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Understanding how biodiversity spatially distribute over both the short term and long 

term, and what factors are affecting the distribution, are critical for modeling the 

spatial pattern of biodiversity as well as for promoting effective conservation 

planning and practices. This dissertation aims to examine factors that influence short-

term and long-term avian distribution from the geographical sciences perspective.  

The research develops landscape level habitat metrics to characterize forest height 

heterogeneity and examines their efficacies in modelling avian richness at the 

continental scale. Two types of novel vegetation-height-structured habitat metrics are 

created based on second order texture algorithms and the concepts of patch-based 

habitat metrics. I correlate the height-structured metrics with the richness of different 

forest guilds, and also examine their efficacies in multivariate richness models. The 

results suggest that height heterogeneity, beyond canopy height alone, supplements 



 

habitat characterization and richness models of two forest bird guilds. The metrics 

and models derived in this study demonstrate practical examples of utilizing three-

dimensional vegetation data for improved characterization of spatial patterns in 

species richness.  

The second and the third projects focus on analyzing centroids of avian distributions, 

and testing hypotheses regarding the direction and speed of these shifts. I first 

showcase the usefulness of centroids analysis for characterizing the distribution 

changes of a few case study species. Applying the centroid method on 57 permanent 

resident bird species, I show that multi-directional distribution shifts occurred in large 

number of studied species. I also demonstrate, plain birds are not shifting their 

distribution faster than mountain birds, contrary to the prediction based on climate 

change velocity hypothesis. By modelling the abundance change rate at regional level, 

I show that extreme climate events and precipitation measures associate closely with 

some of the long-term distribution shifts.  

This dissertation improves our understanding on bird habitat characterization for 

species richness modelling, and expands our knowledge on how avian populations 

shifted their ranges in North America responding to changing environments in the 

past four decades. The results provide an important scientific foundation for more 

accurate predictive species distribution modeling in future. 
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Chapter 1. Introduction  

1.1 Motivation & Background 

Since the Industrial Revolution, between one-third to one-half of the Earth’s land surface has 

been transformed by human actions. As a result, approximately one-quarter of avian species have 

gone extinct (Vitousek et al. 1997). The questions of how wildlife communities interact with 

changing habitat, and how species are adapting to anthropogenic environmental changes such as 

habitat conversion and climate change, are of increasing urgency. For endangered species whose 

distributions are restricted to fragmented habitats, understanding the dynamics of species 

distribution and its relationship with changing environments will provide a critical scientific 

foundation for accurate prediction of future distributions, and promote more cost-effective 

conservation planning and practices(Pereira et al. 2010).  

Birds are excellent research subjects for studying responses of biodiversity distribution to 

environmental changes because they have a relatively well documented record, are ecologically 

diverse, are distributed widely, and are highly responsive to changes such as climate and habitat 

changes (Araújo and Pearson 2005). Many of the global avian populations have been undergoing 

dramatic decline, mostly due to habitat conversion(Gaston et al. 2003) (Figure 1-1). Particularly 

in the U.S., the avian populations undergone significant changes during the past few decades, 

although the area of forested land has remained relatively stable since the 1950s (United States 

Forest Service 2001). Most neotropical migrant bird species populations have declined in the 
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eastern U.S. and Canada in the 1970s and 1980s dramatically (Robbins et al. 1989b, Sauer et al. 

2014). Similar declines are observed and confirmed by numerous studies a local scale as well 

(Holmes and Sherry 2001, Holmes 2007). 

 

Figure 1-1 Estimated global numbers of individual birds (in billions) in different periods, 
based on low (bottom), medium, and high (top) density situations, beginning with the pre-
agricultural pattern of land use (Gaston et al. 2003a). 

 

Understanding the landscape-level factors that determine biodiversity patterns in the short term 

and the factors driving species distribution shifts over the long term are priority inquires in 

addressing not only the declining avian diversity but general biodiversity at risk. However, the 

current knowledge on avian biodiversity and range distribution is limited in two domains.  
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Firstly, in the short term, the distribution of biodiversity is considered stationary, and is 

predominantly controlled by environmental conditions, most dominantly habitat characteristics. 

Vertical characteristics of the habitat, particularly the vegetation’s vertical characteristics, 

however have not been adequately considered when we explain the patterns of bird biodiversity 

distributions. The traditional methods to model avian species richness have relied predominantly 

on quantifying habitats’ horizontal characteristics. As remote sensing and GIS techniques 

become increasingly prevalent, many aspects of habitats’ horizontal characteristics have been 

explored. For example the normalized vegetation index (NDVI) as a measure of primary 

productivity (Oindo and Skidmore 2002), land-cover types heterogeneity as an indicator of 

habitat heterogeneity (Gould 2000) and habitat fragmentation (Luoto et al. 2004)  have all been 

used to relate to habitat quality and species richness. However the third-dimension of vegetation- 

the habitat height structure, is just as important to biodiversity as the horizontal characteristics 

(Bergen et al. 2009).  

Bird species in particular, are known to have structural habitat requirements and preferences 

(MacArthur and MacArthur 1961). As recent developments in active remote sensing technology 

advance, emerging systems such as Light Detection And Ranging (lidar) and Radio Detection 

And Ranging (Radar) have shown great capability in mapping the vertical dimensions of 

vegetation structure with high accuracies(Lefsky et al. 2002, Bergen et al. 2009). The three-

dimensional vegetation information derived from these systems has been applied to a few studies 

(e.g. Goetz et al. 2007, Swatantran et al. 2012). Most of the studies focused on the local or 
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regional relationship between avian biodiversity and forest height structure.  The applicability of 

vegetation height structure and heterogeneity to continental-scale avian species richness models 

remains uncertain. Also most studies have emphasized only simple summary statistics of height 

values, such as the mean, maximum and minimum vegetation height value within the studied 

scenes. Those metrics are easy to obtain, however they cannot capture complex spatial variation 

of vegetation height structure. 

 Secondly, in the long term, the shift of species distributions is considered a major fingerprint of 

global climate change. However very few studies have examined the patterns of the avian 

geographical range shift at continental scale in North America. Although it has been 

hypothesized that global warming has driven the poleward and elevationally upward movement 

across taxonomic groups (Parmesan et al. 1999, La Sorte and Thompson 2007), methodologies 

identifying systematic shift of species distribution mostly focus at the edge of species ranges. In 

particular, the inferred edge of the range can be a somewhat crude index to characterize changes 

in species distributions (Gaston et al. 2003), as regional studies at the outermost limit of species 

occurrence are not robust to exclusion or inclusion of outliers (Santelmann 1991, Van Rossum et 

al. 1997). There lacks a method to quantify the change of species distribution more 

systematically, especially at the continental scale. Additionally many of the hypotheses have 

been proposed to predict the direction and the speed of the distribution shifts, few of which, 

however, has been tested. Little research has been done to examine the effect of non-climatic 

factors, or to compare the influences of different climatic factors on changing species 
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distributions. The paucity of the research on species’ range shift and the factors driving them, 

likely stems from the difficulties of collecting standardized species data-often at the continental 

scale(Parmesan 2006). As a result, climate envelop models (often referred to as species 

distribution models), which assume plants and animals are always at equilibrium with their 

suitable climatic conditions (Guisan and Thuiller 2005), are still the primary tools used to project 

species and biomes’ distribution shift (Pereira et al. 2010). This is a limited approach because, 

among other concerns, species with drastically different biological attributes are treated the same 

when modeled for future distribution, and almost all the climatic variables are fed into the 

statistical model as equally important variables. Additionally, most of the climate variables used 

in those models are average measures of seasonal or annual temperature and precipitation, which 

might not be linked with species distribution ecologically. Insufficient studies on species’ 

distribution change pattern and what environmental factors have driven such changes limit the 

accuracy and the usefulness of existing models’ predictions (Pereira et al. 2010). 

 

1.2 Objectives & Outlines 

1.2.1 Objectives 

The overall goal of my dissertation is to understand the impact of vegetation height, climatic and 

non-climatic factors on the short term and long term avian biodiversity distribution in the U.S. 

In particular, I seek to achieve 3 objectives (Figure 1-2): 
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1. Develop landscape level habitat metrics to characterize forest height heterogeneity, and 

examine their efficacy on short term avian richness models at the continental scale. 

2. Develop a distribution centroid metric to characterize avian spatial distribution, and 

demonstrate the efficacies of the centroid analysis in associating with drastic distribution 

shifts. 

3.  Examine the direction and speed of climate change fingerprint among permanent 

resident birds in the U.S. to test the multidirectionality of distribution shifts, to test the 

prediction based on climate change velocity hypothesis, and to evaluate the influence of 

different climatic factors on population changes for species with significant shifts.  

 

Figure 1-2 Organization of Dissertation chapters. 
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1.2.2 Outlines 

1.2.2.1 Chapter 2. The Influence of Vegetation Height Heterogeneity on Forest and 

Woodland Bird Species Richness across the United States. 

The focus of this part of the dissertation is to demonstrate practical ways of creating habitat 

metrics that incorporate vegetation height heterogeneity, and to test the efficacies of the height-

structure metrics in avian richness modeling. Doing so will improve our understanding on the 

relationship between avian biodiversity and habitat structure. To achieve this I develop two 

groups of height-incorporated habitat metrics: the height-structured patch-based metrics and 

second-order texture metrics. I examine how individual metric correlates with the richness of 

three forest bird guilds, and how the addition of the selected height-structured metrics can 

improve the multivariate bird richness models using traditional metrics.  

 

1.2.2.2 Chapter 3. A Centroid Model of Species Distribution with Applications to the 

Carolina Wren (Thryothorus Ludovicianus) and House Finch (Haemorhous 

Mexicanus) in the United States 

Chapter 3 introduces a distribution centroid as a population descriptor to characterize the annual 

spatial distribution of bird species. The foundation of the centroid analysis is a Bayesian model 

that reliably model individual species population change at the regional level. I provide detailed 

descriptions on the hierarchical Bayesian model and the procedures of producing centroids based 
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on modeled abundance indices. Then as case studies, I derive annual centroids for the Carolina 

wren and house finch in their ranges in the U.S. Lastly, I evaluate the correlation between 

species’ centroid movement and changes in winter severity and total population abundance. The 

case studies highlight the usefulness and applicability of the centroid method in reflecting 

changes of species distributions affected by factors such as environmental stressors and invasive 

colonization process. 

1.2.2.3 Rapid Multi-directional Climate Change Fingerprint in North American Bird 

Distributions Associated with Multi-faceted Climate Change 

This chapter is built on the methodological foundation of chapter 3. I use the centroid method 

developed in the previous chapter to quantify the direction and speed of 57 permanent resident 

birds in North America. I document the ratio of species that experienced significant centroid shift 

in four directions (north, south, east, and west), and their corresponding population status. I first 

utilize the analysis to test the multi-directionality of the distribution shifts. I then test a prediction 

based on climate velocity hypthesis that the species occurring in flat regions will shift their 

distributions at a faster rate than species in mountainous regions. The prediction is founded 

because the low topographic variability in flat areas leads to low temperature gradient which will 

require species to shift longer distance in order to maintain constant temperature condition. 

Lastly, to explore the relative influence of different climatic factors behind the significant 

distribution shifts, I model the regional abundance change rate that constitute the shift of 

distributions. I used temperature, precipitation, average climate, and extreme climate models to 
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explain the abundance change rate for the species with significant shift of distribution. Model 

performances and are evaluated in two pair-wise comparisons (temperature vs. precipitation, 

average climate vs. extreme climate).  

1.2.3 The North American Breeding Bird Survey Data 

Throughout this dissertation, I used the North American Breeding Survey (BBS) Data to model 

avian richness, species range centroid, and regional abundance indices. Because of its extensive 

geographical and temporal coverage, the BBS provides a unique opportunity for analyzing 

continental scale distribution of avian diversity and changes in avian distributions. The BBS 

started in 1966, and by 1968 it was established in the contiguous U.S. and southern Canada. It is 

an annual roadside survey with > 5000 routes along secondary roads covering the contiguous 

United States, southern Canada, and northern Mexico. Each route is 39.43 km in length and has 

50 sample points evenly spread out along the route path. Each year, competent volunteers survey 

routes during breeding season using a protocol of 3 min point counts at each sample point. Birds 

heard and seen within 0.4 km radius are recorded (Robbins et al. 1986, Sauer et al. 2014). The 

numbers of routes surveyed and consistency of coverage has increased throughout the survey 

period, but few routes have been surveyed every year since the beginning of the BBS (Link and 

Sauer 2002).  
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1.3 Summary 

Although my dissertation focuses on multiple aspects of avian distributions at different temporal 

scales, the ultimate purpose is to understand the dynamics of avian distribution in North America, 

and ultimately to provide insight into the nature of short term and long term distribution of other 

wildlife. Through examination of how current environmental structures determine the spatial 

distribution of species and biodiversity, and how these distributions respond to environmental 

changes, we can establish more accurate ecological theories and models to predict future 

distribution of biodiversity. Specifically, by incorporating vegetation height heterogeneity, and 

by utilizing the centroid method, I expand the methodologies on habitat characterization, species 

richness modeling, and long term species range monitoring. The information generated from this 

dissertation can help to establish better predictive species distribution models and provide a 

foundation upon which effective conservation planning and practices rely.
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Chapter 2. The influence of vegetation height heterogeneity on 

forest and woodland bird species richness across the United 

States 

2.1 Abstract 

Avian diversity is under increasing pressures. It is thus critical to understand the ecological 

variables that contribute to large scale spatial distribution of avian species diversity. 

Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad 

scale species richness. Vegetation vertical structure is increasingly used at local scales. However, 

the spatial arrangement of vegetation height has never been taken into consideration. Our goal 

was to examine the efficacies of three-dimensional forest structure, particularly the spatial 

heterogeneity of vegetation height in improving avian richness models across forested 

ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial 

arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 

2000 (NBCD). The height-structured metrics were compared with other habitat metrics for 

statistical association with richness of three forest breeding bird guilds across U.S. Breeding Bird 

Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with 

preferences for forest edge and for interior forest. Parametric and non-parametric models were 

built to examine the improvement of predictability. Height-structured metrics had the strongest 

associations with species richness, yielding improved predictive ability for the woodland guild 

richness models (r2=~0.53 for the parametric models, 0.63 the non-parametric model) and the 

forest edge guild models (r2=~0.34 for the parametric models, 0.47 the non-parametric model). 

All but one of the linear models incorporating height-structured metrics showed significantly 
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higher adjusted-r2 values than their counterparts without additional metrics. The interior forest 

guild richness showed a consistent low association with height-structured metrics. Our results 

suggest that height heterogeneity, beyond canopy height alone, supplements habitat 

characterization and richness models of forest bird species. The metrics and models derived in 

this study demonstrate practical examples of utilizing three-dimensional vegetation data for 

improved characterization of spatial patterns in species richness.  

 

2.2 Introduction 

Avian diversity has been under increasing pressure from anthropogenic disturbances such as 

habitat loss and fragmentation (Gaston et al. 2003). Successful conservation planning relies upon 

understanding how the distribution of avian richness responds to existing and potential changes 

in environmental conditions which influence their distributions. Discovering the drivers of large-

scale spatial variation of species richness has been a central debate in ecology (Palmer 1994, 

Rosenzweig 1995, Gaston 2000, Gaston and Spicer 2004), and many hypotheses have been 

proposed to address this issue (Waide et al. 1999, Rahbek and Graves 2001, Willig et al. 2003, 

Hawkins et al. 2003, Colwell et al. 2004, Currie et al. 2004). One major hypothesis suggests that 

habitat heterogeneity is a key factor because it leads to greater spatial variability of habitat 

physical conditions, and therefore permits greater niche specialization resulting in more species 

richness (Kerr and Packer 1997, Kerr et al. 2001, Koh et al. 2006, Davies et al. 2007). 

Particularly in North America, habitat heterogeneity theory predicted the richness of some faunas 

significantly better than the species-energy theory (Kerr and Packer 1997, Rahbek and Graves 

2001, Kerr et al. 2001). This latter theory also has widespread support, and hypothesizes that 
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productive energy through food webs or species physiological constraints to ambient energy 

determines species richness (Waide et al. 1999, Gaston 2000, Hawkins et al. 2003, Evans et al. 

2005).  

Traditionally large scale habitat heterogeneity has been quantified mostly as topographical 

variability (Richerson and Lum 1980, Kerr and Packer 1997, Rahbek and Graves 2001) or two 

dimensional habitat characteristics derived from remote sensing products (Turner et al. 1988, 

Duro et al. 2007). Vertical habitat structure may also lead to niche generalization, and as such be 

an important element of habitat heterogeneity affecting biodiversity (Bergen et al. 2009). 

However, it has rarely been used to explain species richness at broad scales. The incorporation of 

vertical heterogeneity is especially important for avian richness models where vertical habitat 

structure at local scales has long been recognized as a critical factor influencing bird life history 

(Robinson and Holmes 1984, Kelly 1993, Halaj et al. 2000) and abundance (MacArthur and 

MacArthur 1961, Whittaker et al. 2001).  

Until recently, there have been relatively few studies utilizing three-dimensional habitat 

information due to difficulties of acquiring measurements of vertical vegetation structure beyond 

the plot scale over extended geographical areas (Bergen et al. 2009). This has changed 

significantly since the emergence of active remote sensing systems such as Light Detection and 

Ranging (lidar) and Radio Detection and Ranging (radar) which provide capability to map the 

vertical dimension of vegetation at local to regional scales (Lefsky et al. 2002, Bergen et al. 

2009). There is an increasing number of studies using lidar and radar derived three-dimensional 

vegetation structure to model biodiversity, many of which have revealed significant association 

between vegetation vertical structure, habitat quality, species richness and abundance (Imhoff et 

al. 1997, Bergen et al. 2007, Goetz et al. 2007, Swatantran et al. 2012, Culbert et al. 2013, 
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Zellweger et al. 2013). However, none of the existing habitat metrics sufficiently characterize the 

spatial arrangement of vegetation height (i.e. the heterogeneity of height), nor its potential for 

predicting avian richness distributions over large geographical extents.   

Related advances have been made in the development of statistical fusion models that provide a 

means to effectively combine remotely sensed data from radar, lidar, optical remote sensing 

systems and forest inventory data, yielding wall-to-wall high resolution vegetation structure 

maps at the continental scale (Walker et al. 2007, Kellndorfer et al. 2010, 2011, Saatchi et al. 

2011, Baccini et al. 2012). The production of these maps not only enables the creation of habitat 

metrics that capture rich vegetation height heterogeneity, but also the comparison of the 

predictive abilities in various forms of these metrics. Our study is designed to embrace these 

opportunities by examining the relationship between forest bird richness, height-structured 

habitat metrics and avian richness models involving various degrees of forest height 

heterogeneity.      

The overall goal of our study is to examine the potential of three-dimensional habitat structure in 

improving avian richness models at broad geographical scales. In doing so we hope to expand 

our understanding of the relationship between habitat structure and the spatial distribution of 

avian species richness, and to lay the foundation for constructing habitat metrics that better 

utilize increasingly available three-dimensional habitat data. Specifically we address the 

following questions: 

1. How do the height-structured metrics compare with traditional habitat metrics in their ability 

to associate and predict forest bird richness in the forested ecoregion of the U.S.? Does 
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incorporating the height-structured metrics improve the explanatory ability of avian richness 

models that use traditional habitat metrics? 

2. How does the predictive skill of richness models vary among forest bird guilds       with 

contrasting preferences to habitat edges? 

First, we introduce the conceptual similarities and differences between traditional habitat metrics 

and two types of height-structured metrics. Next, we describe the data and the methods we used 

to create the habitat metrics in this study. We then use correlation analysis and multivariate 

regression models to examine the relationships between different combinations of metrics and 

the species richness of three forest breeding guilds. Lastly, we examine the models’ explanatory 

abilities and the importance of individual metrics in predicting the richness of the three guilds. 

2.3 Background 

Traditional habitat metrics are based primarily on two-dimensional habitat structure, such as land 

cover types, patch size and shape statistics. Developing such metrics generally depends on two 

steps: a) classifying scene space into binary habitat and non-habitat land cover types; b) 

delineating habitat patches based on the rule of contiguity (Figure 2-1) (Girvetz and Greco 2007). 

There have been numerous studies using habitat patch metrics and derivative habitat edge and 

contrast metrics to associate with ecological attributes such as species richness, reproductive 

success and individual fitness of birds (Strelke and Dickson 1980, Robbins et al. 1989a, Helzer 

and Jelinski 1999). However vegetation height information generally plays little role in the 

process of delineating habitat patches and characterizing their properties.  

Some studies have applied three-dimensional habitat information in habitat quality and species 

diversity models (Hill et al. 2004, Broughton et al. 2006, Goetz et al. 2007, Hinsley et al. 2009, 
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Swatantran et al. 2012, Culbert et al. 2013). Usually, these applications rely on simple summary 

statistics such as mean, maximum, minimum and standard deviation to characterize three-

dimensional vegetation structure. Summary statistics are straightforward and easy to obtain, but 

they cannot fully capture the heterogeneity of vegetation vertical structure. To give an example, 

one can have two forested landscapes with the same mean, maximum, minimum and standard 

deviation of tree height but with greatly different spatial arrangements of trees (e.g. tall trees can 

cluster in a few locations or can randomly distribute over the landscape which would have very 

different ecological implications for bird communities).  

To account for more height heterogeneity, we created two groups of height-structured habitat 

metrics, the first of which integrates vegetation height information into the habitat patch 

framework while the second one characterizes canopy height distribution directly using second-

order texture algorithms. 

At the canopy level, vertical differences in vegetation create boundaries that segment contiguous 

habitats into smaller patches, each with similar height values (Figure 2-1). We first classified 

height pixels into a few height classes to characterize vertical edges and patches. Next, we 

grouped adjacent pixels from the same height class into patches. We treated the boundaries 

dividing those vertical patches as vertical edges (Figure 2-1). We also weighted the vertical 

edges by their depth (the height difference between two sides of a vertical edge) to capture the 

contrast of the height values of neighboring patches. By doing so, we could adapt a wide range 

of conventional habitat patch and edge metrics to account for complex spatial variability of 

canopy height. 
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Figure 2-1 An example of the delineation of habitat patches at one BBS location. A two-

dimensional vegetation map (A) and a vegetation map segmented by height structure (B) are 

shown. The pixel-based segmentation method ( 

Appendix I-6) is used to segmented by height structure (B) are shown. The pixel-based 

segmentation method ( 

Appendix I-6) is used to segment two dimensional habitat maps by using height thresholds. 

 

Besides utilizing habitat patch and edge metrics to capture vegetation height heterogeneity, the 

second approach we introduce here involves calculation of the second-order (co-occurrence) 

texture statistics (Haralick et al. 1973) directly from the gridded vegetation height maps. Second-

order texture measures indicate the probabilities of each combination of pixel values co-

occurring in a specific direction and distance (Haralick et al. 1973). These metrics can quantify 

spatial heterogeneity in terms of the spatial distribution and dependencies of height values 

(Coburn and Roberts 2004) through grey level co-occurrence matrix. Texture measures are 

conventionally extracted from individual bands of remotely sensed imagery and aerial 

photographs to assist object or land cover type discriminations (Franklin et al. 2000, Coburn and 

Roberts 2004). Normally a small moving window is used to calculate the grey level co-

occurrence matrix in specified neighborhoods. Texture measures extracted from optical remote 
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sensing imageries have been used to infer broadly defined habitat heterogeneity that includes 

various environmental factors (e.g. land cover type, vegetation type, soil condition as well as 

vertical structure). This type of habitat structural information has been linked to avian species 

richness in many studies (St-Louis et al. 2006, St‐Louis et al. 2009, Culbert et al. 2012). Here we 

derived the second-order texture metrics from gridded canopy height maps to associate them 

with variation in avian richness. 

2.4 Datasets and Methods 

2.4.1 Avian Data 

The study area includes 21 predominately forested ecological regions (provinces) (Bailey 1995) 

across the conterminous U.S. (Appendix I-1) (Figure 2-2). We used avian records from the 

Breeding Bird Survey (BBS) to model species richness over the entire study range. BBS is an 

annual road side survey organized by U.S. Geological Survey (USGS) (Robbins et al. 1986, 

1989a). Initiated in 1966, BBS has over 4000 survey routes located on secondary roads across 

the continental U.S. and Canada. Each survey route is 39.4 km long. Every year, during the avian 

breeding season, surveys are conducted by competent volunteers using the protocol of three-

minute point count at 50 stops at 0.8km intervals. All birds seen or heard within 0.37 km radius 

are recorded (Sauer et al. 2011). We removed the records whose survey procedures or associated 

data are not acceptable by BBS standard. We also removed the records surveyed by first year 

observers to minimize observer bias (Kendall et al. 1996). We selected 134 broadly grouped 

woodland breeding birds species (here after “woodland guild”) based on the USGS species 

groupings (U.S. Geological Survey 2012). We also selected 26 and 49 bird species as the forest 

breeding guilds with preference for interior forest habitat and forest edge habitat respectively 
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(here after “interior forest guild” and “forest edge guild”) based on the classification of Boulinier 

et al.1998 (Boulinier et al. 1998). A complete list of birds involved in this study and their guild 

assignment are given in Appendix I-2. Because most of the interior forest and forest edge bird 

species are distributed in the Eastern U.S., we limited our analysis on these two guilds to the 10 

forested ecoregions in the east (Figure 2-2). 
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Table 2-1 List of all metrics developed in the study. 

Data Metrics type (Set) Metric name (Abbreviation) 

NBCD vegetation height map Summary height 

statistics (A) 

Mean height (MEAN) 

  Standard deviation of height (SD) 

  Minimum height (Min) 

  Maximum height (Max) 

Two-dimensional vegetation 

cover map 

Traditional patch-based 

metrics (B) 

Number of patches(B.NP) 

  Mean patch area (B.Area.MN) 

  Standard deviation of patch area (B.Area.SD) 

  Edge density (B. ED) 

  Total edge (B.TE) 

  Mean fractal dimension index (B.FRAC.MN) 

  Standard deviation of fractal dimension index 

(B.FRAC.SD) 

Vegetation cover map 

segmented by height structure  

Height-structured patch-

based metrics (C) 

Number of patches(C.NP) 
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  Mean patch area (C.Area.MN) 

  Standard deviation of patch area (C.Area.SD) 

  Total edge (C.TE) 

  Mean fractal dimension index (C.FRAC.MN) 

  Standard deviation of fractal dimension index 

(C.FRAC.SD) 

  Contrast weighted edge density (C.CWED) 

  Mean of edge contrast index(C.ECON.MN) 

  Standard deviation of edge contrast index 

(C.ECON.SD) 

  Shannon’s diversity index (C.SHDI) 

NBCD vegetation height map Second-order texture 

metrics (D) 

Entropy 

  Contrast 

  Angular second moment (ASM) 

  Homogeneity 

  Dissimilarity 
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Figure 2-2  Distribution of BBS routes through the primarily forested ecoregions in the U.S. The richness models for the woodland 

guild were built using data from both eastern and western forested ecoregions. The forest edge and interior forest bird richness was 

modeled in the eastern forested ecoregions only.
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Adjustments were made to take into account the detection probability bias (Kéry and Schmid 

2004). We used the “fossil” package (Vavrek 2011) in the R statistical program (R Development 

Core Team 2011) to calculate the adjusted species richness using a first-order jackknife estimator 

(Burnham and Overton 1978, 1979). This estimator is based on multiple recapture studies in 

closed populations, which allows detection probability to vary among species. It is also the basic 

estimator underlying the species richness adjustments used by a USGS-developed BBS pre-

processing program called COMDYN (Hines et al. 1999). We averaged the available first-order 

jackknife richness within the five years period between 1998 and 2002 to temporally 

approximate the acquisition time of the radar data which played a key role in developing the 

vegetation height maps as discussed in the following section. The resulting mean avian richness 

is the richness we refer to in the rest of the study. 

