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Abstract

Consider the stationary process y, = f cos(wot + ¢) + ¢, and a parametric filter £,, and
let p(a) be the first-order autocorrelation of the filtered process {L£,(y).}. Under a certain
assumption on the filtered noise spectrum, p(a) is contractive at coswy. It is shown that the
sample estimate of p(a), denoted by p,(a) and obtained from a finite sample of length n, has
with probability one a fixed point @&, in a neighborhood of cosw,, and that the sequence of
fixed points {é&,} converges with probability one to cosw;. The proof is based on a general
result regarding the uniform consistency of the sample autocorrelation. The developed theory
is illustrated by two numerical examples pertaining to two different parametric time-invariant

filters.

Abbreviated Title: “CM Method for Frequency Estimation”

Key words and phrases: Frequency estimation, iterative filtering, consistency, fixed-point

iteration, secant method, parametric filter, spectrum analysis.






1 Introduction

The classical problem of frequency estimation is of interest in a wide range of engineering and
scientific applications. The problem is well-formulated in the signal processing and statistics
literature, and has been studied by meany researchers. Recently a general iterative filtering
approach, called the contraction mapping (CM) method, was suggested by He and Kedem [6],
Yakowitz [18], and Kedem [10] for estimating the frequency of a single sinusoid in additive noise

from a finite sample {yo,¥1,---,¥Yn_1} Obtained from a process of the form
Y = PBeos(wot + @) + €. (1.1)

Here 8 > 0 and wy € (0, 7) are constants, ¢ is uniformly distributed on [0, 27), i.e., ¢ ~ U[0, 27),
and {¢ } is a zero-mean stationary process, independent of ¢, with spectral distribution function
F(w) which is continuous at wy. The gist of the CM method is as follows. Using a parametric

filter £, that satisfies the so-called fundamental property
Corr(Lo(€)e41, Lal€)) = a, (1.2)
a sequence of estimators is constructed by an iterative procedure of the form
aj = pp(aj_1) (1.3)

where p,(a) is an estimator of the first-order autocorrelation of {L,(y);}. This procedure
determines a fixed-point of the mapping p,(a). As will be shown, the sequence of the fixed-
points converges to coswy as n — 0o.

In this paper we provide an asymptotic analysis of the CM method, focusing on strong (al-
most sure) consistency. We shall discuss, for a given finite sample, the existence of a fixed-point
of p,.(a), which will be referred to as the CM estimator, the convergence of some iterative pro-
cedures for findirig the fixed-point, and finally, the consistency of the fixed-point as the sample
size tends to infinity. We shall show, under appropriate conditions, that the existence, conver-
gence, and consistency of the CM estimator can be estabilished almost surely for sufliciently
large sample size, provided the parametric filter satisfies the fundamental property (1.2), in
addition to some fairly mild conditions.

The fundamental property (1.2) required by the CM method is exhibited by many para-

metric filters, while many more can be reparametrized so as to satisfy the property (see, for



example, [12]). An important special case is the AR(2) filter discussed by Quinn and Fernandes
[16] for a special case, and considered in more generality in this paper (see Section 7.2). For
their special AR(2) filter, one can check that the fundamental property holds in a limiting sense
if the noise has a sufficiently smooth spectral density. Using a variant of the iterative procedure
(1.3), Quinn and Fernandes showed that with their AR(2) filter a sequence of estimators can
be produced that converges to the unknown frequency almost surely, and that the precision
of the estimator is the same as that achieved by the nonlinear least squares (or the maximum
likelihood estimator if {¢;} is Gaussian white noise). The main contribution of the present
paper is the proof that the CM method is strongly consistent for a much wider class of para-
metric filters in addition to the special case determined by the AR(2) filter. This, coupled with
the Quinn-Fernandes result, shows that the CM method can produce asymptotically efficient
estimates.

One of the advantages of the CM method is its computational simplicity. It bypasses
time-consuming nonlinear optimization routines needed for the nonlinear least squares method.
Some related iterative filtering methods for frequency estimation have been suggested in the
literature, of which we mention the work of Kay [9], Kumaresan, Scharf, and Shaw [13], and

Dragosevi¢ and S. S. Stankovié [4].

2 The CM Method

Let the random sequence {y,} be given by (1.1). Consider a parametric linear time-invariant
causal filter £, indexed by @ € [a, @], with real-valued impulse response sequence {h;(a)}32,,
where @ and @ are constants such that —1 < a < coswy < @ < 1. Let H(w;a) be the transfer

function of L, defined by
H(wja):= > hj(a)e .
j=0

It is easy to see that H(w;a) = H(—w;a), where the overline denotes the complex conjugate
operation. '

Applying the filter £, to {y;} and {¢;} yields the filtered data {y;(«)} and the filtered noise



{e:(a)} defined, respectively, by
y(a) = Zh,-(a) Yi—; and a):= Zhj(a) €1—j- (2.1)
j=0 j=0

Let p(a) be the first-order autocorrelation of {y,(«)}, then the spectral representation of the

autocorrelation function gives

0| H (wo; @)|? coswy + |H(w; a)|? cosw dF(w)
— (2.2)

pla) = =
|l + [ 1F (w0 dF (o)
where o2 := (32/2 is the variance of the signal. For convenience, it is always assumed that
T | H(w;@)|?dF(w) = 0 implies |H (wp; @)] = 0, which meaﬁs that the noise cannot be com-
pletely removed without filtering out the signal.

In the sequel, we always assume that for any a € [a,@], the filter £, satisfies the so-called

“fundamental property”

that is,
/ | H (w; )| cosw dF(w)

| i@ a)pare)

a =

where p.(a) stands for the first-order autocorrelation of {¢;(a)}. Under this assumption, (2.2)

reduces to
pla)=a" + C(a)(a—a) (2.4)
where o* := coswy, and
1
Cla):= T @)

with y(a) being the signal-to-noise ratio of the filtered data {y,(a)} defined by
o?| H (wo; @)|?
TR

v(a) =

Clearly, for all o € [a,@], 0 < C(a) < 1 with C(a) = 1if and only if |H(wp; )| = 0, or if and
only if the filter £, does not capture the frequency.



The original idea of utilizing (2.4) to estimate a* was proposed by He and Kedem [6] for
a specific filter, known as the o-filter, and extended by Yakowitz [18] to any parametric filter

satisfying (2.3). To obtain an estimator of a*, they employed the iterative procedure
&M= p (&™) m=1,2,... (2.5)

where p,(a) is an estimator of p(a) on a finite sample of size n. In the numerical analysis
literature, this procedure is known as the fixed-point iteration (FPI) (see, for example, [17])
which is used to find a fixed-point of j,(a), if exists. The original motivation of using this
iterative procedure to estimate o was based on the heuristic argument that in the limiting
case as the sample size n tends to infinity, the limit of &™) denoted by &™), satisfies the

equation
&(m) —a = C(&(m—l)) (&(m-—l) _ a*)

As can be seen, the error in 4™ is contracted by an amount of C(&(™~1) as compared with
that in (=Y, and hence the name of contraction mapping (CM) method. It is readily seen
that as m tends to infinity (™ converges to o monotonically, provided C(a) is uniformly
bounded above by some constant which is strictly less than one. This argument, however, does
not lead to the conclusion that for a fized sample size n, the sequence 4{™ would converge
as m (not n) tends to infinity, not to mention convergence to a*. This is the problem we are

going to deal with in the sequel.

