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We discuss the ring based public-key cryptosystem known as non-commutative

NTRU. The original system is defined over the group ring R = Z[DN ] (where

DN is the dihedral group of order 2N) and uses a commutative subring R0 =

{α ∈ R|Y α = αY } where Y is an element of order two for DN . This system

was broken by Coppersmith in [1]. To do this he uses properties of the subset

R1 = {α ∈ R | Y α = −αY }. He is able to create a ’fake’ private key using R1

and R0. This ’fake’ private key then allows him to create a map θ : R→ R that

is used to break the system.

The present discussion first analyzes the original system and the attack on

the system. We also determine what groups the original system can be defined

over, and therefore when Coppersmith’s attack will work. Second we extend

this system to other group rings. The groups have two generators that do not

commute, but the generators will have prime orders larger than two. We still



work with the ring Z[G] and the subring of elements that commute with Y , the

generator with smaller order. We then extend the attack on the system. This

is where the key difference arises. We develop the representation theory of these

more general groups so that we can break the system. Also to break the system

we need to look at subsets of Z[G] where conjugation by Y (of order k) multiplies

the elements by a kth root of unity. We denote these subsets by R1, R2, . . . , Rk−1.

One of the main results is to show that these Rj are principal R0 modules. This

allows us to define a similar θ. Since a primitive kth root of unity does not always

exist modulo q it is necessary to work in an extension ring to break the system

in some cases. But when θ is created it maps into the original group ring, which

allows us to break the system. Finally we give a few examples.
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Chapter 1

Non-commutative NTRU

1.1 Introduction

Public-key cryptography was introduced around forty years ago. It allows the

users to communicate over non-secure channels without any prior communication.

They do this by publishing one public key for encryption and using another

private key for decryption. RSA[14] is probably the most famous public-key

cryptosystem, but there are many others: ElGamal [3, 4], McEliece [11, 12], and

commutative NTRU [8]. These are all commutative systems. There are also non-

commutative systems such as a braid group system [10] and non-commutative

NTRU [6, 1]. Our purpose is to further investigate non-commutative NTRU. We

will analyze Coppersmith’s attack [1] on the original system. We will also show

that its original implementation can be extended and broken.

For a public-key cryptosystem, assume that Alice wants to send a message to

Bob. Bob first publishes a public key and has another private key. Alice uses this

public key to encrypt a message and send it to Bob. Bob then uses his private

key to decrypt the message. Note that not only Alice can use Bob’s public key,

but also anyone who wants to send Bob a message can use his public key to do

1



so. In general, Bob creates his public key from his private key and it is hard for

someone to find the private key from the public key.

Non-commutative NTRU is a ring based public-key cryptosystem. The origi-

nal system is defined over the group ring R = Z[DN ] (where DN is the dihedral

group of order 2N) and uses a commutative subring R0 = {α ∈ R | Y α = αY }

where Y is an element of order two for DN . This system was broken by Copper-

smith in [1]. To do this he uses properties of the subset R1 = {α ∈ R | Y α =

−αY }. He is able to create a ‘fake’ private key using R1 and R0. This ‘fake’

private key then allows him to create a map θ : R→ R that is used to break the

system.

In Sections 1.2 and 1.3 we analyze the original system and the attack on

the system. Next in subsection 1.3.1 we determine what groups the original

system can be defined over, and when Coppersmith’s attack will work. Then in

Section 2.1 we extend this system to other group rings. The groups still have

two generators that do not commute, but the generators have prime orders larger

than two. We still work with the ring Z[G] and the subring of elements that

commute with Y , the generator with smaller order. We extend the attack to this

generalization of the system in Section 2.3. This is where the key difference arises.

Coppersmith’s attack only works for Z[DN ] and closely related group rings. In

Section 2.2 we develop the representation theory of these more general groups

that is necessary to break the system. Also to break the system we need to look

at subsets R1, R2, . . . , Rk−1 of Z[G], where Ri = {α ∈ R | Y α = zikαY } and zk

is a primitive kth root of unity. One of the main results is Theorem 2.3.10 which

shows that these Ri are principal R0 modules. Finally in Sections 2.4, 2.5, and

2.6 we define a θ to break the system. In Section 2.7 we give a few examples.
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1.2 Description of Non-commutative NTRU

Non-commutative NTRU is a public-key cryptosystem. It was originally de-

scribed in a manuscript by Hoffstein and Silverman [6], but the present descrip-

tion comes from a paper by Coppersmith[1]. The system uses the group ring

R = Z[DN ], where DN is the dihedral group of order 2N . Later we will define the

system using other rings, so we will call this RZ to reduce confusion, but through-

out this section it is not necessary. We can also think of this as a ‘polynomial’ ring

with non-commutative variables R = Z[X, Y ]/(XN − 1, Y 2 − 1, Y X −XN−1Y ).

(This is somewhat an abuse of notation since it is normally reserved for com-

mutative polynomial rings.) Multiplication in R will be denoted by f ∗ g or fg.

Also, we need a commutative subring, R0, consisting of all elements in R that

commute with Y . In other words,

R0 = {α ∈ R | αY = Y α}

= {a0 +

(N−1)/2∑
i=1

ai(X
i +XN−i) + b0Y +

(N−1)/2∑
i=1

bi(X
i +XN−i)Y | ai, bi ∈ Z}.

The system also involves integer parameters p, q, r, s, and t with p, r, and t

small (on the order of 3 or 5) and q and s large (N is usually chosen to be

somewhat large, but smaller than q.) The parameters are large to mask part of the

message, or small so that when we encrypt and decrypt the message ‘wrapping’

modulo q does not occur. We need the assumption that p and q are prime and

are relatively prime to 2N (otherwise the system will break down). For example

Coppersmith gives the following choices of parameters in [1]:

N = 263, p = 3, q = 125003, r = 5, s = 90000, t = 3

To set up the system we look at R and R0 with restricted coefficients. We
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denote these subsets as

R{n} = {α ∈ R | the coefficients of α are in
(
−n

2
,
n

2

]
}.

The subsets we will choose our elements from are defined to be:

Sf = R0{q}

Sm = R{q}

Sφ = R0{r}

Sψ = R0{s}

Sω = R{t}

Assume Alice wants to send a message to Bob. To start Bob must choose his

private and public keys. First he chooses a random f ∈ Sf and ω ∈ Sω. Next

he computes F ∈ R0 such that f ∗ F ≡ 1 (mod q). (Please see Section 2.6 for

when such an F exists.) Bob’s public key is then h = pF ∗ω ∗ f (mod q) and the

private keys are f, F , and ω. Suppose Alice wants to send the message m ∈ Sm.

To encrypt m she first randomly chooses φ, φ′ ∈ Sφ and ψ ∈ Sψ and computes

Ψ ∈ R0{p} such that Ψ ≡ ψ (mod p). She then computes the pair (e, E) with

e ≡ φ ∗ h ∗ φ′ + ψ (mod q)

E ≡ Ψ ∗ h+m (mod q)

and sends the pair to Bob.

To decrypt the message Bob computes

a ≡ f ∗ e ∗ F ≡ pφ ∗ ω ∗ φ′ + ψ (mod q)

and then reduces this modulo p to recover Ψ ≡ ψ (mod p). Now Bob can subtract

Ψ ∗ h (mod q) from E to obtain m.
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Example 1.2.1. Let N = 7, q = 101, p = r = t = 3, and s = 50. Bob makes the

following choices:

f = −3 + 5(X +X6) + 2(X2 +X5)− (X3 +X4)

+ 2Y − 3(X +X6)Y − 5(X2 +X5)Y + (X3 +X4)Y

ω = −1 +X2 −X3 +X4 +X6 − Y +X2Y −X3Y +X4Y +X5Y

and computes the following:

F = f−1

= −39 + 30(X +X6)− 37(X2 +X5) + 12(X3 +X4)

+ 3Y − 32(X +X6)Y − 9(X2 +X5)Y + 37(X3 +X4)Y

h = Fωf

= −3− 34X + 30X2 + 17X3 − 17X4 − 27X5 + 37X6

− 3Y + 25XY − 21X2Y − 34X3Y + 34X4Y + 27X5Y − 25X6Y

Bob now makes h public and keeps f, F, and ω private.

To send Bob a message Alice makes the following choices:

φ = (X +X6)− (X2 +X5) + (X3 +X4) + Y − (X3 +X4)Y

φ′ = 1 + (X2 +X5)− (X3 +X4) + (X +X6)Y + (X3 +X4)Y

ψ = −3(X +X6) + 2(X2 +X5) + 2(X3 +X4)

+ 4Y + 3(X +X6)Y − 3(X2 +X5)Y + 4(X3 +X4)Y

She reduces ψ modulo p to get Ψ = −(X2 +X5)− (X3 +X4) + Y + (X3 +X4)Y
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and then computes the following:

e = φhφ′ + ψ

= 15− 10X + 34X2 + 26X3 − 7X4 − 9X5 − 32X6

− 2Y + 43XY − 30X2Y + 46X3Y − 14X4Y − 6X5Y − 10X6Y

E = Ψh+m

= −4− 20X − 13X2 − 34X3 + 26X4 + 19X5 + 22X6

− 11Y + 22XY + 7X2Y + 24X3Y − 25X4Y + 2X5Y − 24X6Y

using her message

m = 2 + 5X − 4X2 +X3 − 2X5 − 3X6 − 2Y +XY − 3X3Y + 5X4Y − 3X6Y.

She now sends the pair (e, E) to Bob.

Bob uses his private keys to compute:

a = feF

= 15− 12X + 8X2 + 20X3 − 1X4 + 17X5 − 30X6

− 2Y + 12XY − 12X2Y + 22X3Y + 10X4Y − 24X5Y + 21X6Y

which he then reduces modulo p to get ap = −X2−X3−X4−X5+Y +X3Y +X4Y .

Next Bob computes:

E−hap = 2+5X−4X2 +X3−2X5 +3X6−2Y +XY −3X3Y +5X4Y −3X6Y

which is the message that Alice sent.
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1.3 Coppersmith’s Attack

In [1], Coppersmith described a method of attacking this cryptosystem. Copper-

smith’s attack allows a third party to decrypt a message without any knowledge

of the private key. For the attack it is necessary to consider the subset R1 of R

defined by:

R1 = {α ∈ R | αY = −Y α}

=


(N−1)/2∑
i=1

ai(X
i −XN−i) +

(N−1)/2∑
i=1

bi(X
i −XN−i)Y

∣∣∣∣∣∣ ai, bi ∈ Z

 .

Recall that to decrypt the message Bob used f and F to create a linear map that

took the ciphertext e (mod q) to the quantity a (mod q). But it is not actually

necessary to know f and F to create a suitable linear map. It is enough to create

a linear map

θ : R (mod q) → R (mod q)

with the following properties:

• θ is the identity on R0 (mod q)

• θ maps R1 (mod q) to itself

• θ is left and right R0 linear

• θ(h) is a multiple of p and ω′ = θ(h)/p has small coefficients modulo q.