 

2.4.2 Forest Height Data and Habitat Metrics 

The National Biomass and Carbon Database of the year 2000 (NBCD) (Kellndorfer et al. 2011) 

provides an estimate of vegetation height distribution and variation at fine resolution for the 

continental U.S. The dataset is based on combined information from U.S. Department of 

Agriculture’s Forest Service Forest Inventory and Analysis data, high-resolution Interferometric 

Synthetic Aperture Radar data acquired from 2000 Shuttle Radar Topography Mission and 

optical remote sensing data from the Landsat ETM+ sensor. Products from the USGS’ National 

Land Cover Dataset 2001 and the Landscape Fire and Resource Management Planning Tools 

Project were also used during the process as input to build the empirical model for tree height 

estimation. The basal area weighted tree height (hereafter, “tree height”) maps produced by the 
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model gives spatially explicit vegetation vertical structure maps over the conterminous U.S. of 

30 m-resolution. 

We adapted a method to use 19 km (~half the length of a BBS route) radius buffers placed on the 

centroid of each BBS route, encompassing ~1100 km2 areas to characterize the surrounding 

habitat around BBS locations (Pidgeon et al. 2007, Rittenhouse et al. 2012, Culbert et al. 2013). 

We created habitat metrics on 1751 such circular landscapes where there are available BBS 

species richness data. (A), (B), (C) and (D) four metric sets incorporating a total of 26 metrics 

were calculated for each landscape (Table 2-1). The methods to produce each set of metrics are 

described in more details in the  

Appendix I-6. The first two metric sets, embedded with little to no vegetation height 

heterogeneity, included (A) summary height statistics (hereafter “summary statistics”) and (B) 

traditional patch-based metrics. The other two metric sets incorporated height heterogeneity: (C) 

patch metrics characterizing vertical patches and edges (hereafter, “height-structured patch-based 

metrics”), and (D) second-order texture metrics capturing vertical heterogeneity of height 

distributions (Table 2-1). The metric sets (A) and (B) were created as baselines to compare with 

the height-structured metric sets (C) and (D).  

All the metrics created are listed in Table 2-1, and the detailed formula and descriptions for each 

metric are presented in Appendix I-3. In order to differentiate the metrics with the same name 

from metrics set (B) and (C), capital letter “B” or “C” were given as prefixes to metrics’ 

acronym to indicate metric set membership. 
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2.4.3 Species Richness Models 

We first explored the statistical correlation between richness of the three avian guilds and the 

predictive habitat metric to evaluate the association between individual habitat metrics and the 

richness of different guilds. The woodland species richness models were based on data of all 21 

forested ecoregions, and the interior forest and forest edge guild models were limited to data of 

the 10 forested ecoregions from Eastern U.S. as noted earlier.   

We selected 2 metrics from each of metric set (C) and (D) that on average had the best 

association with the richness of the three guilds as the best performing height-structured metrics 

(BPHMs). These four BPHMs were later combined with the traditional habitat metrics in 

multivariable models for comparisons of improvement. We limited our choice to only the four 

best metrics to avoid subsequent overfitting of our multivariate models while still maintaining 

enough representativeness.   

We next constructed 6 multivariate linear models to explain each guild’s richness. The first 4 

models were created using the complete list of metrics from set (A), (B), (C), and (D) 

respectively. They served to compare the explanatory abilities of models that characterize habitat 

condition with very different approaches. The two other models combined metric set (A) and (B) 

individually with the 4 BPHMs. We created the combined models to examine the impacts of 

adding spatial arrangement of height in richness models characterizing habitat in traditional ways. 

We used a bootstrapping technique to provide the mean value and confidence intervals for the 

richness models’ adjusted r2 value and AIC values to assess models’ explanatory ability and 

goodness of fit as well as the variability of these measures. The bootstrap resampling was 

repeated 3000 times for each model. To examine the significance level of model improvements 
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the 95% confidence interval of adjusted r2 value and AIC values were obtained with the bias-

corrected and accelerated (BCA) bootstrap algorithm (Efron 1987) to make the interval’s median 

unbiased and adjusted for skewness.  

 Lastly we explored the effect of combining the 26 metrics from all four metric sets using a non-

parametric Random Forest (RF) model. The RF model (Breiman 2001) can incorporate large 

number of input variables well without overfitting (Biau 2012). It is also well-suited for our 

study because the model allows for covariance between predictor variables, which commonly 

exists between different habitat metrics. The RF model also provides a mechanism for assessing 

predictor variable importance using a measure of cross-validated mean square error (out of bag 

mean square error (OOB MSE)). The higher the increase of OOB MSE (IncMSE) is, the more 

important a specific metric is. More detailed introduction of Random Forest model is described 

in the  

Appendix I-6. We also ran 6 RF models on the same combinations of metrics used by the linear 

models to compare the differences between linear and RF models. We set the number of trees to 

be 2000 for all models to allow for the mean residual error to converge. In our study the RF 

models were built with Random Forests package (Liaw and Wiener 2002) in the R statistical 

program (R Development Core Team 2011).  

2.5 Results 

2.5.1 Predictor Metric Correlation 

The predictor metrics that correlate best with bird species richness varied among guilds. For 

woodland species richness, (D) the second order texture metrics generally had the greatest 
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predicative ability, followed by the traditional patch-based metrics, and height-structured patch 

metrics. For forest edge bird richness, the metrics with the strongest correlation were (C) the 

height-structured patch-based metrics followed by (D) the second order texture metrics and (A) 

the summary height statistics (Figure 2-3). Interior forest bird species richness in general had 

consistently low correlation with any metrics. Among all the metrics developed (Table 2-1, 

Appendix I-3), the metric with the greatest predictive capability for this guild was mean 

vegetation height. ASM had the strongest average predictive capability over the richness models 

for three guilds, followed by entropy, C.TE, homogeneity, and C.CWED (Figure 2-3), all of 

which are height-structured metrics. We selected ASM, entropy, C.TE and C.CWED as the four 

BPHMs to be combined with models relied on the traditional metrics.  

The direction of the correlation between metrics and the bird richness was generally consistent 

across three guild types except for metrics with weak correlation (Appendix I-4). Among the 

variables with highest average correlation, ASM and homogeneity both had negative correlation 

with the richness of all three guilds. Conversely, entropy, C.TE, C.CWED all showed strong 

positive correlation for each guild’s richness (Figure 2-3, Appendix I-4).  
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Figure 2-3 Guild richness associations with various metrics. (Top row): correlation bar plots of 

the most predictive metrics and species richness by guild. White bars represent a positive 

correlation and grey indicate a negative correlation. (Bottom rows): correlation comparisons 

between comparable patch-based metrics with and without considering the vertical patches and 

edges for the woodland and forest edge guild. The left panels show traditional metrics without 

accounting for height-heterogeneity; the right panels are height-structured counterparts. The 

black dots indicate a negative correlation and the grey ones indicate a positive correlation. 
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Figure 2-4 Predictive ability of multivariable models.  A, B, C, and D are the four habitat metric 

sets, and 4BPHMs are the four best predictive height-structured metrics. Each of the top panels 

shows four linear models with whiskers giving 95% confidence interval of adjusted r2 values. 

The length of the bar represents the mean adjusted r2 for these models. The lower panels show 

the explained variance of the comparable random forest (RF) models. Uniquely the top bars are 

the results from the models employed all metrics from the four metric sets. 

After incorporating vegetation height heterogeneity in patch-based metrics, the metrics 

characterizing patch number and area (AREA.MN, AREA.SD, and NP) showed a decreased 

correlation with the woodland guild richness. Conversely, the strength of the correlation between 

edge metrics (ED, TE) and the woodland guild richness increased. For the forest edge species 

both the patch and edge related metrics showed a prominent increase of correlation after 

incorporating vegetation height heterogeneity. The direction of the correlation for some patch-

based metrics also changed. The NP metric showed an exceptionally large change for the 

woodland guild richness: from -0.45 to 0.25 after incorporating vertical patches (Appendix I-4, 

Figure3). 
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2.5.2 Predictive Models 

The non-parametric RF models combining all 26 metrics (all-inclusive models) from the four 

metric sets were the ones with greatest ability to predict species richness for each guild (Figure 

2-4, Appendix I-5). Among those models the lowest species richness variability was explained 

for the interior forest guild (r2=0.11), but the forest edge guild richness was predicted moderately 

well (r2=0.47) and the predictive model was strong for the woodland guild (r2=0.63) (Figure 2-5). 

The most important variable for predicting the woodland guild richness were two traditional 

patch-based metrics (B.AREA.MN and B.AREA.SD) followed by two second order texture 

metrics (entropy and ASM). The forest edge species richness model was most dependent on two 

height-structured patch metrics (C.CWED and C.NP) followed by two summary height statistics 

(MAX and MEAN). The most important predictive metrics for the interior forest guild model 

were MEAN followed by B.AREA.MN and B.AREA.SD (Figure 2-5). 

For the RF models, our results consistently showed that adding height-structured metrics 

improved the model predictive ability. Specifically, the explained variance of the all-inclusive 

RF models for woodland and forest edge guild were up to 0.27 and 0.21 higher respectively than 

the RF models with only traditional habitat metrics. In addition for these two guilds, when the 

RF models were combined with the four BPHMs, the improvement for explained variance values 

were up to 0.21 (woodland guild) and 0.13 (forest edge guild). The interior forest guild however 

showed only minor improvements when combined with any height-structured metrics. In general 

for woodland and forest edge guild, RF models’ predictabilities were higher than the comparable 

linear models by a prominent margin. (See Figure 2-4, and Appendix I-5). 
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The linear models had a lower explanatory ability than their RF counterparts. For a specific 

combination of habitat metrics, the linear models explained the most amount of variation in the 

woodland guild richness and the least in the interior forest guild richness. The one exception was 

the model using summary statistics of height (set A), which showed the highest predictability for 

forest edge guild richness, followed by woodland guild richness, and then the interior forest guild 

richness (Figure 2-4, Appendix I-5). In every guild, the models incorporating the four BPHMs 

showed consistently higher predictability than the models without (Figure 2-4,).  
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Figure 2-5 Random Forest model results. (Top row): Modeled vs. actual species richness for 

three guilds using all-inclusive random forest models.  (Below the scatter plots): variable 

importance plots show the percent increase in mean square error (%IncMSE) of the top 20 most 

influential metrics in the woodland guild richness model and the forest edge guild richness 

model (note different scales on X-axes). The metrics characterizing vegetation height 

heterogeneity are plotted with triangles and the rest of the metrics are circles. 

Combining the BPHMs with the summary height statistics resulted in significantly higher 

adjusted-r2 values in the woodland and forest edge models (Figure 2-4). The AIC value for the 

woodland richness model also improved significantly. In comparison, when combined with 

traditional patch-based metrics, the BPHMs significantly increased the adjusted-r2 for the forest 

edge guild model, while significantly improving the AIC values for both the forest edge and 

woodland guild models (Appendix I-5). 

 

2.6 Discussion 

A large number of hypotheses have been proposed to explain the spatial patterns of species 

richness over broad geographical scales (Palmer 1994, Guégan et al. 1998, Waide et al. 1999, 

Gaston 2000, Hawkins et al. 2007, Rahbek et al. 2007). While it is unlikely that there is one 

single mechanism that can explain species richness patterns completely, a large portion of the 

literature testing habitat heterogeneity hypothesis has focused on the association between species 

richness and two dimensional habitat structure, often combined with land cover type composition 

and distribution (Griffiths and Lee 2000, Donovan and Flather 2002, Pidgeon et al. 2007, 

Rittenhouse et al. 2012). On the other hand other studies testing species-energy hypothesis have 

relied on covariates related to ecosystem productivity and energy such as evapotranspiration and 

photosynthetic capacity indices like the normalized difference vegetation index (NDVI) 

(Hurlbert and Haskell 2003, Seto et al. 2004, Phillips et al. 2008) to explain large scale species 
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richness patterns. Studies to associate habitat vertical structure with species richness are, 

however, often focused at local scale (Culbert et al. 2013), which limited the efficacies of habitat 

heterogeneity models to explain species richness at broad scale.   

Only recently was vegetation height information assessed as a predictor of avian species richness 

across the conterminous U.S. in two studies (Culbert et al. 2013, Goetz et al. 2014). One of these 

(Culbert et al. 2013) used the same NBCD data we employed here, but they explored only 

summary statistics of vegetation height and biomass combined with land cover type composition 

and distribution. The other used sparsely sampled height metrics from a satellite lidar system that 

is no longer operating, and included climatic data as predictive variables (Goetz et al. 2014). 

Although our models employed only vegetation structural distribution, with no input from the 

land cover other than vegetation type or climatic data, their explanatory ability for the woodland 

guild was comparable to these recent results (r2=0.70 for the forest guild model (Culbert et al. 

2013), and r2=0.60 for the open woodland model (Goetz et al. 2014)). We found that models 

combining only vegetation vertical and horizontal structure can explain a significant amount of 

species richness for the broadly grouped woodland guild and the forest breeding guild with 

preferences for the forest edge habitat. More importantly, our results showed that incorporating 

vegetation vertical heterogeneity, and not just mean and standard deviation of height, greatly 

improves the ability to explain variability in avian richness for the two guilds. The spatial 

arrangement of vegetation height plays an important role in associating the quality of habitat 

condition and diversity of ecological niches for bird species within the two groups. 

Traditionally habitat edges are thought to affect species movement, interaction, mortality and 

community dynamics (Fagan et al. 1999).The summary height statistics are considered indicators 

of habitat diversity and forest successional stage (Morgan and Freedman 1985, North et al. 1999, 
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Bergen et al. 2009). The traditional way of characterizing habitat through two-dimensional 

habitat patch distribution and summary height statistics still play important roles in our 

multivariate richness models. The large pool of traditional patch-based metrics provides a well-

known framework to readily incorporate vertical height distribution once habitat patches are 

segmented by height. Both traditional and our height-structured metrics contribute to explanation 

of the variance of avian richness, although the importance of individual metrics in the models 

varies from guild to guild. Thus, our study shows that for the woodland avian guild and forest 

edge guild, the species richness is highly sensitive to the vegetation height heterogeneity, and the 

addition of the spatial arrangement of vegetation height provides significantly improved 

estimates of species richness for the two guilds. The patch-based height-structured metrics and 

the second order texture metrics thereby supplement and extend common methods of 

characterizing habitat condition and predicting avian species richness.    

We note the BBS data is collected along roadways where volunteers can easily and regularly 

traverse, thus the areas along the survey routes could be subject to disturbances such as motor 

vehicle traffic or habitat conversion (Keller and Scallan 1999, Griffith et al. 2010); i.e. they may 

not be representative samplings of forest spatial and vertical variability. This characteristic of the 

data set could pose a challenge for systematical sampling of interior forest bird species in the 

surrounding areas and is likely one of the contributing factors for the consistently low species 

richness and weak correlations with our metrics and models in the case of the interior forest guild. 

Alternatively, forest edge habitats are relatively more exposed to stressors such as wind damages 

and human disturbances. They normally exhibit higher vertical structure diversity than the 

interior forest areas (Whitehurst et al. 2013). It may be that interior birds are less adapted to 

habitat structure heterogeneity, and thus exhibit limited sensibility to habitat structure metrics. 
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Lastly the results could also be attributed to the different ways members of avian guilds utilize 

habitat. Forest edge and majority of woodland bird species tend to use a wide range of habitat for 

foraging, and their degree of co-existence can vary in a broad spectrum over space. In 

comparison the interior forest guild, composed mostly of forest specialists that avoid other 

habitat types(Hagan et al. 1996) with overlapping ecological niches, are more likely to face 

greater interspecific competition which limits species richness despite diverse height structure 

across landscapes(Cody 1974). However while the species richness models see low association 

between height heterogeneity metrics and richness, there are still likely more specific vertical 

structure preferences associated with individual species (Goetz et al. 2010, Swatantran et al. 

2012).  

While four BPHMs highlighted in our study showed a good ability to associate with species 

richness and to improve broad scale avian richness modeling, it is reasonable to assume that 

height-structured metrics have potential to be improved further given the large number of options 

that remained unexplored. First, the pixel-based segmentation method used in our study ( 

Appendix I-6) is one of the simplest algorithms to delineate vertical patches and edges. The 

method is based on a set of global threshold values while not considering neighboring 

heterogeneity (Schiewe 2002). The process of setting up the threshold values and weight matrix 

(for contrast metrics) inevitably involves somewhat arbitrary decisions. More complex 

segmentation methods such as edge and region-based methods can be performed readily with 

commercial and open-source software packages that potentially may produce more efficacious 

vertical patches and be less arbitrary (Baatz et al. 2003). Secondly, there are many untested 

texture measures (Haralick et al. 1973). The relationship between texture metrics and the avian 

richness varies as the size of moving window changes (St-Louis et al. 2006). More work is 
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needed to understand the impact of those methodological options for further improving species 

richness models. 

2.7 Conclusion 

As active remote sensing technologies like radar and lidar mature and become more widely 

available, data sets characterizing vegetation vertical structure should become increasingly useful 

for biodiversity applications and management. Our study showed that vegetation height 

heterogeneity is associated with habitat diversity and species richness for some forest avian 

guilds. Thus, while recognizing the advances conveyed by incorporating height information, 

there is an imperative to explore in more depth the role of such heterogeneity. Furthermore we 

suggest not just height, but vertical canopy heterogeneity, e.g. foliar profiles and layering, will 

provide an even richer source of information from which to develop new metrics and models 

(Swatantran et al. 2012, Whitehurst et al. 2013). Incorporating such information will require data 

on not only canopy height but canopy vertical structure, the latter of which is unavailable at 

continental scales. Nonetheless, the metrics and models used in our analyses provide a means to 

incorporate and utilize three-dimensional habitat information, with the goal of better 

understanding the controls on avian species richness and habitat use. 
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Chapter 3. A Centroid Model of Species Distribution with 

Applications to the Carolina Wren (Thryothorus ludovicianus) 

and House Finch (Haemorhous mexicanus) in the United States 

3.1 Abstract 

Drastic shifts in species distributions are a cause of concern for ecologists. Such shifts pose great 

threat to biodiversity especially under unprecedented anthropogenic and natural disturbances. 

Many studies have documented recent shifts in species distributions. However, most of these 

studies are limited to regional scales, and do not consider the abundance structure within species 

ranges. Developing methods to detect systematic changes in species distributions over their full 

ranges is critical for understanding the impact of changing environments and for successful 

conservation planning. Here, we demonstrate a centroid model for range-wide analysis of 

distribution shifts using the North American Breeding Bird Survey. The centroid model is based 

on a hierarchical Bayesian framework which models population change within physiographic 

strata while accounting for several factors affecting species detectability. Yearly abundance-

weighted range centroids are estimated. As case studies, we derive annual centroids for the 

Carolina Wren and House Finch in their ranges in the U.S. We further evaluate the first-

difference correlation between species’ centroid movement and changes in winter severity, total 

population abundance. We also examined associations of change in centroids between sub-

ranges. Change in full-range centroid movements of Carolina Wren significantly correlate with 

snow cover days (r=-0.58). For both species, the full-range centroid shifts also have strong 

correlation with total abundance (r=0.65, and 0.51 respectively). The movements of the full-

range centroids of the two species are correlated strongly (up to r=0.76) with that of the sub-
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ranges with more drastic population changes. Our study demonstrates the usefulness of centroids 

for analyzing distribution changes in a two-dimensional spatial context. Particularly it highlights 

applications that associate the centroid with factors such as environmental stressors, population 

characteristics, and progression of invasive species. Routine monitoring of changes in centroid 

will provide useful insights into long-term avian responses to environmental changes.   

3.2 Introduction 

Species distributions have been changing drastically because of unprecedented anthropogenic 

disturbance (Vitousek et al. 1997, Brooks et al. 2002) and climate change (Nakicenovic and 

Swart 2000, Reilly et al. 2001). Examples of recent northward or upward shifts in species ranges 

from many taxa have been documented (Thomas and Lennon 1999, Parmesan et al. 1999, 

Parmesan 2006, La Sorte and Jetz 2012). Understanding how species distributions are shifting 

and how such changes relate to environmental covariates are of great importance for 

conservation (Parmesan 2006, Pereira et al. 2010).  

Most of the previous studies focusing on changes in species ranges have been based on evidence 

across small sections of a range boundary or on regional species’ composition (Parmesan 2006). 

For instance, the geographical location of northern range limits have been estimated to study 

distribution changes for a variety of avian and insect species (Pollard 1979, Thomas and Lennon 

1999, Hickling et al. 2005, Hitch and Leberg 2007). Parmesan et al. (1999) compared the 

differences in the ratio of extinction to colonization at the northern and southern range margin 

for a group of non-migratory European butterflies. For some montane species with isolated 

populations, range related studies have compared species compositions at the plot level across 

elevational gradients (Pounds et al. 1999, Beever et al. 2003). Results based on portions of 
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species distributions have limitations because the abundance structure within species boundaries 

is often not accounted for. In particular, the inferred edge of the range can be a somewhat crude 

index to characterize changes in species distributions (Gaston 2003), as regional studies at the 

outermost limit of species occurrence are not robust to exclusion or inclusion of outliers 

(Santelmann 1991, Van Rossum et al. 1997). The lack of methodologies that permit evaluation 

of species abundance information over their entire ranges makes it difficult to characterize 

systematic shifts in distribution especially for species with extensive ranges.  

A systematic approach that uses range-wide data is particularly needed to examine the changes 

of avifauna distribution because they are widely distributed, ecologically diverse, and highly 

responsive to environmental change (Walther et al. 2002). More importantly range-wide analysis 

can take advantage of the broad spatial and temporal coverage of many existing avian data sets 

(Gaston 2003, Araújo and Pearson 2005). Using a range centroid as a summary statistics to 

synthesize and visualize avian range-wide distribution can fulfill these requirements. In general 

the centroid characterizes the central tendency of geographically referenced elements (e.g. 

regions) while capable of weighting the contribution (e.g. abundance) of individual elements 

differently. The change of centroid location over time quantifies the direction and magnitude of 

relative changes happening among all elements. Centroids are commonly used in GIS and 

cartographical practices (Environmental Systems Research Institute 1999), biological studies 

(Batschelet 1981), as well as U.S. population analysis (US Census Bureau 2010). However few 

studies have employed the centroid concept to investigate avian distribution shifts ( but see La 

Sorte and Thompson 2007, Niven and Butcher 2009, La Sorte et al. 2013). None of these studies 

have estimated range centroids using the wealth of avian information documented by the North 

America Breeding Bird Survey (BBS) (Sauer et al. 2014). Analysis of the BBS also provides an 
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opportunity to capture a reliable and comprehensive picture of distribution shifts, given the 

standardized data collection procedures and long time-series of information (the survey was 

started in 1966) from the BBS. Also during breeding season, avian species in general have 

stricter habitat requirements, and thus their breeding ranges are relatively less malleable than 

winter distributions (Root 1988). 

The goal of this study is to present an approach to quantify changes in the centroids of species 

distributions using BBS data and for the purpose of monitoring changes in long term avian 

species distribution. We employ this approach to characterize and visualize the long term 

centroid of the ranges of the Carolina Wren (Thryothorus ludovicianus) and the House Finch 

(Haemorhous mexicanus) as case studies. Carolina Wren populations in the Eastern U.S. have 

exhibited rapid growth followed by precipitous declines in portions of their range (most 

prominently during the mid-1970s ) (Link and Sauer 2007), where their populations encounter 

severe winter conditions (Sauer et al. 1996). House Finches are native to Western United States, 

but were introduced to Eastern United States in the 1930s. They have been rapidly colonizing 

and establishing new ranges since. Because both species have undergone distributional changes 

in the past few decades, they represent good test cases for our method. In particular we seek to 

demonstrate the efficacy of a centroid model in characterizing distribution changes, especially 

those that result from large scale environmental stressors such as severe winter conditions and 

from invasive colonization processes.  

Using the calculated range centroids of the two case studies, we first examine the statistical 

association between the centroid movement and a winter severity index for Carolina Wren. We 

then correlate the centroid movement with a total population abundance index. Furthermore, we 

assess the correlation among centroids derived from different ranges. For the House Finch, the 
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native western population and the invasive eastern population have had disjunct ranges during 

most of the 20th century, thus emphasis is placed on implications of centroid analysis on species 

with contrasting populations dynamics or with disjoint ranges. We also examined two null cases, 

i.e. species with less pronounced distribution change, to provide a baseline for centroid 

movement. The range centroids of Bushtit (Psaltriparus minimus) and Dusky Flycatcher 

(Empidonax oberholseri) were then calculated and visualized. Extending from the case studies, 

we discuss the characteristics and applicability of the centroid model aimed towards facilitating 

the potential implementation of the model on broader lists of species and other survey data. 

3.3 Data & Methods 

3.3.1 The North American Breeding Bird Survey & Study Areas 

Because of its extensive geographical and temporal coverage, the BBS provides a unique 

opportunity for analyzing continental scale changes in avian distributions. The BBS started in 

1966, and by 1968 it was established in the contiguous U.S. and southern Canada. It is an annual 

roadside survey with >5000 routes along secondary roads covering the contiguous United States, 

Southern Canada, and Northern Mexico. Each route is 39.4 km in length and has 50 sample 

points evenly spread out along the route path. Every year competent volunteers survey routes 

during breeding season using a protocol of three minute point counts at each sample point. Birds 

heard and seen within 0.4 km radius are recorded (Robbins et al. 1986, Sauer et al. 2011). The 

numbers of routes surveyed and consistency of coverage has increased throughout the survey 

period, but few routes have been surveyed every year since the beginning of the BBS (Link and 

Sauer 2002, Sauer et al. 2011). For each species, the sum of counts from the 50 sample points 

was used as a measure of abundance at a route for a specific year. We used the count values to 
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model stratum-specific abundance indices. We included all data from routes where the species of 

interest was observed at least once.  

To summarize the method of calculating the range centroid from BBS data, we first divided the 

species ranges into strata. We then used a hierarchical Bayesian model to estimate the annual 

species abundance indices within each stratum. Finally the annual centroid coordinates were 

calculated as the average coordinates of all strata centroids weighted by their respective 

abundance indices. Because the Markov chain Monte Carlo (MCMC) method is used for fitting 

hierarchical Bayesian models, it produces posterior distributions for both directly estimated 

parameters and derived parameters such as the centroid coordinates (Lunn et al. 2000). Posterior 

distributions are used to estimate estimate statistical attributes of the centroid locations and form 

the basis for additional statistical inference. 