3 Another Look at the CM Method

A close examination of (2.4) reveals that if we define G(a):= 1 - C(a), i.e.,

_ )
G(Ol) s m3
then (2.4) can be rewritten as
a—pla) =Gla)(a—a"). (3.1)

From this equation, it becomes quite clear that if G(a) > 0 (or, equivalently, v(a) > 0, i.e.,

the filter £, captures the signal) for all @ in a neighborhood of a*, then o* would be the



unique fized-point of p(a) in that neighborhood. This observation leads to the somewhat more
general idea of estimating wo by finding the fized-point of p,(a) in a neighborhood of a*. The
fixed-point of p,,(«) will be refrred to as the CM estimator. As will be seen later, if taken
to be the first-order sample autocorrelation, ,(a) (and in fact variants thereof) does form a
contraction mapping, not in the entire interval [, @], but in a neighborhood of o*, provided
C(a*) < 1. Therefore, we retain the use of the term “contraction mapping (CM) method” for

any procedure that finds a fixed-point of p,(a), or, equivalently, a zero of the function

fole) = a— p,(a).

Appenrently, (2.5) is only a special procedure of this kind. In fact, one can used any algorithms
available in the numerical analysis literature to find-the zero of f,(«). For instance, {&{™} can
be produced by the secant method [17]

6 - i
Fa (@8 D) = fu(65777)

which, as will be seen later, converges faster than (2.5) under appropriate conditions.

(m—-1) _
n

fa(@m=1y  m=1,2... (3.2)

n

d;’") =&

4 Existence, Convergence, and Consistency

Based on a finite sample {yo(@), y1(@),...,yn-1(@)}, it is alway possible to construct an esti-
mator p,(a) as a function of a (for instance, by taking j,(a) to be the sample autocorrelation

of the filtered data). The following questions are of interest:

1) Whether p,(«) has a fixed-point in a neighborhood of a*;
2) If it does, under what conditions these iterative algorithms converge to the fixed-point;

3) Whether the fixed-point is consistent for estimating a* as n tends to infinity.

In this section, we would like to answer these questions one by one.

It is worth noting that the almost sure convergence of the CM method has been recently
proved in [12] for bandpass filters whose bandwidth shrinks at a certain rate during the iteration.
In [12], the zero-crossing rate (ZCR) was used in connection with the Gaussian assumption,

resulting in a scheme of the form (1.3) with p,(a) replaced by cosine of the asymptotic (i.e.,

n = 00) ZRC of the filtered data.



4.1 Existence of the CM Estimator

First of all, let us investigate conditions under which p,(a) has a fixed-point in a neighborhood

of a specific ay. For this purpose, we have

Lemma 4.1 Let oy be any fixred number in [a,@). Suppose that there exist constants K and
d with 0 < K < 1 and § > 0 such that Ss(ag) := {a: |a— ap] < 6} C [@,@] and that with
probability tending to one as n — oo (or with probability one for sufficiently large n) p,(c)

satisfies
(a) [pn(@’) = pu(a”)] < Ko’ — o], V o,0" € Ss(ao) := {a: o — axo| < 6}
(b) lao = pn(ao)| < (1 - K)6.

Then p,(a) has a unique fized-point in Ss(a,) with probability tending to one as n — oo (or

with probability one for sufficiently large n).

ProoF. The assertions follow directly from Theorem 5.2.3 in [17]. &
REMARK 3.1 Conditions in Lemma 4.1 can be relaxed considerablely by allowing K and §
to be random variables. In other words, the conclusion in Lemma 4.1 remains valid if conditions
(a) and (b) hold with probability tending to one (or with probability one for large n) for some
random variables K and 4 satisfying 0 < K < 1 and é§ > 0 with probability one. If this is the
case, S5(ap) is apparently a random interval. ¢
REMARK 3.2 Under conditions (a) and (b), p,(@) becomes a contraction mapping on Ss( ).

In fact, the contractivity is readily seen from (a). Moreover, combining (a) and (b) gives

|Pn(c) = o] < pn(@) = pu(0)| + |An(et0) — o
< Ké+(1-K)é=6
for all o € S5(ayp), that is, p,(a) maps Ss(a) onto itself. ¢

According to Lemma 4.1, the existence of a unique fixed-point of p,,() in a neighborhood of
ayp is guaranteed by conditions (a) and (b). An ideal candidate for e in our problem is obviously
a*. Let e,(a) be the error of the estimator p,(a) for estimating p(a), i.e., e,(@) := pn(a)— p(a).

With this notation, p,(a) can be written as

pn(@) = p(a) + en(a).



For the existence of a unique fixed-point of p,(a) in a neighborhood of a*, i.e., the existence of

the CM estimator, we have the following theorem.

Theorem 4.1 Suppose that on Sx(a*) C [a,d], p(a) is continuously differentiable and p,(c)
is differentiable with probability tending to one as n — oo (or with probability one for sufficiently
large n). Assume further that C(«) is continuous at o* with C(a*) < 1. If p,(a) is uniformly

consistent on Sa(a*) up to the first derivative, i.e., if

lim sup le,(a)] = O (4.1)
N aeSale*)
lim sup lel(a)] = 0 (4.2)
n—voanSA(a‘)

in probability (or with probability one), then there ezists 0 < § < A such that p,(a) has a
unique fized-point in S;(a*) with probability tending to one as n — oo (or with probability one

for sufficiently large n).

Proor. Consider the theoretical function p(e). The continuity of C'(a) at o* implies that

from (2.4), the derivative of p(a) at a* can be written as

oy pla)—pla®)
pla’) = lim ———"—
= lim /)(O!) —at

= ali_}rg‘C(a) = C(a").

