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Modern medicine has detailed 70,000 different diagnoses; the 21st century challenge 

is bringing those diagnoses to over 7 billion people. This phenomenal feat requires 

precision biosensing strategies that minimize necessary training and manual effort 

while maximizing portability and affordability. Microfluidic strategies, both fabricated 

chips and paper-based devices, held the promise to facilitate point-of-care diagnostics 

but have been inadequate for many applications due to the trade-off between bulky 

pumps or limited control and complexity. This dissertation details novel strategies that 

control the progression of biochemical reactions with high functionality, portability, 

and ease-of-use. 

First, I will describe an amplified signaling reaction that leverages both positive 

and negative feedback loops to achieve optically-regulated control. This assay, termed 

“Peroxidyme-Amplified Radical Chain Reaction” enables naked-eye detection of 

catalytic reporter DNA structures at concentrations across five orders of magnitude 



  

down to 100 pM while eliminating the need for manual addition of hydrogen peroxide 

common to other such detection reactions. 

Next, I will describe the development of a platform for thermal regulation of 

generic reactions. To address the need for a broadly capable automation platform that 

provides equal utility in the lab and field alike, we recently developed “phase-change 

partitions”. In our system, purified waxes segregate reagents until incremental heating 

melts the partitions one by one, causing the now-liquid alkane to float and allowing the 

desired reagents to interact with the sample on demand. This tight control over reaction 

progression enabled us to construct hands-free detection systems for isothermal DNA 

amplification, heavy metal contamination, and antibiotic resistance profiling. My work 

has demonstrated a broadly capable suite of assay control systems with the potential to 

enable simple, inexpensive automation of a broad array of chemical and biological 

analysis across human medicine, environmental surveillance, and industrial chemical 

synthesis. 
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1 Introduction 
In many ways, this is a story about hydrogen peroxide. How it’s used, how it’s 

transported, the myriad ways it’s generated, how we can get around it, how we can 

harness it, and how we can simply make it easier to work with. This oxidizing agent 

has enabled a vast array of biosensing reactions, qualitative and quantitative, high-tech 

and low-resource. Through catalysis by enzymes such as horseradish peroxidase or by 

DNA analogues such as G-quadruplex hemin aptamers, H2O2 is used to produce 

colored solutions, fluorescent molecules, electrochemical currents, and 

chemiluminescent glows. The literature is replete with physical and biochemical 

strategies for isolating a catalytic reporter in proportion to the analyte of interest, or 

generating such a reporter in response to the presence of the analyte, so that a final 

addition of H2O2 allows detection and potentially quantitation of the target. Many of 

these strategies seek to alleviate the burden of expensive, bulky instrumentation, 

making their assay more portable and less labor-intensive than traditional tests.  

Yet that final step, the manual introduction of our oxidative friend, is so often 

overlooked. It is a difficult friend, to be sure: never one to play nice with others, it could 

ruin essential assay reagents if added too early, and its unstable temperament makes it 

difficult to store dry and prone to decomposition even when stored wet. And so, as we 

will see, a veritable cornucopia of elegant biochemical schemes have been developed 

for the amplification and detection of trace amounts of analyte only to end with manual 

addition of hydrogen peroxide. Such a required intervention complicates translation of 

the assay to even a well-equipped clinical laboratory setting, in which high-throughput, 

highly-parallelized systems reign through minimization of technician input for 
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maximization of productivity. Manual interactions are an even greater impediment to 

use in a rural, resource-poor setting, where trained workers, and their time and 

attention, are at a premium, spread thin as a result of crippled infrastructure. The need 

to perform numerous steps by hand prevents exciting new technologies from reaching 

those who need them most, those left behind by the exciting new technologies of the 

past. I want to change that. This thesis is a collection of ways we can start to change 

that. 

Chapter 2 begins with an overview of the biochemical reactions I allude to above. 

I will describe the state-of-the-art approaches for amplifying and detecting a target 

molecule of interest, focusing on those suitable for (or at least intended for) the point-

of-care. I will then detail strategies for automating such reactions through the simple 

application of heat. While many traditional systems rely on electrical or mechanical 

automation, the flexible and non-contact nature of thermal automation offers many 

advantages. 

The remainder of this thesis details various engineering solutions to improving the 

capabilities and accessibilities of molecular diagnostics and (bio)chemical detection. 

Chapter 3 presents a biochemical solution to the need for manual addition of hydrogen 

peroxide that leverages green light to produce it in situ through multiple nested positive 

and negative feedback loops. Chapter 4 describes Phase-Change Partitions, a novel 

platform for thermal automation, radical in its simplicity, that offers a high degree of 

control over a diverse range of multi-step reactions amenable to a variety of heating 

systems and instrumentation. The potential of this platform is illustrated through 

thermal automation of reactions for isothermal DNA amplification, heavy metal ion 
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detection, and antibiotic resistance characterization. Chapter 5 provides a strategy for 

achieving the temperature control necessary to actuate these partitions in a field setting, 

without electricity, and demonstrates successful multi-step DNA amplification in this 

manner. Chapter 6 extends the capabilities of thermal automation through phase-

change partitions to include in situ convective mixing, removing the need for manual 

agitation. Finally, Chapter 7 presents the re-engineering of the layered phase-change 

partitions into self-contained capsules, offering improved robustness, modularity, and 

manufacturability.
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2 Literature Review: Amplified and Automated Strategies for 
Point-of-Care Assays 

2.1 The ELISA 
A discussion of point-of-care diagnostics must inevitably start with immunoassays. 

Since the late 20th century, human diagnostics have been dominated by the 

immunoassay, in particular the enzyme-linked immunosorbent assay (ELISA) (Lequin, 

2005). The high affinity and exquisite selectivity of antibodies for their targets has 

enabled highly sensitive detection of a broad range of clinically relevant analytes. Often 

used to test for patient exposure to a specific antigen, the basic ELISA consists of a 

plate decorated with the antigen and an enzyme, typically horseradish peroxidase, 

conjugated to an antibody specific to human IgG. Patient serum is applied to the plate 

so that the relevant antibodies bind to the immobilized antigen. After several washes, a 

solution of enzyme-linked antibody is applied and allowed to interact with the patient 

antibodies. Unbound labeling antibodies are washed away, then a substrate solution is 

added along with H2O2, producing a color change proportional to the amount of patient 

antibodies trapped in the “sandwich” between immobilized antigen and labeling 

antibody. 

It should quickly become apparent that this assay has many drawbacks that impair 

its use at the point-of-care (Drain et al., 2014; Gubala et al., 2012; Yager et al., 2008). 

Multiple wash cycles and extended incubations are difficult to achieve in a setting 

where trained human capital is at a premium. The tools and instrumentation required 

are often too bulky to be portable, while the proteins and reagents involved must be 

carefully stored to avoid deterioration. Finally, the ratio of reporter molecules (HRP) 

to target is typically one-to-one or only slightly higher, limiting the detection limit. Yet 
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for all these drawbacks, it is difficult to overstate the importance of the ELISA on 

clinical diagnostics. As alluded to in Chapter 1, hydrogen peroxide embodies the key 

advantages and the prominent disadvantages of the ELISA. H2O2 added at the end of 

the assay enables a visible color change that is highly sensitive to the analyte 

concentration. However, it must be added manually so that the color-generating 

reaction doesn’t begin prematurely and because it may impact antigen-antibody 

binding. Accordingly, a great degree of effort has been spent trying to replicate the 

success of this assay through a platform more amenable to point-of-care diagnostics. 

This literature review will focus on two aspects of those efforts. First, I will describe 

the evolution of catalytic G-quadruplex DNA structure to improve upon the reporter 

enzyme itself. This functional nucleic acid structure enables the same colorimetric 

detection scheme as HRP, yet exhibits greater stability, greater substrate diversity, and 

greater flexibility. Leveraging such catalytic DNA to engineer an amplified assay for 

visible biosensing is the subject of Chapter 3 of this dissertation. Next, I will present 

an overview of strategies for thermal reaction automation. Automation of reagent-

handling can remove many of the manual steps from assays such as the ELISA, 

improving their usability, while doing so through thermal actuation provides a 

convenient platform amenable to a range of settings. Development of my own systems 

for thermal automation is the subject of the remaining chapters of this dissertation. 

2.2 G-quadruplex Amplification Systems for Point-of-Care Diagnostics 
2.2.1 Structure and function 

Although G-quadruplexes as structural motifs had been known about for some time 

(Arnott et al., 1974; Gellert et al., 1962; Howard et al., 1977), it wasn’t until twenty 

years ago that their catalytic properties were discovered. While attempting to identify 
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an aptamer capable of catalyzing porphyrin metalization, Travascio et al. (1998) 

discovered the G-quadruplex sequences PS2.M and PS5.M. They found that these 

sequences could bind with hemin (iron protoporphyrin IX) and catalyze its ability to 

facilitate the H2O2-driven oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Since 

then, a great number of hemin-binding G-quadruplex sequences with peroxidase-

mimicking properties (here referred to as peroxidymes for brevity) have been 

identified, varying in their structure (parallel/antiparallel unimolecular/multimolecular) 

and catalytic activity. While basal catalytic activity is lower than that of HRP, 

peroxidymes exhibit significantly greater thermal (Guo et al., 2017; Ito and Hasuda, 

2004) and solvent stability (Abe et al., 2012).  

The most active G-quadruplex structures typically form from single-stranded 

sequences with tandem runs of three guanines separated by a minimal number of other 

nucleotides (Burge et al., 2006; Nakayama and Sintim, 2012). As shown in Figure 1, 

each guanine forms a planar G-quartet with guanines from the other sets via hydrogen 

bonding between the van Hoogsteen face of the nucleotides, rather than the canonical 

Figure 1. A) Planar G-tetrads nucleated by a metallic cation (M+) stack to form G-
quadruplexes (image by Julian Hupert, https://commons.wikimedia.org/wiki/File:G-
quadruplex.jpg). B) Top and C) side view of a G-quadruplex complexed to N-methyl 
mesoporphyrin IX (PDB 4FXM), a structurally similar compound to hemin. Guanines are 
indicated in green, thymines in red, adenines in blue, and potassium ions as purple spheres. 



 

 

7 
 

Watson-Crick face (Burge et al., 2006). The stacking of three or more such G-quartets 

forms a G-quadruplex, nucleated around one or more monovalent cations; most reports 

employ Na+, K+, or NH4+ (Nakayama and Sintim, 2012, 2009b). Hemin then stacks on 

top of one of the external faces of this structure, facilitated by a planar structure similar 

to that of the G-quartets (Li et al., 2009a; Shumayrikh et al., 2015). The ability of 

peroxidymes to catalyze hemin-mediated redox reactions stems from the formation of 

a coordination complex between the central iron of hemin and a nucleotide in the DNA 

sequence (Li et al., 2009a, 2016; Stefan et al., 2012). This is analogous to the 

mechanism of catalysis in HRP, for which a histidine provides such coordination 

(Newmyer et al., 1996).  

Peroxidymes are capable of catalyzing redox interactions between a wide range of 

“fuel” and “reporter” substrates (in the sense of H2O2 and TMB, respectively). This 

includes colorimetric (TMB, ABTS, Stefan et al., 2012), fluorescent (Amplex Red, 

dichlorofluorescein diacetate, tyramine, Nakayama and Sintim, 2009a), 

chemiluminescent (luminol, Li et al., 2008), and electrochemical (ferrocene, Tang et 

al., 2012) reporters, as well as oxidative (H2O2, Travascio et al., 1998) and reductive 

(NADH, Golub et al., 2011) fuels; G-quadruplexes have indeed been found to be 

capable of mediating every reaction catalyzed by HRP, in addition to some reactions 

involving substrates sterically hindered from entering HRP’s catalytic core (Yang et 

al., 2011). Apart from hemin, a variety of ligands have been identified that allow direct 

detection of the G-quadruplex structure via a change in the ligand’s spectroscopic 

properties.   
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2.2.2 Biosensing and Amplification 
There is a vast body of literature describing the use of peroxidymes as biosensors, 

which has been reviewed extensively (D. Chang et al., 2016; Gong et al., 2015; 

Kosman and Juskowiak, 2011; Neo et al., 2012; Roembke et al., 2013; Silverman, 

2016; Teller and Willner, 2010; Willner et al., 2008). Here, I will give a brief overview 

of the primary strategies through which this is accomplished, for detection of metal 

ions, small molecules, nucleic acids, and proteins. 

2.2.2.1 Direct Sensing 
The most straightforward use of peroxidymes for sensing is to detect the nucleating 

cation itself or molecules that directly interact with the nucleating cation. Colorimetric 

potassium “sensors” have been designed in this way (Li et al., 2009c; Yang et 

al., 2010), as have sodium (Sun et al., 2016) and terbium (J. Zhang et al., 2011), while 

Rb+, Cs+, Sr2+, Ba2+, Pb2+ and have all been found to increase catalysis by some 

sequences towards some substrates (Nakayama and Sintim, 2012). Alternatively, 

“signal-off” sensors have been constructed via metal cations which exhibit high affinity 

to certain sequences (sufficient to competitively displace K+, e.g.) but do not promote 

catalysis, or otherwise disrupt the G-quadruplex structure. Direct detection of Pb2+ (Li 

et al., 2010; Liu et al., 2014), Hg2+ (Li et al., 2009b), and Ag+ (Kong et al., 2010; Zhou 

et al., 2010a, 2010b) has been achieved this way, as well as detection of ligands for 

those cations which prevent their insertion into the G-quadruplex, such as H2S (Tang 

et al., 2016) and cysteine (Kong et al., 2010; Zhou et al., 2010a, 2010b). The majority 

of these sensors have been colorimetric in nature, utilizing ABTS or TMB.  

Just as the “protein” aspect of HRP facilitates its use for detection of other proteins 

(through, e.g., production of streptavidin-HRP fusions and HRP-labeled antibodies), 
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the nucleic acid “aspect” of G-quadruplex catalysts makes them a natural reporter for 

detection of other nucleic acids. Sandwich assays have been designed in which a target 

sequence is immobilized to a surface via partially-complementary capture oligo, then 

labeled and detected with a peroxidyme sequence extended to include an “arm” 

complementary to the exposed region of the target (Pavlov et al., 2004). Several DNA 

sequence-specific sensors have been engineered by designing probe oligos which trap 

a reporter G-quadruplex-forming sequence into an inactive double-stranded 

conformation, only to be displaced by a target sequence complementary to the probe 

oligo (Xiao et al., 2004; L. Zhang et al., 2011; Zhou et al., 2012). Alternatively, 

researchers have designed split peroxidymes: two halves of the parent sequence that 

are each extended with oligos complementary to neighboring regions of a target. These 

split peroxidymes are unable to associate into catalytic structures in solution unless 

brought into close proximity by the target (Darius et al., 2010; Deng et al., 2008; 

Nakayama and Sintim, 2009b). 

Aptamers are short DNA or RNA oligos which are engineered to bind to a particular 

target with high affinity and specificity (Ellington and Szostak, 1990; Jayasena, 1999; 

Mairal et al., 2008; Tuerk and Gold, 1990). They naturally present an attractive 

biorecognition motif for use in tandem with G-quadruplexes, and have been extensively 

employed for detection of a variety of targets, ranging from small molecules (Ruscito 

and DeRosa, 2016; Stojanovic et al., 2001), proteins (Fan et al., 2008; Ma et al., 2014), 

or even whole cells (Wang et al., 2017; W. Zhao et al., 2011). 

Some aptamers (notably the thrombin aptamer and MUC-1 aptamers) themselves 

adopt catalytic G-quadruplex structures in the presence of their target, offering a 
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straightforward strategy for detection (Hua et al., 2013; Li et al., 2008; Yang et 

al., 2015). Aptamer sequences have also been simply extended to include the 

peroxidyme sequence, enabling detection via a sandwich assay (Du et al., 2011). 

The same displacement strategy described above for detection of DNA sequences 

through complementary probe oligos has been applied for detection of aptamer targets: 

the aptamer constitutes the probe sequence, trapping a partially-complementary G-

quadruplex in an inactive conformation until binding to its target, at which point the G-

quadruplex is released into an active conformation (J. Jiang et al., 2013; Yang et 

al., 2012; L. Zhang et al., 2011; Zhou et al., 2012). 

2.2.2.2 Amplified Detection 
The direct sensing strategies described above are limited in their detection 

sensitivity by the one-to-one ratio of G-quadruplex reporter to target molecules. While 

the peroxidyme continuously produces signal (to an extent, Yang et al., 2011), this rate 

of signal growth is nonetheless insufficient to detect trace analyte quantities. To 

improve the sensitivity of peroxidyme-driven sensing systems, many authors have 

leveraged the wealth of nucleic acid amplification strategies (Deng and Gao, 2015; 

Ness et al., 2003; Reid et al., 2018) to generate numerous peroxidyme copies in 

response to each target molecule.  

The displacement strategy described above, wherein a peroxidyme sequence is 

caged within a DNA structure and released by competition of a different oligo, can be 

extended to produce a cascading, self-propagating system. Hybridization Chain 

Reaction (HCR) (Chemeris et al., 2008; Dirks and Pierce, 2004) leverages two or more 

metastable DNA hairpins that are stable in solution together until one is unfolded by a 
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target sequence, exposing a region of one hairpin capable of unfolding the other. 

Unfolding this second hairpin exposes a region capable of unfolding the first, so the 

cascade results in long chains of concatenated probe sequences. The loop region of 

these hairpin sequences can be modified such that a G-quadruplex forms upon 

unfolding (Dong et al., 2012; Shimron et al., 2012; Wu et al., 2015). Catalytic Hairpin 

Assembly (CHA) (Y. Jiang et al., 2013) operates under a similar principle, except that 

multicomponent DNA complexes are rearranged from a non-signaling to a signaling 

conformation without concatamerization, and has been leveraged in isolation (Zang et 

al., 2015) or in tandem with HCR (Wu et al., 2016) to produce active peroxidymes. 

While enzyme-free amplification systems have the advantage of simplicity, 

flexibility in storage, and potentially cost over enzyme-based strategies, they are often 

“leaky”, exhibiting high background due to substrate DNA synthesis impurities and 

their inherent instability. As such they often achieve worse sensitivity than the 

comparably stable enzyme systems. In these systems, the peroxidyme is either liberated 

from a trapped conformation (Cheglakov et al., 2006; Yang et al., 2014), reconstituted 

from a “split” conformation (Darius et al., 2010), or generated in situ from a 

complementary sequence (Bhadra et al., 2014). Polymerase Chain Reaction, the gold 

standard for nucleic acid amplification described in depth in the next section, has been 

extensively used for amplified generation of catalytic G-quadruplexes in a target-

specific manner (Bhadra et al., 2014; Cheglakov et al., 2006; Darius et al., 2010; Seok 

et al., 2014; Yang et al., 2014). Finally, isothermal amplification strategies have been 

engineered to synthesize the peroxidyme sequence in parallel with the target amplicon 

through Rolling Circle Amplification (RCA) (Bi et al., 2010; Liu et al., 2016; L. Tang 
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et al., 2012; Wen et al., 2012; Zeng et al., 2013), Exponential Amplification Reaction 

(EXPAR) (Nie et al., 2014; Y. Xu et al., 2016), and Helicase-Dependent Amplification 

(HDA) (Pollet et al., 2012).  

2.2.3 Conclusion 
Catalytic G-quadruplexes are a highly versatile biochemical reporter for a wide 

range of biosensing schemes. Amenable to a broader substrate selection than HRP, they 

present a flexible tool compatible with a variety of detection settings and platforms. 

They have been used both for direct detection and as the product of amplified detection 

reactions. However, while they improve upon these factors compared with HRP, they 

retain a chief limitation: the manual addition of H2O2. With few exceptions (Golub et 

al., 2011), every reaction described above required manual addition of H2O2 as its final 

step. Often, this is not as simple as add-and-read: typically, the reaction must be 

developed for anywhere from 10 to 30 minutes or more. Strategies for getting around 

this central limitation by automating the delivery of reagents are the subject of the next 

section of this chapter. 

 
2.3 Thermal control of biochemical reactions1 

Facilitated by numerous strategies for achieving temperature control in a highly 

flexible variety of form-factors, researchers have developed an array of systems that 

leverage thermoresponsive physical and biochemical transitions to control the 

progression of biochemical reactions. Meltable barriers have been used to block fluidic 

channels or as capsular shells, segregating reagents until the appropriate thermal 

                                                 
1 This section is being submitted for publication as a review article. As such, it contains references to 
my own work described in later chapters of this dissertation. 
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stimulus is applied. Thermoresponsive polymers have been used to control substrate 

diffusion or to modulate enzyme activity. Complementary to these thermal control 

strategies, many approaches have been developed systems for portable heat regulation, 

from chemical to electrical heating. Here, we review the breadth of these various 

developments, highlighting their advantages and disadvantages and identifying ways 

in which they may be integrated to a complement each other. 

2.3.1 Introduction 
Biochemical detection leverages the interplay of biology, materials science, 

chemistry, and physics for the recognition, transduction, amplification, and detection 

of the target molecule in a complex biological matrix. The numerous demands of 

sample preparation and signal generation require the design of assays with several 

interdependent nodes, each performing their individual function in isolation before 

passing on the sample to a subsequent stage. Traditional systems are comprised of 

several separate steps carried out and strung together manually. However, this 

piecemeal approach leads to high costs and labor demands, impairing the accessibility 

of such assays to poor populations and rural settings. On the other hand, integration of 

the various components into a single platform, the output of each stage seamlessly and 

automatically forming the input to the next, has the potential to alleviate these 

disparities and empower the translation of laboratory assays to the field. Microfluidic 

devices were developed to achieve this goal, but the extensive pumps and other 

peripheral equipment required impairs the true portability and accessibility of such 

miniaturized systems (Whitesides, 2006). The capillary action of paper has similarly 

enabled construction of highly portable assays (Martinez et al., 2010; Yager et 
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al., 2008), but in isolation they are limited in the complexity they support and the 

degree of control they allow. To expand the capabilities of these systems or even to 

supersede them, a diverse array of thermally-actuated strategies have been developed 

that take advantage of the manifold means of regulating temperature. These techniques 

employ physical barriers and biochemical modifications to achieve thermal control, 

comprising a highly capable toolkit for integrated reaction automation. 

The evolution of polymerase chain reaction (PCR) is illustrative of the overall 

evolution of thermally controlled reactions. This elegant biochemical system is itself a 

form of thermal automation: DNA strands are separated at high temperatures and 

replicated at lower temperatures by Taq, a thermostable polymerase isolated from a 

bacterium that inhabits thermal hot springs (Saiki et al., 1988). PCR is the gold-

standard approach for nucleic acid amplification and detection, a now-ubiquitous 

technique by which specific DNA sequences are replicated exponentially to produce 

sufficient quantities for diagnostics, forensics, sequencing, synthetic biology, and many 

other applications. The simplest form of the assay is not without drawbacks, however, 

and myriad efforts have been devoted to leveraging physical and biochemical 

transitions modulated by the requisite temperature changes to improve the fidelity and 

usability of the reaction. This review will begin with an overview of the most popular 

modifications to PCR, both physical and biochemical approaches. We will then discuss 

related strategies found in more generic platforms for biochemical control. Finally, we 

will review techniques for achieving the thermal control itself in a portable format. 
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2.3.2 Hot-start PCR 
 “Hot-start" PCR is perhaps the most widely-used form of thermal reaction 

regulation. Central to this reaction is oscillating the sample between 95 °C, at which 

target DNA duplexes are separated, and ~60 °C, where short DNA primers anneal to 

the separated strands are extended enzymatically, replicating the target sequence 

exponentially (Figure 2A). The annealing temperature is critical to exert selection 

pressure for primer binding towards the perfectly-complementary target region and 

away from nearly-complementary off-target regions (it should be noted that some PCR 

protocols for specific target/primer combinations specify separate temperatures for 

primer annealing and enzymatic extension, but the difference between these 

temperatures is irrelevant to our discussion). Due to its exquisite sensitivity, any off-

target interactions between the primers and undesired sequences can significantly 

impair the specificity of the reaction, potentially overwhelming on-target interactions. 

