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Multicrystalline (MC) silicon solar cells are manufactured from bread-loaf sized

ingots of solar-grade silicon. These ingots are sliced by a multi-wire saw mechanism

consisting of a single thin and extremely long stainless steel wire wound on constant-

pitch wire grooves. The wire is wound over each groove to create a web consisting

of 500-700 parallel wires. The wire is kept at a constant tension using feedback

control and the wire speeds typically are 10-15 m/s. A high speed nozzle directs an

aqueous slurry of oil and SiC particles to the top of the wire array and the crystal

silicon ingot is pushed upwards against the wire array during the cut. In a typical

wire saw system, MC ingots are sliced with an area of 100x100 mm2 and the latest

wire saw systems can achieve thicknesses down to 300 µm.

What makes this a challenging simulation problem is the wide range of timescales

that characterize the overall cutting process. The slowest dynamics are associated

with the evolution of the cut, which is described by a spatially dependent differen-

tial equation in time and in which the cutting rate is modeled much in the same

manner as the Chemical Mechanical Planarization (CMP) process. Cutting rate



is a direct function of the distance between the wire and ingot surface. Because

the wire dynamics are orders of magnitude faster than the cut evolution, the wire

deflection is modeled by a static circular beam. The goal of this modeling work is

to understand the physical mechanisms that limit how thin the wafers can be cut

and to determine the sensitivity of cutting time and cutting rate based on process

operating conditions.
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Chapter 1

1 Introduction

1.1 Motivation

Photovoltaic (PV) materials and module processing industry has been a large

focus for research for the last two decades because of the obvious desire for alterna-

tive energy. The projected total energy consumption in the year 2050 is projected

to be 28 TW. Energy in the form of sunlight provides 14 TW in an hour so there is

much to gain by converting this abundant source into a consumable source of energy.

However, in 2007 it cost 30 cents kWh−1 to produce energy using PV technology

and when compared with the 5-8 cents kWh−1 cost from conventional resources

(coal, fossil fuels, natural gas) , economic hurdles still exist for commercial PV im-

plementation. [1]

As with transistors and microprocessors, silicon is the main semiconductor ma-

terial in PV cells. Purified polysilicon is melted and crystallized into cylindrical

or rectangular ingots via either the Chocharlaski technique or the (MC) multi-

crystalline technique. Figure 1 shows a typical MC ingot to be wafered. The square

MC silicon wafers comprise 82 % of PV modules. [2,3] . The cost of PV modules

and cells is proportional to the cost of solar grade crystalline polysilicon. [2] In 2003,

2004, and 2005 polysilicon costs were $24 kg−1, $32 kg−1, and $45 kg−1, respectively.

[1] Due to this high demand and price, minimizing silicon lost to wafering and re-

ducing the thickness of the wafer is imperative.
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Figure 1: A typical MC Ingot [4] NREL

Figure 2: An Ingot after being wafered by a wire saw. [4] NREL
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Figure 3: An illustration of a wire saw setup from Möller et.al. [2]

The ingot is wafered by a multi-wire saw and fig. 2 exhibits the ingot after

being sawed. A typical wire saw setup is depicted in fig 3. The multi-wire saw

mechanism consists of a single thin stainless steel wire fed from a supply spool and

wound over constant-pitch wire grooves of a spindle. The wire is wound over each

groove providing a wire web consisting of 500-700 parallel wires. The wire is kept at

a constant tension of 20-50 N via feedback control and wire speed is maintained at

10-15 m/s [5,6]. A high speed nozzle feeds a slurry of oil and SiC particle abrasives

onto the wire array and the crystal silicon ingot is pushed up against at a constant

feed force. SiC abrasives are trapped against the wire and removes material from the
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normal force applied and the relative velocity. The role of the fluid is to transport

material removed, to reduce friction, and to provide cooling.[5,6] The production of

wafered silicon comprises between 40-60 % of the total solar cell production cost.

