An On-line Approach for Power Minimization in QoS Sensitive Systems

Jennifer L. Wong
Computer Science Dept.
University of California, Los Angeles
Los Angeles, CA 90095
E-mail: jwong@cs.ucla.edu

Abstract— Majority of modern mobile systems have two com-
mon denominators: quality-of-service (QoS) requirements, such
as latency and synchronization, and strict energy constraints.
However, until now no synthesis techniques have been proposed
for the design and efficient use of such systems. We have two main
objectives: synthesis and conceptual. The synthesis goal is to in-
troduce the first design technique for quality-of-service (QoS) low
power synthesis. The conceptual objective is to develop a generic
technique for the automatic development of on-line algorithms
from efficient off-line algorithms using statistical techniques.

We first summarize a system of provably-optimal techniques
that minimize energy consumption of stream-oriented applica-
tions under two main QoS metrics: latency and synchronization.
Specifically, we study how multiple voltages can be used to si-
multaneously satisfy hardware requirements and minimize power
consumption, while preserving the requested level of QoS in terms
of latency and synchronization. The off-line algorithm is used as
input to statistical software used to identify important relevant
parameters of the processes, buffer occupancy rate indicators,
and a way how combine them to form a fast and efficient on-line
algorithm which decides which task to run at which voltage. The
effectiveness of the algorithms is demonstrated on a number of
standard multimedia benchmarks.

I. INTRODUCTION

In the last decade, low power synthesis and optimization
techniques received a great deal of attention. A variety of tech-
niques have been proposed for all steps of synthesis and compi-
lation. Combination of new logic families and circuits, smaller
feature sizes, more power efficient architectures, power-aware
CAD tools, and low power dynamic run-time policies resulted
in a dramatic increase in energy efficiency. However, the power
requirements of new product generations have been constantly
challenging the limits of battery capacities.

The most popular mobile low power applications, such as
audio and video, are stream-oriented. The nature of these ap-
plications impose a need for addressing the QoS requirements
under energy constraints. Latency and synchronization are the
most relevant QoS metrics in these types of applications. Our
goal is to develop a spectrum of techniques and algorithms
which minimize energy consumption under the most important
QoS metrics.

Specifically, we study how to use multiple voltage technolo-
gies to simultaneously satisfy hardware requirements and min-

Gang Qu
Electrical & Computer Engineering Dept.
University of Maryland
College Park, MD 20742
E-mail: gangqu@glue.umd.edu

Miodrag Potkonjak
Computer Science Dept.
University of California, Los Angeles
Los Angeles, CA 90095
E-mail: miodrag@cs.ucla.edu

imize power consumption, while preserving the requested level
of QoS in terms of latency and synchronization. Our starting
point is a provably optimal off-line algorithm for power mini-
mization under QoS and buffer constraints. We identified four
key properties of streaming processes (latency slack, synchro-
nization slack, relative burstiness, and number of tasks (sam-
ples)), in addition to buffer occupancy, a crucial criteria for
deciding which process to run at which voltage. We plot a
5xm-dimensional space, where m is the number of concurrent
processes, and for each point in this space we use the off-line
algorithm as an indicator of a correct decision with respect of
task and voltage selection. This space is analyzed to reduce
context switching overhead and speed up the decision process.

Our primary goal is to present competitive on-line algo-
rithms for power minimization for streaming media applica-
tions for given hardware resource constraints: latency and syn-
chronization constraints as well as context switching overhead.
We aim to dynamically adjust the supply voltage in such a way
that an incoming statistical stream of data does not overflow
the buffer capacity of our processing system while expending
the least amount of energy. By considering the long and short
term statistics of the media streams and current buffer back-
log, we decide which supply voltage to apply. Furthermore,
by considering latency and synchronization constraints, we de-
cide which task to schedule at the current moment. Finally, we
use the new on-line algorithm to explore the trade-off between
buffer size (cost) and energy consumptions.

