3) 16
27 3 12

11

6-level method (s = 4) 25
32 2 10

7

7-level method (s = 5) 108
125

5
3

30
17

Table 4.1: Multi-level methods

Second order time di�erencing �2 �3

Two-step modi�ed Euler (s = 2) 1
2 {

Third order time di�erencing

Three-step method (s = 3) 3
4

1
3

Table 4.2: Runge-Kutta methods

with positive coe�cients, �; c0; cs, given in Table 4.1
Similar arguments apply for Runge-Kutta time-di�erencing methods. In this case the resulting

positive type Runge-Kutta methods take the form

v(1)(tm+1) = [I +�t � aL]v(tm); (4.2.9)

v(k)(tm+1) = �kv(t
m) + (1� �k)[I +�taL]v(k�1)(tm+1); k = 2; � � � ; s; (4.2.10)

v(tm+1) = v(s)(tm+1): (4.2.11)

We arrive at
Runge-Kutta time-di�erencing. Assume that the CFL condition (4.1.13) holds. Then the spectral

approximation (4.2.9){(4.2.11) with 0 � �k < 1 is strongly stable and the stability estimate (4.1.14)
holds.
Table 4.2 quotes second and third-order choices of positive-type Runge-Kutta method.

4.3 Scalar Equations with Variable Coe�cients

When dealing with �nite di�erence approximations which are locally supported, i.e., �nite di�erence
schemes whose stencil occupy a �nite number of neighboring grid cells each of which of size �x, then
one encounters the hyperbolic CFL stability restriction

�t

�x
jaj � Const: (4.3.1)

With this in mind, it is tempting to provide a heuristic justi�cation for the stability of spectral
methods, by arguing that a CFL stability restriction similar to (4.3.1) should hold. Namely, when �x
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is replaced by the minimal grid size, �xmin = minj jxj+1 � xj j = O(N�2), then (4.3.1) leads to

�t � jajN2 � Const: (4.3.2)

Although the �nal conclusion is correct (consult (4.1.19)), it is important to realize that this \hand-
waving" argument is not well-founded in the case of spectral methods. Indeed, since the spectral
stencils occupy the whole interval (-1,1), spectral methods do not lend themselves to the stability anal-
ysis of locally supported �nite di�erence approximations. Of course, by the same token, this explains
the existence of unconditionally stable fully implicit (and hence globally supported) �nite di�erence
approximations.

As noted earlier, our stability proof (in Theorem (4.1)) shows that the CFL condition (4.3.2) is
related to the following two points:

#1. The size of the corresponding Sturm-Liouville eigenvalues, �N�1 = O(N2).

#2. The minimal gridsize, 1
�xmin

= O(N2).

The second point seems to support the fact that �xmin plays an essential role in the CFL stability
restriction for the global spectral methods, as predicted by the local heuristic argument outlined above.
To clarify this issue we study in this section the stability of spectral approximations to scalar hyperbolic
equations with variable coe�cients. The principal raison d'être, which motivates our present study,
is to show that our stability analysis in the constant coe�cients case is versatile enough to deal with
certain variable-coe�cient problems.

We now turn to discuss scalar hyperbolic equations with positive variable coe�cients,

ut = a(x)ux; 0 < a(x) < a1; (x; t)�[�1; 1]� [0;1); (4.3.3)

which are augmented with homogeneous conditions at the in
ow boundary

u(1; t) = 0: (4.3.4)

We consider the  dospectral Jacobi method collocated at the N zeros of P
(�;�)0

N+1 (x). Using forward
Euler time- di�erencing, the resulting approximation reads

vN (xj; t
m+1) = vN (xj ; t

m) + �t � a(xj)v0N (xj; tm); P
(�;�)0

N+1 (xj) = 0; (4.3.5)

together with the boundary condition
vN (1; t

m) = 0: (4.3.6)

Arguing along the lines of Theorem (4.1), we have

Theorem 4.3 (Stability of the  dospectral Jacobi method with variable coe�cients) Consider
the  dospectral Jacobi approximation (4.3.5), (4.3.6). There exists a constant �0 � �0(�; �),

�0 � �0(�; �) =
8<
:
��

2 ; �+ � + 1 � 0;

1
2 (1� �); �+ � + 1 � 0;

�; ��(�1; 0); (4.3.7)

such that if the following CFL condition holds:

�t

�
a1�N�1 + 2 max

1�j�N

a(xj)

1� xj

�
� �0; (4.3.8)

then the approximation (4.3.5), (4.3.6) is strongly stable, i.e., there exist discrete weights

!j = (1 + xj)
wj
a(xj)

;
�
wj = wL

j (�; �)
	N
j=1

= Gauss � Lobatto weights; (4.3.9)

such that
kvN (�; t)k! � kvN (�; 0)k!: (4.3.10)
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PROOF. We divide (4.3.5) by
p
a(xj),

1p
a(xj)

vN (xj ; t
m+1) =

1p
a(xj)

vN (xj; t
m) + �t �

q
a(xj) � v0N (x; tm);

and, proceeding as before, we square both sides to obtain

kvN (�; tm+1)k2! = kvN (�; tm)k2!+

+2�t < vN (�; tm); v0N (�; tm) > +(�t)2ka(�)v0N (�; tm)k2!