The actual sawing technique comprises 30% of the wafer production. [7] SiC is a very

expensive material that constitutes 25 % of the slicing cost [5] and the recovery of

used SiC has not yet been executed efficiently. The wire saw technique has achieved

wafers with thickness of 300 µm and with the goal to reduce thickness to 100 µm.

1.2 Past Work

Recent research on the wire saw has just started in the last decade. Fluid dy-

namics and the particle size distribution in the cutting channel has been shown to

predict the cutting mode. Work done by Bhagavat et. al and Möller et. al have

used lubrication theory to calculate the film thickness and the existing hydrody-

namic pressure to subsequently calculate a removal rate. [5-7] By determining the

scale of the film thickness either a free abrasive cutting or a solid-semi contact mode

has been predicted. Li et. al have developed a model cutting model based on a

conical abrasive and termed their material removal as a ”rolling and indenting re-

moval”. [8] However none of these models looked at the transient behavior of the

cutting rate nor have they captured the slow dynamics of the ingot profile evolution.

Also studies have been done to describe defects of the wafer as a result of wire

saw wafering. Thermal warping of the wafer from the frictional heat has been mod-

eled and is in good agreement with experimental studies. [9,10] In addition, hard

inclusion defects in the silicon ingot have recently been investigated and shown to

adversely effect the sawing process. [11] These agglomerates of hard particles are

regions where the wire saw can not cut and possibly break the wire. Lastly, the

common wavy surface finish that characterizes wire saw cuts has yet to be predicted

effectively. [12]
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1.3 Goals

To the knowledge of this researcher, only one other American group (SUNY

Stony Brook) has developed wire saw models and experiments. Predominantly all

wire saw research is based in Asia and Europe. One long-term goal is to develop a

series of models and experiments to predict surface quality and determine factors to

reduce wafer thickness.

Our goal in this project is to develop a novel model that couples the slow

dynamics of the ingot cutting evolution and the fast dynamics of the cutting. Sub-

sequently, cutting rates along the wire length, cutting time, and the sensitivity of

these variables to process parameters will be determined.
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Chapter 2

2 System Modeling

2.1 Base Case

The base case wire saw system, which is typical of wire saw applications is

described as follows. From fig. 4, MC ingots are sliced with an area of 100 x 100

mm2 and the spool to spool length, L, is typically 300 mm [5,6]. The latest wire

saw system can achieve thickness down to 300 µm with a kerf of 200 µm utilizing a

wire radius, R, of 80 µm. A constant tension, H, 20 N with a silicon ingot loading,

F=1.7 N per wire are all values used in industry [6]. The wire is stainless steel

with an elastic modulus, E=195 GPa and translating speed, U=10 m/s. Table 1

summarizes the parameters used in the base case.

Table 1: Base Case Parameters

Parameter value

H 20N
U 10m/s
E 195GPa
R 80µm
F 1.7N/wire
A 100 x 100 mm 2

L 300mm

2.2 Modeling Equations

The system is considered multiscaled because of the multiple time scales char-

acterizing the cutting process. First, the evolution of the ingot profile is slowly

changing, with a characteristic time on the order of hours. [13] The cutting process

is modeled by a Chemical Mechanical Planarization (CMP) approach which is often
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Figure 4: An illustration of kerf, wafer thickness, and an isolation of a single wire
saw system

applied in microelectronics polishing. The second time scale is based on the wire

dynamics. The wire travels at a speed between 10-15 m/s in a cutting path of 0.1

m and this gives a residence time of about 0.01s. This suggests that the transport

and cutting of silicon material is at a time scale 5 orders of magnitude faster than

the ingot profile evolution. The wire dynamics, transport and cutting of silicon can

be inferred to be at a pseudo-steady state relative to the ingot profile evolution.