Since 0 < C(a*) < 1, i.e, v(a*) > 0 so that £, captures the frequency with @ = a*, and since

p'(a) is continuous, then there exists 0 < § < A such that

M:= sup plla)<1 (4.3)
a€Ss(a*)

m:= inf p'(a)>0. (4.4)
a€Ss(a*)

For any 0 < ¢’ < §, assumption (4.2), together with (4.3) and (4.4), implies that with probability
tending to one as n — oo (or with probability one for sufficiently large n) there exists K such

that

O<m+te (o) <p(a) < M+e(a)<K<1 (4.5)



for all & € S5 (a*). By the mean-value theorem, condition (a) in Lemma 4.1 is guaranteed with

¢’ in place of §. Moreover, from (4.1),
lo* = pa(@®)] = |p(a*) = pa(e)] = len(e)] < (1 - K) & (4.6)

with probability tending to one as n — oo (or with probability one for sufficiently large n),
which gives condition (b) in Lemma 4.1. Therefore, by Lemma 4.1, pn(@) has a unique fixed-
point on Sg(a*). Since & is arbitrary, this implies that ,(a) has a unique fixed-point in the
interior of Ss(a*). ¢

REMARK 4.3 Theorem 4.1 still holds if the continuity of p'(«) is replaced by
p(a)] < M<1 Y a € Sala®). (4.7)

However, this weaker condition does not guarantee the positivity of g, (a). . &

REMARK 4.4 As in Lemma 4.1, inequalities (4.5) and (4.6) imply that p,(a) constitutes a
contraction mapping in Ss(«*) with probability tending to one as n — o0 (or with probability
one for sufficiently large n). It is made possible basically by the requirement that the pn(a) be
uniformly consistent up to the first derivative and that the filter £, passes the frequency for

all « in the vicinity of a*. &

4.2 Convergence of Two Iterative Algorithms

Let &, be the CM estimator, i.e., the fixed-point of p,() in Ss(«~) given by Theorem 4.1. The
following theorem guarantees that under suitable conditions, the FPI procedure (2.5) can start

anywhere in a neighborhood of &, so as to converge to &,.

Theorem 4.2 Under the conditions in Theorem 4.1, there exist constants 6 > 0 and 0 < K <
1 such that with probability tending to one as n — oo (or with probability one for sufficiently
large n) the sequence {&{™} defined by (2.5) stays in S5,(4n) and converges at least linearly to

&, as m tends to infinity, provided &% € Ss (&, ). Moreover, the convergence is monotone and
|60 — b | < K|&GY — é| (4.8)

for any m > 1.



PRrOOF. Since &, € S;(a*), there exists §; > 0 such that S5,(&,) C Ss{(a*). From the proof
of Theorem 4.1, a constant K can be found so that 0 < K < 1 and (4.5) holds for all @ € S5,(&,,).
According to the mean-value theorem, this implies that condition (a) of Lemma 4.1 holds for

all o/ and o” in S;,(&,). In particular,
|pn(a) - dnl < I(IO[ - &n| Vae S5n(dn)'

Therefore, 4™ ¢ S§5,(&,) for any m > 1, provided &% € S5,(é,). The inequality (4.8) and
thus the convergence of {&{™} are consequences of condition (a) in Lemma 4.1 with S5,(é&,) in
place of S5(c,). The monotonicity is due to the fact that g, () is positive in S5, (&n). ¢

REMARK 4.5 Theorem 4.2 remains valid if K and §, are allowed to be random. And if the
continuity of p’(e) is replaced by (4.7), the convergence of {&(™} still holds but the monotonicity

is not guaranteed any more. ¢

It is evident from (4.3), (4.5), (4.6), and (4.8) that the rate of convergence of the iterative
procedure (2.5) is governed by the constant C(a*) (known as the contraction coefficient) and
the estimation accuracy of p,(a) up to the first derivative. Usually, the estimation accuracy
depends heavily on the sample size n which one can not control. What one can do to accelerate
the convergence is to make C(a*) as small as possible, by using appropriate filters during the
iteration. Since decreasing C(a*) is equivalent to increasing y(a*), the signal-to-noise ratio
after filtering with L£,., the convergence would be accelerated if the signal could be enhanced
in an appropriate way. Since o* is unknown, the only possibility of enhancing the signal during

the iteration relies on 4{™. Some strategies were discussed in [10, 12] upon shrinking the

bandwidth of filters.

Now let us consider the secant method defined by (3.2). Under proper conditions, this
method has superlinear convergence. To study its convergence, the second derivatives of p(a)

and e,(«a) are required.

Theorem 4.3 Under the conditions in Theorem 4.1, if in addition there exists 0 < 6y << & such
that p(a) and e,(a) have second derivatives that are uniformly bounded by D on Sj (&) with
probability tending to one as n — oo (or with probability one for sufficiently large n), then,
starting with &V, 600 € S5,(&,) where 6, := min{(1 — K)/D,6,} and K is given by (4.5),

the sequence {6\™} generated by the secant method (3.2) converges at least superlinearly to &,



with probability tending to one as n — oo (or with probability one for sufficiently large n), and

forsomec>0and0< A< 1,
a5 — &, | < ¢ AP0m) (4.9)

where

p(m) = (1 +2\/5) .

Proor. Note that (4.5) and the boundedness of second derivatives imply

fa(e) | _ |P"(@) + en(@) D
= <
27|~ | 20— p(e)) | < T-F
for all @ € S5,(éy,). The remaining proof follows the argument in [17] (pp.292-293). ¢

REMARK 4.6 The secant method may require better initial estimates than the FPI procedure
to assure its convergence. Moreover, the secant method is numerically not as stable as the FPI,

although it converges faster with proper initial estimates. ¢

4.3 Consistency of the CM Estimator

Suppose that in a neighborhood S;(a*) of a*, the function p,(a) has a fixed-point &, with
probability tending to one as n — oo (or with probability one for sufficiently large n). We are
interested in the consistency of &, referred to as the CM estimators, as n tends to infinity. For

this purpose, we notice that from (3.1) we obtain
G(by) (G — ") = e,(6Gy) (4.10)

with probability tending to one as n — oo (or with probability one for sufficiently large n).
Clearly, the behavior of &, depends entirely on that of G(«) (known as the gain coefficient)

and of e, (@) in Ss(a*). For the consistency of &,, we have the following results.

Theorem 4.4 Let &, be the fized-point of p,(a) in Ss(a*). Suppose that e, () satisfies (4.1)
in probability (or with probability one) and that G(a) > g for some g > 0 and all a € Ss(a*).
Then &, converges to a* in probability (or with probability one) as n — co. In both cases, the

convergence is also in mean-square.

PrOOF. The convergence in probability (or with probability one) follows immediately from

(4.1) and (4.10). The mean-square convergence is due to the boundedness of &,,. %

10



5 Consistency of Sample Autocorrelation

As seen in the proceeding section, the consistency assumption of (4.1)-(4.2) plays an important
role in the proof of existence, convergence, and consistency of the CM estimators. To verify
this assumption, we specialize in this section to the usual sample autocorrelation p,(ca), as
will be defined later, and investigate its consistency when the filter £, satisfies the following

conditions:
(H1) {h;} # {0} and h;(a) =0 for j < 0.

(H2) There exist constants a; > 0 such that

Zjaj < oo and |hj(a)| < a;

7=0

forall j =0,1,... and all @ € A, where A is a closed subset of [a, @].

(H3) h(a) exists and there are constants b; > 0 such that

> jbj < oo and |Rj(e)| < b

j=0

for all 7 =0,1,... and all @ € A.

These conditions can be easily fulfilled by many commonly-used filters. Some examples will be
given in the next section.