Early incarnations of the assay  encountered problems during the initial warm-up phase: 

at intermediate temperatures, primers could bind to nearly-complementary regions, 

either within sample DNA or within the primers themselves (Figure 2B). While 

comparably weak, these off-target interactions created kinetic traps that led to 

replication of the wrong sequence. To avoid these complications, reactions were 

prepared without the polymerase and heated to the denaturation temperature, at which 

point polymerase and/or primers was added manually. In addition to being cumbersome 

and labor-intensive, exposing the reactions to the environment at this stage risked 

contamination by either “wild” DNA or aerosolized DNA products from previous 

reactions.  
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2.3.2.1 Wax-assisted hot-start 
An early solution to manual addition of reagents in such a “hot-start” system was 

to separate the enzymes from the bulk reaction using wax (Chou et al., 1992; Hébert et 

al., 1993) (Figure 2C). A sample solution was placed in reaction tubes along with the 

appropriate buffer and dNTPs as well as a piece of paraffin wax with a suitably high 

Figure 2. Hot-start Polymerase Chain Reaction. A) PCR exponentially replicates a 
target DNA sequence by cycling through thermally-controlled stages: (a) denaturation 
of duplex DNA, (b) annealing of short primer sequences, (c) extension of the primers 
by a polymerase, and (d) repeating the cycle to further replicate the newly-synthesized 
strands (Saiki et al., 1988). B) At intermediate temperatures experienced while the 
reaction is warming up, off-target priming, secondary structures, and primer dimers 
can lead to replication of undesired sequences, impacting the sensitivity and specificity 
of the reaction (Chou et al., 1992). C) A physical solution for engineering a “hot-start” 
reaction that avoids these complications is to use a wax barrier to separate the 
polymerase from the sample until a high enough temperature is reached to melt the 
wax (Hébert et al., 1993). D) A biochemical approach is to engineer antibodies to 
inhibit the polymerase’s activity that denature at high temperatures (Kellogg et 
al., 1994).  
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melting point. The tube was heated to melt the wax and then cooled, forming a solid 

layer of wax that effectively sealed the sample solution below, after which a second 

solution containing primers and polymerase were added on top of this barrier. The 

solutions remained isolated from each other until the melting point of the wax was 

reached (designed to be near the desired annealing temperature), at which point the 

now-liquid wax is displaced by the enzyme solution above and floats, allowing the two 

solutions to mix and the reaction to proceed. In this application, the wax plays the dual 

roles of separating the reagents until the desired temperature is reached and, after it 

melts and floats to the top of the aqueous solutions, acting as a vapor barrier that 

prevents evaporation of minute reaction volumes (typically 10-50 µL) at elevated 

temperatures. Purpose-built wax beads were sold under the brand name Ampliwax PCR 

Gems (Chou et al., 1992), but have since been discontinued; simple paraffin wax was 

found to be equally effective, as only the sterility and not the precise volume of the wax 

barrier is strictly necessary (Hébert et al., 1993). Ampliwax beads were also used to 

achieve one-pot, two-step reverse-transcriptase PCR (RT-PCR) for amplification of 

RNA sequences (Sears and Khan, 2003). The reverse transcription reaction (wherein 

RNA is enzymatically copied into complementary DNA) took place above the solid 

wax barrier, which was then melted to begin PCR.  

2.3.2.2 Biochemical-assisted hot-start 
While wax barriers provided a simple method of thermally regulating initiation of 

PCR, they impaired assay throughput. To reduce the burden on the user of forming the 

wax barriers, biochemical approaches to hot-start PCR were found. Soon after the 

introduction of Ampliwax beads, engineered antibodies were used as thermolabile 

inhibitors of Taq polymerase (Kellogg et al., 1994). The antibodies prevented primer 
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extension by the enzyme until they heat-denatured, at which point polymerase activity 

was restored (Figure 2D). Later adaptations replaced the antibodies with aptamers (Lin 

and Jayasena, 1997; Noma et al., 2006), single-stranded nucleic acid sequences 

engineered to bind to a specific target under desired conditions (Ellington and Szostak, 

1990; Tuerk and Gold, 1990). Aptamers are advantageous to antibodies due to their 

abiotic discovery, ease of synthesis, and flexibility to be tailored to specific interaction 

conditions (Jayasena, 1999; Mairal et al., 2008; Zimbres et al., 2013). Aptamers have 

also been used to engineer “warm start” Bst polymerase that is inhibited until reaching 

50-60 °C (New England Biolabs, 2017) extending the benefits of thermally-regulated 

reaction initiation to isothermal nucleic acid amplification techniques such as loop-

mediated isothermal amplification (LAMP) and exponential amplification reaction 

(EXPAR) (Reid et al., 2018; Tanner et al., 2012). Other biochemical strategies include 

utilizing Taq mutants that exhibit reduced activity at moderate temperatures 

(Kermekchiev et al., 2003), designing primers to lock themselves within blunt-end 

hairpin configurations until the appropriate target-annealing temperature is reached 

(Kaboev et al., 2000), and finally employing an additional enzyme (typically RNAse 

HII) to cleave non-extendible protecting groups off primer 3’ ends at the appropriate 

temperature (Dobosy et al., 2011). 

The various strategies for achieving hot-start PCR present archetypes for thermal 

control of other reaction systems. As we will expand upon below, the most widely-used 

approach for a thermally-automated platform is to physically separate reagents after or 

until a certain temperature is reached. Waxes are often used to accomplish such a burst 

valve, although in some instances the working solution itself is frozen and/or thawed. 
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The second category of thermal control systems leverages biochemical transitions at 

elevated temperatures, analogous to antibody or aptamer-inhibited Taq. In one model, 

the swelling characteristics of thermosensitive polymers have enabled sequestration of 

compounds for controlled-release; in another, the polymers are conjugated to enzymes 

such that the folding state of the protein, and thus its activity, is dependent on the 

folding state of the polymer. While the physical-separation approach offers the 

advantages of simplicity and low cost, the biochemical approach may be preferable for 

integration of several independently thermoresponsive components in a highly 

compact, all-aqueous system. 

2.3.3 Physical Transitions 
The most straightforward method of thermal reaction control is simply to physically 

separate reagents with a barrier that melts at a specified temperature. As in the example 

of wax-assisted hot-start PCR, paraffin has been the primary means to achieve this, as 

an encapsulant of reagents or as a valve in a fluidic channel. Alternatively, the thermal 

control over fluid flow has been achieved by leveraging the volume change of a melting 

material (again, typically paraffin) to fashion a pump. This section will discuss 

strategies such as these that exploit the physical transition of materials at certain 

temperatures.  
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Figure 3. Physical valves and pumps. A) The simplest thermal valves freeze portions 
of the working solution (Chen et al., 2005) or B) use a wax plug to obstruct flow (Lee 
et al., 2009). C) Positive and negative pneumatic pressure can be used to reposition a 
“latchable” wax plug (Liu et al., 2004). D) Channel walls can be fabricated directly out 
of wax and cyclically opened and closed with localized heating (Díaz-González et 
al., 2016). E) Wax valves can be printed onto paper in either (a) closed-to-opened or 
(b) opened-to-closed configuration, actuated with localized heating (Phillips et 
al., 2016). F) Different purified alkanes can be layered in a tube to segregate various 
reagent zones until the respective melting temperature is reached (Goertz and White, 
2018). G) The volume change accompanying wax melting/freezing can be leveraged 
with a mechanical one-way valve to create a pump (Sim et al., 2003). 
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2.3.3.1 Fluidic control  
Microfluidic devices have emerged as highly capable systems for sample 

manipulation and reaction control (Whitesides, 2006). Sub-millimeter channels 

fabricated within (typically) polymer monoliths enable the miniaturization of 

biochemical reactions with numerous steps at high throughput. This aqueous reaction 

solution provides a natural medium capable of arresting fluid flow when cooled. Such 

freeze-thaw phase-change valves, leveraging water/ice transitions in the working 

solution, have been constructed using thin-film electric cooling devices (Chen et 

al., 2005; Gui and Liu, 2004; He et al., 2001) (Figure 3A). Pneumatic control is often 

used to drive fluid flow through microfluidic devices, and it has been combined with 

microfabricated heaters to cyclically melt, reposition, and solidify a wax plug to block 

or open a primary fluidic channel, either directly or through an elastomer membrane 

(Liu et al., 2004; Pal et al., 2004; Yang and Lin, 2007) (Figure 3E). A key advantage 

of this thermo-pneumatic approach is that it is “latchable”: only switching the valve 

requires energy (to melt and reposition the plug), not maintaining the valve in one state 

or another. Rather than using wax to seal a channel made from a different material, 

which can pose interfacial problems and difficulties in fabrication, Díaz-González et 

al., (2016) constructed microfluidic channels within molded wax sandwiched between 

glass plates (Figure 3D). Embedded thin-film heaters could directly melt the wax 

between two regions to open a new channel or could melt the wax adjacent to a channel 

to close it, with multiple actuation cycles possible. 

Centrifugal microfluidic systems rely on the centripetal acceleration provided by a 

spinning (typically disk-shaped) platform to replace the pumping systems used to drive 

fluid flow through traditional microfluidic channel systems. Fluid motion is governed 
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by channel geometry as well as rotation speed and direction (Gorkin et al., 2010), but 

extended incubations of a sample within a particular chamber is difficult to achieve 

with only these variables. To achieve such control, paraffin wax was embedded with 

~10 nm iron oxide nanoparticles (referred to as Ferrowax), which could then be melted 

with a 1.5 W laser, enabling both valve actuation and thermal lysis of bacteria (Cho et 

al., 2007; B. S. Lee et al., 2009) (Figure 3B). The twelve separate valves actuated this 

way in four stages facilitated a sample-to-answer colorimetric immunoassay system. 

Such a thermally-automated valve system likely led to a far simpler centrifugal disk 

design than could be achieved with passive valves, but at the significant added cost of 

a high-powered laser and the accompanying power requirements and spatial control 

system. To accomplish similar control without requiring the spatial resolution of a 

laser, Abi-Samra et al., (2011) employed high- and low-melting paraffin to achieve 

multistage liquid handling in CD microchannels, and Kong et al., (2015) used various 

temperature cycles to melt, solidify, and re-melt wax valves with a similar goal.  

Paper-based devices have emerged to enable passive fluidic networks capable of 

processing small fluidic volumes. The capillary action of paper (or a similar 

fibrous/porous membrane) drives fluid motion along its length, the kinetics of which 

can be tuned through channel geometry and additives (e.g., sugar barriers or surfactant 

accelerators). However, in most cases the timing of network components is dictated by 

design and not adjustable at the point-of-use, often limited to short reaction times. 

Phillips et al., (2016) used a wax-ink office printer to create thermally-actuated barriers 

to capillary flow (Figure 3E). During printing, wax only minimally penetrated the paper 

substrate, creating “open” valves that permitted fluid flow but could be “closed” by 
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heating (41 °C or 48 °C for 15 or 25 seconds for nitrocellulose or chromatography 

paper, respectively), presumably to allow the wax to fully penetrate the membrane. 

Subsequent heating “opened” the valve, allowing an advancing fluid front to displace 

a portion of the now-molten wax and continue to flow downstream. 

The authors achieved independent actuation of as many as six sequential valves 

spaced ~5 mm apart, although high spatiotemporal control over heating was necessary 

since all valves were composed of the same material. The authors demonstrated the 

ability of their valves to enable thermal automation of a gold-enhanced lateral flow 

immunoassay (LFIA), in which an enhancement solution was separated from the 

primary antigen-immunogold-capture reaction by a wax valve that was then melted to 

initiate enhancement, improving the visibility of the signal. 

Lafleur et al., (2016) leveraged wax valves for sample flow control through both 

flexible tubing and a paper network. Their device enabled lysis, amplification, and 

multiplexed detection of bacteria from directly from a nasal swab. Chemical heat aided 

lysis and actuated the tubing valve, while a custom printed circuit board provided the 

heating necessary for amplification and actuation of the paper valve. 

Recently, our group extended the idea of reaction control via phase transitions to 

create a generic platform amenable to thermal automation of a wide range of assays 

(Goertz and White, 2018). Instead of relying solely on paraffin waxes – which are 

heterogeneous in composition and display broad, often multimodal melting transitions 

– we employed purified alkanes (octadecane, eicosane, docosane, tetracosane) that 

exhibited well-defined melting transitions. Aqueous reagent layers were interspersed 

with hydrocarbon barriers (formed by deposition of molten alkane), each displaying a 
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lower melting point than the one beneath. These partitions could then be melted one by 

one to introduce specific reagents to the sample solution on demand (Figure 3F). As 

many as four sequential reactant additions were demonstrated, and this tight control 

over reaction progression enabled us to construct hands-free detection systems for 

isothermal DNA amplification, heavy metal contamination, and antibiotic resistance 

profiling. 

Notably, this “phase-change partition” technology is not only compatible with 

already-ubiquitous thermocyclers intended for PCR, but the broad separation of alkane 

melting points mean that less precise (and less expensive) means of temperature control 

(e.g., water baths, consumer kitchen water-heaters, meal-ready-to-eat field ration 

heaters) are sufficient for thermal automation of such assays. Other hydrophobic 

substances may be able to be used in place of or in tandem with purified alkanes – we 

found that purified fatty acids performed well as thermally-actuated barriers, but 

shorter chains exhibited non-negligible solubility at elevated temperatures that may 

potentially impact reaction conditions (unpublished data). While thermally stable, this 

platform is susceptible to mechanical disruption. The interface between the wall and 

the solidified alkanes is a natural weak point that can be dislodged through rough 

handling. Furthermore, this platform is, naturally, only compatible with reactions in 

which the entire volume carries over from each step to the next. Many assays dictate 

transfer of a small portion from an initial reaction to a significantly larger volume of 

subsequent reactants in order to minimize incompatibilities between reaction buffers 

and components. Such assays would obviously have to be re-designed to be adapted to 

this platform. 
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In addition to using meltable materials to block fluid flow, researchers have 

reported the use of paraffin as thermally-actuated pump, wherein the volume (and 

pressure) change resulting from the melting/freezing of heterogeneous and 

homogeneous alkane waxes drives fluid motion (Ogden et al., 2014). A representative 

example of a phase-change pump can be found in Sim et al., (2003). A silicon rubber 

membrane separates a sealed actuator chamber, containing water and a heating element, 

from a pumping chamber with one-way valves on either end (Figure 3G). Activating 

the heater vaporized the actuating water, deflecting the silicon membrane into the 

pumping chamber and expelling fluid downstream; subsequent deactivation of the 

heater led to condensation of the actuating water, relaxing the silicon membrane and 

drawing upstream fluid into the pumping chamber. Similarly, Mamanee et al., (2006) 

and Yoo et al., (2007) leveraged thermal expansion of air to deflect PDMS and 

construct a peristaltic micropump for microfluidic systems. To construct a solid-liquid 

phase-change actuator, Liu et al., (2018) embedded paraffin within a matrix of 

expanded graphite and nickel microparticles, producing a microactuator that was self-

sealed (within the graphite pores) and could be heated inductively (due to the electrical 

conductivity of the graphite and the magnetic permeability of the nickel) to achieve up 

to nearly 400 µm actuation height. 
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2.3.3.2 Encapsulation 
An alternative approach controlling flow of a reaction solution through a network 

of reagent zones is to create self-contained compartments with meltable walls. This 

Figure 4. Physical encapsulation strategies. A) For bulk emulsion encapsulation, the 
core is first dispersed in molten shell material. This single emulsion is then mixed 
into a hot “continuous” phase to produce a double emulsion (e.g., water-in-oil-in-
water), which is then rapidly cooled to solidify the shells. The core-shell 
microcapsules can be subsequently melted to release the cargo (Taguchi et al., 2014. 
B) In a Pickering emulsion, nanoparticles stabilize the oil-water interface. These 
emulsions undergo phase inversion at high temperatures, transitioning from a water-
in-oil emulsion to an oil-in-water emulsion and allowing different cargo solutions to 
mix (Binks et al., 2005). C) Capillary microfluidics enables tight control over core-
shell dimensions and monodispersity. An aqueous core phase is introduced to a co-
flowing molten shell phase. Counter-flowing continuous phase pinches the coaxial 
streams into droplets, which are rapidly cooled to form core-shell microcapsules (Sun 
et al., 2010). D) Mesoscale capsules can be cast in arbitrary shapes. Molten shell 
material is poured into a cast, then a stamp is fixed in place to form a hollow cavity. 
When the stamp is removed, the capsule is filled with cargo, then capped with 
additional shell material (Goertz et al., submitted).  
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strategy has the potential to improve manufacturability of thermally-controlled systems 

by enabling modular, asynchronous assembly of the complete assay system rather than 

the sequential construction required by many wholly integrated systems. 

Wax encapsulation has been achieved through bulk emulsion and spray-cooling 

methods. Taguchi et al., (2014) prepared a water-in-oil-in-oil double emulsion of 

aqueous azur B in paraffin wax prepared in silicone oil and tuning the leakage behavior 

by increasing the amount of surfactant (Poem J0021) (Figure 4A). Mellema et 

al., (2006) employed a similar melt dispersion-emulsion strategy. Industrial techniques 

such as fluidized bed spray-coating have also been used to produce wax capsules 

(Jozwiakowski et al., 1990; Knezevic et al., 1998), but the stability and monodispersity 

of such encapsulations is often poor. 

Instead of traditional molecular surfactants, nanoparticles have been used to 

stabilize the oil-water interface in so-called Pickering emulsions (Chevalier and 

Bolzinger, 2013; Pickering, 1907; Ramsden, 1904). Such emulsions are naturally 

sensitive to temperature, as oil-in-water emulsions formed at room temperature 

undergo catastrophic phase inversion at elevated temperatures to form water-in-oil 

emulsions (Binks et al., 2005) (Figure 4B). Greater control over thermal behavior of 

Pickering emulsions has been achieved by employing as the colloidal stabilizer 

micro/nanoparticles surface-coated by or entirely comprised of pNIPAAm (Destribats 

et al., 2012; Monteux et al., 2010; Ngai et al., 2005; Tsuji and Kawaguchi, 2008; Zhang 

et al., 2010; Zoppe et al., 2012) or poly[2-(dimethylamino)ethyl methacrylate] 

(PDMAEMA (Tang et al., 2014; Zoppe et al., 2012). 
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Vreeland and Locascio (2003) synthesized liposomes containing aqueous cargos 

through a freeze-thaw cycling method. The liposomes were then passed through a 

microchannel superimposed with a static temperature gradient. While below the 

melting point of the lipid chain, in the gel phase, the liposomes exhibited low 

permeability, as they did above the melting point, in the fluid phase; in the region of 

the melting point, however, the disordered membrane released its cargo into the 

microchannel. Tuning the poles of the thermal gradient offered spatial control over this 

behavior. 

Microfluidics has enabled fabrication of small thermoresponsive compartments 

with tighter control over size and homogeneity than that afforded by conventional 

emulsion methods. Sun et al. (2010) used a flow-focusing capillary microfluidic device 

to produce water-in-oil-in-water (w/o/w) double emulsions where the “oil” phase 

constituted molten fatty glycerides, paraffin oil, or purified alkanes that hardened into 

a shell upon cooling (Figure 4C). In their apparatus, the aqueous core phase was 

extruded in a thin stream into the co-flowing oil shell phase and pinched into separate 

droplets by an aqueous outer phase flowing antiparallel. After encapsulation in this 

manner, the core phase could be released into the supernatant by melting the shell. The 

droplets had to be rapidly cooled in an ice bath immediately following generation or 

the more-dense core would sink through the less-dense shell, leading to very thin 

capsule walls or premature coalescence with the outer phase. While no surfactant was 

necessary within the core phase (a crucial consideration for biochemical assays) it was 

necessary that the core contain approximately 50% glycerol to increase its viscosity to 

roughly that of the molten wax phase. By using dual-bore capillary tubes to inject 
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multiple core phases into the shell phase, they demonstrated the fabrication of wax 

compartments containing two distinct cores, and it is likely that higher-order 

multicompartment capsules could be generated as per similar approaches found in their 

and others’ reports (Chu et al., 2007; Duncanson et al., 2012; W. Wang et al., 2014).  

We recently reported the encapsulation of mesoscale volumes through casting of 

hollow wax capsules in a manner analogous to injection molding (Goertz et 

al., submitted) (Figure 4D). Molds were either directly 3D printed or cast from a 3D-

printed master, then filled with molten phase-change partitions, and joined with a 3D 

printed stamp to form cup-shaped structures. These cups could be filled with liquids, 

solids, or hydrogels, then capped, and sealed by immersion in a lower-melting phase-

change partition. The capsules were stable against leakage and evaporation and were 

used to contain hazardous materials for thermally-automated sensing applications. The 

flexibility afforded by 3D printing should enable this principle to be expanded to other 

volumes, geometries, and applications. 

2.3.4 Biochemical Transitions 
In the biochemical archetype of hot-start PCR described above, antibodies or 

aptamers inhibited the enzymatic activity of Taq until being denatured or “melted” off. 

This principle of leveraging alterations in biochemical interactions at elevated 

temperatures has been harnessed to modulate the activity of other enzymes as well as 

to control flow through channels and for controlled-release of the entrapped of 

molecules. This has primarily been achieved through the use of thermoresponsive 

polymers. The vast range of such polymers and their applications has been reviewed 

previously (Klouda and Mikos, 2008; Roy et al., 2013; Trzebicka et al., 2017). By far 
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the most popular such polymer is poly(N-isopropylacrylamide) (pNIPAAm) (Heskins 

and Guillet, 1968; Klouda and Mikos, 2008; Roy and Gupta, 2003; Schild, 1992; 

S. Satarkar et al., 2010), although similar or even superior thermoresponsive properties 

have been identified in poly[2-(dimethylamino)ethyl methacrylate] (pDMAEMA) 

Figure 5. Biochemical strategies for thermal control. A) Thermoresponsive polymers 
such as pNIPAAm transition from forming hydrogen bonds with water at low 
temperatures to forming hydrogen bonds with other polymer units at high 
temperatures, with a corresponding decrease in volume and hydrophilicity (Weng and 
Xie, 2015). B) Under driven flow, a swollen polymer plug arrests fluid flow, while 
collapsed polymer permits flow (Yu et al., 2003). C) Under capillary flow, the 
hydrophobicity of the collapsed polymer prevents wetting of the channel wall, 
arresting flow, while swollen polymer permits wetting and corresponding flow (Londe 
et al., 2008). D) Polymer microcapsules are loaded with reagents at high temperature, 
prevent escape at low temperature, and release their cargo at high temperature (Ma et 
al., 2013). E) Polymer can be conjugated to binding proteins, permitting binding at 
low temperatures while prevent binding and releasing bound molecules at high 
temperature (Liu et al., 2008). F) Enzymes conjugated with polymer exhibit reduced 
catalytic activity at higher temperatures (Molawi and Studer, 2007). 
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(Glinel et al., 2003; Tang et al., 2014; Zoppe et al., 2012), 2-(2-methoxyethoxy)ethyl 

methacrylate (MEO2MA) and oligo(ethylene glycol) methacrylate (OEGMA) 

copolymers P(MEO2MA-co-OEGMA) (Lutz et al., 2006; Ma et al., 2013), poly(N-

vinylcaprolactam) (pVCL) (Ramos et al., 2012), and poly(4-hydroxybutyl vinyl ether) 

(pHOBVE) (Sugihara et al., 2007). These polymers exhibit temperature-dependent 

swelling, optically and diffusively permeable at low temperatures but collapse at 

temperatures above the lower critical solution temperature (LCST, ~32 °C for 

pNIPAAm), undergoing a corresponding hydrophilic-to-hydrophobic transition 

(Figure 5A). Polymers which exhibit the reverse behavior, swelling at high 

temperatures while collapsing at low, are less prevalent (Roy et al., 2013).  

2.3.4.1 Valves 
The polymer pNIPAAm has also been used to create a thermo-responsive valve 

(Figure 5B). At temperatures above the polymer’s LCST it forms intramolecular 

hydrogen bonds, rendering it hydrophobic, while below the LCST those hydrogen 

bonding sites are available to external molecules, rendering it hydrophilic. Yu et al. 

