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 In today’s data driven world, the development of a statistically literate society is 

critical.  As a result, many students are enrolling in university level introductory statistics 

courses and educators are promoting the development of strong understandings of the 

material taught in those courses.  Statistical hypothesis testing, a powerful method of 

inferential statistics widely used in research, is taught in introductory courses.  Though 

algorithmic in nature, statistical hypothesis testing is based on statistical theory.  It is 

important that introductory students develop connected understandings of the algorithm, 

the concepts and logic that support it, and its uses. 

 This study explored the degree to which undergraduate, introductory statistics 

students develop desired understandings of the overall “big picture” of statistical 

hypothesis testing.  In order to investigate student understanding a mixed methods 

approach was employed—both large scale quantitative and small scale qualitative data 

were collected.  In the quantitative phase, a framework for assessing understanding of the 



  

conceptual and logical foundations of statistical hypothesis testing and its uses was 

created, a multiple-choice instrument with items representative of the framework was 

constructed, and data on student performance on this instrument were collected. Scores 

from a course exam that assessed student ability to use the algorithm to solve traditional 

statistical hypothesis testing problems were collected and compared with those from the 

multiple-choice instrument.  In the qualitative phase, in order to gain more insight into 

student thinking, follow-up interviews were conducted with students who represent a 

range of performance patterns on the two quantitative assessments. 

 The data collected in this study indicated that introductory statistics students do 

not develop strong, connected understandings of the “big picture” of statistical hypothesis 

testing.  Though they are able to perform the procedures, students do not have strong 

understandings of the concepts, logic, and uses of the method.  A weak correlation 

between scores on the quantitative assessments indicated that procedural knowledge is 

not a predictor of overall understanding of statistical hypothesis testing.  Analysis of 

quantitative and qualitative data indicated that students do not understand the role of 

indirect reasoning and inference in implementing and interpreting the results of a 

statistical hypothesis test. 
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CHAPTER 1  

INTRODUCTION 

The field of statistics offers methods for using data to solve problems and inform 

decisions.  In today’s data driven society, these methods are of extreme importance.  In 

particular, statistical methods provide a means for dealing with variability in data, so they 

play a large role in research and organized inquiry.  Given a question of interest, 

statistical theories dictate the ways that sample data should be gathered, descriptive 

statistics should be used to describe and analyze the data, and inferential statistical 

methods should be used to draw conclusions about populations based on analysis of data 

samples.  Due to the utility and power of statistical concepts and methods, individuals are 

in contact with statistics almost daily, either as consumers of information obtained from 

statistical study or as producers engaged in the research process. 

 In order to better prepare individuals to interpret and/or conduct research, courses 

in introductory statistics are offered in universities (Introductory Statistics) and high 

schools (Advancement Placement Statistics).  Leaders in statistics and mathematics 

education have emphasized the need for introductory statistics students to understand not 

only the processes but also the logic and concepts that provide the foundation for 

statistical analysis, especially inferential methods.  As a result, researchers are studying 

various aspects of the teaching and learning of statistical concepts.  To advance this 

research agenda, work is needed on student understanding of one useful inferential 

method taught in introductory courses:  statistical hypothesis testing. 

 This chapter introduces the study presented in this dissertation.  The chapter is 

organized into three sections:  (1) discussion of the background and rationale for study of 
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understandings of statistical hypothesis testing; (2) presentation of conceptual 

frameworks and theoretical perspectives on which study of understanding may be 

grounded; and (3) presentation of research questions and methodology of the study. 

 

Background and Rationale 

 The argument for studying student understanding of statistical hypothesis testing 

has its foundations in the general desire to develop a statistically literate and educated 

citizenry.  Statistics plays an important role in modern society and, over time, educational 

leaders have begun to advocate for courses that aim to develop deep understandings of 

statistical concepts. When assessments of student performance call into question the 

degree to which key statistical understandings have been developed, research on student 

understanding can inform the design of more effective instruction.  Such is the case for 

statistical hypothesis testing. 

Statistical Analysis and Modern Society 

 Evidence of statistical reasoning can be found in everyday activity.  Newspapers, 

magazines, journals, and television programs quote statistics in order to provide 

numerical information about stories.  Statistical concepts are central to political polling 

reports, and, adoption of governmental policy is often influenced by statistics collected 

from census data (Franklin, Kader, Mewborn, Moreno, Peck, Perry, & Scheaffer, 2005).   

“Employment increasingly requires analytical, quantitative, and computing skills;” 

(Moore, 1997, p.124) and these skills are central to the practice of statistics. 
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 The prevalence of statistics in modern society is largely due to its value in the 

inquiry process of research, where data are commonly used to answer questions of 

interest.  Investigators observe the world around them, generate research questions, and 

collect data that will help them to answer their research questions.  After analyzing the 

data, researchers are in a position to formulate conclusions in response to their research 

questions.  Because statistics is the “branch of mathematics [that deals] with the 

collection, analysis, interpretation, and presentation of sets of data” (Lajoie, 1998, p.  xii), 

statistical methods and concepts play a significant role in this process. 

 When data are used to answer a question of interest, it is important to recognize 

the variability that exists in that data. Statistical methods are designed to deal with this 

variability.  In fact, Cobb and Moore (1997) claim that “the need for [statistics] arises 

from the omnipresence of variability” (Cobb & Moore, 1997, p. 801). Measurement 

variability, natural variability, induced variability, and sampling variability (Franklin, et 

al., 2005) are forms of variability that are associated with any data.  The field of statistics 

provides researchers with methods of describing, measuring, and modeling this 

variability.  These methods inform the ways in which researchers collect data, analyze 

data, and, ultimately, formulate conclusions based on the data (Reading & Shaughnessy, 

2004). 

 In addition to providing a means of dealing with variability, a distinguishing 

feature of statistics is that it handles numbers in context. The motivation for statistical 

analysis is the context in which it is employed.  Although the data are numerical, the 

numbers are connected to a context and “in data analysis, context provides meaning” 

(Cobb & Moore, 1997, p. 801).  The design and ultimate interpretation of the results of 
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studies that employ statistical analyses are highly dependent upon the context.  The 

ability to deal with variability in context makes the field of statistics extremely valuable 

to modern society. 

Statistical Understanding and the Role of Education 

 With the prevalence of statistical ideas in society, educators are beginning to 

outline those skills, understandings, and habits of mind that are important for individuals 

to function in a statistical society.  Among those who have offered ideas, there is 

consensus that people should have an understanding of those statistical concepts and 

ideas that enable an individual to critically examine and interpret reports of statistical 

analysis. Individuals should have a basic knowledge of the ways that statistical inferences 

are made as well as an understanding of the ways in which descriptive statistics give 

information about a set of data (Gal, 2004). 

 Specific recommendations for K-12 statistical content and associated reasoning 

skills have been offered by leaders in the field (e.g. Franklin et. al, 2005; Lajoie, 1998; 

Scheaffer, Watkins & Landwehr, 1998).  In addition, national organizations such as the 

National Council of Teachers of Mathematics (NCTM) have included statistical content 

in their recent reform efforts.  In its Principles and Standards for School Mathematics, 

NCTM outlines objectives for the Data Analysis and Probability standard for students in 

grades K-12 (NCTM, 2000).  School districts across the country are now including 

objectives that address statistical skills and understandings in their mathematics curricular 

frameworks. 

 The push for a statistically literate society is also being realized in upper levels of 

education, where courses are offered that provide instruction on more advanced statistical 
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concepts and ideas.  Universities offer Introductory Statistics courses and high schools 

now offer a course covering similar content in the form of an Advanced Placement 

Statistics course.  The numbers of students taking these introductory courses has been 

rising as more and more students of increasingly diverse interests are enrolling in 

introductory and more advanced statistics courses (ASA, 2005).  Recommendations for 

the teaching and learning of concepts in introductory courses have also been made by 

various leaders in the field (e.g. Garfield, 1995; Moore, 1997; Wild & Pfannkuch, 1999) 

and workgroups have been established to do the same. 

 In 1992, The Mathematical Association of America (MAA) published a document 

containing a series of recommendations concerning teaching and learning in introductory 

statistics courses.  The group recommended that these courses should (1) emphasize 

statistical thinking; (2) include more data and concepts:  less theory, fewer recipes; and 

(3) foster active learning (Cobb, 1992).  Building on the work of the MAA Statistics 

Focus Group and funded by the American Statistical Association, the Guidelines for 

Assessment and Instruction in Statistics Education (GAISE) Project stated that students 

who complete an introductory course should be “statistically educated.”  That is, 

“students should develop statistical literacy and the ability to think statistically” (ASA, 

2005).  This statement indicates a desire for students to develop both a deep 

understanding of statistical concepts and the reasoning and analytic skills necessary to the 

practice of statistics.  Students should understand the concepts and ideas that support 

procedures used in the various methods and understand how these methods may be 

employed to answer questions of interest.  Students should have an awareness of the role 
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of context and variability in statistical analysis and should recognize the value of 

statistics in decision making (ASA, 2005). 

Understanding of Inferential Statistical Methods: The Statistical Hypothesis Test 

 Given the value of inferential methods to the process of inquiry and given the 

recommendations for the development of statistically educated students in introductory 

classes, educational leaders have made recommendations for the teaching and learning of 

these methods as part of the introductory course.  Implementation of formal inferential 

statistical methods in the process of inquiry involves the use of formulas, calculations, 

and reference to statistical tables.  Though algorithmic in nature, these methods are 

supported by statistical theory.  Both educational leaders and statisticians are 

recommending that students complete introductory statistics courses with deep 

understandings of these methods (e.g. ASA, 2005; Cobb, 1992; Garfield & Chance, 2000; 

Moore, 1997; Snee, 1999).  Although procedures are important, a “grasp of the reasoning 

of inference is more important than how many individual procedures [statistics courses] 

touch on” (Moore, 1997; p. 127).  According to Snee (1999), the development of 

statistical thinking skills is especially necessary in today’s world where technology 

performs the procedures, leaving statisticians and consumers alike to critically examine 

the work presented in statistical investigations.  These recommendations indicate that it is 

essential that introductory statistics students develop an understanding of the concepts 

and reasoning that support the procedures used in statistical analysis and inferential 

methods. 

 One inferential method that is extremely useful in research and that is included in 

the syllabi of introductory statistics courses is the statistical hypothesis test.  Statistical 
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hypothesis testing allows researchers to use information from one sample to place 

confidence in a given hypothesized description of an entire collection or group.  

Implementation of a statistical hypothesis test usually requires execution of a procedure 

in order to reach a conclusion.  This procedure and ultimate conclusion are: (a) supported 

by theoretical ideas from statistics and probability and premises associated with logical 

proof; and (b) informed by the context in which the test is employed. As Moore (1997) 

and others (e.g. ASA, 2005) indicate, it is important that students complete introductory 

courses with a deep, connected understanding of statistical hypothesis testing that goes 

beyond the ability to perform the procedure.  In addition, introductory students should 

also have the ability to consider the role of context in the design and interpretation of 

studies that use statistical hypothesis testing. 

 Though scarce in number, studies provide some evidence to suggest that 

individuals struggle in the development of a deep, connected understanding of statistical 

hypothesis testing and its use.  Included in this literature are studies that focus on student 

errors in implementation of the procedure (e.g. Aquilonius, 2005; Evangelista & 

Hemenway, 2002; Hong & O’Neil, 1992; Link, 2002) and studies that study individuals’ 

thinking and understanding of statistical hypothesis testing.  These latter studies focus on: 

(1) the relationship of various components of hypothesis testing to the whole concept and 

process (Hong & O’Neil, 1992; Krauss & Wassner, 2002; Lane-Getaz, 2007; Lipson, 

Kokonis, & Francis, 2003; Mittag & Thompson, 2000; Wilkerson & Olson, 1997); and 

(2) the entire concept and process of hypothesis testing (Aquilonius, 2005; Liu, 2005). 

 Reports of student errors indicate that students struggle with almost every step in 

implementation of the procedure, indicating that they do not have a well developed 
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understanding of statistical hypothesis tests (e.g. Link, 2002).  This sentiment is echoed 

by the few studies of student understanding found in the literature (e.g. Aquilonius, 2005; 

Liu, 2005).  The literature also includes theoretical commentaries that point to anecdotal 

evidence of student difficulties and suggest ways to confront those difficulties through 

instruction (e.g. Falk, 1986).  But, even when instruction is specifically designed to 

decrease student errors when performing statistical hypothesis tests, Hong and O’Neil 

(1992) and Evangelista and Hemenway (2002) found that students continue to have 

difficulty.  It seems that educators have not yet determined how to design instruction that 

will promote the development of deep, connected understanding of statistical hypothesis 

testing by introductory students. 

 A first step, then, is to construct a picture of student understandings of the “big 

picture” of statistical hypothesis testing that goes beyond a list of student errors.  Though 

some researchers have begun this process (e.g. Aquilonius, 2005; Liu, 2005) and their 

studies have provided information useful in the construction of a picture of introductory 

student understandings of statistical hypothesis testing, these studies are scarce and 

limited in scope.  More studies are needed to build on this work and further define the 

nature of student understanding.  Therefore, research aimed at studying university-level, 

introductory statistics students’ understandings of all aspects of statistical hypothesis 

testing would make a significant contribution to the field of statistics education as it 

strives to prepare students for daily and professional life in a statistical society. 
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Theoretical Perspective 

 In order to study introductory statistics students’ understandings of statistical 

hypothesis testing, it is important to analyze the nature of statistical hypothesis testing 

itself and to define a framework useful for describing understandings of that concept.  

Analysis of the procedure and the conceptual foundation for that algorithm will inform 

the way in which a framework for understanding might be useful in the study of 

individuals’ thinking about this important concept. 

A Conceptual Analysis of Statistical Hypothesis Testing: The “Big Picture” 

 Hypothesis testing is used as researchers attempt to explain phenomena and to 

answer questions of interest.  Once a question of interest has been identified, researchers 

make observations and begin to generate hypotheses representing possible answers to the 

question.  In the interest of proving or disproving these hypotheses, researchers conduct 

studies in which they collect data for analysis.  Based on their analysis, researchers make 

conclusions concerning the validity of their hypotheses.  It is through coordination of 

various statistical concepts with probabilistic reasoning that statistical hypothesis testing 

becomes a powerful means of testing the validity of hypotheses using only information 

obtained from a sample of the population under study. 

Proof and Hypothesis Testing Via a Sample 

 Premises of logical proof hold that in order to prove a statement about a group of 

cases, the statement must be shown to be true for every single possible case within that 

group.  Unless exhaustive, the generation of supporting examples is not sufficient.  As 

more examples are generated, one may become more confident that the premise is 
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correct, but he/she cannot prove it unless it is demonstrated to be true for all cases. On 

the other hand, if one wishes to disprove a statement about all members of a group, 

he/she can do so by providing one counter-example.  That is, one example can either (a) 

provide evidence for, but not a proof, of a given statement or (b) provide evidence 

against, and therefore disprove, a given statement. 

 It is often difficult to generate an exhaustive list of examples in order to prove a 

statement directly.  Under these circumstances, it is possible to prove a statement using 

only one case, through indirect reasoning.  Using indirect reasoning to prove a 

proposition p, one begins by assuming the negation of that proposition, ~p, and showing 

that such a supposition leads to a logical contradiction.  Then the conclusion is that the 

original proposition, p, must be true.  When the logic of indirect proof is applied to the 

challenge of establishing truth of a research hypothesis, one begins by stating the 

negation of that hypothesis (in statistical context, the null hypothesis or H0), and looking 

for evidence showing that negation to be untenable.  If such evidence is found, one can 

conclude that the original hypothesis (in statistical context, the alternative hypothesis or 

H1), is true. 

 Although indirect reasoning provides a means of proof for the alternative 

hypothesis, it only does so if the evidence produced (in statistical context, a sample) is 

deemed impossible under the assumed null condition.  Unfortunately, it is not always true 

that a given sample is absolutely impossible under the null hypothesis.  Therefore, the 

researcher is not able to disprove the null hypothesis in favor of the alternative.  He/she 

must draw an inference about the population based on the sample and his/her conclusion 

is accompanied by some degree of uncertainty. 
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 In classical statistics, one draws an inference by determining the degree to which 

a sample presents characteristics that would be unusual if the null hypothesis did, indeed, 

describe the true nature of the population.  That is, the researcher assumes that the null 

hypothesis describes the true nature of the population, and performs an analysis on the 

sample to determine whether that sample exhibits what he/she would expect (is a likely 

sample) or if the sample is unusual (unlikely).  In the case where the sample is like what 

one would expect, the researcher has found support for the null and will retain (fail to 

reject) the null hypothesis.  In the case where the sample is deemed unusual, the 

researcher has found evidence that the null is not the true descriptor of the population and 

will reject the null hypothesis in favor of the alternative hypothesis.  In other words, the 

test essentially boils down to the following question and resulting action:  If the null 

hypothesis describes the true nature of the population, is the sample obtained considered 

to be unusual?  If so, then reject the null hypothesis.  If not, retain (fail to reject) the null 

hypothesis.   Note that, in either case, the researcher is not able to prove (or disprove) a 

given hypothesis.  Using the analysis of a single sample, the researcher can only provide 

evidence for or against a given hypothesis. 

 In working through this line of reasoning, one must determine the criteria that will 

be used to decide whether or not the sample provides evidence against the null 

hypothesis.  In order to do so, researchers rely on test statistics, which are numerical 

summaries of sample data characteristics.  The researcher must decide which test statistic 

is appropriate for the analysis and this statistic is used to determine whether or not the 

sample is unusual under the null hypothesis.  In making this decision, it is important to 

recognize the variability associated with sampling.  Within the same population, a given 
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sample of that population will look different from another sample taken from the same 

population.  Analysis of those samples, then, will yield different results.  The variability 

that exists among samples must be taken into consideration when attempting to decide 

whether one given sample is unusual. 

 Because the field of statistics provides a means of taking variability into 

consideration, it seems a good place to search for a way to consider variability in the 

decision to reject or retain the null hypothesis.  In fact, statistics does offer such a 

concept:  the sampling distribution of the statistic.  The sampling distribution of the 

statistic connects probability to the sampling process and is thus useful in helping a 

researcher to determine whether or not a sample is unusual and to quantify the degree to 

which he/she is confident in the resulting decision to reject or retain hypotheses. 

Unusual or Expected? Application of the Sampling Distribution 

 The sampling distribution of the statistic is exactly what the name implies.  Given 

a sampling scheme producing samples of size n, a test statistic of interest (such as an 

average, proportion, or correlation), and all possible samples that may be obtained by 

randomly sampling the population, the sampling distribution of the statistic represents the 

distribution of the values of the statistic that are obtained from the samples.  That is, for a 

given sample size, n, the sampling distribution gives the distribution (relative 

frequencies) of values of the statistic for all possible samples of n that result from random 

sampling. The resulting distribution can be modeled by a probability formula from which 

probabilities may be determined. 

 Consider the example shown in Figure 1.1 that is based on a sampling distribution 

of an average.  
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Figure 1.1 

Sampling Distribution of an Average, Sample Size n = 50 

 

 

 

Here, the probability that a randomly chosen sample of size 50 will have an average 

between 4 and 5 is the same as the area under the curve between 4 and 5 (shaded part A).  

The probability that a sample of size 50 will have a mean greater than 6 is the area under 

the curve from 6 to the right (shaded part B).  Note that for a continuous variable, 

calculation of area is not possible for a single value of a statistic.  Therefore, probabilities 

are typically determined for intervals of a continuously distributed statistic. 

 Because the sampling distribution of the statistic gives probabilities associated 

with obtaining certain values from a randomly chosen sample, it can be used to determine 

whether or not a sample is unusual (unlikely) in the population being modeled by the 

sampling distribution. Thus, sampling distributions are extremely valuable tools for use 
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in hypothesis testing.  An unusual sample would occur with a low probability.  In 

attaching a probability value to the sample, the researcher is able to not only determine 

whether that sample is unusual but also to quantify the degree to which he/she is 

confident in his/her conclusion. 

 Unfortunately, the sampling distribution cannot be used unless the characteristic 

of interest in analysis of a sample is a measurable quantity, namely a statistic.  For this 

reason, then, statistical hypothesis testing can only be used to test hypotheses that address 

some quantitative characteristic of the population, called the population parameter.   The 

sample statistic can then be compared to a sampling distribution, connected to a 

probability, and a decision reached concerning whether or not it is unusual (unlikely). 

 Although it may seem that the sampling distribution is a factor that limits the 

usefulness of statistical hypothesis testing, it is actually one of the keys to the power of 

the method.  Statistical hypothesis testing does not prove or establish a given hypothesis 

to be a true descriptor of the population.  It does provide a means of quantifying the 

uncertainty associated with the inferences drawn from sample information.  In order to 

better illustrate the way in which statistical hypothesis testing gives the researcher the 

ability to quantify his/her uncertainty, the entire process will now be outlined. 

Statistical Hypothesis Testing: Using Probability to Make Inferences  

 Given a research question that concerns a large population, a researcher must 

identify an appropriate population parameter to consider which would answer the 

question.  Then, the researcher establishes both the null and alternative hypotheses to 

describe the population parameter under question.  The researcher generally constructs 

these hypotheses so that the alternative aligns with a statement about the population 
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which the researcher wishes to prove, while the null hypothesis is that which is 

contradictory to that statement.  The researcher’s goal is to provide evidence that the null 

hypothesis is not correct.  To do so, the researcher assumes the null to be a true 

description of the population in hopes that analysis of a sample will contradict that 

notion. 

 The researcher obtains a randomly chosen sample and calculates the sample 

statistic corresponding to the hypothesized population parameter.  Given the sample size, 

there exists a sampling distribution of that statistic associated with the population that has 

the parameter value stated in the null hypothesis.  Using the appropriate sampling 

distribution, the researcher can determine the probability of obtaining his/her sample 

statistic or more extreme (more unlikely – more distant from the hypothesized value) 

under the condition that the null hypothesis is the true descriptor of the population.  If the 

probability is small, the sample is deemed unusual under the null hypothesis.  Using 

indirect reasoning, then, the null hypothesis is rejected and more confidence is placed in 

the competing, contradictory alternative hypothesis.  If the probability is large, then the 

sample is considered to be typical of what is expected under the null hypothesis and the 

null hypothesis is retained as there is not enough evidence to believe otherwise. 

 In order to decide if the probability is small or large, the researcher must 

determine a decision rule that designates a “cut point.”  That is, he/she must decide what 

probabilistic value is considered small and would lead to a rejection of the null 

hypothesis.  For example, a decision rule might be:   If the probability associated with 

obtaining a sample whose sample statistic is x or more extreme is smaller than 0.05, the 

null hypothesis will be rejected; if not, the null hypothesis will be retained (or will not be 
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rejected).  A decision to reject the null hypothesis indicates that under the condition that 

the null hypothesis is true, the probability of obtaining the observed result (or more 

extreme) is only 0.05 (Shaver, 1993).  The value, 0.05, is called the level of significance 

and is commonly denoted by the Greek letter, α. 

 Not only does the decision rule guide the formulation of a conclusion, but the 

decision rule also specifies the degree of uncertainty associated with making that 

conclusion.  If the decision rule uses a significance level of α = 0.05, then if the null 

hypothesis described the true nature of things and the researcher repeated his/her 

experiment over and over, he/she would obtain a sample that would lead him/her to 

incorrectly reject the null hypothesis five percent of the time.  Thus, if the null hypothesis 

were a true description of the population, and the researcher obtains a sample that has a 

probability of occurring 0.05 or less, then he/she would incorrectly reject the null 

(Shaver, 1993).  This probability is commonly referred to as the Type I error (see, for 

example, Hubbard & Bayarri, 2003). It is important to note that α is not the probability 

that the null hypothesis is true.  It is the long run probability of rejecting the null 

hypothesis given that it is, indeed, true. 

 Some key terms that are associated with the decision rule are the terms critical 

value and p-value.  Some statisticians and textbooks make a distinction between these 

two ideas in regards to performance of a hypothesis test.  The critical value(s) refers to 

the value of the sample statistic that marks the “cut point(s)” used in the decision rule.  

That is, once a value for α has been specified, a rejection region is outlined on the 

sampling distribution.  Values more extreme than the critical value lie in the tails of the 

distribution (smaller probabilities are attached to values that appear in the tails).  In the 
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case where the null and alternative hypotheses contradict each other in one direction (for 

example the null may claim the mean to be 4, while the alternative claims it to be larger 

than 4), the extreme values lie to the right of the critical value.  Thus, the rejection region 

is also to the right of the critical value.  The critical value and associated rejection region 

are illustrated in Figure 1.2. 