Given a finite sample {yo, ¥1,...,Yn—1} Of size n, let {§.(a)} be the filtered data defined by
t
G ) :=Zhj(a)yt_j t=0,1,...,n—1. (5.1)
=0

On the basis of {g,(a)}, a widely-used estimator of the first-order autocorrelation p(a) is the

least squares (LS) estimator that minimizes 37 [§:(a) — p §i—1(a)]%, i-e.,

pnla) : 7o(a) (5.2)

where 7y(a) and #1(a) are sample variance and first-order autocovariance of {§;(a)} defined by

@) = =Y i) (53)
Fla) = %igt(a)g,_l(a). (5.4)

11



We would like to show that if (H1)-(H3) are satisfied in a neighborhood of o*, then (4.1) and
(4.2) hold with probability one, provided {¢;} is a linear process, i.e.,

@a= Y Yz (5.5)

j=—o00
where {2} are IID(0,1) and ) |4;| < oo. In this case, the noise spectral distribution function

F is given by
1 g NE
- e~ HA
Flw) = 3 /_ > pye|
where ¢ := 4/~1. Before stating this result, the following lemmas are needed.

Lemma 5.1 Let {¢,} be a linear process defined by (5.5). Suppose that {g;(a)} and {h;(a)}

satisfy assumptions (H1) and (H2). Then as n — oo,

n—71—1 ft+7 t
O E: (Zhj(a)yt—j+r) (Zgj(a)yt—j) (5.6)
t=0 j=0 j=0

A {H(wo; a) G(wy; a)e”‘*"’} + / H(w;a) G(w; a)e'™ dF(w)
uniformly in o € A, where 7 > 0,
Gw;a) = Zgj(a)e'ij“’,
j=0
and R{-} stands for the real part of a complex number.

PROOF. See Appendix A. &
REMARK 6.1 Lemma 5.1 can be generalized to the case of multiple sinusoids in noise. In

this case, the observation {y,} is given by

g—1

¥ = Y Brcos(wit + ¢p) + € (5.7)

k=0

where ¢ > 1, B > 0and 0 < wy < «++ < w,_1 < 7 are constants, {¢;} are iid U[0,27) and
independent of {¢,}. Under the same conditions as Lemma 5.1, it can be shown that as n tends

to infinity,
n—7—=1 [fi+71 t
! Z Zhj(a)yt—Hf Zgj(a)yt-—j (5.8)
t=0 7=0 j=0
q-1 -
=D o R {H(wk; a) G(w; a)e“‘“"} + / H(w;0)G(w; a)e™™ dF(w)
k==0 -7

12



uniformly in @ € A, where o2 := 32/2 is the variance of the kth sinusoid. In fact, using the same
method, the counterparts of = Y7=7 "' I,(t) and n~' T"0°7 " I5() in the proof of Lernma 5.1
can be shown to have the same limits given by (A.6) and (A.7), and in the counterpart of

n=1 377771 [1(t) the cross-product terms with different frequencies converge to zero as n — 0o

since
n—1 n—1
EE cos wyt coswypt = O(1), Z sin wyt sinwyit = O(1)
t=0 t=0
for k # k' and
n-1
> sinwyt coswiit = O(1)
t=0
for any k and k'. o

REMARK 6.2 In the proof of Lemma 5.1, the assumption that ¢ ~ U[0, 27) is not necessary.
It is required only if we want {y;} to be stationary. This remark also applies to the case of

multiple sinusoids. ¢

Denote by ro(e) and ri(«) the variance and the covariance of the filtered data {y.(a)}

defined by (2.1), respectively. Then, we have

ne) = lHsa)l+ [ Hwia)P dFw)
0[S hy(@)e |+ 3 hy@)he(a)ri

r(a) = 02|H(w0;a)]2cosw0+/ |H(w;a)|?cosw dF(w)

= o2 |§: hj(a)e—z-jwlz coswo + > 3 hi(@)hk(a)ri_; 1.

It is readily seen that under assumptions (H2) and (H3), ro() and 7;(«) are differentiable with
respect to @ and their derivatives, denoted by r4(a) and (), respectively, can be easily shown

to be
ro(a) = 20° R {H’(wo; o) H (wo; a)} +2 ’ H'(w;a)H(w; a)dF(w)
ri(a) = 20°R {H'(wo; a) H (wo; a)} coswy + 2 /7r H'(w; a)H (w; a)cosw dF(w)

where

H'(w;a) := Y hi(a)e 9.

13



Based on Lemma 5.1, we are now able to obtain consistency of the sample variance 7¢(a),
the sample covariance (), and their derivatives, as estimators of ro(a), ri(a), and their

derivatives. For this purpose, we have

Lemma 5.2 Let {¢,} be a linear process defined by (5.5). Suppose that {h;(c)} satisfies (H1)-
(H3). Then as n tends to infinity,

a.s

fo(a) B rola), #H(a) B ria)

(@) % rife), and #i(a) ¥ ri(a)

uniformly in a € A.

ProOOF. See Appendix B. %

Using these lemmas, we are able to obtain the uniform strong consistency of p,(a) and

p.(a) as follows.

Theorem 5.1 Let {¢,} be a linear process defined by (5.5) and suppose that assumptions (H1)-

(H3) are satisfied. Then as n — oo,
) =5 pla) and fie) = f(a)
uniformly in a € A, where p,(«) is defined by (5.2).

PRrOOF. From the definition (5.2) of p,(a@) and the fact that

3 (o) = Tola)Ti(@) — Fi(@)fo(a)
p(@) (a) ,

the assertion in this theorem follows immediately upon using Lemma 5.2. &
REMARK 6.3 There are many other commonly-used estimators of p(a). For example, p,(a)

can be defined as the minimizer of

Sl = s @ + i)~ pia(@)

yielding

n‘:, Gi-1()[Ge(@) + Gu-a(a)]

p(ar) = = (5.9)

n—1
2 Z 94 (@)
t=1
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It can be shown by a similar argument as in the proof of Lemma 5.2, all these estimators are
uniformly equivalent as n tends to infinity, and, therefore, Theorem 5.1 remains valid for these

estimators. O

As a consequence of this theorem, the resuits obtained in Section‘4d can be restated as

follows:

Corollary 5.1 Let {¢,} be a linear process defined by (5.5). Suppose that C(a*) < 1 and (H1)-
(H3) are satisfied with A := S5(a*) C [, @] for some A > 0. Assume further that {h(a)} are
continuous on §A(a*). Then the following results hold for sufficiently large n with probability

one:
(a) pn(a) has a unique fized-point &, in some S;(a*) C A.

(b) There exists Ss,(G,) C Ss(a*) such that the sequence {al™} given by (2.5) converges
monotonically and at least linearly to &, as m — oo, provided o® ¢ S (é,). In this

case, (4.8) also holds for any m > 1.

(¢) If in addition G(a) > g > 0 for all a € Ss(a*), then &, converges to a* with probability

one as n — 0.

PRroOF. According to Theorem 4.2 and Theorem 4.4, it suffices to check the conditions in
Theorem 4.1. To do this, we first notice that the differentiability of p(«) and the continuity of
C(a) are guaranteed by (H2), (H3), and the continuity of h}(a). Moreover, (4.1) and (4.2) are
consequences of Theorem 5.1. ¢

For the convergence of the secant method (3.2), an additional condition on the second

derivative of h;(a) is needed:

(H4) hj(a) exists and there are constants ¢; > 0 such that

[e o]
chj < oo and |hf(a)| < ¢
j=0

forall 7 =0,1,... and all o € A.

