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Abstract

Let G(V, E) be a graph (either directed or undirected) with a non-negative length
{(e) associated with each arc e in E. For two specified nodes s and ¢t in V', the k most
vital arcs (or nodes) are those k arcs (nodes) whose removal maximizes the increase in
the length of the shortest path from s to . We prove that finding the &£ most vital arcs
(or nodes) is NP-hard, even when all arcs have unit length. We also correct some errors
in an earlier paper by Malik, Mittal and Gupta [ORL 8:223-227, 1989].
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1. Introduction

The Most Vital Arcs Problem (MVAP) is defined as follows.

Input: A graph G’ = (V, E) (either directed or undirected) with a non-negative length ((e)
associated with each arc e in F, two specified nodes s and ¢ in V, and a positive

integer k.
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Output: A set of k arcs whose removal maximizes the increase in the length of the shortest
path from s to ¢. These arcs are the k most vital arcs (with respect to s and t).

In the corresponding Most Vital Arcs Decision Problem (Decision-MVAP) the input in-
cludes a threshold h, and the output is “yes” if there are k arcs whose removal makes the
length of the shortest path from s to ¢ at least h.

Similarly, the Most Vital Nodes Problem (MVNP), and the corresponding decision prob-
lem (Decision-MVNP) are defined by replacing arcs by nodes.

Our main result is proving that both decision problems are strongly NP-Complete for
either directed or undirected graphs. (A problem is strongly NP-Complete if it is NP-
Complete even when all the integers involved are restricted to be at most polynomially
large in the size of the input.) For this, we prove that both problems are NP-Complete,
even when all arcs have unit length. Clearly, this implies that MVAP and MVNP are
strongly NP-Hard.

The MVAP and MVNP were defined and motivated by Corley and Sha [2]. They gave
some preliminary results including a polynomial time algorithm for the single most vital arc
problem (i.e., the case k = 1). Ball, Golden, and Vohra [1] considered a generalization of
the MVAP in which associated with each arc e is a cost ¢(e) of removing it, and the goal is
to find the set of arcs with total cost not exceeding a given budget whose removal maximizes
the increase in the length of the shortest path from s to ¢. (In our setting c¢(e) = 1 for all
arcs e € I/, and the budget is k.) They proved that this general problem is NP-Hard.

Malik, Mittal, and Gupta [4] described an exponential time algorithm for MVAP with
arbitrary k. However, this algorithm seems to be fallacious as shown in Section 3. They
also proposed an efficient algorithm for the single most vital arc problem for undirected
graphs. However the proof of this algorithm has an error. In Section 4, we give a correct
proof of their algorithm.

2. The NP-Completeness proof

In this section we prove that the Decision-MVAP and Decision-MVNP are NP-Complete
even when all arcs have unit length. First, we give the proof for the Most Vital Arcs Decision

Problem in undirected graphs. We then extend the proof to directed graphs and for the
Decision-MVNP.

The proof is by reducing the Node Cover Decision Problem (Decision-NCP) to the
Decision-MVAP for undirected graphs with unit length arcs. The Decision-NCP is defined
as follows (see, e.g., [3]).

Input: An undirected graph G' = (V, F'), and a positive integer c.



Question: Is there a node cover for G of size ¢ or less, i.e., is there a subset U C V with
|U| < ¢ such that for each arc (u,v) € E at least one of v and v belongs to U?

Suppose that we are given an instance for the Decision-NCP, consisting of a graph
G = (V, F) and a parameter ¢. We show a polynomial time reduction to an instance of the
Decision-MVAP, such that the answer for the instance of the Decision-MVAP is “yes” if

and only if the answer for the corresponding instance of Decision-NCP is also “yes”.

Figure 1: The reduction.

The input to the Decision-MVAP consists of: a graph G’ = (V’, E’), two specified nodes
s and t, a positive integer k, and a threshold h. We start with the definition of the graph
G' = (V',E"). Let |[V| = n and assume that the nodes in V are labelled 1,2,...,n. The
graph G’ consists of one “gadget” per each node ¢ € V. Each gadget consists of two parallel
paths of length five with common endpoints. See Figure 1 for the gadgets corresponding to
nodes ¢ and j in V. The right endpoint of gadget ¢ < n, is the same as the left endpoint of
gadget ¢ + 1. We refer to the two paths in each gadget as the upper portion and the lower
portion of the gadget.

We identify four nodes in each gadget i: [; — the left endpoint of gadget i, r; — the right
endpoint of gadget ¢, ; and y; — the left and right endpoints of the third arc in the lower
portion of gadget ¢ (See Figure 1.).