Although the BBS has an extensive geographic range, it still does not cover entire ranges of 

many species, and the analysis must be viewed as conditional to the surveyed area.  In this 

analysis, we limited the scope to the contiguous United States, as this area has the most 

consistent BBS coverage. The range of the Carolina Wren is almost entirely within the 

contiguous United States (only 10 surveys encountered the species in Ontario); while House 

Finch are encountered a low abundances in eastern and western Canada. Scale of the 

stratification can have significant influence on BBS results and thus on variability of centroid 

location. In general, dividing strata more finely provides a more local scale for estimation of the 

centroid. More importantly, the extent of the ecological processes underpinning the distribution 

change affects one’s choice of stratification scheme. For the BBS, strata have historically been 

delineated by the union of the U.S. states and Bird Conservation Region (BCR) boundaries 

(Sauer et al. 2003) (Figure 3-1). BCRs are ecologically distinct regions having similar bird 
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community and habitat conditions, and BBS surveys are organized by state coordinators. The 

resulting state/BCR strata allow us to model the species abundance index within relatively small 

and homogenous regions. (Sauer et al. 2003) (Figure 3-1). We only included strata with more 

than 4 BBS routes to ensure adequate samples in each stratum. All geographically referenced 

maps were projected to USA Contiguous Equidistant Conic projection. For computation of 

species distribution centroids,  ArcGIS (Environmental Systems Research Institute 1999) was 

used to calculate the X-coordinate (easting) and Y-coordinate (northing) (unit: meter) of each 

stratum’s centroid. 

3.3.2 Hierarchical Models for Stratum-specific Abundance Index 

Summarizing accurate bird abundance values from BBS data is challenging because, like many 

other index surveys, BBS survey methods do not directly account for imperfect detection of birds 

(Link and Sauer 2002). Directly using count values is problematic since a variety of factors such 

as regional differences, observer, and year can significantly influence detection rates, and thus 

the count values (Robbins et al. 1986, Sauer et al. 1994, 1995). We adapted a hierarchical 

Bayesian model from Link and Sauer (2002) to accommodate these complications. The stratum-

specific abundance indices are then estimated by the model as the measurements of abundance in 

each region.    
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Figure 3-1 Study area and sub-ranges of Carolina Wren and House Finch. The top map shows 

the range of Carolina Wren in the contiguous U.S. The range was divided into northern and 

southern sub-ranges for analysis at the sub-ranges scale. Weather stations used for snow depth 

data are shown as circles in the map. Similarly, the bottom map shows the range of House Finch 

in the contiguous U.S., divided into eastern and western sub-ranges for subsequent analysis. 

The hierarchical Bayesian model we use is an overdispersed Poisson regression model which 

accounts for overdispersion in BBS count data and controls for the variability in the skills of 
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BBS observers (Link and Sauer 2002). In our adaptation, we modeled the expected values 𝜆𝑖,𝑗,𝑡 

of BBS route counts 𝑌𝑖,𝑗,𝑡 (i indexes stratum, j indexes observer within route, and t indexes year). 

The model is a log-linear function of the explanatory variables including stratum-specific 

intercept, slope, and year effects (𝑆𝑖, 𝛽𝑖, and 𝛾𝑖,𝑡), observer/route effect (𝜔𝑗), and overdispersion 

term (𝜀𝑖,𝑗,𝑡). In the formula t* denotes a baseline year, 𝜂 is the first year effect, and I (j, t) is a 

binary variable indicating whether the survey was done by a first year observer: 

log(𝜆𝑖,𝑗,𝑡) = 𝑆𝑖 +  𝛽𝑖(𝑡 − 𝑡∗) + 𝜔𝑗 + 𝜂𝐼(𝑗, 𝑡) + 𝛾𝑖,𝑡 + 𝜀𝑖,𝑗,𝑡.          Formula 1 

We followed Link and Sauer (2002) in defining the prior distribution of model parameters, as 

well as hyperparameters. We mostly used diffuse (essentially flat) priors for the hyperparameters, 

𝑆𝑖, 𝛽𝑖 , and 𝜂 set as normally distributed with mean of 0 and standard deviation of 1000. The 

year effects, observer effects, and overdispersion effects (𝛾𝑖,𝑡, 𝜔𝑗, and 𝜀𝑖,𝑗,𝑡) were all specified as 

having a normal distribution with mean zero. However they differed in that the variance of the 

year effects (𝜎𝛾,𝑖
2 ) was allowed to vary between strata, whereas the observer effects and 

overdispersion effects were identically distributed, having the same variances across strata (𝜎𝜔
2  

and 𝜎𝜀
2 respectively). The prior distributions of these variances were also set as diffuse 

distributions, following an inverse gamma distribution, having mean of 1 and variance of 1000 

(Link and Sauer 2002).    

After the model was established, we then calculated the stratum-specific annual abundance 

indices as 

𝑁𝑖,𝑡 = 𝐴𝑖 ∗ 𝑧𝑖 ∗ 𝑒𝑥𝑝(𝑆𝑖 +  𝛽𝑖(𝑡 − 𝑡∗) + 𝛾𝑖,𝑡).          Formula 2 
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This formula included two weights that were multiplied to scale the local abundance term 

(𝑒𝑥𝑝(𝑆𝑖 +  𝛽𝑖(𝑡 − 𝑡∗) + 𝛾𝑖,𝑡). The first weight 𝑧𝑖 is the proportion of routes in stratum i, on 

which the species was ever encountered. It was applied to account for the fact that in some strata 

the species were never observed on some surveyed routes. The other weight 𝐴𝑖 is the ratio of the 

stratum area over the area of all strata where the species is ever present. It is worth noting that 

the species abundance index (𝑁𝑖,𝑡) is a relative measurement. The hierarchical model analysis 

controls for detection rates and makes them comparable among themselves, but they are not 

actual abundance and density values. 

3.3.3 Fitting the Hierarchical Model and Centroid Calculations 

We used the R2winbugs package (Sturtz et al. 2005) in the R language for statistical computing 

and graphics (R Development Core Team 2011) to call the Winbugs program (Lunn et al. 2000, 

Spiegelhalter et al. 2003) to fit the hierarchical models. Winbugs is a commonly used software 

for formulating and customizing Bayesian statistical models. It uses MCMC methods to produce 

a large number of samples from a joint posterior distribution (Kéry 2010). 

 For each species we generated three independent Markov chains. Each chain had 30,000 

iterations, the first 15,000 of which were discarded (burn-in samples). After the first 15,000 

iterations, posterior samples were collected every 50 iterations (thinning rate of 50) so that 

estimates of posterior distribution were based on the 900 (3 chains × 15,000 iterations / 50 

thinning rate) sample values. We used t*=1987 as the baseline year for scaling results. The R 

code to generate the posterior samples of 𝑁𝑖,𝑡 and other parameters in the model are provided in 

the Appendix II-1.  
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Annual centroid locations of distribution for a species, defined in terms of 𝑋𝑡 and 𝑌𝑡 coordinates, 

were calculated as yearly weighted mean of strata centroids (𝑥𝑖 and 𝑦𝑖): 

𝑋𝑡 =
∑ 𝑁𝑖,𝑡∗𝑥𝑖𝑖

∑ 𝑁𝑖,𝑡𝑖
,             𝑌𝑡 =

∑ 𝑁𝑖,𝑡∗𝑦𝑖𝑖

∑ 𝑁𝑖,𝑡𝑖
       Formula 3 

The stratum-specific annual abundance indices (𝑁𝑖,𝑡) modeled by hierarchical Bayesian models 

served as the weights in this process. Because the abundance indices were all based on 900 

sample values from posterior distributions, the posterior distributions of 𝑋𝑡 and 𝑌𝑡 can be 

computed directly in the MCMC, and credible intervals are computed for both coordinates. 

3.3.4 Case Studies 

We demonstrate the yearly centroid for Carolina Wren and House Finch in the U.S. and analyzed 

the relationship between centroid locations and some environmental and population metrics.    

Carolina Wren  

Carolina Wren populations in portions of the Eastern U.S. exhibit rapid growth and precipitous 

declines closely associated with winter conditions (Sauer et al. 1996, Link and Sauer 2007). 

Since the species relies primarily on ground-foraging, extended periods of snow cover caused by 

heavy snow precipitation can lead to starvation and drastic population declines (Mehlman 1997). 

We hypothesized that the Y-coordinates of the Carolina Wren’s range centroid should decrease 

as winter severity increases. The Y-coordinates were also hypothesized to be correlated with the 

total population size within the range.   

Carolina Wren’s entire range in the U.S. covers 73 strata (Figure 3-1). We first calculated the 

annual centroid locations for the full range. We used first-difference correlation to associate the 

changes in Y-coordinates of the centroid with the changes in an index of winter severity: the 
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average number of snow-cover days within full range. We used daily snow depth data from 

National Oceanic and Atmospheric Administration’s United States Historical Climatology 

Network (USHCN) dataset (Easterling et al. 1999). The snow-cover days were defined as the 

days when the snow depth measured by a weather station was at least 5.08 cm (>=2 inches). The 

number of snow-cover days was counted for a specific year between January 1st and March 31st. 

We calculated the average number of snow-cover days per station from a pool of 616 stations 

within the Carolina Wren’s range (Figure 3-1). Some stations did not report snow depth 

information in the years when there was no significant snow accumulation, so the actual number 

of stations with available snow depth data varies from year to year. Lastly we evaluated the first-

difference correlation between the Y-coordinate of the range centroids and the Carolina Wren’s 

total abundance indices across the full range. If the stressor is acting in the Y dimension, then we 

would expect that overall abundance changes would be correlated with changes in that 

dimension. 

Throughout this study we used the first-difference correlation to measure the statistical 

association between two series of data over time (Anderson 1994), to enable calculation of the 

correlation with minimum impacts of autocorrelations exhibited in time series data (Barker and 

Sauer 1992). Correlation of first differences  (from here on “correlation”) does not examine 

relationships between absolute values, but instead correlates changes in value from year to year 

(Thompson and Page 1989). It is commonly used to detrend (reduce autocorrelated effects) time 

series data, so that the correlation is based on annual changes rather than long-term changes in 

the variables (Barker and Sauer 1992). 

Carolina Wren is distributed over a large extent in the eastern U.S. Several important 

environmental gradients in the region are likely to influence Carolina Wren abundance, 
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particularly change in yearly snow-depth patterns across latitudes. We split the Carolina Wren’s 

full range in the U.S. into northern and southern sub-ranges with approximately equal number of 

strata, to examine the centroid behavior across geographical gradients, and more importantly to 

evaluate the relationship between centroid and the population dynamic at different scales. The 

division ensured that both sub-ranges are of comparable sizes and that they cover a similar range 

of longitudes. There are significant differences in winter condition between the sub-ranges 

because of the latitudinal differences (Figure 3-1). We calculated the centroids and total 

abundance indices (sum of Ni,t among all strata within the range) for each sub-range. We then 

examined the correlation of the Y-coordinates of the centroids of different ranges, as well as the 

correlation between the sub-ranges’ total abundance indices and their respective Y-coordinates. 

We hypothesized that the correlation between snow-cover days and the Y-coordinates of the 

centroid will be stronger for southern sub-range. This is because the population at the low 

latitude region would not be affected significantly by the range-wide snow-cover index due to 

the warm and mostly snow free winters. In comparison, snow storms are likely to have greatest 

impact, in terms of reducing regional abundance measures, at the mid latitude region around the 

south-north sub-range division, as the Carolina Wren has relatively big baseline populations 

there, and they are vulnerable to fluctuations of winter storms from year to year. Therefore for 

the southern sub-range, the contrasting winter conditions and responses to snow-cover index 

were hypothesized to cause more changes in centroid movements.  

House Finch 

House Finches are native to the western United States, but were imported to eastern United 

States from California in the 1930s and 1940s (Elliott and Arbib 1953). The invasion and 

colonization in the east was accelerated by illegal release of captive birds after a ban on their 
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importation for the pet trade in the 1940s. House Finches are particularly common in human 

modified habitats. Their populations multiplied and expanded rapidly since their introduction in 

the East Coast (Veit and Lewis 1996), and  much of the expansion in the east has occurred after 

the BBS was initiated. Our intention was to evaluate how the range centroid reflects explosive 

population growth and rapid colonization of an invasive species such as House Finch. House 

Finch also serves as an example that demonstrates the application of the centroid model on 

species with contrasting disjunct populations (western and eastern populations).We excluded the 

first three years of BBS data from our analysis, because of the lack of systematic survey over the 

range of House Finch during these years. The full range of the species covered 124 strata (Figure 

3-1).  

Native and invasive House Finch populations have been geographically separated on the eastern 

and western U.S., although in recent years the eastern population has almost expanded to the 

Great Plains, in direct contact with regions occupied by native population. To analyze centroid 

characteristics of the two populations and to compare the behavior of centroids at different scales, 

we divided the entire range into eastern and western sub-ranges. Most strata in the eastern sub-

range had no record of House Finch when the BBS started in the 1967. Additionally the two sub-

ranges of House Finch cover similar range of latitudes. We calculated the annual centroid 

locations and the total population abundance indices of House Finch for the entire range and for 

the sub-ranges between 1969 and 2012. Unlike Carolina Wrens, where the latitudinal (Y) 

directions are of interest due to climate, House Finch distributions were hypothesized to change 

in the longitudinal (X) dimensions. We correlated the X-coordinates of centroids derived from 

different ranges to compare the similarity of their movement pattern. We also examined the 
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correlation between the X-coordinates and total population abundance indices within different 

ranges. 

3.3.5 Null Cases 

We selected Bushtit and Dusky Flycatcher as null cases, because their populations did not 

change significantly since 1968 in any of the four geographical regions at different scales: the 

entire U.S., western BBS region, central BBS region, or the whole BBS region (including U.S. 

and Southern Canada) (Sauer et al. 2014). Both species have less pronounced distribution 

changes. We calculated and plotted their centroids between 1969 and 2012.  

3.4 Results 

The Y-coordinates of the centroid of the Carolina Wren distribution exhibited significant 

fluctuation over the course of 47 years (Figure 3-2). The centroid consistently shifted northward 

during the years with mild winters with relatively few snow-cover days (Figure 3-2). In contrast 

it shifted dramatically to the south in the later 1970s, early 1990s, and late 2000s, coincident with 

severe winters (with extended snow-cover days). The largest southward shift of the centroid was 

in the year of 1977 (Figure 3-2) when the extreme cold winter dominated much of the eastern 

U.S. (Namias 1978).  

We analyzed the statistical association between centroid coordinates and environmental stressor. 

The number of snow-cover days was strongly correlated with the Carolina Wren’s Y-coordinates 

of the full-range centroids (mean correlation -0.58, (95% CI of -0.51 ~ -0.66)). The relationship 

at the sub-range in the south remained significantly negative (mean correlation -0.32, (95% CI -

0.45 ~ -0.19)) while in the northern sub-range it showed no significant correlation (mean 
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correlation -0.08, (95% CI -0.21 ~ 0.05)) (Table 3-1) (the change of the y-coordinates of the sub-

range centroids can be seen in Figure 3-3).  

Table 3-1 First-difference correlation Table 

 Carolina Wren House Finch 

 Pairs of Comparisons Correlat
ion 

95% 
CI 

Pairs of Comparisons Correlat
ion 

95% CI 

Centroid 
coordinates 
vs. snow-
cover days  

Y-coor.  & Snow-
cover Days (Full 
range) 

-0.58 -0.51 
~ -
0.66 

- - - 

Y-coor.  & Snow-
cover Days (Northern 
sub-range) 

-0.08 -0.21 
~ -
0.05 

- - - 

Y-coor.  & Snow-
cover Days (Southern 
sub-range) 

-0.32 -0.45 
~ -
0.19 

- - - 

Centroid 
coordinates 
vs. 
abundance 
indices of 
different 
ranges 

Y-coor. & Abundance 
Indices (Full range) 

0.65 0.57 
~ 
0.72 

X-coor. & Abundance 
Indices (Full-range) 

0.51 0.26 ~ 
0.70 

Y-coor. & Abundance 
Indices (Northern 
sub-range) 

0.05 -0.09 
~ 
0.18 

X-coor. & Abundance 
Indices (Estern sub-
range) 

-0.24 -0.12 ~ -
0.38 

Y-coor. & Abundance 
Indices (Southern 
sub-range) 

0.43 0.28 
~ 
0.59 

X-coor. & Abundance 
Indices (Western sub-
range) 

0.15 -0.13 ~ 
0.42 

Between 
centroid 
coordinates 
of different 
ranges 

Y-coor.North & Y-
coor.Full- range 

0.13 -0.04 
~ 
0.30 

X-coor.East & X-
coor.Full-range 

-0.12 -0.31 ~ 
0.09 

Y-coor.South & Y-
coor.Full-range 

0.76 0.67 
~ 
0.83 

X-coor.West & X-
coor.Full-range 

0.38 0.13 ~ 
0.58  

Y-coor.North & Y-
coor.South 

0.09 -0.12 
~ 
0.30 

X-coor.East & X-
coor.West 

-0.03 -0.29 ~ 
0.23 
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Figure 3-2 The Y-coordinates of Carolina Wren’s full-range centroid and number of snow-cover 

days. The Y-coordinates (meters) of Carolina Wren’s full-range centroid was plotted (top panel) 

with 95% credible interval. As can be seen, a significantly negative correlation exists between 

the Y-coordinate values and the average number of snow-cover days (bottom panel). 
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Figure 3-3 The Centroids’ Y-coordinates movement and the total population abundance indices 

in Carolina Wren’s northern and southern sub-ranges. The Y-coordinates of the centroids 

derived on the southern and northern sub-range with whiskers giving 95% credible interval (Left 

two plots). The two plots on the right side show the total abundance indices in each sub-range 

over the study period. Significant positive correlation exists between the Y-coordinate and total 

abundance index in the southern sub-range. The relationship is not significant in the northern 

sub-range. 

 

The House Finch’s full-range centroids summarize the combined distribution of the eastern and 

western populations which had been two disjunct distributions until the late 1990s. The full-
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range centroid shifted significantly over the course of the study period (Figure 3-4). The most 

rapid change of centroid location took place in the late 1980s and early 1990s when the centroid 

showed prominent eastward movement. Specifically between 1985 and 1995, the centroid shifted 

at least 50 km eastward annually (Figure 3-4, Figure 3-5). In comparison during the 1970s and 

2000s the distribution of House Finch was relatively stable: full-range centroids were close to 

their neighbors in the previous and following years and with largely overlapping CI (Figure 3-4).   

As hypothesized, full-range centroid coordinates (Y-coordinates for Carolina Wren and X-

coordinates for House Finch) associated strongly with the total population abundance indices. 

The mean correlation for Carolina Wren was 0.65 (95% CI 0.57 ~ 0.72), whereas the one for 

House Finch was 0.51 (95% CI 0.26 ~ 0.70). The relationship between total population 

abundance and the coordinates of centroid remained moderate in one of the sub-ranges for each 

species (southern sub-range for Carolina Wren (mean correlation 0.43, (95% CI 0.28~0.59)) 

(Figure 3-3), and eastern sub-range for House Finch (mean correlation -0.24, (95% CI -0.12 ~ -

0.38)) (Figure 3-5)). The relationships for the rest of the sub-ranges were not significantly 

different from zero (Table 1).  

Lastly, as expected, moderate to strong correlation also existed between coordinates of centroids 

derived from different ranges. For the Carolina Wren, the relationship was the strongest between 

the Y coordinates of the full-range centroid and that of the southern range centroid (mean 

correlation 0.76, 95% CI 0.67 ~ 0.83) (Figure 3-3), whereas for House Finch the association was 

closest between the X-coordinates of the full-range centroid and that of the eastern sub-range 

(mean correlation 0.38, 95% CI 0.13 ~ 0.58) (Figure 3-5).  
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Figure 3-4 The spatial location of House Finch centroids in the entire range, eastern and 

western sub-ranges. Panel A, B and C show the centroid movement within the entire range, 

western and eastern sub-ranges respectively. The color of the circle from dark green to red 

represent the progression of time from year 1969 ~ 2012. As can be seen, both the full-range and 

eastern sub-range centroids have shifted significantly, whereas the western sub-range centroids 

are clustered and have shifted with less magnitude. 
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Figure 3-5 The X-coordinates of House Finch centroids and total population abundance indices 

in different ranges. The top, middle and bottom panel show the X-coordinates (left) of centroids 

and abundance indices (right) in the entire range, eastern and western sub-ranges respectively. 

It shows strong correlation between the centroid X-coordinates and total abundance indices in 

the full range and the eastern sub-range. 

The yearly range centroids for the null cases, Bushtit and Dusky Flycatcher, showed tightly 

distributed centroids with largely overlapping CIs between 1969 and 2012 (Figure 3-6). Dusky 

Flycatcher showed exceptionally clustered centroids, which is associated with particularly stable 

populations in the four regions of interest. 
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Figure 3-6 Range centroids of Bushtit and Dusky Flycatcher between 1968 and 2012. 

3.5 Discussion 

3.5.1 Species Patterns 

Carolina Wren’s latitudinal distribution is strongly correlated with winter conditions. The 

number of snow-cover days is strongly associated with reduction in the population size at 

different scales. As predicted, winter conditions have stronger impacts on the southern and full-

range centroid than the northern sub-range, manifested by the stronger correlation between the 

centroid Y-coordinate and the number of snow-cover days in the ranges. The relatively weak 

influence of winter conditions on the centroid in the northern sub-range could be because the 

Carolina Wren routinely encounters deep snows in the northern states, and survival in even 
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normal winters are mediated by reliable food sources (i.e., feeders). Thus, over the northern sub-

range the severe winters have relatively small and similar impact on their food sources as well as 

on their already small population sizes. Much larger mortality often occurs further south, where 

the species is more abundant and unaccustomed to heavy snowfall. The population there can 

survive in moderate winters in natural habitats away from feeders. But extreme heavy snow can 

thus result in starvation and drastic population decline (Link and Sauer 2007). 

Interpretation of the movements of the full-range centroid for House Finch requires an 

understanding of the history of the eastern and western sub-populations. The eastward movement 

of the full-range centroid of House Finch is determined mainly by a relatively stable western 

population and a prominent population growth in the east (before the late 1990s) where 

introduced House Finches rapidly colonized new areas. After the introduction of House Finch in 

New York area, by the 1960s the populations had spread to New Jersey and Connecticut. The 

fast southwest movement of the eastern centroid in the late 1980s and early 1990s was coincident 

with the most rapid regional population growth (Figure 3-5). During the period, the House Finch 

population expanded its range quickly to occupy most of the Great Lake region and Southern 

Appalachian region (Figure 3-7) (Veit and Lewis 1996). The eastern sub-range’s centroid 

changes provide an informative summary of this colonization process.  

Interestingly, in the 1990s a severe conjunctivitis caused by a parasitic bacterium Mycoplasma 

gallisepticum became widespread in the eastern House Finch population (Dhondt et al. 1998). 

The disease was first documented in the Washington D.C. area in 1993 and was believed to 

affect House Finches the most in areas with established large populations (mainly in the north) 

(Dhondt et al. 1998, Hochachka and Dhondt 2000). The epidemic of the density dependent 

disease may have contributed to the decline of the total House Finch population in the eastern 
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sub-range (Figure 3-5); moreover, the rapid southwest shift of the House Finch range centroid in 

the eastern sub-range in the 1990s could also be attributed to the disease since during such period 

the disease disproportionally affected the established northern population along the coast, while 

the population growth in the frontier regions was unhampered.  

It is not surprising that for both species, centroid movements of the full range correlate 

significantly with their counterpart in one of the sub-ranges. Although they are not independent, 

i.e., sub-range centroids were calculated on part of the shared data. It does indicate that changes 

in the overall centroid may indicate important ecological changes occurring in sub-ranges. 

However, understanding the geographic structuring that divides the population will clearly lead 

to more informative inferences regarding the unique population dynamics taking place at specific 

regions. 
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Figure 3-7 The distribution of House Finch population over the contiguous U.S. between 1975 ~ 

2005. For each stratum we calculated House Finch’s density indices (it is the stratum-specific 

abundance indices divided by the weight of area: 𝑁𝑖,𝑡/𝐴𝑖. The darker areas highlight the strata 

with density indices larger than 0.5. 

In comparison, for the null cases, the centroids of Bushtit and Dusky Flycatcher were tightly 

clustered (Figure 3-6). This clustering is consistent with the summarized population trends that 

show stable populations for both species across their ranges (Sauer et al. 2014). Similar 

clustering is observed in the case of the House Finch during the earliest and the latest decades of 

the survey when population changes were slow (Figure 3-4). These patterns could represent null 

case scenarios within a shorter time period. 

3.5.2 Range Statistics 

The centroid of a species’ distribution is a useful summary statistic of the population’s central 

tendency in a spatial context. Our study demonstrated that the centroid model is a very useful 

tool to characterize the long term changes of avian distribution, while the log-linear Bayesian 

model ensures that the abundance measures at the strata level are controlled for varying detection 

rates that occur in the raw data. The efficacy of centroids as descriptors lies within the fact they 

condense large scale species distributional information into spatially referenced points. They 

enable the visualization of population change and interpretation of results in a straightforward 

and intuitive way. In essence, the shift of centroids reflects asymmetrical changes of population 

in two dimensional spaces. Centroids always move toward the direction with relatively rapid 

growth or away from the direction of rapid population reduction or a mixture of both. They are 

closely related to population trends and yet compliment population abundance measurements, as 

the shifting of centroids reveals two dimensional information regarding the general direction and 

magnitude of population changes. 
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Many hypotheses associated with distributional changes can be reasonably expressed in a single 

dimension. For simplicity purposes, we primarily focused our analysis for both case studies on a 

single dimension (either latitudinal or longitudinal) that had more significant changes. However, 

the natural description of centroids is in two dimensions, both for display and for many 

distribution change cases. It is thus reasonable to combine both X and Y-coordinates together, 

when changes take place in both directions. One striking example is showed for Eurasian 

Collared-Dove (Streptopelia decaocto) in Figure 3-8 Eurasian Collared-Dove is an invasive 

species in the U.S. It was first observed by BBS surveyors in Florida in 1986 and then quickly 

expanded its range to the northern and western states (Bled et al. 2011). The centroid model 

effectively characterizes the magnitude and the direction of such colonization process on two-

dimensional space. Our qualitative description of the effects of conjunctivitis on the eastern 

House Finch population is another example of this. It would be useful to obtain information on 

the geographic distribution of conjunctivitis and evaluate the associations between the disease 

and House Finch populations in two dimensions. 

3.5.3 Effect of Range Delineation and Scale  

The disparity in centroids’ movement patterns between sub-ranges shows that while the 

composite range centroid derived at the continental scale can be an effective mechanism for 

characterizing changes, it may not reflect population changes taking place at individual sub-

ranges and strata. Clear interpretation of the changes requires some degree of contextual 

information on the ground. Multiple scenarios (e.g. population growth, decline, colonizing new 

range, and local extinction) can result in similar patterns of centroid movements. The calculation 

and visualization of population abundance indices at different scales as demonstrated in this 

study may help to further examine the sources of changes on the ground. Cautions are needed for 
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species with disjunct distributions, as they are more likely to have contrasting population 

dynamics. Therefore, meaningful centroid analyses require strategic delineation of range 

boundaries which are informed by specific research questions. However, as shown by the 

Carolina Wren example, if environmental factors that influence distributional change vary from 

year to year, distinct boundaries for relevant sub-populations may not be unique to delineate.   