Il. RELATED WORK

Our research results can be viewed in the context of four
related areas: low power modeling and optimization, quality
of service, on-line algorithms, and statistical techniques.

Power modeling and optimization have also been considered
at different levels of the synthesis process [11]. Recently, a
number of approaches have been proposed which reduce power
consumption through the use of multiple voltages [5, 12], and
a number of variable voltage techniques have been considered
[15]. In most of these efforts, power minimization is achieved
by scheduling operations on the critical path at higher volt-
ages, which also results in faster execution. The overall energy
consumption is reduced by scheduling noncritical operations
at lower voltages than the critical path. Dynamic power man-
agement reduces power consumption of electronic systems by

selectively shutting down idle components [2, 10].

QoS emerged from the area of networking and real-time op-
erating systems. The requirements for QoS include compo-
nents such as bounded delay, guaranteed resolution, and syn-
chronization. Cruz developed the most relevant QoS model
which assumes periodic segmentation of time [6]. A task
of varying complexity arrives during each time period. At
each time period, the system serves the next first-in-first-out
task. An analytical approach was presented by Rajkumar et al.
which satisfied multiple streams of tasks [13]. Additional in-
formation on QoS reserach can be found in a comprehensive
survey [1].

The notion of an on-line algorithm was introduced in or-
der to define a class of algorithms for which part of the input
is unknown at the beginning of the algorithm execution. A
comprehensive survey on the main research areas for on-line
algorithms can be found in [3].

Statistical techniques can be broadly divided in two groups:
parametric and nonparametric [14]. Parametric techniques as-
sume that the knowledge about underlying statical distribution
is available (often normal distribution is assumed) and that the
task is to confirm the assumption about the distribution, cal-
culate the corresponding parameters, and establish intervals of
confidence [7]. Nonparametric techniques do not make any as-
sumption about the statistical distribution. They aim to build
the conceptually and quantitatively the simplest (and therefore
best) model which fits the recorded data [14].

There are a number of validation techniques, such as
histograms, Chi-square tests, Kolmogorov-Smirnov test and
quantile-quantile plots that can be used to validate statistical
claims of the model. We opted to use resubstitution techniques
because these techniques enable the validation of an arbitrary
hypothesis while establishing accurate interval of confidence

(8]
I1l. PRELIMINARIES

In this section, we outline the used abstraction and models
for power consumption, latency, synchronization and context
switch overhead.

One of the main components of power consumption is the
switching power. The switching power can be modeled as
P=a-Cf- Vd2d - f, where « - C, is the effective switch-
ing capacitance. Switching power is the dominating factor in
power consumption. The greater throughput comes with the
cost of higher voltage. The gate delay of the circuit is defined
as T = k(Vaa/ (Vaa — V;)?) where k is a constant [4].

We assume the design operates using multiple voltage sup-
plies and that the voltages change instantaneously with no
overhead. These changes in voltages are assumed to happen
only at the beginning or the end of a time unit. Furthermore,
we assume that the voltage units are selected in such a way that
the use of two consecutive voltages, v;&wv;, on two consecutive
points is more effective than the use of voltages v;&wv;1, due
to the fact that power as a function of voltage is convex.

Latency is defined as the difference between the time when
the data is processed and the time the data arrived, i.e. ¢, - £,.