Figure 1.2 

Critical Value and Associated Rejection Region 

 

 

In the case where the null and alternative hypotheses contradict each other in two 

directions (for example, the null may claim the mean to be 4, while the alternative claims 

that it is simply not equal to 4), there are two critical values.  One critical value is greater 

than 4 resulting in extreme values and associated rejection region to the right of this 

critical value.  The other critical value is less than 4 with extreme values and associated 

rejection region to the left of this critical value.  The critical values mark the boundaries 

for rejection regions.  Given the critical value(s), one must only compare the sample 
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statistic with the critical value(s) in making a conclusion.  If the sample lies in a rejection 

region, then the null hypothesis is rejected in favor of the alternative.  If not, then the null 

hypothesis is retained.  Huberty (1993) refers to this approach as the fixed-α-approach 

and credits this method to Jerzy Neyman and Egon Pearson. 

 The p-value indicates the actual probability that one would obtain a sample 

statistic as extreme, or more extreme, than the observed value, given that the null 

hypothesis holds.  Once a sample statistic is obtained, the probability of obtaining that 

value or more extreme given the null hypothesis is determined and is labeled the p-value. 

If this value is small, the null hypothesis is rejected.  Huberty (1993) refers to this 

approach as the p-value approach or as significance testing and credits it to R.A. Fisher. 

 The two approaches to statistical hypothesis testing developed by Fisher and 

Neyman and Pearson are based on two different philosophies of hypothesis testing, and 

were the subject of debate between the men in the mid-1900s (Hubbard & Bayarri, 2003).  

Although many statisticians consider the different approaches to hypothesis testing to be 

a “non-issue” (Huberty, 1993) and tend to merge them in practice (Batanero, 2000; 

Hubbard & Bayarri, 2003), it is important to address these differences in this conceptual 

analysis. 

 In his approach to statistical hypothesis testing, Fisher did not include the 

formulation of an alternative hypothesis, nor did he explicitly consider the cut point, α = 

0.05, to represent long run error rate. In his approach, the data are evaluated to determine 

the degree to which they provide evidence against the null hypothesis.  Assuming the null 

hypothesis, sampling distributions are used to determine the degree to which the sample 

deviates from the mean of the sampling distribution associated with the null.  The p-value 
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described above provides a measure of that evidence. Smaller p-values indicate stronger 

evidence against the null.  If a test yields a small p-value (and 0.05 was commonly 

accepted as the cut point), then either the data are very rare, or the theory (the null 

hypothesis) is not true. Fisher’s method is one of inductive inference in that it provides a 

means for drawing inferences about a population based on information from a sample 

(Hubbard & Bayarri, 2003). 

 In contrast to Fisher’s approach, the establishment of an alternative hypothesis is 

critical in the Neyman-Pearson approach.  Neyman-Pearson conceptualized their 

approach as a test that places two hypotheses (the null and the alternative) in opposition.  

The ultimate goal is to make a decision between these two hypotheses in light of the data 

collected.  In so doing, probabilities of two forms of potential error are introduced:  Type 

I and Type II.  Type I error (α) is the probability of incorrectly rejecting the null 

hypothesis and Type II (β) of incorrectly accepting the null hypothesis.  In addition, the 

Neyman-Pearson approach introduces the concept of power (1 – β), which is the 

probability of correctly rejecting the null (Hubbard & Bayarri, 2003). 

 The Neyman-Pearson method uses pre-set, context dependent values for α and β 

to identify critical values and rejection regions to make that decision.  “This is in sharp 

contrast to the data-based p-value, which is a random variable whose distribution is 

uniform over the interval [0, 1] under the null hypothesis” (Hubbard & Bayarri, 2003, p. 

173).   This approach does not use inductive inference.  Rather, it is what Neyman terms 

inductive behavior (as cited in Hubbard & Bayarri, 2003).  Decisions about how to 

proceed (or behave) are made using a limited amount of information.  Sample 

information is used to decide whether to act as if (a) the null hypothesis were a true 
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description of the population or (b) the alternative hypothesis is a true description of the 

population.  Thus, the behavior is guided by a degree of inductive reasoning.  However, 

the decision to act according to the null hypothesis or the alternative hypothesis is 

dictated by a set of rules that rely on statistics and probability.  Therefore, the approach is 

deductive in nature, as it “argues from the general to the particular” using established 

rules “for choosing between two alternative courses of action, accepting or rejecting the 

null hypothesis” (Hubbard & Bayarri, 2003, p. 273).  In the long run, operation by these 

rules should result in decisions that are more often right than wrong (Hubbard & Bayarri, 

2003). 

 Though these differences are important, the overall ideas remain the same and, as 

mentioned above, are commonly merged in practice and instruction (Batanero, 2000; 

Hubbard & Bayarri, 2003).  Hypotheses are established that address a quantitative feature 

of the population under study and a sample is collected for analysis.  Using the sampling 

distribution of the statistic and probability theory, a decision is made concerning the 

degree to which the sample is unusual conditioned on the null, and a conclusion about the 

validity of the hypotheses is stated.  Although it is not possible to prove a claim through 

inferential reasoning, statistical hypothesis testing relies upon the sampling distribution 

and probability to provide the researcher with a means to quantify the degree to which 

he/she is confident in his/her conclusion.  The relationship between the various 

components of statistical hypothesis testing with each other and with testing of general 

hypotheses is illustrated in Figure 1.3. 
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Figure 1.3 

Theoretical Analysis, Statistical Hypothesis Testing 
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 The analysis of statistical hypothesis testing presented above illustrates the nature 

of statistical hypothesis testing as a method of inquiry that is highly reliant on indirect 

and probabilistic reasoning.  It is important to note that statistical hypothesis testing, as 

implemented, is a procedure.  The procedure requires calculations of sample statistics and 

use of tables (or more recently computing software) to determine probabilities.  Even the 

conclusion is reached as a result of following a rule.  When executing a statistical 

hypothesis test, one only needs to follow the prescribed steps in the procedure.  The steps 

for the p-value and fixed-α-approaches are  

Significance Testing Hypothesis Testing 

1. State the null hypothesis 1. State the null and alternative 
hypothesis 

2. Specify test statistic (T) and referent 
distribution 

2. Specify test statistic (T) and referent 
distribution 

3. Collect data and calculate value of T 3. Specify α value and determine 
rejection region (R) 

4. Determine p-value 4. Collect data and calculate value of T 
5. Reject null hypothesis if p-value is small; 

otherwise retain 
5. Reject null hypothesis is favor of 

alternative if T value is in the 
rejection region; otherwise retain null 

    
(Huberty, 1993, p. 318) 

 

In practice, however, these two approaches are generally merged.  The decision to reject 

the null hypothesis based on a small p-value is equivalent to choosing a value for α in 

advance. 

The Role of Context 

 The conceptual analysis of statistical hypothesis testing performed thus far has 

focused on the theoretical foundation of the steps involved in conducting a statistical 

hypothesis test.  The role of context, while alluded to, has not, to this point, been 

explicitly described.  Without context, this method would be meaningless.  Therefore, it 
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is important to discuss how context and theory interact so that the algorithm has meaning 

beyond its theoretical foundation. 

 Prior to conducting a statistical hypothesis test, an essential first step is to 

recognize whether it is possible and/or of value to use statistical hypothesis testing to 

answer the research question of interest.  A researcher must have generated a research 

question as well as a hypothesized answer to that question.  The researcher must then 

determine whether it is possible to answer the question in terms of a parameter of the 

population.  Some questions cannot be answered by a quantifiable measure and thus, 

statistical hypothesis testing cannot be employed as no statistical inference is possible.  

For those that can, it is important to choose an appropriate measure so that the test can be 

used to answer the question.  In some cases a mean is useful to answer the question and, 

in others, a proportion.  It depends upon the context and the nature of the available data.  

If the question and hypotheses can be quantified and if it is necessary to test the 

hypothesis using only analysis of the probability associated with a sample (it is 

impossible to collect information for every member of the population in question), then 

statistical hypothesis testing is applicable.  Overall, the decision to use statistical 

hypothesis testing is dependent upon a set of criteria that are all context bound. 

 In addition, to being quantifiable, the hypotheses under consideration in the 

hypothesis test must be “reasonable.”  Indirect reasoning follows the structure of the 

modus tollens argument:  if p then q; not q; then not p.  Modification of this format for 

statistical hypothesis testing is structured as follows:  if p then probably not q; q; then 

probably not p.  These logical symbols translate to:  if the null hypothesis holds then 

particular samples would be unlikely; using random sampling, one of those samples is 
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produced; then there is less confidence in the null hypothesis. However, as Cortina and 

Dunlap (1997) point out, the argument does not hold if the truth of the antecedent, p, and 

consequent q are not related, or are negatively related.  Cortina and Dunlap (1997) give 

the following example: “If a person is an American, then that person is probably not a 

member of Congress; This person is a member of Congress; This person is probably not 

an American” (p. 165).  The example illustrates the need for a reasonable relationship 

between the antecedent (in this case, “If the person is an American”) and the consequent 

(“that person is probably not a member of Congress”).  The consequent holds in many 

different statements for the antecedent.  Therefore, researchers must be careful in 

designing their hypotheses so that there is a reasonable connection between the 

antecedent and consequent in the null hypothesis (Cortina & Dunlap, 1997). 

 Another point at which context must be considered is in the statement of a 

decision rule.  As was described above, the level of significance indicates the degree to 

which the researcher is comfortable in making what Neyman and Pearson term a Type I 

error.  Specifically the level of significance (Type I error) is the probability that, in the 

case where the null hypothesis is true, the researcher will incorrectly reject it in the long-

run (Hubbard & Bayarri, 2003).  The level at which this potential for error is set, again, 

depends upon the context.  The researcher must decide the cost of making such an error 

and balance that cost with the actual statement of the decision rule.  In addition, if the 

researcher is interested in using the study to make a strong argument to a group of people, 

the researcher must consider the standard set by that larger community.  Within 

researching communities, the standard level of significance is commonly set at α = 0.05 

or at α = 0.01 (Frick, 1996). 
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 In addition to the probability associated with making a Type I error, another error 

one could make is to retain the null when it is, indeed, false.  This is a Type II error.  

Type II error is often reduced by using a larger sample in the study.  Therefore, decisions 

concerning sample size are context dependent and are influenced by the degree to which 

various levels of Type II error are acceptable (Hubbard & Bayarri, 2003). 

 Consideration of context is ultimately important in the formulation of the 

conclusion statement and subsequent decision making that is based on that conclusion.  

Here, knowledge of the conceptual foundation for the test itself interacts with the context 

in order to best interpret the results of the study. The degree to which a given study has 

potential for error may impact the decisions one makes based on the results of the study.  

Understanding that the test does not constitute a proof has implications for the degree to 

which an individual should make decisions that are influenced by the results of the study.  

Therefore, sample size and potential for error should be weighed against the cost of 

making that error when making the decision to act based on the results.  The cost of 

making an error is, of course, context dependent and should be taken into consideration 

when deciding to what degree the results will influence future decisions. 

 It is important to note that although the potential for a Type I or Type II error is 

present in all statistical hypothesis tests, it is not true that both errors can/will be 

committed.   Each is conditioned on the property that the null hypothesis is or is not true.  

Therefore, “alpha is not the probability of making a Type I error.  It is what the 

probability of making a Type I error would be if the null were true” (Cortina & Dunlap, 

1997, pp. 166-167).  The same could be said about the probability of a Type II error but 

with respect to the condition that the null hypothesis were not true. 
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 In addition to the potential for Type I and Type II error, other aspects of a given 

study should be taken into consideration when considering the impact of the results on 

practical application.  Statistical significance does not always imply scientific (or 

practical) significance.  It is, indeed, possible to obtain significance in cases where the 

actual difference is very small and may not warrant action.  Robinson and Levin (1997) 

give an example of a t-test comparison of the effects of a GRE preparation program.  The 

test showed a significant difference in the mean scores of individuals who participated in 

the program versus those that did not, with a p-value of 0.043.  However, the actual 

difference in scores for the samples of size 800 is 13 points.  This difference is small 

considering that scores on this test range from 400 to 1600. Robinson and Levin (1997) 

warn that the money needed to participate in the program may not be worth a 13 point 

improvement.  In this case, the effect size is very small and though participation might 

improve scores, the cost may not be worth it (Robinson & Levin, 1997). 

 As illustrated in this section, the role of context in the design and interpretation of 

studies that use statistical hypothesis testing is significant.  A research question and 

accompanying hypotheses are established in the real world.  In order to use statistical 

hypothesis testing, the hypotheses must be transformed.  Once transformed, statistical 

analysis is performed and a conclusion reached based on that analysis.  Ultimately, 

though, the interpretation of the conclusion must consider the way in which that 

conclusion is useful in the real world.  Building on the diagram presented in the previous 

section (Figure 1.3), the diagram pictured in Figure 1.4 illustrates the connection of 

context to the process of statistical hypothesis testing in the overall framework of the “big 

picture” of statistical hypothesis testing. 
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Figure 1.4 

Conceptual Analysis, Statistical Hypothesis Testing 

 

 A conceptual analysis of the “big picture” of statistical hypothesis testing has now 

been presented.  This analysis has highlighted the algorithmic and conceptual nature of 

the method.  In addition, the analysis illustrated the ways in which the method is applied 
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procedure, knowledge of the underlying reasoning and associated components, and an 

ability to consider context in application of statistical hypothesis tests in real world 

settings. 

Describing Understanding of Statistical Hypothesis Testing 

 What is meant by the term understanding?  More specifically, what does it mean 

to understand the concept of statistical hypothesis testing?  The former question has 

plagued both cognitive psychologists and educators for a long time, while the latter is of 

particular interest to this study.  Leaders in cognitive psychology and education have 

spent a considerable amount of time studying human cognition in the attempt to 

formulate definitions for “knowledge” and “understanding” and to identify the ways in 

which an individual comes to understand concepts and ideas. The result of this line of 

inquiry is the development of a body of literature filled with a variety of definitions of 

understanding and theories of cognitive activity that support learning and the construction 

of knowledge.  Some of these theories seem particularly relevant to describing the nature 

of understandings that students have of statistical hypothesis testing. 

 Research on student understanding of statistical hypothesis testing has provided 

evidence that different kinds of understandings can emerge.  These findings support the 

notion that an ability to execute the procedure for solving a well defined statistical 

hypothesis testing problem does not necessarily imply that the student knows why the 

steps are necessary and/or how this process can be applied in ill-defined, real world 

contexts (e.g. Aquilonius, 2005; Liu, 2005). 

 These distinctions are also evident in the conceptual analysis.  Statistical 

hypothesis testing is largely a method of inquiry that relies on probabilistic and logical 
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reasoning to connect various concepts within statistics.  Like all inferential statistical 

methods, use of this method to answer real world questions requires interplay between 

the theory and the context in which it is employed.  Therefore, it is important that 

analysis of an individual’s understanding of statistical hypothesis testing addresses 

his/her ability to coordinate various ideas and ways of reasoning, as well as his/her ability 

to apply that knowledge in real life situations in a way that considers context.  A 

perspective for describing understandings of statistical hypothesis testing should draw 

from theories of knowledge and/or understanding that address not just an individual’s 

ability to execute the steps of the procedure, but also whether that individual knows why 

the steps are important and how the theory and procedure are applied in context.  Taken 

together, several theories of thinking and learning can provide such a perspective. 

 In the interest of describing human thinking, cognitive psychologists have offered 

various theories that describe the nature of the internal structures or mechanisms that 

support the acquisition, organization, storage, and retrieval of information (Sternberg, 

1999).  Within the context of mathematics, Hiebert and Carpenter (1992) draw on this 

notion of internal structures and claim that as individuals are exposed to new 

mathematical concepts, they create internal representations of these concepts and, over 

time, form connections between the representations. The formation of these connections 

leads to the development of internal networks (metaphorically likened to vertical 

hierarchies or webs) which are linked to the development of understanding.  “A concept 

is understood if it is part of an internal network.  More specifically, the mathematics is 

understood if its mental representation is part of a network of representations” (Hiebert & 

Carpenter, 1992, p. 67).  Internal networks are dynamic and are constantly being 
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reorganized and reconfigured by individuals.  As individuals construct more coherent and 

rich webs of connections and relationships among representations for ideas and concepts, 

they increase their level of understanding (Hiebert & Carpenter, 1992). 

 Using this framework for understanding, Hiebert and colleagues outline two 

categories of mathematical knowledge:  conceptual and procedural.  Conceptual 

knowledge is “knowledge that is rich in relationships.  It can be thought of as a connected 

web of knowledge, a network in which the linking relationships are as prominent as the 

discrete pieces of information” (Hiebert & Lefevre, 1986, p. 3).  A unit of knowledge is 

only conceptual if it is linked to other knowledge.  Development of conceptual 

knowledge occurs when relationships are formed either between two pieces of existing 

knowledge or between a new and existing piece of knowledge.  The relationships that are 

formed exist on different levels of abstraction.  Relationships that go beyond superficial 

features and that are less tied to context are more abstract (Hiebert & Lefevre, 1986).  As 

individuals construct relationships at a higher degree of abstraction, they create more 

coherent, connected internal networks and, thus, their level of understanding increases. 

 Procedural knowledge encompasses knowledge of (1) the formal system of 

mathematics and (2) knowledge of the algorithms or rules used in solving problems and 

doing other mathematical exercises.  Such knowledge does not address meaning, only 

surface features associated with the form of mathematics, such as symbolic manipulation.  

Relationships between units of procedural knowledge are hierarchically arranged such 

that representations for smaller procedures are held under the umbrella of a representation 

for a larger, more encompassing procedure.  The form of the networks associated with 

procedural knowledge is, therefore, different than that for conceptual knowledge.  
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Procedural knowledge is connected by hierarchical relationships whereas conceptual 

knowledge is connected by a host of varied relationships (Hiebert & Lefevre, 1986). 

 Hiebert and colleagues (1986, 1992) suggest that deep relationships exist between 

procedural and conceptual knowledge.  For example, conceptual knowledge can give 

meaning to the symbols associated with procedural knowledge while, on the other hand, 

the use of symbols can make it less cumbersome to deal with conceptual ideas, allowing 

the user to further develop conceptual knowledge.  Hiebert and colleagues maintain, 

therefore, that it is difficult to dichotomously classify knowledge as procedural or 

conceptual.  Some units of knowledge fall into both categories.  Regardless of the 

classification, though, it is important that learning goals address both forms of knowledge 

(Hiebert & Lefevre, 1986; Hiebert & Carpenter, 1992). 

 The definitions for procedural and conceptual knowledge offered by Hiebert and 

colleagues (1986; 1992) provide mathematics educators with a theoretical perspective 

with which to talk about understanding of mathematics, however some researchers 

contend that their definitions are not complete.  Star (2005) argues that Hiebert and 

Lefevre’s (1986) definition for procedural knowledge points to rote knowledge of 

algorithmic procedures, but does not encompass knowledge of and ability to apply more 

general procedures, such as heuristics.  In addition, “flexible” knowledge of procedures 

and how/when to use them when solving novel problems is not accounted for in Hiebert 

and Lefevre’s (1986) definition.  Star (2005) also challenges Hiebert and Lefevre’s 

(1986) definition of conceptual knowledge, claiming that their definition only accounts 

for conceptual knowledge that is richly connected.  Star (2005) argues that the term 

concept itself (and he gives the example of the concept of dog) does not necessarily 
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imply connections.   Star (2005) contends, therefore, it is not sufficient to define 

conceptual knowledge as rich in relationships and procedural knowledge as rote 

knowledge of algorithms for which connections exist only among the steps of the 

algorithms.  Procedural knowledge can also be rich in connections, and conceptual 

knowledge may/may not (Star, 2005). 

 Star’s (2005) challenge of Hiebert and Lefevre’s (1986) definitions suggests a 

distinction between knowledge type and knowledge quality.  In response, Baroody, Feil, 

and Johnson (2007) propose that connectedness between and within procedural and 

conceptual knowledge types are important (and necessary) components of deep 

knowledge and understanding.  In addition, Baroody, Feil, and Johnson (2007) argue that 

quality of knowledge should not only be measured by degree of connectedness.   Ability 

to apply knowledge in a variety of situations:  well or ill defined situations, real world or 

abstract situations, etc. is also important.  According to Baroody, Feil, and Johnson 

(2007), depth of knowledge and understanding increases only when both (1) connections 

are formed within and between conceptual knowledge and (2) ability to use that 

knowledge adaptively and flexibly in a variety of settings increases (Baroody, Feil, & 

Johnson, 2007). 

 The definitions for knowledge types and their role in the development of 

understanding presented initially by Hiebert and colleagues (1986; 1992) with later 

refinements offered by Star (2005) and Baroody, Feil, and Johnson (2007) seem relevant 

to statistical understanding in general, and to understanding of statistical hypothesis 

testing more specifically.  In addition to an understanding of the procedures and 

underlying theoretical foundation, statistical reasoning and thinking involves 
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consideration of the context in which it is employed.  The design and ultimate 

interpretation of studies that use statistical analysis should be developed with regard to 

the context in which they are employed. 

 In fact, several statistical educators have attempted to categorize these abilities.  

In their description of statistical thinking, Wild and Pfannkuch (1999) identified 

dimensions of statistical thinking that are important in using statistics to answer questions 

of interest.  For them, statistical thinking involves an ability to engage in investigation 

(state a problem, make a plan, collect data, analyze the data, draw a conclusion, and 

continue in that cycle) and engage in interrogation (generate potential models or 

explanations, seek information, interpret that information, criticize the information, and 

judge whether to believe or use the information). In addition statistical thinking involves 

specific dispositions (e.g. skepticism, curiosity, being logical) and ways of thinking (e.g. 

recognition of the need for data, ability to transform data into measures, consideration of 

variation, reasoning with statistical models, and integrating the statistics with the 

context).  These ways of thinking are important to the practice of statistics (Wild & 

Pfannkuch, 1999). 

 In a 2002 publication of the Journal of Statistics Education several articles were 

written to define various habits of mind associated with statistical practice.  In this issue, 

researchers outlined three categories:  statistical literacy, statistical reasoning, and 

statistical thinking.  Rumsey (2002) describes statistical literacy as encompassing a basic 

knowledge of statistical concepts and terminology as well as an ability to read and 

interpret statistical analysis.  Garfield (2002) describes statistical reasoning as an ability 

to use understandings of statistical concepts in order to draw conclusion and make 
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inferences.  She claims that “much of statistical reasoning combines ideas about data and 

chance, which leads to making inferences and interpreting statistical results.  Underlying 

this reasoning is a conceptual understanding of important ideas…” (Garfield, 2002, 

section 1, ¶ 5)  Finally, Chance (2002) describes statistical thinking as “what a statistician 

does” (section 2, ¶ 14).  Statistical thinking involves seeing the big picture of raising 

questions, finding ways to answer them, understanding the role of variability and context 

in the statement of a conclusion, and continuing to engage in the inquiry process (Chance, 

2002). 

 It seems there is some overlap between the constructs of statistical literacy, 

reasoning, and thinking and these ideas overlap with the various dimensions identified by 

Wild and Pfannkuch (1999).  delMas (2002) gives possible frameworks for describing the 

overlaps. 

 One perspective which really seems to incorporate a good deal of the ideas 

presented above, and that seems an appropriate lens from which to think about student 

understanding of statistical hypothesis testing is that offered by the Mathematics 

Learning Study Committee of the National Research Council in the book Adding It Up, 

which was edited by Kilpatrick, Swafford and Findell (2001).  In this book, the 

committee identifies five “strands” of mathematical proficiency: 
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• conceptual understanding – comprehension of mathematical concepts, operations 
and relations 

• procedural fluency – skill in carrying out procedures flexibly, accurately, 
efficiently, and appropriately 

• strategic competence – ability to formulate, represent, and solve mathematical 
problems 

• adaptive reasoning – capacity for logical thought, reflection, explanation, and 
justification 

• productive disposition – habitual inclination to see mathematics as sensible, 
useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy 

 
                                                 (Kilpatrick, Swafford, & Findell, 2001, p. 5) 

To illustrate the importance and interconnectedness of each strand to mathematical 

proficiency, the committee presents a picture of a rope in which each of the strands 

outlined above is intertwined (Kilpatrick, et al., 2001).  This model points to the 

importance of the conceptual and procedural knowledge and degrees of understanding 

discussed by Hiebert and Lefevre (1986); Hiebert and Carpenter (1992); Star (2005); and 

Baroody, Feil, and Johnson (2007) while acknowledging the importance of an ability to 

use that knowledge flexibly in solving (and posing) problems that may or may not be 

situated within a greater context. 