The cutting rate is a direct function of distance between the wire and the ingot

surface. In this work, the mechanical behavior of the wire is described by a static

circular beam. Coupling the cut evolution, wire mechanics, and silicon cutting mod-

els will give the dynamic ingot profile, cutting rate, and parameter sensitivity on

cutting rate and time required to cut one square ingot.

2.3 Wire Deflection

The wire is modeled as a static circular beam subjected to a force in the axial

direction and as well as a distributed load in the transverse direction; a differential

element of such a wire is shown in fig. 5. Whenever a distributed transverse force,

q, acts upon a body, a shearing force perpendicular to the axis of the body, V , and
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resisting bending moments, M , in the beam are produced. This creates a deflection

that is denoted by y. The axial load or tension, H, causes the body to be in

tension.[14] Noting that the stress-strain relationship is linear and the applied stress

is below the elastic limit the deflections obey Hooke’s law.

From fig. 5, solving for the equilibrium equations for the vertical forces yields:

∑
Fy = q(x)∆x− V + (V + ∆V ) = 0

∆V

∆x
= −q(x).

Taking the limit as ∆x approaches zero yields:

dV

dx
= −q(x). (1)

Now taking the sum of the moments around point A yields

Figure 5: A differential wire element

∑
MA = M − (M + ∆M) + q(x)∆x

∆x

2
+ V∆x+H

∆y

∆x
∆x = 0
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Note that the axial tension has been displaced a distance of (∆y/∆x)∆x with respect

to the point A and also that on this discrete element the applied load will be taken

at the center of the element. The following can be deduced after dividing by ∆x

−∆M

∆x
+H

∆y

∆x
= −q(x)

∆x

2
− V.

Taking the limit as ∆x approaches zero yields:

−dM
dx

+H
dy

dx
= −V. (2)

Differentiating (2) with respect to x with (1) gives

−d
2M

dx2
+H

d2y

dx2
= q(x). (3)

From Euler-Bernoulli beam theory, the moment is equal to [14]

M = EI
d2y

dx2
. (4)

where E is Young’s Modulus and I is the second moment of the area of the cross

section. The second moment of the area of circular beams is calculated as

I = π
R4

4
. (5)

Then therefore one can show

−EI d
4y

dx4
+H

d2y

dx2
= q(x). (6)
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This is a fourth order ODE with the following required boundary conditions

y(0) = y(L) =
dy

dx
(0) =

dy

dx
(L) = 0. (7)

At each end of the spool the deflection is zero and the wire fixed and flat. Therefore

the slope is equal to zero as well.

2.4 Material Removal

Two modes of contact exist in the channel between the SiC abrasives, wire, and

the crystal. The two contact modes are the hydrodynamic contact mode and the

solid-solid contact mode. This is depicted in fig. 6. In the hydrodynamic mode,

free particles contact the substrate surface randomly and exert a force from the

hydrodynamic pressure. This type of material removal is termed three-body abra-

sion. In solid-solid contact, the abrasive particle is embedded onto the wire and

slides along the substrate surface and creates a ploughing effect. With the latter

mode being the most substantial mode of material removed.[4] Another mode is the

rolling-indenting removal as proposed by Li, et. al where particles rotate and chip

away silicon [7].

Mean particle size of the abrasives range from 2-32 µ m [12] and the average

film thickness as predicted by Möller is 40 µ m. Because the particle size scales as

the film thickness, Möller inferred that the majority of the material removal was in

the solid-solid contact. However, Bhagavat et. al. has proposed that the removal is

a combination of the three-body removal, rolling-indentation model and solid-solid

contact and was calculated using a stochastic simulation. A common characteristic

between the models was as the film thickness decreased solid-solid abrasion mode

increased and material removed increased. [4-6] The complexity of the various cut-

ting modes gives rise to a more simplified modeling approach.
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Figure 6: Illustration of the two major types of wear in the channel

Our material removal model can be derived from a Chemical Mechanical

Planarization (CMP) approach. CMP is a process used in the semiconductor manu-

facturing industry to polish wafers to create flat mirror finishes for optical materials.