(2003) leveraged this transition to obstruct or permit fluid flow through a microchannel 

via a pNIPAAm plug (Figure 5B). Londe et al. (2008) tuned the wettability of the floor 

of a microchannel with the polymer (Figure 5C), enhancing the hydrophobic state with 

the superhydrophobic surface agent (1H,1H,2H,2H-perfluorooctyl) silane deposited on 

top of the pNIPAAm and enhancing the hydrophilic state through a polyelectrolyte 

network assembled layer-by-layer beneath.  

PMIPAAm was similarly employed in a capillary microfluidic system, in which the 

temperature-dependent swelling of the polymer completely blocked the channel and 
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could be oscillated repeatedly (Idota et al., 2005).  Capillaries could also be coated in 

such a way that the swollen polymer did not block flow, but the hydrophobic surface 

of the contracted polymer could trap hydrophobic molecules in solution, releasable 

upon re-swelling (Idota et al., 2006). 

Buchholz et al. (2001) used solution-phase copolymers of diethylacrylamide and 

dimethylacrylamide to create a “viscosity switch” for capillary DNA sequencing. 

Dispersed in the sample solution, the polymer matrix offered low viscosity at high 

temperatures, ideal for rapid loading of the capillary, and high viscosity at room 

temperature, achieving adequate sieving of the DNA oligos. 

2.3.4.2 Microcapsules 
Thermoresponsive polymers have been used extensively to create core-shell 

microcapsules, entrapping molecules at high temperatures that diffuse out at lower 

temperatures (Glinel et al., 2003; Suzuki et al., 2001; Zarket and Raghavan, 2017) 

(Figure 5D). A representative example of this approach can be found in  Ma et al. 

(2013). Capsules were also formed by coating silica nanoparticles with random 

copolymer branches of 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and 

oligo(ethylene glycol) methacrylate (OEGMA). Removing the silica core via HF 

etching produced hollow capsules responsive to both pH and temperature that could be 

stimulated to load and subsequently release cargo molecules. The transition 

temperature could be tuned to 38, 47, and 56 °C by varying the stoichiometry of the 

copolymer components. 

2.3.4.3 Biomolecular Interactions 
Thermoresponsive polymers have also been tethered directly to enzymes and other 

proteins to thermally modulate their folding structure, accessibility to substrates, and/or 
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catalytic activity. (Ding et al., 2001) conjugated poly(N,N-diethylacrylamide) 

(pDEAAm) to streptavidin. The unfolded polymer shielded the protein’s binding site 

such that attachment of biotinylated proteins was dependent on size and temperature: 

small proteins (protein G, MW 6.2 kDa) could bind at any temperature, intermediate 

proteins (BSA, MW 66 kDa) could bind only above the LCST, and large proteins (IgG, 

MW 150 kDa) were unable to bind at any temperature; thermally-triggered release of 

bound molecules was also possible.  

Liu et al. (2008) conjugated carboxyl-terminated pNIPAAm via 

carbodiimide/hydroxysuccinimide (EDC/NHS) chemistry to antibodies immobilized 

on an electrode surface, creating an immunoassay that could be operated above the 

LCST and refreshed below the LCST (Figure 5E). While antigen-antibody binding was 

reduced by 83% upon reducing the temperature, and minimal hysteresis was observed 

across several cycles, there was no comparison against binding to unmodified antibody. 

Golden et al. (2010) modified both antibodies and a filtration membrane with 

pNIPAAm via RAFT (Reversible Addition-Fragmentation chain Transfer) 

polymerization. Above the LCST the membrane was semi-permeable, allowing 

unmodified solution molecules through while obstructing passage of conjugated 

antibodies and their complexes with antigen and labeled detection antibodies; below 

the LCST, the membrane lost this sieving action. This enabled ~40-fold concentration 

of target antigen with 84% total recovery, facilitating clinically-relevant 

immunosandwich detection of a malaria antigen with a total assay time of ten minutes. 

Lee and Park (2008) conjugated copolymers of pNIPAAm and glucosyoxylethyl 

methacrylate to trypsin to allow moderate thermal modulation of its activity and 
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improve its thermal stability (although basal enzymatic activity of conjugates was 

<30% of unmodified trypsin), while Molawi and Studer (2007) employed a different 

polymerization strategy to prepare pNIPAAm-trypsin conjugates with completely 

suppressed activity above the LCST (although basal enzyme activity was not compared 

to unmodified trypsin) (Figure 5F).  

Similarly, De et al. (2008) conjugated pNIPAAm to BSA via RAFT 

polymerization. Basal esterase activity of the protein was reduced by less than 10%, 

and several thermal modulation cycles of esterase activity were achieved. However, the 

degree of deactivation above the LCST was rather minimal: below the LCST, enzyme 

activity was ~90% that of unmodified protein; above the LCST, it was reduced to 

~75%. 

2.3.5 Portable Temperature Control 
Thermal control is attractive for many applications in part due to its flexibility. 

Myriad systems exist for regulating temperature, and heating can be accomplished in a 

portable, compact device with a minimum of peripheral equipment. Many strategies 

have been developed for such portable temperature control, particularly for the purpose 

of maintaining the necessary temperatures for isothermal nucleic acid control. In this 

section, we will explore approaches for inexpensive, portable temperature regulation, 

including compact electronics and electricity-free systems. 

2.3.5.1 Electrical 
The Arduino platform has provided a compact, modular, low-cost, easily-

programmable microcontroller for a variety of thermally-based diagnostics. It offers 

the potential to not only record and control temperature changes but also 

modulate/record optical signals, actuate mechanical components, communicate with 
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Bluetooth devices, geotag samples, and interface with Internet systems. Reaction 

systems leveraging an Arduino have been used for LAMP detection of Pseudomonas 

syringae peponis (Velders et al., 2018) as well as Zika, chikungunya, and dengue 

viruses (Priye et al., 2017); PCR detection of Bacillus subtilis, Neisseria gonorrhoeae, 

Ebola virus, and drug-resistant Staphylococcus aureus (Priye et al., 2016; Restaino and 

White, 2018; Wong et al., 2015); RPA detection of Chlamydia trachomatis (Ereku et 

al., 2018); as well as paper-based detection of creatinine in whole blood (Tseng et 

al., 2018). While the Arduino itself is small, portable, and low-cost, the power 

necessary for cyclic temperature ramping may be difficult to realize in a truly field-

compatible manner. Dedicated portable electrical heating devices have also been 

constructed for multi-step thermal sample processing and isothermal amplification 

(Dou et al., 2017; Lafleur et al., 2016). Finally, solar heat was used to achieve PCR in 

an Arduino-controlled centrifugal microfluidic device for sample-to-answer detection 

of Kaposi's Sarcoma herpesvirus (Jiang et al., 2014). 

2.3.5.2 Chemical 
Phase-change materials (PCMs) have been used extensively as passive temperature 

regulators. A PCM is simply a material with a desired melting point (typically between 

10 °C and 90 °C) and a high latent heat of fusion: as the material melts, the temperature 

inside remains approximately constant. Thus, PCMs provide thermal buffers around 

their melting point, relaxing the demands of a tightly-controlled heating source. There 

is a vast body of literature devoted towards characterizing and manipulating such 

materials for solar heating and “smart” construction and textile composites (Farid et 

al., 2004; Yuan et al., 2014; Zalba et al., 2003). The most common materials include 

paraffin-like waxes (Fang et al., 2010a; Li et al., 2013; Sarı et al., 2015, 2014), fatty 
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acids (Alva et al., 2017; Chen et al., 2013; Fang et al., 2011, 2010b; Latibari et 

al., 2013; Pielichowski and Flejtuch, 2003; Pourmohamadian et al., 2017; Song et 

al., 2014; Yuan et al., 2014; Zhang et al., 2012), and hydrated salts (Liu et al., 2017; 

Ryu et al., 1992a; Shin et al., 2015). Typically, the PCM is encapsulated, either in a 

core-shell microstructure or within a porous matrix. Doing so improves the thermal 

conductivity of the PCM, prevents leakage to facilitate re-use, mitigates supercooling 

(cooling of a liquid below its freezing temperature due to a lack of nucleation), and 

prevents irreversible phase separation during melting (in the case of hydrated salts) 

(Farid et al., 2004; Ryu et al., 1992a; Yuan et al., 2014). 

Aided by the flexibility afforded by PCMs, researches have developed numerous 

“non-instrumented” devices that precisely heat biochemical reactions without the use 

of electricity. (Kubota et al., 2013) constructed a reaction platform based on a thermos 

with a PCM-filled aluminum sample-holder insert, supplying heat by pouring in boiling 

water to perform LAMP-mediated detection of Salmonella enterica. The heat released 

by hydration of CaO has also been leveraged for detection of HIV (Curtis et al., 2012), 

malaria DNA (LaBarre et al., 2011, 2010), and for lysis of Staphylococcus epidermidis 

(W. Liu et al., 2018). 

Another approach has been to utilize “Meal Ready to Eat” (MRE) heaters (Buser 

et al., 2015). Developed for safely cooking military field rations without electricity or 

fire, MRE heaters consist of fine granules of a MgFe alloy to which saline is added. 

The resulting galvanic corrosion is highly exothermic, with an approximately 15-fold 

greater energy density than the CaO system (Buser et al., 2015). An additional 

advantage of this system is improved control over heating: the temperature profile can 
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be tuned by varying granule size, saline concentration, and saline delivery rate (Buser 

et al., 2015; Liu et al., 2011). This heating system has been used with various PCMs, 

typically within a vacuum thermos and often with the aid of a smartphone, for detection 

of E. coli (Liu et al., 2011), HSV-2 (Liao et al., 2016), Zika virus (Song et al., 2016), 

and malaria (Sema et al., 2015), and for lytic enzyme deactivation (Buser et al., 2016). 

2.4 Conclusion 
As seen above, microfluidic flow can be controlled through direct freeze/thawing 

of the primary solution or phase change of a pumping/valving solution. Similarly, 

reagents can be sequestered within capsules, released upon melting of the shell 

material.  Paraffin is the most common material with which to achieve thermal flow 

control in microfluidic systems through phase transitions, either as a pump or a valve, 

thanks to its convenient melting temperature, structural stability, and low cost. 

However, due to its heterogeneous nature, paraffin exhibits multiple solid-state phase 

transitions below its canonical melting temperature in addition to a broad transition 

profile near the melting temperature, as revealed by differential scanning calorimetry 

(Ogden et al., 2014). Many of the above platforms would likely benefit from the relaxed 

technical considerations of instead using purified alkanes to achieve thermally 

automated multi-step fluid handling (Goertz and White, 2018) rather than relying on 

high spatiotemporal resolution in temperature control to achieve the same with 

paraffins. Octadecane, eicosane, docosane, tetracosane, and octacosane are relatively 

inexpensive (the intervening odd-numbered alkanes are typically much more 

expensive) and have distinct melting points (30 °C, 37 °C, 42 °C, 52 °C, and 65 °C, 

respectively). Furthermore, a greater variety of melting points within that range can be 
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achieved through eutectic mixtures, i.e. a mixture of two or more compounds with 

different melting points that (when formulated at precise ratios) exhibits a single 

melting transition lower than any of the constituents (Guo et al., 2004; Inoue et 

al., 2004a, 2004b; Sarı et al., 2015, 2014). 

In contrast to thermal-control strategies that leverage physical transitions, those that 

exploit biochemical transitions are more complicated to implement. Additionally, 

while a wax plug can be designed large enough to perfectly sequester reagents, 

conformational changes in proteins and polymers are rarely perfect in their inhibition 

or release. However, direct modification of enzymes has the potential to enable highly 

compact thermally-controllable reactions with multiple integrated steps possible within 

a single solution. Polymer conjugation to proteins is likely to impair their maximum 

activity but has been shown capable of actually improving stability against chemical 

denaturants (Lucius et al., 2016). A potential drawback of thermoresponsive polymers, 

and biochemically-mediated thermal control in general, is that rarely is the desired 

transition dependent solely on temperature. Intermolecular and intramolecular 

interactions are influenced by the presence of electrolytes as well as the pH of the 

solution. Effective thermal control will require careful consideration of these 

parameters as well. Biochemical reactions, particularly those involved in exponential 

nucleic acid amplification, have very low tolerances for undesired enzymatic activity 

at the wrong stage of the assay. A thermoresponsive polymer strategy for modulating 

such enzyme activity will have to achieve correspondingly high degrees of inhibition; 

the modest control achieved in many of the reports examined above may prove 

insufficient. Additionally, it should be common practice to compare the maximal 
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activity of modified enzymes with that of unmodified; loss of activity can be 

compensated for by using proportionately more enzyme but doing so will add to the 

cost of the assay, on top of the higher unit cost of the modified enzyme itself. Finally, 

biochemical and physical strategies for reaction control can be augmented by selecting 

natural or engineered enzymes that are appropriately thermostable or thermolabile. 

Many thermostable enzymes exhibit sharply reduced activity at lower temperature, 

providing natural temperature control that can potentially be further tuned with polymer 

conjugation. Conversely, thermally-controlled reaction systems may also need to 

utilize biomolecules which retain their activity across a broad temperature range. 

Catalytic DNA structures are significantly less affected by temperature changes than 

many proteins (Ito and Hasuda, 2004), and some have been engineered specifically to 

retain activity at extreme temperatures (Guo et al., 2017; Nelson et al., 2005). 

Many of the advantages of thermal automation are particularly beneficial to 

portable reactions for point-of-care diagnostics. Above, we examined reports for 

achieving the temperature control necessary in a portable format, from PCM-buffered 

chemical heating to low-power electrical heating. Oddly, few reports have combined 

portable heating with thermally-controlled reactions (Goertz et al., submitted; Lafleur 

et al., 2016), or leveraged physical and biochemical strategies in tandem. Portable 

heating systems have typically been used for driving isothermal nucleic acid 

amplification, rarely for actuation of physically meltable barriers or for modulation of 

biochemical thermal switches. Similarly, it seems that the compactness and modularity 

of thermoresponsive polymers conjugated to enzymes or microparticles could augment 

physical segregation strategies, with their capacity for perfect isolation of reactants. 
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The future of thermal control for biochemical assays will likely focus on achieving 

tight control over initiation of numerous sequential reaction nodes in a small, portable, 

low-cost manner. Such developments are poised to facilitate the application of such 

systems for field-ready environmental surveillance systems, bio/chemical warfare 

agent detection, and point-of-care diagnostics.  
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3 Peroxidyme Amplified Radical Chain Reaction (PARCR): 
Visible Detection of a Catalytic Reporter2 

Here we circumvent the need for adding H2O2 manually by generating it in situ in 

tandem with several optically-driven feedback loops. Other attempts had been made 

prior to this to work to engineer a G-quadruplex reporter system without exogeneous 

H2O2. This included generation of a colorimetric signal through an H2O2-generating 

feedback loop centered around spontaneous thionitrobenzoic acid oxidation (Golub et 

al., 2013) – we attempted to replicate these results but observed only minimal 

concentration-dependence of the resulting signal, with high background. This strategy 

extends the NADH-driven G-quadruplex-mediated strategy (Golub et al., 2011), which 

in isolation yielded acceptable concentration-dependence but failed to produce a visible 

signal. For the purposes of point-of-care, a visible signal is most desirable because it 

relaxes the requirements of quantification instrumentation. This chapter describes the 

engineering of feedback loops to accomplish such a result. 

3.1 Abstract 
We present Peroxidyme Amplified Radical Chain Reaction (PARCR), a novel 

enzyme-free system that achieves exponential amplification of a visible signal. Typical 

enzyme-free amplification systems that produce a visible readout suffer from long 

reaction times, low sensitivity, and narrow dynamic range. PARCR employs 

photocatalyzed non-linear signal generation, enabling unprecedented one-pot, naked-

eye detection of a catalytic reporter from 1 µM down to 100 pM. In this reaction, 

hemin-binding peroxidase-mimicking DNAzymes (“peroxidymes”) mediate the 

NADH-driven oxidation of a colorless, non-fluorescent phenoxazine dye (Amplex 

                                                 
2 This work was published in Angewandte Chemie International Edition, 56 (43) 2017, 13411-13415 
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Red) to a brightly colored, strongly fluorescent product (resorufin); illumination with 

green light initiates multiple radical-forming positive-feedback loops, rapidly 

producing visible levels of resorufin. We envision PARCR as an easy-to-use readout 

for a range of detection schemes, including aptamer labels, hybridization assays, and 

nucleic acid amplification. 

3.2 Introduction 
Chemical reactions that produce visible color changes have become indispensable 

to modern analytics and diagnostics (Boehle et al., 2017; Dehghan Esmatabadi et 

al., 2015; Dungchai et al., 2010; Hänscheid, 1999; H Esterbauer, 1996; Liang et 

al., 2010; Logu et al., 2001; Martinez et al., 2010; Mazzone et al., 2007), as evidenced 

by the widespread use of enzyme immunoassays (Porstmann and Porstmann, 1988; 

Rissin et al., 2010; Yolken, 1982), antibiotic-resistance assays (Boehle et al., 2017; 

Logu et al., 2001), nanoparticle-aggregation assays (Alivisatos et al., 1996; Hauck et 

al., 2010; Mazzone et al., 2007), and many others. Typically, the signals produced by 

these assays are directly proportional to analyte concentration (Porstmann and 

Porstmann, 1988; Sapan et al., 1999). However, linear signal gain systems such as these 

exhibit significantly worse sensitivity and dynamic range than exponential 

amplification systems, which are much less prevalent in the literature (Baker and 

Phillips, 2012; Gao et al., 2014; Jin et al., 2015; Mize et al., 1989; Obzansky et 

al., 1991). Additionally, these systems often require enzyme reporters and sensitive 

spectroscopic instrumentation to achieve maximum performance, limiting their 

applicability to a narrow range of laboratory settings. Here, we couple photochemical 

and biochemical feedback loops to achieve exponential signal gain in an enzyme-free 
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system, allowing naked-eye detection of a catalytic reporter across five orders of 

magnitude down to sub-nanomolar concentrations. The full dynamic range of this 

assay, termed Peroxidyme Amplified Radical Chain Reaction (PARCR), can be 

monitored with an LED and a simple cell phone camera. This reaction leverages the 

oxidative activity of catalytic nucleic acids in tandem with the photosensitivity of a 

redox-active fluorophore to exponentially generate fluorescence, rapidly producing a 

readily visible signal. 

The oxidation-sensitive phenoxazine dye Amplex Red (AR, N-acetyl-3,7-

dihydroxyphenoxazine) has been used for fluorometric detection via either HRP or 

HRP-mimicking DNAzymes (referred to here as “peroxidymes”) (Golub et al., 2011; 

Nakayama and Sintim, 2009a; Zhou et al., 1997). This reaction, driven by either H2O2 

or NADH, results in the oxidation of colorless, non-fluorescent AR to produce pink-

colored, orange-fluorescent resorufin (RSF, 7-hydroxy-3H-phenoxazin-3-one). 

However, the resulting linear generation of RSF occurs too slowly to become visible 

to the naked eye within a reasonable timeframe for analysis. Additionally, phenoxazine 

dyes such as AR are known to be photolabile due to reactivity of the photoexcited 

fluorescent product with the precursor, a characteristic often cited as a detriment (Zhao 

et al., 2011; Zhao et al., 2012). The PARCR assay described here exploits this 

photosensitivity, exponentially generating visible levels of RSF via illumination of a 

solution containing hemin, NADH, AR, and a peroxidyme sequence (C(TGGG)4A, 

referred to as “EAD”)(Chang et al., 2016; Cheng et al., 2009; Nakayama and Sintim, 

2009b) in ammonium-acetate-tris buffer (Figure 6). Peroxidymes, a key mediator of 

this system, bind to hemin upon adopting a G-quadruplex conformation. This complex 
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catalyzes similar redox reactions as HRP yet has numerous advantages as a catalytic 

reporter, including ease of chemical synthesis and modification, environmental 

stability, and ability to be biochemically synthesized in situ (Kosman and Juskowiak, 

2011; Mairal et al., 2008; Tombelli et al., 2007; Travascio et al., 1998; J. Xu et 

al., 2016; Zhou et al., 2014).  

3.3 Materials and Methods 
Materials and Instrumentation. Hemin, NADH, catalase, resorufin, and Amplex 

Red (10-Acetyl-3,7-dihydroxyphenoxazine, purity ≥ 98%) were obtained from 

Cayman Chemicals (Ann Arbor, MI, USA). DNA was obtained from IDT (Coralville, 

IA, USA). The “EAD” peroxidyme sequence (5’-CTGGGTGGGTGGGTGGGA-3’) 

was used for all experiments except where otherwise noted (see Table 1 for other 

sequences used).   

Standard 96-well clear-bottom black-walled µClear microplates (medium binding) 

were obtained from Greiner (Kremsmünster, Austria), LightCycler 480 white-walled 

multiwell PCR plates from Roche (Basel, Switzerland). Clear-walled MicroAmp 

Optical 96-well reaction plates (ThermoFisher, Waltham, MA, USA) were used for all 

LED-excited experiments except where otherwise noted.  

UV LEDs (5 mm XSL-365-5E) were purchased from Roithner LaserTechnik 

(Vienna, Austria) and visible LEDs (Screen Master 5 mm oval C566D) from Cree Inc. 

(Durham, NC, USA); all LEDs have a spectral width <20 nm. A power meter (843-R, 

Newport, Irvine, CA, USA or UVX-36, UVP, Upland, CA) was used to determine the 

current required for each LED to produce 250 µW/cm2 at approximately 1 cm; for all 

other values intensity was assumed to be directly dependent on current. LEDs were 
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held approximately 1 cm above microplate well bottoms via a custom 3D printed ABS 

jig (Replicator 2x, MakerBot, New York, NY, USA).  

A Nanodrop 1000 (Thermo Fisher, Halethorpe, MD) was used to verify stock 

concentrations of RSF (ε570 = 57 mM-1cm-1) and NADH (ε340 = 6.22 mM-1cm-1). 

Microplate fluorescence and absorbance measurements were performed with 

Spectramax M5 plate reader (Molecular Devices, Sunnyvale, CA, USA). RSF 

fluorescence was determined by measuring the emission of 590 nm light due to 

excitation at 530 nm with a 590 nm cutoff filter; NADH fluorescence was determined 

with 460 nm emission and 340 nm excitation and a 455 nm cutoff filter. Smartphone-

based reaction monitoring was performed by illuminating 8-well PCR strips (Bio-Rad, 

Hercules, CA) with green LEDs and capturing time-lapse videos with a Galaxy S6 

(Samsung, Seoul, South Korea) (5 ms exposure, ISO 50) using the Lapse It Pro app. 

MATLAB (MathWorks, Natick, MA, USA) was used for all data processing and 

analysis. 

CutSmart Buffer, Klenow Fragment (5’-3’ exo-), dNTPs, Nt.BbvCI were purchase 

from New England Biolabs (Ipswitch, MA, USA), and iQ Supermix from Bio-Rad. A 

LightCycler 480 II (Roche) was used for PCR. 

Data Processing.  To quantitatively compare amplification behavior, RSF 

fluorescence curves that reached a chosen reaction threshold (104 RFU) were fit with a 

modified version of a sigmoidal curve common to exponential reaction curve analysis 

(Liu and Saint, 2002): 

𝐹𝐹(𝑡𝑡) =
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

1 + 𝑒𝑒
𝑡𝑡−𝑡𝑡𝑐𝑐
𝑘𝑘

+ 𝑚𝑚 ⋅ 𝑡𝑡 + 𝐹𝐹0 (1) 
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where the fluorescence intensity F at a given time t is related to an initial and maximum 

fluorescence (F0 and Fmax, respectively), a linear offset with slope m, an exponential 

slope factor k, and the characteristic time tc used to compare amplification rates (note 

that, in the pure sigmoid, tc represents the time at which the fluorescence is half its 

maximum strength). Data points from the lag and exponential phases were used for 

fitting (Figure 13); all curve fits had a coefficient of determination R2>0.99. 