 

Figure 3-8 Range centroid shift of Eurasian Collared-Dove. 

Natural or artificial range boundaries play an important role in shaping centroid movements. 

Such boundaries can result from un-surveyed regions or geographical barriers such as oceans and 

mountains. For example, even though the BBS has extensive spatial coverage, it still does not 

survey the full ranges of many species(Sauer et al. 2014); we can only model the portion of the 
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range with data, and we should be sensitive to the possibilities of artifacts in summary analysis 

that might occur as consequence of working with partial ranges. The characteristics of centroid 

movements sometimes reflect the spatial pattern of the delineated ranges. For instance, the sharp 

turns of the centroid in House Finch’s eastern sub-range (e.g. turning from northeast to southwest 

around late 1980s, and from southwest to south around early 2000s (Figure 3-4)) are mostly the 

consequences of the range boundaries chosen for our study. The centroid changed course 

significantly because in one area House Finch population reached equilibrium when it expanded 

to the range boundary; at the same time, the population continued to grow and expand in other 

directions which drove the centroid in new trajectories. Despite the sharp turns, at the continental 

scale, in the north, the invasive House Finch population crossed the U.S. border into southern 

Canada (Sauer et al. 2011), whereas in the west, the population continued to spread further west 

which potentially facilitated the expansion of the population to several strata in the western sub-

range (Figure 3-4, Figure 3-7). 

The scales of ranges upon which centroids are derived can have significant effect on the 

variability of centroid location. Specifically, broader ranges can be related to larger potential 

variability in centroid location. This is intuitive because the potential variability of centroid is 

always restrained by the spatial extents of components they represent. They are always located 

between the minimum and maximum coordinate of the components. More importantly, larger 

geographical ranges also encompass larger environmental gradients which have the capacity to 

result in more diverse population dynamics across strata, and thus greater potential variability in 

centroid locations. This was evident when comparing the Carolina Wren’s full-range centroid 

versus that of the southern or northern sub-ranges. Working with full scale or relatively large 

range centroids thus has advantages in interpreting population trends influenced by large scale 
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environmental forces (Figure 3-1, Figure 3-2). However, when comparing the magnitude of 

centroid shifts between species with different ranges, methods to account for the extents of 

ranges may be required. 

3.5.4 Scale of Implementation of Centroid Models 

It is worth noting that we implemented our centroid models using strata as basic units, which are 

structured by the intersection of physiographic regions and U.S. states. We modeled stratum-

specific abundance indices that required at least 5 surveyed routes within each stratum. This 

model was driven by our intention to summarize the population spatial characteristics at the 

continental scale. However, the method could be applied at other spatial scales. Bled et al. (2013), 

for example, employed a spatial model that permitted estimation of population change on a 

regular gird system. The grid system, which is scalable, provides a reasonable alternative 

framework for computing centroids of distribution at regional scale.  

Alternatively, localized survey information such as bird atlas data can be suitable for local 

implementation of centroid models. Atlas data sets are available for many countries, states, and 

provinces (Harding 1979, Andrle and Carroll 1988, Brewer et al. 1991, Brauning et al. 1992, 

Sharrock 2010), and they also have more regular sampling schemes and finer scale (Gaston 

2003). Of particular use would be atlases that provide relative abundance estimates. Similar 

centroid methods can be readily applied on such survey data at the regional or local scales. 

Moreover, the centroid approach can also work in conjunction with site occupancy models 

(Royle and Link 2006, Royle and Kéry 2007) which normally provide presence and absence 

information regarding the species distribution. Analysis at the regional scale would particularly 

emphasize relationships between species distributions and localized influences such as 
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conservation policy, habitat structure and land cover land use patterns (Donald et al. 2007, 

Pidgeon et al. 2007, Huang et al. 2014). 

3.6 Conclusion 

There are a variety of methods for analyzing changes in the geographic distributions of species. 

However incorporating range-wide abundance heterogeneity while accounting for variability and 

constraints embedded in large scale surveys has been a difficult task (Link and Sauer 1998, 2002, 

Gaston 2003). Our centroid analysis based on hierarchical Bayesian models demonstrated a 

framework to address such concerns while utilizing the long term BBS data set at the continental 

scale. By incorporating the abundance structure over the whole range, our method provides a 

valuable descriptor to characterize and analyze species long-term spatial distribution changes. 

Particularly the results show the value of the centroid model in examining avian interaction with 

large scale environmental covariates as well as in summarizing rapid change in species’ ranges 

and population. Future studies should be done to examine the pattern of centroid shifts for large 

groups of avian species and possibly extended to other taxa. Such centroid analysis at the 

community level will provide valuable empirical observations regarding recent species range 

changes. It will also lend insight on the interactions between a variety of changing environmental 

forces and systematic species distribution changes.  
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Chapter 4. Rapid Multi-directional Climate Change 

Fingerprint in North American Bird Distributions Associated 

with Multi-Faceted Climate Change 

4.1 Abstract 

The shift of species’ distribution as a major fingerprint of climate change is of great interest to 

conservationists and ecologists. Many hypotheses have been proposed regarding the direction 

and the speed of species’ distribution shifts. However, few have been tested with data of recent 

distribution shifts at the continental scale. Additionally, the relative influences of temperature, 

precipitation, average climate, and extreme climate conditions on the shifting distributions are 

not clear. In this study, we quantify the directions and speed in the geographical distributions of 

57 North American permanent resident birds using a distribution centroid method. We first test 

the multi-directionality of these shifts. We then compare the speed of the shifts between birds 

occurring primarily in mountainous regions and flat regions, to test a hypothesis based on 

climate change velocity hypothesis. Lastly, for the species with significant distribution changes, 

we compare the influence of two pairs of climatic factors (temperature with precipitation, and 

extreme climate with average climate condition) by modelling species population change rate 

using different sets of climatic data. Our results show that, over the past four decades, 36 of 57 

bird species shifted their distribution significantly. There is strong evidence that the climate 

change fingerprint in avian distribution is multi-directional. Our findings do not support the 

climate velocity prediction and show that the speed of the distribution shifts for the plain birds is 

not significantly faster than that of the mountain birds. For most species, the average climate 

model and the temperature model have stronger associations with the population change rate 
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than the precipitation and extreme climate models. For some species, however, the extreme 

climate model and the precipitation models have considerable advantages in explaining their 

shifting distributions, and they show great potential to supplement and extend the study of 

species distribution which traditionally focuses on average temperature measures. Our study 

improves the understanding of the extent and characteristics of the recent climate change 

fingerprint. It also presents a complex picture of how species respond to recent environmental 

changes at the continental scale. The results highlight the need for a more species-specific 

approach to examine the contributing factors to such rapid changes and the need for 

comprehensive conservation planning and practices for adaptation. Furthermore the study also 

emphasizes the values of climatological records with fine temporal resolution on which the 

extreme climate events can be better characterized.   

4.2 Introduction 

Global climate has rapidly changed in the past century and is projected to change further at an 

unprecedented rate (IPCC 2014). This poses a great threat to global biodiversity because the rate 

of climate change will most likely outpace the ability of species to relocate or adapt(Walther et al. 

2002, Parmesan and Yohe 2003, Loarie et al. 2009). Shift in species distribution is considered 

one of the major fingerprints of climate change, and thus has been of great interest to ecologists 

and conservation practitioners(Parmesan and Yohe 2003). Recent meta-analyses have concluded 

that a wide range of animal and plant species have been exhibiting shifts in their distribution 

(Walther et al. 2002, Parmesan and Yohe 2003, Root et al. 2003, Chen et al. 2011). Most prior 

studies have focused on latitudinally poleward and elevationally upward shift of species 

distributions (Thomas and Lennon 1999, Parmesan et al. 1999, Hickling et al. 2006, Hitch and 

Leberg 2007). This is, in part, because latitude and elevation are broadly correlated with surface 
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temperature,  the biological responses to which are relatively better understood and more 

predictable for most species (Root et al. 2003). However, temperature, particularly the average 

temperature metrics used by many climate change studies, is not the only climatic factor that has 

a profound impact on species distributions. Other factors such as precipitation and the 

combination of temperature and precipitation can be closely related to shifts in species’ 

geographical distributions, and the resulted changes could also be multi-directional (Gillings et al. 

2015). However, evidence to support such hypotheses are mostly based on model projections or 

regional studies (Tingley et al. 2009, VanDerWal et al. 2013, Gillings et al. 2015) which utilize 

only limited amount of data and are not idea to be used to examine multi-directional distribution 

shifts. A systematic analysis that examines the multi-directionality of the recent climate change 

fingerprint at the continental scale is lacking.  

A major recent contribution defines the speed of climate change fingerprint based on the concept 

of climate change velocity (Loarie et al. 2009), a minimum distance required at a specific 

location to catch up with climate change. I was hypothesized that greater topographic variability 

in mountainous areas leads to a greater spatial gradient of surface temperature which in turn 

results in lower climate change velocity. Therefore, it was hypothesized that smaller 

geographical displacements  (slower speed of distribution change) are required for species in 

mountainous regions to keep pace with increasing temperature (Loarie et al. 2009). In contrast, 

faster speeds of distribution change are required in relative flat regions. To improve our 

understanding on how species respond to the changing environments, there is a need to better 

understand the speed of climate change fingerprint and to test existing hypotheses. Evaluating 

the speed of recent climate change fingerprint on a large number of species and testing the 

climate change velocity hypothesis would provide valuable information to this end. 
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Furthermore, most of the studies examining the impact of global climate change, including the 

climate velocity hypothesis, have focused on the effect of climatic conditions derived on monthly 

or seasonal weather data, such as mean seasonal or annual temperature (Guisan and 

Zimmermann 2000, Root et al. 2003, Parmesan 2006, Alexander et al. 2006, Pereira et al. 2010). 

Climate-based species distribution models also rely heavily on mean seasonal climate conditions 

as predictive variables (Guisan and Zimmermann 2000, Pearson and Dawson 2003, Hijmans and 

Graham 2006, Pereira et al. 2010). However, there is a increasing number of studies that showed 

the frequency and intensity of extreme climate events could have great impacts on species 

ecology and spatial distribution (Karl et al. 1999, Parmesan et al. 2000, Easterling et al. 2000). 

Recent studies also show that the decrease in frequency of extreme cold weather events have 

enabled a few species to increase abundances in poleward  direction where they used to be 

limited by winter condition (Crozier 2003, Cavanaugh et al. 2014). However, little is known 

about the relative influences of average and extreme climate events on the changing distributions 

of avian species. The selection of climatic predictors in the species distribution models is a 

important source of model uncertainty(Braunisch et al. 2013, Barbet-Massin and Jetz 2014). 

However very few studies have examined the most relevant and influential climatic predictors at 

large spatial scale for a wide group of species (Barbet-Massin and Jetz 2014). Our study is 

seeking to examine the impact of different sets of climatic metrics on changing distribution shifts. 

The overall goal of this study is to understand the direction and speed of the recent climate 

change fingerprint in avian species distributions in North America and to examine the influence 

of different climatic factors on such changes. Specifically the objectives of this study are three 

fold. We first test the multi-directionality of the climate change fingerprint in avian distributions 

by quantifying the cardinal direction of recent distribution shifts of 57 North American 
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permanent resident birds. We then test the hypothesis that species in mountainous regions shift 

their distributions slower than species in the plain regions. Finally we contrast the influence of 

two pairs of climatic factors, temperature with precipitation, and extreme climate with average 

climate condition on species distribution shifts that showed significant change. We utilize 44 

years of Breeding Bird Survey (BBS) data and characterize the direction and speed of the 

distribution shifts using a centroid method (Huang et al. 2015). Birds are classified into mountain 

and plain species based on their primary ranges, and shift characteristics are compared between 

two classes. Four climate models: average climate, extreme climate, temperature, and 

precipitation models, are established to explain the regional abundance changes of species with 

significant distribution shifts (Figure 4-1).  

 

Figure 4-1 Flow chart showing data, methods, hypotheses, and research question in chapter 4. 
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4.3 Data & Methods 

4.3.1 Bird Data 

We used the North American Breeding Bird Survey (BBS) data to estimate the avian distribution 

shifts. BBS is an annual road side survey with more than 5000 routes covering the contiguous 

United States, southern Canada, and northern Mexico. Since the beginning of the survey in 1966, 

every year during the breeding season, competent volunteers survey routes using a protocol of 3 

minute point counts at each of the 50 sample points along the 39.43km long route. Birds heard 

and seen within 0.4 km radius are recorded (Robbins 1986, Sauer et al. 2014). We included the 

43 years (1969-2012) of BBS data in the contiguous U.S. and southern Canada for our analysis, 

because the spatial and temporal coverage of the data are more consistent for the selected regions 

and period. We analyzed the distributions of 57 permanent resident bird species using a centroid 

method (Appendix III-1).  Species are classified as plain species if more than 50% of their ranges 

are within plain or lowland ecoregions with small topographic variability, otherwise the species 

are classified as mountain species. The classification resulted in 17 plain species and 40 

mountain species (Appendix III-1). 

4.3.2 Bird Distribution Centroid 

The annual centroids of bird distributions were calculated following methods outlined in Huang 

et al. (2015). The method divided each bird species range into a list of physiographic strata 

which were delineated by the union of the U.S. states, Canadian provinces, and Bird 

Conservation Region (BCR) boundaries. A hierarchical Bayesian model was used to calculate 

the stratum-specific population abundance 𝑁𝑖𝑡 each year (Link and Sauer 2002, Huang et al. 

2015). The annual centroid was calculated as the yearly mean of strata centroids weighted by 𝑁𝑖𝑡 
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(See Chapter 3 for detailed description of the model). The sum of population abundance indices 

over all strata is also estimated as an index for total population of each species.   

Inferences for both directly estimated and derived parameters (e.g. centroid coordinates and 

population abundance indices) in the analysis are based on posterior distributions, because we 

used the Markov Chain Monte Carlo (MCMC) method to fit the hierarchical Bayesian models. In 

this study, we created 3 independent Markov chains. Each chain had 20,000 iterations, the first 

10,000 of which were discarded (burn-in samples). After the first 10,000 iterations, posterior 

samples were collected every 50 iterations (thinning rate of 50) so that estimates of posterior 

distribution were based on the 600 (3 chains × 10,000 iterations/50 thinning rate) sample values. 

Based on prior testing and procedures in Huang et al. (2015), this setting is sufficient for 

characterizing significant changes of distribution. We consistently collected the same number of 

posterior samples for each 𝑁𝑖𝑡 and centroid coordinates. The posterior samples were used to 

estimate statistical attributes such as median value and confidence interval (CI) of parameters. 

For each species, we regressed annual centroids’ latitudinal and longitudinal coordinates against 

year. We then fitted 600 linear regression models. The species were identified as having a 

significant distribution shift in one of the four directions (northward, eastward, southward, and 

westward) if the regression slope was significantly larger or lower than 0. A 95% CI value was 

used to determine statistical significance. For example a significantly positive slope in latitudinal 

direction indicates significant northward distribution shift. 

The speed of the distribution change (km/y) was characterized as the average distance between 

consecutive annual distribution centroids. Widespread species with more distant physiographic 

strata tend to have larger potential variability in centroid locations (Huang et al. 2015). To 
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account for the differences of range sizes, we calculated the ratio of annual shift speed to the 

average maximum distance across range to measure the speed while accounting for range sizes. 

4.3.3 Average Climate Indices 

Average climate conditions were characterized by using Bioclimatic indices (hereafter bioclim 

variables). The indices were derived based on monthly temperature and precipitation data. The 

indices are commonly used in ecological niches models/ species distribution models, and 

primarily depict annual trends and seasonality measured at relatively coarse temporal scales (e.g. 

mean temperature of the warmest month, precipitation of the driest quarter). We used the station-

based monthly data from United States Historical Climatology Network (USHCH) version 2.5 

serial (Williams, Jr., et al. 2006, Menne et al. 2009). Then we used the “dismo” package 

(Hijmans et al. 2015) on R statistical program (R Development Core Team 2011) to calculate 19 

bioclim variables using data from each weather station (Table 1). Out of 19 bioclim variables, 11 

were temperature indices, while 7 were precipitation indices (Table 1). Stations were selected if 

they consistently had climate record over the periods of 1969-1978 and 2003-2012. The change 

of mean and standard deviation of the index values between the two periods were tabulated in 

each station.  

4.3.4 Extreme Climate Indices 

We used the indices defined by the Expert Team on Climate Change Detection and Indices 

(ETCCDI) to capture change of climate extremes (Sillmann and Roeckner 2007). The ETCCDI 

indices were derived from daily temperature and precipitation data that support more detailed 

measurement of extreme climate events such as the annual frequency of days with temperatures 

below 0 degree Celsius and the maximum number of dry spell days. We used the station-based 
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15 ETCCDI extreme climate indices (Table 1) modeled and reanalyzed by Coupled Model 

Intercomparison Project Phase 5 (CMIP5)(Sillmann et al. 2013). Among the 15 ETCCDI indices, 

7 of them measure temperature related events, and 8 of them measure precipitation related events 

(Table 1). Station data in the United States were selected, again, if they had the full coverage of 

the specific ETCCDI index values over the periods of 1969-1978 and 2003-2012. The change of 

a specific index’s mean and standard deviation value between two periods were calculated for 

each station. 

4.3.5  Population Change Rate & Climatic Models 

For each stratum the changes of climatic conditions were summarized as the maximum, 

minimum, median value of the climatic metrics of all available weather stations. This generated 

57 (19×3) bioclimatic metrics and 45 (15×3) extreme climatic metrics for each stratum. To 

prepare for comparing the effect of temperature and precipitation, we also grouped all 

temperature metrics (54) and precipitation metrics (45).  

Species with significant shift in at least one direction were selected for population change rate 

modeling utilizing different sets of metrics. We calculated the stratum-specific population 

change rates for each species. The growth rate 𝑟𝑖 was defined as the natural logarithm of the ratio 

of the average abundance indices in 2003-2012 to the average abundance indices in 1969-1978. 

The 10 year mean was used to average out the short term variability of population and climatic 

fluctuations. 

𝑟𝑖 = 𝑙𝑜𝑔𝑒

𝑁𝑖2003− 2012
𝑁𝑖1969− 1978 
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A positive r indicates an increasing population, whereas a negative r, a declining population.  Six 

hundred posterior samples of population change rates were calculated at each stratum based on 

the posterior samples of population abundance indices.  

We established four climate models to evaluate the influences of the changes of different types 

of climatic factors on the population change rate across strata for the species with significant 

shifts. The average climate, extreme climate, temperature, and precipitation models were built 

utilizing 54 temperature metrics (33 bioclim metrics & 21 extreme climate metrics), 45 

precipitation metrics (21 bioclim metrics & 24 extreme climate metrics), 57 average climate 

metrics, and 45 extreme climate metrics, respectively. To maintain the consistent data coverage 

of these climatic data, we only modeled the population change rate with the strata in the U.S. 

We used the random forests (RF) algorithm to model the population change rate at different 

strata for each species. The RF model is known to perform well with small number of 

observations and large number of predictive variables without overfitting (Breiman 2001). 

Specifically, when building a random forest model, about 37% of data are randomly drawn as the 

out-of-bag (OOB) observations and excluded in the model construction. The OOB error 

estimation provides a cross-validation mechanism, thus normally test sets or extra cross-

validation is not necessary. The performance of the random forest models was estimated using 

percent of variance explained (% var. explained or PVE from hereafter) = 1- MSE/ observed 

variance, where MSE is mean square error between OOB predictions (Breiman 2001, Wei et al. 

2010). The measure of PVE, ranging from 0 to 1, works similarly as the r-squared value in 

measuring model performances. However if the OOB-predicted MSE is larger than the variance 

of the observed response, as happens when the predictors perform poorly to predict the responses, 

the PVE can be negative. Overall the RF model is especially well suited for our study because 
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the model is robust even with significant covariance between predictive variables (Breiman 2001, 

Biau 2012), which commonly exists between a variety of climatic and habitat metrics (Huang et 

al. 2014).   

We used the RandomForest R package (Liaw and Wiener 2002) in the R statistical program (R 

Development Core Team 2011) to build RF models. For each species and each type of climate 

model, we built 600 iterative RF models based on the number of posterior samples. We set the 

number of trees to be 4000 for all RF models to allow convergence of mean residual error so the 

PVE remained stable regardless of the random seed used. The values of the mean PVE were 

averaged among 600 models. The models with negative average PVE cannot significantly 

explain the variability of population change rate, and thus are marked as accounting for zero 

average PVE. We then compared the model performance differences (differences in average 

PVE) between 2 pairs of models (average climate model with extreme climate model, 

temperature model with precipitation model). 

  



78 

 

 

Table 4-1 Climatic metrics used in the analysis. The average climate conditions are 

characterized by the 19 Bioclim metrics, and the extreme climate conditions are characterized by 

the 15 ETCCDI metrics. Each metric set contains both the temperature metrics (Temp) and 

precipitation metrics (Precp). 

Bioclim 
Metrics 

Definition Class  ETCCDI 
Metrics 

Definition Class 

Bio1 Annual mean 
temperature 

Temp  FD Number of frost days: Annual count 
of days when TN (daily minimum 
temperature) < 0°C. 

Temp 

Bio2 Mean Diurnal 
Range (Mean of 
monthly (max temp 
- min temp)) 

Temp  SU Number of summer days: Annual 
count of days when TX (daily 
maximum temperature) > 25°C. 

Temp 

Bio3 Isothermality 
(BIO2/BIO7) (* 100) 

Temp  ID Number of icing days: Annual count 
of days when TX (daily maximum 
temperature) < 0°C. 

Temp 

Bio4 Temperature 
Seasonality 
(standard deviation 
*100) 

Temp  TR Number of tropical nights: Annual 
count of days when TN (daily 
minimum temperature) > 20°C. 

Temp 

Bio5 Max Temperature 
of Warmest Month 

Temp  GSL Growing season length: Annual 
count between first span of at least 
6 days with daily mean temperature 
TG (daily mean temperature)>5°C 
and first span after July 1st of 6 days 
with TG<5°C. 

Temp 

Bio6 Min Temperature 
of Coldest Month 

Temp  WSDI Warm spell duration index: Annual 
count of days with at least 6 
consecutive days when TX > 
90th percentile 

Temp 

Bio7 Temperature 
annual range (bio5-
bio6) 

Temp  CSDI Cold spell duration index: Annual 
count of days with at least 6 
consecutive days when TN < 
10th percentile 

Temp 

Bio8 Mean Temperature 
of Wettest Quarter 

Temp  SDII Simple precipitation intensity index Precp 

Bio9 Mean Temperature 
of Driest Quarter 

Temp  R10mm Annual count of days when PRCP≥ 
10mm 

Precp 

Bio10 Mean Temperature Temp  R20mm Annual count of days when PRCP≥ Precp  
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of Warmest 
Quarter 

20mm 

Bio11 Mean Temperature 
of Coldest Quarter 

Temp  CDD  Maximum length of dry spell, 
maximum number of consecutive 
days with RR(daily precipitation) < 
1mm 

Precp 

Bio12 Annual 
precipitation 

Precp  CWD Maximum length of wet spell, 
maximum number of consecutive 
days with RR ≥ 1mm 

Precp 

Bio13 Precipitation of 
Wettest Month 

Precp  R95P Annual total PRCP when RR > 95p Precp 

Bio14 Precipitation of 
Driest Month 

Precp  R99P  Annual total PRCP when RR > 99p Precp 

Bio15 Precipitation 
Seasonality 
(Coefficient of 
Variation) 

Precp  DRCPtot Annual total precipitation in wet 
days 

Precp 

Bio16 Precipitation of 
Wettest Quarter 

Precp     

Bio17 Precipitation of 
Driest Quarter 

Precp     

Bio18 Precipitation of 
Warmest Quarter 

Precp     

Bio19 Precipitation of 
Coldest Quarter 

Precp     

4.4 Results 

We first report the summary of the species with significant distribution shifts, and show the 

direction and speed of these shifts. Secondly we report the differences of shift characteristics 

between mountain bird and plain bird classes. Finally, for species with significant shifts, we 

show the relative performance between the two pairs of climatic models (temperature model with 

precipitation model, and the extreme climate model with average climate model) in explaining 

the variability of population change rate across strata.   
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4.4.1 Multi-directionality 

Among the 57 permanent resident species selected, 63% (36) showed significant centroid shifts 

in at least one direction (Figure 4-2,
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Table 4-2,).  19 of these 36 species moved northward, while 3 shifted southward. In the 

longitudinal direction, 16 of the significant shifts occurred eastward, while 17 westward. Note 

that the latitudinal and longitudinal directional shifts are not mutually exclusive (Figure 4-3, 
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Table 4-2). 

Species with a significant increase in total population accounted for the greatest number (44% 

(16)) of the significant centroid shifts, followed by species with a significant decline of total 

population (31% (11)), and the ones with stable population (25% (89)) (Table 4-3). The species 

with increased populations accounted for the largest number of shifts in all directions except the 

southward shift, which did not include any species with growing population (Table 4-3).   
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Table 4-2 36 species with significant distribution shifts. The direction columns (north, south, east, and west) indicating whether a 

species was identified having significant distribution shift over the specific direction. The species population status (increased, stable, 

and decreased total population), guild membership (whether the species is primarily distributed in flat regions), distribution shift 

speed (raw speed and standardized speed using speed-to-range-width ratio) are also presented.  