 Although writers of Adding It Up (Kilpatrick, et al., 2001) were addressing what it 

means to be proficient in mathematics, this definition seems useful to describing how 

students understand or are proficient in statistics.  Furthermore, given the conceptual 

analysis of statistical hypothesis testing developed in the previous section, this model 

seems an appropriate lens for analyzing and describing student understanding of the 

procedures, the logic, the various statistical and probabilistic components, and the role of 

context as well as how statistical hypothesis testing can or can not be used to answer 

research questions.  Individuals must see the value in statistical hypothesis testing for 

answering questions of interest (productive disposition).  They should recognize that the 



 

 36 
 

power of statistical hypothesis testing lies in its ability draw inferences about a 

population based on information from a sample and the way in which this is done 

(conceptual understanding, adaptive reasoning, some productive disposition, and some 

procedural fluency).  In order to use statistical hypothesis testing, one must formulate the 

research question appropriately and employ the procedure (strategic competence and 

procedural fluency).  In order draw a conclusion and interpret that conclusion with 

respect to the context, one must understand the concepts and logic involved (procedural 

fluency, conceptual understanding, adaptive reasoning, and some strategic competence).  

These understandings must be coordinated so that one informs the other, just as the rope 

illustrates. 

 

A Study of Student Understandings of Statistical Hypothesis Testing 

 Armed with a conceptual analysis of statistical hypothesis testing and a 

perspective from which to describe understanding, it is now possible to outline a study of 

introductory statistics students’ understandings of statistical hypothesis testing which will 

contribute to the construction of a more complete picture of student understanding of the 

overall concept. 

 Although scarce, studies of student understanding of statistical hypothesis testing 

have indicated that students struggle with virtually every step when implementing the 

procedure and students do not have deep understandings of statistical hypothesis testing.  

These results indicate that students do not develop connected, deep understandings of 

statistical hypothesis testing in introductory classes.  However, in addition to being scarce 

in number, research reports on understanding of statistical hypothesis testing are limited 
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in scope.  Those studies that are done on a larger scale (with a large number of 

participants) are either focused on student error (Evangelista & Hemenway, 2002; Link 

2002) or are focused on one aspect of understanding of statistical hypothesis testing:  

representation of sampling distribution (Hong and O’Neil, 1992) and p-value (Krauss & 

Wassner, 2002).  Some studies have gone beyond student error in looking closely at 

student understanding of one aspect of statistical hypothesis testing on a small scale:  

understanding the relationship of sample size, effect size, and treatment size (Wilkerson 

& Olson, 1997) and the role of sampling distribution (Lipson, Kokonis, & Francis, 2003).  

On a large scale, Lane-Getaz (2007) studied student understanding of p-value and 

statistical significance. 

 Only a few studies have been conducted in which understanding of the entire 

concept of statistical hypothesis testing was examined but these were done with only a 

small number of participants (Aquilonius, 2005; Liu, 2005) some of whom were high 

school mathematics teachers, not introductory students (Liu, 2005).  There have not been 

any studies that focus on student ability to recognize the role of context in studies that use 

statistical hypothesis testing and, as the conceptual analysis reveals, understanding of the 

role of context is important to the development of a deep, connected understanding of 

statistical hypothesis testing. 

 Based on this analysis, a large-scale study of introductory students’ 

understandings of the “big picture” of statistical hypothesis testing would make a 

contribution to the development of a more complete picture of student understanding of 

statistical hypothesis testing.  Furthermore, although there are some efforts to reform 

instruction in introductory courses, statistical instruction on the whole remains very 
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similar across universities where introductory courses are taught largely through lectures 

with a great deal of emphasis on procedures (Garfield, Hogg, Schau, & Whittinghill, 

2002; Shaughnessy, 1992).  Of the students who take introductory statistics courses, a 

large number of them take these courses at the undergraduate level, at large universities. 

Therefore, a study of the understandings of students who have completed a traditional, 

university-level, introductory statistics course will inform future design of instruction on 

statistical hypothesis testing. 

 Given an incomplete picture of introductory students’ understanding of the “big 

picture” of statistical hypothesis testing, a significant contribution to inform the design of 

instruction could be made by a large-scale study that addresses the following research 

question:  What are the understandings of statistical hypothesis testing held by students 

who have completed an introductory course in statistics at a large university?  Because 

information about student ability to implement the hypothesis testing process has been 

collected on a large scale, this study of introductory student understandings focuses more 

on examination of other aspects of understanding and the ways in which they do/do not 

connect.  In other words, from the perspective of the Adding It Up model (Kilpatrick, et 

al., 2001), there is large-scale data that speaks largely to the procedural fluency strand 

and less strongly to the other strands or their connections.  This argues that a study of 

student understanding should focus more strongly on the four other strands (conceptual 

understanding, strategic competence, adaptive reasoning, and productive disposition) as 

well as the connections among and within all five strands as they pertain to statistical 

hypothesis testing.  And, in particular, with regard to the productive disposition strand, 

the study should focus on the degree to which introductory statistics students understand 
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the value of statistical hypothesis testing, and believe it to be a useful method for inquiry. 

Therefore, this study addresses the following research sub-questions: 

1. What is the relationship between introductory students’ understanding of the 

procedures and the concepts, logic, and uses of statistical hypothesis testing?  

2. What are the understandings that introductory students have of the overall logic 

and reasoning of statistical hypothesis testing? 

3. What are introductory students’ understandings of the relationship between the 

method of statistical hypothesis testing and the context in which it is employed? 
  

 This study addresses the research question and sub-questions outlined above 

through analysis of the understandings of statistical hypothesis testing held by university-

level students who had completed (or nearly completed) a semester in an Introductory 

Statistics course at a large university.  With a focus on procedures taught through lecture-

style instruction (Garfield, Hogg, Schau, & Whittinghill, 2002; Shaughnessy, 1992), most 

university introductory courses use traditionally worded, well defined problems to assess 

student understanding.  Although course assessments may give information about the 

conceptual understanding, strategic competence, adaptive reasoning, and productive 

disposition of students on some level, in essence these assessments provide information 

about the procedural fluency of the students.   These assessments, therefore, can not be 

used to fully address the research questions and sub-questions.  They only tell part of the 

story. 

 In order to collect information that addresses the research question and sub-

questions on a large scale, (and that gives information about strands other than procedural 

fluency), a multiple-choice survey instrument was created and distributed to study 

participants in all sections of an introductory class (approximately 100 students).  The 

questions on this multiple-choice survey instrument were designed to tap into those 

understandings of statistical hypothesis testing that are not typically assessed.  The 
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questions address the concepts, reasoning, logic, applicability, and role of context 

important to the overall, “big picture” of statistical hypothesis testing.  The results of this 

assessment were analyzed and compared with those from a course exam, which focused 

entirely on statistical hypothesis testing.  Together, the two quantitative assessments 

provided information about student understanding on a large scale. 

 In order to gain more insight into student understanding of the “big picture” of 

hypothesis testing, the multiple-choice survey and scores on third course exam were used 

to identify students who represent a range of performance patterns.  Follow-up interviews 

were conducted with these students to provide valuable insight into their thinking.  The 

mixed methods approach used in this study was valuable in filling an identified gap in the 

literature on student understanding of statistical hypothesis testing.  In the chapters that 

follow, the details of the study are presented, including the process of instrument 

development; the results of both phases of the study (quantitative and qualitative); 

analysis of the data; the conclusions; and discussions of the implications, contributions, 

and limitations of the study. 
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CHAPTER 2 

LITERATURE REVIEW 

The conceptual analysis presented in the previous chapter highlights the complexity of 

statistical hypothesis testing as well as its utility in answering questions of interest.  A 

review of research on understanding of statistical hypothesis testing indicates that 

students struggle in solving even well defined statistical hypothesis testing problems.  In 

addition, a review of related research indicates that individuals often do not have well 

developed understandings of the various ideas and concepts involved.  However, there 

are gaps in the literature that suggest a large scale study of introductory statistics 

students’ understanding of this complex, useful concept is necessary to advance the field.  

Using large scale, quantitative data as well as small scale qualitative data, the study 

described in this dissertation explores the nature of students’ understandings of this 

complex, useful concept.  Existing literature on understanding of statistical hypothesis 

testing and its components is extremely important to this study as it informed both the 

development of the quantitative assessment instrument and the interpretation of the data 

collected in the quantitative and qualitative phases.  Taken together, research on student 

understanding of statistical hypothesis testing, research on related concepts, and the 

results from this study contribute to the development of a description of student 

understanding of statistical hypothesis testing that will inform future design of 

instruction. 

 In this chapter, a review of literature will be presented.  The chapter is organized 

into three sections: (1) a review of major findings from research on understandings of 

components of statistical hypothesis testing; (2) a review of findings from research on 
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understandings of the “big picture” of statistical hypothesis testing; and (3) a summary of 

the findings and their impact on this study. 

 

Research That Addresses Components of Statistical Hypothesis Testing 

 With the recent inclusion of statistical concepts into the school mathematics 

curriculum, and with increased emphasis on a statistically literate citizenry, educators 

have begun to explore issues related to the teaching and learning of statistical concepts 

and ideas.  Thus, the field of “statistics education” is relatively young and the body of 

literature associated with this field is beginning to grow.  The field of psychology, 

however, has made contributions to this line of study.  Over the course of the past 

century, psychologists have been interested in the ways that humans reason and make 

predictions under conditions of uncertainty.  Research in this area has implications for 

human understanding of statistical concepts and ideas as well as for the ways in which 

humans engage in statistical reasoning.  Taken together, the studies conducted by 

psychologists and educators have contributed to a developing field of knowledge about 

student understanding of statistics and probability.  Many of the findings are particularly 

relevant to statistical hypothesis testing and point to potential cognitive obstacles that 

must be overcome in order to develop a deep understanding of the method.  Some of 

these areas include an understanding of the logic of proof as it applies to hypothesis 

testing, the ways in which samples should be chosen in order to make appropriate 

inferences, and the way that probability can be used to determine whether or not a sample 

is unusual. 
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Logic of Proof and Testing of Hypotheses 

 Human understanding of reasoning and proof as it applies to general hypothesis 

testing has been of interest to researchers for some time.  Psychologists interested in 

studying the ways that individuals make decisions have studied human reasoning within 

the context of hypothesis testing through a series of tasks presented in psychology 

laboratories.  Science educators interested in the development of the habits of mind 

associated with scientific inquiry have studied student reasoning in the context of testing 

hypotheses through experimentation in the classroom.  Research in these two areas has 

revealed that individuals do not always rely upon the premises of logical proof that is the 

basis for general hypothesis testing. 

Verification and Falsification 

 As was outlined in Chapter 1, a major premise of logical proof is that, unless 

exhaustive, verification of a hypothesis through generation of examples does not prove 

the hypothesis.  On the other hand, generation of one contradictory case is all that is 

necessary to disprove a hypothesis.  Studies have indicated individuals do not often apply 

these premises of logical proof to “test” a hypothesis.  In order to test a hypothesis, 

humans often try to verify the hypothesis rather than attempt to falsify the hypothesis 

through generation of a counterexample. 

 One of the first researchers to investigate this phenomenon was Peter Wason 

(1967).  In his seminal work with human reasoning Wason (as cited in Wason, 1967) 

presented his subjects with what has become known as the Wason 2-4-6 problem.  In this 

problem, the researcher tells the subject that he/she is thinking of a rule that applies to 

groups of three whole numbers.  The experimenter gives the subject one example of a 
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triple that conforms to the rule.  The first example presented to the subject is the triple 2, 

4, 6.  Given this triple, the subject must identify the rule.  To determine whether his/her 

rule is correct, the subject produces a triple that conforms to his/her hypothesized rule.  

The experimenter tells the subject whether or not that triple conforms to the rule.  The 

subject writes down his/her guesses and the reason for giving them.  When the subject 

feels he/she has tried enough triples to identify the rule, he/she announces it.  If the rule is 

correct, the subject has solved the problem.  If the rule is incorrect, the experimenter tells 

the subject that he/she is not correct and the subject continues to generate triples and 

again tries to guess the rule (Wason, 1967). 

 This task proved difficult for Wason’s (1967) subjects.  The rule that dictates the 

formulation of the triples is that the numbers in each triple increase in magnitude.  Few of 

Wason’s (1967) subjects were able to correctly determine the rule.  Critics of the task 

thought the rule was too difficult to determine.  They claimed that subjects do not 

consider numbers of increasing magnitude to be a valid rule.  However, in posing this 

problem to his subjects, Wason (1967) was not necessarily interested in whether the 

subjects were successful in determining the rule.  Rather, he was interested the reasoning 

his subjects used. 

 In particular, Wason (1967) was interested in whether the subjects only tested 

triples that confirmed their hypothesized rule or whether they tested triples that could 

falsify the rule they had hypothesized.  Only 21% of Wason’s (1967) subjects correctly 

guessed the rule on the first announcement by varying testing triples that would confirm 

and falsify their developing hypotheses.  Of the subjects who were unsuccessful, many 

only suggested triples that would verify their hypotheses. Even when their announced rule 
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was deemed incorrect by the experimenter, the subjects continued to test triples that 

verified their original hypotheses. Wason termed this approach “verification bias” and 

found this to be a common approach used to do this task (Gorman, 1995). 

 It should be noted that the actions taken by Wason’s subjects were typical of those 

taken by researchers engaging in scientific inquiry.  Prior to formal testing of hypotheses, 

researchers generate hypotheses through a dynamic process of informal testing.  The 

researcher generates a hypothesis, informally checks to see if it holds true for the data, 

and modifies the hypothesis based on information derived from the informal test.  This 

process continues until the researcher feels confident that his/her hypothesis holds true.  

At this point, the researcher engages in more formal, scientific methods of testing his/her 

hypothesis.  It could be argued that the subjects in Wason’s study were engaging in this 

process of hypothesis generation.  However, as noted by Wason, most of his subjects did 

not attempt to falsify their hypotheses at any point in the process. 

 Another task that elicits the verification bias is Wason’s selection task.  In this 

task, subjects are presented with four cards that show a vowel, a consonant, an even 

number, and an odd number (such as O, T, 6, and 9).  The subjects are asked to determine 

which card(s) must be turned over to test the following claim:  if a card has a vowel on 

one side then it has an even number on the other.  To test the rule, the card showing the 

odd number and the card showing the vowel must be flipped.  If the card with the vowel 

shows an even number on the other side, the rule has been verified. But, if it shows an 

odd number, then the claim has been proven false.  Even if the card showing the vowel 

verifies the claim, the card showing the odd number must be flipped.  If this card shows a 

vowel on the other side, the claim does not hold.  If it does not show a vowel, then the 



 

 46 
 

claim is still valid.  Thus, it is important to test cards that have the potential to falsify the 

claim (Evans & Newstead, 1995). 

 In Wason’s study, many of the subjects tested the cards showing the vowel and 

the even number.  Some simply tested the card that showed the vowel.  Wason concluded 

that these subjects were operating under a “verification bias” as these cards would merely 

verify the claim.  These subjects did not attempt to falsify the claim (Evans & Newstead, 

1995). 

 Wason’s research is seminal in that it sparked (and continues to spark) a great 

deal of study into human reasoning.  Like Wason (1967), many researchers believe that 

this research indicates human tendency toward confirmation rather than falsification.  

Several researchers have attempted to find ways to reduce this tendency.  Other 

researchers have offered other interpretations of these tasks and have, thus, modified the 

tasks in order to better understand the complexity of human reasoning.  Reviews of 

research related to Wason’s selection task have been written by Evans, Newstead, and 

Byrne (1993) and summaries of research on the 2-4-6 problem have been provided by 

Gorman (1995) and by Tweney and Chitwood (1995). 

 Wason’s “verification bias” has implications for understanding how conclusions 

are drawn in scientific inquiry.  In his research of student reasoning within the context of 

scientific hypothesis testing, Bady (1979) explored student understanding of the logic of 

proof.  Specifically, Bady (1979) was interested in whether or not students understand 

that one confirming case does not prove a hypothesis but that one counter example can 

disprove a hypothesis.  Furthermore, Bady (1979) was interested in the strategies students 
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used to test a hypothesis.  He wanted to know whether students sought to verify their 

hypothesis or if they attempted to falsify their conjectures (Bady, 1979). 

 In order to explore students’ thinking, Bady (1979) asked 120 high school 

students (representing several grades within two different schools) to use various sets of 

data to evaluate a hypothesis.  The students pretended to be a biologist who must test 

different hypotheses.  The students were provided with different kinds of information to 

test their hypotheses.  Having analyzed the responses provided by the students, Bady 

(1979) found that about half of the students failed to realize that a supporting case does 

not prove a hypothesis, a little over half realized that one counterexample disproved a 

hypothesis, and less than half attempted to use a falsification strategy to test a hypothesis. 

 Bady’s (1979) results corroborate those reported for Wason’s (1967) tasks and 

lend support to the notion that human beings are drawn toward verification as a method 

of proof.  When asked to test a hypothesis, human beings do not attempt to use 

falsification.  These studies indicate that human beings do not instinctively employ the 

laws of logic when testing hypotheses.  Other studies, however, have indicated that the 

situation may be more complex. 

Personal Belief and Experimentation 

 Further research on human reasoning in the context of hypothesis testing and 

experimentation has looked more broadly for explanations of the non-normative 

reasoning that human beings employ when making evidence-based decisions.  This 

research has explored the factors that play a role in an individual’s decision to retain or 

reject a hypothesis.  While the notion of verification bias is present in human reasoning, 

research also indicates that factors associated with personal beliefs play a large role in the 
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decision making process.  Studies in this area show that personal theories and beliefs 

influence both the interpretation of data as well as the design of an experiment 

(Klaczynski, 2000; Kuhn & Dean, 2004). 

 One example that demonstrates the role of personal beliefs in reasoning is that of 

Klaczynski (2000). In his study of adolescent reasoning, Klaczynski (2000) highlights the 

fact that evaluation of evidence is highly influenced by the degree to which that evidence 

supports or refutes previously held, personal beliefs.  According to Klaczynski (2000), 

when human beings are presented with data or information, they will employ one of two 

processes (or a combination) to evaluate the validity of this information.  The individual 

may resort to an analytic approach in which he/she employs the laws of logic to evaluate 

the data as evidence that supports or refutes a given theory, belief, or hypothesis.  On the 

other hand, the individual may employ a heuristic in which he/she judges the information 

based on the degree to which it is “consistent with stereotype-based and theory-based 

beliefs” (Klaczynski, 2000, p. 1348).  Although both systems may be called upon to 

evaluate data, heuristics are easily activated as they require less cognitive demand 

(Klaczynski, 2000). 

 The degree to which data is congruent with personal theory affects whether or not 

an individual employs a heuristic process or an analytic process.  When the data or 

information conforms to personal belief, individuals tend to employ a heuristic processes 

in evaluation of the data.  In using this heuristic, the individual accepts the evidence as 

proof for his/her own belief.  This is particularly true in adolescents for whom supporting 

evidence serves to not only preserve the personal belief but also to make conviction in 

that belief stronger (Klaczynski, 2000).  Such reasoning is a form of verification bias. 
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 It is when an individual is faced with evidence that is incongruent with personal 

beliefs that he/she is more likely to call upon analytic processes.  Faced with information 

that provides evidence against personal theory, the individual must take a moment to 

think about that information and decide how to reconcile the contradiction.  In this case, 

the individual will call upon analytic processes.  However, if an individual turns to 

analytic processes to evaluate information, it does not guarantee that the individual will 

make the logical decision.  He/she may still find a way to hold on to his/her personal 

theories (Klaczynski, 2000). 

 In his study of adolescent students, Klaczynski (2000) investigated the degree to 

which the students relied upon heuristic and/or analytic reasoning.  He was particularly 

interested in how students reasoned when the information provided in the data related to 

personal beliefs.  Klaczynski (2000) worked with a total of 130 students, some from 

grades seven and eight (early adolescent) and some from grades ten and eleven (middle 

adolescent).  First, he gave the students a belief survey to determine their personal beliefs 

on social class and religion.  Then, he presented the students with a series of scenarios in 

which a researcher had collected data to test a claim.  The scenarios involved claims 

about social class and religion.  The students were asked to indicate the strength of the 

researchers’ conclusions and to provide justifications for their thinking.  The conclusions 

offered by the researchers in the scenarios were supportive of a particular social class or 

religion.  In addition, each conclusion offered by the researchers in the scenarios could be 

dismissed on any number of threats to validity introduced by the data collection and/or 

analysis.  The personal theories survey was completed several more times throughout the 

questioning process (Klaczynski, 2000). 
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 The results of Klaczynski’s (2000) study supported the notion that adolescents use 

theory motivated reasoning to evaluate information that relates to personal beliefs.  That 

is, they judge the validity of information based on the degree to which that information 

conforms to personal theories.  Both early and middle adolescents displayed bias and 

heuristic reasoning to evaluate information that was congruent with their personal beliefs.  

In addition, both groups often used selective analytic reasoning to dismiss information 

incongruent with their personal theories, deeming that information to be “implausible”.  

The beliefs survey indicated that when students were presented with information that did, 

indeed, support their personal beliefs, the students held stronger conviction in their 

theories.  Deviations from normative reasoning and increased conviction in personal 

beliefs were more prevalent for the component of this study that addressed religion rather 

than social class. Finally, the results of the study indicated that though the older students 

possessed more advanced scientific/analytic reasoning skills than the younger students, 

they did not necessarily employ them more often than the younger students.  Klaczynski 

(2000) reasoned that as adolescents get older they become more convinced of their 

personal convictions. 

 Klaczynski’s (2000) study of adolescent reasoning indicates that human beings 

use verification bias and other forms of non-normative reasoning to evaluate information 

so that their conclusions are consistent with their personal beliefs.  In their review of 

research on scientific reasoning, Kuhn and Dean (2004) found evidence that, in addition 

to impacting the ways that information is evaluated, personal beliefs impact the way that 

a researcher decides to collect data in an investigative study. Studies in scientific 

reasoning provide participants with data and ask them to make inferences about potential 
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causal relations.  Participants are monitored as they explore the data, search for patterns, 

and formulate inferences of causality.  The researchers search for patterns of response 

among participants as they engage in the process of investigative inquiry.  Collectively, 

the studies in this line of research have provided evidence that students’ personal theories 

influence (1) the choices they make in deciding the features of the data to be used in 

analysis and (2) the inference rules or strategies they use in reaching a conclusion.  In 

order to support their personal beliefs, students, therefore, (1) only select data for analysis 

that will confirm their personal theories and (2) hold identical forms of evidence to 

different standards of evaluation so as to provide evidence for their own theories (Kuhn 

& Dean, 2004). 

 The studies presented in this section indicate that human beings are not consistent 

in the way that they evaluate information to determine whether it supports or refutes 

suggested hypotheses.  Research suggests that human reasoning in these situations is 

influenced by their own personal theories and beliefs. This phenomenon is found to hold, 

to some degree, for human beings at various stages of intellectual development, which 

suggests that personal theory influences reasoning more than developing understandings 

of logical proof does.  Klaczynski’s (2000) description of the analytic and heuristic 

approaches to reasoning indicates that unless humans make a conscious effort to reason 

according to the laws of logic, they will be subject to personal bias.  According to 

Moshman (2004), it is metacognitive processes that dictate the degree to which humans 

employ logic when reasoning about a given situation.  He suggests that, over time, 

individuals develop more sophisticated understandings of logic and, as they do so, they 
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learn to monitor their reasoning so that they use this logic to evaluate their own and other 

people’s reasoning (Moshman, 2004). 

 Though the studies presented in this section provide fairly convincing evidence 

that individuals use non-normative ways of reasoning with regard to hypothesis testing, it 

should be noted that none of the studies mentioned in this section investigated the 

instruction, if any, that individuals received on reasoning about logic and formal proof.  

Thus, these studies are limited.  It may be that the misunderstanding and misconceptions 

identified in these studies can be linked to the way in which they learned about these 

concepts.  Given a different set of learning experiences, these individuals might have 

reasoned differently about the tasks they were given. 