One-way ANOVA with Dunnett’s critical value or one-tailed Student’s T-test were 

used to determine statistical significance assuming α=0.05, as appropriate. Significant 

comparisons are indicated by “*”. 

Optical Characterization. Initial characterization was performed in standard 

microplates with a final reaction volume of 100 µL. The peroxidyme sequence known 

as “EAD” (CTGGGTGGGTGGGTGGGA)(T. Chang et al., 2016; Cheng et al., 2009) 

was diluted to 300 nM with 1 µM hemin and 100 µM AR in ammonium buffer 

(500 mM NH4OAc, 50 mM Tris, pH 7.5) (Nakayama and Sintim, 2009b). The reaction 

was initiated with the addition of NADH to a final concentration of 100 µM. To 

evaluate the wavelength-specificity of the photocatalyzed reaction, the reaction mixture 

was illuminated at 250 µW/cm2 with LEDs of various colors: red (620 nm), yellow 

(591 nm), green (527 nm), blue (470 nm), and UV (365 nm). Yellow and green LEDs 

produced similar reaction rates at various optical intensities, but the green LED was 

capable of sustaining higher intensities than the yellow and was thus used for all 

subsequent experiments. Unless otherwise specified, all other experiments were 

performed under 1.5 mW/cm2 green light. Excitation light provided by the plate reader 
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during fluorescence measurements did not significantly contribute to RSF generation 

(Figure 13).  

It should also be noted that the PARCR system is sensitive to the optical 

characteristics of the reaction vessel: the reactions in Figure 15C were conducted in 

clear PCR plates; faster reaction times and decreased sensitivity were observed in 

opaque, white-walled PCR plates (Figure 14D). 

The pink solution color becomes noticeable to the naked eye and the orange 

fluorescence distinguishable from the green excitation light above 2.5 µM RSF; the 

high extinction coefficient and fluorescence quantum yield of RSF (57 mM-1·cm-1 and 

0.74, respectively (Bueno et al., 2002; Siu et al., 2014)) eliminate the need for 

excitation or emission filters for accurate detection. 

Mechanistic Investigations and Detection Limit Determination. After initial 

optical characterization, all further experiments were performed in clear 96-well PCR 

plates with a reaction volume of 20 µL comprising, unless otherwise specified, 100 µM 

NADH, 300 nM hemin, and 20 µM AR in ammonium buffer (500 mM NH4OAc, 

50 mM Tris, pH 7.5) (see Figure 14, Figure 15, Figure 18, and Figure 19 for reaction 

behavior under other conditions). Mineral oil was layered over reaction solutions to 

prevent evaporation over the course of the assay. 

ABTS oxidation during PARCR was investigated in standard clear 96-well 

microplates with a reaction volume of 100 µL. 1 mM ABTS was included in reactions 

of 100 µM AR, 10 µM RSF, 1 µM EAD, and/or 1 µM hemin, as indicated. ABTS 

oxidation is typically monitored by an increase in absorbance at 420 nm. However, the 
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high amounts of RSF generated during PARCR contributed slightly to the absorbance 

at 420 nm, described by the equation RSF420nm = fR*RSF570nm+oR. Similarly, oxidized 

ABTS contributed slightly to the absorbance at 570 nm, described by the equation 

ABTS570nm = fA*ABTS420nm+oA. These coefficients were determined empirically to be 

fR = 0.1081, oR = 0.1245, fA = 0.3327, oA = 0.08758. To account for this, the absorbance 

at 420 nm due to oxidized ABTS (ABTS420nm) was determined from the absorbance at 

420 and 570 nm (A420nm and A570nm, respectively) with the following equation: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆420𝑛𝑛𝑛𝑛 =
𝐴𝐴420𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑅𝑅(𝐴𝐴570𝑛𝑛𝑛𝑛 + 𝑜𝑜𝐴𝐴) + 𝑜𝑜𝑅𝑅

𝑓𝑓𝐴𝐴 + 1
(2) 

ABTS concentration was determined using an extinction coefficient of ε420 = 

32 mM-1cm-1 and the solution pathlength determined by the PathCheck feature of the 

plate reader. 

Cell Phone Camera Image Processing. Processing of time lapse cell phone 

images was done in MATLAB. The (nonlinear) RGB coordinates representing each 

still image were converted to the (linear) L*a*b* colorspace via standard 

transforms,(Ginardi et al., 2014; Loh et al., 2011) the average value of each color 

coordinate was determined for each reaction well, then the Euclidean distance D 

between color coordinates of an image i and the initial image 0 was used to determine 

the degree of color change (Archibong et al., 2017; Shen et al., 2012): 

𝐷𝐷 = �(𝐿𝐿𝑖𝑖∗ − 𝐿𝐿0∗ )2 + (𝑎𝑎𝑖𝑖∗ − 𝑎𝑎0∗)2 + (𝑏𝑏𝑖𝑖∗ − 𝑏𝑏0∗)2. (3) 

In Situ Peroxidyme Generation. Two methods were used to generate the EAD 

peroxidyme sequence from a target DNA sequence, polymerase chain reaction (PCR) 
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and one-sided strand-displacement amplification (SDA). PCR reactions (3-minute 

“hot-start” followed by 40 cycles of a 30-second 95°C melt step and a 30-second 55°C 

anneal/extension step) comprised of 1x iQ Supermix, 250 nM forward and reverse 

primers, 100 µM NADH, 100 nM hemin, and 20 µM AR. Primers contained an 

antisense EAD sequence on the 5’ end of the target-recognition sequence. Immediately 

following thermocycling, PCR reactions were exposed to green light and fluorescently 

monitored as above. SDA primers were designed to contain the recognition sequence 

for the nicking endonuclease Nt.BbvCI between an antisense-peroxidyme sequence 

and the target-recognition sequence. The reaction mixture consisted of 1x CutSmart 

buffer, 100 µM NADH, 300 nM hemin, 200 nM primer, 0.2 U/µL Klenow, 0.5 U/µL 

Nt.BbvCI nicking endonuclease, 500 µM dNTPs, 100 nM target DNA. Negative 

control reactions contained no enzymes and no target DNA. Primer and target DNA 

sequences for PCR and SDA reactions can be found in Table 1. 

Table 1. DNA Sequences used in this manuscript. Nt.BbvCI recognition site is shown 
in bold, antisense-peroxidyme sequences are shown in green, and target-
complementary regions in italics. 
EAD Peroxidyme CTGGGTGGGTGGGTGGGA 

SDA Target CACAAAAACAGCATATTGACGCTGGGAAAGACCAGAGATCCTGC
TGTCTCTGCAACATCAATCCAGGCACAGAGCGCCGCAAGATG 

SDA Primer TCCCACCCACCCACCCAGGCTGAGGCATCTTGCGGCGCTCTGTG
CCTGGATTGA 

CatG4 Peroxidyme TGGGTAGGGCGGGTTGGGAAA 
PCR Target TTGGGACCATAAAACCTCATTCACTTTAACCGTTGCCTGCCAAC

CAAATCGATAAACGCCCAGGAAGCAGATGGAGTTGTCGGGTAT 
PCR Forward 
Primer 

TTTCCCAACCCGCCCTACCCAAGAGACTTGGGACCATAAAACCT
CATTCAC 

PCR Reverse 
Primer 

TTTCCCAACCCGCCCTACCCAAGAGACATACCCGACAACTCCAT
CTGCTTC 
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3.4 Results and Discussion 
 We found exponential generation of RSF fluorescence (λ = 591 nm) occurred most 

efficiently under yellow or green illumination (Figure 7A), which agrees well with 

RSF’s excitation peak at 570 nm. NADH was also consumed during this reaction at a 

rate commensurate with RSF generation (Figure 7B), and both rates increased with 

illumination intensity (Figure 12). The RSF fluorescence data fit well to a modified 

sigmoidal curve, allowing quantitative comparison of reaction rate by a characteristic 

time tc (Equation 1 and Figure 13). To examine the nature of this exponential behavior, 

we investigated the interaction of photoexcited RSF and AR alone in buffer. In 

agreement with previous reports (Zhao et al., 2012), we found that RSF was produced 

at an exponentially increasing rate from a buffered solution of AR under illumination 

with green light; spiking RSF into this solution accelerated this reaction in a 

concentration-dependent manner (Figure 8A). This suggests that, independent from the 

activity of peroxidymes in solution, photochemical positive feedback results in the 

production of RSF from solutions of AR. Additionally, this demonstrates that “dark” 

peroxidyme production of RSF feeds into this self-propagating reaction. Including 

ABTS led to generation of the colored oxidation product ABTS˙+ only when AR, RSF, 

and peroxidyme were all present (Figure 8B), and the presence of EAD and hemin 

accelerated production of RSF from AR under illumination (Figure 8C). Together, 

these data suggest production of H2O2 during the photooxidation of AR feeds back into 

“dark” production of RSF by peroxidymes, contributing biochemical positive feedback 

within the PARCR system.  
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Although the presence of peroxidymes dramatically accelerated RSF production 

there was no correlation between EAD concentration and tc for a fixed hemin 

concentration (Figure 14B), so the addition of NADH was required to produce 

adequate resolution and sensitivity.  Including NADH in the reaction mixture in fact 

delayed signal generation in solutions of AR alone, AR spiked with RSF, or AR and 

peroxidyme together (Figure 8C), despite the fact that higher NADH concentrations 

promoted faster dark reaction rates (Figure 15). Indeed, in all reactions observed, the 

onset of exponentially increasing signal generation occurred only after NADH was 

depleted and the rate of NADH depletion is in fact a good predictor of the characteristic 

time tc of RSF fluorescence generation (Figure 13B). This is perhaps unexpected since 

NADH drives RSF production in the dark reaction; however, NADH can also reduce 

photoexcited 3(RSF)* to RSF•—, which subsequently returns to ground-state RSF via 

oxidation by molecular oxygen, producing H2O2 (B. Zhao et al., 2011). Accordingly, 

NADH depletion in solution with AR, RSF, or peroxidyme individually is similar to 

basal levels, but it is accelerated in the presence of AR and RSF together and 

dramatically accelerated in the presence of AR, RSF, and peroxidyme together 

(Figure 9) . This suggests that while NADH enables “dark” production of RSF, it also 

inhibits the photocatalyzed reaction, leading to slow signal growth while NADH 

remains in solution. Once illumination is removed, the reaction returns to the slow 

signal change characteristic of the dark reaction (Figure 16). An advantage of this latter 

phenomenon is that it enables a relatively stable color record of reaction progress once 

illumination ceases.    
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Taken together, our data and others’ results suggest the following mechanism for 

PARCR (Figure 6) (Golub et al., 2011; B. Zhao et al., 2011; Zhao et al., 2012; Zhou et 

al., 1997). In the dark portion of the reaction, NADH drives the continuous 

peroxidyme-catalyzed oxidation of AR into RSF via intermediate production of H2O2. 

In the presence of green light, the RSF forms the photoexcited state 3(RSF)*. Reduction 

by NADH produces ground-state RSF, NAD+, and H2O2. This reaction dominates until 

all NADH is consumed, comprising a “lag phase” of slow signal growth. In the absence 

of NADH, 3(RSF)* interacts with AR, producing RSF•— and the AR•+. RSF•— is 

oxidized by molecular oxygen to return to ground-state RSF while AR•+ spontaneously 

deacetylates to form a second molecule of RSF. O2
•— or H2O2 produced during this 

process further drives the peroxidyme-catalyzed oxidation of AR to RSF, thus the 

system achieves positive feedback and exhibits exponential fluorescent signal 

generation (“exponential phase”). The reaction accelerates until little AR remains in 

solution, at which point RSF fluorescence decays exponentially (“quenching phase”); 

this quenching is likely a combination of photodegredation and slight acidification of 

the solution (Figure 17).   

The optimized PARCR system allows for sensitive detection of peroxidymes across 

a wide range of concentrations. We achieved reliable visible detection of peroxidyme 

DNA at concentrations across five orders of magnitude ranging from 1 µM down to 

100 pM (Figure 10). The concentration of peroxidyme in solution can be correlated 

with the characteristic time tC of this sigmoid in a log-linear fashion. The duration, 

sensitivity, and dynamic range of this reaction can be tuned via several parameters 

(Figure 14, Figure 15, Figure 18, and Figure 19).  
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A major advantage of PARCR is its capacity to generate an easily visible signal, 

both fluorescent and colorimetric. Unlike typical systems for fluorescent analyte 

detection that require complex optics and sophisticated detection instrumentation, 

PARCR requires only simple LEDs and an inexpensive camera (or the naked eye). As 

shown in Figure 20, we used an unaltered cell phone camera to quantify the PARCR-

generated fluorescent signal. By quantifying the change in color (Equation 3) between 

images taken every 30 seconds over the course of the reaction, we constructed reaction 

plots displaying the same characteristic lag, exponential, and quenching phases of the 

fluorescent signal as observed with the sophisticated plate reader.  

While the above results imply potential for the PARCR assay to provide direct 

detection of a target via labeling with peroxidymes (Li et al., 2008; Wang et al., 2011; 

Yuan et al., 2012), an advantage of PARCR over traditional continuous signal-

generation systems (such as horseradish peroxidase or alkaline phosphatase) lies in the 

ability to produce the peroxidyme sequences in situ through nucleic acid amplification 

techniques. Such colorimetric peroxidyme-mediated detection of specific DNA 

sequences has been explored previously, but in all prior reports detection requires 

manual addition of concentrated H2O2 following nucleic acid amplification (Kosman 

and Juskowiak, 2011). PARCR, on the other hand, removes the necessity of these 

manual steps by relying on NADH for signal generation (unlike H2O2, NADH does not 

interfere with enzyme activity). To demonstrate this utility and flexibility of PARCR, 

we employed it as a readout for two classical nucleic acid amplification techniques. By 

engineering primers to contain an antisense-peroxidyme sequence at the 5’ end of a 

target-recognition sequence (Table 1 and Figure 21), we performed the ubiquitous 
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polymerase chain reaction (PCR) as well as the isothermal technique strand-

displacement amplification (SDA) to generate peroxidyme sequences from an arbitrary 

DNA target in one-pot reactions. Assays contained both amplification and PARCR 

components: illuminating the PCR solution immediately following thermocycling 

enabled visible detection of as little as ten initial copies of target DNA, and illumination 

of the SDA mixture during amplification allowed real-time discernment of positive and 

negative samples (Figure 11).     

3.5 Conclusion 
The PARCR assay enables sensitive, visible detection of peroxidyme sequences at 

concentrations spanning five orders of magnitude down to picomolar levels. A positive-

feedback loop within the system, created by illumination with green light and metered 

by consumption of NADH, provides exponential fluorescent and colorimetric signal 

growth, allowing for detection with a simple camera or by eye across its entire dynamic 

range. By relying on catalytic nucleic acids for signal generation, PARCR will prove 

to be more flexible and stable to heat, organic solvents, and desiccation than similar 

protein-based colorimetric assays which utilize horseradish peroxidase or alkaline 

phosphatase.[32–34] Furthermore, to the best of our knowledge, PARCR is the first 

peroxidyme-based system which enables truly one-pot visible detection of nucleic acid 

amplification by eliminating the manual hydrogen peroxide-addition steps common to 

other peroxidyme assays. PARCR can be used to directly detect peroxidymes in 

solution, suggesting application in a sandwich-assay format, but can also be used in 

tandem with thermocycled or isothermal nucleic acid amplification strategies, 

accommodating a wide range of potential analytes. These numerous advantages will 
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facilitate assay automation and dry storage of the complete reaction mixture, which we 

will explore in future works. The ease of operation and inexpensive optical 

instrumentation involved make PARCR particularly well suited for sensitive point-of-

care detection strategies that require low cost, high portability, and a minimum of 

manual interventions.  
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Figure 7. Green light photocatalyzes peroxidyme-mediate 
resorufin formation. 300 nM EAD, 1 µM hemin, 100 µM 
AR, 100 µM NADH in standard clear-walled microplates. 

Figure 8. Investigations into the PARCR mechanism. A Spiking RSF into AR accelerates exponential 
signal generation in a concentration-dependent manner. 1.5 W/cm2 527 nm illumination. B ABTS was 
included in various mixtures of PARCR reactants to aid in elucidating the photocatalyzed mechanism. 
Under illumination, ABTS was only oxidized when AR, RSF, and peroxidyme were all present, 
suggesting that H2O2 is produced during following the interaction of AR with photoexcited RSF and 
this drives further peroxidyme-mediated oxidation of AR. C NADH significantly delays onset of 
exponential-phase in all reaction mixtures tested. Note that the indicated reactions (‡) displayed no 
exponential signal growth within two hours. Trace RSF may be present in AR stocks and likely initiates 
reactions without added RSF or NADH. 
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Figure 9. A NADH consumption is accelerated by the light-
dependent interaction of resorufin and amplex red. B NADH 
consumption after two hours is significantly higher than 
baseline in solutions of Amplex Red and resorufin or in 
solutions of Amplex Red, 100 nM EAD, and 300 nM hemin. 

Figure 10. The PARCR system enables sensitive detection 
of G-quadruplex DNA. A Averaged fluorescence traces and 
B characteristic times for four replicates of PARCR 
reactions consisting of 300 nM hemin, 100 µM NADH as 
indicated, 3.0 mW/cm2 illumination intensity.  
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Figure 12. RSF production and NADH consumption rates increased with higher LED intensity. All 
reactions contained 100 µM NADH, 100 µM AR, 1 µM hemin in black-walled clear-bottom microplates. 
  

Figure 11. PARCR is a convenient readout compatible with 
classical nucleic acid amplification, enabling sensitive 
detection of arbitrary DNA sequences and monitoring of 
real-time reactions. A Illumination of PCR reactions 
following thermocycling allowed visible detection of 10 
initial copies of target DNA in a one-pot reaction. ‡ The no-
target control did not reach the visibility threshold in the two 
hours monitored. B Linear SDA reactions could be 
distinguished from background at room temperature with or 
without a 1 hour incubation prior to illumination. 
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Figure 13. A Sigmoidal curve fits overlaid on raw data for a representative set of experiments 
(300 nM hemin, 100 µM NADH, 3.0 mW/cm2, clear PCR plates). Data from the lag and 
exponential phases of amplification were fit to the displayed equation (Equation 1), a sigmoidal 
curve with a linear offset. Characteristic times tc are noted by red x’s. B Comparison of 
characteristic times of amplification onset and duration of NADH presence in solution. 
“Depletion times” were estimated by finding the length of time necessary to reach 110% of the 
minimum NADH fluorescence for each experiment. A strong linear relationship between 
NADH depletion time and exponential phase onset was observed, suggesting that the presence 
of NADH inhibits exponential RSF production. Data shown represent aggregated data from 
Figure 14B. C Using the Spectramax M5 plate reader to excite the sample with 570 nm light 
every five seconds (orange line) had no impact on reaction progression compared to taking 
fluorescence readings every 30 minutes using 530 nm light (blue line). 
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Figure 14. PARCR parameter tuning in clear- (A-C) and white-walled (D) PCR plates. A Increasing 
illumination intensity accelerates the reaction. B Higher concentrations of NADH prolong the reaction 
but yield better sensitivity. C A larger hemin concentration leads to faster reactions with worse sensitivity 
at all illumination intensities. D White-walled PCR plates require lower illumination intensities to 
achieve similar performance as clear-walled PCR plates.  
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Figure 15. Effect of varying NADH (left panels) and H2O2 (right panels) concentration on the 
dark (top panels) and illuminated (bottom reactions). Reaction rate νmax determined from RSF 
fluorescence. Solid lines represent negative reactions lacking the respective component and 
dashed lines represent one standard deviation from the negative controls. Note that while a 
higher [NADH] uniformly accelerates the dark reaction, a more complex relationship exists for 
the photocatalyzed reaction. 
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Figure 16. RSF fluorescence (A) and NADH fluorescence (B) behavior for various reaction mixtures in 
the sequential presence or absence of illumination, as indicated. Where applicable, reaction conditions 
are 100 nM EAD, 20 µM AR, 100 nM RSF, 100 µM NADH, 3.0 mW/cm2 illumination, clear-wall PCR 
plates. RSF fluorescence approximately resumes dark-reaction behavior (very slow signal growth) when 
illumination is removed mid-reaction. Curiously, NADH fluorescence initially continues to fall before 
steadily increasing once illumition ceases, a effect less pronounced at the lower NADH levels found late 
in the reaction (blue line). The cause of this phenomenon is unknown, but is beyond the scope of this 
manuscript to be investigated further. Typical photocatalyzed behavior resumes when illumination is re-
applied. 
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Figure 17. RSF quenching and photodegradation. A (a) RSF generated from AR in situ exhibits rapid 
quenching (“quenching phase” data (120 min to 240 min) from Main Text Figure 3A, AR alone), while 
spiked RSF alone (b) or with 100 mM NADH (c), 1 µM H2O2 (d), 300 nM hemin and 100 nM EAD (e), 
or H2O2 and hemin and EAD (f) decays slowly under illumination. B Fluorescence loss during the 
quenching phase of RSF generation or from RSF alone can be fit with an exponential decay curve 

𝐹𝐹 = 𝐹𝐹0𝑒𝑒
−𝑡𝑡𝜏𝜏 with decay constant τ. In a buffer containing 500 mM Tris and 500 mM NH4OAc at pH 7.5, 

generated RSF decays much faster than spiked RSF, suggesting photodegradation alone cannot fully 
account for the former. In the same buffer at pH 8.5 the two rates are equivalent. The faster rate of 
photodegradation in alkaline solution above RSF’s pKa of 7.9 is to be expected given the strong impact 
of pH on resorufin absorbance (C) and fluorescence (D) (10 µg/mL). This suggests that acidification of 
the PARCR solution due to de-acetylation of AR may contribute to rapid fluorescence decay during the 
quenching phase.  
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Figure 18. Effect of varying Amplex Red concentration of dark (top panels) and illuminated (bottom 
panels) peroxidyme reactions (1 µM hemin, 100 µM NADH, 1.4 mW/cm2, black-walled clear-bottom 
microplates). EAD-containing reactions are shown by solid lines while EAD-negative reactions are 
denoted by dashed lines. Threshold of visibility in these microplates is approximately 2000 RFU. The 
strong dependence of amplification behavior on Amplex Red concentration suggests that trace amounts 
of RSF in AR stock solutions is a significant factor in nonspecific amplification. 
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Figure 19. Effect of varying hemin concentration of dark (top panels) and illuminated (bottom panels) 
peroxidyme reactions (50 µM Amplex Red, 100 µM NADH, 1.4 mW/cm2, black-walled clear-bottom 
microplates). EAD-containing reactions are shown by solid lines while EAD-negative reactions are 
denoted by dashed lines. Threshold of visibility in these microplates is approximately 2000 RFU.  
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Figure 20. The PARCR assay can be monitored with the naked eye or a simple camera. A RSF under 
ambient light or illuminated with 527 nm LED light becomes visible above 2.5 µM. B Quantifying the 
change in color between images allows for monitoring of the PARCR assay using only a cell phone 
camera and LED light. Inset: fluorescence is clearly visible in all tubes containing EAD after 40 minutes. 
1 µM hemin, 100 µM NADH, 1.5 mW/cm2 light. C The same approach can used to quantify the color 
change resulting from the less efficient ABTS-oxidation method. Note that NADH is incompatible with 
this technique as the chromogen ABTS˙+ is readily reduced back to ABTS. Inset: after 40 minutes of 
oxidation driven by 1 mM H2O2, only 1 µM and 100 nM EAD samples are readily visible and 10 nM 
EAD is barely visible. 
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Figure 21. One-pot visible detection of arbitrary DNA sequences with PARCR-PCR and PARCR-SDA. 
A In PARCR-PCR, primers are designed to contain an antisense peroxidyme sequence at the 5’ end of 
the target-recognition sequence. As PCR proceeds through melt, anneal, and extension steps, 
peroxidyme sequences are generated in tandem to the amplicon sequence. These G-rich sequences 
exhibit low affinity for their complement and ready adopt quadruplex conformation in the presence of 
hemins and ammonium. B In PARCR-SDA, one-sided strand-displacement amplification continuously 
produces free peroxidymes in a solution containing a single-stranded DNA sequence.  In this system, we 
designed primers similar to those described above for peroxidyme-producing PCR. For PARCR-SDA 
primers, a recognition sequence for a nicking endonuclease (NEase) was placed between the target-
recognition sequence and an antisense-peroxidyme sequence. A low-temperature polymerase extended 
the target sequence along the primer, generating the complete NEase recognition sequence in tandem 
with a peroxidyme sequence. The NEase then cleaved the nascent strand which was subsequently 
released by the strand-displacement activity of the polymerase as it re-replicated the primer sequence. 
This continuous production of free peroxidyme at room-temperature was successfully detected with the 
PARCR assay.  
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4 Phase-change partitions for thermal automation of multi-step 
reactions3 

The peroxidyme-amplification strategy described in the previous chapter presents a 

capable system for sensitive, visible detection of analytes, and it does so without the 

need for manual addition of hydrogen peroxide. This chapter describes a system 

capable of automating any other necessary assay steps, providing a simple, low-cost 

manner to achieve thermal automation of complex reactions. 