The Preston Equation is the most frequently referenced expression for polish rate in

CMP. It is based on experimental findings[15-17]. However it was later developed

analytically by Brown et. al for purely mechanical wear [17]. The Preston Equation

states

∆w

∆t
∝ P

∆s

∆t
(8)

where w is the height of the surface, t is the time, P is the pressure onto the ingot,

and ∆s/∆t is the relative velocity between the wire and the ingot. From previous

work that has been done in wire saw applications, the material removal rate is a

direct function of the film thickness. As the film is decreased the amount of active

particles involved in solid-solid abrasion increases. Therefore the distributed load

(N/m), Fp, transmitted from the wire to the particles along the length wire is a

direct function of the film thickness. If we assume the channel as half a cylinder,
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the pressure can be formulated as

P =
Fp

1/2channelcircumference
=

2Fp
πDk

where Dk is the width of the kerf or radius of the channel. The term ∆s/∆t is taken

as the mean wire velocity, U . With these definitions, the material removal can be

formulated as

∆w

∆t
= Kp

2Fp
πDk

U (9)

where Kp is the Preston coefficient which is empirical but for pure solid-solid me-

chanical abrasion Brown et. al [17] has proven to be analytically equal to

Kp =
1

2Esubstrate
(10)

The term, Esubstrate is the elastic modulus of the substrate. This expression repre-

sents the rate at which the height of the ingot is being removed.

To evaluate the term Fp, the distributed force on top of the SiC abrasives, the

spatially changing film thickness and its role in determining the magnitude of the

force placed on the SiC particles must be examined. As the slurry film thickness

increases the force exerted on particles will decay. The distributed load is also a

function of the input load, F , placed on the ingot and therefore Fp can be formulated

as

Fp = F
e−h(x,t)∫ 0.3

0 e−h(x,t)dx
(11)

Consider fig. 7, an illustration of the channel, where function y(x,t) is the deflection

of the wire and the function w(x,t) is the profile of the ingot. Defining a new function

h(x, t) = y(x, t)− w(x, t) (12)
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This new function h will be defined as the film thickness of the channel.

Figure 7: The film thickness

2.5 Preston Coefficient

From a detailed scaling analysis of the material removal model, the order of

the Preston coefficient can be determined and then compared to the order of the

analytically proven coefficient from Brown et. al. First the time required to wafer

a 100 x 100 mm2 block ranges from 4 to 6 hrs [13] and therefore the characteristic

time of the process is hours. As stated before the velocity ranges from 10-15 m/s

and the order of the velocity is 10. The channel circumference is on order of the

kerf which is order of 10−4. The amount, w, cut scales like the total height of the

ingot which is on order of 10−1. Lastly, the distributed load scales like a constant

distributed uniform load over the cutting length of 0.1 m and this is on order of 10

N/m. From the scaling analysis,

∆w

∆t
= Kp

2Fp
πDk

U

Kp ≈
w̃Dk

t̃Ũ F̃p

13



where w̃,t̃, Ũ , and F̃p are all the scaled values. Then the order of the Preston

coefficient is

Kp ≈
10−110−4

360000
≈ 10−11

Now the analytic Kp as predicted by Brown et. al with the elastic modulus of

190 GPa[18]. From eq. 10, the predicted Preston Coefficient is 2.63x10−12. The

constant, as predicted by the scaling analysis, is an order faster than the analytic

constant.

2.6 Initial Wire Deflection

Initially when the ingot is pushed upon the wire web, much of the distributed

load is placed at the ingot edges as the wire is wrapped around the ingot. Figure 8

illustrates the load under these conditions and due to symmetry half of the load is

at each edge. An analytical solution is determined first and then compared to the

solution determined numerically.

Figure 8: Inital forces on the wire

First the necessary force and moment reactions must be determined. Then shear

and moment diagrams will be constructed and lastly based on the data gathered,

appropriate boundary conditions will be applied to solve the wire BVP. Consider fig.