So, the secant method is more stringent than the FPI. By a similar argument, it is readily seen
that under (H4), p(«) is twice differentiable and p};(«) is a uniformly consistent estimator of

p"(«). Therefore, we also have
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Corollary 5.2 Suppose that the conditions in Corollary 5.1 hold. If in addition assumption
(H4) is satisfied and p”(a) is bounded on A := Sa(a*), then there exists § > 0 such that the
sequence {&{™} given by (3.2) converges to &, as m — oo at least superlinearly with probability

one for sufficiently large n, provided 61, &9 € S5,(4,).

PRroOOF. The assertions follow immediately from Theorem 4.3 upon noting that (H4) and
the boundedness of p”(a) imply the boundedness of e//(a) with probability one for sufficiently

large n. o

6 Multiple Sinusoids in Noise

In previous sections, most of the results were restricted to the case of a single sinusoid in noise
defined by (1.1). Now let us consider the general case of multiple sinusoids in noise given
by (5.7). We would like to discuss conditions for which the CM method provides consistent
estimates of the unknown frequencies.

We first notice that for the observation {y,} defined by (5.7), the first-order autocorrelation

p(a) of filtered data can be expressed as

._.

q-

ZG’ | H (wy; a)|? coswy, + |H (w; @)}? cos w dF(w)

pla) = =2

quiIH(wk; o+ [ 1) are)

k=0
Define oj := coswy. Then, under assumption (2.3), this expression reduces to a counterpart of

(2.4)

pla) = af + 3 Gy(a)(aj - af) + Cyfa)(a - o) (6.1
where
Ca) 1= ———y  Gyla)i= — B
14> () 142 7i(e)

AR
JRLEDRE®

() =
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Clearly, v;(a) is the signal-to-noise ratio of the kth sinusoid after filtering with £,, G;(a) > 0
is the gain coefficient of the jth sinusoid, and C,(«) is the contraction coefficient satisfying

0< Cyla) =1-02LG(a) < 1. In particular, from (6.1), we have
q i

<] =0
g—1
plei) = af + ) Gi(ap)(e] ~ af).
j=0

Suppose that C,(e) is continuous and G;(a) is differentiable at a}. Therefore, p(a) is also
differentiable at a} and its derivative can be written as

lim () — plaq)

*
a—»a; o — ak

= lim {Z Gile) = G"(ai)(a;‘ —ap) + Cq(a)}

a—aj o o — az

= ) Gi(ap)(e; - af) + Cyla}).
ik

play) =

Clearly, a sufficient condition for p(a) to be contractive in a neighborhood of o} is that p'(«)

is continuous in the vicinity of a} and
—1 <Y Gi(ap)(a] —ap) + Cylef) < 1. (6.2)
ik
The following theorem guarantees the existence of a unique fixed-point of p,(a) in a neighbor-

hood of af and the convergence of iterative procedures (2.5) and (3.2).

Theorem 6.1 Under the conditions in Theorem {.1 about p(c) and e, (), if (6.2) is satisfied,
then there exist 0 < 6, < 8y < & < A such that the following results hold with probability tending

to one as n — oo (or with probability one for sufficiently large n).
(a) pn(a) has a unique fized-point &, in Ss(a).

(b) The sequence {&(™} defined by (2.5) converges to G, at least linearly as m — oo, provided

a9 € S5,(6).

(c) If the assumptions in Theorem 4.3 about p(a) and e,(a) are also satisfied, the sequence
{a{™} defined by (3.2) converges to é, at least superlinearly as m — oo, provided &),

dglo) & 551 (&n)

17



PRrOOF. The assertions can be proved in the same way of showing Theorems 4.1, 4.2, and

4.3. ¢

Let &, be a fixed-point of g,(a) in Ss(cj). From (6.1), we obtain

S

1
Gj(&n)(d/n - a;) = en(&n)- (6.3)

0

]

j
Unlike the case of a single sinusoid, this equation does not lead to the conclusion that &, — aj,
even under the assumption that Gip(a) > g > 0 for all a € S5(a}). In order to achieve
consistency, a much stronger condition is required that prevents &, from converging to false
frequency. Obviously, the condition G;(a) = 0 for all o ¢ Ss(a}) does the job. This condition
simply says that those sinusoids with frequencies different from af must be completely filtered
out by £, with a in the vicinity of af. In conclusion, j,(a) may still have a unique fixed-point
in the vicinity of aj and iterative procedures such as (2.5) and (3.2) may still converge to that
fixed-point under condition (6.2) and uniform consistency of p,(a). However, the fixed-point is
not necessarily a consistent estimator of o}, unless other frequencies can be completely cleaned
up by L, with a in the vicinity of o} (see also [6, 10, 12]). This clearly requires that the

frequencies be well-separated.

7 Examples

This section gives two examples of parametric filters that can be applied in frequency estimation

using the CM method.

7.1 The o-Filter

The exponentially-weighted moving average filter, or, the “a-filter”, was originally studied by

He and Kedem [6] for frequency estimation. It can be defined recursively by

y(a) = oy () +

where —1 < o < 1. It is easy to see that h;j(a) = 0 for j < 0, hj(a) = o for j =0,1,..., and

1

N2
[H (w; a)]" = 1—2acosw + a?’
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Table 1: Comparison of FPI and Secant Procedures with a-Filter
FPI [initial value= 0.67] Secant [initial value= (0.37,0.67)]

MEAN + SDV (x7) | MSE (x72) || MEAN 4 SDV (x7) | MSE (x7?)
0.495854 4 0.016533 | 6.02714x 1073 || 0.495854 4 0.016533 | 6.02714x10~3
0.447814 4 0.017789 | 1.09008 x 103 || 0.421869 # 0.020007 | 4.03792x 10~
0.430492 3 0.017368 | 4.12172x10~% || 0.420337+0.017723 | 3.14232x10~*
0.424347 4 0.017484 | 3.24577x10~* || 0.42074440.018096 | 3.28011x10~*
0.422112+£0.017713 | 3.18207x10~% || 0.420741+0.018092 | 3.27851x 10~*
0.42127740.017881 | 3.21364x10~% || 0.420741+ 0.018092 | 3.27850x 10~

o ot o W e o~ |3

Some other interesting properties of the a-filter can be found in [11].