 Nevertheless, the results of these studies do, however, point to potential 

difficulties that individuals might have in developing strong understandings of statistical 

hypothesis testing.  The notion that people test hypotheses through verification rather 

than falsification and that personal bias impacts the way that they both interpret and 

design research has implications for their understanding of and ability to use statistical 

hypothesis testing.  The logic of indirect reasoning (falsification) is fundamental to the 

process and if this form of reasoning is not understood, then the individual may struggle 

to develop a complete understanding of statistical hypothesis testing.  Understanding of 

and ability to use statistical hypothesis testing could be further hindered by personal 

beliefs.  Personal theories may influence the way that an individual collects data, 

establishes a decision rule, and/or draws a conclusion or inference from that data. 
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Obtaining a Sample 

 As indicated by the Conceptual Analysis presented in Chapter 1 and the 

Framework for Assessing Understanding of Statistical Hypothesis Testing presented in 

Chapter 3, the method of data collection is an important consideration when using sample 

information to make inferences about the population in statistical hypothesis testing.  The 

kinds of inferences that one may make from sample information are dictated by the way 

that the sample is collected.  In order to apply inferential methods, one must be sure that 

the sample is not biased, that it was collected via a random process, and that the sample 

size is appropriate for drawing inferences. When these conditions are met, it is possible to 

draw inferences from a sample to the appropriate population.  Research on student 

understanding of sampling has indicated that an awareness of the relationship between 

sample selection and the inferential process develops over time.  Even when students 

have developed an awareness of important factors in sampling, it is difficult for them to 

coordinate these ideas in order to draw valid inferences about a population based on 

information from a sample. 

 In a review of research on student understanding of concepts from data analysis, 

Konold and Higgins (2003) outline some of the ways that middle grades students think 

about sampling.  Often these students do not believe that inferences about a population 

can be made from analysis of a sample.  Middle grades students believe that everyone in 

the population must be sampled.  In addition, middle grades students do not recognize the 

potential for bias in sample collection (Konold & Higgins, 2003). 

 Konold and Higgins (2003) cite a study by Schwarz, Goldman, Vye, and Barron 

(1998) as an example to illustrate middle school students’ lack of understanding of the 
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relationship between sampling and inferential reasoning.  The participants in the study 

were presented with a scenario about a school fair.  In order to plan for the fair, students 

needed to estimate the number of children who would come to a booth at the fair.  The 

participants were also presented with a scenario in which students needed to determine 

the number of boys and the number of girls at a school.  Both scenarios required the 

participants to suggest methods to collect samples of 50 students from populations of 400 

students.  The students were encouraged to generate as many selection methods as 

possible (Schwarz, et al., 1998). 

 Overall, the participants suggested biased methods of sampling.  In the booth 

scenario participants chose methods that employed a process of self selection, methods 

that sampled only those students who would be likely to come, and methods that would 

likely only include the students’ friends in the sample. In the gender scenario participants 

suggested picking a sample of 25 girls and 25 boys.  Some participants did attempt to 

employ random selection and suggested methods such as choosing 50 students without 

looking or choosing the first 50 students that come to school.  However, these methods 

were still biased in some sense (Schwarz, et. al. 1998). 

 Konold and Higgins (2003), also cite a study by Jacobs (1999) in which late 

elementary students exhibited difficulty with the concept of sampling.  In her study of 

student conceptions of sampling, Jacobs (1999) presented her fourth and fifth grade 

students with various situations in which samples of individuals were chosen to complete 

a survey that addressed a particular research question.  The students were presented with 

sampling designs and the results that were obtained in using those designs. Some of the 
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sampling methods introduced obvious biases and others did not.  Jacobs (1999) asked her 

students to comment on the various strategies. 

 Jacobs (1999) observed as her students evaluated potential sampling schemes on 

the basis of fairness, practicality, believability of the associated results, or some 

combination thereof.  In their concern for issues of fairness, many students chose 

methods that would result in self-selection.  For these students, it was important that 

everyone be given the opportunity to complete the survey, whether they chose to 

complete it or not.  Some students judged sampling methods based on whether or not the 

method was “efficient, easy to implement, confusing, or even plausible” (Jacobs, 1999, p. 

245).  Many students wanted to include everyone in the sample because those students 

“drastically underestimated the difficulties of asking everyone in large surveys” (Jacobs, 

1999, p. 245).  Some students used the results associated with a given sampling scheme 

to evaluate the method.  If the results were indecisive and/or contradictory to the 

students’ expectations, the methods were deemed ineffective.  In addition, when 

presented with results from several studies that were contradictory, many students 

resorted to personal experience to evaluate the quality of samples used in each study, 

rather than considering issues of bias and randomness (Jacobs, 1999). 

 Together, the studies by Schwartz, et al. (1998) and Jacobs (1999) indicate that 

students do not understand the impact that sample bias and lack of random selection have 

on the quality of the results of a study.  In their study of student understanding of 

sampling, Watson and Moritz (2000) found evidence that the ability to coordinate issues 

of sample bias, randomness, and sample size develops over time.  Watson and Moritz 

(2000) analyzed third, sixth, and ninth grade students’ responses to sampling problems.  
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In their analysis, Watson and Moritz (2000) identified six categories of developing 

concepts of sampling and hypothesized that these categories defined a developmental 

sequence for student understanding of sampling.  Descriptors for the categories indicate 

that sensitivity to sample size and potential for bias increases with age.  Younger students 

are satisfied with small samples (sample size fewer than 15) whereas older students 

require larger samples in order to draw an inference.  Younger students are more likely to 

choose sampling methods that are biased and are not chosen via random selection 

whereas older students are more aware of these issues (Watson & Moritz, 2000). 

 As was the case for the studies presented in the previous section, care should be 

taken in assuming that the results here apply to all individuals.  It may be that, given a 

different set of learning experiences, concepts of sampling will develop differently. 

However, the studies presented in this section indicate that an awareness of the 

connection between methods of sample collection and the quality of the inference that 

can be made from samples are important ideas upon which instruction should focus.  

Students’ informal conceptions of sampling do not include an awareness of potential for 

sample bias, nor do they include an understanding of the role of sample size in attempting 

to make an inference based on a sample.  Some students believe that it is not possible to 

get any information about a population using only sample information.  Given the 

appropriate learning experiences, students can better coordinate the notions of sample 

bias, randomness, and sample size in evaluation of sampling methodology, but these 

issues remain a source of tension. 

 These findings have implications for the ways that introductory statistics students 

may or may not understand statistical hypothesis tests, and inferential methods in general.  



 

 57 
 

If a student is not aware of the importance of randomly choosing a non-biased, 

representative sample large enough to make a valid inference, or if a student does not 

believe that one can make inferences from a sample, then that student probably will not 

have a well developed understanding of statistical hypothesis testing. 

Using Probability to Determine if the Sample is Unusual 

 Once a sample is collected, it is analyzed to determine whether the sample is, 

indeed, unusual under the assumed null condition.  This analysis lies at the very heart of 

statistical hypothesis testing. In order to determine whether or not the sample is unusual 

conditioned on the null hypothesis, one must take into consideration the variability that 

exists among randomly chosen samples.  And, as was emphasized in Chapter 1, it is at 

this point that probability theory is useful.  Under the assumed null condition, samples 

with a certain characteristic are considered to be unusual if the probability of obtaining 

such samples is small.  Sampling distributions represent the distribution of all possible 

sample statistics for samples of a given size under the assumption that the null hypothesis 

is true. Thus, sampling distributions are useful for determining the probability that a 

randomly collected sample from the population described by the null hypothesis will be 

at least as extreme as the sample data.  Therefore, in order to understand and appreciate 

the role of probability in the logic of hypothesis testing, one must coordinate 

understandings of sample variability, sampling distributions, and probability theory. 

 Research on human understanding of probability has been largely influenced by 

the work of Daniel Kahneman and Amos Tversky (e.g. 1971, 1972, 1982), who found 

support for a number of common heuristics that people employ when asked to determine 

the probability of a given event.  In relying upon these seemingly intuitive heuristics, 
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people are often led to make predictions and judgment decisions that are inconsistent 

with reasoning that is supported by probability theory. Kahneman and Tversky’s (1971, 

1972, 1982) findings sparked an entire body of research on human understanding of 

probability investigating ways that humans use (or fail to use) normative probabilistic 

reasoning when faced with situations that involve chance and uncertainty.  Not only has 

this research indicated that people do, indeed, use non-normative patterns of reasoning, 

but it has also demonstrated that people are not consistent in their application of these 

non-normative patterns of reasoning across contexts.  Additionally, it is difficult to 

replace these patterns of thinking with more appropriate methods of reasoning (e.g. 

Garfield & Ahlgren, 1988; Konold, 1995; Shaughnessy, 1992). 

 Research on human understanding of variability and, in particular, sampling 

variability, indicates that individuals do not have well developed understandings of the 

degree to which samples vary.  These incomplete understandings may contribute to the 

non-normative patterns of reasoning identified in the probabilistic reasoning literature 

(e.g., Fong, Krantz, & Nisbett, 1986; Nisbett, Krantz, Jepson, & Kunda, 1983; Pollatsek, 

Konold, Well, & Lima, 1984; Reading & Shaughnessy, 2004; Well, Pollatsek, & Boyce, 

1990).  Not surprisingly, then, research has indicated that students struggle in the 

development of understandings of sampling distributions and their use in inferential 

reasoning (delMas, Garfield, & Chance, 2004; Saldanha & Thompson, 2002). 

 Such incomplete, undeveloped understandings of probability and sampling 

variability may impact the way that introductory statistics students understand statistical 

hypothesis testing.  Therefore, it is important to examine this research. 

Probability and Non-normative Ways of Reasoning 
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 In their work with human reasoning and decision making under conditions of 

uncertainty, Kahneman and Tversky found that people “rely on a limited number of 

heuristic principles which reduce the complex tasks of assessing probabilities and 

predicting values to simpler judgmental operations” (Tversky & Kahneman, 1982, p.3).  

These heuristics are often useful but will, at times, lead to “severe and systematic errors” 

(Tversky & Kahneman, 1982, p. 3). 

 One heuristic identified by Kahneman and Tversky (1972) that seems particularly 

relevant to thinking about student understanding of statistical hypothesis testing is that of 

the representativeness heuristic.  “A person who follows this heuristic evaluates the 

probability of an uncertain event by the degree to which it (i) is similar in essential 

properties to its parent population; and (ii) reflects the salient features of the process by 

which it is generated” (Kahneman & Tversky, 1972, p. 431).  In relying upon this 

heuristic, people will judge samples that resemble the population from which they are 

drawn to be more probable than those that do not.  In addition, people will judge 

outcomes that “appear” to be randomly generated to be more likely than those that do not 

(Kahneman & Tversky, 1972). 

 In their study of the ways that tenth, eleventh, and twelfth grade students use 

probabilistic reasoning in sampling contexts, Kahneman and Tversky (1972) found that 

many of the students in the study relied on non-normative methods of reasoning.  Each of 

1500 students were given a questionnaire that contained questions about probability and 

sampling.  They were asked questions such as the following:   “All families of six 

children in a city were surveyed.  In 72 families the exact order of births of boys and girls 

was GBGBBG.  What is your estimate of the number of families surveyed in which the 
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exact order of births was BGBBBB?” (Kahneman & Tversky, 1972, p. 432).  (Note that, 

here, “B” represents a boy and “G” represents a girl.)  Another item asked students to 

judge the likelihood that eight tosses of a fair coin would result in the following 

sequence:  HTHTHTHT (where “H” denotes an outcome of heads and “T” denotes an 

outcome of tails).  Kahneman and Tversky noted that these items elicited the 

representativeness heuristic in their participants’ reasoning. 

 In the case of the birth order problem, both sequences are equally likely.  The 

correct answer to the question is 72, or some number very close to 72.   However, 

Kahneman and Tversky (1972) found that many of the students judged the first sequence 

to be more likely than the second.  In the first sequence, GBGBBG, half of the children 

are boys and half are girls.  In the second sequence, BGBBBB, five of the children are 

boys and only one child is a girl.  With an equal number of girls and boys, participants in 

the study considered the first sequence to be more representative of the population.  

Therefore, the participants judged the first sequence to be more likely to happen than the 

second sequence.  These students were employing the representativeness heuristic in their 

reasoning and it caused them to give an incorrect answer (Kahneman & Tversky, 1972). 

 In the case of the coin toss problem, Kaheman and Tversky (1972) found that, 

though the sequence HTHTHTHT contained an equal number of heads and tails, the 

participants thought this outcome was unlikely to occur.  These participants did not think 

that the sequence appeared “random enough”.  Therefore, they did not think this was a 

likely result as it did not seem representative of the process by which the outcome was 

generated.  Again, this form of reasoning is an example of reliance on the 

representativeness heuristic (Kahneman & Tversky, 1972). 
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 Based on student performance on these and other questions, Kahneman and 

Tversky (1972) claimed that for many people, “a representative sample is one in which 

the essential characteristics of the parent population are represented not only globally in 

the entire sample, but also locally in each of its parts.  A sample that is locally 

representative, however, deviates systematically from chance expectations:  it contains 

too many alternations and too few clusters” (p. 435).  As indicated by the examples 

presented above, this belief is problematic. 

 According to probability theory and the Law of Large Numbers, the size of a 

sample will affect the degree to which a randomly chosen sample will resemble the 

population from which it was drawn.  The sample statistics associated with larger 

samples are more likely to approximate the population parameter than are sample 

statistics associated with smaller samples.  When people rely upon the representativeness 

heuristic, however, they expect any sample, regardless of size, to be representative of the 

population.  This non-normative reasoning leads to belief in what Tversky and Kahneman 

(1971) term the “Law of Small Numbers”.  Operating in accordance with the Law of 

Small Numbers, the individual will make probability estimations that are larger than 

probability theory would predict, at least for small samples (Tversky & Khaneman, 

1971). 

 Kahneman and Tversky (1971) caution that a belief in the Law of Small numbers 

and the notion of representativeness could lead to a common misconception associated 

with probability tasks:  the gambler’s fallacy.  In the coin toss example, if a sequence of 

outcomes does not contain an equal number of heads and tails then the next toss should 

produce a result that will “even out” the number of heads and tails.  For example, if a four 
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tosses of a fair coin results in HHHH, then by this line of reasoning, the probability of 

tossing a tail on the next toss is greater than that for a tossing a head.  This belief in 

chance as a self correcting process is referred to as the gambler’s fallacy (Kahneman & 

Tversky, 1972). 

 Another “fallacy” related to the representativeness heuristic is the base-rate 

fallacy.  When reasoning according to this heuristic, “people ignore the relative sizes of 

population subgroups when judging the likelihood of contingent events involving the 

subgroups” (Garfield, 1995, p. 27).  A typical question that elicits the base-rate heuristic 

involves judgments based on personality, rather than base-rate probabilities.  For 

example, suppose that you meet a 45-year old male who is conservative and ambitious 

with no interest in politics.  Which is more likely:  (a) the man is an engineer or (b) the 

man is a lawyer?  Based solely on the personality characteristics of this man, many 

individuals will claim that it is more likely he is an engineer.  This same decision is made 

even when the individual is told that the man was randomly chosen from a population in 

which 30% of the people are engineers and 70% are lawyers.   It has been argued that in 

ignoring base-rates, individuals use a form of representativeness heuristic in their 

reasoning.  The man described is more representative of peoples’ vision of engineers than 

of lawyers.  In such cases, reasoning is based on an individual’s experience with and/or 

knowledge of a given situation rather than on known proportions or probabilities 

(Shaughnessy, 1992). 

 A well studied problem used by Tversky and Kahneman (1982) that elicits the 

base-rate heuristic is the Taxi Problem.  The problem is the following:  “A cab was 

involved in a hit and run accident at night.  There are two cab companies that operate in 
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the city:  a Blue Cab company, and a Green Cab company.  It is known that 85% of the 

cabs in the city are Green and 15% are Blue.  A witness at the scene identified the cab 

involved in the accident as a Blue Cab.  This witness was tested under similar visibility 

conditions, and made correct color identifications in 80% of the trial instances.  What is 

the probability that the cab involved in the accident was a Blue Cab rather than a Green 

one?” (Shaughnessy, 1992, p. 471).  The correct answer is a probability close to 0.15.  

However, people tend to answer the question by offering a probability at or near 0.8.  

One explanation for this answer is that people ignore the base-rate information provided.  

Although only 15% of the cabs are Blue, people tend to place more confidence in the 

ability of the witness to make correct color identifications.  They employ the base-rate 

heuristic and assume that the probability should be representative of the degree to which 

the witness is able to identify the color of vehicles (Shaughnessy, 1992). 

 Though the work of Kahneman and Tversky (1971, 1972, 1982) is well regarded, 

it has raised some questions concerning the degree to which the representativeness 

heuristic truly accounts for the responses provided by the participants in their studies.  In 

particular, Konold (1989) hypothesized that the subjects in their studies were actually 

operating under different model of probability.  “According to this model, referred to as 

the outcome approach, the goal in dealing with uncertainty is to predict the outcome of a 

single next trial” (Konold, 1989, p. 61).  In other words, when individuals are asked to 

predict the probability of a given outcome, the number they state is indicative of the 

degree to which they believe that outcome will occur.  A probability of 0.5 indicates the 

outcome could occur, a probability greater than 0.5 indicates that the outcome will occur, 

and a probability less than 0.5 indicates that the outcome will not occur.  Individuals 
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reasoning according to the outcome approach do not think stochastically about chance 

and probability.  Instead they reason deterministically (Konold, 1989). 

 Konold (1989) designed a study to test his hypothesis and found support for his 

conjecture.  When asked to estimate the probability of an event, Konold (1989) found that 

often individuals assume that the question is asking for a prediction about the outcome 

for the very next trial.  These individuals are interpreting and answering the question 

using an outcome approach.  Konold (1989) also found that when individuals employ an 

outcome approach to predict events, they do so to the degree to that causal factors can be 

identified in the situation.  For example, when Konold (1989) asked participants what a 

forecaster means when she claims a 70% chance of rain, some participants told him that, 

since 70% is greater than 50%, the forecaster is saying it will rain.  When the question 

was rephrased to ask what could be concluded from a situation where it didn’t rain on a 

day that the forecaster predicted a 70% chance of rain, some participants said that the 

forecaster must have been wrong.  Other participants offered explanations that relied on 

causal factors, such as a change in the wind.  These responses indicate that the 

participants were not thinking of 0.7 as a probability generated from repeated trials.  

Rather, because the number given was greater than 50%, the number indicated that it 

would, indeed rain the next day (Konold, 1989). 

 Konold (1989) also tested his hypothesis on responses to the Taxi problem and, in 

so doing, found that often the base-rate fallacy can be attributed to the outcome approach. 

When participants were asked the probability that the cab was blue, some of them asked 

whether they were supposed to give a number.  These participants wanted to simply 

answer with a color – the color of the cab they believed to be involved in the accident.  
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This response is indicative of a view of probability as prediction of the next outcome.  

Another participant claimed that it didn’t matter how many cabs in the city were blue and 

that the information about the proportions was extraneous to the problem.  The 

participant reasoned that the cab in the story is the only cab that should be considered 

and, since the witness is mostly correct (greater than 50-50), the cab must have been blue.   

Again, this response is indicative of the outcome approach.  The participant interpreted 

the 80% reliability rate to mean that the witness is correct.  No other information was 

required because there was only one situation under consideration, the one in which the 

witness is involved (Konold, 1989). 

 In a later study Konold, Pollatsek, Well, Lohmeier, and Lipson (1995) 

demonstrated that, often, the gambler’s fallacy can also be attributed to the outcome 

approach.  In their study participants were asked which is most likely to occur on 5 flips 

of a fair coin and were given the options:  HHHTT, THHTH, THTTT, HTHTH, or all are 

equally likely.  The participants were then asked which was least likely and were given 

related options:  HHHTT, THHHTH, THTTT, HTHTH, or all are equally unlikely.  The 

participants were further probed to explain their answers.  The researchers found that 

some participants were using an outcome approach to answer the question.  For example, 

one participant answered both questions correctly, but when she was asked to state the 

probability that the HTHTH sequence would occur, she stated that because it is possible 

for the coin to produce that sequence, the probability is 0.5.  For her, a probability of 0.5 

indicates that the outcome could occur.  This answer indicates that the participant 

interprets probability as a statement of what will happen on the next trial.  Again, this is 
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an example of reliance on an outcome approach to probability (Konold, Pollatsek, Well, 

Lohmeier, & Lipson, 1995). 

 The different approaches to probability may be due to the kinds of learning 

experiences these individuals with probability concepts.  Given different learning 

experiences, individuals might develop different understandings of probability that may 

or may not be correct.  However, whether it is the case that individuals reason from an 

outcome approach or according to a representativeness or base-rate heuristic, it seems to 

be well documented that people generally use non-normative ways of reasoning in 

situations that involve probability.  In all cases, the reasoning employed indicates a lack 

of consideration of the variability that exists in sampling situations.  In relying on the 

representativeness or base-rate heuristic an individual does not acknowledge the fact that 

samples may vary and assumes all samples should resemble the population from which 

they are drawn.  In using the outcome approach to probability, an individual does not 

interpret probabilities as indicative of the uncertainty variation that is involved in 

repeated events and/or sampling. 

 The concept of sampling variability is central to statistical hypothesis testing and 

to inferential statistics in general.  Thus, it is important that individuals have an 

understanding of the ways in which samples vary.  Research in this area, though, 

indicates that humans do not have well developed understandings of the concepts and 

ideas involved. 

Sampling Variability 

 The development of statistical concepts and methods was motivated by a desire to 

make decisions based on data.  Given that there is a great deal of variability associated 
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with data, statistical methods and concepts were developed to deal with this variability.  

Hence, the concept of variability is central to the practice of statistics.  Unfortunately, 

research has indicated that people are uncomfortable with variability.  People do not have 

strong understandings of the variability that exists within a sample nor do they 

understand the variability that exists among samples generated by a process of repeated 

sampling.  This difficulty in understanding variability has an impact on the degree to 

which individuals predict the probability that a given sample would be collected from a 

specified population. 

 Research on student understanding of variability within a sample has indicated 

that students do not have strong understandings of variance as a measure used to describe 

the distribution of values.  Given the distribution of values in a data set (or sample) 

students will refer to means and proportions to describe that data set.  They do not refer to 

concepts associated with variability, such as the spread of the data to describe the 

distribution.  Reading and Shaughnessy (2004) claim that these findings are not at all 

surprising considering statistics education places a great deal of emphasis on measures of 

center but not on measures of variation.  In addition, students are rarely asked to identify 

sources variation and/or find ways of visualizing or measuring variation in a data set.  

Studies have indicated, however, that students’ reasoning about variation in a data set is 

influenced by the way those students think about centering and clustering.  As students 

focus on clusters as well as centers, they can begin to develop stronger understandings of 

variance within a distribution (Reading & Shaughnessy, 2004). 

 The discomfort students have with variance within a sample extends to a 

discomfort in dealing with the variability that occurs between samples.  As students 
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reason about samples, they experience a tension in dealing with sample variability and 

sample representativeness (Reading & Shaughnessy, 2004).  These ideas seem somewhat 

contradictory.  How can different samples drawn from the same population vary from 

each other while remaining representative of that population?  Complicating matters is 

the issue of sample size.  How does sample size impact the degree to which sample 

characteristics vary from and/or are representative of the population?  The ability to 

reconcile these tensions is important for developing an understanding of sampling 

variability.  Research on human reasoning about these issues has uncovered some 

interesting ways that humans reason in conditions where sampling variability, sample 

size, and representativeness should be considered. 

 In a study of understanding of sample variability, Nisbett, Krantz, Jepson, and 

Kunda (1983) demonstrated that they degree to which individuals are aware that there is 

potential for sample characteristics to vary impacts subsequent evaluations of the 

likelihood of a given sample.  In this study, participants were told to pretend they had 

landed on an island that had not been well explored.  On this island, the participants were 

told that they came in contact with several creatures.  Some of the creatures were found 

by themselves, some in groups of three, and some of groups of twenty.  The participants 

were told some of the characteristics of these creatures.  For example, the participants 

encountered birds that were blue, natives that were obese, and a new element that burned 

green when heated.  Given varying sizes of samples of these objects, the participants 

were asked the degree to which they believed other members of the groups associated 

with those objects had the same characteristic (color, obesity, burn color) (Nisbett, et al., 

1983). 
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 Nisbett, et al. (1983) found that that degree to which participants believed a 

particular characteristic (color, obesity, burn color) to be variable had an impact on the 

size of the sample the participants thought was required to generalize that characteristic 

to the population.  If a characteristic (such as obesity) was considered to be variable in a 

population, then a larger sample would be necessary in order to make any inferences to 

the population about that characteristic.  Nisbett, et al. (1983) concluded that individuals 

only employ the representativeness heuristic in particular domains – those for which the 

characteristic under question is deemed variable.  Therefore, under certain conditions, 

people do rely upon the Law of Large Numbers and are hesitant to draw inferences from 

small samples.  That is, individuals rely upon the Law of Large Numbers (not the law of 

small numbers) when they understand the sampling process as well as the variability 

associated with the sample space (Nisbett, et al., 1983). 