TABLE |
EXAMPLE OF SYNCHRONIZATION AND LATENCY FOR TWO TASKS

[Time [OJ1]2[3] 4|

| Task Arrival |
Py a|blc|d -
Py wi x[|yl|lz] -

| Task Processed |
Py - a|l-|b]cd
Py W | X |-1|Y z

We denote time in which a particular sample (piece of date)
arrives as t, and the time when that piece of data is completely
processed as ¢,. Note that latency directly impacts the mem-
ory requirements because each piece of data has to be stored
in local storage for its period of latency, ¢, to ¢,. At the in-
tuitive level, synchronization indicates how well two or more
processes are correlated in their execution. The assumption is
that for each piece of data to be processed by one of the pro-
cesses there exists a corresponding piece of data in each of the
other processes which need to be processed at exactly the same
time to have complete synchronization. However, the majority
of real life applications such as, movies playing with its video
and audio processes do not have to be fully synchronized due
to the imperfections of the human sensory system. Synchro-
nization can be defined in the following way. For the sake of
simplicity, we assume that there are only two processes, p;
and p2. We denote the tasks of the processes p; by py; and p
by p2j, where i, = {1,...,n}. Perfect synchronization con-
straints indicate which sample (task or piece of data) of process
p1, which is denoted by py;, has to be executed at the same time
as piece of data po;. Synchronization tolerance (often for the
sake of brevity is solely called “synchronization”) indicates the
maximal amount of time by which the execution of fully syn-
chronized samples py; and p; can maximally differ.

For example, consider the two processes shown in Table 1.
For each process, p; and ps, there are four tasks which arrive
one at each time unit. For process p;, we have tasks ’a’ through
’d’, and for p, we have "w’ through ’z’. The latency, or the
time between when a task arrives and is processed, of task b’
is two units. It arrives at time one and is processed at time
three. The synchronization between two tasks, for example b’
and "X’ or p1; and poq, is two. However, ’d’ and ’z’ or p,3 and
pos3 IS zero because both tasks are processed in the same time
unit.

A context switch is the time overhead which is incurred by a
multitasking kernel when it decides to process different tasks.
The amount of context switching time dramatically depends
on the processor. Context switching time for a typical DSP
processor is fairly low, around ten cycles, while for a RISC
processor it is much higher, approximately 100 cycles. In our
experimentation, we used ten cycles.

1V. OFF-LINE OPTIMAL ALGORITHM

The basis for the on-line algorithm is an optimal off-line
algorithm [16]. In this section, we summarize the problem for-

mulation of the off-line QoS low power synthesis problem and
present an overview of the optimal off-line algorithm. Infor-
mally, we summarize the problem as follows. Given a pro-
cessor that can operate at multiple supply voltages, the goal
is to service multiple processes, each comprising of a number
of discrete tasks that arrive at periodic time intervals, in such
a way that minimal energy is expelled and a given amount of
storage (memory) is not exceeded while meeting various QoS
requirements.

More formally, a process consists of a sequence of tasks.
With each task, ¢;, we associate

e a;. The arrival time, the time when a task is generated
from the process and makes the CPU request;

e p;: The time needed to complete this task at the nominal
voltage, vyey;

e s;: The storage demand which is the minimal amount of
memory to store this task on its arrival.

Tasks have latency and synchronization constraints super-
imposed. Latency (or deadline) d; is the given amount of time
which task ¢; has to be served after its arrival to satisfy QoS
requirements. We say that task ¢; from one process and task
t; from another are k-synchronized if the difference between
their finishing times is within & CPU units. We denote this by
syn(ti,tj) < k.

The variable voltage processor has multiple supply voltages
among which it can switch. The processing speed of the pro-
cessor varies with the supply voltage, and therefore so will the
actual execution time of a task to receive its required amount
of service. Suppose a task needs one CPU unit at the nominal
voltage vye¢, then the execution time to accumulate the same
amount of processing at voltage v44 is given by[4]:

(vref —w)® Wad
Uref (vdd - Ut)2

@

where v, is the threshold voltage. We consider only the domi-
nating switching power which is proportional to the square of
the supply voltage.