ID Scientific Name Common Name north south east west population 
status 

Plain Index Speed 
(km/y) 

speed to 
range 
width 
ratio 

0 Colinus virginianus Northern Bobwhite TRUE FALSE FALSE TRUE Decreased TRUE 36.3 0.0158 

1 Callipepla 
californica 

California Quail FALSE FALSE TRUE FALSE Increased FALSE 57.0 0.0421 

2 Meleagris 
gallopavo 

Wild Turkey TRUE FALSE TRUE FALSE Increased FALSE 30.0 0.0091 

3 Columbina 
passerina 

Common Ground-
Dove 

FALSE FALSE FALSE TRUE Stable TRUE 21.7 0.0109 

4 Columbina inca Inca Dove FALSE FALSE TRUE FALSE Increased TRUE 26.4 0.0197 

5 Coragyps atratus Black Vulture TRUE FALSE FALSE TRUE Increased FALSE 31.5 0.0130 

6 Bubo virginianus Great Horned Owl FALSE TRUE TRUE FALSE Decreased FALSE 29.6 0.0066 

7 Geococcyx 
californianus 

Greater Roadrunner FALSE TRUE TRUE FALSE Stable TRUE 27.4 0.0154 

8 Picoides villosus Hairy Woodpecker FALSE FALSE TRUE FALSE Increased FALSE 22.0 0.0048 

9 Picoides pubescens Downy Woodpecker FALSE FALSE TRUE FALSE Increased FALSE 23.3 0.0051 

10 Dryocopus pileatus Pileated Woodpecker TRUE FALSE TRUE FALSE Increased FALSE 20.4 0.0053 

11 Melanerpes 
carolinus 

Red-bellied 
Woodpecker 

TRUE FALSE FALSE TRUE Increased TRUE 10.8 0.0050 

12 Cyanocitta stelleri Steller's Jay TRUE FALSE FALSE TRUE Stable FALSE 13.5 0.0074 

13 Aphelocoma 
californica 

Western Scrub-Jay TRUE FALSE FALSE TRUE Stable FALSE 16.6 0.0085 

14 Corvus corax Common Raven FALSE FALSE FALSE TRUE Increased FALSE 20.1 0.0045 

15 Corvus ossifragus Fish Crow TRUE FALSE FALSE TRUE Increased TRUE 12.1 0.0065 

16 Quiscalus Great-tailed Grackle FALSE FALSE FALSE TRUE Increased FALSE 10.7 0.0056 
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mexicanus 

17 Cardinalis 
cardinalis 

Northern Cardinal TRUE FALSE FALSE TRUE Increased TRUE 7.2 0.0023 

18 Mimus polyglottos Northern Mockingbird TRUE FALSE FALSE FALSE Decreased FALSE 27.0 0.0077 

19 Toxostoma 
curvirostre 

Curve-billed Thrasher TRUE FALSE FALSE FALSE Decreased FALSE 11.2 0.0082 

20 Thryothorus 
ludovicianus 

Carolina Wren TRUE FALSE FALSE TRUE Increased TRUE 28.6 0.0137 

21 Sitta carolinensis White-breasted 
Nuthatch 

FALSE FALSE TRUE FALSE Increased FALSE 46.4 0.0123 

22 Baeolophus bicolor Tufted Titmouse TRUE FALSE TRUE FALSE Increased TRUE 20.1 0.0090 

23 Poecile atricapillus Black-capped 
Chickadee 

FALSE FALSE TRUE FALSE Increased FALSE 62.6 0.0153 

24 Poecile carolinensis Carolina Chickadee TRUE FALSE FALSE FALSE Decreased TRUE 13.0 0.0072 

25 Poecile gambeli Mountain Chickadee TRUE FALSE FALSE TRUE Decreased FALSE 47.8 0.0251 

26 Poecile rufescens Chestnut-backed 
Chickadee 

FALSE FALSE TRUE FALSE Decreased FALSE 16.6 0.0115 

27 Psaltriparus 
minimus 

Bushtit FALSE FALSE TRUE FALSE Stable FALSE 52.8 0.0247 

28 Auriparus flaviceps Verdin FALSE TRUE TRUE FALSE Decreased FALSE 28.7 0.0224 

29 Callipepla 
squamata 

Scaled Quail FALSE FALSE FALSE TRUE Decreased TRUE 22.4 0.0175 

30 Tympanuchus 
phasianellus 

Sharp-tailed Grouse FALSE FALSE TRUE FALSE Stable TRUE 33.5 0.0190 

31 Spinus psaltria Lesser Goldfinch TRUE FALSE FALSE TRUE Stable FALSE 44.8 0.0212 

32 Aimophila ruficeps Rufous-crowned 
Sparrow 

TRUE FALSE FALSE TRUE Decreased FALSE 17.5 0.0112 

33 Cardinalis sinuatus Pyrrhuloxia TRUE FALSE FALSE TRUE Decreased TRUE 12.3 0.0112 

34 Catherpes 
mexicanus 

Canyon Wren FALSE FALSE FALSE TRUE Stable FALSE 28.1 0.0138 

35 Sitta pusilla Brown-headed 
Nuthatch 

TRUE FALSE TRUE FALSE Stable TRUE 8.3 0.0059 
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Figure 4-2 Right: the number of species with and without significant distribution shifts. Left: The 

number of species that experienced significant shifts in different directions. 
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Figure 4-3 Left: the directions and magnitudes of the centroid movement between 1969 and 2012 for 36 species with significant shifts. 

The arrows point from the 1969 centroids to the 2012 centroids. The color of the arrows denotes the type of biomes in which the 

species are predominately distributed. The labeled numbers associate with the species ID listed in Table 2. The plot at the lower right 

shows the magnitude of the shifts where the center point (0, 0) represents the centroids of all species in 1969; the circles represent 

their shifted centroid in 2012.
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Table 4-3 The comparison of the numbers and percentage of species with significant centroid 

shift and with increased, decreased, or stable total population. The percentage values represent 

the proportion of the numbers over total number of species (36) with significant centroid shifts. 

Shifted direction Increased total 
population 

Stable total 
population 

Decreased total 
population 

Northward (19, 53%) 8 (22%) 4 (11%) 7 (19%) 

Southward (3, 8%) 0 (0%) 1 (3%) 2 (6%) 

Eastward (16, 44%) 9 (25%) 4 (11%) 3 (8%) 

Westward (17, 47%) 7 (19%) 5 (14%) 5 (14%) 

Total Species shifted (36, 100%) 16 (44%) 9 (25%) 11 (31%) 

 

4.4.2 Speed of Climate Change Fingerprint 

Speed wise, the species with significant northward shifts had the slowest average speed, 21.5 

km/y. In contrast, the species with significant eastward movements shifted the fastest (31.6 

km/y), followed by the species that shifted southward (28.6 km/y), and those that shifted 

westward (22.5 km/y) (Figure 4-4). The speed-to-range-width ratio also showed that the species 

with significant northward shifts had the slowest average speed in comparison to species that 

shifted in other directions (Figure 4-4). 
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Figure 4-4 Top: the speeds of the distribution shift in four directions. Bottom: the speed of the 

distribution shift measured in speed-t- range-width ratio accounting for the size of the species 

ranges. The notches denote 1.58 * Inter quintile range (25-75) / sqrt(n).   

4.4.3 Mountain Birds vs Plain Birds 

In all directions plain species consistently had a higher proportion of species that experienced 

significant distribution shift than that of the mountain group. For the plain species, the highest 

proportion occurred in the northward direction, 53% (14) shifted significantly, followed by 

westward direction, eastward direction, and southward direction (respectively with 47% (8), 29% 
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(5), 6% (1) shifted significantly) (Table 4). For the mountain species, the highest proportion 

occurred at the eastward direction with 28% (11) shifted significantly, followed by northward, 

westward, and southward direction (respectively with 28% (11), 23% (9), 5% (2) shifted 

significantly) (Table 4). Overall, 82% (14) of plain species shifted significantly in at least one 

direction, whereas the number is 55% (22) for mountainous species. 

Table 4-4 The percentage (number) of species in the plain species and mountainous guilds that 

exhibited significant shifts in different directions.  

 North South East West Total Species 

Shifted 

Plain species 

(17) 

53% (9) 6% (1) 29% (5) 47% (8) 82% (14) 

Mountainous 

Species (40) 

25% (10) 5% (2) 28%  (11) 23% (9) 55% (22) 

 

Among species that had significant centroid shift, the average speed of the centroid for the plain 

species was 20 km/y. The average speed was 30 km/y for mountainous species, slightly faster 

than that of the plain species, although the difference is not statistically significant (Figure 4-5). 

Considering the size of the range, although the average speed-to-range-width ratio for plain 

species is slightly faster than the mountain species, the difference is still not statistically 

significant (Figure 4-5). 
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Figure 4-5 Speed of the centroid shifts between mountainous birds (40) and plain birds (17) that 

have significant distribution changes. The mountain birds’ annual centroid movement with or 

without taking into consideration of range width, is not significantly slower than that of the plain 

birds (Both t-test and Wilcoxon- test used with 95% confidence interval). Top: comparison in 

speed (km/y). Bottom: comparison in speed-to-range-width ratio accounting for the size of the 

ranges. The notches show 1.58 * Inter quintile range (25-75) / sqrt(n). 

4.4.4 Influence of Different Climatic Factors on Shifting Distributions 

Among the 36 species with significantly centroid shifts, 22 species were influenced by the 

average climate or extreme climate model - with positive average PVE in at least one of the 

model (Appendix III-2). The average climate models explained 13.2% of the variability of the 

population change rate, whereas the extreme climate models explained 9.2%. Similarly, 23 

species have larger than 0 PVE in either the temperature model or the precipitation model. The 
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temperature models on average accounted for 14% of population change rate variability, whereas 

the precipitation models explained 12%. 

Pair comparisons between models showed large variability of model performance across species. 

The average climate model had a higher PVE than the extreme climate model for 16 species, 

most of which had increased populations during the study period (Figure 4-6). The biggest 

margin was 23.1% for Tufted Titmouse (ID 22) whose population increased significantly during 

the study period (Figure 4-6). The average climate model explained many of the fastest shifting 

distribution better than the extreme climate model (e.g. ID=6, ID=2 in Figure 4-6). 

Comparatively the extreme climate model had higher PVE for 7 species; however, the margins 

were in general smaller. The biggest margin was 10.1% for the Curve-billed Thrasher (ID 19), 

which had a decreased population.  

Correspondingly, when comparing the model performances between the temperature model and 

the precipitation model, most of species (n=13) showed a higher PVE by the temperature model 

(Figure 4-7). The species with relatively high differences between the two models’ performance 

were mostly centered in the south (Figure 4-7). The biggest margin was 34.6% for Northern 

Cardinal (ID 17). On the other hand, 10 species had higher PVE by the precipitation model. 

However almost all the differences were very small (< 3%) with the exception of Inca Dove (ID 

4), for which the precipitation model explained 31.0% more variance of the population change 

rate than the temperature model (Figure 4-7). 

Detailed examination of the individual models with prominent differences of PVE showed that 

the agreement between observed and predicted values improved mostly over the sections of 

intermediate population change rate. In most models (Figure 4-6, Figure 4-7), the population 
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change rates tend to be over-predicted and under-predicted at the lower and upper end of the 

range respectively (Figure 4-8). Although some models showed a strong ability to predict overall 

variability of the growth rate (e.g. Figure 4-8), they appeared unable to predict both population 

growth and decline. For instance, all four models in Figure 4-8 predicted no population declines 

(negative r), which occurred in small number of regions. In comparison, for Northern Bobwhite, 

a species with predominantly declining population, none of the models predicted population 

increases that were present within small part of the strata (whose plot is not shown here). 
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Figure 4-6  The differences of % variance explained between the extreme climate models and average climate models. The colors of 

the circles represent the direction of the differences (either the extreme climate model or the average climate model performs better). 

The sizes of the circle indicate the margin of the differences. B: The frequencies of model differences and the population status of the 

species involved.   

 



94 

 

 

Figure 4-7 A: The differences of % variance explained between the temperature models and precipitation models. B: The frequencies 

of model differences and the population status of the species involved.   
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Figure 4-8 Modeled vs. actual population change rate for four species with high margin of 

percent variance explained compared with their counterpart models. 

4.5 Discussion 

Avian species, being highly vagile, can respond quickly to changes in climate conditions 

(Tingley et al. 2009). Previously, the multi-directional climate change fingerprint was only 

hypothesized based on model projection (VanDerWal et al. 2013) or observed at regional scales 

(Tingley et al. 2009, Gillings et al. 2015), which does not inform the pattern of continental scale 

movement of species geographical distributions. Our study provides the first evidence to support 

such hypothesis based on analysis of recent North American bird distributions at the continental 

scale. The multi-directionality could likely be the results of combinations of different climatic 

factors and different ecological processes at various regions. We discuss in more detail below. 



96 

 

Our finding showed similar speed of distribution shift between mountain birds and plain birds 

which do not support the prediction based on climate change velocity hypothesis (Loarie et al. 

2009). Prior studies on non-avian species demonstrated that the speed of the distribution changes 

does not always keep pace with the climate change velocity (Lenoir et al. 2008). Although avian 

species have great mobility, many constraints could still be associated with the delayed shift of 

species distributions following the change of climatic conditions (Gear and Huntley 1991, Hill et 

al. 1999). The distributions of suitable habitat and biotic factors such as prey and predator would 

likely be key limiting factors. Alternatively, since topographic variability closely associates with 

habitat heterogeneity (Kerr and Packer 1997, Huang et al. 2014), the habitat in mountainous 

biomes tends to be more heterogeneous. Suitable habitat niches, which feature not only suitable 

mean temperature and precipitation, but also habitat and biotic attributes, could be further away 

in these biomes, and thus could result in faster distribution shifts. Interestingly, we did observe a 

greater percentage of plain species exhibited significant distribution shifts, which might reflect 

drastic environmental changes in flat biomes that disproportionally affect grassland bird 

populations (Peterjohn and Sauer 1999, Brennan et al. 2005). 

Classical ecological theories hypothesize that along a key environmental gradient, species appear 

to be physically constrained in one direction and biologically constrained in the other (Brown et 

al. 1996, Guisan and Thuiller 2005). Regardless of the type of forces in play, the predominant 

northward shifts and rare southward shifts observed in our study show that the factors 

constraining population in the northern and southern ranges have been disproportionally affected. 

The stressors limiting species’ northern population seem to have weakened, while those in the 

southern ranges remained relatively unchanged. This appears to agree with conventional theories 

that wintering birds northern distributions are limited primarily by ambient temperature in winter 
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(Root 1988) which can be lifted by warming climate (Jeffree and Jeffree 1994). On the other 

hand, the southern distribution are believed to be limited mostly by other climatic factors and 

biotic interaction and their connection with climate change is less straightforward (Gaston 2003, 

Sagarin et al. 2006). Most interestingly, in the longitudinal direction, the results show that the 

environmental forces that limit species distributions might be highly susceptible to changing 

climate conditions. Species distribution are shifting eastward and westward as rapidly as the 

northward shifts.  

The selection of appropriate predictive climatic variables is critical in terms of establish accurate 

and transferable species distribution models (Barbet-Massin and Jetz 2014). The predictor 

selection issue is also something that received little attention, and most studies just include all 19 

bioclimatic metrics which are the most available and widely used climatic predictors. Our 

research here is an attempt to separate and examine the relative influence of different types of 

climatic predictors on avian distribution shifts. Most prior studies have attributed the poleward 

shifts of avian distributions to the increase in average temperature (Williamson 1975, Thomas 

and Lennon 1999, Hitch and Leberg 2007, La Sorte and Thompson 2007, Maclean et al. 2008). 

Here, we compared the influences of the average, extreme climate conditions, precipitation and 

temperature on the multi-directional shifts of avian distribution. It is particularly worth noting 

that extreme climate conditions are known to have a profound impact on terrestrial ecosystems. 

These extreme conditions have been documented to directly or indirectly affect species 

distribution, community structure, abundance, and many life history traits such as morphology, 

and reproduction (Parmesan et al. 2000, Rittenhouse et al. 2010, Cavanaugh et al. 2014). The 

influence of extreme climate on species distribution can also be multi-directional, because one 

extreme climate event can often have opposite effects among different species or even among 
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subspecies in the same habitat (Parmesan et al. 2000). Although extreme climate events in large 

magnitude and frequency would eventually affect the measurement of average climate metrics 

(they are thus correlated to some extent), species that are directly affected by extreme climate 

associate more closely with metrics and models based on frequencies and severity of weather 

events (Cavanaugh et al. 2014), and will be better modeled by using extreme climate metrics and 

models. Our study demonstrated that compared with averaged seasonal or annual weather 

metrics the variability in daily climatological record can have more direct influence on long-term 

population dynamics and distribution shift for some avian species. Thus, it supplements and 

extends common methods of modeling species distribution based solely on average climate 

metrics such as bioclim variables or on temperature measures. Future research is needed to 

determine the link between those ecological processes and species-specific ecological responses. 

Our study highlights the importance of documentation, digitization and quality-control of not just 

temperature but also precipitation at fine temporal scale which will be one of the critical links to 

understand how species respond to climate change and to future endeavors in prognostic 

modeling of species distributions. 

The change of land cover, human population and housing density are closely related to resources 

and disturbances available to wildlife (Thuiller et al. 2006, Midgley et al. 2006, Rittenhouse et al. 

2012), and thus are possible alternative factors that can lead to systematic shifts of species 

distributions. In tests of alternative hypotheses, for the shift of permanent resident bird ranges, 

we also tested the explanatory power of a non-climatic model utilizing changes of land cover 

types (urban, forest, grassland, barren, agriculture, and wetland) coverage and changes of rural 

and urban human population and housing density (See Appendix III-3 for detailed description 

about the method). We used the National Land Cover Databases 1992-2001 and 2011 (Fry et al. 



99 

 

2009, Homer et al. 2015) and U.S. census data of 1990 and 2010 (Minnesota Population Center 

2011). We sought to determine if habitat conversion and human population and housing density 

could be linked with some shifts of species distributions. The model performance of non-climatic 

models were compared with the 4 climate models based on climate data between 1988-1997 and 

2003-2012. The analysis showed that the non-climatic model did have better performances than 

the climatic models for a few species (e.g. pileated woodpecker, pyrrhuloxia, white-breasted 

nuthatch, and chestnut-backed chickadee) (Appendix III-4). For the majority of species, however, 

non-climatic models did not explain more variability of the population change rate than the best 

performing climatic model (Appendix III-4).  

While there is likely no single climatic metric that explains shifts of species distributions 

completely, different types of climatic and non-climatic factors might also be involved. Our 

results showed that, despite the considerable explanatory ability of the models utilizing single 

type of climatic metrics, they appeared to have limited ability to address both population increase 

and decrease. This might suggest that different ecological processes govern the growth and 

decline of most of populations on different fronts. For instance, as we explained before, if the 

northern range of a species is limited by winter condition, then the change of population in other 

parts of the range would likely be explained by alternative factors such as biotic interaction, or 

habitat conversion. Such multi-faceted population changes are suitable to be modeled using non-

parametric models such as RF, as they do not fit all data with a universal distribution or 

relationship. More importantly, in future models combining multiple aspects of climatic and non-

climatic environmental factors will be more useful in modelling and predicting multi-faceted 

population change and distribution shifts over broad scales.   
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Almost all the birds included in our study are wide spread species, and are not in immediate 

danger of extinction. However, the high ratio of multi-directional shifts suggests a high level of 

environmental changes that push to redistribute population across broad scale. If the trend is 

consistent across taxonomic groups, it would pose even greater threat to the conservation of rare 

species that have limited distribution and fragmented habitat (Walther et al. 2002, Songer et al. 

2012). In general, rare species are more likely to be specialists, highly dependent on specialized 

habitat and climate niches, and with limited dispersal ability. The combination of these factors 

makes them less likely to benefit from newly emerged suitable habitat and more vulnerable to 

drastic environmental changes, as they tend to have no means of relocation, or have few places to 

relocate to.  

4.6 Conclusion 

Our study show statistically significant distribution shifts in 36 of the 57 North American 

permanent resident bird species over the past 44 years. Our study provides strong evidence to 

support that the climate change fingerprint in avian distribution is multi-directional. It also shows 

that species distributions in flat ecoregions have been shifting no faster than the ones in the 

mountainous ecoregions, which did not support the prediction based on climate change velocity 

hypothesis. The trend holds even after controlling the size of the ranges. For most shifting 

species, the average climate model and the temperature model had stronger associations with the 

population change rate, but the extreme climate model and the precipitation models had 

considerable advantages in explaining shifting distributions for some species. 

 As the anthropogenic climate change and other environmental changes continue to alter the 

earth ecosystem at an unprecedented rate, it is increasingly critical to understand how species 
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distributions respond to drastic changes at broad geographical scale. Our study provides insight 

into the direction and speed of the recent climate change fingerprint associated with multi-

faceted climatic factors. The study presents a complex challenge for biodiversity conservation. It 

calls for more species-specific conservation planning and practices that must establish resilient 

wildlife habitat and reserve systems to prepare and adapt for such multi-directional and rapid 

changes of species distributions. 
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Chapter 5. Conclusion 

The development of remote sensing technologies, powerful computation capabilities, and 

sophisticated modeling approaches has presented new opportunities to the study of species 

distribution, particularly at broad geographical scales (Gaston 2003). My dissertation 

demonstrates that the combining physical geography methods with spatially explicit 

environmental data and long-term species records at continental scale can be a productive way to 

new discoveries in this field. This dissertation advances our existing knowledge regarding how 

avian species are distributed across heterogeneous landscapes, how these distributions have been 

changing, and what type of habitat or climatic factors have been closely associated with these 

distributions over short and long term. In doing so, my goal was to not only examine the new 

dimensions in habitat heterogeneity and evaluate recent fingerprint of climate change and the 

driving climatic factors, but also develop practical tools that can be used for future species 

richness modelling and species distribution monitoring.    

Specifically, the dissertation is composed of two parts. The first part (Chapter 2) focuses on the 

concept of habitat heterogeneity, a key ecosystem component that has long been hypothesized to 

determine species richness at different scales. The traditional ecological theory states that the 

diverse physical condition of habitat condition would lead to greater niche specialization, and 

eventually result in high species richness. However, due to the limitation of previous studies (e.g. 

limited availability of vegetation height data, lack of broad scale study, and limited habitat metric 

options), my first step was to develop a set of habitat metrics that could capture the spatial 

heterogeneity of vegetation height. Derived from gridded vegetation height maps across the 

continental U.S., I was able to characterize spatial arrangement of vegetation height information 
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using two methods. The first method relied on point-based segmentation algorithm to introduce 

height-structured habitat patches and edges. They coupled with a set of traditional patch-based 

habitat metrics to describe landscape level spatial arrangement of forest height. The second 

method directly applied the algorithms of second-order texture metrics on gridded height maps 

with a defined moving window. 

Although the correlation between avian richness and different height-structured metrics varied 

considerably across the spectrum of metrics created, some metrics consistently showed high 

association with the richness of woodland and forest edge guild. The results of the multivariate 

richness model also showed that when adding the selected four height-structured habitat metrics 

to the models using the traditional metrics, most of woodland and forest edge bird richness 

models’ performance were improved significantly.  Despite that the interior forest bird richness 

had low correlation with habitat metrics and low model performances regardless of the metrics or 

models involved, the study demonstrated that for some specific forest breeding bird guilds, the 

information of vegetation height heterogeneity imbedded in height-structured habitat metrics are 

highly efficient at characterizing their habitat conditions and modeling their species richness.  

The metrics used in this study also demonstrated practical ways of applying gridded vegetation 

height information to habitat suitability and species richness modeling for other species.  

While extracting height-structured habitat patches and habitat edges is a straight-forward way of 

relating vegetation height structure with well-understood ecological metrics, future research 

could address some methodological limitations of this study. The method in this dissertation 

relies on a point-based segmentation algorithm (a set of global thresholds) to classify continuous 

forest area into smaller patches with similar height values. The segmentation algorithm is not 

computationally intensive, and takes a relatively short amount of time to compute. More 
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sophisticated vertical patches and edges can be delineated by using segmentation algorithms that 

group pixels based not only on absolute values but the variation of neighboring values. Such 

region-based or object-based segmentation method can be conducted using commercial software 

such as Ecognition (Baatz et al. 2003) or open access packages such as EBImage (Pau et al. 2010) 

built on R statistical program. Once the segmentation process is done, instead of using Fragstats 

to calculate the patch-based metrics, an efficient alternative would be using R packages such as 

SDMTools (VanDerWal et al. 2011) in R statistical program. The incorporation of image 

segmentation and metrics calculation using a script-based platform like R can allow a more 

automated and reproducible process, and it will enable a smooth and organized project flow by 

combining pre-processing, metrics calculation, and results analysis together. Additionally, R also 

supports parallel computation, which is necessary for computationally expensive projects 

involving a large number of landscapes. 

Examining four decades’ of avian distribution changes in North America, the second part of the 

dissertation (Chapter 3 and Chapter 4) focuses on the direction and speed of long-term avian 

distribution shifts and evaluating the environmental factors associated with such shifts. These 

two chapters are motivated by large number of studies that emphasize poleward distribution 

shifts and the effect of rising average temperature as the main climate change fingerprint. The 

lack of systematic method to quantify the distribution shifts limited the ability to test the multi-

directionality of the climate change fingerprint and other hypotheses regarding the direction and 

speed of the shifts. In Chapter 3, I combined Hierarchical Bayesian models with centroid 

analysis to extract the direction and speed of the long term bird distribution shifts. I used two 

bird species as case studies to demonstrate that the centroid model built upon the Breeding Bird 

Survey data is sensitive to asymmetrical and drastic changes of population at broad geographical 
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scale. Additionally, two null cases were briefly presented too. I showed that the centroid method 

is a useful tool to quantify changes of birds’ distribution related to potentially a variety of factors 

such as climate, land cover change, and invasive colonization process.  

In Chapter 4, I used the centroid model on 57 North American permanent resident bird species to 

test a few hypotheses regarding the direction and speed of distribution shifts. The results of these 

analyses first showed that the large proportion of the analyzed permanent resident birds have 

experienced significant distribution shifts. The directions of the distribution changes are not 

limited to the north, which strongly support the multi-directionality hypothesis. Additionally, the 

species in mountainous ecoregions with large elevational variability have showed distribution 

shifts as fast, if not faster, as the species in the flat ecoregions. The observation does not support 

the hypothesis based on the climate change velocity hypothesis which stated that to maintain a 

constant average temperature, species at flat regions must shift longer distance (faster) than 

species at mountainous regions under global warming. Lastly, my study has also showed that the 

change of regional abundance for the species with significant distribution shifts are 

predominately explained better using average climate and temperature metrics compared with 

extreme climate and precipitation metrics respectively. However, the extreme climate and 

precipitation do outperform their counterparts in some cases. These results provide important 

evidence to show that the change of precipitation as well as extreme climatic conditions are 

sometimes driving forces behind climate change fingerprints, and they are not always 

replaceable by correlated measure of average temperature conditions. The influence of extreme 

climate condition showed in this study also highlights the importance of the documentation and 

projection of climatological data with fine temporal resolution.   
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This part of the dissertation seeks to generalize how species respond to climate change based on 

the analyses of the 57 permanent resident bird species. I tried to select as many permanent 

resident species to represent the changes experienced by avian and wildlife communities in 

general. However the selected species do share some characteristics; for example they are all 

wide spread species, and almost all have relatively healthy population. These similarities, 

however, should not discount the trend discovered in the study. In fact the results I present here 

are possibly good case scenarios, because compared with other wildlife avian species have 

relatively high mobility and are less affected by habitat fragmentation. Given the magnitude of 

the changes documented in this study, climate change, particularly extreme climate events could 

pose a greater threat to species with limited dispersal ability and are limited by habitat 

distribution or particular climatic niches. These populations in general have low resilience to 

large scale stressors and have difficulty to relocate to suitable environments.    

A potential limitation of this part of the research is the exceptionally large variability of the 

population change rates estimated at the strata level. Such level of variability resulted that for 

some species, a considerable number of the 600 iterative models built for each climate model 

yielded negative percent variance explained. We used the average PVE when evaluating 

different climate model performances while assigned the models with negative average PVE 

having 0 percent variance explained. The average PVE albeit being a reasonable metric to 

compare model performances, was only showing the central tendency of model performances 

and provided little information regarding the variability of the measurement and significance of 

the differences between different values. Future studies could focus on ways of stabilizing the 

population change rate estimate which will be likely to provide a more robust way of comparing 

model differences such as using confidence interval of the PVE. The variability of population 
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change metrics stems from the data and Bayesian models variability, which is affected by a 

variety of factors including the data coverage (spatial and temporal), the variability of the species 

abundance observed, number of iteration for each Markov chain, the burn-in and thinning 

number. Although the data coverage and variability are not something we can change, it is 

reasonable to experiment with acquiring larger number of posterior samples by reducing the 

thinning number. Alternatively, generating longer Markov chains (bigger iteration number) and 

starting to collect posterior samples later (larger burn-in number) during the iteration processes 

could also be possible options to help with the data stabilization.  