9 the system has force and moment reactions at the spool ends. Due to symmetry

of the point loads at B and C, the force reactions and moment reactions to keep

the system static are equivalent in magnitude. The system will be broken into three

14



segments AB, BC, and CD. Force and moment balances will be determined.

Figure 9: System after reactions

2.6.1 Segment AB

In the first segment consider any point in 0 ≤ x ≤ 0.1. One must then ask the

question: What are the necessary internal forces to keep the segment of the wire in

equilibrium? Figure 10 shows the segment under question and notice that an upward

internal force at A* must exist for the system to be equilibrium. Throughout this

Figure 10: Segment AB

segment, the shear force is constant. By convention, an upward internal force, V ,

acting on a isolated right segment of a beam or a downward force acting on a left

segment of a beam corresponds to positive shear. The corresponding shear diagram

15



shows this constant positive shear in fig 11. The sum of the moments around point

A* gives:

∑
MA∗ =

F

2
0.1− F

2
x.

Now shear and moment diagrams can be determined. Two conclusions can be made

Figure 11: Shear diagram for segment AB
Figure 12: Moment Diagram for segment
AB

from this analysis. First the moment at 0.1 is equal to zero and the shear force is

equal to +F/2. Now consider eq. 6 but the homogeneous version

−EI d
4y

dx4
+H

d2y

dx2
= 0.

This gives the general solution

y = A1 + A2x+ A3e
λx + A4e

−λx (13)

where λ =
√
H/EI.It is subjected to boundary conditions of the slope equal to

zero and the deflection equal to zero at x = 0. Now introducing the two pieces of

16



information from the analysis gives rise to two new boundary conditions at x = 0.1.

First the moment is equal to zero and using eq.4 one can say

d2y

dx2
(0.1) = 0.

Lastly, differentiating the homogeneous version of eq. 6 gives a shear force balance

throughout the segment. At x=0.1, the shear force is equal to +F/2 and this is the

other boundary condition,

−EI d
3y

dx3
(0.1) +H

dy

dx
(0.1) = F/2.

2.6.2 Segment CD

A similar analysis can be now be done for the third segment shown in fig 13.

Consider any point in 0.2 ≤ x ≤ 0.3 and solving for the internal shear force at D*

gives F/2. By convention, an downward internal force, V , acting on a isolated right

segment of a beam or a upward force acting on a left segment of a beam corresponds

to negative shear. Similarly the shear force is constant throughout this segment and

Figure 13: Segment CD
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Figure 14: Shear diagram for segment CD
Figure 15: Moment diagram for segment
CD

it corresponds to -F/2. Taking the sum of moments around point D* gives

∑
MD∗ =

F

2
0.1− F

2
(0.3− x)

Shear and moment diagrams diagrams can then be determined. From fig. 14 and

15, the shear force at x=0.2 is equal to -F/2 and the moment is equal to zero at

x=0.2. Once again if we solve for the homogeneous BVP throughout this segment

another solution is determined with four new unknown constants

y = C1 + C2x+ C3e
λx + C4e

−λx. (14)

Using the boundary conditions that the deflection and slope are equivalently equal

to zero at x=0.3 we can solve for two constants. Now the last two constants come

from the new information from the preceding analysis, the moment is equal to zero

at x=0.2 and the shear is equal to -F/2 at x=0.2. Like in the preceding analysis,

the second derivative is equal to zero and forming a shear balance gives these two

18



conditions

−EI d
3y

dx3
(0.2) +H

dy

dx
(0.2) = −F/2

d2y

dx2
(0.2) = 0.

2.6.3 Segment BC

Using the same ODE, a third solution can be defined in 0.2 < x < 0.3

y = B1 +B2x+B3e
λx +B4e

−λx.