Such a θ gives us Ψ since

θ(e) ≡ θ(φ ∗ h ∗ φ′ + ψ) (mod q)

≡ φ ∗ θ(h) ∗ φ′ + ψ (mod q) since θ is R0 linear

≡ φ ∗ pω′ ∗ φ′ + ψ (mod q)

7



which reduces to Ψ modulo p since ω′ is small (so that no wrapping occurs).

Note that the function θ′(α) = f ∗ α ∗ F is such a θ and is used by Bob to

decrypt the message. We construct a θ without knowing f , F , and ω. To do this

we create a suitable ω′ as follows: We know that ω ∈ R{t} so we can write

ω =

(N−1)/2∑
i=1

(aiX
i + biX

iY ),where ai, bi ∈
(
− t

2
,
t− 1

2

]
.

Also we know that

h+ Y hY ≡ pF ∗ ω ∗ f + Y (pF ∗ ω ∗ f)Y

≡ pF (ω + Y ωY )f

≡ p(ω + Y ωY ) (mod q),

since ω + Y ωY ∈ R0, so that f and F commute with it. Now we have

h+ Y hY ≡ c0 + d0Y +

(N−1)/2∑
i=1

(
ci(X

i +XN−i) + di(X
i +XN−i)Y

)
(mod q)

where ci, di ∈ {−p(t− 1),−p(t− 2), . . . , 0, p, 2p, . . . , p(t− 1)} since if we use the

labels for the coefficients of ω given above then we have ci = p(ai + aN−i) and

di = p(bi + bN−i).

To attack the system we must choose an ω′ ∈ Sω that is ‘small enough’. We

choose such an ω′ to satisfy the following:

ω′ =

(N−1)∑
i=0

(a′iX
i + b′iX

iY )

where

if ci = 2kp then a′i = a′N−i = k

if ci = (2k + 1)p then a′i = k + 1 and a′N−i = k

if di = 2kp then b′i = b′N−i = k

if di = (2k + 1)p then b′i = k and b′N−i = k + 1
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It is now clear that ω′ satisfies

h+ Y hY ≡ p(ω′ + Y ω′Y ) (mod q)

and that it has small coefficients (on the order of ω’s coefficients).

Now we can define θ(h) = pω′ and define θ to have the other properties de-

scribed above to break the system. To get θ we use linear algebra techniques and

as long as h is invertible modulo q we can solve for θ. So we need to understand

when h will be invertible. We will do this in Section 2.6.

We will continue with the previous example.

Example 1.3.1. Let N = 7, q = 101, p = r = t = 3, s = 50, and

h =− 3− 34X + 30X2 + 17X3 − 17X4 − 27X5 + 37X6

− 3Y + 25XY − 21X2Y − 34X3Y + 34X4Y + 27X5Y − 25X6Y

e = 15− 10X + 34X2 + 26X3 − 7X4 − 9X5 − 32X6

− 2Y + 43XY − 30X2Y + 46X3Y − 14X4Y − 6X5Y − 10X6Y

E =− 4− 20X − 13X2 − 34X3 + 26X4 + 19X5 + 22X6

− 11Y + 22XY + 7X2Y + 24X3Y − 25X4Y + 2X5Y − 24X6Y

We compute

h+ Y hY = p(ω + Y ωY )

= −6 + 3(X +X6) + 3(X2 +X5)− 6Y + 6(X2 +X5)Y

= 3(−2 + (X +X6) + (X2 +X5)− 2Y + 2(X2 +X5)Y )

So ω′ = −1+X +X2−Y +X2Y +X5Y Now it is necessary to break both h and
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pω′ into their R0 and R1 parts. So we get the following:

h0 = −3− 49(X +X6)− 49(X2 +X5)

− 3Y + 3(X2 +X5)Y

h1 = 15(X −X6)− 22(X2 −X5) + 17(X3 −X4)

+ 25(X −X6)Y − 24(X2 −X5)Y − 34(X3 −X4)Y

ω′0 = h0

ω′1 = −49(X −X6)− 49(X2 −X5)

Where ω′0 + ω′1 = pω′ Next we note that (X − X6) will generate R1 as an R0

module, since

(X −X6)(X +X6) = X2 −X5

(X −X6)(X2 +X5) = −X +X6 +X3 −X4 and

(X −X6)(X3 +X4) = −X2 +X5 −X3 +X4

so

X −X6 = (X −X6) ∗ 1

X2 −X5 = (X −X6) ∗ (X +X6) and

X3 −X4 = (X −X6) ∗ (1 + (X2 +X5)).

Now we can rewrite h1 and w1 as the following:

h1 = (X −X6)(15− 22(X +X6) + 17(X2 +X5 + 1))

+ (X −X6)(25− 24(X +X6)− 34(X2 +X5 + 1))Y

w1 = (X −X6)(−49− 49(X +X6))
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This reduces our work to solving

θ(X −X6)

(
(15− 22(X +X6) + 17(X2 +X5 + 1)

+ (25− 24(X +X6)− 34(X2 +X5 + 1))Y

)
= (X −X6)(−49− 49(X +X6))

but θ(X −X6) is an element of R1 so it must have the form

(X −X6) ∗ (a+ a0(X +X6) + a1(X
2 +X5) + a2(X

3 +X4))

+(X −X6) ∗ (b+ b0(X +X6) + b1(X
2 +X5) + b2(X

3 +X4)) ∗ Y.

Let

r0 = a+ a0(X +X6) + a1(X
2 +X5) + a2(X

3 +X4)+

(b+ b0(X +X6) + b1(X
2 +X5) + b2(X

3 +X4))Y,

then we need only solve

(X −X6)r0

(
(15− 22(X +X6) + 17(X2 +X5 + 1)

+ (25− 24(X +X6)− 34(X2 +X5 + 1))Y

)
= (X −X6)(−49− 49(X +X6))

for r0. Using Maple (version 9.5) and Magma (version 2-11.14) we find that

r0 = 10 + 3(X +X6) + 7(X2 +X5) + 41(X3 +X4)

− 5Y − 6(X +X6)Y − 36(X3 +X4)Y

Now we can define the following:

θ(X −X6) = (X −X6)r0,

θ(X2 −X5) = (X −X6)(X +X6)r0, and

θ(X3 −X4) = (X −X6)(X2 +X5 + 1)r0.
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To break the system we need to find θ(e). To do this we break e into its R0 and

R1 parts and get

e0 = 15− 21(X +X6)− 38(X2 +X5)− 41(X3 +X4)

− 2Y − 34(X +X6)Y − 18(X2 +X5)Y + 16(X3 +X4)Y

e1 = 11(X −X6)− 29(X2 −X5)− 34(X3 −X4)

− 24(X −X6)Y − 12(X2 −X5)Y + 30(X3 −X4)Y.

So θ(e) reduces to

θ(e) = e0 + θ(e1)

= 15− 21X + 14X2 + 14X3 + 5X4 + 11X5 − 21X6

+ (−2 + 9X + 27X2 + 10X3 + 22X4 − 9X5 + 24X6)Y

Reducing this modulo p = 3 we get −(X2 +X5)− (X3 +X4) + (1+ (X3 +X4))Y

which should be ψ modulo p. Using this and h we compute

E − h ∗ (−(X2 +X5)− (X3 +X4) + (1 + (X3 +X4))Y )

≡ 2 + 5X − 4X2 +X3 − 2X5 − 3X6 − 2Y +XY

− 3X3Y + 5X4Y − 3X6Y (mod q),

which is the message m.

1.3.1 Why this works only for DN

To attack this system we need to be able to create θ. Using θ to break the

system relies on the fact that ω is small (which is necessary for the system to

work). It also requires us to understand the structure of R0 and R1 and the fact

that p(ω + Y ωY ) = h+ Y hY to create ω′. We use two main facts:
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• Y has order two,

• and R0 = {α ∈ R|Y α = αY } is commutative

Our goal is to show that given these necessary assumptions we can conclude that

the group is something close to DN .

We will use representation theory to study when the set {α ∈ F [G] | Y α =

αY } is commutative for Y ∈ G. This allows us to determine under what condi-

tions we can set up the system given above. It is required that R0 is commutative

to decrypt the message (i.e. when Bob computes a ≡ f ∗ e ∗ F (mod q).)

Lemma 1.3.2. Let G be a finite group, and RF = F [G] for a ring F . Let Y ∈ G

and R0,F = {α ∈ RF | Y α = αY }. Then β =
∑
g∈G

agg ∈ R0,F if and only if

β =
∑
ag

( ∑
h∈Y -orbit

h

)
where the outer sum is over representatives of the orbits

under conjugation by Y (Y -orbits) (i.e. elements of a particular Y -orbit all have

the same coefficient.)

Proof. If β =
∑
g∈G

agg ∈ R0,F then
∑
g∈G

agY gY
−1 =

∑
g∈G

agg. So aY gY −1 = ag for

all g ∈ G. Therefore β =
∑
ag

( ∑
h∈Y -orbit

h

)
. Clearly if β has the form given it

commutes with Y so it is in R0,F .

Proposition 1.3.3. Let G be a finite group, and RZ = Z[G]. Let Y ∈ G and

R0,Z = {α ∈ RZ | Y α = αY }, then R0,Z is commutative if and only if R0,C is

commutative.

Proof. This is clear from the previous lemma since it is only necessary for the sums∑
h∈Y -orbit

h to commute with each other, which is independent of the coefficients

in characteristic zero.
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This makes it possible to work over C and then deduce the results over Z

when necessary. This is useful since we already understand the representation

theory of G over C.

For a general group G it is possible for R0,F to be non-commutative as the

following shows:

Lemma 1.3.4. Let F be a finite field or an algebraically closed field and RF =

F [G] for a finite group G such that char(F ) - |G|. Let Y be an element of G. Let

ρ be an irreducible representation of G over F . If ρ(Y ) has a repeated eigenvalue

then R0,F = {α ∈ RF | Y α = αY } is not commutative.

Proof. Let ρ be an irreducible representation of G over F such that ρ(Y ) has a

repeated eigenvalue for some Y ∈ G. By Wedderburn’s theorem [13, p 142] we

know that F [G] '
⊕

Mni
(Di) where Di is a division ring over F . But if F is

algebraically closed then Di = F , and if F is finite then Di is also a finite field by

another theorem of Wedderburn [13, p 143]. So F [G] is a direct sum of matrix

rings over fields. With out loss of generality let ρ be the projection of F [G] onto

Mn1 . Then ρ(Y ) can be put into rational canonical form. Now since ρ(Y ) is

diagonalizable there are no repeated factors in the minimal polynomial and since

ρ(Y ) has a repeated eigenvalue it has a repeated block. So ρ(Y ) has the following

form: 

A1 0 · · · 0

0 A2
...

...

... · · · . . . 0

0 · · · 0 Aβ


where the Aj’s come from the irreducible factors of the characteristic polynomial

of ρ(Y ). We may assume that A1 = A2 since ρ(Y ) has a repeated eigenvalue.
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Then the following matrices both commute with ρ(Y ) (as given above) and not

with each other.

N1 =



0 I · · · 0

0 0
...

...

... · · · . . . 0

0 · · · 0 0


N2 =



0 0 · · · 0

I 0
...

...