Furthermore, my analysis only groups the climatic variables into large categories, and compare 

the relative performance of a specific climatic group again the other. I did not focus on selecting 

individual variables, because there is likely no single factor that explains shifts of species 

distributions completely. Nevertheless the results of my study can help guide future studies in 

narrowing down the ecological mechanisms that underpin the dramatic distribution shifts of 

avian species. Such studies will have be species-specific and will likely require extensive field 

observations and controlled experiments to examine how species fitness, survival rate, fecundity, 

dispersal, and other physiological and ecological attributes are affected by different aspect of 

climate change.  

The design and format of the BBS makes its data suitable for depicting a snapshot of avian 

distribution during breeding season. However, other dimensions of the ecological fingerprint of 

climate change such as phenology changes (e.g. the timing of migration for migratory birds) and 

winter distributions are not directly reflected by the BBS data. Alternatively, other continental 

scale species records, particularly the ones collected by a large number citizen scientists with 

loosely defined survey locations and times (e.g. eBird) could provide useful insights into these 
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aspects. Most of the citizen-scientists-based wildlife databases were established relatively 

recently and have not yet collected data over long period of time. But as more wildlife 

enthusiasts from different places are joining in and more and more data are collected over time, 

these datasets will be valuable assets in future studies.    

One of the major, and arguably the most important, driving forces, behind the ongoing studies of 

species distribution is concern about future species distribution drastically affected by 

environmental changes. The development of Species Distribution Models (SDMs) has been a 

milestone in this field. While SDMs were conceived in the early twentieth century (Good 1931), 

it has only been recently that the technical capability and extensive environmental data exist to 

implement the large scale distribution prediction and modeling (Gaston 2003). SDMs have been 

able to help ecologists understand how species have evolved to have the current characteristics of 

their distribution, how invasive species can potentially spread in new environment, and how 

species will distributed in future (Guisan and Zimmermann 2000, Guisan and Thuiller 2005, 

Hijmans and Graham 2006, Lawler et al. 2006). However some of the basic assumptions of 

SDMs still need to be tested with empirically observed data. For instance, one of the key 

assumptions of SDMs is that the distribution of specific species is always at equilibrium with 

climate conditions. Although this is generally true over long term, and is widely confirmed with 

prehistoric records (Martínez-Meyer et al. 2004), it is not clear how long it will take habitat 

suitability to catch up with climatic changes, and whether it is possible to have species at 

equilibrium with their climatic niches in ecosystems so fragmented by anthropogenic activities.  

Organized by the Intergovernmental Panel on Climate Change, most of the existing general 

circulation models do not project climate scenarios beyond the end of twenty-first century. The 

limitation of these datasets dictate that most of the prognostic SDMs studies have similar 
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projecting range: almost all focus on predicting changes occurring at the end of this century. 

These predictions can, at best, be interpreted as the future distribution of potential climate niche, 

and they have very limited implications on the realized niche, and actual distributions of species. 

My dissertation reinforces this point by showing that realized niche of avian species in North 

America is bounded closely to the multiple aspects of habitat condition. For the long term study 

the extreme climate conditions and precipitation are actively involved in affecting the 

redistribution of realized niche.   

In conclusion, the patterns I discovered consistently through all three research projects are that 

the avian richness and species distributions are affected heavily by environmental heterogeneity. 

Many of the existing theories and model predictions rely on highly simplified characterization of 

environment (e.g. characterizing habitat as a binary property without considering vegetation 

height, characterizing climate conditions using only average temperature) which might have 

limited ability to explain the actual patterns of richness and distribution shifts observed by our 

long term survey data. As we develop more extensive and sophisticated monitory networks to 

survey more and more details of earth environment, it becomes imperative to incorporate the 

new dimensions of habitat and climatic conditions into the modelling and prediction processes. 

The multidirectional and rapid shifts in species distributions discovered in the last part of the 

research in particular emphasize the necessity and urgency of developing better prognostic 

species distribution models and predictions that could withstand the test of empirical data and 

provide accountable suggestions to adaptive conservation planning and practices. There are 

challenges ahead involving how to accurately predict habitat and climate at fine spatial and 

temporal resolution, and how to incorporate the granular level environment heterogeneity into 

predictive species distribution models. Nevertheless, this dissertation provides valuable insight 
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on improved continental scale modeling and monitoring of avian richness and distribution shifts. 

Towards this end, I hope my dissertation has provided some forward progress.   
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Appendices 

Appendix I  

Appendix I-1 Ecological provinces involved and the sub-region assignment. 

Division Province Sub-region 

Warm Continental 

Division 

Laurentian Mixed Forest Province Eastern 

Hot Continental Division Eastern Broadleaf Forest (Oceanic) Province Eastern 

Hot Continental Division Eastern Broadleaf Forest (Continental) Province Eastern 

Warm Continental 

Regime Mountains 

Adirondack-New England Mixed Forest-Coniferous Forest-

Alpine Meadow Province 

Eastern 

Hot Continental Regime 

Mountains 

Central Appalachian Broadleaf Forest-Coniferous Forest-

Meadow Province 

Eastern 

Subtropical Division Southeastern Mixed Forest Province Eastern 

Subtropical Division Outer Coastal Plain Mixed Forest Province Eastern 

Subtropical Division Lower Mississippi Riverine Forest Province Eastern 

Hot Continental Regime 

Mountains 

Ozark Broadleaf Forest - Meadow Province Eastern 

Savanna Division Everglades Province Eastern 

Marine Division Pacific Lowland Mixed Forest Province Western 
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Mediterranean Division California Coastal Chapparral Forest and Shrub Province Western 

Mediterranean Division California Coastal Steppe-Mixed Forest-Redwood Forest 

Province 

Western 

Marine Regime 

Mountains 

Cascade Mixed Forest-Coniferous Forest-Alpine Meadow 

Province 

Western 

Mediterranean Regime 

Mountains 

Sierran Steppe-Mixed Forest-Coniferous Forest-Alpine 

Meadow Province 

Western 

Mediterranean Regime 

Mountains 

California Coastal Range Open Woodland-Shrub-Coniferous 

Forest-Meadow Province 

Western 

Temperate Steppe 

Regime Mountains 

Southern Rocky Mountain Steppe-Open Woodland-

Coniferous Forest-Alpine Meadow Province 

Western 

Temperate Steppe 

Regime Mountains 

Middle Rocky Mountain Steppe-Coniferous Forest-Alpine 

Meadow Province 

Western 

Temperate Steppe 

Regime Mountains 

Northern Rocky Mountain Forest-Steppe-Coniferous Forest-

Alpine Meadow Province 

Western 

Temperate Steppe 

Regime Mountains 

Black Hills Coniferous Forest Province Western 
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Appendix I-2 Species list and guild classification 

English_name Scientific_Name USGS habitat 

guild 

Sensitivity to 

area Barred Owl Strix varia Woodland 

species 

Forest Edge 

Species Eastern Screech-Owl Megascops asio Woodland 

species 

Forest Edge 

Species Yellow-billed Cuckoo Coccyzus americanus Woodland 

species 

Forest Edge 

Species Black-billed Cuckoo Coccyzus 

erythropthalmus 

Woodland 

species 

Forest Edge 

Species Downy Woodpecker Picoides pubescens Woodland 

species 

Forest Edge 

Species Chuck-will's-widow Caprimulgus carolinensis Woodland 

species 

Forest Edge 

Species Whip-poor-will Antrostomus vociferus  Woodland 

species 

Forest Edge 

Species Ruby-throated Hummingbird Archilochus colubris Woodland 

species 

Forest Edge 

Species Eastern Wood-Pewee Contopus virens Woodland 

species 

Forest Edge 

Species Yellow-throated Vireo Vireo flavifrons Woodland 

species 

Forest Edge 

Species Blue-headed Vireo Vireo solitarius Woodland 

species 

Forest Edge 

Species Prothonotary Warbler Protonotaria citrea Woodland 

species 

Forest Edge 

Species Magnolia Warbler Setophaga magnolia Woodland 

species 

Forest Edge 

Species Yellow-throated Warbler Setophaga dominica Woodland 

species 

Forest Edge 

Species Black-throated Green Warbler Setophaga virens Woodland 

species 

Forest Edge 

Species Pine Warbler Setophaga pinus Woodland 

species 

Forest Edge 

Species Hooded Warbler Setophaga citrina Woodland 

species 

Forest Edge 

Species American Redstart Setophaga ruticilla Woodland 

species 

Forest Edge 

Species Brown Creeper Certhia americana Woodland 

species 

Forest Edge 

Species Brown-headed Nuthatch Sitta pusilla Woodland 

species 

Forest Edge 

Species Black-capped Chickadee Poecile atricapillus Woodland 

species 

Forest Edge 

Species Carolina Chickadee Poecile carolinensis Woodland 

species 

Forest Edge 

Species Mourning Dove Zenaida macroura NA Forest Edge 

Species Blue Jay Cyanocitta cristata NA Forest Edge 

Species European Starling Sturnus vulgaris NA Forest Edge 

Species 
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Common Grackle Quiscalus quiscula NA Forest Edge 

Species American Robin Turdus migratorius NA Forest Edge 

Species American Goldfinch Spinus tristis NA Forest Edge 

Species Eastern Towhee Pipilo erythrophthalmus NA Forest Edge 

Species Northern Cardinal Cardinalis cardinalis NA Forest Edge 

Species Indigo Bunting Passerina cyanea NA Forest Edge 

Species White-eyed Vireo Vireo griseus NA Forest Edge 

Species Chestnut-sided Warbler Setophaga pensylvanica NA Forest Edge 

Species Prairie Warbler Setophaga discolor NA Forest Edge 

Species Common Yellowthroat Geothlypis trichas NA Forest Edge 

Species Yellow-breasted Chat Icteria virens NA Forest Edge 

Species Gray Catbird Dumetella carolinensis NA Forest Edge 

Species Carolina Wren Thryothorus ludovicianus NA Forest Edge 

Species House Wren Troglodytes aedon NA Forest Edge 

Species Northern Bobwhite  Colinus virginianus NA Forest Edge 

Species Red-tailed Hawk Buteo jamaicensis  NA Forest Edge 

Species Great Horned Owl Bubo virginianus NA Forest Edge 

Species Red-headed Woodpecker Melanerpes 

erythrocephalus 

NA Forest Edge 

Species Northern Flicker Colaptes auratus NA Forest Edge 

Species Common Raven  Corvus corax NA Forest Edge 

Species Fish Crow  Corvus ossifragus NA Forest Edge 

Species Brown-headed Cowbird Molothrus ater NA Forest Edge 

Species Baltimore Oriole Icterus galbula NA Forest Edge 

Species Cedar Waxwing Bombycilla cedrorum NA Forest Edge 

Species Dusky Grouse Dendragapus obscurus Woodland 

species 

NA 

Sooty Grouse Dendragapus fuliginosus Woodland 

species 

NA 

Ruffed Grouse Bonasa umbellus Woodland 

species 

NA 

Wild Turkey Meleagris gallopavo Woodland 

species 

NA 

Band-tailed Pigeon Patagioenas fasciata Woodland 

species 

NA 
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Swallow-tailed Kite Elanoides forficatus Woodland 

species 

NA 

Sharp-shinned Hawk Accipiter striatus Woodland 

species 

NA 

Cooper's Hawk Accipiter cooperii Woodland 

species 

NA 

Northern Goshawk Accipiter gentilis Woodland 

species 

NA 

Broad-winged Hawk Buteo platypterus Woodland 

species 

NA 

Merlin Falco columbarius Woodland 

species 

NA 

Western Screech-Owl Megascops kennicottii Woodland 

species 

NA 

Northern Pygmy-Owl Glaucidium gnoma Woodland 

species 

NA 

Red-cockaded Woodpecker Picoides borealis Woodland 

species 

NA 

Ladder-backed Woodpecker Picoides scalaris Woodland 

species 

NA 

Nuttall's Woodpecker Picoides nuttallii Woodland 

species 

NA 

White-headed Woodpecker Picoides albolarvatus Woodland 

species 

NA 

Black-backed Woodpecker Picoides arcticus Woodland 

species 

NA 

American Three-toed Woodpecker Picoides dorsalis Woodland 

species 

NA 

Yellow-bellied Sapsucker Sphyrapicus varius Woodland 

species 

NA 

Red-naped Sapsucker Sphyrapicus nuchalis Woodland 

species 

NA 

Red-breasted Sapsucker Sphyrapicus ruber Woodland 

species 

NA 

Williamson's Sapsucker Sphyrapicus thyroideus Woodland 

species 

NA 

Acorn Woodpecker Melanerpes formicivorus Woodland 

species 

NA 

Golden-fronted Woodpecker Melanerpes aurifrons Woodland 

species 

NA 

Vaux's Swift Chaetura vauxi Woodland 

species 

NA 

Black-chinned Hummingbird Archilochus alexandri Woodland 

species 

NA 

Broad-tailed Hummingbird Selasphorus platycercus Woodland 

species 

NA 

Rufous Hummingbird Selasphorus rufus Woodland 

species 

NA 

Calliope Hummingbird Stellula calliope Woodland 

species 

NA 

 Brown-crested Flycatcher Myiarchus tyrannulus Woodland 

species 

NA 

Olive-sided Flycatcher Contopus cooperi Woodland 

species 

NA 

Western Wood-Pewee Contopus sordidulus Woodland 

species 

NA 

Yellow-bellied Flycatcher Empidonax flaviventris Woodland 

species 

NA 
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Cordilleran Flycatcher Empidonax occidentalis Woodland 

species 

NA 

Pacific-slope Flycatcher Empidonax difficilis Woodland 

species 

NA 

Least Flycatcher Empidonax minimus Woodland 

species 

NA 

Hammond's Flycatcher Empidonax hammondii Woodland 

species 

NA 

Dusky Flycatcher Empidonax oberholseri Woodland 

species 

NA 

Vermilion Flycatcher Pyrocephalus rubinus Woodland 

species 

NA 

Steller's Jay Cyanocitta stelleri Woodland 

species 

NA 

Gray Jay Perisoreus canadensis Woodland 

species 

NA 

Clark's Nutcracker Nucifraga columbiana Woodland 

species 

NA 

Evening Grosbeak Coccothraustes 

vespertinus 

Woodland 

species 

NA 

Pine Grosbeak Pinicola enucleator Woodland 

species 

NA 

Purple Finch Carpodacus purpureus Woodland 

species 

NA 

Cassin's Finch Carpodacus cassinii Woodland 

species 

NA 

Red Crossbill Loxia curvirostra Woodland 

species 

NA 

White-winged Crossbill Loxia leucoptera Woodland 

species 

NA 

Pine Siskin Spinus pinus Woodland 

species 

NA 

Dark-eyed Junco Junco hyemalis  Woodland 

species 

NA 

Bachman's Sparrow Peucaea aestivalis Woodland 

species 

NA 

Black-headed Grosbeak Pheucticus 

melanocephalus 

Woodland 

species 

NA 

Western Tanager Piranga ludoviciana Woodland 

species 

NA 

Hepatic Tanager Piranga flava Woodland 

species 

NA 

Philadelphia Vireo Vireo philadelphicus Woodland 

species 

NA 

Warbling Vireo Vireo gilvus Woodland 

species 

NA 

 Cassin's Vireo Vireo cassinii Woodland 

species 

NA 

 Plumbeous Vireo Vireo plumbeus Woodland 

species 

NA 

Hutton's Vireo Vireo huttoni Woodland 

species 

NA 

Swainson's Warbler Limnothlypis swainsonii Woodland 

species 

NA 

Tennessee Warbler Oreothlypis peregrina Woodland 

species 

NA 

Cape May Warbler Setophaga tigrina Woodland 

species 

NA 
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Yellow-rumped Warbler 

( Myrtle/Audubon's) 

Setophaga coronata  Woodland 

species 

NA 

Bay-breasted Warbler Setophaga castanea Woodland 

species 

NA 

Blackpoll Warbler Setophaga striata Woodland 

species 

NA 

Blackburnian Warbler Setophaga fusca Woodland 

species 

NA 

Grace's Warbler Setophaga graciae Woodland 

species 

NA 

Townsend's Warbler Setophaga townsendi Woodland 

species 

NA 

Hermit Warbler Setophaga occidentalis Woodland 

species 

NA 

Winter Wren Troglodytes hiemalis  Woodland 

species 

NA 

Red-breasted Nuthatch Sitta canadensis Woodland 

species 

NA 

Pygmy Nuthatch Sitta pygmaea Woodland 

species 

NA 

Black-crested Titmouse Baeolophus atricristatus  Woodland 

species 

NA 

Oak Titmouse Baeolophus inornatus Woodland 

species 

NA 

Juniper Titmouse Baeolophus ridgwayi Woodland 

species 

NA 

Mountain Chickadee Poecile gambeli Woodland 

species 

NA 

Boreal Chickadee Poecile hudsonicus Woodland 

species 

NA 

Chestnut-backed Chickadee Poecile rufescens Woodland 

species 

NA 

Golden-crowned Kinglet Regulus satrapa Woodland 

species 

NA 

Ruby-crowned Kinglet Regulus calendula Woodland 

species 

NA 

Townsend's Solitaire Myadestes townsendi Woodland 

species 

NA 

Gray-cheeked Thrush Catharus minimus  Woodland 

species 

NA 

Swainson's Thrush Catharus ustulatus Woodland 

species 

NA 

Hermit Thrush Catharus guttatus Woodland 

species 

NA 

Varied Thrush Ixoreus naevius Woodland 

species 

NA 

Western Bluebird Sialia mexicana Woodland 

species 

NA 

Red-shouldered Hawk Buteo lineatus Woodland 

species 

Interior Forest 

Species Hairy Woodpecker Picoides villosus Woodland 

species 

Interior Forest 

Species Pileated Woodpecker Dryocopus pileatus Woodland 

species 

Interior Forest 

Species Red-bellied Woodpecker Melanerpes carolinus Woodland 

species 

Interior Forest 

Species Great Crested Flycatcher Myiarchus crinitus Woodland 

species 

Interior Forest 

Species 
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Acadian Flycatcher Empidonax virescens Woodland 

species 

Interior Forest 

Species Rose-breasted Grosbeak Pheucticus ludovicianus Woodland 

species 

Interior Forest 

Species Scarlet Tanager Piranga olivacea Woodland 

species 

Interior Forest 

Species Summer Tanager Piranga rubra Woodland 

species 

Interior Forest 

Species Red-eyed Vireo Vireo olivaceus Woodland 

species 

Interior Forest 

Species Black-and-white Warbler Mniotilta varia Woodland 

species 

Interior Forest 

Species Worm-eating Warbler Helmitheros vermivorum Woodland 

species 

Interior Forest 

Species Northern Parula Setophaga americana Woodland 

species 

Interior Forest 

Species  Black-throated Blue Warbler Setophaga caerulescens Woodland 

species 

Interior Forest 

Species Cerulean Warbler Setophaga cerulea Woodland 

species 

Interior Forest 

Species Ovenbird Seiurus aurocapilla Woodland 

species 

Interior Forest 

Species Northern Waterthrush Parkesia noveboracensis Woodland 

species 

Interior Forest 

Species Louisiana Waterthrush Parkesia motacilla Woodland 

species 

Interior Forest 

Species Kentucky Warbler Geothlypis formosa Woodland 

species 

Interior Forest 

Species Canada Warbler Cardellina canadensis Woodland 

species 

Interior Forest 

Species White-breasted Nuthatch Sitta carolinensis Woodland 

species 

Interior Forest 

Species Tufted Titmouse Baeolophus bicolor  Woodland 

species 

Interior Forest 

Species Blue-gray Gnatcatcher Polioptila caerulea Woodland 

species 

Interior Forest 

Species Wood Thrush Hylocichla mustelina Woodland 

species 

Interior Forest 

Species Veery Catharus fuscescens Woodland 

species 

Interior Forest 

Species American Crow Corvus brachyrhynchos NA Interior Forest 

Species  

 

 

Appendix I-3 Metric descriptions. 

Data used Metrics type Metrics name Description Notes 
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NBCD 

vegetation 

height map 

Summary 

statistics (A) 

Mean  ∑ 𝑥𝑘  

𝐾
 

𝑥𝑘  = height values 

of forested pixels 

in the landscape. 

𝐾 = the number 

of those pixels in 

the landscape. 

  Standard deviation 

(SD) √
∑(𝑥𝑘 − 𝑀𝑒𝑎𝑛)2

𝐾
 

N/A 

  Minimum (Min) MIN{𝑋𝑘} N/A 

  Maximum (Max) MAX{𝑋𝑘} N/A 

Two-

dimensional 

vegetation 

cover map 

Traditional 

patch-based 

metrics (B) 

Number of 

patches(B.NP) 

Total number of patches in 

the landscape 

N/A 

  Mean patch area 

(B.Area.MN) 

∑ 𝑥𝑖

𝑁
 

𝑥𝑖 = patch area 

across all patches 

in the landscape. 

𝑁 = total number 

of patches. 

  Standard deviation 

of patch area 

(B.Area.SD) 

√
∑(𝑥𝑖 − 𝐴𝑟𝑒𝑎. 𝑀𝑁)2

𝑁
 

N/A 

  Edge density (B. ED) ∑ 𝑒𝑖𝑘
𝑚
𝑘=1

𝐴
(10,000) 

𝑒𝑖𝑘 = total length 

of edge in 

landscape 

between height 

class i and k. A = 

total landscape 

area (m2). 

  Total edge (B.TE) Total length (m) of edge in 

landscape 

N/A 

  Mean fractal 

dimension index 

(B.FRAC.MN) 

∑ 2ln (0.25𝑝𝑖) 𝑙𝑛 𝑎𝑖⁄

𝑁
 

𝑝𝑖= perimeter of 

patch i.  𝑎𝑖 = area 

of patch i. 
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  Standard deviation 

of fractal dimension 

index (B.FRAC.SD) 

√
∑(𝑓𝑖 − 𝐹𝑅𝐴𝐶. 𝑀𝑁)2

𝑁
 

𝑓𝑖 = fractal 

dimension index 

across all 

patches. 

Vegetation 

cover map 

segmented 

by height 

structure  

Height-

incorporated 

patch-based 

metrics (C) 

Number of 

patches(C.NP) 

Total number of patches in 

the landscape 

patches and 

edges referred to 

for height-

incorporated 

patch-based 

metrics (C) 

include vertical 

patches and 

edges.   

  Mean patch area 

(C.Area.MN) 

∑ 𝑥𝑖

𝑁
 

𝑥𝑖 = patch area 

across all patches 

in the landscape. 

𝑁 = total number 

of patches. 

  Standard deviation 

of patch area 

(C.Area.SD) 

√
∑(𝑥𝑖 − 𝐴𝑟𝑒𝑎. 𝑀𝑁)2

𝑁
 

N/A 

  Total edge (C.TE) Total length (m) of edge in 

landscape 

N/A 

  Mean fractal 

dimension index 

(C.FRAC.MN) 

∑ 2ln (0.25𝑝𝑖) 𝑙𝑛 𝑎𝑖⁄

𝑁
 

𝑝𝑖= perimeter of 

patch i.  𝑎𝑖 = area 

of patch i. 

  Standard deviation 

of fractal dimension 

index (C.FRAC.SD) 

√
∑(𝑓𝑖 − 𝐹𝑅𝐴𝐶. 𝑀𝑁)2

𝑁
 

𝑓𝑖 = fractal 

dimension index 

across all 

patches. 

  Contrast weighted 

edge density 

(C.CWED) 

∑ ∑ 𝑒𝑖𝑘 ∗ 𝑑𝑖𝑘

𝐴
(10,000) 

𝑒𝑖𝑘 = total length 

of edge in 

landscape 

between height 

class i and k. 𝑑𝑖𝑘= 

contrast weight 
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between class i 

and k. A = total 

landscape area. 

  Mean of edge 

contrast 

index(C.ECON.MN) 

∑
∑ 𝑝𝑖𝑗𝑘 ∗ 𝑑𝑖𝑗𝑘  

𝑃𝑖𝑗
(100)

𝑁
 

𝑝𝑖𝑗𝑘=length of 

edge of patch ij 

adjacent to 

height class k. 

𝑑𝑖𝑗𝑘= edge 

contrast weight 

between height 

class i and k. 𝑃𝑖𝑗  

=length of 

perimeter of 

patch ij. 

  Standard deviation 

of edge contrast 

index (C.ECON.SD) 

√
∑(𝐸𝐶𝑂𝑁𝑖 − 𝐸𝐶𝑂𝑁. 𝑀𝑁)2

𝑁
 

𝐸𝐶𝑂𝑁𝑖  =edge 

contrast index of 

patch i. 

  Shannon’s diversity 

index (C.SHDI) 
− ∑ 𝑃𝑟𝑖 ∗ ln 𝑃𝑟𝑖 

𝑃𝑟𝑖= proportion 

of the landscape 

occupied by 

height class i. 

NBCD 

vegetation 

height map 

Second-order 

texture 

measures (D) 

Entropy − ∑ ∑ 𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗))

𝑗𝑖

 𝑝(𝑖, 𝑗) is the 

(𝑖, 𝑗)th entry of 

the normalized 

GLCM matrix. 

  Contrast 

∑ 𝑛2

𝑁−1

𝑛=0

{∑ ∑ 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

}

𝑁

𝑖=1

|𝑖 − 𝑗| = 𝑛

 

N/A 

  Angular second 

moment (ASM) 
∑ ∑{𝑝(𝑖, 𝑗)}2

𝑗𝑖

 N/A 

  Homogeneity 
∑ ∑

𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑗𝑖

 
N/A 

Dissimilarity 

∑ 𝑛 {∑ ∑ 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

}

𝑁−1

𝑛=0

 

N/A 
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Appendix I-4 Metrics correlation with species richness. 

 Woodland Guild Forest Edge Guild Interior Forest guild  

 Correlation P-value Correlation P-value Correlation P-value Metric Set 

MIN 0.11 0.00 0.00 0.92 0.10 0.00 A 

MAX 0.04 0.06 0.36 0.00 0.04 0.14 A 

MEAN 0.20 0.00 0.40 0.00 0.19 0.00 A 

SD -0.02 0.34 0.14 0.00 -0.05 0.05 A 

B.NP -0.45 0.00 -0.15 0.00 -0.06 0.02 B 

B.TE 0.00 0.98 0.13 0.00 -0.05 0.05 B 

B.ED 0.00 0.98 0.13 0.00 -0.05 0.05 B 

B.AREA.MN 0.44 0.00 -0.06 0.02 0.10 0.00 B 

B.AREA.SD 0.58 0.00 0.06 0.03 0.14 0.00 B 

B.FRAC.MN -0.06 0.01 -0.30 0.00 -0.13 0.00 B 

B.FRAC.SD -0.13 0.00 -0.12 0.00 -0.06 0.04 B 

C.NP 0.25 0.00 0.41 0.00 0.08 0.01 C 

C.TE 0.49 0.00 0.45 0.00 0.14 0.00 C 

C.AREA.MN 0.15 0.00 -0.26 0.00 0.02 0.56 C 

C.AREA.SD 0.24 0.00 -0.21 0.00 0.01 0.75 C 

C.FRAC.MN -0.15 0.00 0.08 0.00 0.00 0.87 C 

C.FRAC.SD 0.13 0.00 0.23 0.00 0.03 0.27 C 

C.CWED 0.37 0.00 0.50 0.00 0.14 0.00 C 

C.ECON.MN -0.26 0.00 0.08 0.00 -0.03 0.29 C 

C.ECON.SD -0.21 0.00 0.11 0.00 -0.04 0.11 C 
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C.SHDI 0.03 0.21 0.33 0.00 0.04 0.14 C 

Contrast 0.08 0.00 0.32 0.00 0.04 0.16 D 

Entropy 0.62 0.00 0.38 0.00 0.14 0.00 D 

ASM -0.65 0.00 -0.36 0.00 -0.14 0.00 D 

Homogeneity -0.54 0.00 -0.40 0.00 -0.11 0.00 D 

Disimilarity 0.22 0.00 0.37 0.00 0.04 0.15 D 

 

Appendix I-5 Model performances for different multivariable models. 