4.1 Abstract 
Medical diagnostics and basic research in low-resource settings require automated 

reactions controlled in a simple, portable manner. Here, we present a novel platform 

that enables simple automation of multi-step reactions to facilitate robust, hands-free 

assay operation without complex microfluidics or paperfluidics. We separate reagent 

zones in a conventional PCR tube via solid layers of purified higher alkanes. Reagents 

can be mixed on demand by simply raising the temperature above the melting point of 

the alkane partition that separates the two zones. We partitioned various reagents to 

enable hands-free thermally automated isothermal nucleic acid amplification, heavy 

metal ion detection, as well as β-lactamase detection with tandem antibiotic specificity 

characterization. We anticipate this phase-change partition platform will find broad 

application in clinical diagnostics at the point-of-care and in low-resource settings. 

4.2 Introduction 
The advent of microfluidics promised biochemical assays that were portable 

because they were small and comprehensive because they were intricate (Whitesides, 

2006). However, while the devices are small, their complex fluidic networks typically 

                                                 
3 This work was published in Analytical Chemistry 90 (6) 2018, 3708-3713 
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require training and bulky syringe pumps to operate (Hu et al., 2014; Martinez et 

al., 2010), limiting their portability and demanding a certain finesse. Paper 

microfluidics achieve greater portability and ease-of-use, yet most such devices are 

constrained to reactions which require only one or two steps (Fu et al., 2011; Martinez 

et al., 2007). While more complex reactions can be achieved, control of reaction timing 

in these devices requires either intricate paper networks vulnerable to environmental 

variations or dissolvable barriers that intrinsically alter reaction composition (Fu et 

al., 2010; Lutz et al., 2013; Martinez et al., 2007). Furthermore, reaction timing is fixed 

by the manufacturer, preventing on-site optimization. The strengths and weaknesses of 

these two systems, microfluidic or paperfluidic, have resulted in one reaction platform 

suitable only for centralized labs and one only for field use, both with limited efficacy 

(Chin et al., 2012; Gubala et al., 2012). Here we introduce a novel platform with the 

potential to bridge this gap, offering equal utility to both lab and field setting while 

enabling greater ease-of-use than pump-driven microfluidics and greater complexity 

than paper microfluidics.  

Our platform consists of partitioning aqueous or lyophilized reagent zones in a 

vertical tube format via 

thermally actuated alkane 

partitions (Figure 22). An 

aqueous sample solution placed 

on top of this reagent/partition 

stack can be incrementally mixed 

with successive reaction zones 

Figure 22. Layers of purified alkanes serve as phase-change 
partitions, segregating reagents into compartments which can 
be mixed on demand. Here, a “sample” of universal pH 
indicator solution is sequentially mixed with various buffers 
by incrementally raising the temperature of the tube. 
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by melting the respective organic layer. The aqueous sample is more dense than the 

liquid organic layer, causing the sample to “sink” through the melted partition and mix 

with the reaction compartment beneath; this process can be iterated to step the sample 

through multiple reactants. A related approach has employed paraffin wax for hot-start 

PCR but was restricted to one such barrier (Chou et al., 1992). Paraffin wax is a 

heterogenous mixture, displaying poorly-defined phase transitions inherently 

problematic for use as a phase-change partition. Accordingly, integration of multiple 

paraffin barriers into paper (Phillips et al., 2016) and centrifugal (Abi-Samra et 

al., 2011; Kong et al., 2015) microfluidic devices required high spatial or temporal 

control over temperature. The phase-change partitions we present here are comprised 

of purified long-chain alkanes with distinct melting profiles, permitting low-resolution 

thermal instrumentation. The technical requirement for operating these thermally 

actuated reactions consists only of coarse-grained temperature control, available in a 

common laboratory thermocycler or water bath.  This flexibility positions phase-

change partitions as well-suited for low-resource settings, portable devices, and central 

laboratories alike. 

To demonstrate the flexibility and utility of this radically simple approach, we 

investigated the partitioning of three different classes of analyte detection. First, we 

partitioned the necessary reagents for isothermal nucleic acid amplification via rolling 

circle amplification (RCA). Second, we used this platform to detect heavy metal ions 

in a gold nanoparticle aggregation assay. Finally, we achieved detection and 

characterization of β-lactamase enzymes via a colorimetric antibiotic-resistance 

reaction. These proofs-of-concept demonstrate the potential of the phase-change 
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partition platform to be uniquely suited to automation of many multi-step reactions in 

both central laboratory and field settings.  

 

4.3 Materials and Methods 
Materials. Alkanes and palmitic acid were purchased from Alfa Aesar (Haverhill, 

MA); DNA sequences from Integrated DNA Technologies (Coralville, IA); Bst 3.0, T4 

DNA Ligase, and their corresponding buffers from New England Biolabs (Ipswitch, 

MA); β-lactamase, broad spectrum (ESBL) from AG Scientific (San Diego, CA); 

calcein from Cayman Chemical (Ann Arbor, MI); hydrogen tetrachloroaurate (III) 

hydrate from Strem Chemicals (Newburyport, MA); AccuGel 29:1 from National 

Diagnostics (Atlanta, GA); 0.2 mL high-profile PCR tube strips from USA Scientific 

(Ocala, FL); SYBR Gold from Thermo Fisher Scientific (Waltham, MA); and all 

remaining chemicals and materials from Millipore Sigma (St. Louis, MO). A Bio-Rad 

(Hercules, CA) Mini-Protean Tetra Cell was used for electrophoresis. A Bio-Rad 

MiniOpticon Real-Time PCR Thermocycler was used for temperature control except 

where noted otherwise. A Spectramax M5 plate reader (Molecular Devices, Sunnyvale, 

CA) was used to collect spectroscopic data. The following DNA sequences were used: 

Trigger: 5’-TAG TCG AGA CAT CCG AGA CA -3’ 

Target: 5’-Phos-GTC TCG ACT AAA AAC CCA ACC CGC CCT ACC CAA 

AAG AGA CAT CCG TTT TGT CTC GGA T-3’ 

The system shown in Figure 22 was assembled as follows, from top-to-bottom: 

40 µL 1 mM H2SO4, 1% Triton, 60% Universal pH Indicator (pH 3.5); 50 µL 

octadecane; 10 µL 800 mM NH4OAc, 250 mM Tris (pH 6.0); 40 µL eicosane; 10 µL 
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5 M NH4OAc, 500 mM Tris (pH 8); 30 µL docosane; 10 µL 1.4 M NH4OH; 25 µL 

tetracosane; 20 µL 14 M NH4OH. The system was incubated at the indicated 

temperature for twenty minutes prior to imaging; the indicated pH is the resulting pH 

of the aqueous colored solution at that step. It is important to note that these alkane 

volumes should be considered approximate minimums in a practical sense. At their 

respective positions in the PCR tube, these volumes correspond to layer heights of 

roughly 3 mm; thinner layers occasionally lead to cracks and pores that penetrate 

through the barrier. Furthermore, the interface of the alkane and the tube wall is 

naturally a structural weak point: rough handling may dislodge the barrier and ruin the 

assay. Future work will seek to remedy this drawback. 

Note that the conical shape of the PCR tubes introduced a particular constraint to 

the positioning of the final partition. In the absence of surfactant, the surface tension of 

the aqueous droplet within the oil phase resulted in the droplet remaining suspended 

above the narrow bottom of the tube (Figure 23). It was occasionally necessary to place 

palmitic acid beneath the final reactant layer. Palmitic acid remained solid under 

Figure 23. Equilibrium position of aqueous droplets (containing bromophenol blue) after incubation 
at 60°C for 25 minutes. The droplets remain suspended within liquid alkanes due to surface tension 
and the conical geometry of the PCR tubes. 
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experimental conditions and ensured merging of the mobile reaction solution with the 

final reagent mixture.  

Dispersity of the AuNP was then quantified from the UV-vis spectra of the resulting 

solution via the indicated absorbance ratio.  AuNPs were synthesized via kinetically 

controlled seeded growth (Bastús et al., 2011); diameter and concentration of AuNPs 

were characterized by UV-vis spectroscopy (Haiss et al., 2007).  

Manual antibiotic resistance characterization with nitrocefin competition was 

performed with the same reactant volumes and quantities as the partitioned assay, albeit 

with manual addition of reagents. 

Alkane characterization. We examined the melting rate profiles of alkanes used in 

this study by placing 50 µL of the respective melted alkane above 50 µL 3 µM 5-

carboxytetramethylrhodamine (TAMRA) in 18 MΩ deionized (DI) H2O. After the 

alkane solidified, fluorescence intensity was monitored while the temperature was 

increased at a constant rate of 2.3 °C/min. Breakthrough confirmation experiments, 

presented in Figure 24B, were assembled as follows, from top-to-bottom: 50 µL 6 µM 

calcein with 200 µM FeCl3, 50 µL alkane, 50 µL 5 µM EDTA (both aqueous solutions 

in 150 mM KOAc, 50 mM Tris, pH 7.8).  

Phase-change partition assembly. To assemble multi-layer reactions for thermal 

automation, alkanes were melted and then placed above the respective aqueous reactant 

mixture. After this alkane solidified, the subsequent reactant mixture was placed above 

this partition, followed by another alkane layer. All reactions were carried out in a 

thermocycler except where noted. 
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Rolling circle amplification. From top-to-bottom: 20 µL target solution (100 nM 

Target DNA in DI H2O); 50 µL octadecane; 20 µL ligase solution (145 U T4 DNA 

Ligase, 1.8X Ligase Buffer with ATP); 50 µL eicosane; 20 µL polymerase solution 

(30 U Bst 3.0 DNA polymerase, 2.4X Isothermal Amplification Buffer II, 0.72X 

SYBR Gold, 360 nM Trigger DNA, 2.4 mM dNTPs); 25 µL palmitic acid. The full 

reaction was incubated at 32 °C for 1 hour then 55 °C for 1 hour. Reaction solutions 

were concentrated by evaporation then analyzed via 15% denaturing PAGE (500V, 

15 minutes) and stained with SYBR Gold. 

Heavy metal ion detection. From top-to-bottom: 10 µL AgNO3 in DI H2O; 50 µL 

octadecane; 90 µL 10 pM 60 nm gold nanoparticles (AuNPs) in 5 mM glycine-NaOH 

(pH 10); 20 µL docosane; 10 µL 1 mM β-mercaptoethanol. Reactions were incubated 

in a water bath at 32 °C for thirty minutes then at 48 °C for two hours. 

Antibiotic resistance profiling. From top-to-bottom: 25 µL phosphate-buffered 

saline (PBS) (pH 7.0) with 50 µU ESBL and 5 µg bovine serum albumin (BSA); 50 µL 

octadecane; 25 µL PBS with 10 nmol nitrocefin and 50 pmol fluorescein (FAM); 30 

µL eicosane; 25 µL DI H2O with 500 nmol ampicillin, benzylpenicillin, or 

chloramphenicol. The reaction was incubated at 32 °C for fifteen minutes followed by 

42 °C for twenty minutes. Nitrocefin hydrolysis was observed by measuring the 

resulting decrease in FAM fluorescence (the emission spectrum of FAM and the 

absorption spectrum of hydrolyzed nitrocefin overlap). The hydrolysis rate was 

determined by the final FAM fluorescence intensity as a fraction of the maximum in 

each stage. The negative control (“-ve”) contained no β-lactamase in the sample while 
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the positive control (“+ve”) contained β-lactamase in the sample but no antibiotic in 

the second stage. 

4.4 Results and Discussion  
We employed the purified higher alkanes octadecane (C18H38, m.p. 28 °C), 

eicosane (C20H42, m.p. 37 °C), docosane (C22H46, m.p. 42 °C), and tetracosane (C24H50, 

m.p. 52 °C) as phase-changing partitions, which displayed sharp melting transitions 

(Figure 24A). We demonstrated the tight control over reagent zone mixing afforded by 

these alkane partitions by placing a mixture of calcein and iron chloride above an 

EDTA solution, separated by an alkane layer. Calcein fluorescence was quenched while 

bound to Fe3+; mixing of the two solutions allowed EDTA to competitively chelate the 

iron cation and increased the solution fluorescence. Each alkane layer remained intact 

until its respective melting temperature was reached, at which point the two solutions 

mixed rapidly (Figure 24B).  

We employed multiple phase-change partitions in tandem to separate several 

discrete reaction compartments in this manner. We partitioned buffers of various pHs 

Figure 24. Purified alkanes exhibit sharp melting transitions. A) Melting rate profiles were obtained 
by observing TAM fluorescence of an aqueous solution beneath a layer of the respective alkane. As 
the alkane melted it became optically clear, leading to an increase in fluorescence intensity. B) Rate of 
partitioned reagent mixing following barrier melting was observed by partitioning a calcein-Fe2+ 
solution above an EDTA solution with a single phase-change material. Upon mixing, EDTA 
competitively chelated the iron, leading to an increase in calcein fluorescence. Complete mixing was 
observed within a few minutes for all alkane partition systems. Palmitic acid, with a melting point of 
63°C, served as a negative control for barrier breakthrough. 
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and incrementally increased the temperature, allowing pH indicator solution to mix 

with each (Figure 22). The corresponding step-wise color change indicated that these 

alkane caps can stably partition reagent zones, isolating reactants until the appropriate 

temperature is reached. Thus, this strategy will be useful to automate reactions which 

require reagent addition at specified 

intervals, replacing manual 

interaction with pre-determined 

temperature changes. We 

proceeded to investigate the 

compatibility of this platform with 

three distinct reaction classes: 

nucleic acid amplification, heavy 

metal ion detection, and profiling of 

enzyme-mediated antibiotic 

resistance.  

4.4.1 Partitioned Nucleic 
Acid Amplification 

We constructed a multi-layered 

assembly for isothermal nucleic 

acid amplification (Figure 25A). 

Rolling circle amplification (RCA) 

requires initial ligation to produce a 

circular oligonucleotide followed 

by continuous replication to 

Figure 25. Isothermal nucleic acid amplification was 
successfully partitioned. A) Melting the initial barrier 
allowed ligase to circularize a dumbbell-forming target 
oligonucleotide and melting the second barrier allowed 
continuous replication of the nascent circle in rolling circle 
amplification (RCA), B) verified by denaturing PAGE. 
C) Denaturing PAGE of lyophilized polymerization 
reagents with pre-ligated DNA indicated successful RCA 
with or without an alkane cap when pullulan (“Pul”) or 
trehalose (“Tre”) were employed as lyoprotectants, but not 
PEG-200. 
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generate long single-stranded DNA (Ness et al., 2003; Yan et al., 2014). These steps 

are mutually exclusive, since polymerization is dependent on and inhibits ligation. 

Incubation at 32 °C in a thermocycler melted an octadecane layer and allowed the target 

solution to mix with the ligase, resulting in circularization of a dumbbell-forming target 

sequence. Subsequently raising the temperature to 65 °C melted an eicosane layer and 

allowed polymerase to replicate the newly-formed circle. Successful performance of 

the ligation and polymerization steps of this reaction was confirmed by the presence of 

a large, slowly-migrating DNA product observed via denaturing gel electrophoresis 

(Figure 25B). Typically, these steps are performed separately with manual addition of 

the required reagents, yet here we leverage alkane phase-change partitions to reduce 

user intervention down to simply adding the target; all intervening steps are 

accomplished sequentially by incrementally increasing the temperature of the tube. 

Isothermal nucleic acid amplification assays are particularly useful at the point-of-

care. For this purpose, enzymes are typically lyophilized with their reagents to facilitate 

transport and ensure stability. We investigated the compatibility of lyophilized 

polymerase with alkane partitions and found that polymerase activity was unaltered by 

addition of an alkane cap following lyophilization (Figure 25C).  

4.4.2 Partitioned Heavy Metal Detection 
Gold nanoparticles exhibit unique aggregation-dependent optical properties that are 

commonly leveraged for detecting a variety of analytes, including DNA, proteins, small 

molecules, and ions. Typically 10-100 nm in diameter, gold nanoparticles (AuNP) 

dispersed in solution exhibit a vibrant red color but become dark gray when aggregated. 

We partitioned one such assay for detection of heavy metal ions (Figure 26A) (Hung 
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et al., 2010), an application critical to environmental monitoring. After addition of 

sample, we placed this reaction platform in a temperature-controlled water bath to melt 

the first barrier, at which point metallic cations (Ag+) in the sample reduced onto the 

surface of AuNPs (forming Ag0).  Raising the temperature of the bath melted the second 

partition and introduced β-mercaptoethanol to the solution, which complexed with the 

AuNPs via Au-S bonds. Atomic heavy metals sufficiently passivated the surface charge 

of the AuNPs, allowing interactions between β-mercaptoethanol groups to drive 

aggregation of the AuNPs. In the absence of heavy metal ions, citrate caps provided 

Figure 26. Phase-changed partitions enabled automation of a gold nanoparticle aggregation assay for 
detection of heavy metals utilizing a simple water bath for reaction control. A) After the first barrier is 
melted, target ions adsorb to the surface of AuNP in a basic solution, displacing citrate ligands. Melting 
the second barrier introduces β-mercaptoethanol, which forms S-Au bonds with the nanoparticle surface. 
AuNP passivated by atomic heavy metals aggregate, yielding a gray solution, but in the absence of target 
cations citrate surface ligands confer sufficient electrostatic repulsion to prevent AuNP aggregation, 
which retain a pink color. B) AuNP aggregation can be monitored spectroscopically as the characteristic 
surface plasmon peak broadens and red-shifts from its initial maximum at 535 nm. C) Quantifying 
nanoparticle aggregation via absorbance readings demonstrates comparable performance between the 
partitioned and manual reactions. 
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sufficient electrostatic repulsion to prevent AuNP aggregation. The presence of Ag+ 

could thus be detected by an easily-visible color change (Figure 26B); similar strategies 

have been reported for detection of Cu2+, Pb2+, Hg2+, and other heavy metal ions 

(Chen et al., 2015; Hung et al., 2010; Sener et al., 2014). Our partitioned system 

achieved comparable performance to the manual, room-temperature assay (Figure 26) 

while synchronizing and automating addition of reagents. The use of a water bath also 

demonstrates the need for only simple instrumentation to control reaction progression.  

4.4.3 Partitioned Antibiotic Susceptibility Testing 
Determination of pathogen antibiotic susceptibility is crucial in infectious disease 

medicine. Epidemic antibiotic resistance renders many early-generation antimicrobials 

Figure 27. Phase-change partitions allow creation of a novel two-step reaction for detection of β-
lactamase-mediated antibiotic resistance and subsequent characterization of the enzyme’s antibiotic 
specificity. A,B) In the first stage, hydrolysis of nitrocefin, a cephalosporin derivative, yields an orange-
colored solution indicative of β-lactamase presence. In the second stage the presence of an antibiotic 
susceptible to the enzyme competes with nitrocefin, slowing color change. C) All samples containing 
β-lactamase displayed a greater rate of nitrocefin hydrolysis than the negative control (p<0.01, n=6). 
D) Nitrocefin hydrolysis was arrested by presence of Ampicillin or Benzylpenicillin while undeterred 
by the presence of Chloramphenicol (p<0.01, n=6). 
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ineffective and, accordingly, conservative use of later-generation antibiotics is 

necessary to avoid proliferation of “superbugs” immune to all available treatments. 

Traditional techniques for determining antibiotic susceptibility are low-throughput and 

require several sequential culture steps (Jarlier et al., 1988). Shown in Figure 27A, we 

have devised a two-stage partitioned assay for rapid detection and characterization of 

β-lactamases, the primary class of enzyme responsible for resistance to penicillins and 

cephalosporins. In the first stage of the assay the sample mixed with the colorimetric 

β-lactamase substrate nitrocefin (Boehle et al., 2017), at which point hydrolysis of 

nitrocefin produced a color change indicative of the presence of the enzyme. However, 

activity towards nitrocefin does not guarantee resistance to all cephalosporins and 

penicillins.  The specificity of such resistance is commonly assessed via additional plate 

culture on a “double-disk diffusion test”, wherein the synergistic activity of the 

antibiotic of interest and a β-lactamase inhibitor reveals antibiotic specificity (Jarlier et 

al., 1988). The second stage of our assay was designed to assess competition of various 

antibiotics with nitrocefin for enzymatic hydrolysis (Papanicolaou and Medeiros, 
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1990), rapidly confirming β-lactamase activity towards those antibiotics without 

extensive culture. Melting the second partition introduced individual antibiotics to the 

sample-nitrocefin mixture, at which point ampicillin and benzylpenicillin arrested 

further hydrolysis of nitrocefin while signal change was unaffected by the presence of 

chloramphenicol (Figure 27B). This partitioned assay enabled both detection of the 

antibiotic resistance enzyme (Figure 27C) and rapid confirmation of its activity 

towards ampicillin and benzylpenicillin but not chloramphenicol (Figure 27D), with a 

total assay time of approximately thirty minutes. While we observed similar behavior 

following manual addition of the required reagents (Figure 28), manual performance 

of this assay at scale would be impractical due to the short incubation times and need 

for simultaneous introduction of reagents across all samples. This proof-of-concept 

illustrates the utility of phase-change partitions to enable simple automation of high-

throughput clinical assays.  

Figure 28. Manual addition of reagents for antibiotic resistance characterization demonstrates similar 
behavior to the partitioned reaction. In the first stage, all samples containing beta-lactamase hydrolyze 
nitrocefin rapidly, but addition of lactamase-sensitive Ampicillin in the second stage dramatically 
reduces the rate of nitrocefin hydrolysis. 
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4.5 Conclusion  
We have demonstrated phase-change partitions as a novel, radically simple 

reaction-automation platform for thermal actuation of multiple reagent additions. These 

partitions, consisting of purified long-chain alkanes, create stable storage 

compartments that allow on-demand reagent mixing through simple heating. The 

melting points of the four alkanes used here are separated by six or more degrees 

Celsius, thus accommodating lenient specifications for operation. Such broad tolerance 

makes this phase-change partition platform suitable for both laboratory and field 

instrumentation. A key advantage of this system is its compatibility with equipment 

already ubiquitous in diagnostic laboratories. While most microfluidic devices require 

additional pumps and training to operate, the platform we introduce here can be 

operated with a common thermocycler or water bath. Similarly, the planar paper format 

is incompatible with most laboratory instrumentation (i.e., plate readers and 

thermocyclers), complicating quantification, and recovery of the sample and reaction 

mixture from the platform for further analysis is difficult; phase-change partitions 

enable automation within form factors already familiar to many laboratory personnel.  

For field settings, this platform allows hands-free operation while isolating reactants 

from the user and the environment, potentially improving assay reliability and 

improving safety if dangerous reagents are required.  Furthermore, reaction timing is 

tunable by the end-user, allowing optimization towards site- or sample-specific 

considerations. 