 In addition, there has been some evidence that training in the Law of Large 

Numbers can improve performance on tasks that typically evoke reasoning according to 

the law of small numbers. Fong, Krantz, and Nisbett (1986) studied the effect using pre- 

and post-tests.  All of the participants in the study were given a pre-test that contained 

problems that typically elicit reasoning using the law of small numbers.  The participants 

were separated into four groups.  The control group did not receive training on the Law 

of Large Numbers.  The other three groups received some form of training.  One group 

was presented with a description of the Law of Large Numbers.  Another group was 

presented with scenarios accompanied by explanations of how the Law of Large 

Numbers can be used in reasoning about those scenarios.  The final group was presented 

with both forms of training.  After the training had occurred, a post-test was administered 
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to measure the impact of this training on performance.  Fong, Krantz, and Nisbett (1986) 

found a positive correlation between the amount of training and the degree to which 

performance increased.  As the amount of training increased, the ability to correctly apply 

statistical reasoning also increased (Fong, Krantz, & Nisbett, 1986). 

 In another study of understandings of sampling variation Well, Pollatsek, and 

Boyce (1990) found that though people understand that sample means of larger samples 

are more likely to resemble the population mean (the Law of Large Numbers), they do 

not understand the impact of sample size on variability of the sample means.  In a series 

of studies, the researchers provided the participants with different scenarios in which 

participants were told the population means.  The participants were then asked questions 

about likelihood of obtaining various sample statistics for a variety of sample sizes (Well, 

Pollatsek, & Boyce, 1990). 

 For example, the participants were told the following:  “When they turn 18, 

American males must register for the draft at a local post office.  In addition to other 

information, the height of each male is obtained.  The national average height of 18-year-

old males is 5 feet, 9 inches”(Well, Pollatsek, & Boyce, 1990, p. 293).  Different groups 

of participants were then asked different questions.  One group was asked whether the 

sample mean of a sample of 25 men would be closer to 5 feet, 9 inches than would the 

sample mean of a sample of 100 men (accuracy version).  Another group was told that, 

for a year, samples of 25 men were taken every day at one location and samples of 100 

men were taken at another location.  The participants were then asked to state whether 

they thought there was a greater number of days for which the sample means were 6 feet 

or more at the first location or at the second location (tail version).  A third group was 
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asked the same question but instead of asking for the relative likelihood that the sample 

means were “6 feet or more” the participants were asked to make predictions that the 

sample means would be “between 5 and 6 feet” (center version).  Throughout the study, 

participants were asked similar questions situated in other contexts (Well, Pollatsek, & 

Boyce, 1990). 

 Well, Pollatsek, and Boyce (1990) found that, for each of the contexts presented, 

the participants did well on the accuracy version, reasonably well on the center version, 

and did not do well on the tail version.  The researchers concluded that individuals have 

difficulty recognizing that sample means vary and that sample size plays a role in the 

degree to which samples vary.  This finding has implications for the way in which 

individuals understand sampling distributions (which will be discussed later in this 

chapter).  Well, Pollatsek, and Boyce (1990) conducted a follow-up study in which they 

demonstrated to participants the way that sampling distributions are created.  

Unfortunately, even after the participants had observed this demonstration, they 

continued to have difficulty reasoning about the way that sample size affects variability 

of the mean. Well, Pollatsek, and Boyce (1990) concluded that people often believe that 

“extreme scores are more likely to occur in large samples (which is true) and that, 

therefore, the averages of large samples will be more variable (which is not true)” (p. 

310). 

 The results of the study conducted by Well, Pollatsek, and Boyce (1990) suggest 

that the concept of sample variability is difficult to understand.  In fact, one could argue 

that the representativeness heuristic, in general, is indicative of a struggle to coordinate 

the notion that samples may vary.  The concepts of sample representativeness and sample 
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variability are difficult to connect when making estimates of the likelihood of a given 

sample.  Bruce (1991) illustrates this notion well with the following statement: 

One of the keys to mastering statistical inference is balancing these two ideas, 
interpreting more precisely the meaning of “likely” in each.  Because they are 
contradictory when seen in a deterministic framework, students may over-respond 
to one or the other depending on the context.  Over-reliance on sample 
representativeness is likely to lead to the notion that the sample tells us everything 
about a population; over-reliance on sample variability implies that a sample tells 
us nothing.  Finding the appropriate point on the continuum between the two 
extremes is complex and needs to take into account confidence level, population 
variance, and sample size.  For a given confidence level and population variance, 
the effect of sample size relates closely to the representativeness/variability 
continuum:  the larger the sample, the more likely it is to be representative of the 
population.  Smaller samples are more likely to vary.      

       (Bruce, 1991, section 1.1, ¶ 5) 

Managing the tension between sample representativeness and sample variability is a real 

concern in inferential statistics and practicing statisticians are forced to deal with this 

issue on a regular basis (Reading & Shaughnessy, 2004). 

 Several researchers have begun to study the development of understanding of 

variability and have subsequently proposed frameworks that outline various levels and 

kinds of understandings of variation (e.g. Torok & Watson, 2000; Watson, Kelly, 

Callingham, & Shaughnessy, 2003).  Building on the work done by previous researchers 

on the construction of developmental hierarchies for understanding, Reading and 

Shaughnessy (2004) conducted a study whose goal was the refinement of these 

hierarchies.  Reading and Shaughnessy (2004) showed students two different bags filled 

with 100 lollipops each.  Each bag contained red, blue, and yellow lollipops.  The 

students were told that the first bag contained 50 red, 30 blue, and 20 yellow pops and 

that the second bag contained 70 red, 10 blue, and 20 yellow lollipops. Given the 

proportion of red, blue, and yellow lollipops in each bag, the students were asked to 
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determine how many red pops they would expect to get if they were to take a sample of 

10 lollipops from each bag.  They were then told that six different students chose a 

sample of 10 lollipops from each bag.  They were asked how many red pops they would 

expect to appear in each of the six samples taken from each bag.  The participants were 

then asked how many red pops they would expect if those six students had chosen 

samples of 50 lollipops each.  Finally, they were asked how many red pops they would 

expect if 40 students each chose a sample of 10 lollipops from each bag (Reading & 

Shaughnessy, 2004). 

 In their analysis of student responses, Reading and Shaughnessy (2004) found 

evidence that understanding of the variation in sample statistics develops with respect to 

two different hierarchies.  One hierarchy addresses the ways that students are able to 

describe variation.  Within this hierarchy, responses at the first level indicate that the 

individual focuses either on middle values (population proportion) or on extreme values 

in predicting the number of red lollipops in a given sample.  For example a student might 

claim that numbers close to the population proportion are likely or that numbers further 

from the population proportions are not likely.  Second level responses indicate that the 

student is paying attention to both middle and extreme values in his/her reasoning about 

the likelihood of sample proportion.  At the third level, student responses indicate an 

awareness of “anchoring” from some value, not explicitly stated as the center.  For 

example, a student’s response might indicate that he/she understands that the values 

should lie “on either side” or that the values should fall a given distance from an extreme 

value.  At the fourth (and final) level, student responses clearly indicate that the student is 

“anchoring” from the center (population proportion).  Responses in this category 
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explicitly refer to the center and what is happening around the center.  Such responses 

also consider the effect of sample size on the spread of potential results (Reading & 

Shaughnessy, 2004). 

 The second hierarchy identified by Reading and Shaughnessy (2004) addresses 

the explanation students give for the cause of the variation that occurs.  At the first level, 

students attribute variation to extraneous causes such as whether the lollipops were well 

mixed.  At the second level, causality is attributed to the frequency of reds in the bag.  

For example, a student might justify his/her answer based on the fact that “there are a lot 

of reds in there”.  At the third level, student responses indicate that the proportion of reds 

(not just the number) influences the number of reds in a given sample.  Finally, fourth 

level responses discuss the likelihood of getting a given sample based on the proportion 

of colors in the bag (Reading & Shaughnessy, 2004). 

 Given the focus that is typically focuses on measures of center with little attention 

to variability, the hierarchies identified by Reading and Shaughnessy (2004) indicate that 

development of understandings of sample variation can occur students (1) become aware 

of the potential for sample characteristics to vary and (2) recognize that potential for a 

spread of sample statistics is determined by the size of the sample and the population 

parameter.   Both hierarchies point to the notion that students need to begin to understand 

that repeated sampling produces a distribution of sample statistics.  Within that 

distribution, some values are more likely than others.  The statistical concept that 

connects these ideas and that attaches probability values to sample statistics is the 

sampling distribution.  Given reports of student difficulty in coordinating the idea that 

samples can be representative and will still vary in ways that are dependent upon the 
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sample size, it stands to reason that students would struggle to develop strong 

understandings of sampling distributions.  Research has indicated that this is the case.  

Sampling Distributions 

 Sampling distributions represent the distribution of sample statistics and are used 

to attach probabilities to samples for specified populations.  Research has indicated that it 

is difficult for students to understand that sample statistics vary and that this variability 

can be measured and represented in a distribution.  In order to help students better 

understand sampling distributions, some educators have suggested that instruction should 

provide students with the opportunity to construct sampling distributions. Because the 

process of drawing samples from a population is laborious, researchers have developed 

software that allows students to engage in the construction of sampling distributions.  

Using this software, students can construct sampling distributions for a variety of sample 

sizes, population parameters, and number of samples chosen.  In constructing these 

sampling distributions, it is hoped that students will understand that sample statistics vary 

and that the size of the samples impacts the overall shape of the distribution.  As is the 

case with use of any technology, the question remains as to whether the students using 

the technology are making appropriate connections between the technology and the way 

that it demonstrates important concepts in statistics.  More importantly, the question 

remains as to whether the technology improves students’ ability to engage in the 

statistical reasoning necessary for statistical inference (delMas, Garfield, & Chance, 

2004). 

 In reviewing research, including their own previous work in this area, delMas, 

Garfield, and Chance (2004) found that students do not develop the desired 
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understandings of sampling distributions, even when sampling distribution simulation 

software is incorporated into instruction.  In their review, delMas, Garfield, and Chance 

(2004) found that, though students could recite a series of facts related to sampling 

distributions, use of technology did not help them to develop reasoning skills that would 

enable them to use sampling distributions in statistical inference.  Rubin, Bruce, and 

Tenney (cited in delMas, Garfield, & Chance, 2004) found that, even after use of 

technology to construct sampling distributions, students were not able to coordinate an 

understanding of the relationship between sample size, sample representativeness, and 

sampling distribution.  Students had trouble understanding that as sample size increases, 

samples are more likely to resemble the population but as sample size increases, the 

sampling distribution looks less like the distribution of values in the population.  A study 

by Hodgson (cited in delMas, Garfield, & Chance, 2004) found that the use of 

simulations could actually contribute to the development of misconceptions. 

 Having done this review of research, delMas, Garfield, and Chance (2004) 

attempted to make improvements upon the way in which technology enhanced 

simulations are used to develop strong and useful understandings of sampling 

distributions.  Having identified a series of common misconceptions, the researchers 

endeavored to design instruction that would address these misconceptions and replace 

them with more desirable understandings.  Some common misconceptions associated 

with sampling distributions of sample statistics include the following: 
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• The sampling distribution should look like the population (for n>1) 

• Sampling distributions for small and large samples have the same 
variability 

• Sampling distributions for large samples have more variability 

• Don’t understand that a sampling distribution is a distribution of 
sample statistics 

• Confuse one sample (real data) with all possible samples (in 
distribution) or potential samples 

• Confuse implications of The Law of Large Numbers with the 
Central Limit Theorem 

• The mean of a positive skewed distribution will be greater than the 
mean of the sampling distribution for samples taken from this 
population 

(delMas, Garfield, & Chance, 2004, p. 8) 

The researchers used the identified misconceptions to inform design of an instructional 

activity addressing sampling distributions.  delMas, Garfield, and Chance (2004) tested 

the students before and after the activity to determine whether or not the misconceptions 

had been replaced with more desirable understandings.  Based on the results of the pre- 

and post-test comparison, the researchers modified the activity by breaking it into smaller 

pieces.  After having observed students during that broken activity and upon analysis of 

the results of a pre- and post-test comparison, the researchers again modified the activity.  

They included a reflection piece where students were led in a discussion that forced them 

to think more deeply about the activity.  The results of this improvement were assessed 

using the same pre- and post- test comparison (delMas, Garfield, & Chance, 2004). 

 Much to their surprise, the researchers did not find an improvement of 

performance over the three versions of the activity.  In fact, the same misconceptions 

appeared in many of the students.  Many students did not understand that while large 

samples resemble the population, the distribution of sample means for large samples does 

not resemble the population distribution. The students believed that as the sample size 

increased the distribution of sample means would look more like the population.  Many 
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students also confused variability in a sampling distribution with variability within the 

population and/or sample.  delMas, Garfield, and Chance (2004) concluded that students 

need more experience in working with densities in the distribution of a sample and more 

experience working with densities in the distribution in the parent population.    delMas, 

Garfield, and Chance (2004) also reported that students tend to rely on informal 

understandings when reasoning about sampling distributions.  Students do not take a 

moment to stop and think about the situation.  Given that sampling distributions are very 

complex concepts, and given that students do latch onto informal understandings, 

delMas, Garfield, and Chance (2004) recommended that students have more exposure to 

the various concepts and relationships involved. 

 Noting the complexity of the concept of sampling distributions and the difficulty 

that students face in connecting sampling distributions to statistical inference, Saldanha 

and Thompson (2002) designed a study to explore the development of student 

understanding about sampling distributions.  Given that students struggle to manage the 

tension between sample representativeness and sampling variability and given that some 

people approach probability with an outcome approach in which the repeatability and 

distribution of sampling is not recognized, Saldanha and Thompson (2002) designed a 

teaching experiment in which they focused on the development of sampling ideas.  

Instruction was, therefore, designed to “support [students’] conceiving sampling as a 

scheme of interrelated ideas including repeated random selection, variability among 

sample statistics, and distribution” (Saldanha & Thompson, 2002, p. 259).  Instructional 

design emphasized that (1) random selection can be repeated under like conditions and 

(2) patterns emerge from collection of samples and these allow for estimates of the 
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likelihood of particular sample statistics on the basis of relative frequencies (Saldanha & 

Thompson, 2002). 

 Twenty-seven eleventh and twelfth grade students participated in the teaching 

experiment.  Instruction began by engaging the participants in an examination of studies 

that used sampling in their analysis.  The instructors then asked the students to determine 

what fraction of the time they might expect results like those reported in the studies.  The 

students then used a computer simulation to inform their initial responses to these 

questions.  Given the parameters identified in the studies, the students used the computer 

to create sampling distributions so that they could “see” the fraction of the time the 

results reported in the studies actually occur.  It was hoped that through engagement of 

the activity, students would recognize the importance of sample size in determining the 

shape of the sampling distribution (Saldanha & Thompson, 2002). 

 In talking with the students, Saldanha and Thompson (2002) found two different 

conceptions of sampling that affected the degree to which the students were able to 

develop deep understandings of sampling distributions.  Students who had “developed a 

multi-tiered scheme of conceptual operations centered around the images of repeatedly 

sampling from a population, recording a statistic, and tracking the accumulation of 

statistics as they distribute themselves along a range of possibilities” (Saldanha & 

Thompson, 2002, p. 261) were better able to answer questions posed during instruction. 

These students had developed what Saldanha and Thompson (2002) referred to as a 

multiplicative conception of sample.   This conception allowed the student to 

simultaneously think about the sample as a part of the whole “in terms of the whole” 

(Saldanha & Thompson, 2002, p. 266).  Students who had developed this conception 
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were able to think about relative frequencies and likelihoods associated with various 

values for sample statistics (Saldanha & Thompson, 2002). 

 On the other hand, students who were not able to think of the process as a multi-

tiered scheme of operations struggled to keep track of the number of people in the 

sample, the number of samples chosen, and the distribution of sample statistics as a 

distribution.   These students had what Saldanha and Thompson (2002) referred to as an 

additive conception of sampling.  These students “view a sample simply as a subset of a 

population and view multiple samples as multiple subsets” (p. 265).  These students are 

not able to think about a distribution of sample statistics and their relative frequencies 

within that distribution (Saldanha & Thompson, 2002). 

 The development of a multiplicative conception of sampling is of particular 

importance to hypothesis testing.  The decision to reject or fail to reject the null 

hypothesis is based on the degree to which a sample is deemed unusual under the null 

condition.  In order to determine whether or not the sample is unusual, one must have the 

ability to think of sampling as a random, repeatable process for which sample statistics 

may be calculated and represented in a distribution.  The collection of sample statistics 

creates a sampling distribution which attaches probabilities to values of the sample 

statistic.  These probabilities give information as to whether or not the sample is unusual.  

If students have an additive rather than a multiplicative conception of sampling, they may 

not be able to fully connect and apply the essential ideas involved in statistical hypothesis 

testing.  These students may continue to struggle with the tension between sampling 

representativeness, sampling variability, and sample size and this may impact the 

development of their understanding of statistical hypothesis testing. 
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 In another study of the development of student understanding of sampling 

distributions, Lipson, Kokonis, and Francis (2003) identified four stages of development 

through which students must progress in order to understand the relationship between 

computer simulations and statistical inference.  The researchers presented a small group 

of students with a claim that the post office delivers 96% of letters on time.  The students 

are told that a journalist decides to test the claim and sends out 59 letters.  The journalist 

reports that 52 (88.1%) of the 59 letters were delivered on time.  He claims that the post 

office is incorrect.  The students were subsequently asked to use the statistical software to 

better understand the journalist’s claim.  The software created a sampling distribution of 

the proportion of letters delivered on time from 200 samples of 59 letters in a population 

where the proportion delivered on time was 96%.  As the students worked with the 

software, the researchers guided them in their activity.  Lipson, Kokonis, and Francis 

(2003) collected observational data on the students’ progression through the activity and 

upon analysis, identified four stages important to the development of understanding of 

the software and its relation to the particular problem at hand. 

 In the first stage, the recognition stage, students began to understand the 

representation shown on the computer screen and its relation to the situation.  Students 

first began to understand that the distribution on the screen was a distribution of sample 

statistics.  They then started to understand that sample statistics vary and that the variance 

is represented in that distribution.  They then began to understand how to use the 

sampling distribution to determine how often a given sample statistic occurs.  In the 

second stage, the integration stage, students began to use the sampling distribution to 

decide whether the sample containing 52 letters delivered on time is a likely result.  In the 
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third stage, the contradiction stage, students began to recognize the contradiction created 

in the integration stage.  That is, at this stage, students explicitly acknowledged that the 

sample the journalist collected was unlikely if the post office was, indeed, correct.  

Lipson, Kokonis, and Francis (2003) noted that this stage was difficult for students.  

Though they recognized the small likelihood of the sample, the students didn’t seem to 

think this was a problem.  The students tended to give practical rather than statistical 

reasons for this contradiction.  The researchers had to help the students move to stage 

three so the students could move to the final stage, the explanation stage.  In this stage, 

students were able to offer an explanation for the contradiction.  In case of this particular 

problem, the students needed to recognize that the post office may not be correct in their 

claim to deliver 96% of the letters on time.  However, the researchers note that this final 

stage is difficult for students to reach.  In summary, though, the researchers claim that the 

computer software was valuable in helping students to progress through these stages 

(Lipson, Kokonis, & Francis, 2003).   Though these stages were important for the 

students to progress through this particular instructional activity, they provide some 

guidance in thinking about instructional design for developing ideas associated with 

sampling distributions and statistical inference. 

 The research by Lipson, Kokonis, and Francis (2003) extends that by delMas, 

Garfield, and Chance (2004) and Saldanha and Thompson (2002).  Collectively, the 

studies highlight the difficulty that students have with understanding the concept of 

sampling distributions.  In addition, the studies indicate that students may struggle to 

understand the role of sampling distributions in determining whether a given sample is 

unusual or not for a specified population.  In particular, students have difficulty 
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coordinating sample size, sample variability, and sample representativeness in reasoning 

about the likelihood of a given sample in a known population. The results also indicate 

that these difficulties persist even after instruction has been modified to specifically target 

these difficulties. 

 Though these studies explored student understanding of the likelihood of a 

sample, they did not explicitly connect probability to sampling distributions.  Research on 

student understanding and interpretation of p-value indicates that students do, indeed, 

struggle to understand the connection of probability to sampling distributions and the role 

that each plays in statistical hypothesis testing. 

Understanding and Interpretation of p-values 

 In statistical hypothesis testing, the p-value gives the probability of obtaining the 

collected sample statistic (or more extreme) under the condition that the null hypothesis 

is true.  Therefore, p-values are useful in determining whether or not the collected sample 

is unusual if the null hypothesis is the correct description of the population.  Because they 

provide a measure of the likelihood of the result under the assumed null condition, p-

values are often reported in journals.  It is important, therefore, that introductory statistics 

students understand what the p-value represents and how to interpret the p-value within 

the context of the study.  They should understand the relationship between p-value and 

sample size and should know how to coordinate this information in interpretation of 

studies that report a high (or low) p-value for their results. Research has suggested, 

however, that this concept is not easily understood by students and/or researchers. 

 Krauss and Wassner (2002) studied understanding of p-value on a large scale.  

They developed a questionnaire that outlined various (incorrect) interpretations of p-
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value and asked participants to decide if the interpretations were true or false.  They 

distributed their questionnaire to 113 students, instructors, and scientists representing 6 

German universities.  The questionnaire asked the following question: 

Given that t = 2.7, df = 18, p = 0.01 in an independent means t-test comparing means 
of two populations, determine if the following are true or false (more than one or 
none of them may be true) 

A. You have absolutely disproved the null hypothesis (that is, there is not a 
difference between the population means) 

B. You have found the probability of the null hypothesis being true 
C. You have absolutely proved your experimental hypothesis (that there is a 

difference between the population means) 
D. You can deduce the probability of the experimental means being true 
E. You know, if you decide to reject the null hypothesis, the probability that you 

are making the wrong decision 
F. You have a reliable experimental finding in the sense that if, hypothetically, 

the experiment were repeated a great number of times, you would obtain a 
significant result on 99% of the occasions 

                 (Krauss & Wassner, 2002, p. 2) 

Though each of the statements is false, many of the respondents, including the 

instructors, claimed that at least one of the statements was true (Krauss & Wassner, 

2002).  The results indicate that students and instructors alike do not have strong 

understandings of p-value.  They do not know what the p-value reported in a study 

represents, nor do they know how to interpret a low p-value within the context of a given 

study. 

 Other studies have explored students’ and researchers’ understandings of the 

relationships between and among p-value, statistical significance, sample size, and 

treatment effect.  Wilkerson and Olson (2001) designed a questionnaire that addressed 

these relationships and distributed it to 52 graduate students.  Of the 52 participants, 20 

were pursuing a PhD, 14 were pursuing an EdD, and 16 were pursuing a master’s degree.  

Only one respondent realized that when two studies report the same (low) p-value, the 
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study showing the greatest evidence for a treatment effect is the one that used a smaller 

sample.  The sampling distributions of statistics for smaller samples are more spread and 

obtaining a sample statistic that lies in the extreme gives more evidence for a treatment 

effect.  In addition, Wilkerson and Olson (2001) found that most of the respondents 

thought that sample size affected the probability of making a Type I error.  This is not 

correct.  The level of significance (α) is the probability, in the case where the null 

hypothesis is true, of committing a Type I error.  It is a decision criterion set prior to data 

collection.  Sample size does not impact the probability of committing a Type I error.  

Approximately half of the respondents, however, did recognize that sample size impacts 

the probability of committing a Type II error, in the case that the null hypothesis is not 

correct.  However, the lack of understanding of the relationships between and among 

sample size, treatment effect, and statistical significance is problematic in that it may 

affect the ways in which individuals interpret the results of their own or other people’s 

studies (Wilkerson & Olson, 2001). 

 The misunderstandings identified in Wilkerson and Olson’s (2001) study do not 

simply reside in graduate students.  In their study of the statistical understandings held by 

members of the American Educational Research Association (AERA), Mittag and 

Thompson (2000) found similar results with regard to understandings of p-value, sample 

size, statistical significance, and treatment effect.  Mittag and Thompson (2000) 

developed a questionnaire containing a variety of claims (both correct and incorrect) 

about a collection of statistical concepts.  For each of the claims, participants were asked 

to use a Likert scale to indicate the degree to which they agreed with each claim.  Some 

of claims addressed participants’ understandings of the relationships between and among 
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p-value, sample size, statistical significance, and treatment effect.  Like the graduate 

students in Wilkerson and Olson’s (2001) study, most of the respondents did not agree 

that “statistically significant results are more noteworthy when sample sizes are small” 

(Mittag & Thompson, 2000, p. 18). 