... · · · . . . 0

0 · · · 0 0


Therefore N1 ⊕ 0 and N2 ⊕ 0 ∈ Mn1 ⊕

(⊕
j>1Mnj

)
correspond to elements in

R0,F that do not commute with each other. So R0,F is non-commutative.

We can, however, determine when R0,C (and therefore R0,Z) is commutative.

Lemma 1.3.5. Let RC = C[G] where G is a finite non-commutative group and

let Y ∈ G. If σ(Y ) has distinct eigenvalues for all irreducible representations σ

of G over C then R0,C = {α ∈ RC | Y α = αY } is commutative.

Proof. If σ is an irreducible representation of G then, since Y has finite order,

there is a basis for which σ(Y ) is diagonal and σ(Y ) has distinct eigenvalues. This

implies that all matrices that commute with ρ(Y ) are also diagonal in the same

basis. So σ(R0,C) consists of diagonal matrices in this basis, and those commute

with each other. If this is true for all representations of G then it is true for the

regular representation, which is faithful. Therefore R0,C is commutative.

Lemma 1.3.6. Let H be a subgroup of G. Then each irreducible representation

W of H maps injectively into some irreducible representation V of G.

Proof. We know that the irreducible representations of H are contained in the

irreducible representations of G since irreducible representations are contained

in the complex group ring and C[H] ⊂ C[G]. This gives that each irreducible

15



representation of H maps into each irreducible representation of G by either

the zero map or an injective map. Since not all of these maps can be zero

for a particular irreducible representation W of H, there exists an irreducible

representation V of G that W maps into injectively.

Theorem 1.3.7. Let G be a non-abelian group of order 2N where N is odd. Let

Y ∈ G have order 2 and suppose R0,Z = {α ∈ RZ | Y α = αY } is a commutative

subring of RZ = Z[G]. Then G = (Bo 〈Y 〉)⊕A, where A and B are abelian and

Y acts on A as the identity and on B by inversion.

Proof. Since Y is order two we know the only eigenvalues of σ(Y ) are 1 and

−1 for all representations σ of G over C. Therefore dim(σ(RC)) ≤ 2 for all

representations σ of G since R0,C is commutative which implies the irreducible

representations cannot have repeated eigenvalues (by Lemma 1.3.4). Since G

has order 2N where N is odd there exists H C G of index 2 with |H| = N

[2, p 124]. By Lemma 1.3.6 we know the irreducible representations of H are

contained in the irreducible representations of G and therefore H has only one

dimensional representations (the dimension of a representation must divide the

order of the group [15, p 52]) and therefore is abelian. Since H is abelian we get

that G = H o 〈Y 〉. Now Y splits H into H− ⊕ H+ where Y acts by inversion

on the elements of H− and trivially on the elements of H+. We can see this by

noting that 1 = 1−Y
2

+ 1+Y
2

(2 is invertible since N is odd). So each element can

be written as α = 1−Y
2

α+ 1+Y
2

α and Y acts on 1−Y
2

α by inversion and trivially

on 1+Y
2

α. So G = H+ × (H− o 〈Y 〉) and both H− and H+ are abelian since H

is abelian.

Theorem 1.3.8. Consider the group H− o 〈Y 〉 where H− has odd order k and is

abelian, and where Y (order two) acts on the elements of H− by inversion. Then
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H− o 〈Y 〉 = Dk (the dihedral group of order 2k) if and only if H− o 〈Y 〉 can be

generated by two elements.

Proof. Clearly Dk can be generated by two elements, so we want to show if

H− o 〈Y 〉 can be generated by two elements that it is Dk. Since H− o 〈Y 〉 is

the union of elements of H− and elements of order two there are three cases to

consider. Note that elements of order two have the form Y A for A ∈ H−.

Case 1: Both generators are in H−. This causes a contradiction since they

never generate Y 6∈ H−.

Case 2: One generator A ∈ H− and the other generator B has order 2. Now

since B has order two then B = Y C for some C ∈ H−. So BAB−1 =

Y CAC−1Y = Y AY = A−1 since C and A are in H− and therefore commute

with each other and Y acts by inversion on all elements of H−. So this is

Dk for k equal to the order of A.

Case 3: Both generators have order 2. Then they have the form Y C and Y D

where C,D ∈ H−. So consider A = Y CY D = C−1D ∈ H− and B = Y C.

Clearly A,B still generate the same group and give us Case 2.

So in all cases we conclude that H− o 〈Y 〉 is Dk for some odd k (since H has odd

order).

Putting together Theorem 1.3.7 and Theorem 1.3.8 we get the following:

Corollary 1.3.9. Assume that G is a non-abelian group of order 2N where N

is odd. Also assume that there exists an element Y of order two in G such that

G = H+ × (H− o 〈Y 〉) where H = H− ⊕H+ has order N , both H− and H+ are

abelian, and Y acts by inversion on H−. Then H− o 〈Y 〉 = Dk (the dihedral

group of order 2k) if and only if H− o 〈Y 〉 can be generated by two elements.
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We have now described all situations in which the group is generated by X

and Y with Y order two so that R0 = {α ∈ R | Y α = αY } can be defined and

is a commutative subring. So now we can set up the cryptosystem identically

to the original system (except that we carry around A in the coefficients, which

does not affect the system’s implementation). We are also able to define R1 =

{α ∈ R | Y α = −αY } which allows us to use Coppersmith’s attack to break this

slight generalization of the original system. In the next chapter we will extend

the system and attack to a much larger set of group rings.

1.4 Commutative NTRU

The commutative system is also a public key cryptosystem and is based on a

polynomial ring, R = Z[x]/(xN − 1), where N is an odd prime and (N − 1)/2

also an odd prime. NTRU was first presented by J. Hoffstein, J. Piper and J. H.

Silverman in 1996 [8]. Since then there has been a variety of research published on

the system and two different signature schemes (the first of which, NSS [5, 9], is

insecure) have been developed. The second signature scheme (NTRUSign [7]) and

the cryptosystem itself were discovered to be based on a 2N×2N lattice that can

be used to obtain a submodule of R ⊕ R. NTRU is currently owned by NTRU

Cryptosystems, Inc. based in Burlington, MA. Their website, www.ntru.com,

includes many articles and notes on the system, as well as challenges to break

implementations of the system. They also describe their current beliefs on how

secure this system is and compare it to other cryptosystems, such as RSA. In

general all polynomials have coefficients of 1, 0,−1 (it is necessary for them to

be fairly small or the system won’t work) but with varying numbers of non-zero

coefficients. Example values of a current system are: N = 503, q = 256, p = 3.
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We again assume Alice wants to send a message to Bob. Bob chooses a

private key f ∈ R that is invertible modulo both p and q (which are relatively

prime positive integers) and another polynomial g ∈ R. Bob computes f−1
q and

f−1
p , the inverses of f modulo q and p respectively. Next he computes h ≡ f−1

q g

(mod q). This h is Bob’s public key (so far everything but f and g are public).

Assume now that Alice wants to send a message, m ∈ R with coefficients small

modulo p, to Bob. Alice then chooses a random φ ∈ R and computes e ≡ pφ∗h+m

(mod q). She sends e, the encrypted message, to Bob. After Bob receives e he

computes

a ≡f ∗ e

≡f ∗ (pφ ∗ h+m)

≡f ∗ (pφ ∗ (f−1
q g) +m

≡pφ ∗ g + f ∗m (mod q)

He next regards a as a polynomial with integer coefficients and reduces it modulo

p to get f ∗m. Then he computes

f−1
p ∗ (a (mod p)) ≡ m (mod p)

to get m. This reduces to m since f and m have small coefficients.

So, as we can see, non-commutative NTRU is similar to commutative NTRU.

They both work with a group ring and work modulo q and p. They both rely

heavily on ‘smallness’ of the coefficients. But it is also clear that non-commutative

NTRU does not reduce to NTRU if we use the group ring of a commutative group.

In commutative NTRU all of the polynomials have small coefficients, but in non-

commutative NTRU f, F, ψ and m have ‘large’ coefficients. In particular it is

interesting that the message must be small in commutative NTRU, but not in
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non-commutative NTRU. It is also not necessary to have f−1
p in non-commutative

NTRU. The public keys are slightly different - in commutative NTRU we only

have one multiplication, but in non-commutative NTRU there are two.
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Chapter 2

Extensions of Non-commutative NTRU

2.1 Introduction and Extension to Other Group

Rings

We now consider not only Z[DN ] but RZ = Z[G] where G is a finite group with

two generators, X and Y , that do not commute with each other. Let the order

of X be N and the order of Y be k, with N and k distinct primes, so that the

order of G is N · k. Unless it is otherwise stated we will assume that G is the

group defined by the presentation

G = 〈X, Y | Y XY −1 = Xu, XN = 1, Y k = 1〉

where u has order k modulo N . Note that 〈X〉 / G by definition and that N − 1

must be a multiple of k (since Y needs to act non-trivially on X). We also

need the assumption that q is prime (larger than Nk, since otherwise the system

will break down, as will the attack) and that p, r, s, and t are relatively prime

to Nk. We will denote RZ modulo q as Rq and R0,Z modulo q as R0,q. The

cryptosystem is set up in exactly the same way as in Section 1.2 and R0,Z is still

the commutative subring of RZ consisting of the elements that commute with Y .
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We define the same subsets of R0,Z and RZ,

Sf = R0,Z{q}

Sm = RZ{q}

Sφ = R0,Z{r}

Sψ = R0,Z{s}

Sω = RZ{t}.

Bob chooses f ∈ Sf , ω ∈ Sω and computes F ∈ Sf such that f ∗F ≡ 1 (mod q).

Bob’s public key is then h = pF ∗ ω ∗ f (mod q) and the private keys are f and

F . Alice encrypts her message m ∈ Sm by randomly choosing φ, φ′ ∈ Sφ and

ψ ∈ Sψ. Then she computes Ψ ∈ R0,Z{p} such that Ψ ≡ ψ (mod p) and the pair

(e, E) with

e ≡ φ ∗ h ∗ φ′ + ψ (mod q)

E ≡ Ψ ∗ h+m (mod q).

She sends the pair (E, e) to Bob. To decrypt the message Bob computes

a ≡ f ∗ e ∗ F ≡ pφ ∗ ω ∗ φ′ + ψ (mod q)

and then reduces this modulo p to recover Ψ ≡ ψ (mod p). Now Bob can subtract

Ψ ∗ h (mod q) from E to obtain m.

We will give an example to help clarify the above description, but first it will

be helpful to have a better understanding of what R0,Z (or R0,q) looks like.

Let v be a multiplicative generator of (Z/NZ)∗ and m = N−1
k
−1. Recall that

u is an element of order k modulo N such that Y X = XuY ,

Definition 2.1.1. Define Wi = Xvi
+ Xviu + Xviu2

+ · · · + Xviuk−1 ∈ F [G] for

0 ≤ i ≤ m, for any ring F .
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Note that each Wi is the sum of a “Y-orbit”. It is fixed under conjugation by

Y and therefore the Wi are elements of R0,F = {α ∈ RF | Y α = αY }.