We have illustrated the flexibility and utility of this novel system through three 

distinct, common assay types: two-step isothermal nucleic acid amplification, heavy 
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metal ion detection through gold nanoparticle aggregation, and antibiotic susceptibility 

characterization via a colorimetric reaction. We expect this phase-change partition 

platform will spur new innovation in a variety of form factors and applications, 

enabling automation of many labor-intensive assays and facilitating translation of many 

assays to the point-of-care which were previously unfeasible.
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5 Thermally-triggered effervescent mixing for assay 
automation4 

The phase-change partitions described in the previous chapter enable thermal reaction 

automation, but most temperature-control systems (e.g., water bath, thermocycler) do 

not allow the manual or mechanical agitation necessary to achieve efficient reaction 

kinetics. Furthermore, we observed during the experiments in that chapter that if a 

lower solution was more dense than the upper solution, mixing of the two was severely 

impaired. This chapter describes the design of a system of thermally-automated 

convective mixing to extend the capabilities of the phase-change partition system. 

5.1 Abstract 
Meltable barriers are an attractive means to achieve controlled delivery of reagents 

in a variety of settings, enabling assays to be performed through thermal automation 

instead of manual addition of reactants. However, mixing kinetics in such systems can 

be slow due to the lack of active flow or mechanical shaking. We demonstrate a new 

strategy for hands-free, thermally-automated agitation of biochemical reactions. 

Reagents for binary effervescent reactions are lyophilized then capped with a phase-

change partition, eicosane. This barrier can be melted at moderate temperatures, at 

which point an aqueous solution dissolves the reactants, generating bubbles that mix 

the solution through convection. We explore reactions that generate bubbles of carbon 

dioxide and oxygen gasses, characterizing the induced mixing rate of two aqueous 

solutions with dissimilar densities. This strategy affords control over the initiation and 

                                                 
4 This work was done in collaboration with Andrew B. Lippe and has been submitted for publication to 
Biosensors and Bioelectronics.  
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duration of convective mixing, providing a tool for thermal automation of biochemical 

reactions with efficient reaction kinetics. 

5.2 Introduction 
Thermal automation has the potential to improve the usability and accessibility of 

diverse biochemical reactions with applications that include biomedical diagnostics. 

The wide range of potential heating systems available make such an approach amenable 

to a variety of form-factors and settings. Recently, we reported phase-change partitions 

as a means of achieving modular, thermal control over multi-step reactions (Goertz and 

White, 2018). Separating reactants by layers of purified alkanes in a common PCR tube 

kept them isolated from one another, interacting only when the melting temperature of 

the appropriate barrier was reached. The discrete, well-defined melting transitions of 

the alkanes used enabled such partitions to be actuated through such diverse means as 

an expensive thermocycler, a simple heated water-bath, or electricity-free chemical 

heating (Goertz et al., submitted). 

However, the drawback of designing reactions for this platform is the lack of 

possible manual agitation. In many biochemical reactions, the manual addition of a 

reagent is typically accompanied by vigorous mixing to ensure solution homogeneity. 

Similarly, assays involving the use of microbeads are often agitated for the duration of 

incubation to maintain bead dispersion and promote rapid catalysis or binding kinetics 

(Chen et al., 2008; Dunbar et al., 2003; Kourilov and Steinitz, 2002). Microfluidic 

platforms employ various strategies to achieve hands-free mixing, such as post arrays, 

serpentine channels, and acoustic waves (Lee et al., 2011). Portable platforms have 

been developed that allow hands-free mixing through the use of small, magnetically-
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actuated beads included in the 

reaction mixture (S. H. Lee et 

al., 2009; Lillis et al., 2016; Rida 

and Gijs, 2004). Both microfluidic 

and magnetic strategies, however, 

are highly device-specific, offering 

little flexibility in form-factor and 

instrumentation. 

Here, we employ effervescent 

reactions to create gas bubbles in 

situ and induce convective mixing. 

We leverage phase-change partitions to isolated dried reactants from an aqueous 

solution, allowing the reaction to be triggered on-demand by mild heating. We explore 

the interaction of sodium bicarbonate with various organic acids (citric, tartaric, and 

benzoic) to generate CO2 and the interaction of manganese dioxide nanoparticles with 

hydrogen peroxide to generate O2. Bubble generation has been utilized previously to 

achieve pumping in microfluidic systems but has not been characterized for its ability 

to promote mixing (Choi et al., 2004; Eddings and Gale, 2006; Good et al., 2006), 

although manually-pumped gas has achieved mixing in specially-designed microfluidic 

channels (Garstecki et al., 2006). We first demonstrate the need for convective mixing 

by observing the exceedingly slow mixing kinetics of solutions that differ even slightly 

in density. Next, we demonstrate the rapid mixing promoted by in situ bubble 

generation and characterize the time scales involved. Our results provide tunable 

Figure 29. Effervescent mixing schematic. Reagents for 
binary effervescent reactions were dried at the bottom of 
PCR tubes, then capped with eicosane to allow thermally-
triggered reaction initiation. On top of this was placed a 
lower yellow solution and an upper blue solution separated 
by a second eicosane partition. When the eicosane melted, 
the two solutions began to mix and form a green solution. 
At the same time, the effervescent reagents were 
reconstituted, reacting together to generate bubbles and 
induce convective mixing. 
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mixing kinetics and a range of chemical systems adaptable to the particular constraints 

of various biochemical reactions.  

 
5.3 Materials and Methods 

Materials. Eicosane was purchased from Alfa Aesar; thioflavin T, methylene blue, 

sodium bicarbonate, citric acid, benzoic acid, potassium permanganate, 100kDa-

180kDa poly(allylamine hydrochloride) (PAH), sodium percarbonate, sodium nitrite, 

and ammonium chloride from Sigma; high-profile 0.2 mL PCR tubes from USA 

Scientific; thermal epoxy from JB Weld; 2 megapixel Arducam camera sensor and 

Arducam Arduino UNO from Arducam; temperature probe; aluminum block; nylon 

mesh sieves from Component Supply Company. 

MnO2 nanoparticle synthesis. 416 mg of PAH was added under magnetic mixing 

at room temperature to a 100 mL solution of 20 mM KMnO4, for an approximately 4:1 

molar ratio of PAH repeat unit to KMnO4 (Luo, 2007). The solution was mixed for five 

minutes, during which it underwent a characteristic color change from pink to brown 

(Figure 30A) accompanied by an increase in UV-vis absorbance in the 300-400 nm 

region and a loss of absorbance peaks in the 500-600 nm region (Figure 30D). DLS 

confirmed a tight size distribution of nanoparticles (NPs) approximately 50 nm in 

diameter (Figure 30E). Addition of H2O2 either in liquid or solid (percarbonate) form 

led to vigorous bubbling, which did not occur in a solution of KMnO4 (Figure 30B,C). 

The nanoparticle suspension was stored at room temperature until further use. 
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Static mixing reactions. 50 µL of molten eicosane was placed in the bottom of a 

PCR tube and allowed to solidify. A 2 mg/mL solution of (yellow) thioflavin T 

containing 1% Triton X-100 was prepared with varying amounts of glycerol. Note that 

25% glycerol has a density of 1.070 g/cm3 at room temperature and pure water 

0.997 g/cm3; at 48 °C these decrease to 1.060 and 0.989 g/cm3, respectively, implying 

that the density ratio is roughly constant with temperature in the ranges investigated 

(Cheng, 2008; Volk and Kähler, 2018). This solution was placed in the tube above the 

eicosane, followed by a second 50 µL layer of eicosane. After this second alkane barrier 

solidified, a 50 µL solution of 15 mg/mL methylene blue with an appropriate amount 

of glycerol was placed on top. 

CO2 generation. Sodium bicarbonate was dissolved in de-ionized water (DI), 

deposited in a PCR tube, then dried at room temperature under vacuum. Citric, tartaric, 

or benzoic acid was dissolved in methanol, deposited on top of the dried bicarbonate in 

an equimolar amount, then dried similarly. A 50 µL layer of molten eicosane was 

placed above the dried effervescent reactants and allowed to solidify, after which the 

Figure 30. MnO2 nanoparticle synthesis. A) Prepared MnO2 NPs were a brownish color, 
compared to the pink of the starting solution of KMnO4. B) In the presence of H2O2, MnO2 
NPs generated bubbles, whereas KMnO4 did not. C) Addition of a ~1.5 mm granule of sodium 
percarbonate to MnO2 NPs led to vigorous bubbling. D) Change in UV-vis absorbance 
corresponding to NP formation. E) NP diameters exhibited a tight distribution around 50 nm.  
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system was assembled as above with a 25% glycerol lower solution and a 0% glycerol 

upper solution. 

O2 generation. 7.5 µL of MnO2 nanoparticle solution was placed in the bottom of 

a PCR tube and dried under vacuum at room temperature. Sodium percarbonate was 

sieved to obtain granules of the indicated size and placed with the dried MnO2, after 

which the system was assembled as above.  

N2 generation. Effervescent generation of nitrogen gas was performed similar to 

reported protocols (Flinn Scientific; Kaushick et al., 1986). 4 M NH4Cl was prepared 

in 0.2 M H2SO4 and added to an equal volume of 4 M NaNO2.  

Temperature control. Wells were milled into an aluminum block to hold a PCR 

tube strip with windows for viewing. A polycarbonate sheet was glued to this block 

with thermal epoxy, then the wells were filled with water to facilitate heat transfer. A 

high-density cartridge heater (MCH1-96W-005, ComstatInc.com) powered by a 

12V/3A DC power supply was actuated with PID control from an Arduino Uno to melt 

the eicosane barriers at 48 °C.  

Image analysis. Time-lapse images were taken approximately 1-3 seconds apart 

with an Arducam-equipped Arduino Uno and analyzed in Matlab. Images were 

converted from the RGB to the CIE L*a*b* colorspace, which enables analysis of 

green (negative a* coordinates) separately from cyan and yellow (negative and positive 

b* coordinates, respectively) and luminance (L* coordinate), with greater fidelity than 

RGB (Figure 31). Rectangular, equally-sized Regions of Interest (ROI) no wider than 

the bottom of the tube were drawn by hand over each tube in the image, then the average 
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a* value was taken across rows of pixels within each ROI. Green regions of the image 

manifested as negative peaks in this vertical profile and so extent of mixing was 

quantified by taking the full-width-at-half-max (FWHM) of these peaks, normalized to 

the height of the aqueous layer. Complete mixing corresponded to a FWHM value of 

0.8-0.9 or greater.  

5.4 Results and Discussion 
To demonstrate the mixing characteristics of solutions of various densities, we 

separated glycerol-doped yellow and blue solutions with an eicosane phase-change 

partition (Figure 29). When the eicosane barrier melted, the two solutions combined to 

produce a green color. If the top and bottom solutions had the same density they mixed 

rapidly, reaching homogeneity within seconds, independent of the particular density 

(Figure 32A). However, if the lower solution had a higher density than the upper 

solution, even slightly, mixing was severely impaired (Figure 32B). To quantify the 

effects of various conditions on the mixing rate, we analyzed the corresponding images 

in the CIE L*a*b* colorspace. As the green region grew, it produced a peak in the -a* 

color coordinate; the full-width-at-half-max of this peak was used as a quantitative 

Figure 31. Image Analysis of 0%/25% glycerol static mixing. A) The -a* coordinate of the 
CIE L*a*b* colorspace correlates well with the visual progression of the green area in 
Figure 32 (main text), more so than B) the blue-yellow b* coordinate or C) the RGB colorspace 
G coordinate. 
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indicator of the extent of mixing (Figure 32C). We observed that difference in density 

of approximately 1% (0%:3% glycerol layers) was sufficient to delay homogeneity by 

an hour and a half (Figure 32D). While here we demonstrate this phenomenon with 

solutions of varying glycerol content, the same behavior was observed with bottom 

Figure 32. Static mixing. A) When two solutions of equal density encounter one another, mixing is rapid 
regardless of the actual density. B) If an upper solution of low density encounters a solution of higher 
density below, mixing is considerably impaired, taking well over an hour to reach equilibrium even for 
a 1% difference. C) The extent of mixing exhibited by each image (here, the 0%:25% glycerol 
combination) can be quantified by taking the full-width-at-half-max (FWHM) of the -a* color 
coordinate. D) Image analysis demonstrates that similar solutions reach equilibrium with a single, rapid 
burst phase, while dissimilar solutions exhibit an initial burst followed by steady diffusion. 
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solutions containing sodium 

hydroxide (2.13 g/cm³) or sulfuric 

acid (1.84 g/cm3) (not shown).  

We attempted to accelerate the 

rate of homogenization through in 

situ generation of CO2 gas bubbles 

from the classic reaction between 

sodium bicarbonate and acid. We 

dried an aqueous solution of 

bicarbonate at the bottom of PCR 

tubes. We then dissolved various 

organic acids in methanol and dried 

them on top of the bicarbonate. 

Using methanol as a solvent 

prevented premature reaction with 

the bicarbonate. The dried reagents 

were covered by a layer of eicosane 

(m.p. 36 °C) to isolate them from 

the colored solutions used above. 

We characterized the behavior of bubble-induced mixing in the worst-case combination 

shown in Figure 32B, a ~6% density difference between pure water above and 25% 

glycerol below. Upon melting of the eicosane barrier, the effervescent reactions 

reconstituted and reacted rapidly, drastically accelerating equilibration over the static 

Figure 33. CO2-mediated mixing of 0%:25% 
upper and lower glycerol layers, respectively. 
A) 4 µg sodium bicarbonate reacting with equimolar 
citric, tartaric, or benzoic acid generates CO2 bubbles, 
rapidly mixing the two solutions. B) The three acids 
produce mixing rates proportional to their solubility 
(citric > tartaric > benzoic). 
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case (Figure 33). The time-to-homogeneity correlated with the hydrophobicity of the 

organic acid used: the most 

hydrophilic (citric) completely 

mixed the solutions within seconds, 

while the most hydrophobic 

(benzoic) took roughly three 

minutes. This demonstrates tuning 

the mixing rate from rapid to more 

gradual can be achieved by 

selecting an acid with appropriate 

solubility in water.  

While in situ CO2 generation 

achieved very rapid mixing 

kinetics, it will naturally lead to 

acidification of the mixed solution, 

even if the effervescent reaction 

occurs in a separate chamber. To 

achieve bubble-mediated 

convection without an 

accompanying pH change, we 

leveraged the catalyzed 

decomposition of H2O2 into O2 gas. We employed MnO2 nanoparticles as stable, easily-

prepared catalysts and sodium percarbonate as a solid-state source of H2O2. MnO2 NPs 

Figure 34. O2-mediated mixing of 0%:25% upper and 
lower glycerol layers, respectively. A) 7.5 µL MnO2 
nanoparticles catalyze the decomposition of H2O2 (from 
sodium percarbonate) to generate O2 bubbles. B) Mixing 
kinetics are slower than via CO2 generation, but still much 
faster than static mixing for large percarbonate granules. 
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were dried in the bottom of PCR tubes, while percarbonate granules were sieved to 

obtain various sizes and placed in the same tubes. This system was analyzed in the 

same manner as the CO2-generating reactions. When the eicosane barrier melted, the 

two reagents interacted to produce O2 bubbles. Reactions with percarbonate granules 

larger than 300 µm achieved homogeneous solutions within 5-10 minutes, while 

smaller granules did not noticeably accelerate mixing compared to the static case 

(Figure 34). The MnO2 layer did not appear to dissolve completely, instead remaining 

a cohesive mass that floated about the tube, buoyed by generated gas. Future 

investigations should consider the use of excipients to promote dispersion of the NPs.  

The two effervescence systems discussed so far are compatible with reaction 

constraints: O2 bubbles may be suitable for pH-sensitive systems because they avoid 

acidifying the mixed solutions, unlike CO2, yet they have the potential to interfere with 

redox-sensitive systems. However, should a system be intolerant to both acidification 

and oxidation, an inert gas such as N2 would be an ideal source for bubble-mediated 

convection. We were able to generate visible bubbles by mixing acidified ammonium 

chloride with an aqueous solution of sodium nitrite (not shown). However, the high 

concentrations required and the necessity of sulfuric acid made it difficult to dry the 

reagents together without premature reaction. A capsular, wet-storage approach may 

be necessary for this system.  

5.5 Conclusion 
Mechanical agitation is a nearly universal component of many biochemical 

reactions. For many reactions used as medical diagnostics, this necessity complicates 

ease-of-use and impairs portability and adaptation to low-resource settings. Thermal 
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automation, through systems such as our phase-change partitions, are particularly 

vulnerable to this drawback: the lack of active mixing can lead to slow equilibration 

between reactant solutions. Here, we present a system for thermally-automated in situ 

generation of gas bubbles that promote convective mixing. Through a variety of phase-

change partitioned effervescent reactions, we demonstrate that the very slow mixing 

rate between solutions of even slightly dissimilar densities can be greatly accelerated 

to achieve rapid homogenization. We dried effervescent components at the bottom of 

PCR tubes and then sequestered them from an aqueous solution through an eicosane 

phase-change partition. Melting this barrier led to reconstitution of the reagents and 

initiation of effervescence, producing CO2 or O2 bubbles. 

It should be noted that there has been much debate over the relative impact of 

viscosity and density differences on mixing rate, and there have been vastly more 

studies on this relationship in chaotic- or laminar-flow systems than in comparably 

static or pulsed systems like the one examined here (Bouwmans et al., 1997; Burmester 

et al., 1992; Chien et al., 1986; Mohr et al., 1957). Here, all solution combinations 

investigated displayed an initial burst-mixing phase driven by the inertia of the upper 

solution. If the upper and lower solutions were of the same density and viscosity, this 

inertia was sufficient to overcome viscous resistance and homogeneity was achieved 

rapidly with no dependence on the magnitude of those properties. If there was even a 

slight mismatch, however, the initial burst phase was only incomplete, and achieving 

equilibrium was viscosity-limited. The mixing rate achieved by the effervescent 

systems, on the other hand, was largely limited by the solubility of the reactants. The 

CO2-generating reactions produced almost instantaneous mixing, proportional to the 
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solubility of the acid used. The O2-generating reactions produced slower mixing, albeit 

still faster than the static case, in large part due to the poor solubility of the MnO2 

catalyst. 

In the investigations presented here, the effervescent reagents were directly 

dissolved by the solution to be mixed. This has obvious drawbacks, which we envision 

to be solved in future studies through the use of semi-permeable membranes that allow 

gas diffusion but isolate the effervescent and working solutions from one another. Even 

in that scenario, however, the dissolution of evolved gasses into the working solution 

may still be a concern; to that end, we described systems for generation of CO2, O2, 

and N2, so that the mixing system can be tailored to the constraints of the desired 

biochemical reaction. In our hands, the CO2 system produced very rapid equilibration, 

within a few seconds in the case of the bicarbonate-citric acid reaction. The O2 system 

exhibited more gradual mixing kinetics, but this may be preferable if, for example, a 

bead-based reaction needs to be agitated for a prolonged period. Leveraging both 

systems in parallel may also be advantageous: the burst-mixing accompanying CO2 

generation could be used to rapidly disperse a bead bed while the gradual mixing 

provided by O2 generation could prevent re-settling. 

The effervescent mixing strategy described here expands the capabilities of 

thermally-automated systems leveraging phase-change partitions, improving their 

portability by eliminating yet another common element of manual intervention. This 

approach may also be useful in other platforms, such as microfluidics, in which 

diffusive mixing is a limiting consideration. Ultimately, effervescent mixing provides 
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one more tool for point-of-care diagnostics, a low-cost option to automate medical tests 

and help alleviate access-to-care deficiencies in rural, poor settings. 
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6 Multi-stage chemical heating for instrument-free biosensing5 
The earlier chapter describing phase-change partitions demonstrated barrier actuation 

through temperature control with a thermocycler and a water bath, alluding to the 

possibility of chemical temperature control. A truly electricity-free actuation system 

would be ideal for portable, point-of-care diagnostics. While passively-regulated 

chemical heating had been described previously, none had achieved the multiple 

temperature stages necessary to actuate multiple phase-change partitions. This chapter 

describes the development of a system that does. 

6.1 Abstract 
Improving the portability of diagnostic medicine is crucial to alleviating global 

access-to-care deficiencies. This requires not only designing devices that are small and 

lightweight but also autonomous and independent of electricity. Here, we present a 

strategy for conducting automated multi-step diagnostic assays using chemically 

generated, passively regulated heat. Ligation and polymerization reagents for Rolling 

Circle Amplification of nucleic acids are separated by melt-able phase-change 

partitions, thus replacing precise manual reagent additions with automated partition 

melting. To actuate these barriers and individually initiate the various steps of the 

reaction, field ration heaters exothermically generate heat in a thermos while fatty acids 

embedded in a carbonaceous matrix passively buffer the temperature around their 

melting points. Achieving multi-stage temperature profiles extends the capability of 

instrument-free diagnostic devices and improves the portability of reaction automation 

systems built around phase-change partitions. 

                                                 
5 This work was done in collaboration with Kenya M. Colvin, Andrew B. Lippe, John L. Daristotle, and 
Peter Kofinas. It has been submitted for publication. 
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6.2 Introduction 
Access to healthcare remains one of the primary challenges of modern medicine. 

Technological advances often remain concentrated in wealthy urban centers, out of 

reach to rural and poor populations in developing and developed nations alike. 

Alleviating this disparity is not simply a matter of making existing techniques 

affordable: many traditional assay platforms are incompatible with field-use at any 

cost. Instead, alternative technologies must be designed for high portability (small, 

lightweight, not reliant on electricity) and ease-of-use (simple and autonomous, with 

minimal hands-on steps). 

Two primary approaches have emerged to answer this need: chip- and paper-based 

microfluidics (Martinez et al., 2010; Whitesides, 2006). Traditional microfluidic 

devices that utilize micro-fabricated fluidic networks are capable of housing numerous 

reactions with myriad components that proceed in a well-orchestrated pattern, yet the 

requisite pumps and other peripheral equipment severely impair portability (Foudeh et 

al., 2012). While paper devices significantly improve the portability of biosensing 

reactions, the simplicity that makes them easy to use limits the throughput and 

complexity of assays they can support (Hu et al., 2014). To address this gap between 

miniaturized assays suitable only for laboratory use and those restricted to field use, we 

recently described the novel approach of employing thermally-removable barriers to 

sequester reagents within a common PCR tube (Goertz and White, 2018). This 

approach demonstrated the potential to offer the tight reaction control of microfluidics 

with portability and ease-of-use that parallels paper devices. 
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These “phase-change partitions” consist of ordinarily-solid purified hydrocarbon 

waxes that exhibit sharply-defined melting transitions at distinct temperatures. 

Reagents for each step of a multi-part reaction remain isolated from one another until 

the respective barrier is melted, at which point a sample solution sinks through the now-

molten alkane and mixes with the reagent beneath. This approach allows arbitrarily 

long reaction stages and at least five distinct reagent zones within a single 200 µL PCR 

tube. While the temperature range spanned by the alkanes we employed is narrow 

enough to remain accessible to simple heating devices, the melting transitions are 

discrete enough to avoid the need for tightly-calibrated temperature control. Indeed, we 

demonstrated actuation of these phase-change partitions in a simple water-bath as well 

as a commercial thermocycler.  

However, even a temperature-regulated water-bath requires a consistent source of 

electricity, unavailable in field settings or low-resource clinics. A similar challenge is 

faced by many isothermal nucleic acid amplification techniques such as LAMP (loop-

mediated isothermal amplification, Notomi et al., 2000; Sema et al., 2015) and RPA 

(recombinase-polymerase amplification, Piepenburg et al., 2006; Wahed et al., 2015), 

which require elevated temperatures to achieve highly-sensitive detection of pathogens. 

Numerous groups have employed chemically-generated heat with thermal buffers to 

reach the incubation temperature for these reactions (Buser et al., 2015; Curtis et 

al., 2012; LaBarre et al., 2011). This is typically achieved using the exothermic 

hydration of calcium oxide or the galvanic corrosion of MgFe alloys in the presence of 

saline  (Buser et al., 2015; Singleton et al., 2013). This latter reaction is extensively 

employed in military Meal-Ready-to-Eat (MRE) field ration heaters and thus has been 
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thoroughly optimized to rapidly reach boiling temperatures while remaining compact 

and lightweight. 