Given n processes 7', 72, ---, ™, each 7% consists of a se-
quence of tasks ¢¥, % A schedule is a set consisting of the
starting time, finishing time, and the voltage level for each task.
A schedule is feasible if the processor starts each task after its
arrival, finishes it before the latency constraint, and satisfies
all the synchronization requirements. The quality of a sched-
ule is measured by its energy consumption and the memory
requirement. Since these two metrics are non-comparable to
each other, we introduce the concept of competitiveness. We
say two schedules are competitive if neither outperforms the
other in both energy consumption and memory requirement.
We formulate the problem as:

On a processor with multiple voltages, for a given set of
processes, find all the feasible competitive schedules.
We adopt the following assumptions:

1. Tasks in the same process have to be executed and com-
pleted in the first-in-first-out (FIFO) fashion;

2. Atask’s processing demand, p;, is proportional to its stor-
age demand, s;;

3. The memory occupied by a task can be partially freed, but
only at the end of a CPU unit;

4. The processor can instantaneously switch the supply volt-
age, but only at the beginning of each CPU unit.

The optimal off-line algorithm finds all competitive sched-
ules with the minimum energy consumption and mem-
ory requirement for multiple processes using a dynamic
programming-based technique. For multiple processes, a
schedule must specify for each CPU unit, which process to
be executed and at what voltage level. Once the competitive
schedules have been found a simple backtracking technique
can be used to retrieve the actual schedule (i.e., the voltage for
each CPU time unit).

The optimal off-line algorithm consists of three phases: state
configuration, energy consumption calculation, and schedule
determination. In the first phase, state configuration, a kxm
dimensional table is built, where m is the number of processes
and & is the number of voltage levels. This table holds the min-
imal memory requirement for each of the different schedules.

This table also computes the total memory requirement for
each schedule, which corresponds to the value in the sched-
ules final state. In the energy consumption calculation phase,
the total energy consumption for each final state is calculated.
Energy consumption is path-independent, therefore no matter
which schedule was used to reach the final state it will consume
the same amount of energy. Therefore for each final state, the
memory requirement and energy consumption have been cal-
culated. The last phase finds the schedules for each competi-
tive final state. This is achieved by using backtracking.

Two theorems that summarize the key results of the optimal
off-line algorithm are the optimality theorem and the complex-
ity theorem [16]. The optimality theorem states that the dy-
namic programming based algorithm is provably optimal re-
gardless of the number of tasks and their arrival distribution.
The essence of the complexity theorem is that the runtime is
polynomial, and is O(X™*).

Optimality Theorem: The optimal off-line algorithm finds
all the feasible competitive schedules.

Complexity Theorem: If we need X CPU units to service
all the processes at the reference voltage, the runtime of the
proposed algorithm is O (X ™),

V. ON-LINE HEURISTICS

In this section, we present the on-line algorithm for power
minimization under the QoS constraints, synchronization and
latency. We begin with the introduction of the overall flow for
the creation of the on-line algorithm. We present the compo-
nents of the on-line approach. Finally, we address the task and
voltage selection process for the on-line algorithm.

We have multiple on-line streaming processes, with tasks
which arrive at periodic time intervals. For each task of each
process, we have memory and CPU requirements. Each of

Assembly of
Test Case Set
Optimal Offline
Algorithm
Optimal
Solution

On-line
Algorithm
yes
=

On-line
Algorithm
Correction

Lower Bound
Memory

On-line
Algorithm
Development

¥
Binary Search H Buffer Allocation

New Test Buffer Space
Cases Evaluation

no
Buffer Space Allocation

On-line
Algorithm
Evaluation

On-line Test
Cases

On-line
Decision
Strateg

Build Initial On-
line Algorithm

Fig. 1. Overall Flow for the creation of the on-line algorithm.

these tasks have a given latency constraint, and on some subset
of these tasks additional synchronization constraints are im-
posed. We are given multiple supply voltage levels in which
to execute these tasks. The goal of the on-line algorithm is to
decide which task from the stream processes to execute at each
time interval and at which voltage in such a way that all latency
and synchronization constraints are satisfied. Additionally, at
no point of time the requirements for storage should exceed the
memory size (buffer space).

In order to solve the overall problem, we must answer
the following three questions: (i) how much buffer space is
needed, (ii) which task to execute and (iii) which voltage to ap-
ply. The answer to each of these questions is determined by our
synthesis and on-line scheduling approach which is presented
in Figure 1. The on-line approach uses the optimal off-line
algorithm to determine its decision mechanism.