 The reports of student difficulty in understanding p-values and statistical 

significance indicate that instruction on these ideas has not been successful. As 

instructors begin to modify their approach, it will be necessary to evaluate the degree to 

which the new approaches are successful.   In recognition of a need for an assessment 

instrument that could be used across studies of instruction, Lane-Getaz (2007) 

endeavored to create such an instrument.  Her goal was to create an instrument could be 

used (a) to assess student understanding of p-value and statistical significance; (b) to 

provide a consistent, reliable measure of student performance that can be used across 

studies of student understanding of p-value and statistical significance; and (c) to 

establish well defined learning goals for these concepts.  Lane-Getaz (2007) created an 

instrument that addressed the understandings and misunderstandings of p-value and 

statistical significance that are currently highlighted in the literature.  Several iterations of 

the assessment were piloted with feedback from students, educators, and statistical 

experts.  With the final two iterations of her instrument, Lane-Getaz (2007) found strong 

content- and weak construct-related validity.  Lane-Getaz (2007) cautions, however, that 

the test should not be used to assign grades in an introductory statistics course as the 

reliability of the test was low.  The test can, however, be used across research studies to 

evaluate the success of instruction on p-value and statistical significance (Lane-Getaz, 

2007). 
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 In her study, Lane-Getaz (2007) also reported the results of student performance 

on her assessment instrument.  She found that students often associated the p-value with 

the probability that the null hypothesis is false.  In addition, students interpreted a study 

reporting a low p-value to indicate that the results were caused by chance rather than that 

they could be attributed to chance.  Lane-Getaz (2007) also noted that, students do not 

understand that random sampling is necessary for valid inferences to be made from a 

sample to population. 

 Together, the studies of understanding of p-value and statistical significance 

found in the literature indicate that these are difficult concepts for students.  

Understanding of these concepts requires coordination of understandings of the 

relationships between and among sample size, sample variability, treatment effect, and 

probability.  These concepts are essential to statistical hypothesis testing may impact the 

degree to which introductory statistics students understand “the big picture” of statistical 

hypothesis testing. 

Summary 

 The studies presented in this section provide evidence that individuals do not have 

strong understandings of some of the components of statistical hypothesis testing.  Lack 

of understanding of these components could impact the degree to which introductory 

statistics students understand the “big picture” of statistical hypothesis testing. 

 For example, if introductory statistics students are prone to use verification or 

reliance on personal beliefs rather than falsification to test hypotheses, they may struggle 

to understand the use of indirect reasoning in statistical hypothesis testing.  In fact, 

personal conviction might impact the degree to which introductory statistics students 
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value the use of statistical hypothesis testing to test hypotheses.  If a student has a strong 

enough belief in the feasibility of the alternative hypothesis, for example, he/she might 

consider the hypothesis to have been proven correct if the sample chosen confirms that 

hypothesis.  In this case, the student would not feel there was a need to engage in formal 

testing, such as statistical hypothesis testing, because the sample proved the hypothesis.  

It may be difficult for them to understand that test statistics cannot prove a hypothesis. 

 With regard to sampling, the research presented here indicates that students rely 

on informal ways of thinking about methods of data collection.  When engaged in a task 

that requires sampling to make an inference about the population, students often suggest 

biased and non-random methods of data collection.  Their suggestions indicate difficulty 

in understanding sample representativeness and sample variability.  Understandings of 

these concepts are essential to an understanding of the ways that statistical hypothesis 

testing can be used to draw inferences about a population using information obtained 

from a sample.  In particular, these understandings are essential to an understanding of 

the role of probability in determining whether or not a sample is unusual under the 

assumed null condition. 

 With regard to probability, research has indicated that humans rely on heuristics 

that lead to non-normative ways of reasoning about the likelihood of specified outcomes.  

These non-normative ways of reasoning highlight the challenge that individuals face in 

coordinating the notions that samples should be representative of the population, that 

samples can vary, and that sample size has an impact on the degree to which samples are 

representative and/or variable.  The struggle that students face in reconciling those ideas 

extends to their understandings of sampling distributions.  Students often struggle to 
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understand the way that sampling distributions connect all of these ideas to probability.  

In addition, students struggle to understand and interpret p-value, statistical significance, 

level of significance, and treatment effect.  These understandings are essential to an 

understanding of statistical hypothesis testing. 

 Given that research on individuals’ understanding of various components 

associated with statistical hypothesis testing indicates that people do not have strong 

understandings of these concepts and ideas, it is reasonable to expect that introductory 

statistics students do not have strong understandings of the entire method and its uses.  

And, in fact, there is evidence to support the notion that students do not have well 

developed understandings of the overall process of statistical hypothesis testing.  Though 

studies in this area are scarce, a review of that literature will be presented in the next 

section. 

 

Research on Understanding of Statistical Hypothesis Testing 

 As indicated in Chapter 1, there are very few studies that address introductory 

statistics students’ understandings of the overall concept of statistical hypothesis testing.  

The research that has been done suggests that introductory statistics students (and their 

teachers) struggle to develop deep, connected understandings of the concept.  They often 

make errors in implementing the steps required to solve traditionally worded, well-

defined hypothesis testing problems.  In addition, when presented with ill-defined 

statistical hypothesis testing problems, individuals are not able to apply the method to 

solve those problems.  Though limited, these studies indicate that introductory statistics 
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students do not develop strong understandings of the “big picture” of statistical 

hypothesis testing. 

Student Error and Persistence after Instructional Intervention 

 A review of literature on student on student understanding of statistical hypothesis 

testing reveals several articles providing anecdotal evidence that students make mistakes 

when performing the steps of a statistical hypothesis test.  However, there is one 

systematic study of student errors in the literature.  This study, conducted by Link (2002), 

examined student errors in solving statistical hypothesis testing problems for a large 

number of students. 

 After noticing that students struggle to solve problems that involve statistical 

hypothesis testing, the instructors at LSU-Shreveport designed instruction to focus on 

what they identified as “a six-part procedure” for doing statistical hypothesis testing 

problems.  Students were instructed to do the following six steps in order to solve 

statistical hypothesis testing problems:  (1) set up hypotheses, (2) find and state the 

critical value, (3) construct a probability statement that connects probability to the test 

statistic, (4) state the observed value of the test statistic, (5) compare the observed value 

of the test statistic and the critical value in order to decide whether to reject the null 

hypothesis, and (6) state the p-value (Link, 2002). 

 In using this six-part procedure as a guide, Link (2002) then performed an 

analysis of six exams given in one of 6 sections of an introductory statistics class.  In 

total, 295 student exams were analyzed.  Five of the exams used in the analysis were final 

exams and the sixth exam was a regular class exam.  In the analysis of student work, Link 

(2002) took note of the part(s) of the process for which students made errors and noted 
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the kind of error that was made.  Link (2002) found several common errors illustrated by 

the students’ work.  Some of the students stated the population parameter incorrectly, 

some used the sample statistic in their statement of the hypotheses, and some chose the 

correct population parameter but did not state the hypotheses using the correct inequality.  

Many students made errors in their statement of the test statistic (critical value), most 

often in cases for which the test was two-tailed.  Finally, most students struggled to 

construct the appropriate probability statement.  On the other hand, most students were 

able to make the correct decision concerning whether to reject the null and were able to 

use a table and/or graphing calculator to give the p-value (Link, 2002). 

 The results of Link’s (2002) study indicate that students make errors in virtually 

every step of statistical hypothesis testing.  It should be noted that these mistakes 

persisted even after instruction was designed specifically to focus on the very parts of the 

method that were to be assessed.  In giving the students a series of steps that were used in 

application of any statistical hypothesis test (e.g. tests of mean, proportion, etc.), it was 

hoped the students would be successful on the exam.  Unfortunately, this form of 

instruction did have the desired effect (Link, 2002). 

 Other attempts to design instruction aimed at improving student performance on 

statistical hypothesis testing problems have had similar results.  In their work with 

college students, Evangelista and Hemenway (2002) identified several difficulties that 

students have with statistical hypothesis testing.  These include: 
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• Inability to distinguish a test of hypothesis situation from other situations such as 
estimation or finding probabilities 

• Failure to recognize the population parameter to be tested and whether more than 
one population is involved 

• Difficulty specifying the null and alternative hypothesis and determining the 
rejection region 

• Confusing the sample and the population… 

• Difficulty interpreting their conclusion … 

• Poor understanding of the reasoning …even if they can procedurally do all the 
textbook exercises 

      (Evangelista & Hemenway, 2002, p.2) 

In an attempt to focus students’ attention on the similarities among specific statistical 

hypothesis testing procedures (test for a proportion, test for a mean, one-tailed, two-

tailed), Evangelista and Hemenway (2002) designed a jigsaw activity for their students.  

Expert groups worked with one “type” of statistical testing problem.  Then, new groups 

composed of one member from each expert group were formed.  The members of these 

new (jigsaw) groups compared and contrasted the method used to solve each problem.  It 

was hoped that, as a result of this activity, students would recognize the logic and general 

steps associated with all statistical hypothesis tests.  However, at the end of the activity, 

the researchers were not convinced that this instructional design had improved student 

performance on statistical hypothesis testing problems (Evangelista & Hemenway, 2002). 

 Another study that examined the effects of instructional design on student 

performance on statistical hypothesis testing problems was conducted by Hong and 

O’Neil, Jr.(1992).  In this study, the researchers spent time talking with expert 

statisticians and found that experts frequently refer to graphs of sampling distributions 

and rejection regions in their explanations of how one draws or interprets a conclusion to 

a statistical hypothesis test.   As a result of this discovery, the researchers were interested 

in whether or not presentation of diagrammatic models would improve student 
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performance on statistical hypothesis testing.  In addition, Hong and O’Neil (1993) were 

interested in determining whether an instructional approach that focused first on concepts 

and then procedures would be more effective than one that focused on concepts and 

procedures concurrently (Hong & O’Neil, 1993). 

 The researchers assigned a total of 56 students to one of 4 treatment groups. Two 

groups received instruction that taught concepts, then procedures.  One of those groups 

was presented with diagrams during instruction and the other group was not. The other 

two groups received instruction that taught both concepts and procedures simultaneously.  

One of those groups was presented with diagrams during instruction and the other group 

was not.  The diagrams used in the presentations illustrated the sampling distribution, the 

location of the critical value, and the location of the observed value of the test statistic.  

In addition, rejection regions were shaded.  All instruction was delivered through lessons 

on a computer (Hong & O’Neil, 1993). 

 Hong and O’Neil (1993) found that those students who received instruction that 

used diagrams performed better on the post-test than those who did not.  In addition, 

students who received conceptual and then procedural instruction performed better than 

those who did not (Hong & O’Neil, 1993).  Though these results seem to demonstrate 

that instruction can improve performance, the study does not report the kind of questions 

that were used to assess understanding on the post-test.  Therefore, the question still 

remains as to whether the students really developed a deep understanding of the concepts 

or if they merely improved performance on items that assessed procedural competency. 
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Understandings Other Than Procedural Fluency 

 Because reports of student error in performing statistical hypothesis tests have 

called into question the nature of the understandings held by introductory statistics 

students, a few studies have been conducted that examine these understandings a deeper 

level.  These studies have revealed some interesting insights into the ways in which 

individuals understand statistical hypothesis testing. 

 In her dissertation study, Aquilonius (2005) explored the nature of introductory 

statistics students’ understandings of statistical hypothesis testing beyond mastery of 

procedures. In order to study the ways in which students think about statistical hypothesis 

testing, Aquilonius (2005) observed as eight pairs of community college students solved 

problems that involved statistical hypothesis testing.  During her first meeting with each 

pair of students, Aquilonius (2005) asked the students to talk out loud as they solved a 

series of traditionally worded, well-defined statistical hypothesis testing problems.   At 

their second meeting, each pair of students was given problems which were accompanied 

by hypothetical student solutions.  These hypothetical student solutions were designed by 

Aquilonius (2005) to be representative of common student errors she had observed in her 

instruction.  The participants were asked to evaluate the students’ work and make 

corrections where necessary.  Each meeting was videotaped for subsequent analysis 

(Aquilonius, 2005). 

 Upon analysis of the videotapes and student work, Aquilonius (2005) found that 

the participants frequently confused population and sample means.  As they “talked 

aloud” and critiqued student work, the students in the study did not readily refer to 

sampling distributions.  Aquilonius (2005) concluded that the students did not use 
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sampling distributions in their reasoning about the problems.  In the “talk aloud” and 

critique of student work, Aquilonius (2005) also noted that the students did not have 

well-developed, conceptual understandings of p-values.  Upon finding the p-value for 

given problem, the participants did not give a reason for their decision to reject or to fail 

to reject the null hypothesis.  In making their decision, the students often recited a rule 

they had been taught.  In addition, the participants did not seem to connect probability 

theory to the work they were doing.  Aquilonius (2005) noted that the participants 

seemed to equate randomness with representativeness and did not fully understand the 

need for a hypothesis test.  There were no discussions of the Central Limit Theorem nor 

were there appeals to probability as the students discussed their work with each other 

(Aquilonius, 2005). 

 The results of Aquilonius’ study indicate that though students may be able to 

perform the operations required in a statistical hypothesis test, they don’t necessarily 

have well developed conceptual understandings.  As they “talked aloud” and discussed 

student work with each other, the pairs of students in her study typically gave procedural 

explanations for their work by reciting well-rehearsed rule statements. As Aquilonius 

(2005) noted, the students did not connect probability theory and/or the notion of 

sampling variability to their work.  These ideas are central to statistical hypothesis testing 

and it seems reasonable to assume that if they are not understood students will think of 

statistical hypothesis testing as an algorithm rather than a tool to apply logical and 

probabilistic reasoning to decision making. 

 In her dissertation study of teachers’ understandings of statistical hypothesis 

testing, Liu (2005) also found that individuals struggle in the development of a deep, 
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connected understanding of statistical hypothesis testing.  Liu’s (2005) study was part of 

a larger project conducted by a team of researchers led by Patrick Thompson.  The goal 

of the project was to explore the relationship between multiplicative and stochastic 

reasoning.  The project was comprised of five studies and Liu (2005) reported on the last 

study in the project.  The first four studies used teaching experiment methodology to 

investigate the development of high school students’ understandings of sampling and 

statistical inference.  The study by Saldanha and Thompson (2002) reported earlier in this 

chapter was one of the studies.  Based on the analysis of data and insights collected in the 

first four studies, the research team designed a seminar for teachers to think about the 

statistics they teach and the way that they teach it (Liu, 2005). 

 Eight teachers, each with experience teaching high school statistics, participated 

in the seminar.  The teachers also completed a pre- and post-interview.  Liu (2005) 

analyzed data collected during the interviews and during each session of the seminar.  In 

particular, Liu (2005) was interested in teachers’ conceptions of probability and statistical 

inference in the context of confidence intervals and statistical hypothesis testing (Liu, 

2005). 

 In her analysis of the data, Liu (2005) reported several interesting findings.  Liu 

(2005) found that teachers struggled in the development of an understanding of the 

unusualness of samples.  Teachers struggled to understand the way that sampling 

distributions are constructed and used to determine whether or not a sample is unusual 

given a specified population.  Liu (2005) also found that teachers did not fully understand 

the logic of hypothesis testing.  For example, they did not understand that application of 

hypothesis testing requires a commitment to the alternative hypothesis in hopes that the 
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null will be rejected.  In addition, when faced with a small p-value, teachers often used 

non-normative ways of reasoning about the implications of that small value.  These non-

normative ways of reasoning were usually based on personal belief about the situation 

prior to conducting the hypothesis test.  For example, when told that a particular study 

reported a low p-value, one teacher questioned whether the sample was randomly chosen.  

Another refused to reject the null because there wasn’t overwhelming evidence against it.  

Additionally, Liu (2005) found that the teachers did not understand statistical hypothesis 

testing as a tool and, thus, did not know when it should be used to answer a question of 

interest (Liu, 2005). 

Summary 

 In summary, the studies presented in this section give support to the claim that 

individuals struggle to develop deep, connected understandings of statistical hypothesis 

testing.  Introductory statistics students make mistakes in every step of the procedure 

when solving well-defined, traditionally worded statistical hypothesis testing problems.  

Even after having received instruction targeted at improving student performance, those 

errors persist.  As studies by Liu (2005) and Aquilonius (2005) indicate, even if students 

do perform well on these problems, it does not necessarily mean that these students have 

a deep understanding of the method and its uses.  It should be noted that the studies 

conducted by both Liu (2005) and Aquilonius (2005) were done with a small number of 

participants.  And, in one study those participants were teachers with experience in 

teaching statistics.  Additionally, Aquilonius’ (2005) was focused on student explanations 

of well-defined, traditionally worded hypothesis testing problems.  She did use non-

traditional questions to gain insight into her students’ understanding.  Therefore, more 
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exploration into introductory statistics students’ understandings of statistical hypothesis 

testing is needed to advance the field.  

 

Chapter Summary and Implications for Study 

 Overall, the studies in this chapter highlight a series of misconceptions and 

informal, non-normative ways of reasoning that individuals rely on when making 

predictions and evaluations of likelihood under conditions of uncertainty.  In addition, 

studies indicate that individuals are not inclined to test hypotheses using indirect 

methods.  Rather, individuals tend to test hypotheses using verification techniques and 

that that these methods are often influenced by personal beliefs and experiences.  These 

findings have implications for the ways in which individuals are able (or not able) to 

develop strong understandings of the “big picture” of statistical hypothesis testing. 

 Results of the few studies conducted to examine student understanding of 

statistical hypothesis testing provide some support for the notion that a student’s ability to 

perform the steps of traditionally worded, well-defined problems does not necessarily 

mean that he/she has well-developed understandings of the logic and concepts that 

support the use of statistical hypothesis testing in real world contexts. A few studies of 

individual understandings provide evidence to support this claim (e.g. Aquilonius, 2005; 

Liu, 2005).  However, those studies were limited in scope and were conducted on a small 

number of individuals.  In one case the subjects were teachers. In addition, those studies 

did not assess the degree to which individuals understand the role of context in 

performing a statistical hypothesis test.  Therefore, more research into the understandings 

of introductory students is necessary.  From the perspective of Adding It Up (Kilpatrick, 
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et al., 2001), with respect to statistical hypothesis testing, more large scale research is 

needed on the degree to which introductory statistics students have conceptual 

understanding, strategic competence, adaptive reasoning, and productive disposition (in 

the sense that students understand the value of the method) as well as on the relationship 

of these proficiencies to procedural fluency.  The study described in this dissertation 

addresses those needs. 

 Findings from research on student understanding both of statistical hypothesis 

testing and of various components of statistical hypothesis testing was used to inform the 

design of the large scale study described in this dissertation.  The findings presented in 

this chapter informed both the creation of the multiple-choice instrument and the analysis 

of quantitative and qualitative data collected in this study.  The methodology, results, and 

conclusions of this study are presented in the remaining chapters. 
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CHAPTER 3 

RESEARCH METHODOLOGY AND DESIGN 

Analysis of the theoretical and empirical literature on student understanding of statistics 

suggests the need for a large scale study of the understandings about hypothesis testing 

that students develop after experience in a standard introductory statistics course. The 

study outlined in this chapter employed both quantitative and qualitative methods to 

address that objective.  The combination of research strategies allows for general claims 

about the understandings of a large number of students and more substantive claims 

about a small number of students. 

 This chapter describes the methodology for the study in three sections.  The first 

section presents the rationale and key components of the chosen mixed methods research 

methodology.  The second section outlines the research design used in this study.  

Included in that section is a description of the participants; the setting; the timeline; and 

the instrumentation, data collection, and data analysis associated with each phase of the 

study, data collection, and data analysis for the study.  The third section presents a 

summary of the chapter. 

 

Research Methodology 

 Researchers can choose from a broad range of methods for studying student 

understanding in knowledge domains that are both complex and highly structured.  Each 

particular research method allows for collection of data of a certain kind.  So each 

method has both limitations and benefits associated with it.  In general, methods that 
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obtain information from large numbers of students do not provide in-depth information 

about understandings of individual students. On the other hand, methods that explore 

individual student understanding in depth are not feasible for gathering information about 

large numbers of students.  Therefore, every researcher must decide what data on student 

understanding would be most useful to his/her study and choose the appropriate 

method(s) accordingly.  In the design of a study of understandings about statistical 

hypothesis testing, several options were considered in searching for a strategy that would 

provide both generality and depth of findings. 

 One common method for surveying student understanding in a domain is to use a 

collection of multiple-choice questions.  Such instruments are easily distributed to large 

numbers of students, the responses are easy to score, and the results are easy to 

summarize. However, results of multiple-choice testing seldom provide a complete and 

convincing picture of student understanding.  Both the choice of questions on the survey 

and the options provided to respondents limit the kind of information about 

understanding that is obtained.  Thus, while a multiple-choice survey approach to study 

of student understanding can provide data for a large number of students, it is limited in 

the depth with which data may be analyzed. 

 On the other end of the research methods continuum, a more qualitative approach 

using clinical interviews can help the researcher develop a more complete picture of 

student understanding.  “Clinical interviews can give more information on depth of 

conceptual understanding, because oral and graphical explanations can be collected and 

clarifications can be sought where appropriate” (Clement, 2000, p. 547).  While this kind 

of research method will provide deeper insight into student thinking, data analysis is 
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more labor intensive.  Thus, studies that utilize clinical interviews are generally 

conducted on small numbers of students.  For that reason, the generalizability of findings 

is always questionable. 

 Both multiple-choice surveys and individual clinical interviews (and methods that 

lie in between these ends of the quantitative/qualitative continuum) have benefits and 

limitations associated with them.  As a result, many researchers are turning to mixed 

methods approaches in studies of social phenomena.  In using both quantitative and 

qualitative methods to study a phenomenon, researchers are able to create “an analytic 

space that doesn’t necessarily resolve the tensions but rather uses them – in respectful 

conversation – to probe more deeply …”(Greene, 2001, p. 252).  For example, in a study 

of student understanding, one may use what Greene (2001) terms a complementary 

mixed-method design in which a quantitative study is followed by interviews.  In this 

case, “results from one method are intended not necessarily to converge with but rather to 

elaborate, enhance, illustrate, or clarify results from the other” (Greene, 2001, p. 253). 

 In order to fill an identified gap in the field of statistics education—the need for a 

large scale study of overall understandings about hypothesis testing—and to capitalize on 

the power of clinical interviews to provide in-depth portraits of student understanding, a 

complementary mixed-method research design was used.  Large scale information on 

student understanding was obtained using quantitative assessments in the quantitative 

phase and follow-up interviews were conducted in the qualitative phase to gain more 

insight into student thinking on a small scale. 
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Research Design 

 In using a mixed methods approach, this study of student understanding of 

statistical hypothesis testing employed both quantitative and qualitative phases of data 

collection and analysis.  The methods used to collect this information included surveys 

and follow-up interviews.  These methods were used to study student understanding of 

statistical hypothesis testing among students enrolled in introductory statistics at a large 

university.  The surveys (or assessments) were used in the quantitative phase while the 

interviews were conducted during the qualitative phase. 

Methods 

 Assessments given in the normal activity of university level introductory courses 

provide some information on student understanding on a large scale and were used in this 

study.  However, these exams tend to focus their assessment on procedural fluency.  To 

identify common patterns of student understandings about statistical hypothesis testing 

that are not traditionally assessed on course exams (such as conceptual understanding 

and adaptive reasoning), a multiple-choice assessment instrument was created and 

administered to a large sample of students in an introductory university course.  The 

results from use of the multiple-choice instrument as well as student performance on the 

course exam covering statistical hypothesis testing were used to identify a strategically 

chosen sample of 11 respondents to engage in follow-up interviews that yielded deeper 

insight into student thinking than was provided by the multiple-choice instrument and 

scores on course exams alone.  These three data sources provided information about the 

three research sub-questions as illustrated in Table 3.1. 
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Table 3.1 

Research Sub-question and Data Sources 

 

 
Research Sub-Question 

Course Exam 
(Large scale) 

Multiple-choice Assessment 
(Large scale) 

Interview 
(Small scale) 

1.  What is the relationship between 
introductory students’ understandings 
of the procedures and the concepts, 
logic, and uses of statistical 
hypothesis testing? 
 

 

√ 

 

√ 

 

√ 

2.  What are the understandings that 
introductory students have of the 
overall logic and reasoning of 
statistical hypothesis testing? 
 