To achieve prolonged incubation at temperatures amenable to biochemical 

reactions rather than a brief burst of excessive heat, researchers have employed phase-

change materials (PCMs) as thermal buffers in these exothermic systems (Buser et 

al., 2015; Curtis et al., 2012; Kubota et al., 2013; LaBarre et al., 2011; Liao et al., 2016; 

Singleton et al., 2013; Song et al., 2016). These materials surround the reaction 

compartment so that, as they melt, the temperature of the reaction remains near that of 

the compound’s melting point (Farid et al., 2004). Phase-change materials with 

specified thermal characteristics are commercially available (PureTemp)  but can also 

be inexpensively fashioned from materials such as fatty acids and hydrated salts with 

high latent heats of fusion and desirable melting temperatures (Ryu et al., 1992b; Yuan 

et al., 2014). Previous reports have described systems which are designed for only a 

single operating temperature; here, we present the use of MRE heaters with blended 

PCMs to achieve multi-stage temperature profiles. We leveraged this platform to 

sequentially actuate two phase-change partitions in a PCR tube, at the same time 

providing ideal operating temperatures for the respective ligation and polymerization 

stages of Rolling Circle Amplification (RCA). Our results demonstrate the potential for 

platforms based on phase-change partitions to automate the field use of complex, multi-

stage biosensing reactions without the need for electricity. 

 
6.3 Materials and Methods 

Materials. Carbon black (CB) (99.9%), lauric (dodecanoic) acid (LA) (98%), and 

palmitic (hexadecanoic) acid (PA) (95%) were purchased from Alfa Aesar (Haverhill, 
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MA). Sodium thiosulfate pentahydrate, sodium acetate trihydrate, and carboxymethyl 

cellulose (CMC) were purchase from Sigma. 0.2 mL high-profile PCR tubes were 

purchased from USA Scientific (Ocala, FL). RCA reagents were purchased from New 

England Biolabs (Ipswitch, MA), and DNA sequences were purchased from Integrated 

DNA Technologies (Coralville, IA). DNA Sequences used are: 

Trigger: 5’-TAG TCG AGA CAT CCG AGA CA -3’ 

Template: 5’-Phos-GTC TCG ACT AAA AAC CCA ACC CGC CCT ACC CAA 

AAG AGA CAT CCG TTT TGT CTC GGA T-3’ 

MRE Heaters were provided by Luxfer Magtech Inc. Tahoe Trails 10 oz vacuum 

insulated double wall stainless steel travel tumblers, 4 x 5 inch sealable tea bags, 

Kayose natural tea filter bags, and the iTouchless handheld heat bag sealer were 

purchased from Amazon. 1 mm nylon mesh sieves were purchased from Component 

Supply Company. The custom-designed thermos insert was 3D printed in ABS with a 

Zortrax M200. All remaining materials were purchased from MilliporeSigma 

(Burlington, MA). 

Preparation of Encapsulated PCMs. Fatty acids and hydrated salts were melted on 

a hot plate under magnetic stirring. Carbon black or activated carbon was mixed with 

melted fatty acids at specified weight ratios. The hydrated salts were mixed first with 

5 wt% CB and subsequently with 10 wt% CMC; a small amount of methanol was added 

to allow CB to mix with the molten salt hydrate. The resulting pastes were spread on 

aluminum foil to cool, ground in a mortar and pestle, and sieved to obtain granules <1 

mm in diameter. To produce systems with multiple temperature stages, multiple PCMs 
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were encapsulated separately then mixed after cooling so as not to impact their 

individual melting points. 

Form-Stability of Encapsulated PCMs. To assess the stability of the encapsulated 

PCMs against melt leakage, ~4 g composite was placed in Kayose tea bags, sandwiched 

between paper towels and then aluminum foil, and placed on an 80 °C hotplate. Mass 

of the composite was taken before and after one hour of incubation. 

Differential Scanning Calorimetry (DSC). Approximately 10 mg samples were 

sealed in aluminum hermetic pans (TA Instruments) using a sample encapsulation 

press. DSC measurements were made on a TA Instruments DSC Q100. Samples were 

held isothermal at 0 °C for 5 min, then heated to 100 °C and cooled to 0 °C at a rate of 

3 °C min−1, ± 0.20 °C amplitude, with a modulation period of 60 s for two continuous 

cycles. 

Chemical Heating. MRE heaters were used as is to determine the temperature 

profile of the exothermic reaction between saline and the MgFe alloy in the MREs. A 

single packet of the MgFe alloy was added to a thermos followed by 100 mL of saline. 

The reaction was examined using NaCl concentrations of 0, 0.1, 0.3, 0.5, 1.0, and 

1.5 wt%. Temperature was recorded using a Sparkfun waterproof temperature sensor 

(DS18B20) and an Arduino Uno. 

Passively Regulated Temperature. MRE heaters were repackaged using heat-

sealable tea bags, as described previously. MgFe alloy granules from MREs were 

distributed into each tea bag in 3.70 g allotments, sealed, then placed in the bottom of 

the vacuum thermos. The exothermic reaction was initiated by adding 100 mL of 0.1% 
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saline, after which a 3D-printed insert made of ABS was placed in the container and 

covered with aluminum foil, suspending the PCM above the saline level. A Styrofoam 

lid provided insulation at the top of the thermos, while a small hole allowed hydrogen 

gas produced in the chemical reaction to vent. The temperature within the PCM was 

recorded using a Vernier Labquest Mini and a stainless steel temperature probe.  

Phase-Change Partitioned Assays. The pH indicator demonstration was 

constructed in a PCR tube, from top to bottom, with 40 µL indicator solution (1 mM 

H2SO4, 1% Triton, 60% Indicator), 50 µL octadecane, 10 µL each buffer A (800 mM 

Figure 35. Chemical heating. A) A 10 oz thermos provides the housing for PCM-MRE actuation of phase-
change partitioned assays. B) Decreasing the saline concentration used to initiate the exothermic reaction 
provides a more gradual temperature profile, facilitating passive thermal regulation with PCMs. 
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NH4OAc, 250 mM Tris, pH 6.0) and B (5 M NH4OAc, 500 mM Tris, pH 8.0), 40 µL 

tetracosane, and 30 µL 9.8 M NH4OH. The RCA reaction was constructed, from top to 

bottom, with 20 µL 1.36 µM Template DNA in DI water, 50 µL octadecane, 20 µL 

ligase solution (18 U/µL T4 DNA Ligase, 1.8x Ligase Buffer with ATP), 50 µL 

tetracosane, 20 µL polymerase solution (1.1 U/µL Bst 3.0 DNA Polymerase, 2.7x 

Isothermal Amplification Buffer, 2.7 mM dNTPs, 1.36 µM Trigger DNA). Tubes were 

embedded into a mixture of 20 g encapsulated LA and 20g encapsulated PA, then 

heated as described above with an MRE heater initiated by 0.1% saline. Reactions 

marked L in Figure 38 were removed once the vessel temperature reached 40 °C, and 

reactions marked F were removed one hour after the vessel temperature exceeded 

55 °C. 

Gel Electrophoresis. Denaturing polyacrylamide was used to analyze RCA 

products. Reactions were removed at the respective time and halted by immersion in 

ice water. Reaction solutions were extracted, mixed with two parts 12 M urea, heated 

to 95 °C for five minutes, then run on a 15% gel at 500 V for 15 minutes in a BioRad 

mini PROTEAN. 

6.4 Results and Discussion 
The usability of phase-change partitions for diagnostic reactions in low resource 

settings heavily depends on being able to easily manipulate the heat source without the 

use of electricity or additional equipment. Our multi-stage heating device consisted of  

an off-the-shelf vacuum thermos separated by a 3D-printed insert: a lower chamber 

contained the MRE alloy packet while the encapsulated PCMs and reaction tubes were 

housed in an upper chamber above the saline level (Figure 35A). We were able to easily  
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Figure 36. PCM Encapsulation. A) Fatty acids are melted then mixed with carbon black, causing 
the molten PCM to impregnate the pores of the carbon matrix. Upon re-melting, capillary tension 
prevents the PCM from leaking out of the encapsulation. B) Form-stability of encapsulations was 
evaluated by measuring the mass lost after one hour of heating at 80 °C. C) DSC analysis 
demonstrates the tight melting profile of fatty acids. LA, PA: pure fatty acid alone. eLA, ePA: fatty 
acid with 20% CB. eLA+ePA: 1:1 mixture of each fatty acid individually encapsulated in 20% CB, 
first and second run. Black text labels refer to eLA+ePA, 2nd peaks. 
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fine tune the temperature profile of the saline-activated MgFe alloy by changing the 

concentration of salt in the solution (Figure 35B). The saline pack included with the 

MREs contained 1.5 wt% salt and caused a rapid increase in temperature up to 97°C. 

Reducing the salt concentration increased the time it took for the MgFe alloy to reach 

its maximum temperature while lowering that maximum, reducing the thermal burden 

needed to be buffered by PCMs.  

We investigated two fatty acids (LA, m.p. ~43 °C, and PA, m.p. ~63 °C) and two 

hydrated salts (sodium thiosulfate pentahydrate, Na2S2O3·5H2O, m.p. ~48 °C; and 

sodium acetate trihydrate, NaOAc·3H2O, m.p. ~58 °C) for use as PCMs. Ideally, PCMs 

must be encapsulated to prevent leakage of the melted material during operation and, 

in the case of hydrated salts, to prevent phase-separation in the molten state; doing so 

also has the advantage of improving the thermal conductivity of the material. There is 

an extensive body of literature devoted to such encapsulation techniques for the 

purposes of solar heating as well as “smart” construction and textile materials, most of 

which entail either formation of core-shell microparticles or distribution of the PCM 

within a porous matrix (Aftab et al., 2018). Here, we chose carbon black (CB) as an 

encapsulant for fatty acids due to its affordability, ease of encapsulation, and thermal-

conduction properties. The fatty acid was melted, mixed rapidly with CB to penetrate 

the porous matrix, cooled, ground, and sieved (Figure 36A). Upon subsequent re-

melting, surface tension caused the molten fatty acid to remain entrapped within CB 

pores. This composite exhibited bulk minimal leakage at elevated temperatures when 

the CB mass fraction was 20% or greater (Figure 36B); curiously, CB provided greater 

form-stability than activated carbon, despite the latter’s nominally higher surface area 
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to volume ratio and prominent position in the PCM literature (Shin et al., 2015; Yuan 

et al., 2014). For hydrated salts, 5% CB with 10% CMC achieved adequate form-

stability (Shin et al., 2015). 

We used differential scanning calorimetry to investigate the thermal properties of 

our encapsulated PCMs. As shown in Figure 36C, encapsulation resulted in minimal 

change in PCM melting point (defined as the temperature at maximal specific heat 

capacity), implying no chemical interaction between core and matrix materials. 

However, upon re-melting a mixture of LA and PA encapsulated separately, the two 

melting points were significantly lower. This suggests that the molten fatty acids 

migrate between the carbon black particles, mixing with one another and mutually 

depressing their respective melting points. 

This mixture of encapsulated fatty acids provided an adequate thermal buffer for to 

produce multi-stage temperature profile from an MRE heater. By combining 20 g 

encapsulated PA with 20 g encapsulated LA, the temperature profile generated by an 

MRE heater with 0.1% saline was successfully modulated to exhibit an approximately 

1 hour hold between 30 and 40 °C and a greater than 1 hour hold between 55 and 65 °C 

(Figure 37A). This temperature profile allowed well-controlled actuation of phase-

change partitions, demonstrated by stepping a pH indicator solution through sequential 

eicosane and tetracosane barriers to mix with various buffers (Figure 37B). 

Combinations of encapsulated hydrated salt also produced multiple temperature stages 

(not shown). 
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The lowered melting points of the encapsulated fatty acid mixture provided ideal 

temperature regimes to achieve Rolling Circle Amplification. RCA is a two-step 

method for DNA detection: a template sequence is first ligated into a circle, then a 

complementary trigger sequence is extended by a polymerase to continuously replicate 

the template.(Lizardi et al., 1998; Yan et al., 2014) While each stage requires 30-

60 minutes at only a single temperature, the ligase enzyme is most active between 30 

and 40 °C and the fastest polymerase enzymes are active between 55 and 65 °C; 

furthermore, the two steps must be performed separately, since premature extension of 

Figure 37. Multi-stage chemical heating. A) An MRE heater activated with 0.1% saline and buffered with 
a mixture of 20 g encapsulated lauric acid and 20 g encapsulated palmitic acid produces two distinct 
temperature zones amenable to different biochemical processes. B) This two-stage heating can be used to 
actuate phase-change partitions. Here, pH Indicator is stepped through different buffers sequestered by 
eicosane and tetracosane barriers. 
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the trigger sequence along an un-circularized template prevents ligation and continuous 

amplification.  

We constructed a partitioned RCA reaction by placing a dumbbell-forming 

template DNA sequence above a layer of octadecane (m.p. 30 °C), followed by a buffer 

containing ligase, a layer of tetracosane (m.p. 52 °C), and finally a buffer containing 

trigger DNA and polymerase (Figure 38A). Six such reactions were run in parallel in 

the MRE-PCM system described above. Three were removed once the thermos reached 

40 °C and the remaining three were incubated further until the thermos had spent an 

hour above 55 °C, during which time the temperature never exceeded 65 °C. As 

demonstrated by gel electrophoresis (Figure 38B), both ligation and polymerization 

proceeded efficiently; furthermore, the trigger sequence is not present in the reactions 

incubated only until 40 °C, indicating that the phase-change partitions completely 

sequestered the various reaction components.  

6.5 Conclusion 
We have demonstrated the electricity-free automation of a multi-step biosensing 

reaction. The phase-change partition platform reported previously enabled stable 

separation of reactants with thermally-reversible alkane barriers; the current work 

provides a system capable of actuating these partitions in an automated, field-

compatible manner. Tempering the saline concentration added to MRE heater granules 

metered the rate of the accompanying exothermic reaction, while phase-change 

materials buffered the reaction temperature within multiple sequential ranges amenable 

to biochemical reactions. Encapsulating the PCMs within porous matrices prevented 

bulk leakage, enabling re-use. When used alone, encapsulated LA produced a 
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temperature hold of approximately 45 °C, but when combined with encapsulated PA, 

the first temperature hold occurred at a temperature regime more amenable to T4 DNA 

Ligase, between 30 and 40 °C. The melting point of PA was similarly depressed, 

remaining within an optimal region for Bst polymerase. Additionally, future 

investigations should explore numerical approaches to quantitatively model PCM-

Figure 38. Portable biosensing with multi-stage chemical heating. A) The phase-change partitioned 
RCA assay is initiated by melting of an octadecane layer once the tube exceeds 30 °C, causing ligase 
enzyme to ligate the template DNA into a circle. The amplification stage is initiated by melting of a 
tetracosane layer once the tube exceeds 52 °C, at which point the polymerase extends a trigger sequence 
to continuously replicate the template. B) Denaturing acrylamide gel electrophoresis reveals successful 
ligation in all reactions, and successful generation of amplicon in those incubated for the full duration 
(F). The absence of trigger DNA in reactions incubated only for the ligase portion (L) confirms the 
integrity of the tetracosane barrier below its melting point. Note that the apparent difference in circular 
template band intensity between Ligase-only and Full reactions is due to the further dilution by the 
polymerase solution in the latter. 
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MRE temperature profiles and accelerate the development cycle of non-instrumented 

diagnostic assays. 

We successfully actuated a phase-change partition system with passively-buffered 

chemical heating to demonstrate the capacity of this system to automate nucleic acid 

amplification. This report extends the compatibility of the phase-change partition 

platform to include not only well-equipped laboratories (via thermocyclers) and generic 

clinics (via water baths), but also resource-poor settings and field operation (via multi-

stage PCM-MRE heaters). The key advantage of such broad compatibility is that it 

enables a common form factor to be employed in diverse settings: the same assay can 

be given to a central lab technician and a field nurse. Our results demonstrate that 

phase-change partitions have the potential to bridge the current gap between centralized 

and remote diagnostic platforms. Now further developments are necessary to adapt a 

wide range of clinical assays to this system and support efforts to close the urban-rural 

divide that persists in 21st century medicine. 
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7 Highly stable encapsulation of diverse mesoscale materials 
with thermally-controlled burst-release6 

This final experimental chapter improves upon two drawbacks of the phase-change 

system described in Chapter 4. In that system, the partitions and reagents are stacked 

in a tube as layers, one after the next. That strategy makes manufacture of the system 

difficult, as each component must be added in a specific order. Additionally, not only 

is quality control of the individual assay components difficult, if any component fails 

quality control then the entire device fails. Furthermore, the interface between the 

hydrophobic layers and the polymer tube walls is a natural weak point. The work 

described in this chapter involves the engineering of the phase-change partitions in a 

self-contained, capsular structure. 

7.1 Abstract 
Controlled encapsulation and 

release of reagents has the potential 

to facilitate automation in a variety 

of integrated systems, yet many 

existing approaches are highly 

specific to a given platform or core material. Here, we present a generic encapsulation 

strategy, adaptable to a range of geometries and cargos, that enables thermal control 

over reagent release. We use 3D printing to cast hollow “phase-change” capsules out 

of purified waxy materials (alkanes and fatty acids), which can then be loaded with any 

desired material and sealed. When submerged, the resulting capsules are stable against 

leakage for at least five days, and in air they are stable against evaporation for at least 

                                                 
6 This work was done in collaboration with Srini R. Raghavan and has been submitted for publication. 

Figure 39. Phase-change capsule graphical abstract. 
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four weeks. Mild thermal stimulus leads to immediate release of the core, presenting a 

highly modular platform for thermally-regulated reaction systems. We demonstrate the 

utility of these capsules for controlled release of a common unstable biochemical 

reagent, hydrogen peroxide. Furthermore, we illustrate the ability of these capsules to 

enable safe, semi-automated field operation of environmental-surveillance assays 

(nitrate detection) requiring hazardous chemicals (pure sulfuric acid). These phase-

change capsules provide a modular, mass-producible platform for stable, stimuli-

responsive encapsulation.  

 
7.2 Introduction 

Engineering complex, autonomous materials systems requires tight control over 

interactions between the myriad components. The ideal platform perfectly isolates each 

node from its environment, rapidly releasing the cargo in entirety on demand. Many 

current approaches for encapsulation, however, are leaky in their “closed” state or 

respond poorly to an “opening” stimulus (Duncanson et al., 2012; Keen et al., 2014; 

Ma et al., 2013; Reinhold E. Samuel et al., 2012; Sun et al., 2010; Zieringer et 

al., 2015). Furthermore, most current approaches are suitable only for solids or liquids 

or hydrogels; few are compatible with all three classes of materials. Here, we present a 

general-purpose approach that offers equal utility to reversible encapsulation of 

mesoscale solids, hydrogels, and liquids. 

Traditional bulk encapsulation techniques have the potential to rapidly produce 

large quantities, yet most require extensive optimization for each new core phase and 

are typically only compatible with a single class of material. Emulsion strategies, for 

instance, are conducive only towards encapsulation of liquids or nanoscale solids 
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(Elkharraz et al., 2011; Morita et al., 2000; O’Donnell and McGinity, 1997; Taguchi et 

al., 2014). Industrial techniques such as spray-coating, rolling-drum encapsulation, or 

spinning-disk encapsulation are largely suitable only for solids and rely on a degree of 

interaction between core and shell material (Jenjob et al., 2012; Jozwiakowski et 

al., 1990; Knezevic et al., 1998; Mackaplow et al., 2006). Furthermore, these 

approaches are often prohibitively expensive for exploratory, laboratory-scale 

preparation. 

Previously, microfluidic devices have been used to produce core-shell 

microstructures from waxy materials, encapsulating one or more aqueous reagents 

within such thermally-reversible materials (Sun et al., 2010). However, capillary 

microfluidic device fabrication and operation requires sophisticated instrumentation 

and careful optimization while remaining largely incompatible with solid or even semi-

solid core materials. Indeed, the literature is virtually devoid of reports on microfluidic 

manipulation of mesoscale (100 µm – 1 mm) solids or hydrogels prepared off-line 

(Duncanson et al., 2012; Lee et al., 2016; Pan et al., 2018; Sakai et al., 2008; Seiffert 

et al., 2010; Vladisavljević et al., 2017). Even encapsulation of liquids in this manner 

presents severe limitations: core volumes on the scale of microliters or larger are 

difficult or impossible to prepare, and high salt concentrations are required to prevent 

leakage in an aqueous environment (Keen et al., 2014; Y. Zhao et al., 2011; Zieringer 

et al., 2015). Finally, strategies relying on capillary microfluidics are likely present 

difficulties in scaling-up to industrial production scales. 

Thermal control over reaction systems is particularly attractive for applications 

such as point-of-care biomedical diagnostics, for which portability and ease of 
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automation are paramount. Recently, we described phase-change partitions as an 

approach to sequester reagents that mix only in response to a mild thermal stimulus 

(Goertz and White, 2018). Separating aqueous or lyophilized reagents in a common 

PCR tube with layers of purified alkanes provided a platform for multi-step reactions 

where each stage could be triggered by incrementally raising the temperature. 

However, the layered nature of the system meant each component had to be added 

sequentially, potentially complicating mass-manufacture of assays leveraging this 

platform. Furthermore, the interface between each wax layer and the polymer tube wall 

created a natural weak point: rough handling of the assembled reaction could dislodge 

the barriers, potentially leading to premature mixing of reagents and ruining the assay. 

Formation of these phase-change partitions into self-contained capsules would improve 

the robustness of the platform while enabling asynchronous production of various 

complementary reaction components at industrial scales. 

Here, we leverage phase-change partitions as encapsulants of a variety of core 

materials, creating self-contained reagent capsules amenable to modular system 

assembly. We melt-cast alkanes and fatty acids into a cup shape using 3D-printed 

molds. Any core material can be placed within these cups, which are capped with more 

shell material and subsequently sealed. The final capsules are stable against leakage 

and evaporation, enabling storage of hazardous assay components with easily 

controlled release. These phase-change capsules have the potential to provide an ideal 

stimulus-responsive platform for diverse applications, including biomedical 

diagnostics, environmental surveillance, and chemical synthesis. 
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7.3 Materials and Methods 
Materials. Alkanes and fatty acids were purchased from Alfa Aesar; Sylgard 184 

polydimethylsiloxane (PDMS) monomer and crosslinker from Ellsworth Adhesives; 

dichlorofluorescein diacetate (DCF-DA), resorufin, sodium percarbonate (20-30% 

avail. H2O2), diphenylamine from Sigma; and well plates from Greiner. A Formlabs 

Form2 printer was used for stereolithographic 3D printing with ≤0.05 mm layer height. 

Capsule molds. Capsules were designed to have a 10 µL hemispherical core with a 

15 µL cylindrical headspace. Molds for phase-change capsules were made by 3D 

printing, either directly or via a master template. The master was printed with Formlabs 

High Temp Resin and coated in mold-release (Ease Release 200, Mann Release 

Technologies). An elastomer mold was made by filling the master with PDMS 

(prepared at a 10:1 ratio), curing in an 80 °C oven for 30 minutes, removing the 

partially-cured mold, and replacing it in the oven for an additional 30 minutes. Molds 

were also directly 3D-printed in Formlabs Flexible Resin. A stamp, used to produce 

the hollow core of the phase-change cups during casting, was 3D-printed in High Temp 

Resin. Molds and stamps were coated with mold-release prior to each use. 

Capsule fabrication. Shell material was melted and held at 200 °C, then poured into 

a mold placed atop a thin metal plate. This high of a temperature was found to be 

necessary to delay solidification of the poured material allow for positioning of mold 

components. A stamp was then inserted and secured with heavy-duty binder clips. Air 

was allowed to circulate underneath the casting assembly during cooling. Once cooled, 

the mold was peeled away. Often, the resulting capsules remained lightly trapped to 

stamp posts and were removed with a razor blade. After filling with the desired core 
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material, capsules were capped with additional 200 °C shell material. First, 15 µL was 

deposited and allowed to solidify, followed by an additional 5 µL. As indicated, some 

capsules were further sealed by immersion for 10 or 30 seconds in mineral oil or 34 °C 

octadecane then removed with a sieved and agitated lightly as they cooled. No 

difference was observed between capsules immersed for 10 or 30 seconds, so the two 

groups were pooled for analysis. 