The four boundary conditions to satisfy this problem come from continuity relation-

ships to the outer segment solutions. Therefore the following boundary conditions

can be made:

y(0.1) = yAB;
dy

dx
(0.1) = θAB (15)

y(0.2) = yCD;
dy

dx
(0.2) = θCD (16)

The first set of boundary conditions simply state that the deflection at x=0.1 is

equal to the deflection computed by eq. 13. Similarly the slope at point x=0.1 is

equal to the slope computed by eq. 13. An identical treatment is used for the point

x=0.2 and eq. 14. Figure 16 shows the composite analytical solution for the initial

deflection.

2.7 Numerical Solution

The numerical solution for this fourth order BVP is found by using a collocation

spectral method to discretize the differential equation. These collocation points are

the zeros of an interpolating polynomial. Figure 17 gives an example of a one-

dimensional discretized collocation or quadrature grid. The solution is found by
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Figure 16: Analytical Solution for the Initial Deflected Wire

driving the residuals of the BVP at the collocation points to zero using a Newton-

Raphson technique to solve the discretized equations.

Figure 17: 1-D quadrature grid

Objected-oriented programming concepts were employed via Matlab to significantly

reduce the complexity of these numerical analysis methods.[18]

Now consider again the problem of the initial deflection of the wire. Initially The

exerted force is over an infinitesimal amount of area and therefore can be represented

by the Dirac delta function. The Dirac delta function is a function often used to
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model forces applied over a short amount of time or area. An application of this

function is the striking of a spring mass system suddenly with a hammer. The

properties of this function are:

δ (x− a) =


∞, if x = a

0, if x 6= a
(17)

∫ ∞
−∞

δ(x− a)dx = 1 (18)

Therefore the beam equation can be formulated as:

−EI d
4y

dx4
+H

d2y

dx2
= −q(x) = −F

2
[δ(x− 0.1) + δ(x− 0.2)] (19)

The dirac delta function can be approximated by using the triangle in fig. 18

with an area of F/2. The accuracy of this approximation is increased by making

the triangle infinitesimally thin. To employ the problem numerically, two isosceles

triangles are produced as in fig. 18 each with an area of F/2.

A numerical solution is calculated with the given expression for the distributed

Figure 18: Initial distributed load
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Figure 19: Numerical and analytical solution for initial deflected wire

load and the four original boundary conditions. Figure 19 shows a comparison of

the numerical and analytical solution of the wire deflection. The numerical solution

is almost an identical match to the analytical composite solutions because the dis-

crepancy between the numerical and analytical solution is negligible. This validates

future dynamic solutions.

The error of the analytical and numerical solution was computed as

error =

√∫ 0.3

0
(Analytical −Numerical)2dx (20)

Figure 20 shows the norm of the error versus the number of collocation points is

increased. The error analysis shows that the order of the error with even 30 collo-

cation points has an error on the order of 10−5. The optimal amount of collocation

steps was found to be 100 points and points above did not show any significant

increase in accuracy. The numerical techniques in this analysis validates the full

simulation of ingot cutting
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Figure 20: The norm of the error versus the number of collocation points

2.8 Numerical Simulation

Initially the flat ingot is pushed against the wire to create the deflection as

discussed in the previous section. The edges are removed and this is determined

from eq. 9. The ingot is always being pushed against the wire web and therefore

the distance between the ingot and wire has to be minimized with the restriction that

the film thickness is at least the average size of SiC abrasive. Now since the edges

have been removed the distributed load is now dependent on the film thickness and

eq. 11 is utilized. A new cutting rate is then determined along with a new deflection

of the wire and this algorithm is repeated until the amount removed is 0.1 m.

2.8.1 Ingot Profile Evolution

The slow evolution of the ingot profile, w(x, t), can be determined from a forward

Euler finite difference scheme

f(t+ ∆t, x)− f(t, x)

∆t
≈ f ′(t, x). (21)
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Equation 21 can now be rewritten in terms of the ingot profile, w(x,t), and eq. 9 as:

wn+1(t, x) = wn(t, x) +
∆w

∆t
∆t

The time step is 360s.