Lemma 2.1.2. The elements of the subring R0,F = {α ∈ RF | Y α = αY } have

the following form:

α = P (Y ) +W0P0(Y ) +W1P1(Y ) + · · ·+WmPm(Y )

where P, P0, P1, . . . , Pm are polynomials in Y with coefficients in F .

Proof. This is simply a restatement of Lemma 1.3.2.

There is an example of this in Section 2.7.

2.2 Preliminary Representation Theory

In subsection 1.3.1 we stated that F [G], where F is a field with char(F ) - |G|, is

isomorphic to a direct sum of matrix rings over division rings [13, p 142]. We may

use representation theory to directly see what these rings are in the C[G] case.

Let ζ ∈ C be a primitive N th root of unity and zk ∈ C be a primitive kth root of

unity. Recall that m = N−1
k
− 1, v is a multiplicative generator of (Z/NZ)∗, and

that u is defined such that Y X = XuY . All representations in this section are

over C unless otherwise stated.

Lemma 2.2.1. Define the map τ : G → C∗ by τ(X) = 1, τ(Y ) = zk, and τ is

multiplicative. Then 1, τ, τ 2, τ 3, . . . , τ k−1 are one-dimensional irreducible repre-

sentations of G.

Proof. This is trivial since the powers of τ are lifts of the irreducible representa-

tions of G/〈X〉.
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Lemma 2.2.2. The representations {ρ0, ρ1, ρ2, . . . , ρm} defined by the following:

ρi(X) =



ζv
i

ζv
iu

ζv
iu2

. . .

ζv
iuk−1


and

ρi(Y ) =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

...
...

. . . . . . . . .
...

0 0 · · · 0 1 0

0 0 · · · 0 0 1

1 0 · · · 0 0 0


.

are irreducible representations of G over C of dimension greater than one.

Proof. We need to show that each ρi preserves the group action. We know

ρi(Y X) = ρi(Y )ρi(X) =



0 ζv
iu 0 0 · · · 0

0 0 ζv
iu2

0 · · · 0

...
...

. . . . . . . . .
...

0 0 · · · 0 ζv
iuk−2

0

0 0 · · · 0 0 ζv
iuk−1

ζv
i

0 · · · 0 0 0


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So, now we need to show that this is equal to ρi(X
uY ), but this is clear since

ρi(X
u) =



ζv
iu

ζv
iu2

ζv
iu3

. . .

ζv
iuk


and multiplication by ρi(Y ) on the right clearly gives the previous matrix, since

uk = 1. Next we want to show that the only fixed subspaces of ρi are Ck and

{0}. First consider the fact that ρi(X) is diagonal with distinct entries, so only

diagonal matrices commute with it. Now, ρi(Y ) is an order k permutation, so

the only diagonal matrices that it commutes with are scalar. Therefore the only

matrices that commute with all ρ(g) are scalar. Suppose that W ⊂ Ck is fixed

by ρ and that W ′ is a G-stable complement of W . Let P be the projection map

from Ck = W ⊕ W ′ onto W . Then P commutes with ρ since for any g ∈ G,

w ∈ W and w′ ∈ W ′ we know

Pρ(g)(w + w′) = P (ρ(g)w + ρ(g)w′)

= P (ρ(g)w)

= ρ(g)w

= ρ(g)P (w + w′)

Therefore P is scalar, so W is either Ck or {0}.

Theorem 2.2.3. The following is a complete list of the irreducible representa-

tions of G: {1, τ, τ 2, τ 3, . . . , τ k−1, ρ0, ρ1, ρ2, . . . , ρm}
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Proof. All of the listed representations are distinct since ρi(X) and ρj(X) have

distinct eigenvalues for distinct i and j and τ i(Y ) and τ j(Y ) have distinct eigen-

values for distinct i and j. There are k one-dimensional representations and m+1

representations of dimension k, so the sum of the squares of the dimensions of

the representations is

k · 12 + (m+ 1) · k2 = k + (
N − 1

k
)k2 = k +Nk − k = Nk

which is the order of G. Therefore there are no other irreducible representations.

So we have the representations of G and therefore we know that C[G] '

Ck ⊕Mk(C)(m+1). Now we can define the following representation of G over C.

Definition 2.2.4. Let ρ̄ : G→M(m+1)k(C) be the representation defined by:

ρ̄(X) =



ρ0(X)

ρ1(X)

. . .

ρm(X)


and

ρ̄(Y ) =



ρ0(Y )

ρ1(Y )

. . .

ρm(Y )


Next, we perform a change of basis on ρ̄ to get the following representation

ρ from G (over Zq) into the matrix ring M = M(m+1)k(Zq). Also, we give a
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conjecture of the form of ρ(Y ) that would give ρ as mapping into Z rather than

Zq.

Theorem 2.2.5. Consider the matrix

T =



1 1 . . . 1

1 + ζ−1 1 + ζ−u . . . 1 + ζ−v
muk−1

1 + ζ−1 + ζ−2 1 + ζ−u + ζ−2u . . . 1 + ζ− + ζ−2·vmuk−1

...
...

. . .
...

1 + · · ·+ ζ−(N−2) 1 + · · ·+ ζ−2·(N−2) . . . 1 + · · ·+ ζ−(N−2)·vmuk−1


∈ Mmk(C) (the order of the columns follows the order of ρ0, ρ1, . . . , ρm). T is a

change of basis matrix that gives

T ρ̄(X)T−1 = ρ(X) =



0 0 0 · · · 0 −1

1 0 0 · · · 0 −1

0 1 0 · · · 0 −1

0 0 1 · · · 0 −1

...
...

...
. . .

...
...

0 0 0 · · · 1 −1


.

Define ρ by ρ(α) = T ρ̄(α)T−1 for all α ∈ G. Then ρ : G → M(m+1)k(Q) is a

representation. Also the only denominators that appear in ρ(g) for any g ∈ G

are powers of N .

Proof. T ’s columns are the eigenvectors of X and therefore it is the change of

basis matrix that takes the diagonal form of X to its rational canonical form. T
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can be transformed by row operations into the following:

1 1 . . . 1

ζ−1 ζ−u . . . ζ−v
muk−1

ζ−2 ζ−2u . . . ζ−2·vmuk−1

ζ−3 ζ−3u . . . ζ−3·vmuk−1

...
...

. . .
...

ζ−(N−2) ζ−(N−2)·u . . . ζ−(N−2)·vmuk−1


which is a Vandermonde matrix and therefore its determinant is a product of (ζa−

ζb) for various a and b. Now each (ζa − ζb) divides N , so the only denominators

that can arise from the change of basis divide a power of N . Therefore the

entries of N `T−1 are algebraic integers for some `, so N `ρ(Y ) = T ρ̄(Y )N `T−1

also has entries that are algebraic integers. We need to show that the entries are

rational. To do this we show that ρ(Y ) is fixed by the Galois group of Q[ζ]. Let

σ ∈ Gal(Q[ζ]/Q). Then there exists Qσ ∈ M(m+1)k(C) such that σ(T ) = TQσ

and Qσ is a permutation matrix that permutes the columns of ρ̄. So

σ(ρ(Y )) = σ(T ρ̄(Y )T−1)

= σ(T )σ(ρ̄(Y ))σ(T−1)

= TQσσ(ρ̄(Y ))Q−1
σ T−1.

Now ρ̄(Y ) is rational and therefore is fixed by all elements of Gal(Q(ζ)/Q). Note

ρ̄(Y ) = Qσu and since Gal(Qζ/Q) is abelian, Qσ and Qσu commute. Therefore

we get

TQσσ(ρ̄(Y ))Q−1
σ T−1 = T ρ̄(Y )T−1 = ρ(Y ).

So we know that ρ(Y ) has rational entries, with the only possible denominators

integer powers of N .
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Corollary 2.2.6. The representation ρ given above can be reduced modulo q to

a representation from G to M(m+1)k(Zq)

Proof. We have shown that the only denominators that arise are primes lying over

N , therefore we can simply reduce each entry modulo q to get a representation

into M(m+1)k(Zq).

Through computing many examples we believe that ρ(Y ) actually lies in

M(m+1)k(Z). It seems to have a nice pattern of zeros, ones, and negative ones.

The following matrices are examples of ρ(Y ) that support the conjecture below:

This is for N = 19, k = 3, and u = 7:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

1 0 −1 1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

1 0 −1 1 0 0 0 0 0 0 −1 1 0 −1 1 0 0 0

1 0 −1 1 0 −1 1 0 0 0 −1 1 0 −1 1 0 0 0

1 0 −1 1 0 −1 1 0 0 0 −1 1 0 −1 1 0 −1 1

1 0 −1 1 0 −1 1 0 −1 1 −1 1 0 −1 1 0 −1 1

0 1 −1 1 0 −1 1 0 −1 1 −1 1 0 −1 1 0 −1 1

0 1 −1 1 0 −1 1 0 −1 1 −1 0 1 −1 1 0 −1 1

0 1 −1 0 1 −1 1 0 −1 1 −1 0 1 −1 1 0 −1 1

0 1 −1 0 1 −1 1 0 −1 1 −1 0 1 −1 0 1 −1 1

0 1 −1 0 1 −1 0 1 −1 1 −1 0 1 −1 0 1 −1 1

0 1 −1 0 1 −1 0 1 −1 1 −1 0 1 −1 0 1 −1 0

0 1 −1 0 1 −1 0 1 −1 0 0 0 1 −1 0 1 −1 0

0 0 0 0 1 −1 0 1 −1 0 0 0 1 −1 0 1 −1 0

0 0 0 0 1 −1 0 1 −1 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0


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This is for N = 19, k = 3, and u = 11:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 −1 1 0 0 0 0 0 −1 1 0 0 0

1 −1 1 0 0 0 −1 1 0 0 0 0 0 −1 1 0 0 0

1 −1 1 0 0 0 −1 1 −1 1 0 0 0 −1 1 0 0 0

1 −1 1 0 0 0 −1 1 −1 1 0 0 0 −1 1 −1 1 0

1 −1 1 −1 1 0 −1 1 −1 1 0 0 0 −1 1 −1 1 0

1 −1 1 −1 1 0 −1 1 −1 1 −1 1 0 −1 1 −1 1 0

1 −1 1 −1 1 0 −1 1 −1 1 −1 1 0 −1 1 −1 1 −1

1 −1 1 −1 1 −1 0 1 −1 1 −1 1 0 −1 1 −1 1 −1

1 −1 1 −1 1 −1 0 1 −1 1 −1 1 −1 0 1 −1 1 −1

0 0 1 −1 1 −1 0 1 −1 1 −1 1 −1 0 1 −1 1 −1

0 0 1 −1 1 −1 0 0 0 1 −1 1 −1 0 1 −1 1 −1

0 0 1 −1 1 −1 0 0 0 1 −1 1 −1 0 0 0 1 −1

0 0 0 0 1 −1 0 0 0 1 −1 1 −1 0 0 0 1 −1

0 0 0 0 1 −1 0 0 0 0 0 1 −1 0 0 0 1 −1

0 0 0 0 1 −1 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0


This is for N = 11, k = 5, and u = 4:

1 0 0 0 0 0 0 0 0 0

1 0 −1 1 0 0 0 0 0 0

1 0 −1 1 0 −1 1 0 0 0

1 0 −1 1 0 −1 1 0 −1 1

0 1 −1 1 0 −1 1 0 −1 1

0 1 −1 0 1 −1 1 0 −1 1

0 1 −1 0 1 −1 0 1 −1 1

0 1 −1 0 1 −1 0 1 −1 0

0 0 0 0 1 −1 0 1 −1 0

0 0 0 0 0 0 0 1 −1 0



.
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This is for N = 11, k = 5, and u = 5:

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 −1 1

1 0 0 0 0 0 −1 1 −1 1

1 0 0 0 −1 1 −1 1 −1 1

1 0 −1 1 −1 1 −1 1 −1 1

0 1 −1 1 −1 1 −1 1 −1 1

0 1 −1 1 −1 1 −1 1 −1 0

0 1 −1 1 −1 1 −1 0 0 0

0 1 −1 1 −1 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0



Conjecture 2.2.7. Let N − 1 = u · a+ b and define eA..B to be the column with

ones in positions A through B and zeros elsewhere, and −eA..B to be the column

with negative ones in positions A through B and zeros elsewhere. Now define the

following matrix:

B1 =

(
e1..u eu+1..2u · · · e(a−1)·u+1..a·u −e2..a·u

)
and let B2 be B1 shifted down by one with the new top row all zeros, B3 be B2

shifted down by one with the new top row all zeros, etc. So each B` has a + 1

columns. Let N − 1 = (a+ 1) · c+ d, then ρ(Y ) has the following form:

(
B1 B2 · · · Bc Bc+1

)
with Bc+1 truncated at the dth column.
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2.3 Extension of Coppersmith’s Attack

For the attack we need to do more work than in the DN case, but just like in the

DN case we only need knowledge of the system setup (i.e. N,R,R0, q, p, r, s, t)

and the public information (i.e. h) to break the system. Let S be the ring of

integers for a number field such that S contains ζ (a primitive N th root of unity)

and zk, a primitive kth root of unity. Let Q be a prime ideal in S such that

Q∩Z = qZ. We need to move to an extension of Z since we do not always know

that a primitive kth root of unity modulo q exists. Let RS = S[G]. Let R0,S

be the elements that commute with Y , RQ = RS (mod Q), and R0,Q = R0,S

(mod Q) .

To start we consider the following subsets of RQ:

R1 = {α ∈ RQ | Y α = zkαY }

R2 = {α ∈ RQ | Y α = z2
kαY }

... =
...

Rk−1 = {α ∈ RQ | Y α = zk−1
k αY }.

Note that since we only define these Rj’s modulo Q we won’t worry about adding

the subscriptQ. One of the key results of this section is Theorem 2.3.10. It proves

that each of these Ri are principal R0,Q modules. The following lemma shows

that each Rj has a structure similar to R0,Q.

Definition 2.3.1. Define Wi,j = Xvi
+z−jk Xviu+z−2j

k Xviu2
+· · ·+z−(k−1)j

k Xviuk−1

for 0 ≤ j ≤ k − 1 and for 0 ≤ i ≤ m. (For j = 0 we get the Wi as defined for

R0,Q.)

Lemma 2.3.2. The elements of the subset Rj as defined above have the following

form for 1 ≤ j ≤ k − 1:
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P (Y ) +W0,jP0(Y ) +W1,jP1(Y ) + · · ·+Wm,jPm(Y )

Proof. Follows just as in the proof of Lemma 1.3.2.

Note that only R0,Q is actually a subring. The other Rj are closed under

addition but not multiplication and in fact are R0,Q modules.

Lemma 2.3.3. Let α ∈ Ri and β ∈ Rj for some i, j ∈ {1, 2, . . . , k − 1}. Then

αβ ∈ Ri+j.

Proof. Conjugation of αβ by Y gives the following:

Y (αβ)Y −1 = (Y αY −1)(Y βY −1)

= zikαz
j
kβ

= zi+jk αβ.

Therefore αβ ∈ Ri+j.

Definition 2.3.4. Define σ as the action of conjugation by Y on RQ. Define

πj ∈ End(RQ) by πj = (I + z−jk σ+ z−2j
k σ2 + · · ·+ z

−(k−1)j
k σk−1) for 0 ≤ j ≤ k− 1,

where I represents the identity action on RQ.

Lemma 2.3.5. We have the following:

Rj = {α ∈ RQ | σ(α) = zjkα}

= {α ∈ RQ | α =
k−1∑
`=0

[
m∑
i=0

ai,`πj(X
vi

)

]
Y `}

for 0 ≤ j ≤ k − 1 (where R0 = R0,Q).

Proof. Given the definition of the πj, Lemma 2.1.2, and Lemma 2.3.2, the result

is clear.
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Theorem 2.3.6. The group ring RQ breaks into the sum R0,Q + R1 + · · ·Rk−1

and each element of R can be written uniquely as a sum of this form.

Proof. Let π = π0 + π1 + · · ·+ πk−1. Then π ≡ k · I (mod Q) since 1 + zk + z2
k +

· · · + zk−1
k ≡ 0 (mod Q). Now by Lemma 1.3.2 we know that π0(α) ∈ R0,Q and

similarly for any α ∈ RQ, πj(α) ∈ Rj for all j. Then kα ≡ π(α) ≡ π0(α)+π1(α)+

· · ·+πk−1(α) (mod Q), which gives us kα as an element of the sum. Then dividing

by k modulo Q gives the desired result. Suppose that r ∈ R can be written as

r0 + r1 + · · ·+ rk−1 and as r′0 + r′1 + · · ·+ r′k−1. Then the difference of these two

sums is zero. Therefore
k−1∑
j=0

zajk Y
j(r0 + r1 + · · ·+ rk−1− r′0− r′1−· · ·− r′k−1)Y

−j =

0. But this sum is equal to k(ra − r′a), so ra − r′a = 0. This is true for any

choice of a and therefore each element of R can uniquely be written as a sum in

R0,Q +R1 + · · ·Rk−1.

Lemma 2.3.7. Let F be a field. Let M ∈ M`(F) be a matrix, let f(t) ∈ F(t),

and suppose the number of elements of F is greater than `. If every F-linear

combination of f(M), f(M2), . . . , f(Mk−1) is not invertible in F, then they have

a common non-zero null space element of Fk−1.

Proof. For all choices of a1, a2, . . . , ak−1 ∈ F:

det
(
a1f(M) + a2f(M2) + · · ·+ ak−1f(Mk−1)

)
= g(a1, a2, . . . , ak−1) = 0.

Note g is a polynomial of degree less than or equal to ` in every variable and it

is the zero function on Fk−1. We want to show that g is the zero polynomial.

Suppose that a1 through ak−2 are chosen, then g reduces to a polynomial in

ak−1 that is the zero function on F with degree less than `. Therefore it is the

zero polynomial on F. This implies that the coefficients are zero polynomials in

a1, a2, . . . , ak−2. Now by induction on k we get that g(t1, t2, . . . , tk−1) is the zero
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polynomial in F[t1, t2, . . . , tk−1]. Now we know there exists a matrix A over F̄

such that

AMA−1 =



λ1 ∗ ∗ · · · ∗

0 λ2 ∗ · · · ∗
...

. . . . . . . . .
...

0 · · · 0 λ`−1 ∗

0 0 · · · 0 λ`


.

is the Jordan form of M , Therefore

A

(
k−1∑
i=1

tif(M i)

)
A−1 =



k−1∑
i=1

tif(λi
1) ∗ ∗ · · · ∗

0
k−1∑
i=1

tif(λi
2) ∗ · · · ∗

...
. . . . . .

...

0 · · · 0
k−1∑
i=1

tif(λi
`−1) ∗

0 0 · · · 0
k−1∑
i=1

tif(λi
`)



This gives us that g(t1, t2, . . . , tk−1) = 0 =
∏̀
j=1

(
k−1∑
i=1

tif(λij)

)
, so

k−1∑
i=1

tif(λij0) = 0

for some j0 which corresponds to a true eigenvector of M . Therefore f(λij0) = 0

for all i. Let ej0 be the jth
0 basis vector in F̄`, then Af(M i)A−1ej0 = 0 for all

i and so f(M i)A−1ej0 = 0 for all i since A is invertible. Hence A−1ej0 ∈ F̃k−1

is a common null space vector for {f(M), f(M2), . . . f(Mk−1)}, where F̃ is an

extension of F of dimension r for some r ∈ Z. Let F̃ = Fβ1 + Fβ2 + · · · + Fβr,

then A−1ej0 = v1β1 + v2β2 + · · · + vrβr for some vi ∈ Fm. This gives us that

f(M i)v1β1 + f(M i)v2β2 + · · · + f(M i)vrβr = 0 for all i, which implies that

f(M i)v1 = 0 for all i since the βi are linearly independent. Therefore v1 is a

common null space element in F`.
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Lemma 2.3.8. For any invertible matrix M , the inverse of M is a polynomial

in M .

Proof. Let P (t) = ant
n + an−1t

n−1 + · · ·+ a1t+ a0 be the minimal polynomial of

M . Then P (M) = 0 and a0 6= 0 since zero is not an eigenvalue. So M(−an

a0
Mn−1+

−an−1

a0
Mn−2 + · · ·+ −a1

a0
) = I and therefore −an

a0
Mn−1 + −an−1

a0
Mn−2 + · · ·+ −a1

a0
is

the inverse of M .

Definition 2.3.9. Define the polynomial

fj(t) = t+ z−jk tu + z−2j
k tu

2

+ · · ·+ z
−(k−1)j
k tu

k−1

for 1 ≤ j ≤ k − 1.

Note that fj(X
`) ∈ Rj for all ` ≥ 0 and for 1 ≤ j ≤ k − 1.

The following is the key result that allows us to extend Coppersmith’s attack

to these group rings.

Theorem 2.3.10. For 1 ≤ j ≤ k − 1, the subset Rj of RQ is equal to ΓjR0,Q

and R0,QΓj for some Γj ∈ Rj.

Proof. Fix j. Suppose for all ai ∈ S the sum
k−1∑
i=1

aifj(ρ(X)i) is not invertible

modulo Q. Then we know fj(ρ(X)), fj(ρ(X
2)), . . . , fj(ρ(X

k−1)) have a common

null space element moduloQ and the proof of Lemma 2.3.7 gives us that fj(ζ
ai) ≡

0 in S/Q for some a and for all 1 ≤ i ≤ k − 1. We also know that fj(1) is zero

in S/Q since its coefficients sum to zero modulo Q. Therefore

1 1 1 . . . 1

ζ ζu ζu
2

. . . ζu
k−1

ζ2 ζ2u ζ2u2
. . . ζ2uk−1

...
...

...
. . .

...