   

√ 

 

√ 

3.  What are introductory students’ 
understandings of the relationship 
between the method of statistical 
hypothesis testing and the context in 
which it is employed? 
 

   

√ 

 

√ 

 

Taken together, the data collected in the two phases of the study provide a strong basis 

for descriptive claims about student understanding of statistical hypothesis testing and its 

applications. 

Participants 

 The participants in this study were students enrolled in eight sections of a one-

semester undergraduate introductory statistics course at a large Research I university.  

The typical student in this class has declared a major in one of the social sciences and 

was taking the course because it is required for that major.  The course is not open to 

mathematics majors, and only rarely will a student from the “hard” sciences or 

engineering register for it. 
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 The study participants were chosen because they are similar to groups of students 

who enroll in introductory statistics classes across the country.  As was noted in Chapter 

1, increasingly diverse groups of students with various goals and motivations are 

enrolling in introductory statistics courses (ASA, 2005).  Students have different 

backgrounds and take the course for different reasons (e.g., to satisfy a major requirement 

or to learn methods they will use in discipline-based research).  The participants in this 

study share the characteristics of those described in the GAISE report.  For this 

population, the GAISE report has recommended course goals that focus on the 

development of conceptual understanding, statistical literacy, and an ability to engage in 

statistical thinking.  These students should become statistically educated (ASA, 2005).  It 

is reasonable, therefore, to examine whether they develop the reasoning and thinking 

skills described in that report.  In particular, this study provides information as to whether 

these students finish the course with desired understandings of statistical hypothesis 

testing. 

Setting 

 The study was conducted at a large, public research university located in an urban 

area of the eastern part of the country.  Enrollment at the school is approximately 35,000 

with approximately 25,000 undergraduate and 10,000 graduate students.  The 

introductory statistics course is taught in sections of approximately 30 students which 

meet three times a week for 50-minute class sessions.  The instructors of the course, 

offered by the department of Mathematics, included one lecturer and three graduate 

assistants working on degrees in mathematics, computer science, and statistics 

respectively.  Mathematics and other “hard” science majors are required to take the 
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calculus based version of this course and do not register for this course.  In addition, 

many departments on the university campus have developed their own versions of an 

introductory statistics course, which their majors take in lieu of this course.  However, 

students may take STAT 100 to prepare for a course in their major. 

 Instruction in the course is largely lecture based.  The design of the lectures 

closely follows the presentation of concepts and material provided in the quite traditional 

introductory statistics text, Statistics:  Principles and Methods by Johnson and 

Bhattacharyya (2006).  Topics covered include descriptive statistics, probability, 

probability distributions, sampling distributions, point estimation, confidence intervals, 

and hypothesis testing.  The course has a less ambitious syllabus than other introductory 

courses and somewhat more emphasis on probability than other courses.  Grades are 

assigned based on student performance on exams, quizzes, homework, MINITAB 

projects, and a final exam.  Students are allowed and encouraged to use calculators.  

Students are provided with necessary statistical tables and formula sheets, which they 

may use on assessments. 

 The course described here is typical of many offered across the country.  As was 

mentioned in the first chapter, many of the introductory statistics courses are taught 

similarly via a lecture format with a great deal of emphasis on procedures (Garfield, 

Hogg, Schau, & Whittinghill, 2002; Shaughnessy, 1992).  Although recent 

recommendations for different forms of instruction that promote deeper understanding 

(e.g. ASA, 2005; Cobb, 1992; Garfield, 1995; Moore, 1997;Wild & Pfannkuch, 1999) 

have encouraged instructors to change their teaching methods, the implementation of 

those recommendations has been limited.  According to the GAISE report (ASA, 2005) 
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and a study of introductory statistics teaching practices by Garfield, Hogg, Schau, and 

Whittinghill (2002), most introductory courses are changing only in the use of 

technology.  Students are allowed to use calculators, and computer use is encouraged in 

student assignments.  The course from which participants were drawn for this study has 

made these changes but it remains lecture based with a focus on procedures.  It is, indeed, 

similar to many other introductory statistics courses across the country.  Therefore, the 

analysis of student understanding in this study provides insight into the ways that many 

other introductory students understand statistical hypothesis testing. 

Time Line 

 Prior to data collection, time was dedicated to development of a framework for 

assessing understanding, construction of the multiple-choice instrument, and for piloting 

of both phases of the study. 

 Both the framework for assessment and the multiple-choice items were developed 

during the 2006-2007 academic year.  Working closely with the director of the 

dissertation, versions of each piece were created and sent to a statistician for feedback.  

Modifications were then made based on that feedback.  This process continued 

throughout several iterations. 

 The multiple-choice items and follow-up interviews were then piloted with one 

section of the introductory statistic course in the spring of 2007.  Fifteen multiple-choice 

items were piloted.  Roughly half of the items (7 questions) were included on “Form A” 

and roughly half (8 questions) on “Form B”.  Follow-up interviews were then conducted 

with 3 students who represented a range of performance patterns on the multiple choice 

assessment and overall class performance.  In the follow-up interview, students were 
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asked to explain their thinking on the 7 (or 8) items they answered as well as to explain 

their thinking on additional items presented to them for the first time during the 

interview. 

 The quantitative phase of the pilot study provided information on the frequency 

with which individual distractors were chosen.  The qualitative phase provided insight 

into participant interpretation of the language used in each item and whether he/she was 

able to answer the item using a process of elimination that did not require deep 

understanding.  This information was useful to further refine the stems of each item, the 

answer choices, and the language used.  In addition, the pilot study provided valuable 

information about timing.  In the pilot study, the participants spent approximately 10-12 

minutes answering 7 (or 8) multiple-choice questions in class.  In the follow-up 

interview, participants began to fatigue after having been asked to explain their thinking 

for longer than an hour.  This information was useful in determining both the number of 

multiple-choice questions that could be used in an assessment scheduled to take 20-25 

minutes of class time and the number of questions that could be asked in an hour long 

follow-up interview. 

 Modifications were made to the multiple-choice instrument and to the interview 

protocol during the summer and fall of 2007.  The quantitative phase of the study was 

conducted in December, 2007 and the qualitative phase during December, 2007 and 

January, 2008. 

Quantitative Phase: Data Collection and Analysis 

 In order to provide information on student understanding on a large scale, data 

was collected via a course exam and the newly created multiple-choice assessment.   
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Though participants were required to take the course exam (as part of the course, itself), 

they were not required to take the multiple-choice assessment for the course.  Students 

from all 8 sections of STAT100 were asked to volunteer to participate in the study, which 

required them to take the multiple-choice assessment and to release their exam scores to 

be used in the study.  Each multiple-choice assessment was marked with a number.  A 

third party liaison was the only person who had a link between student names, multiple-

choice assessment numbers, and student scores on the third course exam.  The liaison 

prepared a list that linked the numbers on the multiple-choice assessment to exam scores 

for analysis.  Participants’ assessment numbers were included in a lottery to win one of 

ten, $20 gift cards.  The liaison helped to distribute these gift cards. 

 The course exam was designed by the course coordinator with input from the 

course instructors.  Though various forms of the exam were created, each form was 

similar in nature and focused entirely on statistical hypothesis testing.  Questions on the 

exam were similar to those worked in class and/or for homework.  The following  

problem was used on a previous exam and is similar to those asked on the current exam: 



 

 110 
 

 
Figure 3.1 

Sample Item, Course Exam 

 

 

Notice that the problem provides students with the appropriate summary measures of the 

data.  It is a well defined problem, similar to those traditionally found in introductory 

statistics textbooks.  Students have access to calculators, statistical tables, and formula 

sheets.  Although the problem does assess the various strands of proficiency identified in 

Chapter 1 to some degree, the focus is on student ability to apply the algorithm.  

Therefore, the course exam provided a measure of procedural fluency, at least with 

respect to well-defined, traditional statistical hypothesis testing problems. 

 The multiple-choice assessment consisted of 14 questions designed to assess 

understandings of the statistical hypothesis testing that are not traditionally assessed on 

course exams (such as conceptual understanding and adaptive reasoning).  In order to 

construct such an instrument, a framework for assessing understanding was developed.  

This study, addressed the degree to which students have deep understandings of the 

conceptual and logical foundations as well as the uses of statistical hypothesis testing, 

given that they are traditionally assessed only on ability to apply the procedure.  

Therefore, the multiple-choice assessment provided a measure of the degree to which 

students understand the foundations and conceptual underpinnings of the algorithm.  The 

A survey of 50 university juniors finds their average credit card debt to be 
$3900 with standard deviation $900 while a survey of 50 university seniors 

finds their average credit card debt to be $3500 with standard deviation 
$500.  Perform a hypothesis test with α =.01 to determine if there is a 

significant difference between the two mean credit card debts.  Include all 
of the steps. 
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assessment framework is organized according to the actions involved in conducting a 

study that uses statistical hypothesis testing.  The assessment items were written to 

address the underlying concepts and theoretical principles that support those actions.  The 

Framework for Assessing Understanding is presented in Figure 3.2. 
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Figure 3.2 

Framework for Assessing Understanding of Statistical Hypothesis Testing 

Category Process Understanding Assessed 

Recognizing  

Applicability 

(RA) 

1. Identify situations where statistical 
hypothesis testing is an appropriate 
strategy for addressing a research 
question. 
1.1. The research question can be 

answered by analysis of some 
measure of the population. 

1.2. The research question is 
formulated so that it 
addresses a well defined 
population for which it is 
only feasible to study a 
sample from that population. 

1.3. There exist two conflicting, 
contradictory hypotheses that 
can answer the research 
question. 

2. Identify the value of using 
statistical hypothesis testing to 
answer the research question of 
interest. 

 

• Indirect reasoning will be 
employed and, therefore, two 
competing hypotheses are needed. 

• It is necessary to quantify the 
question so that probability may be 
used in determining whether or not 
the sample is unusual under the 
assumed null condition. 

• Statistical hypothesis testing 
provides a means of “answering” a 
research question about a 
population given information from 
a sample and uses probabilities to 
quantify the uncertainty 
necessarily associated such an 
inference  

 

Generating 

Statistical 

Hypotheses 

(GH) 

1. State null and alternative 
hypotheses so that:  

• the hypotheses are 
contradictory;  

• the alternative hypothesis is 
consistent with what the 
researcher would like to prove. 

2. State hypotheses so that they 
address the measure identified in 
the research question. 

3. State hypotheses so that a practical 
decision can be made. 

 

• Indirect reasoning will be 
employed and, therefore, two 
competing hypotheses are needed.  

• Writing the hypotheses to indicate 
a one- or two-tailed test will 
address the practical needs of the 
researcher.  If directionality is 
important for practical interest, 
hypotheses should be written 
accordingly (for a one-tailed test).  
If not, then hypotheses are written 
to test only for equality or 
inequality. 

 

Decision Rule  

(DR) 
1. Determine a decision rule for 

rejection of the null hypothesis that 
is based on 

• choice of a test statistic 

• probability 

• the degree to which the 
researcher would like to be 
confident in his/her conclusion 

• what is considered unusual for 
the null condition but expected 
in the alternative condition 

 

• A “cut point” is necessary to 
determine whether to reject the 
null hypothesis or not.  This 
decision takes into account the 
probability associated with the 
sample, given the null hypothesis. 

• A “cut point” determines the risk 
of Type I error the researcher is 
allowing for – if the null is true, 
and the researcher rejects the null, 
this is the probability he/she is 
wrong. 
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Collect a 

Sample  (CS) 
1. Recognize the need for a non-

biased, random sample while 
understanding the notion that 
samples may vary. 

2. Recognize the way that samples 
must be obtained so that one may, 
indeed, answer the question of 
interest based on the data collected. 

 

• The way in which a sample is 
chosen will affect the nature of the 
inference that can be drawn, 
including the population to which 
that inference can be applied. 

• In statistical hypothesis testing, 
samples must be unbiased, random, 
and large enough. 

• Samples are expected to vary.  
Larger samples are more 
representative of the population. 

 

Analysis of 

the Sample  

(AS) 

1. Calculate the appropriate test 
statistic so that it addresses the 
research question. 

2. Determine the appropriate 
sampling distribution (the 
distribution of the statistic 
conditioned on the null 
hypothesis). 

3. Use the sampling distribution of 
the statistic and the decision rule to 
determine whether or not the 
sample is unusual under the null 
condition.  If so, the results are 
said to be statistically significant. 

 

• For a given sample size, n, and 
sample statistic, the sampling 
distribution of the statistic gives a 
probability distribution of values 
taken by the sample statistic for all 
possible samples of size n.  [Note:  
It does not give the distribution of 
values for a particular sample.] 

• In order to determine if the sample 
is unusual under the null condition, 
one should examine the sampling 
distribution of the given statistic, 
for samples of size n that describes 
the distribution if the null 
hypothesis described the true 
nature of the population.   

• Conditioned on the null, the 
sampling distribution of the 
statistic for samples of size n gives 
the probability (p-value) of getting 
values of the test statistic at least as 
extreme as the observed value, if 
the null were true. 

• If the probability is small, and 
statistical significance is achieved 
(the p-value is less than or equal to 
α), then the null is likely not true.  
If not, then there is support for the 
null and the results are not 
statistically significant. 

 

Conclusion  

(C) 
1. Make a decision as to whether to 

retain or reject the null hypothesis.  
This decision should be based on 
analysis of whether or not the 
sample is unusual (statistical 
significance is achieved) under the 
null condition. 

2. State the conclusion to retain or 
reject the null hypothesis and 
indicate that conclusion has not 
been proven; rather it is the result 
of an inference about a population 

• The logic of proof provides the 
foundation for statistical 
hypothesis testing 

o Generation of supporting 
examples does not prove 
and, thus, a decision to 
retain the null means only 
that there is some support 
for the null situation.  It is 
not a proof. 

o Generation of one 
counter-example can 
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using information from a sample, 
probabilistic reasoning, and logic.  

3. Interpret the conclusion to reject 
the null as an indication of the 
degree to which the sample 
represents a “counterexample” to 
the null hypothesis. 

.  

disprove an assumed 
hypothesis but 
determining whether or 
not a sample is impossible 
under the assumed null 
hypothesis is seldom 
possible for large 
populations.  Thus, any 
decision to reject the null 
indicates that the sample 
is unusual by some 
probabilistic standard.  It 
is unlikely under the null 
and, since the alternative 
is a contradictory 
descriptor, more 
confidence is placed in 
the alternative as the true 
descriptor.  

• The population for which the 
conclusion applies is dependent 
upon the sample collected. 

• The sample statistics collected 
describe the samples themselves.  
These statistics are used to draw 
inferences about hypotheses that 
address the corresponding 
population parameters, using 
probabilistic and logical reasoning.  
The sample statistics cannot, 
therefore, be directly converted to 
population parameters. 

 

Implication 

for Practice  

(IP) 

1. Recognize the tension between 
statistical and practical 
significance. 

2. Recognize the need to consider 
sample size and effect size (at least 
informally) when deciding whether 
or not statistically significant 
differences do/do not indicate real 
or practical differences in the 
population. 

3. Consider implications for Type I 
and Type II error as well as 
practical considerations when 
making a decision for action based 
on results from a statistical 
hypothesis test. 

 

• Statistical hypothesis testing is not 
a proof and this should be taken 
into consideration when making 
decisions based on the results 

• The implications for error (Type 1 
and Type II) must be taken into 
consideration when making a 
decision based on the results. 

• Finding that there are no 
statistically significant differences 
between two groups does not 
necessarily mean that the 
populations aren’t different – 
especially when the sample size is 
small. 

• Although the difference between 
two groups is found to be 
statistically significant, one should 
investigate the actual difference 
before making any decisions based 
on these results 
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Each major section of the framework presents processes involved in one key stage of a 

statistical hypothesis testing study and an explanation of the understandings that are 

fundamental to work on that task.  For convenience of reference, each process is labeled 

with a mnemonic code.  For example, RA 1.1, 1.2, 1.3 and RA 2 identify the tasks of 

generating competing hypotheses in the stage of study design where one recognizes that 

hypothesis testing would be an appropriate research approach to a question. 

 Items used on the multiple-choice instrument address the categories outlined in 

the Framework for Assessing Understanding.  The construction of the various distractors 

for the multiple-choice items took into account both the understanding(s) to be assessed 

and the informal ways of reasoning identified in the literature review.  The result is a 

collection of distractors that, if chosen, would indicate that either (a) the individual does 

not possess the understandings being assessed in that item or (b) the individual is 

reasoning according to identified informal heuristics of misconception.  See Appendix A 

for a list of the final multiple-choice items and accompanying justifications for the 

distractors associated with each item. 

 Because the goal of this study was to explore and report on the nature of student 

understanding, data analysis was primarily descriptive in nature.  Overall scores earned 

by students and descriptive, summary statistics such as mean, median, upper and lower 

quartiles, and range were calculated on both assessments only for those who completed 

both.  Performance on individual items was calculated, including the frequency with 

which various distractors were chosen.  In addition, aggregate scores for framework 

categories were calculated. Analysis of these results provides information about how 

introductory statistics students understand statistical hypothesis testing. 
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 Further analysis with respect to the research sub-questions was performed.  To 

address research sub-question number one, the summary statistics of the course exam and 

the multiple-choice assessment were compared and a correlation analysis was performed 

to determine whether the scores correlate. 

 To address research sub-questions two and three, each item on the multiple-choice 

assessment was classified according to whether it assesses (1) understanding of the logic 

and reasoning of statistical hypothesis testing or (2) understanding of the relationship 

between the statistical hypothesis testing method and the context in which it is employed.  

These categories cross over the Framework categories.  For example, in addition to 

assessing whether an individual recognizes when to use statistical hypothesis testing, an 

item in the RA category might also assess whether an individual understands either (a) 

the logic and reasoning of statistical hypothesis testing or (b) the relationship of the 

method and context.  Table 3.2 illustrates the double classification for each item. 

Table 3.2 

Item Classification, Multiple-Choice Assessment 

Item Number Framework Category Research Sub-question Addressed 

1 RA Method and Context 
2 RA Method and Context 
3 RA Logic and Reasoning 
4 GH Logic and Reasoning 
5 C Logic and Reasoning 
6 C Logic and Reasoning 
7 GH Logic and Reasoning 
8 AS Logic and Reasoning 
9 AS Logic and Reasoning 

10 CS Method and Context 
11 DR Logic and Reasoning 
12 IP Method and Context 
13 AS Logic and Reasoning 
14 IP Method and Context 
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Overall percentage correct was calculated for the logic and reasoning items as well as for 

the method and context items.  These analyses were enhanced by individual item 

analyses and by analyses of groups of items that represent various framework categories.  

Combined, the various analyses provide a more complete description of student 

understanding with respect to the research question and sub-questions. 

Qualitative Phase: Data and Analysis 

 In order to provide more insight into student thinking, follow-up interviews were 

conducted with a group of students who represented a range of performance patterns on 

the two quantitative assessments.  Given summary statistics for the two assessments, 

participants were put into one of four categories based on the quartile placement of their 

scores on the two assessment instruments.  These categories are illustrated in Table 3.3. 

Table 3.3 

Follow-Up Interview Participant Classification 

Category Course Exam 
Quartile 

Multiple-choice Assessment 
Quartile 

HH Top 
(High) 

 

Top 
(High) 

HL Top 
(High) 

Lower 
(Low) 

 
LH Bottom 

(Low) 
 

Top 
(High) 

LL Bottom 
(Low) 

 

Bottom 
(Low) 

 

An individual in the HL category, for example, scored in the top quartile on the course 

exam but scored in the bottom quartile on the multiple-choice assessment.  Given the 
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groups, three individuals were randomly chosen from the HH group, four from the HL 

group, and four from the LH group and asked to participate in the follow-up interview.  

In choosing students who scored in the top and bottom quartiles, it was possible to gain 

insight into student thinking representative of the various performance patterns on the 

two quantitative assessments.  In addition, this selection process maximized the potential 

for variability of responses.  Note that more participants were chosen from the HL and 

LH groups than from the HH group.  One of the reasons for conducting this study is a 

belief (generally as a result of anecdotal evidence) that, although students may be able to 

perform (some of) the steps involved in a well defined statistical hypothesis testing 

problem, it does not necessarily mean that they have well-developed conceptual 

understandings of the method and its uses.  Participants from these two groups can give 

insight into the why this may or may not be the case. Individuals from the LL group were 

not chosen to participate because students who scored in the bottom quartiles would not 

be useful in addressing the research question and sub-questions. 

 Using the results of the multiple-choice assessment, interview items were chosen 

and students were asked to explain their thinking on each.  From the pilot study, it was 

determined that only 9 of the 14 items could be discussed in the hour-long interview.  In 

order to answer the second and third research sub-questions, it was decided that the 

interview should address half of the logic and reasoning items (six items) and half of the 

method and context items (three items).  These items were chosen so that they: (1) 

addressed as many categories of the framework as possible; and (2) were items for which 

there was low performance.  This approach to eliminating items from the assessment to 

be included in the interview allowed for the research sub-questions to be addressed.  It 
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also provided a means for gaining insight into the various ways that students think about 

and understand statistical hypothesis testing. 

 Students were provided with their multiple-choice assessment, a pencil, and 

paper.  Every attempt was made to ensure the interview was conducted as a natural 

conversation between interviewer and interviewee.  In order to situate that interview, 

participants were first asked to describe statistical hypothesis testing and explain how it 

could be used.  After some discussion about the method and its uses, the interview 

continued with discussion of the identified items. The interviewees were asked to explain 

why they chose the answer they chose to each of the nine identified items and why they 

didn’t choose the other answers.  Participants were asked follow-up probing questions to 

further clarify their thinking.  If students cited “rules” learned in class, they were asked if 

these “rules” made sense to them.  In addition, prior to conducting the interviews, an 

analysis of the item and its relation to the research question combined with the results 

from the quantitative phase provided a list of issues for which it was important to address 

in each item.  If these issues were not naturally addressed by the participant in his/her 

explanations, they were raised as additional follow-up questions. 

 The interviews were audio-taped, transcribed, and analyzed for commonality as 

well as uniqueness among answers.  Initial analysis of the data was conducted within 

groups (HL, LH, or HH) for each item included in the follow-up interview.  This 

analysis of student thinking was subsequently conducted across the groups of participants 

for each item.  Ultimately, analysis of student thinking was conducted within categories 

of items that addressed the various research sub-questions.  Summaries of commonality 

and uniqueness among student responses were constructed and reported. 
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 The information obtained from the interviews extends the information obtained 

from responses to the multiple-choice instrument, and also provides a form of validity 

check for that instrument.  As was described above, the multiple-choice assessment 

places limitations on the ways that students can respond to the items.  In constructing the 

questions and possible choices, assumptions were made about the potential ways that 

students might think.  The answer options provided may not match the way that an 

individual student is thinking.  The interview provides a test of validity on those 

assumptions.  Overall, the interview also tested the validity of the claims about student 

understanding that might be made based solely on results obtained from the multiple-

choice instrument.  It is through this triangulation of data sources that conclusions are 

better substantiated (Greene, 2001). 

 

Summary 

 The mixed methods approach used in this study is an effective means of 

collecting information about student understanding of statistical hypothesis testing for a 

large number of students, while also gaining more insight into student thinking than can 

be attained from quantitative measures alone.  Each phase of the study (quantitative and 

qualitative) was useful in addressing the research question and sub-questions and 

provided valuable information that fills a gap in the literature.  The results of the study 

are outlined in the next two chapters. 
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CHAPTER 4 

QUANTITATIVE RESULTS AND ANALYSIS 

In this chapter, the results of the quantitative phase the study will be presented and 

analyzed.  A total of 104 students from 8 sections of STAT 100 participated in this phase 

of the study, completing both the course exam and the multiple-choice assessment.  

Analysis of the results yielded information that addresses the three identified research 

sub-questions and provides large scale descriptive information about student 

understanding of statistical hypothesis testing, overall.  The chapter is organized into 

three sections:  (1) presentation of the results, (2) analysis of the data, and (3) summary of 

the data and conclusions associated with the quantitative phase of the study. 

 

Results 

Course Exam 

 The third course exam was given to the participants during class time, was 

standard across all eight sections (with several similar forms), and was graded by the 

course instructors.  The questions were written to assess student understanding of 

statistical hypothesis testing and, as demonstrated in Chapter 3, were largely measures of 

procedural knowledge.  The questions were “free response” in that students were asked to 

solve problems and to show their work.  Students were provided with statistical tables 

and formula sheets.  Calculators were permitted.  The exam was scored out of 100 

possible points. 
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 Descriptive, summary statistics associated with the results of the course exam for 

those students participating in the study only (n = 104) are reported in Table 4.1. 