Stability tests. Eicosane (m.p. 36 °C) capsules were prepared as above, filled with 

10 µL 100 µM resorufin in 50 mM Tris-HCl, 320 mM NH4OAc, pH 8.7. They were 

then immersed in individual wells of a 96-well plate containing 200 µL de-ionized 

water (DI). At the indicated time points, 50 µL was removed from each and placed in 

a black-walled half-area plate for fluorescent analysis in a Spectramax m5 plate reader. 

A reading ten-fold above the noise floor of the instrument (corresponding to ~0.1% 

leakage) was considered a failure. The solutions were then replaced with the capsules 

in their original wells. After five days, the wells were left uncovered to dry. Four weeks 

after the capsules were fabricated, they were placed in new wells of a 96-well plate 

with 100 µL DI, melted by incubation at 42 °C, allowed to re-solidify, then analyzed 

in bottom-read mode. Release of resorufin was compared with a freshly-prepared 

dilution of core solution in DI, with a comparable layer of eicosane melt-cooled on top. 

Controlled-release of H2O2. Sodium percarbonate was sieved to obtain granules 

approximately 1-2 mm in diameter, placed in prepared eicosane capsules (0.5 mm wall, 

two per capsule), and capped. 1-2 mm Alginate beads were prepared by extrusion of a 

1.5% sodium alginate solution into 1 M CaCl through a blunt 25G needle. Beads were 

allowed to crosslink for one hour, vacuum-drained, immersed in 30% H2O2 for one 
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hour, vacuum-drained again, placed in prepared eicosane capsules (0.5 mm wall, two 

per capsule), and capped. Capsules with no core material were also prepared. Capsules 

were placed in 200 µL PCR tubes with 100 µL 10 µM DCF-DA, then analyzed with a 

BioRad MiniOpticon thermocyclers for 30 minutes at 25 °C followed by 30 minutes at 

45 °C.  

Figure 40. Phase-change capsule fabrication. A) Molten wax is poured into molds (blue) then a stamp 
(orange) is inserted to form hollow cavities. After the shell hardens, capsules can be loaded with solid 
granules, liquids, or hydrogel beads, then capped with more shell material. B) Capsules can be 
fabricated from a variety of materials, isolating the cargo until melted. 
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Blue-violet test for nitrate (Grotz, 1973). Test reagent was prepared by mixing 6 mg 

diphenylamine into 1.2 mL 3 M H2SO4, then adding 300 µL 18 M H2SO4 (this two-

step process is necessary: the heat evolved during the addition of pure sulfuric acid 

allows the diphenylamine to fully dissolve). The traditional test is performed by mixing 

Figure 41. Capsule stability. Leakage of cargo into an aqueous solution from eicosane capsules with 
walls A) 1 mm or B) 0.5 mm thick. C) Cargo release four weeks after encapsulation. Low release 
indicates core solution had evaporated. Sealed capsules (S) exhibited good stability against 
evaporation, while unsealed capsules (U) did not. Large and small bars represent median and quartiles, 
respectively. 
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sample solution, test reagent, and pure sulfuric acid sequentially at a 3:3:10 ratio, 

producing a deep blue color in the presence of nitrate (improper order slows color 

development). We prepared eicosane capsules with 0.5 mm walls containing 10 µL test 

reagent or 18 M H2SO4. 10 µL sample solution was placed in a 0.6 mL centrifuge tube 

with one test reagent capsule and three pure sulfuric acid capsules then immersed in 

near-boiling water.  

7.4 Results and Discussion 
We fabricated phase-change capsules with 0.5 or 1 mm walls in a manner 

analogous to manual injection molding (Figure 40A). Arrays of capsule molds were 

either directly 3D-printed in a flexible material or, alternatively, cast in PDMS cured 

in a rigid 3D-printed master 3D-printed. Molten shell material was poured into the cup-

shaped molds, then a 3D-printed stamp consisting of an array of posts was inserted into 

the molten material to form cup-shaped hollow cavities. PDMS molds were cheaper 

and easier to produce in quantity than directly-printed molds, but slight (~1%) 

deformation during curing led to mis-alignment of the post array and produced many 

failed capsules with discontinuous walls. Despite a previous report (Madsen et 

al., 2014), room-temperature curing of the PDMS did not provide higher fidelity. The 

directly-printed mold gave a higher yield, particularly of 0.5 mm capsules, but 

imprecisions in the printing process still led to some failures. Even in intact capsules, 

slight misalignment produced inconsistencies in wall thickness, so the nominal 

thickness should be taken as approximate. Careful optimization of print design and the 

printing process should be able to alleviate these drawbacks. 



 

 

123 
 

We successfully fabricated capsules from eicosane (m.p. 36 °C), docosane 

(m.p. 44 °C), tetracosane (m.p.  54 °C), lauric acid (m.p. 43 °C), and palmitic acid 

(m.p. 63 °C) (Figure 40B). Fatty acids act as suitable phase-change partitions 

(Figure 42), similar to the higher alkanes characterized previously. We attempted to 

make capsules from low-melting octadecane (m.p. 30 °C) and capric acid (m.p. 32 °C),  

but they lacked sufficient rigidity to be removed from the mold and manipulated 

without deforming. Myristic acid also failed to produce sufficiently intact capsules. 

After filling with 10 µL of core material, capsules were capped with molten shell 

material in two stages: an initial 15 µL followed by an additional 5 µL after the first 

had solidified. This was necessary because the high thermal gradients experienced by 

Figure 42. Characterization of fatty acids as phase-change partitions. A) Fatty acids were layered on 
top of a solution of tetramethylrhodamine (TAMRA) for fluorescent observation of melting point. 
B) Fatty acids display well-defined melting points separated by approximately 10 °C to 15 °C, as 
observed by a transition from opaque to transparent. C) Fatty acids were used to partition a solution of 
fluorescein (FAM) from HCl. D) As the fatty acids melted, they were displaced by the more-dense 
aqueous FAM solution, which mixed with the HCl. FAM is quenched at acidic pH, so the 
corresponding drop in fluorescence could be used to observe partition actuation. E) Fatty acids (a, 
decanoic; b, dodecanoic; c, tetradecanoic; d, hexadecenoic) stably isolate aqueous reagents until the 
appropriate actuation temperature is reached. 
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the small amount of wax often led 

to formation of a visible pore 

through the center of the solidified 

layer; the second shell addition 

adequately sealed this pore. In fact, 

it was the formation of such a pore 

that limited the minimum thickness 

of the previously-reported layered 

phase-change partitions,(Goertz 

and White, 2018) and this staged-addition strategy may allow for thinner layers. This 

is in contrast to the gradual thermal gradients experienced by the capsules during 

casting: the large volume of molten shell material poured into the molds led to slower, 

more homogeneous cooling, and no such pores were observed. 

However, while the capsule walls were visibly intact, initial tests suggested that 

miniscule pores and cracks may be present. Previous reports have addressed this issue 

by preparing “self-sealing” microcapsules (Keen et al., 2014; Y. Zhao et al., 2011). In 

this strategy, sodium carbonate is included (at 1%) in the aqueous core, and the 

prepared capsules are immersed in a solution of calcium chloride. As the two salt 

solutions interact, calcium chloride precipitates and effectively blocks any gaps in the 

wall. While this approach would likely be adaptable to our capsules, we sought a 

sealing method less potentially harmful to encapsulated biochemical reagents and more 

amenable to diverse core materials. Briefly dipping the capped capsules in additional 

molten shell material, as reported elsewhere (Sather et al., 2015), added excessive 

Figure 43. Capsules facilitate controlled release of diverse 
cargo materials. Eicosane capsules successfully 
sequestered both solid percarbonate granules and alginate 
hydrogel beaFds until melting, at which point released 
H2O2 activated DCF-DA to turn-on fluorescence.  
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thickness to the capsule and risked bursting thin capsule walls during the sealing 

process.  

Instead, we chose to immerse the capsules in a phase-change material with a lower 

melting point, sealing microscopic gaps while maintaining wall integrity without 

greatly increasing the capsule volume. Eicosane capsules were filled with the 

fluorophore resorufin, capped, then briefly dipped in 34 °C octadecane (below 

eicosane’s melting point of 36 °C). For comparison, other capsules were dipped in 

mineral oil. We assessed stability against leakage by immersing filled capsules in DI 

and periodically measuring the fluorescence of this bulk solution. The minimum 

fluorescence we could confidently detect corresponded to leakage of approximately 

0.1% of the core volume, so this constituted our threshold for “failed” encapsulation. 

Capsules with 1 mm walls that had been treated with mineral oil failed rapidly, nearly 

half leaking within a few hours (Figure 41A). This is to be expected, since higher 

alkanes are slightly soluble within mineral oil. Unsealed capsules with either 0.5 or 

1 mm walls led to some failures, but all octadecane-sealed capsules displayed perfect 

encapsulation for the entire five days (Figure 41B). 

To assess stability against evaporation, capsules were left exposed to air for an 

additional three weeks, then placed in fresh DI and melted. Resorufin is poorly soluble 

at neutral pH, so evaporated cores led to low fluorescence intensity; in contrast, cores 

which retained their aqueous content produced comparable fluorescence to freshly-

diluted resorufin. Capsules sealed with octadecane exhibited excellent cargo release, 

while unsealed capsules had permitted significant evaporation of their cores 

(Figure 41B). 
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A particularly attractive application of these phase-change capsules as a thermally-

releasable reagent storage platform lies in portable assays for biological or chemical 

detection. To address inequities in quality of care between rural and urban areas, or 

between low-resource and well-funded settings, there is a great need to make 

biomedical diagnostic assays lightweight, portable, and easy-to-use (Chin et al., 2011; 

Chin et al., 2012; Ozcan, 2014; Sia and Kricka, 2008; Vashist et al., 2015; World 

Health Organization, 2018, 2013). Simple thermal automation via phase-change 

partitions offers a promising alternative to microfluidic and paper-based 

strategies.(Goertz and White, 2018) To this end, we investigated strategies for 

thermally-controlled release of H2O2 via phase-change capsules. Hydrogen peroxide is 

used to drive signal generation in a vast array of in vitro diagnostic assays (Rackus et 

al., 2015; Hu and Yuan, 2018; Kosman and Juskowiak, 2011; Roda et al., 2016; X. 

Wang et al., 2014), yet typically must be manually added after all other reaction steps 

have completed due to its potential to interfere with biochemical reagents. Additionally, 

to demonstrate the flexibility of our capsules to diverse core materials, we employed 

H2O2 both in solid state (sodium percarbonate granules) and loaded into a hydrogel 

(alginate beads). Granules and beads were placed into prepared capsules, capped, and 

immersed in a solution of DCF-DA, an oxidation-sensitive probe that reacts with H2O2 

to yield intense fluorescence. Capsules successfully isolated their cargo until melting, 

at which point the solid or hydrogel cores were liberated to interact with the bulk 

solution (Figure 43). This presents a convenient approach to storage and controlled-

release of hydrogen peroxide for in vitro assays.  
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The phase-change capsules presented here also serve the role of protecting the user 

from hazardous reagents, particularly important for assays intended for field-use. To 

demonstrate the utility, we encapsulated the reagents for the blue-violet test for nitrate 

(Grotz, 1973). Nitrates are pervasive groundwater contaminants that can cause severe 

health conditions (Bouchard et al., 1992; Power and Schepers, 1989); however, this 

classic assay relies on sequential addition of a test reagent and pure  sulfuric acid. 

Naturally, the handling of such a potent oxidizing acid is extremely dangerous, and the 

exposure to the user and the environment should be minimized. We encapsulated these 

reaction components in eicosane, then placed one capsule of test reagent and three 

capsules of H2SO4 in a tube with the sample (Figure 44A). The reaction was initiated 

by immersing the capped tube in near-boiling water, causing first the test-reagent 

capsule to burst (since it was closest to the tube walls), followed by the H2SO4 capsules 

(Figure 44B). A blue color developed only when nitrate was present in the sample 

(Figure 44C), comparable in intensity to the manually-prepared assay (Figure 44D). 

After reagents were successfully released, the reaction was allowed to cool and the 

Figure 44. Encapsulation of hazardous assay reagents. A) Our capsule-based blue-violet test for nitrate 
consisted of three capsules of pure sulfuric acid and one capsule of diphenylamine in sulfuric acid. 
B) When the tube is placed in near-boiling water, the test reagent capsule melts first, mixing its cargo 
with the sample solution. Then, when the first sulfuric acid capsule bursts, a blue color starts to appear. 
Addition of more sulfuric acid from the other two capsules deepens the color. C) The capsule-based test 
run in the absence of nitrate produces no color change. D) Manual performance of the assay steps yields 
a deep blue color comparable to the capsule-based assay. E) After the capsule-based assay cools, the 
shell material re-solidifies in a layer on top of the reagent solution, isolating the hazardous chemicals.  
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eicosane re-solidified in a thick layer above the test solution, thus continuing to shield 

the user from exposure to the caustic components (Figure 44E). It should be noted that 

this assay would have been difficult to construct with layered phase-change partitions: 

the high density of sulfuric acid relative to the aqueous test solution (~80% more dense) 

would have impaired passive mixing.  

7.5 Conclusion 
The phase-change capsules we present here enable encapsulation of diverse 

mesoscale liquids, hydrogels, and solids with thermally-stimulated burst-release. They 

protect core compounds from leakage and evaporation while fully releasing cargo upon 

mild thermal stimulation. Fabricated by a simple casting process with 3D-printed 

molds, capsules could be prepared from several different alkanes and fatty acids. Our 

approach parallels injection-molding closely, providing a modular strategy for mass-

production of thermally-automated assays. We leveraged these capsules for 

sequestration and controlled release of hydrogen peroxide, potentially reducing the 

manual steps required in common biochemical reactions, and for isolation of hazardous 

sulfuric acid reagents from the user in an environmental-surveillance assay. Manually-

molded paraffin wax capsules have previously been used to prepare aliquots of air- and 

moisture-sensitive reagents for chemical synthesis (Sather et al., 2015). The capsules 

we present here have the potential to provide similar benefits, albeit with greater 

flexibility in thermal characteristics and improved manufacturability. Further 

optimization is necessary to identify melting/cooling profiles which produce capsules 

of each material with the ideal crystallinity that provides maximal structural integrity. 

Future investigations should also attempt to fabricate smaller capsules that adequately 
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retain barrier functionality while minimizing the ratio of shell volume to core volume. 

While simple hemispherical capsules were presented here, 3D printing should allow 

arbitrary shapes. a range of core volumes, and an even greater diversity of shell 

materials than presented here. We envision the extension of our technique to the 

fabrication of multilayered systems and complex 3D fluidic networks actuated by heat. 

This system provides an ideal system for pre-packaged assays that require sequential 

release of reagents. The breadth of shell material melting points available should enable 

the design of such multi-stage assays in a thermally automated platform. These phase-

change capsules provide a generic a controlled-release platform and may enable design 

of a broad range of portable, thermally-automated biomedical diagnostics. 
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8 Conclusion 
The work presented here has created the potential for further development, but they 

have also produced many independent contributions to the field, both of which are 

summarized below. 

8.1 Chapter 2: Literature Review: Amplified and Automated Strategies 
for Point-of-Care Assays 

In this chapter, I collected many of the advancements made in thermal automation 

systems, from physical to biochemical strategies and approaches to portable 

temperature control. I highlighted the strengths and weaknesses of these techniques, 

and suggested ways in which they could be combined synergistically. 

8.2 Chapter 3: Peroxidyme Amplified Radical Chain Reaction 
(PARCR): Visible Detection of a Catalytic Reporter 

8.2.1 Summary 
Here, I detailed a photochemically amplified reaction that requires no manual 

addition of hydrogen peroxide. In this approach, Peroxidyme-Amplified Radical Chain 

Reaction (PARCR), H2O2 is generated in situ from milder reagents, leading to the 

production of a fluorescent signaling molecule. This reaction achieves sensitive 

detection across a broad dynamic range due to numerous feedback loops that result 

from the presence of green light: positive feedback to give exponential amplification 

in response to the target and negative feedback to dampen the signal produced in the 

absence of the target. Key to its potential application at the point-of-care, quantitation 

of a prepared analyte with this assay requires only a cell phone camera and green LEDs.  

8.2.2 Limitations and future work 
Certain aspects of the reaction mechanism remain unclear, such as the nature of the 

observed quenching phenomenon. It also remains to be seen if the detection limit or 
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the assay time can be improved by identifying an optimal combination of hemin and 

NADH concentrations, which was observed to be a complex relationship. Furthermore, 

even the electrical power required for intense illumination by the green LEDs may 

render this system unsuitable for field settings; it would be exciting to develop a system 

for generating the green light chemically, in situ, perhaps through the 

chemiluminescence found in glow sticks.  

8.2.3 Scientific Contributions 
• A reaction driven by G-quadruplex DNA that does not require exogenous 

H2O2 but yields an intense signal across a broad dynamic range of reporter 

concentrations. 

• Further understanding of the interaction between NADH, hemin, and G-

quadruplexes aptamers. 

• A mechanism for visible detection of biochemical targets through G-

quadruplex DNA. 

• A strategy for leveraging instability (here, photosensitivity of Amplex Red) 

as an asset for exponential amplification. 

• The use of negative feedback to temper the nonspecific signal inherent to 

an amplification system driven by positive feedback. 

8.3 Chapter 4: Phase-change partitions for thermal automation of multi-
step reactions 

8.3.1 Summary 
While the assay developed in Chapter 3 provides a capable amplification strategy, 

it does little to improve the capabilities and accessibility of existing strategies. In 
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Chapter 4, I described a generic platform for achieving thermal automation of multi-

part assays. Separating reagent layers with layers of purified alkanes in a common PCR 

tube allowed on-demand mixing through melting these barriers one-by-one. A key 

advantage of this system is its flexibility: the same assay in the same form-factor can 

be given to a researcher, a central-lab technician, and a field clinician. Several model 

applications were presented, but there is potential to adapt even more assays to this 

platform.  

8.3.2 Limitations and future work 
While this approach is ideal for partitioning of aqueous reagents, it is nonetheless 

incompatible with some oils as well as some organic solvents, such as chloroform, 

limiting its applicability to reactions requiring those. The thermoresponsive nature of 

the partitions may also complicate storage of platform, as shipping containers can 

readily reach temperatures in excess of 40 °C. Higher-melting alkanes could also be 

used but doing so would increase the materials cost of the platform and the power 

consumption required during operation. The platform can be improved by investigating 

strategies for minimizing the alkane layer thickness, thereby maximizing the number 

of steps available within a single PCR tube, as well as exploring techniques to improve 

the stability of the interface between the hydrocarbon layers and the polymer tube wall, 

increasing the robustness of the platform. Quantitative, theoretical analysis of the 

behavior of the aqueous layers within the phase-changing partitions will enable broader 

development of platforms based on this principle. For instance, an understanding of the 

forces at play leading to suspension of the aqueous solution above the bottom of the 

conical tube should enable construction of more complex geometries, perhaps through 
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3D printing. The marriage of this approach with passive microfluidic systems could 

greatly improve the usability of those devices. Furthermore, the range of materials 

capable of providing thermally-actuated partitioning of reaction solutions should be 

explored, perhaps with the goal of partitioning organic solvents incompatible with the 

alkanes used here.  

8.3.3 Scientific Contributions 
• A novel platform for reaction automation. 

• Thermally-automated assays for isothermal nucleic acid amplification, 

heavy metal ion detection, and antibiotic resistance characterization. 

• Insight into interplay of capillary forces in a system with non-negligible 

gravitational effects. 

• A principle of leveraging buoyancy and density differences for reagent 

integration. 

8.4 Chapter 5: Thermally-triggered effervescent mixing for assay 
automation 

8.4.1 Summary 
Chapter 5 showcased a potential drawback of the phase-change partition system, 

slow static mixing, and provided an approach to get around this problem through 

convective mixing from bubbles generated chemically in situ. Mixing of dissimilar 

solutions was greatly accelerated from effervescent production of CO2 and O2 bubbles, 

while a reaction for production of N2 was also described.  

8.4.2 Limitations and future work 
The effervescent system should be expanded to include in situ generation of N2, 

which exhibits the lowest reactivity of the three gases, while strategies for isolation of 
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the effervescent reagents from the bulk solution, perhaps through a semi-permeable 

membrane or capsule, would minimize their potentially detrimental impact on the main 

reaction system. Additionally, the tuning of this strategy to promote both burst and 

sustained mixing, for instance to maintain dispersion of microbeads, should be 

explored, as should integration of several sequential burst-mix steps. Integration of 

these thermally-triggered effervescent reactions into microfluidic devices could 

potentially simplify their design. 

8.4.3 Scientific Contributions 
• Demonstration of thermally-triggered reconstitution and reaction of co-

dried reagents. 

• An exploration of the semi-static mixing characteristics of similar and 

dissimilar solutions. 

8.5 Chapter 6: Multi-stage chemical heating for instrument-free 
biosensing 

8.5.1 Summary 
This chapter described the actuation of these phase-change partitions in a portable 

manner unreliant on electricity. Encapsulated phase-change materials provided thermal 

buffers to a chemically-heated system, providing discrete temperature zones amenable 

to biochemical nucleic acid amplification.  

8.5.2 Limitations and future work 
Quantitative modeling of the thermodynamics of the system would provide a 

framework to accelerate future development of similar chemical-heating systems with 

bespoke, multi-phasic temperature profiles. To simplify assembly, non-eutectic 
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mixtures of phase change materials should be optimized and formed prior to 

encapsulation. 

8.5.3 Scientific Contributions 
• Examination of encapsulation methods for a variety of phase-change 

materials. 

• A strategy for leveraging multiple phase-change materials and their mixed-

melting thermal characteristics to achieve multi-stage temperature profiles. 

• A portable heating platform for actuation of phase-change partitions. 

8.6 Chapter 7: Highly stable encapsulation of diverse mesoscale 
materials with thermally-controlled burst-release 

8.6.1 Summary 
Chapter 7 detailed the re-engineering of the phase-change partition system into a 

self-contained, capsular format. 3D printing enabled casting of various phase-change 

materials to form hollow capsules that could be filled with a variety of core materials, 

including solid-state and hydrogel-loaded hydrogen peroxide. Sealing the capsules 

ensured their stability against leakage and evaporation for extensive periods of time. 

This platform enabled encapsulation of pure sulfuric acid for the purposes of an 

environmental-surveillance assay, but many more assays could be adapted to this 

system, which offers the benefits of high-throughput, modular, and asynchronous 

assembly. 

8.6.2 Limitations and future work 
The ideal casting conditions should be investigated further, in particular the 

heating/cooling profiles for each shell material which produce optimal crystallinity for 

capsule rigidity and minimize formation of miniscule pores and cracks. Different wall 
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materials could extend the capabilities of these capsules, while the adaptation of the 

3D-printed casts to more complex geometries could also be explored further, as could 

the direct 3D printing of phase-change walls. 

8.6.3 Scientific Contributions 
• A method of encapsulation independent of the cargo’s material 

characteristics, stable against leakage with thermally-controlled burst-

release.  

• A novel form-factor for thermal automation. 

• A method for storage of air-sensitive reagents. 

• A strategy for constructing dosage-controlled assays with hazardous 

components while protecting the user and the environment from accidental 

exposure. 

8.7 Afterword 
Thus concludes our story about hydrogen peroxide. I have described several 

strategies for circumventing the drawbacks of this essential reagent, from optically 

generating it in place to controlling biochemical reactions with thermal automation. 

These advances contribute to the development of point-of-care assays for detecting 

biological and chemical analytes in a portable, easy-to-use, low-cost manner and will 

hopefully one day find their way to facilitating hazardous chemical analysis, 

environmental surveillance, and human diagnostics. 
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