ζk−1 ζ(k−1)u ζ(k−1)u2
. . . ζ(k−1)uk−1





1

z−jk

z−2j
k

...

z
−(k−1)j
k


= 0
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in S/Q. But it is a Vandermonde matrix, so its determinant is a product of

(ζa−ζb) for various a and b and these divide N . Therefore the matrix is invertible

modulo Q. This is a contradiction since it has a non-empty null space. Therefore

there exists Γ′
j =

k−1∑
i=1

aifj(ρ(X
i)) that is invertible modulo Q. We can then

pull this back to RS to get Γj =
k−1∑
i=1

aifj(X
i) and since fj(X

i) ∈ Rj for all i,

Γj ∈ Rj. Since Γ′
j is an invertible matrix its inverse, r′, is a polynomial in Γ′

j

(by Lemma 2.3.8). Hence r′ is in the image of ρ. So there exists an r ∈ R with

ρ(r) = r′. Now since I = Γ′
jr

′ = ρ(Γjr) (where I is the identity matrix) we

get that Γjr − 1 is in the kernel of ρ. The kernel of ρ is contained in R0,Q, so

Γjr−1 ∈ R0,Q. But 1 ∈ R0,Q, so Γjr ∈ R0,Q. Now we need to show that r can be

chosen to be in R−j, so that rβ ∈ R0,Q for all β ∈ Rj. Let r = r0 + r1 + · · ·+ rk−1

where ri ∈ Ri. Then

Γjr = Y ΓjrY
−1

= z−jk ΓjY (r0 + r1 + · · ·+ rk−1)Y
−1

= z−jk Γj(r0 + z−1
k r1 + · · ·+ z

−(k−1)
k rk−1).

Now Γjri ∈ Rj+i for 0 ≤ i ≤ k − 1, so from the expansion of the left hand side

we get Γjri = z−j−ik Γjri for all i. Therefore Γjri = 0 for i 6= −j. So Γjr = Γjr−j

and ρ(Γj)ρ(r) = ρ(Γj)ρ(r−j). Now since ρ(Γj) = Γ′
j is invertible, ρ(r) = ρ(r−j).

Therefore without loss of generality we may assume that r ∈ R−j. Let β ∈ Rj

then rβ ∈ R0,Q and Γjrβ ∈ Rj. Now ρ(β − Γjrβ) = 0 so β − Γjrβ ∈ R0,Q.

But both summands are elements of Rj and therefore they must be equal. Since

β ∈ Rj we get β = Γjα where α = rβ ∈ R0,Q which gives Rj = ΓjR0,Q. Now it is

clear from the proof that we could have also written Rj = R0,QΓj with the same

Γj since Γ′
j and r′ commute with each other (see proof of Lemma 2.3.8).
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Next we want to show that it is not necessary to use this technique to find

all of the Γj (unless zk exists modulo q). Let F = S/Q. Then F is a finite

extension of Fq. Let the number of Gal(F/Fq) orbits of zk be δ. Let zj1k , z
j2
k , . . . z

jδ
k

be representatives of these orbits. Then we need to find Γj1 ,Γj2 , . . . ,Γjδ using

Theorem 2.3.10, but we can obtain the rest of the Γj by applying elements of

Gal(F/Fq) to these Γj. This allows us to write each element α of R in the

following way:

α = α0 +
δ∑
i=1

∑
σ∈Gal(Q[zk]/Q)

σ(Γji)σ(α0,ji).

2.4 Breaking the System when zk exists

Now we would like to break the system. This requires the creation of θ. Recall

that θ needs the following properties:

• θ is the identity on R0 (mod q)

• θ maps Rj (mod q) to itself for all j

• θ is left and right R0 linear

• θ(h) is a multiple of p and ω′ = θ(h)/p has small coefficients modulo q.

If we can define such a θ then θ(e) (mod q) modulo p will allow us to find the

message m that was sent. All that is left to be able to create θ is to define ω′.

We do this by noting that

h+Y hY −1+Y 2hY −2+· · ·Y −1hY = p(ω+Y ωY −1+Y 2ωY −2+· · ·Y −1ωY ) ∈ R0,q

just as before. So we create our ω′ by dividing the coefficients of this sum into k

equal (or as close to equal as possible) parts to define ω′ modulo q. This ω′ will
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have coefficients of the same size as ω, so that the coefficients are ‘small enough’

to break the system.

We solve θ(h) = pω′ by using Theorem 2.3.6 and Theorem 2.3.10 to reduce it

to solving equations in R0,q. Let

h = h0 + h1 + h2 + · · ·+ hk−1

= h0 + Γ1h0,1 + Γ2h0,2 + . . .Γk−1h0,k−1

and

pω′ = ω′0 + ω′1 + ω′2 + · · ·+ ω′k−1

= ω′0 + Γ1ω
′
0,1 + Γ2ω

′
0,2 + . . .Γk−1ω

′
0,k−1

(incorporating the p into the notation) where hj, ω
′
j ∈ Rj and h0,j, ω

′
0,j ∈ R0,q

for all j. Now since θ takes Rj into itself for 1 ≤ j ≤ k − 1, we must have

θ(Γj) = Γjr0,j for some r0,j ∈ R0,q. Therefore

θ(h) = θ(h0 + Γ1h0,1 + Γ2h0,2 + . . .Γk−1h0,k−1)

= h0 + θ(Γ1h0,1) + θ(Γ2h0,2) + · · ·+ θ(Γk−1h0,k−1)

= h0 + θ(Γ1)h0,1 + θ(Γ2)h0,2 + . . . θ(Γk−1)h0,k−1

= h0 + Γ1r0,1h0,1 + Γ2r0,2h0,2 + . . .Γk−1r0,k−1h0,k−1

This must equal

pω′ = ω′0 + Γ1ω
′
0,1 + Γ2ω

′
0,2 + . . .Γk−1ω

′
0,k−1

Since R = ⊕Rj we now need only solve r0,jh0,j = ω′0,j for r0,j for all j such that

1 ≤ j ≤ k − 1. To do this we can write down the system of equations or the

matrix that represents this system for the coefficients of r0,j and solve using linear

algebra techniques. Again we need to worry about when a solution exists. This

is discussed in Section 2.6. There is an example in Section 2.7.
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Theorem 2.4.1. Define θ(α) = r̄0,jα for α ∈ Rj where r̄0,j is such that r̄0,jΓj =

Γjr0,j with r0,j defined above. Then θ is a ring homomorphism from R to R that

is left and right R0 linear.

Proof. We know that each Rj is a principal left and right R0 module, so there

exists such an r̄0,j ∈ R0. Let α ∈ Rj and x, y ∈ R0 then

θ(xαy) = r̄0,jxαy

= xr̄0,jαy since R0 is commutative

= xθ(α)y

Therefore θ is left and right R0 linear.

2.5 When zk does not exist modulo q

Creating the system is exactly the same as when zk does exist modulo q. The

difference arrives when we try to break the system. If zk does not exist then we

need S and Q to be as described in Section 2.3 and then everything works as in

the last section except that we must show that θ(e) is rational.

Theorem 2.5.1. Let τ ∈ Gal(Q[zk]/Q), then τ(θ(e)) = θ(e).

Proof. We know that

θ(e) = θ(e0 + Γ1e0,1 + Γ2e0,2 + · · ·+ Γk−1e0,k−1)

= e0 + θ(Γ1)e0,1 + θ(Γ2)e0,2 + · · ·+ θ(Γk−1)e0,k−1

= e0 + Γ1r0,1e0,1 + Γ2r0,2e0,2 + · · ·+ Γk−1r0,k−1e0,k−1.
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Now by the discussion at the end of the previous section we also know that

θ(e) = e0 +
δ∑
i=0

∑
σ∈Gal(Q[zk]/Q)

σ(Γji)σ(r0,ji)σ(e0,ji).

This sum is clearly invariant under the Galois group, so θ(e) is rational.

So to solve in this situation it is necessary to work in an extension field, but

the results will lie in the base field. Note that Theorem 2.4.1 still applies here,

so that θ is both left and right R0 linear.

There is an example in Section 2.7.

2.6 Invertibility of h

We know that finding θ reduces to solving r0,jih0,ji = ω0,ji for r0,ji for 1 ≤ i ≤ δ. It

suffices to invert h0,ji . Now h0,ji ∈ R0,S and if we assume it is a random element,

then we can use the following argument to determine the probability that it is

invertible.

We know that R = ⊕Mni
(Fqmi ) by [13, p 142]. Now Y maps to a permutation

matrix of order k in each of the matrix rings where ni 6= 1 under the maps ρi.

We know that Y is diagonalizable and has distinct eigenvalues. Suppose that

Bρi(Y )B−1 is diagonal. Then the only matrices that commute with Bρi(Y )B−1

are also diagonal. Let D be such a matrix. Then B−1DB commutes with ρi(Y ),

so R0 maps into this set of matrices contained in ⊕Mni
(Fqmi ). We know that

D is an ni by ni matrix, so in the worst case it has the following probability of

being invertible: (
1− 1

qmi

)ni

.
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So the total chance of being invertible is at least

∏
i

(
1− 1

qmi

)ni

We know that there are k one-dimensional representations and N−1
k

representa-

tions of dimension k. Also, 1 will be a lower bound on the mi’s so we get the

probability is greater than or equal to(
1− 1

q

)1∗k+k∗N−1
k

=

(
1− 1

q

)k+N−1

.

This is approximately

1− k +N − 1

q

which is close to 1 as long as q is large enough compared to N and k, and this

is a required for the system to work. If we recall the numbers that Coppersmith

gave as an example, N = 263, k = 2, q = 125003 we get the probability that h0,1

is invertible is at least 97.88%.

2.7 Examples

Example 2.7.1. Let N = 7, k = 3, q = 199, p = r = t = 3, and s = 50.

So our group G = 〈X, Y | X7 = 1, Y 3 = 1, Y X = X2Y 〉. In this situation a

primitive third root of unity does exist modulo 199 and is equal to 92 modulo 199.

To simplify notation let:

W0 = X +X2 +X4

W1 = X3 +X6 +X5
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The following is the system set-up, the encryption, and decryption.

Bob makes the following choices:

f = 66 + 91W0 − 26Y + 64W0Y − 2W1Y + 37Y 2 + 18W0Y
2 + 35W1Y

2

ω = 1 +X −X2 +X3 −X4 +X5 −X6

+ Y −XY +X2Y +X4Y −X5Y

− Y 2 +XY 2 +X2Y 2 +X3Y 2 +X4Y 2 −X5Y 2

and computes the following:

F = f−1

= −98− 78W0 + 5W1 − 74Y − 70W0Y + 56W1Y

− 29Y 2 + 64W0Y
2 − 65W1Y

2

h = Fωf

= 3− 96X − 65X2 + 83X3 − 41X4 −X5 − 79X6

+ 3Y + 6XY − 16X2Y − 80X3Y + 13X4Y + 12X5Y + 65X6Y

− 3Y 2 + 81XY 2 + 56X2Y 2 + 71X4Y 2 + 40X5Y 2 − 40X6Y 2

Bob now makes h public and keeps f, F, and ω private.