At each time step a new h(t, x) is calculated and as well as Fp. The dynamics

of the wire, ingot surface, film thickness, and force on a particle are recorded for

subsequent analysis. Time required to produce a cut as well as a sensitivity analysis

can be applied with parameters such as wire tension, normal ingot force and wire

velocity.
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Chapter 3

3 Results and Discussion

The base case system as described in table 1 will be first be simulated by the

given model. The ingot profile evolution will be produced as well as the evolution

of the cutting rate. Then a sensitivity analysis with respect to the normal force will

be employed to the spatially varying cutting rate. In the next two cases, the wire

tension and wire mean velocity will be increased. For each case, the ingot profile,

cutting rate, and sensitivity analysis will be simulated at a given time during the

cut and compared to the base case. Lastly, the relative cutting times for each case

will be produced.

3.1 Base Case

With the values listed in table 1 as the base case situation, numerical results were

produced. The ingot profile evolution shows the dynamic nature of the ingot surface.

Using a time step of 360s, the time to cut the 100 x 100 mm2 was approximately

4.3 hrs which is typical for wire saw operations.

25



Figure 21: Dynamic ingot profile

Figure 22: Cutting rate along the cutting length of the wire for t=1 hr and t=4 hr
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For this particular case, the ingot shape never reaches a steady state and this is

due to the slow time scale of the ingot profile evolution. In fig. 21 at each time step

the profiles suggest that the ingot surface is approaching the shape of the deflected

wire.

Figure 22 considers the cutting rate at t=1hr and t=4hr. At the ends of the

ingot the cutting rate is larger and relatively smaller towards the center of the ingot

at earlier times. When compared to the cutting rate at t=4hr, the cutting rate

towards the end of the ingot are decreased and towards the center the cutting rate

has increased. The cutting rate is approaching a constant spatially uniform cutting

rate as time passes.

The sensitivity analysis of the cutting rate was based on the upward normal

force on the ingot, F. The theory of sensitivity analysis is based on the following

[18]. Given a set of linear or nonlinear equations and a single parameter p:

r(z, p) = 0 at z = z̃

The set of equations, r, are the residuals that are forced to zero at the collocation

points using a Newton-Raphson technique. The solution z̃(p̃) for p = p̃. The

sensitivity is defined as:

S(p̃) =
dz̃

dp
|p̃

This is the rate of change of the state variable with respect to the parameter

p. In fig. 23 the small perturbations of the normal force applied affects the cutting

rate greatest at the ends at t=1 hrs and decreases towards the center of the ingot

profile. As time passes the sensitivity of the cutting rate becomes uniform.
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Figure 23: Sensitivity of cutting rate with respect to the normal force along the
cutting length of the wire for t=1 hr and t=4 hr

3.2 Increased Tension

One real-time parameter that is controlled and can be adjusted is the internal

tension of the wire. In this system the tension of the wire was adjusted to 28 N

which is a 40 percent increase. Figure 24 depicts the final deflection of the wire for

the base case and the increased tension case. With this increased tension a flatter

wire deflection is produced. The ingot profile midway through the base case cut is

given in fig. 25.

With the given profile, instantaneous cutting rate values were produced and

compared to the base case values at the identical time of 2hrs. From the predicted

model, the increased tension suggests a more uniform cutting rate spatially. At the

ends of the ingot, the increased tension system has a lower cutting rate relative to

the base case. Also towards the center of the ingot, the increased tensioned system

has an increased cutting rate relative to the base case. However, the increase does

not affect the time required to cut through the square ingot. Like in the base case

the time required to cut was 4.3 hrs.
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Figure 24: Deflection of wire for H=28N and H=20N

Figure 25: Ingot Profile for Increased Tension Case for t=2hr
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Figure 26: Cutting rate comparison for Increased Tension and Base Case for t=2hr

Figure 27: Sensitvity Analysis Comparison for Increased Tension and Base Case for
t=2hr

30



A normal force sensitivity analysis was also determined for the increased ten-

sioned case and compared with the base case. This is depicted in fig. 27. Small

perturbations of the normal force remove more material at localized points at the

ends of the ingot and remove less material at points towards the center of the ingot.