The on-line approach begins with the assembly of a diverse
set of test cases. The test set should be as diverse as possible,
while not excessively large. The off-line optimal algorithm
provides a lower bound on the memory requirement for the
system along with the optimal QoS solution for the test set.
The lower bound memory requirement is used to determine the
proper buffer allocation size for the on-line algorithm. In this
phase, a binary search on the size of the buffer is conducted.
Each iteration tests the new buffer size on a new set of test
cases, until the buffer space allocated is large enough to handle
all considered cases.

Next, the buffer size and the optimal solutions are used to
build the on-line algorithm. The details of the creation of the
initial algorithm are presented later in this section. The ini-
tial on-line algorithm builds a statistical model from the opti-
mal off-line solutions and creates an on-line decision strategy,
which is used in order to select the proper task and voltage
in which to execute in each situation. The decision strategy
is then evaluated on a set of on-line test cases. If the deci-
sion strategy does not provide the level of QoS specified, then
modification of not only the statistical model and the decision
strategy, but also the allocated buffer space is conducted. We
continue to make modifications until the desired level QoS is
reached. The final on-line algorithm consists of the buffer al-
location size and the decision strategy.

The initial on-line algorithm is created using the pseudo-
code shown in Figure 2. In the first step, we identify the
relevant properties for the QoS requirement. For example, in

Build On-Line Algorithm() {
Identify Relevant Parameters;
Evaluate Relevant Parameters;
Build Statistical Model;
Develop Decision Strategy;
Validate Model;}

s R

Fig. 2. Procedure for development of on-line algorithm.

the case of latency and synchronization, we define properties
such as average latency, maximum synchronization delay, and
buffer occupancy. We evaluate the relevance of these proper-
ties in terms of the off-line optimal algorithm. We eliminate
all properties which show little relevance to the outcome of
the optimal off-line solutions. Following this step, both the
optimal off-line solutions and the relevant properties are used
to build the statistical model. We build a nxm-dimensional
space, where n is the number of properties and m is the num-
ber of processes. The resolution of each property is specified,
and for each subspace we determine the statistical values for
task selection. Each subspace contains the percentage of time
the optimal off-line algorithm selected each of the tasks under
the defined property conditions. In a similar way, the statistical
values for all situations and each voltage level is calculated.

Before we evaluate the effectiveness of the model, we have
to develop the on-line decision strategy. The strategy is re-
sponsible for making the decision as to which task and which
voltage to select according to the particular combination of
property values. This entire strategy is reliant on the con-
text switch time or penalty. For each subspace, in the task
selection statistical model, the decision strategy must decide
with task to select based on the values in the subspace and
the context switch penalty. If there was no penalty for context
switching, then for each situation we would select the statis-
tically strongest task from the statistical model. However, if
the context switch penalty is extremely high, we would like
to continue to run the tasks of the currently selected process
as long as possible. In the moderate case, the proper time to
switch between processes needs to be defined, and therefore
we propose different points in the statistical model to switch
between processes. The final step is to evaluate each of these
proposed points to determine the proper switching point in the
model. Once the proper switching points has been defined, we
compact the nxm-dimensional table by combining subspaces
with the same task/process selected to execute. Statistically,
the subspaces should not be interleaved, and therefore we shall
have continuous subspaces. For each decision the on-line algo-
rithm determines which subspace the properties fall into, and
select the assigned task/process to execute. The same process
is applied to determining the voltage selection decision strat-
egy. This on-line decision strategy is then passed on to the final
stage of the overall on-line approach.