For each arc (¢,7) € F, 1 < j, we add to G’ a path of length 5(j — i) — 2 from node y;
to node z;. (See Figure 1.) We refer to this path as the shortcut (i, 7).

We assume that the graph consists of two types of arcs: removable arcs and fized arcs.
The fixed arcs are those arcs that cannot be removed from the graph in any solution to
the Decision-MVAP. Later, we show how to modify the graph so that this assumption is
relaxed and all arcs are removable. The only removable arc in each gadget 7 is arc (z;,¥;)
in the lower portion (the dashed arcs in Figure 1).

This completes the definition of G = (V', £'). Note that the size of G’ is at most

quadratic in the size of G.

The rest of the input to the Decision-MVAP is defined as follows. Node s € V' is the
left endpoint of gadget 1 (Iy), and node t € V' is the right endpoint of the gadget n (r,).
The parameter k is set to be ¢, and the threshold £ is set to be 5n.



We prove the following property about graph G’.

Lemma 2.1: Consider any subgraph of G' obtained by removing some of the removable
arcs, and let P be a shortest path from s to t in the sub-graph. Then all the arcs in P are
traversed from left to right.

Proof: Let (i,7), ¢ < j, be a shortcut in G’. The following observations are implied by the
fact that shortcut (7, j)is of length 5(j —¢) — 2.

Observation 1: The simple path from r; to 2; that uses only the upper portions of gadgets
t+1,...,7 — 1 and then traverses the lower portion of gadget j to z; is of length
5(j —1)—3. The length of any path between these two nodes that uses shortcut (¢, 7)
is at least 5(j — 7).

Observation 2: The simple path from y; to [; that traverses the lower portion of gadget
? to r; and then uses only the upper portions of gadgets ¢ + 1,...,5 — 1 is of length
5(j —1)—3. The length of any path between these two nodes that uses shortcut (¢, 7)
is at least 5(j — 7).

To obtain a contradiction assume that P contains an arc that is “backtracked”; i.e.,
traversed from right to left. Consider such an arc e in P that is not followed by another
backtracked arc. (Such an arc must exist.) Since P is simple, the left endpoint of e must
be the left endpoint of some other arc. Hence, there are only two cases: either arc e ends at
a node y; and there exists some shortcut (7, j), or arc e ends at a node [;, for some gadgets
v and j.

Cask 1: The arc e ends at y;. In this case, P goes either from r; to y; and then to
x;, using shortcut (7, j), or it goes from z; to y; and then to r;. A contradiction, since by
Observation 1 this is not the shortest path between r; and z;.

Cask 2: The arc e ends at /;. Suppose that P arrives at [; from z;. Since P is simple it
must continue to r; using the upper portion of gadget j. If the path arrives at z; from y;
for some shortcut (¢,7), then we get a contradiction, since by Observation 2 this is not the
shortest path between y; and /;. Otherwise, the path arrives at #; from y;. A contradiction,
since the path from y; to r; using the lower portion of gadget j is shorter. Suppose that P
arrives at [; from r; using the upper portion of gadget j. Since P is simple it must continue
to x;. If it backtracks to y;, for some shortcut (¢, ), then we get a contradiction, since by
Observation 2 this is not the shortest path between y; and ;. Otherwise, the path continues
to y;. A contradiction since the path from r; to y; using the lower portion of gadget j is
shorter. a

We return to the reduction.



Lemma 2.2: There exists a node cover for GG of size at most ¢ = k if and only if there are
(at most) k arcs in ' whose removal increases the length of the shortest path from s to t
to Hn.

Proof: The if direction: Suppose that there exists a node cover for GG of size at most ¢ = k.
For each node in the cover we remove the removable arc in the corresponding gadget. We
claim that the shortest path from s to ¢ in G’ after the removal of these arcs is 5n. Note
that the path consisting of the upper portions of all the gadgets is of length 5n. We show
that this is indeed the shortest path. Assume to the contrary that this is not the case and
there is a shortest path P of length less than 5n.

Note that P must contain at least one of the shortcuts. Consider a shortcut (7, 7), for
? < j. Since either ¢ or j are in the node cover for G, either the removable arc in gadget ¢
or the removable arc in gadget 7 (or both) were removed. Consequently, if P uses shortcut
(7,7) it must either backtrack the shortcut, or go from right to left either from z; to [; or

from 7; to y;. A contradiction to Lemma 2.1.