To send Bob a message Alice makes the following choices:

φ = −W0 + Y +W0Y +W1Y − Y 2 −W1Y
2

φ′ = 1 +W0 +W1 +W0Y + Y 2 +W1Y
2

ψ = −23− 6W0 − 7W1 + 7Y − 3W0Y − 17W1Y − 3Y 2 + 13W0Y
2 − 17W1Y

2

She reduces ψ modulo p to get Ψ = 1−W1 +Y +W1Y +W0Y
2 +W1Y

2 and then
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computes the following:

e = φhφ′ + ψ

= −41− 46X + 99X2 − 44X3 − 35X4 + 41X5 + 36X6

+ 22Y + 75XY − 59X2Y −X3Y − 70X4Y − 81X5Y + 4X6Y

− 25XY 2 − 36X2Y 2 + 4X3Y 2 − 90X4Y 2 −X5Y 2 − 81X6Y 2

E = Ψh+m

= −36 + 58X − 38X2 − 89X3 + 26X4 + 39X5 −X6

− 10Y + 70XY + 5X2Y + 22X3Y − 48X4Y − 13X5Y + 39X6Y

+ 48Y 2 − 78XY 2 + 72X2Y 2 − 43X3Y 2 − 79X4Y 2 +X5Y 2 + 30X6Y 2

using her message

m = −48 + 22X2 − 3X3 + 6X4 − 23X5 − 31X6

− 19Y + 48XY − 36X2Y + 27X3Y − 89X5Y + 92X6Y

+ 54Y 2 − 28XY 2 + 81X2Y 2 − 81X3Y 2 + 49X4Y 2 + 60X5Y 2 − 3X6Y 2

She now sends the pair (e, E) to Bob.

Bob uses his private keys to compute:

a = feF

= −41 + 6X + 12X2 + 23X3 + 17X5 − 7X6

+ 22Y − 12XY − 24X2Y − 44X3Y − 18X4Y − 14X5Y − 20X6Y

+ 10XY 2 + 16X2Y 2 − 20X3Y 2 + 22X4Y 2 − 44X5Y 2 − 14X6Y 2

which he then reduces modulo p to get

ap = 1−X3 −X5 −X6 + Y +X3Y +X5Y +X6Y

+XY 2 +X2Y 2 +X3Y 2 +X4Y 2 +X5Y 2 +X6Y 2.
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Next Bob computes:

E − hap = −48 + 22X2 − 3X3 + 6X4 − 23X5 − 31X6

− 19Y + 48XY − 36X2Y + 27X3Y − 89X5Y + 92X6Y

+ 54Y 2 − 28XY 2 + 81X2Y 2 − 81X3Y 2 + 49X4Y 2 + 60X5Y 2 − 3X6Y 2

which is the message that Alice sent.

To break the system we only know:

h = 3− 96X − 65X2 + 83X3 − 41X4 −X5 − 79X6

+ 3Y + 6XY − 16X2Y − 80X3Y + 13X4Y + 12X5Y + 65X6Y

− 3Y 2 + 81XY 2 + 56X2Y 2 + 71X4Y 2 + 40X5Y 2 − 40X6Y 2

e = −41− 46X + 99X2 − 44X3 − 35X4 + 41X5 + 36X6

+ 22Y + 75XY − 59X2Y −X3Y − 70X4Y − 81X5Y + 4X6Y

− 25XY 2 − 36X2Y 2 + 4X3Y 2 − 90X4Y 2 −X5Y 2 − 81X6Y 2

E = −36 + 58X − 38X2 − 89X3 + 26X4 + 39X5 −X6

− 10Y + 70XY + 5X2Y + 22X3Y − 48X4Y − 13X5Y + 39X6Y

+ 48Y 2 − 78XY 2 + 72X2Y 2 − 43X3Y 2 − 79X4Y 2 +X5Y 2 + 30X6Y 2

We compute

h+ Y hY 2 + Y 2hY = p(ω + Y ωY 2 + Y 2ωY )

= 3(3 +W0 −W1 + 3Y +W0Y −W1Y − 3Y 2 + 3W0Y
2)

So ω′ = 1 +X −X3 + Y +XY −X3Y − Y 2 +XY 2 +X2Y 2 +X4Y 2.

Now it is necessary to break both h and pω′ into their R0, R1, and R2 parts. We
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define the following to simplify notation:

W10 = X − 93X2 + 92X4

W11 = X3 − 93X6 + 92X5

W20 = X + 92X2 − 93X4

W21 = X3 + 92X6 − 93X5

So we get the following:

h0 = 3−W0 +W1 + 3Y +W0Y −W1Y − 3Y 2 + 3W0Y
2

h1 = −91W10 + 24W11 + 37W10Y + 69W11Y + 74W10Y
2 + 54W11Y

2

h2 = −4W20 + 58W21 − 32W20Y + 51W21Y + 4W20Y
2 − 54W21Y

2

ω′0 = h0

ω′1 = −W10 +W11 +W10Y −W11Y

ω′2 = −W20 +W21 +W20Y −W21Y

where ω′0 + ω′1 + ω′2 = pω′. Next we note that W10 generates R1 as an R0 module

and W20 generates R2 as an R0 module, since

W10 = W10 ∗ 1

W11 = W10 ∗ (92W0 −W1)

W20 = W20 ∗ 1

W21 = W20 ∗ (−93W0 −W1).
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Now we can rewrite h1, h2, w1, and w2 as the following:

h1 = W10(−91 + 24(92W0 −W1) + (37 + 69(92W0 −W1))Y

+ (74 + 54(92W0 −W1))Y
2)

h2 = W20(−4 + 58(−93W0 −W1) + (−32 + 51(−93W0 −W1))Y

+ (4− 54(−93W0 −W1))Y
2)

w1 = W10(−1 + (92W0 −W1) + (1− (92W0 −W1))Y )

w2 = W20(−1 + (−93W0 −W1) + (1− (−93W0 −W1))Y )

This reduces our work to solving

θ(W10)

(
(−91 + 24(92W0 −W1) + (37 + 69(92W0 −W1))Y

+ (74 + 54(92W0 −W1))Y
2)

)
= W10(−1 + (92W0 −W1) + (1− (92W0 −W1))Y )

and

θ(W20)

(
(−4 + 58(−93W0 −W1) + (−32 + 51(−93W0 −W1))Y

+ (4− 54(−93W0 −W1))Y
2)

)
= W20(−1 + (−93W0 −W1) + (1− (−93W0 −W1))Y ).

But θ(W10) is an element of R1 and θ(W20) is an element of R2 so they must

have the following forms:

θ(W10) = W10r0,1

θ(W20) = W20r0,2
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where r0,1, r0,2 ∈ R0. Let

r0,1 = a+ a0W0 + a1W1 + bY + b0W0Y + b1W1Y + cY 2 + c0W0Y
2 + c1W1Y

2

r0,2 = d+ d0W0 + d1W1 + eY + e0W0Y + e1W1Y + fY 2 + f0W0Y
2 + f1W1Y

2

then we need only solve

W10r0,1

(
(−91 + 24(92W0 −W1) + (37 + 69(92W0 −W1))Y

+ (74 + 54(92W0 −W1))Y
2)

)
= W10(−1 + (92W0 −W1) + (1− (92W0 −W1))Y )

and

W20r0,2

(
(−4 + 58(−93W0 −W1) + (−32 + 51(−93W0 −W1))Y

+ (4− 54(−93W0 −W1))Y
2)

)
= W20(−1 + (−93W0 −W1) + (1− (−93W0 −W1))Y )

for r0,1 and r0,2. Using Maple and Magma we find that

r0,1 = 8− 30X − 30X2 − 62X3 − 30X4 − 62X5 − 62X6

+ (−68 + 40X + 40X2 + 64X3 + 40X4 + 64X5 + 64X6)Y

+ (60− 10X − 10X2 − 2X3 − 10X4 − 2X5 − 2X6)Y 2

r0,2 = 2 + 56X + 56X2 + 31X3 + 56X4 + 31X5 + 31X6

+ (7− 10X − 10X2 + 2X3 − 10X4 + 2X5 + 2X6)Y

+ (−9− 46X − 46X2 − 33X3 − 46X4 − 33X5 − 33X6)Y 2

Now we can define the following:

θ(W10) = W10r0,1

θ(W20) = W20r0,2
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To break the system we need to find θ(e). To do this we break e into its R0, R1,

and R2 parts and we get the following:

e0 = −41 + 6W0 + 11W1 + (22− 18W0 − 26W1)Y

+ (0 + 16W0 − 26W1)Y
2

e1 = W10(−7− 49(92W0 −W1) + (54− 20(92W0 −W1))Y

+ (−47 + 69(92W0 −W1))Y
2)

e2 = W20(−45− 6(−93W0 −W1) + (39 + 45(−93W0 −W1))Y

+ (6− 39(−93W0 −W1))Y
2).

So θ(e) reduces to

θ(e) = −41 + 3X + 14X3 + 15X4 + 8X5 + 11X6

+ (22− 24X − 9X2 − 26X3 − 21X4 − 23X5 − 29X6)Y

+ (25X + 13X2 − 29X3 + 10X4 − 26X5 − 23X6)Y 2

Reducing this modulo p = 3 we get 1−X3 −X5 −X6 + (1 +X3 +X5 +X6)Y +

(X +X2 +X3 +X4 +X5 +X6)Y 2 which should be ψ modulo p. Using this and

h we compute

E − h(1−X3 −X5 −X6 + (1 +X3 +X5 +X6)Y

+ (X +X2 +X3 +X4 +X5 +X6)Y 2)

≡ −48 + 22X2 − 3X3 + 6X4 − 23X5 − 31X6

− 19Y + 48XY − 36X2Y + 27X3Y − 89X5Y + 92X6Y

+ 54Y 2 − 28XY 2 + 81X2Y 2 − 81X3Y 2 + 49X4Y 2 + 60X5Y 2 − 3X6Y 2

which is the message m.
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Example 2.7.2. Let N = 7, k = 3, q = 197, p = r = t = 3, and s = 50.

So our group G = 〈X, Y | X7 = 1, Y 3 = 1, Y X = X2Y 〉. In this situation

a primitive third root of unity does not exist (modulo 197) so we must formally

adjoin one to our coefficient ring. It will be denoted by z. To simplify notation let:

W0 = X +X2 +X4

W1 = X3 +X6 +X5

The following is the system set-up, the encryption, and decryption.