In order to better illustrate the algorithm and to make our
ideas more tangible, we use a small example shown in Figure
3. For the sake of clarity and brevity, we consider only two
processes, A and B, and two properties, latency of process A
and synchronization lag between processes A and B. The lag
is positive if process A is in front of process B in terms of its

Latency Latency
A A
100,100, 100{100 100 50 A A AA A A
100, 90 /80 |70 60 O A A A A A|B
100 80 [70 | 60 40| O A A|A A|B
100, 70 | 60 | 50 1 20 | O A A|B B B

‘A

[
|l -
+ -

+ Y

Synchronization Lag

(a) (b)

Synchronization Lag

Fig. 3. Example of the statistical model and decision strategy of the on-line
algorithm.

execution. Figure 3(a) shows numbers that can be obtained in
principle by running the optimal off-line algorithm on a large
set of examples. Each defined region of the space contains
the percentage of cases in which the optimal off-line algorithm
selected task/process A to execute. For example, the top left
corner contains the value 100% and indicates that in all cases,
process A was selected. The intuition is that process A has
very high latency and is lagging behind synchronization with
process B.

These numbers are used by the on-line algorithm devel-
opment process to create the decision table shown in Figure
3(b). Note that the decision strategy must take into account the
context switching penalty, therefore not making the mapping
from Figure 3(a) to Figure 3(b) straightforward. Specifically,
the value 40% from Figure 3(a) was mapped to the decision
that process A should be executed in order to reduce context
switching overhead.

For example, if the latency of task/process A is high and the
synchronization of A is behind B, we should run task A with a
likelihood of 100%. However, in the case of task A with high
positive synchronization lag, the likelihood of running task A
is very low, despite the level of latency of task A.

The on-line algorithm builds a statistical model and an on-
line decision strategy based on the nxm-dimensional space de-
fined by the properties. The goal is to select properties which
provide strong indication of which task should be run at which
voltage. We have defined the following five properties. For
each property, we state the typical reasonings and examples of
why that property should be included in the decision strategy
of a high quality on-line algorithm.

Latency. If the latency of multiple tasks of a process are
close to their maximum allowed latency, this process should be
selected. Additionally, a higher voltage should be run to ensure
each of the tasks meet their latency requirements. However, if
the latency for all tasks/processes are at lower levels, then the
task of the current process should be executed to eliminate a
context switching penalty.

Relative Burstiness. The recent burstiness of a process, or
rapid arrival of tasks for a process, can play an important role
in voltage and task selection. If a task has shown recent bursti-
ness, we should consider the execution of the task/process due
to the likelihood that this task will continue to be bursty, there-
fore consuming more buffer space and extending the latency of
each of the tasks if they are not run.

Number of Tasks. The number of tasks which a process
has waiting also plays a key in the task and voltage selection
process. If the current selected process has more tasks than the
other processes, the tasks of the current process should con-
tinue to be selected. This eliminates context switching penal-
ties which are not necessary. Low voltage should be applied if
all the processes have very few tasks.

Synchronization. When the synchronization for any
task/process is nearing the maximum allowed level for QoS
this task should be selected. If the synchronization of the cur-
rently selected task/process is high, the algorithm should con-
tinue to run this process as long as possible to avoid context
switching. For voltage selection, if the selected task is close to
the maximum allowed synchronization level, a higher voltage
should be applied.

Buffer Occupancy. Buffer occupancy is an indiction of the
current demand of the processes as a whole. This property
looks at the percentage of the entire buffer in which each pro-
cess occupies. If the buffer is near capacity, the processes with
higher buffer occupancy should be selected.

V1. EXPERIMENTAL RESULTS

We used six streaming applications [9] to establish the effec-
tiveness of the approach: 1JG JPEG encoder and decoder, MSG
MPEG encoder and decoder, CCITT G.721 encoder, and PGP
encryption and description module. We use 4 CPU units for the
latency constraints and for synchronization 8 CPU units. The
goals of the our experimentation and results analysis was to
answer the following questions: Are multiple voltages useful?
How many voltages are needed? What is the relative quality of
the on-line algorithm with comparison to the optimal off-line
scheme? How much benefit one can obtain for on-line algo-
rithms when the goal is to minimize design costs (specifically
buffer storage size) under energy consumption constraints?