The only if direction: Suppose that there are k arcs in G/ whose removal increases the
shortest path from s to ¢ to 5n. Fach of these arcs is the removable arc in some gadget.
Consider the set of nodes U C ' corresponding to these gadgets. We claim that the set U is
a node cover. Assume to the contrary that this is not the case, and let (¢, 7) be an edge such
that neither ¢ nor j is in U. This implies that neither the removable arc in gadget ¢ nor the
removable arc in gadget j were removed from G’. But then the path s —[; —y; —2; —r; — ¢,
that uses only the upper portions of all gadgets but gadgets ¢ and j and uses the shortcut
(i,7) is of length 5n — 1; a contradiction. O

To make all the arcs removable we replace each unremovable arc by k + 1 parallel arcs.
This guarantees that after the removal of at most k arcs, at least one of these arcs will not
be removed. If parallel arcs are forbidden, we can replace each unremovable arc by a path
of length two, adding a linear number of new nodes (in this case the parameters k and h
have to be changed accordingly).

To handle directed graphs we orient all the arcs in G’ from left to right. In this case,
Lemma 2.1 becomes trivial.

Finally, the NP-Completeness proof for the Decision-MVNP is similar. We define an
analogue graph in which instead of removable and unremovable arcs we have removable and
unremovable nodes. Again, the transformation to a graph in which all nodes are removable
is done by duplicating all unremovable nodes k + 1 times.

Since clearly Decision-M VAP and Decision-M VNP belong to NP, we proved the following
theorem:

Theorem 2.3: The Decision-M VAP and Decision-M VNP are NP-Complete even when all

arcs have unit length.



3. The counter example

In this section we describe a counter example to the algorithm for the MVAP proposed
in [4]. Given a graph G' = (V, F), two specified nodes s and ¢, and a positive integer k, this
algorithm enumerates all the paths from s to ¢ in an increasing order of length. Denote
these paths by Py, Py, .... The algorithm constructs a graph G’ = (V, E’) in stages. Initially,
E’ =, then in stage 1, it sets E/ = E’ U {the arcs in P;}. It terminates at the first time
the minimum s — ¢ cut (i.e., the minimum number of arcs whose removal separates s from
t) is more than k. The most vital arcs are the arcs in the last minimum s —¢ cut whose size

is at most k.

Figure 2: The counter example to the flow algorithm.

The graph GG = (V, F) that serves as a counter example to this algorithm is depicted in
Figure 2. In this graph: Py = (s,¢,t), Py = (s,a,¢,t), Ps = (s,b,¢,t), Py = (s,¢,d,1),
and Ps = (s,c,e,t). (The order between Py, P5, Py, and Ps is arbitrary.) Note that
Py U---UPs =F. Suppose that we invoke the proposed algorithm to solve the MVAP
with the graph G = (V, F) and k = 2. The algorithm terminates when P; is added to £’
since at that time the cut consists of three arcs. It outputs the arcs (¢,d) and (¢, ) (or (d, t)
and (¢,t)) as the two most vital edges. However, this is not true because after removing
(c,d) and (¢, t) (or (d,t) and (c,t)) the shortest path from s to ¢ is (s, c, e, ) of length three.
Whereas, after removing the edges (s, ¢) and (¢,t) the length of the shortest s — ¢ path is

four.

4. Correct proof for the Algorithm

The proof of correctness given in [4] relies on the following erroneous claim:

Let T be a tree of shortest paths from s to all the nodes and let P be the shortest
s —t path in T'. If some arc (¢,7) € P is removed from 7', dividing the node set
V into V; and V, such that s € V, and ¢t € V;, then there exist shortest paths
from all other nodes in V; to t that do not include nodes in V;.



The following figure depicts a counter example to this claim.
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Figure 3: Counter-example to the Claim

The tree of shortest paths from s includes all the arcs except arcs (¢,d) and (d,t) (the
dashed arcs in the picture). If we delete the arc (a,b) then ¢ € V;. However the shortest
path from ¢ to ¢ is via d which belongs to V.

Fortunately, for the correctness of the algorithm, the following weaker claim suffices:

Let T be a tree of shortest paths from s to all the nodes and let P be the shortest
s —t path in T'. If some arc (¢,7) € P is removed from 7', dividing the node set
V into V; and V, such that s € V, and ¢t € V;, then there exist shortest paths
from all other nodes in V; to ¢ that do not use the arc (4, j).

We briefly outline the proof: consider any node v € V;. Let P(v,t) be a shortest path
from v to t. We claim that 7 cannot be on this path. Assume that 7 is on this path. Notice
that there exist shortest paths from 7 to v and from ¢ to ¢ that are paths in T. Since
t,v € Vy, it follows that these paths use the arc (4, ). Hence P(v,t) is not simple, which is
a contradiction to the assumption that it is a shortest path.
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