Model (number of 
variables) 

Model Type Measuremen
t name 

Woodland guild Forest edge 
guild 

Interior forest 
guild 

D (5) 

  

Linear adj. r-squared 0.48 0.26 0.06 

adj. r-squared 
95% CI 

0.45 0.22 0.03 

0.52 0.30 0.08 

AIC 10783.64 7642.58 7721.88 

AIC 95% CI 10663.48 7543.14 7626.97 

10919.38 7772.84 7827.75 

C (10) 

  

Linear adj. r-squared 0.45 0.30 0.04 

adj. r-squared 
95% CI 

0.41 0.25 0.02 

0.49 0.34 0.06 

AIC 10886.77 7579.35 7745.47 

AIC 95% CI 10776.59 7491.13 7655.00 

11031.62 7708.06 7864.19 

A  (4) Linear adj. r-squared 0.09 0.22 0.04 

adj. r-squared 
95% CI 

0.07 0.18 0.02 

0.12 0.26 0.07 

AIC 11768.01 7713.44 7737.10 

AIC 95% CI 11650.73 7612.97 7645.61 
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11894.79 7832.26 7845.43 

B  (7) Linear adj. r-squared 0.45 0.20 0.03 

adj. r-squared 
95% CI 

0.42 0.16 0.01 

0.48 0.24 0.05 

AIC 10894.73 7754.34 7757.22 

AIC 95% CI 10779.40 7645.87 7661.07 

11030.33 7881.45 7864.17 

A+4BPHM  (8) Linear adj. r-squared 0.52 0.33 0.06 

adj. r-squared 
95% CI 

0.48 0.28 0.04 

0.56 0.38 0.09 

AIC 10642.09 7505.54 7713.40 

AIC 95% CI 10515.22 7407.62 7621.75 

10792.03 7632.99 7825.33 

B+4BPHM (11) 

  

Linear adj. r-squared 0.52 0.34 0.06 

adj. r-squared 
95% CI 

0.49 0.29 0.03 

0.55 0.38 0.07 

AIC 10648.74 7494.67 7727.33 

AIC 95% CI 10544.73 7402.19 7636.25 

10795.68 7622.01 7839.27 

A+B+C+D (26)  Random 
Forest 

% variance 
explained 

0.63 0.47 0.11 

A  (4) Random 
Forest 

% variance 
explained 

0.37 0.31 0.07 

A+4BPHM  (8) Random 
Forest 

% variance 
explained 

0.58 0.39 0.08 

B  (7) Random 
Forest 

% variance 
explained 

0.52 0.26 0.01 

B+4BPHM (11) Random 
Forest 

% variance 
explained 

0.58 0.39 0.05 

C (10) Random 
Forest 

% variance 
explained 

0.58 0.39 0.06 
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D (5) Random 
Forest 

% variance 
explained 

0.50 0.23 ~0.00 

 

Appendix I-6 Supporting Information  

  

Metrics development methods 

Summary statistics 

The summary statistics used in this study included, mean, standard deviation (SD), minimum 

value (Min), and maximum value (Max) of tree height (Appendix I-3). All the metrics were 

computed in a GIS environment using ArcGIS 9.3 (Environmental Systems Research Institute 

1999).  

Patch-based metrics  

Patch-based metrics based on two-dimensional vegetation distribution were derived by 

classifying the NBCD forest height maps into binary forest-non-forest maps. Vegetation height 

values larger than 0 were assigned as habitat and the rest of the cells as non-habitat, and vertical 

height information were discarded (Figure 2-1). Within each landscape a set of patch-based 

metrics (Appendix I-3) were calculated using Fragstats (McGarigal et al. 2002). The metrics in 

this group included patches (NP), mean patch area (Area.MN), standard deviation of patch area 

(Area.SD), mean fractal dimension index (FRAC.MN), standard deviation of fractal dimension 

(FRAC.SD), total edge (TE) and edge density (ED) where fractal dimension index was a 

measure of complexity of shape based on perimeter-area relationships.  

Height-structured patch-based metrics  
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We used a pixel-based segmentation approach to create vertical patches and edges within 

continuous habitat patches. The pixel-based approach relies on a set of global thresholds to 

classify pixels into different groups, and then spatially connected pixels from the same group are 

segmented from the surrounding areas and assigned with different group memberships. The 

classification process only depends on the attribute value of a specific pixel. It is a relatively 

simple method compared with edge-based and region-based methods which consider variation of 

attribute values in the neighboring regions when assigning group memberships (Darwish et al. 

2003). We selected a set of thresholds using quintile classification based on frequency of height 

values across 1751 landscapes. The forest height values were classified into five groups using 

four thresholds: 20, 40, 60, and 80 percentile values at 15.4, 17.6, 19.4, and 21.8 m respectively 

(Figure 2-1). 

A set of metrics similar to the ones in metric set (B) was then derived. A diversity index 

(Shannon’s diversity index (SHDI)) was included to measure the richness of height classes, and a 

contrast weight matrix (see Table below) was used to calculate four adjacent contrast metrics. 

The contrast matrix is symmetrical with weights ranging from 0 (no contrast) to 1 (maximum 

contrast). When adjacent areas have great height differences, vertical edges separating the areas 

are weighted heavily and thus have a large contribution to the weighted edge measurements 

(Appendix I-3). The resulting contrast weighted edge density (CWED) was derived from sum of 

weighted edges at the landscape level. Mean and standard deviation of an edge contrast index 

(ECON.MN & ECON.SD)) summarizes the distribution of weighted edge lengths of all patches, 

including vertical patches within a specific landscape (McGarigal et al. 2002).  

Second-order texture metrics 
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We calculated a set of second-order texture metrics using the texture filter in ENVI 4.7 (Exelis 

Visual Information Solutions Boulder, Colorado). A variety of texture metrics have been used to 

characterize habitat structure (St-Louis et al. 2006). We developed five texture measures: angular 

second moment (ASM), contrast, homogeneity, entropy, and dissimilarity. The metrics were 

developed by processing the NBCD tree height map with a 3 × 3 moving window. For our 

purposes, non-forest land cover types were reclassified as having 0 height value.  

Random Forest Model 

In essence, RF model is an ensemble machine learning technique which consists of a compilation 

of multiple regression trees, a method proven to be better than the single regression tree analysis 

(Hamza and Larocque 2005). The regression tree method seeks to construct a set of binary splits 

on the predictor variables; the dependent variable is predicted through recursive partitioning. The 

selected splits are the ones that maximize the homogeneity of the two resulting groups. In 

comparison, each tree in random forests method is built with a subset of variables randomly 

chosen. At each node, the number of predictors tested for the best split is also randomized. Like 

bagging trees method (Breiman 1996), the trees are grown to maximum size without pruning.  

About 37% of data are randomly drawn as the out-of-bag (OOB) observations and excluded in 

the construction of every tree. The OOB error estimation provides a cross-validation mechanism, 

thus test sets or extra cross-validation is not necessary. The performance of the random forest 

models was estimated using percent of variance explained: R2= 1- MSE/ observed variance, 

where MSE is mean square error between OOB predictions and observations(Breiman 2001, Wei 

et al. 2010). 

Table. Contrast matrix for weighted edge metrics 
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Forest Height Class  NO.1 

(2.8-15.4m) 

NO.2 

(15.4-17.6m) 

NO.3 

(17.6-19.4m) 

NO.4 

(19.4-21.8m) 

NO.5 

(21.8-53.7m) 

Non-forest 

 NO.1 0 0.25 0.5 0.75 1 0.25 

NO.2 - 0 0.25 0.5 0.75 0.5 

NO.3 - - 0 0.25 0.5 0.75 

NO.4 - - - 0 0.25 1 

NO.5 -  - - 0 1 

Non-forest - - - - - 0 

 

Appendix II  

Appendix II-1 The R code to generate the posterior samples of 𝑁𝑖,𝑡 and other parameters using 

Hierarchical Bayesian model 

### We are presenting here the R code for calling Winbugs to produce the strata specific abundance 

indices for Carolina Wren(aou=7180) 

 ## importing and orgnizing data tables 

  aoupick<-7180 

  indextable<-

read.csv(paste("F:/project/BBS_winbugs_2/index_rawdata/indexed",aoupick,".csv",sep=""),header=T) 

  # the first data table keeps the pre-processed BBS survey data. strata and observer/route have been 

indexed 

  weighttable<-

read.csv(paste("F:/project/BBS_winbugs_2/index_rawdata/weight_z/Weightfactor",aoupick,".csv",sep=

""),header=T) 

  #the second data table stores a list of strata that composed the species range. The table includes the X- 

and Y-coordinates of the strata centroids and the Zi and Ai weights for the stratum 
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    indextable<-indextable[order(indextable$BCRstate,indextable$RTENO,indextable$Year),] 

    weighttable<-weighttable[order(weighttable$BCRstate),] 

     

 ## setting up and saving the code for Winbugs program  

    setwd("F:/project/BBS_winbugs_2/index_rawdata/winbugsfiles/") 

    sink(paste("winbugsfile",aoupick,".txt",sep="")) 

    cat(" 

        model{ 

        ##----priors for identically distributed parameters 

        ## observer/route effect Wj 

        for (k in 1:n.obs.rt){ 

        Wj[k]~dnorm(0.0,tauW ) 

        } 

        tauW~dgamma(0.001,0.001) 

        sdW<-1/pow(tauW,0.5) 

         



130 

 

        ##overdispersion E 

        for (m in 1:n){ 

   

        Eijt[m]~dnorm(0.0,tauE) 

        } 

        tauE~dgamma(0.001,0.001) 

        sdE<-1/pow(tauE,0.5) 

         

        ## novice observer effect etha,  

        ##  identically distributed   

        etha~dnorm(0.0,0.000001) 

         

        ##----priors for the stratum specific parameters  

         

        for (j in 1:n.strata){  

        Si[j]~dnorm(0.0,0.000001) 

        Bi[j]~dnorm(0.0,0.000001) 
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        tauR[j]~dgamma(0.001,0.001)  

        sdR[j]<-1/pow(tauR[j],0.5)    

         

        for (k in 1: n.year){   

        Rit[k,j]~dnorm(0.0,tauR[j])  

        }                               

        } 

         

         

        #likelihood 

        for (i in 1: n){ 

        Y[i]~dpois(lambda[i]) 

        log(lambda[i])<-Si[index.stra[i]]+Bi[index.stra[i]]*(yearfrom65[i]-

22)+Wj[index.ObsRT[i]]+etha*Firstyear[i] 

        +Rit[yearfrom65[i],index.stra[i]]  

        +Eijt[i] 

        } 
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        #summary statistics derived variables 

        for (j in 1:n.strata){  

        for (k in 1: n.year){   

        n.d[j,k]<-weightZ[j]*exp(Si[j]+Bi[j]*(k-22)+Rit[k,j]) 

        N.d[j,k]<-weightA[j]*n.d[j,k] 

        } 

        } 

        } 

        ",fill=TRUE) 

    sink() 

     

 ##Bundle data 

    #----------- transfer R value to variables needed for winbugs 

    n<-dim(indextable)[1] # total number of data points 

    n.strata<-length(unique(indextable$BCRstate))  # number of strata  

    n.obs.rt<-length(unique(indextable$ObsRT)) # number of observer/route combinations 
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    strata.list<-unique(indextable$BCRstate) # unique list of strata id 

    n.year<-max(indextable$Year)-1965 # number of years available in the data 

     

    Y<-indextable$SpeciesTotal  # count value to be modeled 

    index.stra<-as.numeric(indextable$index.stra) # strata index 

    index.ObsRT<-as.numeric(indextable$index.ObsRT) # observer/route index 

    Firstyear<-as.numeric(indextable$Firstyear) # the binary index to indicate whether it was surveyed by 

1st year observer 

     

    weightZ<-round(weighttable[,"Zi"],digits=6) 

    weightA<-round(weighttable[,"Ai"], digits=6) 

     

    yearfrom65<-as.numeric(indextable$yearfrom65) 

    #----------- 

     

    win.data<-

list(n=n,Y=Y,index.stra=index.stra,n.strata=n.strata,index.ObsRT=index.ObsRT,n.obs.rt=n.obs.rt,Firstyear

=Firstyear 
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                   , n.year=n.year 

                   ,yearfrom65=yearfrom65 

                   ,weightZ=weightZ 

                   ,weightA=weightA 

    ) 

 ##~~~~~Bundle data finished 

     

   #setting up initial values for the parameters      

    inits<-function(){list(Si=rep(0,n.strata),Bi=rep(0,n.strata),tauW=1,etha=0 

                           ,tauR=rep(1,n.strata)  

                           ,tauE=1 

    )} 

     

    # parameters to estimate 

    params<-c( #"Si","Bi", 

               #"Wj","tauW","etha","Eijt","Rit", 

               "sdE","sdW", 



135 

 

               #"n.d"  # a lot more parameters can be estimated and saved but for the sake of speed we are 

only saving 3 of them  

               "N.d" 

    ) 

     

    #MCMC settings 

    nc<-3 # number of chain 

    ni<-30000 #total number of iterations 

    nb<-15000 # number of burn-in iterations 

    nt<-50 # thinning rate 

     

 ## starting the R2WinBUGS package and start running Winbugs program 

    library(R2WinBUGS) 

    out<-

bugs(data=win.data,inits=inits,parameters.to.save=params,model.file=paste("winbugsfile",aoupick,".txt"

,sep=""),n.thin=nt,n.chains=nc,n.burnin=nb,n.iter=ni,debug=FALSE,bugs.directory="F:/WinBUGS14") 

    print ("finished saving Rdata") 

 ## saving the result 
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    setwd("F:/project/BBS_winbugs_2/index_rawdata/output/") 

    save(out,file=paste(aoupick,"-",Sys.Date(),".Rdata",sep="")) 

 

Appendix III  

Appendix III-1 57 permanent resident bird species included in the study and their attributes 

English 
Common 
Name 

Scientific 
Name 

aou Nit 
change 

north 
shift 

south 
shift 

east 
shift 

west 
shift 

shift at 
all 

plain 
bird 

Northern 
Bobwhite 

Colinus 
virginianus 

2890 Decrease
d 

TRUE FALSE FALSE TRUE TRUE TRUE 

Scaled Quail Callipepla 
squamata 

2930 Decrease
d 

FALSE FALSE FALSE TRUE TRUE TRUE 

California 
Quail 

Callipepla 
californica 

2940 Increase
d 

FALSE FALSE TRUE FALSE TRUE FALSE 

Gambel's 
Quail 

Callipepla 
gambelii 

2950 Stable FALSE FALSE FALSE FALSE FALSE FALSE 

Ruffed Grouse Bonasa 
umbellus 

3000 Stable FALSE FALSE FALSE FALSE FALSE FALSE 

Sharp-tailed 
Grouse 

Tympanuchus 
phasianellus 

3080 Stable FALSE FALSE TRUE FALSE TRUE TRUE 

Wild Turkey Meleagris 
gallopavo 

3100 Increase
d 

TRUE FALSE TRUE FALSE TRUE FALSE 

Common 
Ground-Dove 

Columbina 
passerina 

3200 Stable FALSE FALSE FALSE TRUE TRUE TRUE 

Inca Dove Columbina 
inca 

3210 Increase
d 

FALSE FALSE TRUE FALSE TRUE TRUE 

Black Vulture Coragyps 
atratus 

3260 Increase
d 

TRUE FALSE FALSE TRUE TRUE FALSE 

Barred Owl Strix varia 3680 Increase
d 

FALSE FALSE FALSE FALSE FALSE FALSE 

Eastern 
Screech-Owl 

Megascops 
asio 

3730 Decrease
d 

FALSE FALSE FALSE FALSE FALSE TRUE 

Great Horned 
Owl 

Bubo 
virginianus 

3750 Decrease
d 

FALSE TRUE TRUE FALSE TRUE FALSE 

Northern 
Pygmy-Owl 

Glaucidium 
gnoma 

3790 Stable FALSE FALSE FALSE FALSE FALSE FALSE 

Greater 
Roadrunner 

Geococcyx 
californianus 

3850 Stable FALSE TRUE TRUE FALSE TRUE TRUE 

Hairy 
Woodpecker 

Picoides 
villosus 

3930 Increase
d 

FALSE FALSE TRUE FALSE TRUE FALSE 

Downy 
Woodpecker 

Picoides 
pubescens 

3940 Increase
d 

FALSE FALSE TRUE FALSE TRUE FALSE 
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Ladder-backed 
Woodpecker 

Picoides 
scalaris 

3960 Stable FALSE FALSE FALSE FALSE FALSE FALSE 

Black-backed 
Woodpecker 

Picoides 
arcticus 

4000 Stable FALSE FALSE FALSE FALSE FALSE FALSE 

American 
Three-toed 
Woodpecker 

Picoides 
dorsalis 

4010 Stable FALSE FALSE FALSE FALSE FALSE FALSE 

Pileated 
Woodpecker 

Dryocopus 
pileatus 

4050 Increase
d 

TRUE FALSE TRUE FALSE TRUE FALSE 

Red-bellied 
Woodpecker 

Melanerpes 
carolinus 

4090 Increase
d 

TRUE FALSE FALSE TRUE TRUE TRUE 

Black Phoebe Sayornis 
nigricans 

4580 Increase
d 

FALSE FALSE FALSE FALSE FALSE FALSE 

Black-billed 
Magpie 

Pica hudsonia 4750 Decrease
d 

FALSE FALSE FALSE FALSE FALSE FALSE 

Steller's Jay Cyanocitta 
stelleri 

4780 Stable TRUE FALSE FALSE TRUE TRUE FALSE 

Western 
Scrub-Jay 

Aphelocoma 
californica 

4810 Stable TRUE FALSE FALSE TRUE TRUE FALSE 

Gray Jay Perisoreus 
canadensis 

4840 Stable FALSE FALSE FALSE FALSE FALSE FALSE 

Common 
Raven 

Corvus corax 4860 Increase
d 

FALSE FALSE FALSE TRUE TRUE FALSE 

Chihuahuan 
Raven 

Corvus 
cryptoleucus 

4870 Stable FALSE FALSE FALSE FALSE FALSE TRUE 

Fish Crow Corvus 
ossifragus 

4900 Increase
d 

TRUE FALSE FALSE TRUE TRUE TRUE 

Clark's 
Nutcracker 

Nucifraga 
columbiana 

4910 Stable FALSE FALSE FALSE FALSE FALSE FALSE 

Pinyon Jay Gymnorhinus 
cyanocephalu
s 

4920 Decrease
d 

FALSE FALSE FALSE FALSE FALSE FALSE 

Great-tailed 
Grackle 

Quiscalus 
mexicanus 

5120 Increase
d 

FALSE FALSE FALSE TRUE TRUE FALSE 

Boat-tailed 
Grackle 

Quiscalus 
major 

5130 Stable FALSE FALSE FALSE FALSE FALSE TRUE 

Lesser 
Goldfinch 

Spinus 
psaltria 

5300 Stable TRUE FALSE FALSE TRUE TRUE FALSE 

Rufous-
crowned 
Sparrow 

Aimophila 
ruficeps 

5800 Decrease
d 

TRUE FALSE FALSE TRUE TRUE FALSE 

Canyon 
Towhee 

Melozone 
fusca 

5910 Decrease
d 

FALSE FALSE FALSE FALSE FALSE FALSE 

Northern 
Cardinal 

Cardinalis 
cardinalis 

5930 Increase
d 

TRUE FALSE FALSE TRUE TRUE TRUE 

Pyrrhuloxia Cardinalis 
sinuatus 

5940 Decrease
d 

TRUE FALSE FALSE TRUE TRUE TRUE 

American 
Dipper 

Cinclus 
mexicanus 

7010 Stable FALSE FALSE FALSE FALSE FALSE FALSE 

Northern 
Mockingbird 

Mimus 
polyglottos 

7030 Decrease
d 

TRUE FALSE FALSE FALSE TRUE FALSE 
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Curve-billed 
Thrasher 

Toxostoma 
curvirostre 

7070 Decrease
d 

TRUE FALSE FALSE FALSE TRUE FALSE 

Cactus Wren Campylorhyn
chus 
brunneicapill
us 

7130 Decrease
d 

FALSE FALSE FALSE FALSE FALSE FALSE 

Canyon Wren Catherpes 
mexicanus 

7170 Stable FALSE FALSE FALSE TRUE TRUE FALSE 

Carolina Wren Thryothorus 
ludovicianus 

7180 Increase
d 

TRUE FALSE FALSE TRUE TRUE TRUE 

Bewick's Wren Thryomanes 
bewickii 

7190 Decrease
d 

FALSE FALSE FALSE FALSE FALSE FALSE 

White-
breasted 
Nuthatch 

Sitta 
carolinensis 

7270 Increase
d 

FALSE FALSE TRUE FALSE TRUE FALSE 

Brown-headed 
Nuthatch 

Sitta pusilla 7290 Stable TRUE FALSE TRUE FALSE TRUE TRUE 

Pygmy 
Nuthatch 

Sitta pygmaea 7300 Stable FALSE FALSE FALSE FALSE FALSE FALSE 

Tufted 
Titmouse 

Baeolophus 
bicolor 

7310 Increase
d 

TRUE FALSE TRUE FALSE TRUE TRUE 

Black-capped 
Chickadee 

Poecile 
atricapillus 

7350 Increase
d 

FALSE FALSE TRUE FALSE TRUE FALSE 

Carolina 
Chickadee 

Poecile 
carolinensis 

7360 Decrease
d 

TRUE FALSE FALSE FALSE TRUE TRUE 

Mountain 
Chickadee 

Poecile 
gambeli 

7380 Decrease
d 

TRUE FALSE FALSE TRUE TRUE FALSE 

Boreal 
Chickadee 

Poecile 
hudsonicus 

7400 Stable FALSE FALSE FALSE FALSE FALSE FALSE 

Chestnut-
backed 
Chickadee 

Poecile 
rufescens 

7410 Decrease
d 

FALSE FALSE TRUE FALSE TRUE FALSE 

Bushtit Psaltriparus 
minimus 

7430 Stable FALSE FALSE TRUE FALSE TRUE FALSE 

Verdin Auriparus 
flaviceps 

7460 Decrease
d 

FALSE TRUE TRUE FALSE TRUE FALSE 

 

Appendix III-2 Model performance comparison between the climatic models (BIOCLIM, EXTRE, 

TEMP, and PREC). The climatic models are derived based on climatic changes between periods 

of 1969 – 1978 and 2003 – 2012. The table shows the species having at least one of the four 

models with positive percent variance explained (% var. explained). The negative % var. 

explained are assigned to explain 0 % var. explained. 

model % var. 
explained 
adjusted 

common.na
me 

north 
shift 

south 
shift 

east shift west 
shift 

Nit change  % var. 
explained 
original 

BIOCLI
M 

0.3204697
48 

Northern 
Bobwhite 

TRUE FALSE FALSE TRUE Decreased 0.32047 

EXTRE 0.3164923 Northern TRUE FALSE FALSE TRUE Decreased 0.316492 
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84 Bobwhite 

PREC 0.3175852
05 

Northern 
Bobwhite 

TRUE FALSE FALSE TRUE Decreased 0.317585 

TEMP 0.2895902
86 

Northern 
Bobwhite 

TRUE FALSE FALSE TRUE Decreased 0.28959 

TOTO 0.3293487
07 

Northern 
Bobwhite 

TRUE FALSE FALSE TRUE Decreased 0.329349 

BIOCLI
M 

0.1036705
16 

Scaled Quail FALSE FALSE FALSE TRUE Decreased 0.103671 

EXTRE 0.1486492
03 

Scaled Quail FALSE FALSE FALSE TRUE Decreased 0.148649 

PREC 0.0876663
93 

Scaled Quail FALSE FALSE FALSE TRUE Decreased 0.087666 

TEMP 0.1524113
43 

Scaled Quail FALSE FALSE FALSE TRUE Decreased 0.152411 

TOTO 0.1320239
23 

Scaled Quail FALSE FALSE FALSE TRUE Decreased 0.132024 

BIOCLI
M 

0.0560246
24 

Wild Turkey TRUE FALSE TRUE FALSE Increased 0.056025 

EXTRE 0.0071262
61 

Wild Turkey TRUE FALSE TRUE FALSE Increased 0.007126 

PREC 0.0817050
35 

Wild Turkey TRUE FALSE TRUE FALSE Increased 0.081705 

TEMP 0.0548047
13 

Wild Turkey TRUE FALSE TRUE FALSE Increased 0.054805 

TOTO 0.0546188
16 

Wild Turkey TRUE FALSE TRUE FALSE Increased 0.054619 

BIOCLI
M 

0.1255762
97 

Inca Dove FALSE FALSE TRUE FALSE Increased 0.125576 

EXTRE 0.0540693
92 

Inca Dove FALSE FALSE TRUE FALSE Increased 0.054069 

PREC 0.3103304
8 

Inca Dove FALSE FALSE TRUE FALSE Increased 0.31033 

TEMP 0 Inca Dove FALSE FALSE TRUE FALSE Increased -0.12281 

TOTO 0.0375738
28 

Inca Dove FALSE FALSE TRUE FALSE Increased 0.037574 

BIOCLI
M 

0.0920949
82 

Black 
Vulture 

TRUE FALSE FALSE TRUE Increased 0.092095 

EXTRE 0 Black 
Vulture 

TRUE FALSE FALSE TRUE Increased -0.14451 

PREC 0 Black 
Vulture 

TRUE FALSE FALSE TRUE Increased -0.05983 

TEMP 0.0235024
14 

Black 
Vulture 

TRUE FALSE FALSE TRUE Increased 0.023502 

TOTO 0.0466952
62 

Black 
Vulture 

TRUE FALSE FALSE TRUE Increased 0.046695 

BIOCLI
M 

0.0763462
63 

Great 
Horned Owl 

FALSE TRUE TRUE FALSE Decreased 0.076346 

EXTRE 0 Great 
Horned Owl 

FALSE TRUE TRUE FALSE Decreased -0.02121 



140 

 