Clearly, 0 < C(a*) < 1, and (H1)—(H3) are satisfied on any closed subinterval of (—1,1).
When {¢,} is white, it can be easily shown [6] that the fundamental property (2.3) holds for all
a € (—1,1). Consequently, this filter can be applied to estimate wy using iterative procedures
(2.5) or (3.2). In particular, when {¢,} ~ IID(0, 02), Corollary 5.1 and Corollary 5.2 guarantee
the convergence of these procedures, and also the strong consistency of their limits for estimating
a*. Toillustrate the performance of the a-filter, the FPI procedure (2.5) and the secant method
(3.2) are applied in the estimation of a single sinusoid in additive Gaussian white noise defined
by (1.1) with wy = 0.427, ¢ = 0.17, and SNR= 3 dB. The initial frequency estimate is taken to
be 0.67 (or &®) = cos0.67) for the FPI and (0.37,0.67) (or &SV = cos0.37, & = cos0.67)
for the secant method. Table 1 presents estimated ensemble averages based on 200 independent
realizations of size n = 100, where m stands for the number of iterations, and the mth estimate

of wy is defined by

d:(()m) iz arccos ﬁn(&gm—l)) = &gm) m=1,2,.... (7'1)

As can be seen in this table, the FPI and the secant methods work equally well in this

experiment, but the latter converges slightly faster at the beginning.
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7.2 The AR(2) Filter

Considerable improvements in estimation accuracy can be achieved by the following AR(2)

filter defined recursively by

yi(a) + 0(e)nyi_1(@) + ' y—a(a) = v, (7.2)
where 0 < 7 < 1 and
1+7n2
0(a) = - o
(@) ;

When {¢;} ~ IID(0,0?), it is easy to verify, using a formula given in [7}, that

pel) = ~ 3 8(e) =

for all a € [, @] with

o= — 21 and @:= 29 .
1+n2 1_|_172

That is, the fundamental property (2.3) is satisfied by the AR(2) filter (7.2). Its two poles are

readily seen to be

Gla) = (-8 +iy/a- o),
Gla) 1= 1 (~8a) - iv/1-02(a))

with |(1(a)| = |G(@)] = 7y for all @ € [a,@]. Clearly, whenever 5 < 1, the poles are contracted
within the unit circle in the complex domain so that the filter (7.2) becomes BIBO-stable, i.e.,
Yo lhi(e)] < co. Stability of (7.2) is extremely important for the on-line implementation of the
CM method in frequency tracking. This problem will be addressed separately in another paper.
Note that the impulse response of the AR(2) filter can be written as
k
hi(e) = 3 (@)™ (a).

j=0

Clearly, (H2) is satisfied if n < 1, since |hy(a)| < a; := (k + 1)7* for all k£ > 0. Moreover, since
Glo) = 1A (-1 + ——ﬂi’_(——%)—(_;)) ,

2
Go) = -7 (—1—1’%),
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Table 2: Estimates by FPI with AR(2) Filter (Initial Value = 0.557)
7 =0.95 7 = 0.98

MEAN + SDV (x7) | MSE (x?) | MEAN % SDV (x7) | MSE (xn?)
0.498308 £ 0.012725 | 6.29414x 1073 || 0.516345+ 0.013724 | 9.47067x 1073
0.427856 + 0.007107 | 1.12234x10™* || 0.454814 4 0.022079 | 1.69947 x 103
0.419949 + 0.000874 | 7.67307x10~7 || 0.421551 4+ 0.002866 | 1.06195x10~°
0.419914 + 0.000867 | 7.59110x10~7 || 0.420060 + 0.000841 | 7.10807x 107

10 || 0.419913 + 0.000867 | 7.59001x10~7 | 0.419925 + 0.000795 | 6.37827x10~"

W & W o~ 3

G(o)|
are uniformly bounded by a constant ¢ for all @ € A := [ + 6§, @ — 6] where § > 0. Note that,

and |0(a)|? < 4 for all @ with |8(a)|?> = 4 if and only if @ = ¢ or a = @, then |({()| and

with obvious notation,
k - . k . -
() =3 37 G0+ Y (k- DAGT G
j=0 j=0

and thus

k k

h(@)l < e gt e (k=i
i=0

i=0

= by :=ck(k+ 1)7]’“"1

for all £ > 0 and @ € A. Assumption (H3) is clearly satisfied if 7 < 1. It can be shown
similarly that (H4) is also valid under the same condition. As a consequence, Corollary 5.1 and
Corollary 5.2 apply to the AR(2) filter for estimating wy. (Note that |H(w;a)|* > 0 for all w
and a, and hence C'(a*) < 1.)

To demonstrate its performance, we apply the AR(2) filter with the FPI procedure to the
same data as in Section 7.1, and Table 2 presents the results for n = 0.95 and 0.98.

As compared with the a-filter, the AR(2) filter provides greater precision for frequency
estimation in terms of smaller variance and mean-square error (MSE). This is because the
AR(2) filter is bandpass and enhances considerablely the frequence components in the vicinity
of the angles of its ploes, which, when a = a* and 7 = 1, are approximately +wy. The role of 5

can be appreciated by comparing the results for 5 = 0.95 and those for n = 0.98. Clearly, the
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closer the parameter 7 is to 1, the smaller the variance and the MSE, but the lower is the rate
of convergence.

Finally, it is worth pointing out that in the extreme case when 7 = 1, the CM method using
the FPI procedure with the AR(2) filter (7.2) coincides with the method proposed by Quinn and
Fernandes [16]. They have shown that in this case, the estimator &, is n®/?-consistent, just like
the nonlinear least squares estimator. For 7 < 1, we can show [15] that &, is n'/?-consistent.
However, it is important to note that for n = 1, the FPI requires a much more accurate initial
estimate than it does for < 1. In fact, when n = 1, as proved in [16], the accuracy of the
initial estimate is required to be of order n~!. (A modified method in [16] can reduce this

order to n—1/2

.) Therefore, their method must be used in connection with another method that
provides satisfactory initial estimates. On the other hand, the CM method with 5 < 1 requires
the accuracy of the initial estimate to be O(1). By taking the advantage of the flexibility for
the choice of 7, the CM method does not require any other method for initialization of the
procedure while still achieving better and better estimates by increasing 7, and eventually, as
7 — 1, obtaining n®2-consistency, as the method proposed in [16]. Furthermore, with a flexible
n, the CM method can be applied in the estimation of a time-varing frequency for which the
Quinn-Fernandes method may fail due to an excessively narrow bandwidth that can easily

“loose” the frequency. Adaptive estimation of time-varying frequencies using the CM method

will be addressed elsewhere.

A  Proof of Lemma 5.1

Define
Q(t) = (Z_: hj(a)yt—jw) (Zgj(a)yt—j) :

From (1.1), Q(t) can be written as

Q(t) = L(1) + L(t) + Is(?)
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where

t+7 t

L) = pg* Z Zhjgk cos[wo(t — j + 7) + @] cos[wo(t — k) + ¢]
j=0k=0
t+1 L

L(t) = B higi{e—jir coslwo(t — k) + @] + er_g cos[wo(t — j + 7) + ¢]}
=0 k=0

t

t+
13(11) = ZZhjgkft_j+T€t_k.
j=0

j=0%k=0
Here the argument « is omitted in h; and g, for notational simplicity.