= kvN (�; tm)k2! + 2�t � I + (�t)2 � II:

(4.3.11)

The �rst expression, I, involves discrete summationof the �2N-polynomialf(x) = (1+x)vN (x; t
m)v0N (x; t

m)
and since f(�1) = 0 (in view of (4.3.6)), the N -nodes Gauss-Lobatto quadrature rule yields

I �
N+1X
j=0

wL
j (1 + xj)vN (xj ; t

m)v0N (xj; t
m) =

Z 1

�1

w(x)(1 + x)vN (x; t
m)v0N (x; t

m)dx:

We integrate by parts the right-hand side of I, substitute vN (x; t
m) = (1�x)p(x) with p � pN�1��N�1

and a straightforward integration by parts yields

I � �2�0kpk2(1�x)w(x): (4.3.12)

The second expression, II, gives us

II =
PN

j=1wja(xj)(1 + xj)[(1� xj)p0(xj)� p(xj)]2 �

� 2a1
PN

j=1wj(1� x2j )(1� xj)(p0(xj))2 + 2
PN

j=1wja(xj)(1 + xj)p
2(xj)

= 2a1II1 + 2 � II2:

(4.3.13)

The inverse inequality (4.1.31) with weight !(x) = (1� x)w(x) implies

II1 = kp0k2(1�x2)(1�x)w(x) � �N�1kpk2(1�x)w(x); �N�1 = �N�1(�+ 1; �)

and the expression II2 does not exceed

II2 � max
1�j�N

[a(xj)
1 + xj
1� xj ] �

N+1X
j=0

wj(1� xj)p2(xj) � 2 � max
1�j�N

a(xj)

1� xj � kpk
2
(1�x)w(x):

Consequently, we have

II � 2

�
a1�N�1 + 2 � max

1�j�N

a(xj)

1� xj

�
kpk2(1�x)w(x): (4.3.14)

Equipped with (4.3.12) and (6.19) we return to (6.16) to �nd

kvN (�; tm+1)k2! � kvN (�; tm)k2! � 2�t

�
2�0 ��t

�
a1�N�1 + 2 max

1�j�N

a(xj)

1� xj

��
kpk2(1�x)w(x); (4.3.15)

and (4.3.10) follows in view of the CFL condition (6.14b).

Notes.

1. The case a(xj) � a = Const > 0 corresponds to one variant of the stability statement of theorem
4.1. Similar stability statements with the appropriate weights which correspond to various alternatives

c
1991,1992,1993,1994 Eitan Tadmor September 1996



82 THE CHEBYSHEV METHOD

of theorem 4.1, namely, with !j =
1+xj
1�xj

wGj
a(xj )

, and !j = (1+xj)
wGj
a(xj)

, hold. These statements cover the

stability of the corresponding spectral and  dospectral Jacobi approximationswith variable coe�cients.

2. We should highlight the fact that the stability assertion stated in theorem 4.3 depends solely on
the uniform bound of a(xj) but otherwise is independent of the smoothness of a(x).

3. The proof of theorem 4.3 applies mutatis mutandis to the case of variable coe�cients with
a = a(x; t). If a(xj; t) are C

1-functions in the time variable, then (4.3.15) is replaced by

kN (�; tm+1)k!m+1 � (1 + Const:�t)kv(�; tm)k!m ; !mj = (1 + xj)
wL
j

a(xj; tm)
;

and stability follows.

4. We conclude by noting that the CFL condition (4.3.8) depends on the quantity max1�j�N
a(xj)
1�xj

,

rather than the minimal grid size, 1
�xmin

, as in the constant-coe�cient case (compare (4.1.13)). This

ampli�es our introductory remarks at the beginning of this section, which claim that the O(N�2)
stability restriction is essentially due to the size of the Sturm-Liouville eigenvalues, �N�1 = O(N2).
Indeed, the other portion of the CFL condition, requiring

�t � 2 max
1�j�N

a(xj)

1� xj � �0; (4.3.16)

guarantees the resolution of waves entering through the in
ow boundary x = 1. In the constant-
coe�cient case this resolution requires time steps �t of size 1

�xmin
. However, when the in
ow boundary

is almost characteristic, i.e., when a(1) � 0, then the CFL condition is essentially independent of �xmin,
for (4.3.16) boils down to �t � 2a0(1) � �0. In purely out
ow cases the time step is independent of any
resolution requirement at the boundaries, and we are left with the CFL condition restricted solely by
the size of the corresponding SL eigenvalues.

We close this section with the particular example

ut = �xux; (x; t)�[�1; 1]� [0;1):

Observe that no augmenting boundary conditions are required, since both boundaries, x = �1, are
out
ow ones. Consequently, the various forward Euler �N -spectral approximations in this case amount
to

vN (x; t
m +�t) = vN (x; t

m) ��t � xv0N (x; tm): (4.3.17)

The CFL stability restriction in this case is related to the O(N2)-size of the Sturm-Liouville eigenvalues
(point #1 above), but otherwise it is independent of the minimal grid size mentioned in point #2 above.
We have

Out
ow stability. Assume that the following CFL condition holds:

�t � �N � 1; �N = N (N + 1):

Then the spectral approximation (4.3.17) is stable, and the following estimate is ful�lled:

kvN (�; t)k1�x2 � etkvN (�; 0)k1�x2:
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