This suggests having a higher tensioned system can provide a more uniform cut

and an even distribution of the force applied. This prevents the possibility of wire

breakage at local high pressured points.

3.3 Increased Velocity

Wire velocity is typically maintained between 10-15 m/s. With an increase in

velocity of 20 percent, the time required to cut through the block was 3.6 hrs. Figure

28 illustrates the profile of the ingot at 2 hrs for the base case and the increased

velocity case. The increased velocity case depicts an accelerated profile because

the time scale of the ingot profile evolution has been lowered with this increase

of velocity. In addition fig. 29 shows the increased cutting rate at t=2hr. When

Figure 28: Comparison of Ingot Profile for Increased Velocity and Base Case for
t=2hr

compared to the base case cutting rate, the increased velocity causes an average
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increase of 20 percent in the cutting rate.

Figure 29: Cutting Rate for Increased Velocity Case

Table 2: Cutting Times

Case Time Required

Base Case 4.3 hr
Increased H 4.3 hr
Increased U 3.6 hr

From these three cases, the cutting rates along the wire were determined and

as well as the sensitivity to the normal force. During the wire saw process careful

control of the cutting rate along the wire length is one of the factors that determine

the quality of the wafer surface. In cases where film thickness is of the same order

as the abrasive size, ploughing of the material by the trapped abrasive dominates.

In this mode of removal, silicon is being chipped away and is susceptible to cracks.

Uniformity of the cutting rate along the wire is ideal to avoid localized regions of

relative high removal rate which can lower the surface quality of the final wafer.

Surface quality refers to non-uniform surface height and formation of saw ridges.

With our analysis, a higher tension system is ideal since an increase in the wire ten-

sion promotes uniform cutting rates along the cutting length. Also lower operating
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times are desired to increase throughput, lower the consumption of SiC slurry, and

decrease electrical usage. A summary of cutting times is listed in table 2. Increasing

the velocity from 10 m/s to 12 m/s has lowered the time to slice one ingot by 20

percent.
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Chapter 4

4 Conclusions and Future Work

In this project, the wire saw system was developed integrating the basic physics

of the wire through the fourth order static beam equation and a CMP model for ma-

terial removal. A base case system was established typical of industry applications.

In this starting analysis of the silicon slicing operation, a model was established

describing the removal rates as a function of time and the cutting length. Using

a simplified approach to describe the relationship between film thickness and the

distributed load on the abrasive particles, realistic results were achieved in the sim-

ulation. From this model, the ingot profile evolution was characterized by a slow

time scale on the order of hours. The main finding in this study was that relevant

parameters in the system like wire tension and wire velocity can be manipulated to

achieve uniform cutting rates as well as a decreased cut time. Controlling the cut

rates in the wire system is paramount in the wire saw application for obtaining good

wafer quality and short cut times.

Extensive work in this area is required. The analysis in this project is prelim-

inary and numerous issues need to be answered still. The following issues need to

be addressed

• Experimental studies need to be addressed to verify the limits of parameters

like wire tension and velocity and as well as to verify the findings found in this

project.

• A vibrational analysis of the wire must be determined and its effect on the

surface quality on the finished wafer.

• A three-dimensional model of the cutting channel needs to be implemented
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to study the drag and normal force at the side edges. Then investigate the

possibility of an asymmetric hydrodynamic pressure distribution along the

cutting length.

• Following in line with the last statement, a model describing the stochastic

two-body abrasion for particles that are free floating. These free floating

particles remove material by the hydrodynamic pressure applied to it.

• Lastly model regions of the ingot where ingot defects exist. This introduces

the possibility of wire breakage and regions of lowered material removal.
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