PREC 0.0420620
32 

Great 
Horned Owl 

FALSE TRUE TRUE FALSE Decreased 0.042062 

TEMP 0.0186821
82 

Great 
Horned Owl 

FALSE TRUE TRUE FALSE Decreased 0.018682 

TOTO 0.0356153
18 

Great 
Horned Owl 

FALSE TRUE TRUE FALSE Decreased 0.035615 

BIOCLI
M 

0.0210359
18 

Hairy 
Woodpecker 

FALSE FALSE TRUE FALSE Increased 0.021036 

EXTRE 0.0235269
54 

Hairy 
Woodpecker 

FALSE FALSE TRUE FALSE Increased 0.023527 

PREC 0.0479279
78 

Hairy 
Woodpecker 

FALSE FALSE TRUE FALSE Increased 0.047928 

TEMP 0.0443852
67 

Hairy 
Woodpecker 

FALSE FALSE TRUE FALSE Increased 0.044385 

TOTO 0.0602810
47 

Hairy 
Woodpecker 

FALSE FALSE TRUE FALSE Increased 0.060281 

BIOCLI
M 

0.1578761
04 

Pileated 
Woodpecker 

TRUE FALSE TRUE FALSE Increased 0.157876 

EXTRE 0.0497646
65 

Pileated 
Woodpecker 

TRUE FALSE TRUE FALSE Increased 0.049765 

PREC 0.0931925
14 

Pileated 
Woodpecker 

TRUE FALSE TRUE FALSE Increased 0.093193 

TEMP 0.0929173
09 

Pileated 
Woodpecker 

TRUE FALSE TRUE FALSE Increased 0.092917 

TOTO 0.1148106
23 

Pileated 
Woodpecker 

TRUE FALSE TRUE FALSE Increased 0.114811 

BIOCLI
M 

0.2410958
93 

Red-bellied 
Woodpecker 

TRUE FALSE FALSE TRUE Increased 0.241096 

EXTRE 0.1795752
39 

Red-bellied 
Woodpecker 

TRUE FALSE FALSE TRUE Increased 0.179575 

PREC 0.1113757
85 

Red-bellied 
Woodpecker 

TRUE FALSE FALSE TRUE Increased 0.111376 

TEMP 0.2266682
04 

Red-bellied 
Woodpecker 

TRUE FALSE FALSE TRUE Increased 0.226668 

TOTO 0.2218014
72 

Red-bellied 
Woodpecker 

TRUE FALSE FALSE TRUE Increased 0.221801 

BIOCLI
M 

0.0176203
92 

Western 
Scrub-Jay 

TRUE FALSE FALSE TRUE Stable 0.01762 

EXTRE 0 Western 
Scrub-Jay 

TRUE FALSE FALSE TRUE Stable -0.22789 

PREC 0 Western 
Scrub-Jay 

TRUE FALSE FALSE TRUE Stable -0.11913 

TEMP 0.0200212
24 

Western 
Scrub-Jay 

TRUE FALSE FALSE TRUE Stable 0.020021 

TOTO 0 Western 
Scrub-Jay 

TRUE FALSE FALSE TRUE Stable -0.07952 

BIOCLI
M 

0.0499694
3 

Common 
Raven 

FALSE FALSE FALSE TRUE Increased 0.049969 

EXTRE 0.1487110
96 

Common 
Raven 

FALSE FALSE FALSE TRUE Increased 0.148711 

PREC 0.1184357 Common FALSE FALSE FALSE TRUE Increased 0.118436 
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57 Raven 

TEMP 0.0890815
66 

Common 
Raven 

FALSE FALSE FALSE TRUE Increased 0.089082 

TOTO 0.0955539
57 

Common 
Raven 

FALSE FALSE FALSE TRUE Increased 0.095554 

BIOCLI
M 

0.1889596
75 

Fish Crow TRUE FALSE FALSE TRUE Increased 0.18896 

EXTRE 0 Fish Crow TRUE FALSE FALSE TRUE Increased -0.08735 

PREC 0 Fish Crow TRUE FALSE FALSE TRUE Increased -0.23926 

TEMP 0.1938073
99 

Fish Crow TRUE FALSE FALSE TRUE Increased 0.193807 

TOTO 0.1154815
95 

Fish Crow TRUE FALSE FALSE TRUE Increased 0.115482 

BIOCLI
M 

0.1122703
75 

Great-tailed 
Grackle 

FALSE FALSE FALSE TRUE Increased 0.11227 

EXTRE 0.0137648
65 

Great-tailed 
Grackle 

FALSE FALSE FALSE TRUE Increased 0.013765 

PREC 0 Great-tailed 
Grackle 

FALSE FALSE FALSE TRUE Increased -0.17937 

TEMP 0.1108959
41 

Great-tailed 
Grackle 

FALSE FALSE FALSE TRUE Increased 0.110896 

TOTO 0.0235533
31 

Great-tailed 
Grackle 

FALSE FALSE FALSE TRUE Increased 0.023553 

BIOCLI
M 

0.1346506
42 

Lesser 
Goldfinch 

TRUE FALSE FALSE TRUE Stable 0.134651 

EXTRE 0 Lesser 
Goldfinch 

TRUE FALSE FALSE TRUE Stable -0.04829 

PREC 0 Lesser 
Goldfinch 

TRUE FALSE FALSE TRUE Stable -0.10193 

TEMP 0 Lesser 
Goldfinch 

TRUE FALSE FALSE TRUE Stable -0.01702 

TOTO 0 Lesser 
Goldfinch 

TRUE FALSE FALSE TRUE Stable -0.00849 

BIOCLI
M 

0.3344477
33 

Northern 
Cardinal 

TRUE FALSE FALSE TRUE Increased 0.334448 

EXTRE 0.3686194
91 

Northern 
Cardinal 

TRUE FALSE FALSE TRUE Increased 0.368619 

PREC 0.0651761
12 

Northern 
Cardinal 

TRUE FALSE FALSE TRUE Increased 0.065176 

TEMP 0.4113354
35 

Northern 
Cardinal 

TRUE FALSE FALSE TRUE Increased 0.411335 

TOTO 0.3905526
1 

Northern 
Cardinal 

TRUE FALSE FALSE TRUE Increased 0.390553 

BIOCLI
M 

0.0083027
15 

Northern 
Mockingbird 

TRUE FALSE FALSE FALSE Decreased 0.008303 

EXTRE 0 Northern 
Mockingbird 

TRUE FALSE FALSE FALSE Decreased -0.0212 

PREC 0.0116557
42 

Northern 
Mockingbird 

TRUE FALSE FALSE FALSE Decreased 0.011656 

TEMP 0 Northern TRUE FALSE FALSE FALSE Decreased -0.04347 
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Mockingbird 

TOTO 0.0194032
64 

Northern 
Mockingbird 

TRUE FALSE FALSE FALSE Decreased 0.019403 

BIOCLI
M 

0 Curve-billed 
Thrasher 

TRUE FALSE FALSE FALSE Decreased -0.14555 

EXTRE 0.1014208
88 

Curve-billed 
Thrasher 

TRUE FALSE FALSE FALSE Decreased 0.101421 

PREC 0 Curve-billed 
Thrasher 

TRUE FALSE FALSE FALSE Decreased -0.28514 

TEMP 0.1888720
58 

Curve-billed 
Thrasher 

TRUE FALSE FALSE FALSE Decreased 0.188872 

TOTO 0.0589520
96 

Curve-billed 
Thrasher 

TRUE FALSE FALSE FALSE Decreased 0.058952 

BIOCLI
M 

0.3391845
12 

Carolina 
Wren 

TRUE FALSE FALSE TRUE Increased 0.339185 

EXTRE 0.2233309
02 

Carolina 
Wren 

TRUE FALSE FALSE TRUE Increased 0.223331 

PREC 0.2557135
61 

Carolina 
Wren 

TRUE FALSE FALSE TRUE Increased 0.255714 

TEMP 0.2651235
27 

Carolina 
Wren 

TRUE FALSE FALSE TRUE Increased 0.265124 

TOTO 0.3029579
17 

Carolina 
Wren 

TRUE FALSE FALSE TRUE Increased 0.302958 

BIOCLI
M 

0.1535859
31 

White-
breasted 
Nuthatch 

FALSE FALSE TRUE FALSE Increased 0.153586 

EXTRE 0 White-
breasted 
Nuthatch 

FALSE FALSE TRUE FALSE Increased -0.02483 

PREC 0.0317080
05 

White-
breasted 
Nuthatch 

FALSE FALSE TRUE FALSE Increased 0.031708 

TEMP 0.0777365
71 

White-
breasted 
Nuthatch 

FALSE FALSE TRUE FALSE Increased 0.077737 

TOTO 0.0903497
51 

White-
breasted 
Nuthatch 

FALSE FALSE TRUE FALSE Increased 0.09035 

BIOCLI
M 

0 Brown-
headed 
Nuthatch 

TRUE FALSE TRUE FALSE Stable -0.1104 

EXTRE 0.0545442
93 

Brown-
headed 
Nuthatch 

TRUE FALSE TRUE FALSE Stable 0.054544 

PREC 0 Brown-
headed 
Nuthatch 

TRUE FALSE TRUE FALSE Stable -0.17139 

TEMP 0.0805432
58 

Brown-
headed 
Nuthatch 

TRUE FALSE TRUE FALSE Stable 0.080543 

TOTO 0 Brown- TRUE FALSE TRUE FALSE Stable -0.00187 
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headed 
Nuthatch 

BIOCLI
M 

0.5227859
97 

Tufted 
Titmouse 

TRUE FALSE TRUE FALSE Increased 0.522786 

EXTRE 0.2914656
24 

Tufted 
Titmouse 

TRUE FALSE TRUE FALSE Increased 0.291466 

PREC 0.1885505
99 

Tufted 
Titmouse 

TRUE FALSE TRUE FALSE Increased 0.188551 

TEMP 0.3552587
04 

Tufted 
Titmouse 

TRUE FALSE TRUE FALSE Increased 0.355259 

TOTO 0.3439519
36 

Tufted 
Titmouse 

TRUE FALSE TRUE FALSE Increased 0.343952 

BIOCLI
M 

0 Black-
capped 
Chickadee 

FALSE FALSE TRUE FALSE Increased -0.02243 

EXTRE 0 Black-
capped 
Chickadee 

FALSE FALSE TRUE FALSE Increased -0.06099 

PREC 0 Black-
capped 
Chickadee 

FALSE FALSE TRUE FALSE Increased -0.1023 

TEMP 0.0851738
63 

Black-
capped 
Chickadee 

FALSE FALSE TRUE FALSE Increased 0.085174 

TOTO 0.0667425
32 

Black-
capped 
Chickadee 

FALSE FALSE TRUE FALSE Increased 0.066743 

BIOCLI
M 

0 Carolina 
Chickadee 

TRUE FALSE FALSE FALSE Decreased -0.01819 

EXTRE 0.0645108
92 

Carolina 
Chickadee 

TRUE FALSE FALSE FALSE Decreased 0.064511 

PREC 0.0578241
74 

Carolina 
Chickadee 

TRUE FALSE FALSE FALSE Decreased 0.057824 

TEMP 0.0574594 Carolina 
Chickadee 

TRUE FALSE FALSE FALSE Decreased 0.057459 

TOTO 0.0671242
79 

Carolina 
Chickadee 

TRUE FALSE FALSE FALSE Decreased 0.067124 

BIOCLI
M 

0.0054832
04 

Bushtit FALSE FALSE TRUE FALSE Stable 0.005483 

EXTRE 0 Bushtit FALSE FALSE TRUE FALSE Stable -0.03815 

PREC 0 Bushtit FALSE FALSE TRUE FALSE Stable -0.15591 

TEMP 0 Bushtit FALSE FALSE TRUE FALSE Stable -0.03633 

TOTO 0 Bushtit FALSE FALSE TRUE FALSE Stable -0.06485 
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Appendix III-3 The description of the methods used to characterize the change of non-climatic 

factors 

We used county level data of the U.S. census data of 1990 and 2010 (Minnesota Population Center 

2011) to capture the population and housing density changes. The metrics included are: person in 

urbanized area, person in rural area, rural housing units, total population, and total housing units. The 

county areas are calculated. Based on the geographic location of county centroids to BBS strata, each 

county was assigned to a BBS stratum (the one it falls within or closest to). Lastly, the change of 

population or housing density is calculated as the change of total metric values of the counties within 

each BBS strata divided by the total area of these counties.  

The land cover types included are: open water, barren land, grassland, agriculture, forest, wetland, and 

urban. The percentage change of each land cover type by stratum were calculated. We used the 

National Land Cover Databases 1992-2001 and 2011 (Fry et al. 2009, Homer et al. 2015) respectively to 

calculate the total area of each land cover type in 1992 and 2011. The change was then calculated as the 

percentage change of the land cover type within each stratum. 

 

Appendix III-4 Model performance comparison between the climatic models (BIOCLIM, EXTRE, 

TEMP, and PREC) and the non-climatic models(LC_CEN). The climatic models are derived 

based on climatic changes between periods of 1988 – 1997 and 2003 – 2012. The non-climatic 

models are based on U.S. census data of 1990 and 2010, as well as the National Land Cover 

Databases 1992-2001 and 2011.  The table shows the species having at least one of the five 

models with positive percent variance explained (% var. explained). The negative % var. 

explained are assigned to explain 0 % var. explained.   

aou model % var. 
explained 
original 

common 
name 

north 
shift 

south 
shift 

east 
shift 

west 
shift 

Nit 
change 

% var. 
explained 
adjusted 

2890 BIOCLIM 0.258183 Northern 
Bobwhite 

TRUE FALSE FALSE TRUE Decreased 0.258183 

2890 EXTRE 0.200208 Northern 
Bobwhite 

TRUE FALSE FALSE TRUE Decreased 0.200208 

2890 LC_CEN 0.295541 Northern 
Bobwhite 

TRUE FALSE FALSE TRUE Decreased 0.295541 
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2890 PREC 0.270322 Northern 
Bobwhite 

TRUE FALSE FALSE TRUE Decreased 0.270322 

2890 TEMP 0.194028 Northern 
Bobwhite 

TRUE FALSE FALSE TRUE Decreased 0.194028 

3100 BIOCLIM 0.010061 Wild 
Turkey 

TRUE FALSE TRUE FALSE Increased 0.010061 

3100 EXTRE -0.04013 Wild 
Turkey 

TRUE FALSE TRUE FALSE Increased 0 

3100 LC_CEN 0.043283 Wild 
Turkey 

TRUE FALSE TRUE FALSE Increased 0.043283 

3100 PREC -0.02811 Wild 
Turkey 

TRUE FALSE TRUE FALSE Increased 0 

3100 TEMP -0.04089 Wild 
Turkey 

TRUE FALSE TRUE FALSE Increased 0 

3210 BIOCLIM 0.170088 Inca Dove FALSE FALSE TRUE FALSE Increased 0.170088 

3210 EXTRE -0.05508 Inca Dove FALSE FALSE TRUE FALSE Increased 0 

3210 LC_CEN -0.02755 Inca Dove FALSE FALSE TRUE FALSE Increased 0 

3210 PREC 0.107988 Inca Dove FALSE FALSE TRUE FALSE Increased 0.107988 

3210 TEMP -0.14529 Inca Dove FALSE FALSE TRUE FALSE Increased 0 

3260 BIOCLIM 0.097393 Black 
Vulture 

TRUE FALSE FALSE TRUE Increased 0.097393 

3260 EXTRE -0.05969 Black 
Vulture 

TRUE FALSE FALSE TRUE Increased 0 

3260 LC_CEN -0.00738 Black 
Vulture 

TRUE FALSE FALSE TRUE Increased 0 

3260 PREC -0.16771 Black 
Vulture 

TRUE FALSE FALSE TRUE Increased 0 

3260 TEMP 0.119107 Black 
Vulture 

TRUE FALSE FALSE TRUE Increased 0.119107 

3750 BIOCLIM 0.05475 Great 
Horned 
Owl 

FALSE TRUE TRUE FALSE Decreased 0.05475 

3750 EXTRE 0.059777 Great 
Horned 
Owl 

FALSE TRUE TRUE FALSE Decreased 0.059777 

3750 LC_CEN -0.03946 Great 
Horned 
Owl 

FALSE TRUE TRUE FALSE Decreased 0 

3750 PREC 0.040775 Great 
Horned 
Owl 

FALSE TRUE TRUE FALSE Decreased 0.040775 

3750 TEMP 0.065866 Great 
Horned 
Owl 

FALSE TRUE TRUE FALSE Decreased 0.065866 

3930 BIOCLIM 0.005299 Hairy 
Woodpec
ker 

FALSE FALSE TRUE FALSE Increased 0.005299 

3930 EXTRE -0.01895 Hairy 
Woodpec
ker 

FALSE FALSE TRUE FALSE Increased 0 
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3930 LC_CEN -0.09463 Hairy 
Woodpec
ker 

FALSE FALSE TRUE FALSE Increased 0 

3930 PREC 0.039545 Hairy 
Woodpec
ker 

FALSE FALSE TRUE FALSE Increased 0.039545 

3930 TEMP 0.032113 Hairy 
Woodpec
ker 

FALSE FALSE TRUE FALSE Increased 0.032113 

4050 BIOCLIM 0.148034 Pileated 
Woodpec
ker 

TRUE FALSE TRUE FALSE Increased 0.148034 

4050 EXTRE 0.024415 Pileated 
Woodpec
ker 

TRUE FALSE TRUE FALSE Increased 0.024415 

4050 LC_CEN 0.231802 Pileated 
Woodpec
ker 

TRUE FALSE TRUE FALSE Increased 0.231802 

4050 PREC 0.005053 Pileated 
Woodpec
ker 

TRUE FALSE TRUE FALSE Increased 0.005053 

4050 TEMP 0.068072 Pileated 
Woodpec
ker 

TRUE FALSE TRUE FALSE Increased 0.068072 

4090 BIOCLIM 0.092153 Red-
bellied 
Woodpec
ker 

TRUE FALSE FALSE TRUE Increased 0.092153 

4090 EXTRE 0.288771 Red-
bellied 
Woodpec
ker 

TRUE FALSE FALSE TRUE Increased 0.288771 

4090 LC_CEN -0.05257 Red-
bellied 
Woodpec
ker 

TRUE FALSE FALSE TRUE Increased 0 

4090 PREC 0.240265 Red-
bellied 
Woodpec
ker 

TRUE FALSE FALSE TRUE Increased 0.240265 

4090 TEMP 0.189896 Red-
bellied 
Woodpec
ker 

TRUE FALSE FALSE TRUE Increased 0.189896 

4860 BIOCLIM 0.045339 Common 
Raven 

FALSE FALSE FALSE TRUE Increased 0.045339 

4860 EXTRE 0.190016 Common 
Raven 

FALSE FALSE FALSE TRUE Increased 0.190016 

4860 LC_CEN 0.128284 Common 
Raven 

FALSE FALSE FALSE TRUE Increased 0.128284 

4860 PREC -0.02927 Common 
Raven 

FALSE FALSE FALSE TRUE Increased 0 
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4860 TEMP 0.01638 Common 
Raven 

FALSE FALSE FALSE TRUE Increased 0.01638 

4900 BIOCLIM -0.00612 Fish Crow TRUE FALSE FALSE TRUE Increased 0 

4900 EXTRE -0.10548 Fish Crow TRUE FALSE FALSE TRUE Increased 0 

4900 LC_CEN 0.050005 Fish Crow TRUE FALSE FALSE TRUE Increased 0.050005 

4900 PREC -0.1057 Fish Crow TRUE FALSE FALSE TRUE Increased 0 

4900 TEMP -0.13274 Fish Crow TRUE FALSE FALSE TRUE Increased 0 

5120 BIOCLIM 0.185072 Great-
tailed 
Grackle 

FALSE FALSE FALSE TRUE Increased 0.185072 

5120 EXTRE 0.026136 Great-
tailed 
Grackle 

FALSE FALSE FALSE TRUE Increased 0.026136 

5120 LC_CEN -0.19591 Great-
tailed 
Grackle 

FALSE FALSE FALSE TRUE Increased 0 

5120 PREC 0.202739 Great-
tailed 
Grackle 

FALSE FALSE FALSE TRUE Increased 0.202739 

5120 TEMP 0.009449 Great-
tailed 
Grackle 

FALSE FALSE FALSE TRUE Increased 0.009449 

5930 BIOCLIM 0.340832 Northern 
Cardinal 

TRUE FALSE FALSE TRUE Increased 0.340832 

5930 EXTRE 0.406515 Northern 
Cardinal 

TRUE FALSE FALSE TRUE Increased 0.406515 

5930 LC_CEN 0.126437 Northern 
Cardinal 

TRUE FALSE FALSE TRUE Increased 0.126437 

5930 PREC 0.105311 Northern 
Cardinal 

TRUE FALSE FALSE TRUE Increased 0.105311 

5930 TEMP 0.392576 Northern 
Cardinal 

TRUE FALSE FALSE TRUE Increased 0.392576 

5940 BIOCLIM -0.22529 Pyrrhuloxi
a 

TRUE FALSE FALSE TRUE Decreased 0 

5940 EXTRE -0.33849 Pyrrhuloxi
a 

TRUE FALSE FALSE TRUE Decreased 0 

5940 LC_CEN 0.165356 Pyrrhuloxi
a 

TRUE FALSE FALSE TRUE Decreased 0.165356 

5940 PREC -0.18941 Pyrrhuloxi
a 

TRUE FALSE FALSE TRUE Decreased 0 

5940 TEMP -0.47723 Pyrrhuloxi
a 

TRUE FALSE FALSE TRUE Decreased 0 

7030 BIOCLIM 0.110471 Northern 
Mockingbi
rd 

TRUE FALSE FALSE FALSE Decreased 0.110471 

7030 EXTRE 0.068686 Northern 
Mockingbi
rd 

TRUE FALSE FALSE FALSE Decreased 0.068686 

7030 LC_CEN 0.047739 Northern 
Mockingbi

TRUE FALSE FALSE FALSE Decreased 0.047739 
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rd 

7030 PREC 0.11801 Northern 
Mockingbi
rd 

TRUE FALSE FALSE FALSE Decreased 0.11801 

7030 TEMP 0.065842 Northern 
Mockingbi
rd 

TRUE FALSE FALSE FALSE Decreased 0.065842 

7180 BIOCLIM 0.319344 Carolina 
Wren 

TRUE FALSE FALSE TRUE Increased 0.319344 

7180 EXTRE 0.191658 Carolina 
Wren 

TRUE FALSE FALSE TRUE Increased 0.191658 

7180 LC_CEN 0.314354 Carolina 
Wren 

TRUE FALSE FALSE TRUE Increased 0.314354 

7180 PREC 0.207495 Carolina 
Wren 

TRUE FALSE FALSE TRUE Increased 0.207495 

7180 TEMP 0.236358 Carolina 
Wren 

TRUE FALSE FALSE TRUE Increased 0.236358 

7270 BIOCLIM 0.05851 White-
breasted 
Nuthatch 

FALSE FALSE TRUE FALSE Increased 0.05851 

7270 EXTRE 0.001334 White-
breasted 
Nuthatch 

FALSE FALSE TRUE FALSE Increased 0.001334 

7270 LC_CEN 0.19966 White-
breasted 
Nuthatch 

FALSE FALSE TRUE FALSE Increased 0.19966 

7270 PREC 0.003442 White-
breasted 
Nuthatch 

FALSE FALSE TRUE FALSE Increased 0.003442 

7270 TEMP -0.03547 White-
breasted 
Nuthatch 

FALSE FALSE TRUE FALSE Increased 0 

7290 BIOCLIM -0.02599 Brown-
headed 
Nuthatch 

TRUE FALSE TRUE FALSE Stable 0 

7290 EXTRE -0.01815 Brown-
headed 
Nuthatch 

TRUE FALSE TRUE FALSE Stable 0 

7290 LC_CEN 0.179951 Brown-
headed 
Nuthatch 

TRUE FALSE TRUE FALSE Stable 0.179951 

7290 PREC 0.012687 Brown-
headed 
Nuthatch 

TRUE FALSE TRUE FALSE Stable 0.012687 

7290 TEMP 0.015514 Brown-
headed 
Nuthatch 

TRUE FALSE TRUE FALSE Stable 0.015514 

7310 BIOCLIM 0.512956 Tufted 
Titmouse 

TRUE FALSE TRUE FALSE Increased 0.512956 

7310 EXTRE 0.372111 Tufted 
Titmouse 

TRUE FALSE TRUE FALSE Increased 0.372111 
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7310 LC_CEN 0.123002 Tufted 
Titmouse 

TRUE FALSE TRUE FALSE Increased 0.123002 

7310 PREC 0.320478 Tufted 
Titmouse 

TRUE FALSE TRUE FALSE Increased 0.320478 

7310 TEMP 0.468715 Tufted 
Titmouse 

TRUE FALSE TRUE FALSE Increased 0.468715 

7350 BIOCLIM 0.009592 Black-
capped 
Chickadee 

FALSE FALSE TRUE FALSE Increased 0.009592 

7350 EXTRE 0.15581 Black-
capped 
Chickadee 

FALSE FALSE TRUE FALSE Increased 0.15581 

7350 LC_CEN -0.14533 Black-
capped 
Chickadee 

FALSE FALSE TRUE FALSE Increased 0 

7350 PREC 0.045464 Black-
capped 
Chickadee 

FALSE FALSE TRUE FALSE Increased 0.045464 

7350 TEMP 0.093305 Black-
capped 
Chickadee 

FALSE FALSE TRUE FALSE Increased 0.093305 

7360 BIOCLIM 0.050474 Carolina 
Chickadee 

TRUE FALSE FALSE FALSE Decreased 0.050474 

7360 EXTRE -0.01219 Carolina 
Chickadee 

TRUE FALSE FALSE FALSE Decreased 0 

7360 LC_CEN -0.01159 Carolina 
Chickadee 

TRUE FALSE FALSE FALSE Decreased 0 

7360 PREC 0.0773 Carolina 
Chickadee 

TRUE FALSE FALSE FALSE Decreased 0.0773 

7360 TEMP 0.079112 Carolina 
Chickadee 

TRUE FALSE FALSE FALSE Decreased 0.079112 

7410 BIOCLIM -0.23526 Chestnut-
backed 
Chickadee 

FALSE FALSE TRUE FALSE Decreased 0 

7410 EXTRE -0.24129 Chestnut-
backed 
Chickadee 

FALSE FALSE TRUE FALSE Decreased 0 

7410 LC_CEN 0.093445 Chestnut-
backed 
Chickadee 

FALSE FALSE TRUE FALSE Decreased 0.093445 

7410 PREC -0.47722 Chestnut-
backed 
Chickadee 

FALSE FALSE TRUE FALSE Decreased 0 

7410 TEMP -0.16779 Chestnut-
backed 
Chickadee 

FALSE FALSE TRUE FALSE Decreased 0 

7430 BIOCLIM 0.010771 Bushtit FALSE FALSE TRUE FALSE Stable 0.010771 

7430 EXTRE -0.06831 Bushtit FALSE FALSE TRUE FALSE Stable 0 

7430 LC_CEN 0.041112 Bushtit FALSE FALSE TRUE FALSE Stable 0.041112 

7430 PREC -0.0937 Bushtit FALSE FALSE TRUE FALSE Stable 0 
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7430 TEMP -0.02483 Bushtit FALSE FALSE TRUE FALSE Stable 0 
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