The first three questions are addressed using the experiments
displayed in Table Il. For different number of processes the ta-
ble shows the normalized energy requirements when the opti-
mal off-line and on-line algorithms are applied under the same
memory requirement. All the values are normalized to the sin-
gle voltage (3.3V) case found using the off-line algorithm. We
use the off-line values as the lower bound. The table shows the
results after applying the optimal off-line algorithm, the on-
line algorithm and the percentage by which the off-line and the
on-line algorithm differ for both the 2-voltage and 3-voltage
cases. On average the on-line algorithm requires an overhead
of 25%. However, it saves energy over the off-line single volt-
age case with 36.5% savings for 2-voltages, and 44.4% savings
for 3-voltages. Therefore we see that significant savings in
energy can be achieved by applying multiple voltages. How-
ever, since the savings for the 3-voltage systems over the 2-
voltage systems is relatively low compared to the saving of the
2-voltage systems over the single voltage case, it is apparent
that the usage of more than three voltages brings diminishing
returns. Finally, we see that although the on-line algorithm is
not capable of completely matching the performance of the off-
line algorithm it nevertheless brings very significant improve-

TABLE 1
ENERGY CONSUMPTION BY THE ON-LINE HEURISTICS
2-voltages 3-voltages
(3.3V, 1.8V) (3.3V, 1.8V, 1.0V)
Processes || off-line | on-line [% off-line [on-line | %
2 0.647 0.714 10.4% 0.544 0.587 7.9%
3 0.582 0.669 14.9% 0.506 0.553 9.3%
4 0.524 0.648 | 23.7% 0.47 0.57 21.3%
5 0.471 0.655 39.1% 0.473 0.521 10.1%
6 0.443 0.64 44.5% 0.415 0.531 | 28.0%
8 0.428 0.573 33.9% 0.401 0.583 45.4%
10 0.421 0.552 | 31.1% 0.392 0.552 | 40.8%
Average 0.502 0.635 | 28.2% 0.457 0.556 | 23.3%
Median 0.471 0.648 | 31.1% 0.47 0.553 | 21.3%
TABLE I1I
MEMORY USED BY THE ON-LINE HEURISTICS
2-voltages 3-voltages
(3.3V, 1.8V) (3.3V, 1.8V, 1.0V)
Processes || off-line | on-line [% off-line | on-line [%
2 0.351 0.392 | 11.7% 0.304 0.314 3.3%
3 0.342 0.359 5.0% 0.286 0.306 7.0%
4 0.322 0.347 7.8% 0.256 0.288 | 12.5%
5 0.301 0.32 6.3% 0.231 0.265 | 14.7%
6 0.278 0.315 13.3% 0.224 0.258 15.2%
8 0.289 0.303 4.8% 0.218 0.247 | 13.3%
10 0.254 0.283 11.4% 0.212 0.232 9.4%
Average 0.305 0.331 8.6% 0.247 0.272 10.8%
Median 0.301 0.32 7.8% 0.231 0.265 12.5%

ments over the single voltage case, and that this difference has
only limited additional potential for further energy reduction.
Table I11 presents the results for the dual problem evaluated
using Table Il. Here we evaluate how much the cost of the
system, measured in terms of buffer space, can be reduced un-
der the conditions that energy consumption is fixed. All results
are normalized against the base case where storage require-
ments are first calculated for the set of tasks in a particular
row assuming that a single voltage is used. For the case when
we use 2-voltages we compare to 2.5V, and in the case for 3-
voltages we use 1.8V. Again, we present the normalized re-
sults for both the 2-voltage case, in columns 2 and 3, and the
3-voltage case in columns 5 and 6 of Table I1l. Additionally,
we present the percentage difference between the optimal off-
line memory requirement and the on-line algorithm for both
the 2-voltage case and the 3-voltage case in columns 4 and 7
respectively. While again we see that the on-line algorithm is
not able to completely match the performance of the optimal
off-line algorithm, the reduction for storage requirements are
significantly larger than the energy savings. This is the con-
sequence of the fact that energy consumption is dictated by
the overall average effectiveness of on-line and off-line algo-
rithms, while the storage requirements are primarily a function
of how well these algorithms can use high voltages to reduce
storage requirements during bursty periods of processes.