Using the trigonometric identity
COS A €COS Ag = %[cos(/\l — A2) + cos(A1 + Aq)],

I,(t) can be written as I[,(t) = T1(¢t) + T»(t) where
t+1
Ty(t) := o* Z Z h; gy, cosfwo(k — j + 7))
j=0k=0
t4r ot
o’ Z Z hjgx coslwo(2t — 7 — k + 7) + 24)].

j=0%k=0

To(t)

As t — oo, assumption (H2) implies that

Nk
MS

Ti(t) — 02 h; gy cos{wo(k — j + 7)]

.
1
=)
o
1

0

io: h z(k ]+'r)w0}

j=0k=0

= g? %{H WO’Q)G(wO’a)e”wo}

Il
Q
)
=
/—’H

uniformly in @ € 4. Therefore,

n—r—1

n~t Z Ti(t) — o %{H(wo;a)G(w—o;a)e”‘”“} (A1)

t=0

uniformly in o € A as n — oc. Moreover, the following identity holds for any function u(t, s)

by interchanging the order of summations:

n—71—1t+7

U := Z ZZhjgku(t—j-}-T,t—k) (A.2)

tOjOkO

n—1j—7—1n—
= ZZ Zh]gkutt—l-]—— —T)
j=r k= =
n—r—1k+rn—-k—7-1
+ higru(t +k —j+7,1).
k=0 j=0 t=0
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In fact, by first interchanging the summations over ¢ and j in the first expression and by
substituting t + j — 7 for ¢ afterwards, we obtain
T—1n-— n—1ln—~j—1\ t+j-r
=0 t=7-j j=7r t=0 k=0
Then, interchanging the summations over ¢ and k again gives
r—-1ln—7—1 n—j-—1 n—1j-7-1n-j-1 n—-ln-r-1 n—j-—1
=12 2 X+ X X AX X X | hsutiti-k-r).
j=0 k=0 t=k—j+7 j=T k=0 =0 j=7 k=j—1 t=k—j+T1
By finally interchanging the summations over j and k in the first and the last terms and

combining them afterwards, we obtain

(n—r— 1k+r n—j-1 n—-1j— j
ZZ Z Z Z) igpu(t,t+ 75—k —1).
\ k=0 j=0t=k—j+r j=7 k=0 t=0

Identity (A.2) follows immediately by substituting ¢ + k — 7 + 7 for ¢ in the first term. Now
applying (A.2) with u(t,s) = o2 cos[wy(t + s) + 2¢], we obtain

n—71—1 n—1j—7-1 n—j—1
Z Tr(t) = o’ Z Z h;gr cos{wo(2t + j — k — 7) + 2¢]
=0 j=r k=0 t=0
n—r-—-1k+7r n—k—r—1
+ o Z Zh]gk Z cosfwe(2t + k — j + 7) + 2]
k=0 j=0 t=0
= l]1+'lk

Let af and «f be the constants in (H2) associated with h; and g;, respectively. Then, for each

j and k, and for any o € A,

n—-j—1
nhigr D coslwo(2t+ 5 — k — T) +2¢]| < a} af
t=0
and as n — 00,
n—j—1
no1 Z cos[wo(2t + j — k — 7) + 2] =3 0.
t=0

According to assumption (H2) and the dominated convergence theorem, n~'U, “3 0 uni-
formly in o € A. The same assertion is also true for U, by a similar argument. Therefore,

n~lS 0T T Ty(t) %3 0 uniformly in o € A. Combining this with (A.1) yields
n—7—1

nt Y () e’ R {H(wo; )G (wo; a)e““’“} (A.3)

t=0
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uniformly in & € A as n — o0.
Write I,(t) = T5(t) + Ta(t) where

47 t

T3(t) = p ZE h;grei_jyr cos{wo(t — k) + @]
j=0k=0
t+r ot

Ta(t) = P Z Z hjgre—p cosfwo(t — 7+ 7) + &].

i=0k=0

Applying (A.2) with u(t,s) = Be, cos(wos + @) gives

n—7—-1 n—1j-7-1 n—j—1
Z: Tg(t) = Z Z h]gk E € COS[Wo(t +] — k- 7') + ¢]
=0 j=7 k=0 1=0
n—rt—1 k+r1 n—k—7—1
+ Z Z hj g Z €rk—j+r COS(wWot + @)
k=0 j=0 =0
= U3 + U4.

Splitting Uy into two terms, we get

N-1 -1\ j-7-1 n—j—1
v = ﬁ(Z+Z) > hige Y ecoslon(t i~ k- 1)+¢]
N k=0

j=r j= t=0

= U™ 4 (U = UM).

For any a € A,

|U(N)’ < ﬂNZ_:lj_szlaha!] (
3 1S 5 O,

Jj=7 k=0

+

n—j—1
Z €; Coswyl
=0

n—j—1
E €; sin wpt
t=0

with probability one. For each fixed j, it can be shown [1] that

)

—j-1
Z €; COS Wyt

t=0

n n—j—1

g € sin wgt

t=0

< 0,. (v/nlogn) and

as n — 00. Therefore, for each fixed NV,

n_lUéN) < O, (\/logn/n) 230

uniformly in o € A. This implies that uniformly in a € A,

lim lim n“lUéN) =0 a.s.

N—ooon—oo
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Moreover, it is readily seen that for any o € A,

Us — U™

IA A
= e
™
Ng} “vga-
?rg‘& R‘Q‘Q
ML 1M
D
- 3

IA
=®
Q
>
]
u.pg-:

with probability one, where G := ;2 af. Define (n(t) := BG|e| Y52y a?, then {(n(t)} is
strictly stationary for each fixed N, and
n—1
Us = UM <37 Cn(8)
t=0

with probability one for any oo € A. According to the strong ergodic theorem (see, for example,
[8]), for each fixed N, we have

n-1

lim n~! Z (n(t) =N a.s.

t=0

for some random variable (y, and
E((n) = E{¢v(0)} = BG Eleo| Y af.
j=N
Since (,, > 0 with probability one, and
Z: E({n) = BG Ele Z Z aj-‘ = ﬂGE|60|Z(j + 1)a§‘ < 00,
N=0 N=0j=N j=0
using Chebyshev’s inequality, we obtain, for any p > 0,
o0 o 1 o0
P{ U (CN>M)}S Yo P{n>ul<= Y E(ly)—0
N=N' N=N' H N=N'

as N’ — oo. Therefore, P{i.0. (y > u} = 0 for any g > 0, which implies that {y %3 0 as

N — oo. Consequently,

A;im limsup n~ YU, — UM =0 a.s.

uniformly in @ € A. Combining with (A.5) gives n™'Us “3' 0 as n — oo uniformly in @ € A.
By switching k and j in the second term of (A.4), Uy can be written as

N-1 n—7-1\ j+7 n—j—7-1
Up = B (Z + > ) dohugi D €piorir cos(wot + )
Jj=0 j=N k=0

t=0

= U + (U - UM
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Like UéN), it can be shown in a similar way that

Iim lim n lU(N) =0 a.s.