Bob makes the following choices:

f = 37− 42W0 − 79W1 − 19Y + 35W0Y + 40W1Y + 26Y 2 + 74W0Y
2 + 37W1Y

2

ω = 1 +X +X3 − Y +XY +X2Y +X3Y −X4Y +X5Y +X6Y

+X2Y 2 −X3Y 2 −X4Y 2 +X5Y 2 −X6Y 2

and computes the following:

F = f−1

= 75− 81X − 81X2 − 49X3 − 81X4 − 49X5 − 49X6

− 8Y − 46XY − 46X2Y + 15X3Y − 46X4Y + 15X5Y + 15X6Y

+ 77Y 2 − 32XY 2 − 32X2Y 2 + 34X3Y 2 − 32X4Y 2 + 34X5Y 2 + 34X6Y 2

h = Fωf

= 3 + 50X − 84X2 − 71X3 + 37X4 + 10X5 + 64X6

+−3Y + 39XY − 6X2Y + 80X3Y − 30X4Y + 75X5Y + 51X6Y

+ 8XY 2 − 57X2Y 2 + 7X3Y 2 + 49X4Y 2 − 57X5Y 2 + 47X6Y 2

Bob now makes h public and keeps f, F, and ω private.
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To send Bob a message Alice makes the following choices:

φ = W1 + Y −W0Y +W1Y +W1Y
2

φ′ = −1−W0 −W1 + Y +W0Y +W1Y − Y 2 +W0Y
2 +W1Y

2

ψ = 12 + 8W0 + 2W1 − 6Y − 22W0Y − 2W1Y − 24Y 2 + 22W0Y
2 + 13W1Y

2

She reduces ψ modulo p to get Ψ = −W0 −W1 −W0Y +W1Y +W0Y
2 +W1Y

2

and then computes the following:

e = φhφ′ + ψ

= 21 + 63X − 92X2 − 33X3 + 2X4 − 54X5 + 75X6

− 15Y − 64XY + 26X2Y − 23X3Y + 47X4Y − 29X5Y − 37X6Y

+ 30Y 2 + 72XY 2 + 76X2Y 2 − 39X3Y 2 + 20X4Y 2 + 72X5Y 2 − 71X6Y 2

E = Ψh+m

= 4 + 54X + 90X2 − 53X3 − 80X4 − 18X5 + 35X6

− 62Y + 43XY − 22X2Y − 24X3Y − 15X4Y + 46X5Y + 84X6Y

− 68Y 2 + 57XY 2 − 9X2Y 2 + 55X3Y 2 − 43X4Y 2 + 2X5Y 2 − 38X6Y 2

using her message

m = −5− 50X − 47X2 − 54X3 − 33X4 − 28X5 + 52X6

− 47Y + 77XY + 97X2Y − 12X3Y + 68X4Y − 29X5Y − 32X6Y

− 71Y 2 + 56XY 2 − 58X2Y 2 − 50X3Y 2 − 44X4Y 2 + 96X5Y 2 − 45X6Y 2

She now sends the pair (e, E) to Bob.
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Bob uses his private keys to compute:

a = feF

= 21− 4X − 13X2 − 10X3 − 10X4 − 19X5 + 17X6

− 15Y + 14XY − 22X2Y + 7X3Y + 17X4Y + 61X5Y + 40X6Y

+ 30Y 2 + 76XY 2 + 40X2Y 2 + 67X3Y 2 + 52X4Y 2 + 49X5Y 2 + 43X6Y 2

which he then reduces modulo p to get ap = −X−X2−X3−X4−X5−X6−XY −

X2Y +X3Y −X4Y +X5Y +X6Y +XY 2+X2Y 2+X3Y 2+X4Y 2+X5Y 2+X6Y 2.

Next Bob computes:

E−hap = −5− 50X − 47X2 − 54X3 − 33X4 − 28X5 + 52X6

− 47Y + 77XY + 97X2Y − 12X3Y + 68X4Y − 29X5Y − 32X6Y

− 71Y 2 + 56XY 2 − 58X2Y 2 − 50X3Y 2 − 44X4Y 2 + 96X5Y 2 − 45X6Y 2

which is the message that Alice sent.

To break the system we only know:

h = 3 + 50X − 84X2 − 71X3 + 37X4 + 10X5 + 64X6

+−3Y + 39XY − 6X2Y + 80X3Y − 30X4Y + 75X5Y + 51X6Y

+ 8XY 2 − 57X2Y 2 + 7X3Y 2 + 49X4Y 2 − 57X5Y 2 + 47X6Y 2

e = 21 + 63X − 92X2 − 33X3 + 2X4 − 54X5 + 75X6

− 15Y − 64XY + 26X2Y − 23X3Y + 47X4Y − 29X5Y − 37X6Y

+ 30Y 2 + 72XY 2 + 76X2Y 2 − 39X3Y 2 + 20X4Y 2 + 72X5Y 2 − 71X6Y 2

E = 4 + 54X + 90X2 − 53X3 − 80X4 − 18X5 + 35X6

− 62Y + 43XY − 22X2Y − 24X3Y − 15X4Y + 46X5Y + 84X6Y

− 68Y 2 + 57XY 2 − 9X2Y 2 + 55X3Y 2 − 43X4Y 2 + 2X5Y 2 − 38X6Y 2
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We compute

h+ Y hY 2 + Y 2hY = p(ω + Y ωY 2 + Y 2ωY )

= 9 + 3X + 3X2 + 3X4 + 3X3 + 3X5 + 3X6

− 9Y + 3XY + 3X2Y + 3X4Y + 9X3Y + 9X5Y + 9X6Y

− 3X3Y 2 − 3X5Y 2 − 3X6Y 2

So ω′ = 1+X+X3−Y +XY +X3Y +X5Y +X6Y −X3Y 2 Now it is necessary

to break both h and pω′ into their R0, R1, and R2 parts. We define the following

to simplify notation:

W10 = X + z2X2 + zX4

W11 = X3 + z2X6 + zX5

W20 = X + zX2 + z2X4

W21 = X3 + zX6 + z2X5

So we get the following:

h0 = 3 +W0 +W1 − 3Y +W0Y + 3W1Y −W1Y
2

h1 = (91z + 70)W10 + (18z − 27)W11 + (8z + 23)W10Y + (−8z − 64)W11Y

+ (96z + 52)W10Y
2 + (−31z + 87)W11Y

2

h2 = (−91z − 21)W20 + (−18z − 45)W21 + (−8z + 15)W20Y + (8z − 56)W21Y

+ (−96z − 44)W20Y
2 + (31z − 79)W21Y

2

ω′0 = h0

ω′1 = W10 +W11 +W10Y −W11Y
2

ω′2 = W20 +W21 +W20Y −W21Y
2
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Where ω′0 + ω′1 + ω′2 = pω′ Next we note that W10 generates R1 as an R0 module

and W20 generates R2 as an R0 module, since

W10 = W10 ∗ 1

W11 = W10 ∗ (zW0 −W1)

W20 = W20 ∗ 1

W21 = W20 ∗ (z2W0 −W1).

Now we can rewrite h1, h2, w1, and w2 as the following:

h1 = W10(91z + 70 + (18z − 27)(zW0 −W1)

+ (8z + 23 + (−8z − 64)(zW0 −W1))Y

+ (96z + 52 + (−31z + 87)(zW0 −W1))Y
2)

h2 = W20(−91z − 21 + (−18z − 45)(z2W0 −W1)

+ (−8z + 15 + (8z − 56)(z2W0 −W1))Y

+ (−96z − 44 + (31z − 79)(z2W0 −W1))Y
2)

w1 = W10(1 + zW0 −W1 + Y − (zW0 −W1)Y
2)

w2 = W20(1 + z2W0 −W1 + Y − (z2W0 −W1)Y
2)

This reduces our work to solving

θ(W10)

(
91z + 70 + (18z − 27)(zW0 −W1)

+ (8z + 23 + (−8z − 64)(zW0 −W1))Y

+ (96z + 52 + (−31z + 87)(zW0 −W1))Y
2

)
= W10(1 + zW0 −W1 + Y − (zW0 −W1)Y

2)
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and

θ(W20)

(
− 91z − 21 + (−18z − 45)(z2W0 −W1)

+ (−8z + 15 + (8z − 56)(z2W0 −W1))

+ (−96z − 44 + (31z − 79)(z2W0 −W1))Y
2

)
= W20(1 + z2W0 −W1 + Y − (z2W0 −W1)Y

2)

but θ(W10) is an element of R1 and θ(W20) is an element of R2 so they must have

the following forms:

θ(W10) = W10r0,1

θ(W20) = W20r0,2

where r0,1, r0,2 ∈ R0. Let

r0,1 = a+ a0W0 + a1W1 + bY + b0W0Y + b1W1Y + cY 2 + c0W0Y
2 + c1W1Y

2

r0,2 = d+ d0W0 + d1W1 + eY + e0W0Y + e1W1Y + fY 2 + f0W0Y
2 + f1W1Y

2

then we need only solve

W10r0,1

(
91z + 70 + (18z − 27)(zW0 −W1)

+ (8z + 23 + (−8z − 64)(zW0 −W1))Y

+ (96z + 52 + (−31z + 87)(zW0 −W1))Y
2

)
= W10(1 + zW0 −W1 + Y − (zW0 −W1)Y

2)
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and

W20r0,2

(
− 91z − 21 + (−18z − 45)(z2W0 −W1)

+ (−8z + 15 + (8z − 56)(z2W0 −W1))

+ (−96z − 44 + (31z − 79)(z2W0 −W1))Y
2

)
= W20(1 + z2W0 −W1 + Y − (z2W0 −W1)Y

2)

for r0,1 and r0,2. Using Maple and Magma we find that

r0,1 = 84− 54z + (68z − 89)W0 + (77− 11z)W1

+ (5z + 33 + (25 + 36z)W0 + (31− 17z)W1)Y

+ (−15− 24z + (−45z + 15)W0 + (−8z + 49)W1)Y
2

r0,2 = −59 + 54z + (−68z + 40)W0 + (88 + 11z)W1

+ (−5z + 28 + (−11− 36z)W0 + (48 + 17z)W1)Y

+ (9 + 24z + (45z + 60)W0 + (8z + 57)W1)Y
2

Now we can define the following:

θ(W10) = W10r0,1

θ(W20) = W20r0,2

To break the system we need to find θ(e).
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To do this we break e into its R0, R1, and R2 parts and we get the following:

e0 = 21− 9W0 − 4W1 + (−15 + 3W0 + 36W1)Y + (30 + 56W0 + 53W1)Y
2

e1 = W10(−97z + 86 + (43z + 7)(zW0 −W1)

+ (−7z − 37 + (63z + 2)(zW0 −W1))Y

+ (−47z + 83 + (18z − 37)(zW0 −W1))Y
2)

e2 = W20(97z − 14− (43z + 36)(z2W0 −W1)

+ (7z − 30− (63z + 61)(z2W0 −W1))Y

+ (47z − 67 + (−18z − 55)(z2W0 −W1))Y
2).

So θ(e) reduces to

θ(e) = 21− 7X − 16X2 −X3 − 4X4 − 16X5 + 5X6

− 15Y − 4XY + 2X2Y + 25X3Y + 11X4Y + 43X5Y + 40X6Y

+ 30Y 2 + 61XY 2 + 46X2Y 2 + 67X3Y 2 + 61X4Y 2 + 46X5Y 2 + 46X6Y 2

Reducing this modulo p = 3 we get −X − X2 − X3 − X4 − X5 − X6 + (−X −

X2 +X3 −X4 +X5 +X6)Y + (X +X2 +X3 +X4 +X5 +X6)Y 2 which should

be ψ modulo p. Using this and h to compute m we get small

E − h ∗
(
−X −X2 −X3 −X4 −X5 −X6+

(−X −X2 +X3 −X4 +X5 +X6)Y + (X +X2 +X3 +X4 +X5 +X6)Y 2

)
≡− 5− 50X − 47X2 − 54X3 − 33X4 − 28X5 + 52X6

− 47Y + 77XY + 97X2Y − 12X3Y + 68X4Y − 29X5Y − 32X6Y

− 71Y 2 + 56XY 2 − 58X2Y 2 − 50X3Y 2 − 44X4Y 2 + 96X5Y 2 − 45X6Y 2

which is the message m.
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