VII. CONCLUSION

We have developed an on-line policy for power minimiza-
tion of streaming media applications under QoS requirements
and hardware constraints using multiple voltages. The ap-
proach leverages the insights from the newly developed fast

off-line optimal algorithm for the same problem. By exploiting
statistical information and the information about buffer occu-
pancy, we developed an on-line algorithm which performs well
in a variety of load scenarios. The algorithm is flexible in the
sense that it can address a variety of dual-primal QoS problem
formulations as well as a variety of QoS dimensions, such as
latency and synchronization.

ACKNOWLEDGEMENTS

This material is based upon work partially supported by the
National Science Foundation under Grant No. ANI-0085773
(and/or other proper agency and grant). Any opinions, findings
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation (NSF).

REFERENCES

[1] C. Aurrecoechea, et al. “A survey of QoS architectures,” Multimedia Sys-
tems, Vol.6, No.3, pp. 138-151, 1998.

[2] L. Benini, A. Bogliolo, G.A. Paleologo, G. De Micheli, “Policy opti-
mization for dynamic power management,” IEEE Transactions on CAD,
Vol.18, No.6 , pp. 813-833, 1999.

[3] A. Borodin, R. El-Yaniv, Online computation and competitive analysis,
Cambridge University Press, 1998.

[4] A.P.Chandrakasan, S. Sheng, R.W. Brodersen, “Low-power CMOS dig-
ital design,” IEEE Journal of Solid-State Circuits, Vol.27, No.4, pp. 473-
484,1992.

[5] J. Chang, M. Pedram, “Energy minimization using multiple supply volt-
ages,” International Symposium on Low Power Electronics and Design
(ISLPED), pp. 157-162, 1996.

[6] R.L. Cruz, “Quality of Service Guarantees in Virtual Circuit Switched
Networks,” IEEE Journal on Selected Areas in Communications, Vol.13,
No.6, pp. 1048-1056, 1995.

[71 M. A. Stephens, Goodness-of-fit techniques, New York : M. Dekker,
1986.

[8] B. Efron, R.J. Tibshirani, An introduction to the bootstra, Chapman &
Hall, 1993.

[9] C. Lee, et al, “MediaBench: a tool for evaluating and synthesizing mul-
timedia and communications systems,” International Symposium on Mi-
croarchitecture, pp. 330-335, 1997.

[10] Q. Qiu, M. Pedram, “Dynamic power management based on continuous-
time markov decision processes,” IEEE/ACM Design Automation Confer-
ence, pp. 555-561, 1999.

[11] J. M. Rabaey, M. Pedram, Low power design methodologies, Kluwer
Academic Publishers, 1996.

[12] S. Raje, M. Sarrafzadeh, “Scheduling with multiple voltages,” Integra-
tion, The VLSI Journal, Vol.23, No.1, pp. 37-59, 1997.

[13] R. Rajkumar, C. Lee, J. Lehoczky, D. Siewiorek, “A resource allocation
model for QoS management,” IEEE Real-Time Systems Symposium, pp.
298-307, 1997.

[14] R. A. Thisted, Elements of statistical computing, New York : Chapman
and Hall, 1988.

[15] M. Weiser, B. Welch, A. Demers, S. Shenker, “Scheduling for reduced
CPU energy,” USENIX Operating Systems Design and Implementation
(OSDI), pp. 13-23, 1994.

[16] J. L. Wong, G. Qu, and M. Potkonjak, “Power minimization under QoS
constraints,” International Packetvideo Workshop, 2002.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