N—oon—oo

uniformly in @ € A. Furthermore, for all a € A,

™) n—r—1j+71 n—j—7-—1
h
U= UL < B> daka! D epjoies
j=N k=0 t=0
n—r-1j47 n-k—1
h
= 82, Y maf ) e
Jj=N k=0 t=j—k+7
n—r—1j+1
< B da 92164
j=N k=0

o0

n-—-1
< BHY lald_df
t=0 j=N
with probability one, where H := 5 ;. a’. Like U3 — UéN), we have

Jim_lim sup U, - UM =0 a.s.

Consequently, n~1U,; 3 0 as n — oo uniformly in @ € A. Combining all these results gives
n~ SR T(t) “3 0 uniformly in o € A. The same result can be established for T4(t) upon

noting the resemblance between T3(t) and T4(t). Therefore, we have proved

n—1—1

-1 Z L(#) =0 (A.6)
t=0
uniformly in « € A.

Finally, let us consider I3(t). Using (A.2) with u(t,s) = €¢,, we get

n—r—1 n—1j—r-1 n—j—1
Z L(t) = Z Z h;gr Z €Citj—k-r
t=0 j=17 k=0
n—r—1k+7 n—k-1-1
+ Z Ehjgk Z €€ tk—j+7
k=0 j=0 t=0
= Us+Us

Splitting Us into two terms gives

N-1 n—-1\ j=7-~1 n—j—1
U5 = (Z Z) Z h]gk Z €t€t+] k—r1
N k=0

i i
= 55 +(Us - éN))-
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By strong ergodicity (see, for example, [5] and [3]),
n—j—1
lim n~! Z €1€4j—k-1 = Thejir a.s.

n—00
t=0

for each fixed j and k, where

s :——-/ e dF(w).

.y

On the other hand,

N-1j-1-1 N-1j-1-1 n—j—1
—177(N) h g, —1 €
n~ Ug Z Z hjgrry_ —j4r| S ajaj |n Z €€ipj—k—1 — Thjir|-
j=17 k=0 j=7 k=0 t=0
Therefore, with probability one,
oc j—1-1
. . —177(N)  _ Z ] €
MU = hi 0T ite
Jj=17 k=0
o0 o0
— €
= >, > higrio.
k=0j=k+7+1

uniformly in a € A. Moreover, for all o € A,

Us - UV| < Z Z aj Z les€sps—k—r]

j=N k=0
n-1j-7-1 -

< E a E €t€t+] k— 7'
j=N k=0 t=0
n—1 oo j-—7-1

< > ajafle€rp; x|
t=0j=N k=0

with probability one. Note that in the last inequality the infinite sum

oo j-1—1

Zn(t):=3 Y djaflecrsi il

j=N k=0

converges with probability one, since Zy(t) > 0, and by the monotone convergence theorem,

oo j—7-—1
PZN@) = Y YD alal Elacs|
j=N k=0
oo j-T~1 oo
< cer a;.‘ai < a?GZa;‘<oo,
j=N k=0 j=N
where o2 := v.(0) and the second expression is a result of Cauchy-Schwarz inequality. Note

also that {Zx(t)} is strictly stationary for each fixed N, and by the strong ergodic theorem,
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as n — oo for some random variable Zy with E(Zy) = E{Zn(0)} < 02G Y77y a}. Since
Yv=0 E(Zyn) < 02G Y 520( +1)a} < 0o, we have Zy “5 0 as N — oo. Therefore, uniformly in
a€ A,

A}im lim sup n™!|Us — U5(N)| =0 a.s.

Combining these results we get

[ee] [ee]
-1 a.s. €
CRUED DD DRE T e
k=0j=k+7+1

uniformly in o € A as n — oo. In a similar way, we can also show that
oo k4T
- a.s. €
nTs =YY g
k=0 j=0
uniformly in @ € A as n — oo. Consequently, we have proved that uniformly in o € A,

n—r—1

Tt Y L) B YN higemh gy, (A7)
t=0

k=0j=0

= " H(w;0)G(w; a)e'™ dF(w)

-7
as n — oo. Note that the last quantity is real because of the symmetry of G(w; ), H(w; o),

and F'(w) as functions of w. Now (5.6) is proved upon collecting (A.3), (A.6), and (A.7).

B Proof of Lemma 5.2

First of all, since §;,(a) := 0 for ¢t < 0, #y(c) and (@) can be rewritten as

fofa) = ny(a)
@) = 1 S @)@
Define _
Fof) = ! gzﬁ(a). (8.1)

Then it can be shown that under the conditions in Lemma 5.1,
7’;0(@) - fo(a) a;s>. 0
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uniformly in @ € A as n — oo. In fact, it is easy to see that

[Fo(a) — Fo(@)] = n7'g3_i(a)
n—1
< n_1H2+2Hn_IZa;‘|en_j_1|
j=0
n—-1n-1
+ n_lzZa;’aZ]en_j_len_k_lL
7=0 k=0

Clearly, the first term tends to zero as n — o0o. Since the variance of the second term &, :=
2Hn™' Y775 ab|e,j_1| is bounded by 4H*¢?n~2 and hence 3 Var{£,} < oo, we obtain £, *3 0.
To show that the last term, denoted by 8,, also vanishes with probability one, let us rewrite 6,

as

j=0 \k=0 k=0
N-1 /j-1 J
-1 h h
< n + ajaklen—j—lfn—k——ll
j=0 \k=0 k=0
n-1 [/j—1 i n—1
-1 h h
b (S e Sl
j=N \k=0 k=0 t=0
(N) (V)
- On + (Hn - on )
By strong ergodicity,
n—1 n—2
-1 » _ -1 -1
n €p_j_1€p_p-1 = TN €€ — T €€k
t=0 =0
a.s. € € _

for each fixed 7 and k. Therefore, OSAN ) vanishes as n — oo for each fixed N, and thus

lim lim 6" =0 a.s.

N-—o0o n—o0

Moreover, applying the same technique used to derive the limit of n=!(Us — U, éN)) in Lemma 5.1
gives

lim lim (8, — ")) =0 a.s.

N-—o00 n—00
Consequently, 8, *3 0 as n — 0o. Combining all these results proves the assertion that #(a)

and 7p(e) are uniformly equivalent as n tends to infinity. Using a similar argument, it can be

shown that the uniform equivalence also holds for #(a) and #(a) := 2n=1 770 §1(0)f.(c).
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Because of the uniform equivalence, it suffices to show the consistency of 7o(er), (), #1(a),

and #(a). Note that from (5.1), (5.4), and (B.1), the following identities hold:

n: (Z:hj yt ]) (Zh’ (a)yt ])
y ( . (tha)yt_,-)

’iia(a) = Qn“ln_ ( h}(a)yt_j)

n—-2 [t41
fila) = “—12( hi(@)ye-j (

= &
2 £
I I
3 3
. L
ML i

i
1l
o

~

j=0

hj(a)yt—j)

n-— t+1 t
+ n7! Zh(a)?/t —j+1 hi(a)g-; | -
=0 \j=0 ji=0

Applying Lemma 5.1 to these quantities proves the uniform consistency.
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