Table 4.1 

Descriptive Statistics, Course Exam, n = 104 

Summary Statistic  Value 

Mean  73.31 

Standard Deviation  19.906 

Minimum Score  16 

Maximum Score  99 

Quartile 1  59 

Quartile 2 (Median)  79.5 

Quartile 3  90 

 

Overall, students performed well on the exam.  The average score was a 73.31, with a 

median score of 79.5 out of 100 points possible.  Though the range of scores runs from 

16 to 99, 75% of these scores were above 60 points (as indicated by the first quartile 

score).  Half of the students earned at least 79.5 points (as indicated by the median). 

 It should be noted this sample of students is representative of the overall 

population of students enrolled in STAT 100 at the time of the study.  Descriptive, 

summary statistics for overall student performance on the third course exam (n = 218) are 

reported in Table 4.2.   

Table 4.2 

Descriptive Statistics, Course Exam, n = 218 

Summary Statistic  Value 

Mean  71.11 

Standard Deviation  19.72 

Minimum Score  10 

Maximum Score  100 

Quartile 1  61.88 

Quartile 2 (Median)  76 

Quartile 3  90.13 
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In comparing Tables 4.1 and 4.2, we see that, with the exception of the minimum score, 

summary statistics for the overall performance of the population of students enrolled in 

STAT 100 differ from those of the sample by no more than 3.5 points.  The minimum 

scores differ by only 6 points.  This comparison indicates that, with regard to 

performance on the third course exam, the sample of students who participated in the 

study is representative of the overall population of students enrolled in STAT 100 at the 

time of data collection in the quantitative phase.   

Multiple-Choice Assessment 

 The multiple-choice assessment was administered to participating students during 

class time.  Students were not provided with statistical tables nor were they provided with 

formula sheets as these items were not needed to answer the questions found on the 

assessment.  In order to limit the number of contexts participants would be exposed to as 

they read the items on the assessment, the items were organized around common, 

contextual themes:  study of educational program effectiveness, study of product quality, 

and study of student traits.  The assessment was scored out of 14 points, one point per 

question.  The multiple-choice assessment is included in Appendix B. 

 Descriptive, summary statistics associated with the results of the multiple-choice 

assessment are reported in Table 4.3. 
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Table 4.3 

Descriptive Statistics, Multiple-Choice Assessment, n = 104 

Summary Statistic  Value (percent correct) 

Mean  4.53   (32.4%) 

Standard Deviation  1.87 

Minimum Score  0 

Maximum Score  10   (71%) 

Quartile 1  3   (21.4%) 

Quartile 2 (Median)  4  (28.6%) 

Quartile 3  6   (42.9%) 

 

Performance on this assessment was lower than that of the course exam.  The average 

score was 4.53 points out of 14, roughly 32.4% of the total points.  The scores ranged 

from 0 to 10 points, with only one participant earning 10 points.  Seventy-five percent of 

the participants scored no more than 6 points (42.8% of 14 possible points), and only half 

of the students scored above 4 points (28.6% of 14 possible points). 

 Performance on individual items is given in Table 4.4.  For each item, Table 4.4 

reports the number and percentage of participants who chose the correct answer.  These 

values are shown in bold print.  In addition, if 20% or more of the participants chose a 

given distractor, the frequencies and percentages associated with those distractors are 

reported. 
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Table 4.4 

Frequency of Responses, Multiple-Choice Assessment 

Item 
Number 

 
Category 

Percent 
Correct 

Answer 
Choice 

 
Frequency 

Percent of 
Respondents 

1 Recognizing 
Applicability 

43.27 a 
d 

45 
54 

43.4 
51.9 

2 Recognizing 
Applicability 

61.54 b 
d 

26 
64 

25.0 
61.5 

3 Recognizing 
Applicability 

11.54 a 
b 
c 
d 

12 
37 
25 
30 

11.5 
35.6 
24.0 
28.8 

4 Generating 
Statistical 

Hypotheses 

30.77 a 
c 

51 
32 

49.0 
30.8 

5 Conclusion 6.73 c 
d 

91 
7 

87.5 
6.7 

6 Conclusion 36.54 b 
c 

d 

36 
38 
22 

34.6 
36.5 
21.2 

7 Generating 
Statistical 

Hypotheses 

51.92 a 
d 

21 
54 

20.2 
51.9 

8 Analysis of 
the Sample 

33.65 a 
b 

35 
53 

33.7 
51.0 

9 Analysis of 
the Sample 

40.38 a 
b 
d 

42 
22 
29 

40.4 
21.2 
27.9 

10 Collect a 
Sample 

45.19 b 
c 

34 
47 

32.7 
45.2 

11 Decision 
Rule 

29.81 a 
b 
c 

35 
30 
31 

33.7 
28.8 
29.8 

12 Implication 
for Practice 

36.54 a 
b 
d 

38 
21 
25 

36.5 
20.2 
24.0 

13 Analysis of 
the Sample 

11.54 a 
c 
d 

31 
47 
12 

29.8 
45.2 
11.5 

14 Implication 
for Practice 

13.46 a 
b 
c 
d 

34 
26 
29 
14 

32.7 
25.0 
27.9 
13.5 
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 As is evident from Table 4.4, student performance on individual items was low, 

ranging from 6.73% to 61.5% correct on a given item.   Student performance was 

strongest on item number 2.  This item (classified in the Recognizing Applicability 

category) assesses whether students understand that statistical hypothesis testing is only 

useful in answering research questions when the question can be answered by some 

measure of the population.  Relatively speaking, participants also did well on item 

number 7 (classified in the Generating Statistical Hypotheses category), which assessed 

whether students could choose, from the listed possibilities, the correct alternative and 

null hypotheses to match the given situation. 

 Student performance was weakest on item number 5.  This item (classified in the 

Conclusion category) assesses whether, given information about statistical significance, 

students are able to (1) draw the correct conclusion about the null hypothesis and (2) 

interpret that conclusion as an indication of the degree to which the sample represents a 

“counterexample” to the null hypothesis.  Relatively speaking, student performance was 

also low on item numbers 3 and 13.  Item number 3 (classified in the Recognizing 

Applicability category) assesses whether students understand statistical hypothesis 

testing as a means not only to answer a research question, but also to quantify the 

uncertainty associated with that answer.  Item number 13 (classified in the Analysis of 

the Sample category) assesses student understanding of p-value as a measure of 

unusualness of the sample under the assumed null condition. 

 It is interesting to note that, for some items, most participants chose between only 

two possible answers, while for others, participants chose from among all four answer 

choices. Table 4.4 illustrates that variation in answers for each of the 14 items.  For 
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example, in looking at item number 5, we see that 91 of 104 participants chose option c 

while only 7 of the participants chose the correct answer, d.  However, in looking at item 

number 3, we see that all four answer choices were relatively popular.  This additional 

information is of interest.  In both cases, performance was low.  However, the reason 

performance was low in number 5 is different than for number 3.  This difference 

indicates that, with regard to the issue addressed in number 5, students complete 

introductory statistics courses with one clear misunderstanding.  Whereas, with regard to 

the issue addressed in number 3, students have a variety of misunderstandings.  Similar 

analyses can be performed with other items and is useful to analyze the data with respect 

to the research sub-questions identified for this study. 

 Aggregation of the data with respect to the categories identified by the 

Framework for Assessing Understanding provides information about whether students do 

or do not have the desired understandings of the process identified in the Framework.  

Table 4.5 gives aggregate results for each category of the Framework for Assessing 

Understanding. 
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Table 4.5 

Multiple-Choice Results by Framework Category 

 
Category 

 
Item 

 
Percent Correct 

 
Averag

e 

Recognizing Applicability 
(RA) 

1 
2 
3 

.4327 

.6154 

.1154 

 
.3878 

Generating Statistical Hypotheses 
(GH) 

4 
7 

.3077 

.5192 
.4135 

Decision Rule 
(DR) 

11 .2981 .2981 

Collect a Sample 
(CS) 

10 .4519 .4591 

Analysis of the Sample 
(AS) 

8 
9 

13 

.3365 

.4038 

.1154 

 
.2852 

Conclusion 
(C) 

5 
6 

.0673 

.3654 
.2164 

 

Implication for Practice 
(IP) 

12 
14 

.3654 

.1346 
.25 

 

Given the percent correct for each item, the column labeled “Average” indicates the 

percent of items answered correctly in a given category.  For example, the table tells us 

that 38.78% of the items in the RA category were answered correctly [(.4237 + .6254 + 

.1154) / 3 = .3878]. 

 In looking at the “Average” column in Table 4.5, we see that the participants 

scored relatively well on the Generating Statistical Hypotheses items with 41.35% of 

the items answered correctly.  In addition, participants scored well in the Collect a 

Sample category.  However that category was represented by only one item.  

Performance in the Recognizing Applicability category is also relatively high.  

Participants did not score well in the Analysis of the Sample, Conclusion, and 

Implication for Practice categories with 28.52%, 21.64%, and 25% of the students 
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choosing correct answers, respectively.  Based on this analysis, it seems that introductory 

students are better able to generate hypotheses then they are to analyze the sample, to 

draw a conclusion, and to interpret that conclusion for use in practice. 

 The results presented in this section provide information on student understanding 

as measured by the two assessment instruments.  In the next section, analysis of results 

within and across the instruments will be presented with respect to the research question 

and sub-questions identified in this study. 

 

Analysis 

 This study was an exploration of student understanding of the “big picture” of 

statistical hypothesis testing and it addressed the following overarching research 

question:  What are the understandings of statistical hypothesis testing held by students 

who have completed a traditional, introductory course in statistics at a large university? 

Given the conceptual analysis and theoretical perspective for understanding outlined in 

Chapter 1, three related research sub-questions were identified:  

1. What is the relationship between introductory students’ understanding of the 

procedures and the concepts, logic, and uses of statistical hypothesis testing?  

2. What are the understandings that introductory students have of the overall logic 

and reasoning of statistical hypothesis testing? 

3. What are introductory students’ understandings of the relationship between the 

method of statistical hypothesis testing and the context in which it is employed?   
 

Analysis of the data both at the aggregated and individual levels provides information 

useful in answering these three research sub-questions, and it provides insight into the 

general, overarching research question.  Each of the research sub-questions will be 

considered in turn. 
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Research Sub-question Number 1 

 Comparison of the results on the two quantitative assessments provides data that 

is useful in describing the relationship of students’ understanding of the procedures and 

the concepts, logic, and uses of statistical hypothesis testing.  In comparing the two, we 

see that the participants scored very differently on the two assessments, which indicates 

that there is not a strong relationship between student understanding of the hypothesis 

testing procedure and his/her understanding of the supporting logic, concepts, and uses. 

 Referring to the descriptive, summary statistics found in Tables 4.1 and 4.3 we 

see that, on all summary measures, the multiple-choice assessment ranks lower than the 

course exam.  In addition, the spread of scores is different on the two assessments.  Box 

plots for each assessment illustrate the stark differences in the spread of scores between 

the two assessments. 

Figure 4.1 

Box Plot, Quantitative Assessment Scores, n = 104 
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 Histograms that represent the distribution of scores are provided in Figures 4.2 

and 4.3.  Here we see differences in the way the data is “clumped” on each assessment. 

Figure 4.2 

Histogram, Scores Course Exam, n = 104 

Course Exam

9
5

.0

8
5

.0

7
5

.0

6
5

.0

5
5

.0

4
5

.0

3
5

.0

2
5

.0

1
5

.0

20

10

0

 

 

Figure 4.3 

Histogram, Scores Multiple-Choice Assessment, n = 104 
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 The strong performance on the course exam was expected.  As was mentioned in 

the first chapter, introductory statistics courses tend to focus instruction on student ability 

to employ the procedure for statistical hypothesis testing (Garfield, Hogg, Schau, & 

Whittinghill, 2002; Shaughnessy, 1992).  If this is the case, students should do well on 

assessments that focus on procedural fluency.  That was the case for the participants in 

this study.  Unfortunately, though the participants performed well on the course exam, 

they did not perform well on the multiple-choice assessment. 

 Further analysis indicates not only that, on the whole, scores on the course exam 

were lower than on the multiple-choice assessment, but also that scores on the two 

assessments were not strongly related.  That is, students who scored well on the course 

exam did not necessarily score well on the multiple-choice assessment and vice-versa.  A 

scatter plot of scores for each student (n = 104) illustrates this phenomenon. 

Figure 4.4 

Scatter Plot and Regression Line, Quantitative Assessments, n = 104 
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The regression line included in Figure 4.4 indicates a weak correlation between the two 

quantitative scores. In fact, analysis of the correlation between scores on the course exam 

and the multiple-choice assessment confirms that the strength of the relationship between 

the two is weak. 

Table 4.6 

Pearson Correlation, Quantitative Assessments 

Pearson Correlation  .215 
p-value  .028 

 

Table 4.6 indicates that the Pearson correlation between the two assessments is .215.  

While this figure is significantly different from 0 at the α = 0.05 level, it is not a strong 

correlation.  The weak correlation indicates that, a student’s score on the course exam is 

not a strong predictor of his/her score on the multiple-choice survey.  That is, mastery of 

the hypothesis testing procedure does not necessarily mean strong understandings of the 

concepts, logic, and uses of the procedure and vice versa. 

 Overall, the results indicate that the relationship between student understanding of 

the procedures and of the concepts, logic, and uses of statistical hypothesis testing is 

weak.  In as much as the course exam is a measure of procedural fluency and the 

multiple-choice assessment a measure of conceptual understanding, adaptive reasoning, 

strategic competence, and productive disposition (with respect to understanding the value 

of the method), we see that strong performance on assessments focused on application of 

the procedure to well-defined, traditional problems does not give a measure (even 

relatively speaking) of the degree to which students have a deep, connected 

understanding of that procedure and its uses.  On the whole, students in a fairly typical 

introductory statistics course demonstrated strong understandings of the hypothesis 
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testing procedure and weak understandings its logic, concepts and uses.  Examination of 

this data with respect to the other two research sub-questions gives more insight into why 

student performance on the multiple-choice assessment was low. 

Research Sub-question Number 2 

 Analysis of the results associated with the items classified as logic and reasoning 

is useful to better describe how introductory students understand the overall logic and 

reasoning of statistical hypothesis testing.  Table 4.7 gives aggregate data for items in this 

category. 

Table 4.7 

Logic and Reasoning Category, Multiple-Choice Results 

Item Framework Category Percent Correct Average 

3 
4 
5 
6 
7 
8 
9 

11 
13 

Recognizing Applicability 
Generating Statistical Hypotheses 

Conclusion 
Conclusion 

Generating Statistical Hypotheses 
Analysis of the Sample 
Analysis of the Sample 

Decision Rule 
Analysis of the Sample 

11.54 
30.77 
  6.73 
36.54 
51.92 
33.65 
40.38 
29.81 
11.54 

 
 
 

28.10 

 

The average percent correct on these 11 items was 28.10%.  However, there are vast 

differences in the percentage of students who correctly answered individual items.  A 

relatively strong performance was reported for item number 7 in the Generating 

Statistical Hypotheses category.   Relatively low performances were reported for item 

numbers 8 and 13 in the Analysis of the Sample category as well as for item numbers 5 

and 6, both from the Conclusion category.  Both the Decision Rule and Recognizing 
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Applicability categories were represented by only one item and performance on those 

items was also relatively low. 

 The difference between scores on the Generating Statistical Hypotheses and 

other categories makes sense if we consider the items themselves.  As demonstrated in 

the previous section, students generally did well on the course exam, a measure of 

procedural fluency.  Item numbers 4 and 7 ask students to state the hypotheses associated 

with the situation presented in the stem.  This process can become very procedural.  If 

one merely associates the null hypothesis with a statement of equality, then he/she is able 

to narrow down the possible options provided in each item.  This elimination of answer 

choices increases the chance of choosing the correct answer.  However, in order to 

choose correctly from among the remaining answer choices, one must recognize that the 

alternative and the null hypotheses must be contradictory.  Relative success on items 4 

and 7 might suggest that students have some understanding, but that procedural 

knowledge may have played a major role. 

 The items contained in the other categories can not necessarily be answered 

through knowledge of the procedures.  Analysis at the level of individual items within the 

Analysis of the Sample, Decision Rule, Conclusion, and Recognizing Applicability 

categories gives insight into how students understand the issues addressed by each of 

these categories.  This analysis was used to identify several areas of difficulty and/or 

misunderstandings.  Ultimately, this analysis provides information useful to describing 

student understanding of the logic and reasoning of statistical hypothesis testing.  The 

analysis is broken into two parts:  analysis of items representing the Analysis of the 
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Sample and Decision Rule categories and analysis of items representing the Conclusion 

and Recognizing Applicability categories. 

 

Analysis of the Sample and Decision Rule Categories 

 The Analysis of the Sample and Decision Rule categories assess whether 

students understand the role of sampling distributions and probability in the logic and 

reasoning of statistical hypothesis testing.  Sampling distributions are used to determine 

the probability of samples at least as extreme as the observed sample, under the null 

condition.  If this probability is small, the results are statistically significant and the null 

is rejected.  If not, the null is retained.  The significance level gives the “cut point” for a 

small probability and is the probability of a Type I error if the null is, indeed, correct.  

Analysis of the items within these categories indicates that students do not have a strong 

understanding of the statistical concepts involved here, nor do they understand the overall 

reasoning involved.  Three themes of student understanding emerged from this analysis 

and they will be discussed in turn. 

 Conceptual Understanding of Sampling Distribution.  Analysis of responses to 

item numbers 8 and 9 provides evidence that students do not have strong understandings 

of sampling distributions and how they are used in statistical hypothesis testing. Both 

items are classified in the Analysis of the Sample category and assess understanding of 

the logic and reasoning of statistical hypothesis testing.  In order to answer the items 

correctly, though, one must understand sampling distributions and their role in the 

statistical hypothesis testing.  Consider item number 8.  
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Figure 4.5 

Item Number 8, Multiple-Choice Assessment 

 

This item assesses student understanding of sampling distributions as useful to reasoning 

applied in statistical hypothesis testing.  In order to answer the question correctly students 

must understand that sampling distributions can be used to find probabilities associated 

with obtaining a range of sample statistics, for a given sample size, if the population 

parameter is known (or assumed to be a specific value).  They must also understand that, 

for tests of differences of means, the distribution of differences of sample means is 

8.  The typical distribution of usable lifetimes for light bulbs is shown in the following sketch.  It’s 
clearly not a normal distribution.  However, when doing a test to compare the mean lifetimes of two 
light bulb brands (using large samples of both brands), a statistician used a normal distribution to find 
the p-value of the difference. 
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Which of the following statements best explains why the test for significance involves normal 
probabilities, rather than probabilities from the light bulb lifetime distribution? 
 
a. The distribution of the difference of means of large samples is always approximately normal. 

b. The distribution of values in large samples is always approximately normal. 

c. Values of the standard normal probability distribution are always given in reference tables. 

d. The distribution of differences of values in two samples is always approximately normal. 
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normal.  The probability of the observed result or one more extreme (under the null 

condition) is the p-value.  If the p-value is small enough, the null hypothesis is rejected. 

 If students choose the correct answer, a, they demonstrate an understanding of 

sampling distribution as distribution of values for many samples used to give 

probabilities conditioned on the null.  In this case, that distribution of values for many 

samples is a normal distribution. If a student chooses answer choice b or d, this would 

indicate that the student does not understand what a sampling distribution represents.  If a 

student chooses answer choice c over the other options, this would indicate that he/she 

does not have an understanding of the role of the normal distribution in the process. 

 Student performance on this item was not strong.  As reported in Table 4.4, only 

33.65% of the students chose the correct answer.  However, 51% chose incorrect option 

b.  This indicates that students do not understand that sampling distributions of means (or 

differences of means) are normally distributed and that they give the distribution of 

differences of means for many samples.  Rather, students think that the values in the 

sample itself are normally distributed. 

 The results associated with item number 9 give further evidence that students do 

not have a strong understanding of sampling distributions and their role in statistical 

hypothesis testing. 
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Figure 4.6 

Item Number 9, Multiple-Choice Assessment 

 

 

In order to answer the question correctly, students should understand that because the 

sampling distribution is a distribution of values of the test statistic for all possible 

samples of a given size conditioned on the null hypothesis, it gives probabilities useful in 

determining whether the observed result is unusual under the null condition.  

Additionally, these probabilities are given by areas under the curve.  If the probability of 

the observed result or more extreme is small, the results are said to be statistically 

significant and the null hypothesis is rejected.  If not, the results are not statistically 

significant and we fail to reject the null hypothesis. 

9.  Tests show that fuel efficiency of cars in the current model year averages 30 miles per gallon.  
A test of 100 new car models gave mean fuel efficiency of 31.5 miles per gallon.  To see whether it 
is correct to claim that the new car models are more fuel-efficient than those in the current model 
year, a researcher constructed the sampling distribution of average fuel efficiencies of many 
samples of 100 current model cars shown in the following graph. 
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Which of these conclusions is best supported by the graph above? 
 
a. The difference in fuel efficiency of current and new model cars is not statistically significant. 

b. Half of current and new model cars have fuel-efficiencies below 30 miles per gallon. 

c. The difference in fuel efficiency of current and new model cars is statistically significant. 

d. Nothing can be concluded.  The graph should be centered at 31.5. 
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 Answer choice a is correct and answer choice c states the opposite.  If a student 

chooses answer choice b, this would indicate that the student does not understand what a 

sampling distribution represents.  They have a weak conceptual understanding of 

sampling distributions.  Answer choice d was written to assess whether students 

understand that the test for unusualness is conditioned on the null.  However, it could be 

argued that students who do not have a conceptual understanding of sampling 

distributions might not understand what the graph represents and, therefore, choose d. 

 According to Table 4.4, 40.4% of the participants chose the correct answer, a.  

However, 27.88% chose d and 21.11% of the participants chose b.  Such results provide 

evidence that students may not understand the concept of sampling distributions and, 

therefore, do not understand the overall logic and reasoning associated with statistical 

hypothesis testing. 

 Combined, the results associated with item numbers 8 and 9 indicate that students 

do not have strong understandings of sampling distributions and their role in statistical 

hypothesis testing.  They seem to struggle with the concept of sampling distribution as a 

distribution of sample statistics of all possible samples and, instead, understand them to 

represent the distribution of values within a sample. 

 Conceptual Understanding of Significance. Related to the role of sampling 

distributions in the logic and reasoning of statistical hypothesis testing, is that of 

significance level.  The sampling distribution and significance level are both referenced 

when determining whether the sample is unusual, conditioned on the null hypothesis.  In 

practice the decision is made in one of two ways: (1) by using sampling distributions and 

the level of significance, α, to establish a critical value and by comparing the test statistic 
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to that value; or (2) by using statistical tables to determine the p-value associated with the 

data and comparing that to the significance level, α. In both cases, it is necessary to refer 

to that level of significance, α, to make a decision whether or not to reject the null 

hypothesis. 

 As was described in the Conceptual Analysis presented in Chapter 1, the level of 

significance (α) used in a statistical hypothesis test plays an important role in determining 

the degree of certainty one has with his/her decision to reject the null hypothesis.  It is the 

probability of making a Type I error, if the null is, indeed, true.  That is, it is the 

probability that an individual will incorrectly reject the null hypothesis.  The greater the 

level of significance used, the greater the probability of rejecting the null hypothesis 

under the condition that the null hypothesis describes the true nature of the situation.  The 

level of significance provides a “cut point” with which to determine whether or not a 

sample is unusual under the null condition.  It is a probability used to determine if the 

probability of the observed statistic is small enough to deem the sample an unusual 

(unexpected) occurrence if the null hypothesis is, indeed, correct.  If the sample is 

unlikely, then less confidence is place in the null hypothesis and it is rejected. 

 Item number 11 assesses whether or not students have this understanding of 

significance level.  It is classified in the Decision Rule category and assesses student 

understanding of significance level in the overall logic and reasoning of statistical 

hypothesis testing. 
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Figure 4.7 

Item Number 11, Multiple-Choice Assessment 

 

 

Answer choice c is correct.  Answer choices b and d were written to assess whether or not 

a student understands the level of significance as the probability that the null hypothesis 

is actually true or untrue, rather than the probability of committing an error, if the null 

hypothesis is true.  Answer choice a is the opposite of c and will indicate whether or not 

students understand that a larger significance level gives more chance that the null 

hypothesis is rejected, rather than retained. 

 Student performance on this item was low.  Only 29.8% of the participants chose 

answer choice c.  Options a and b were popular, with 33.7% of the participants choosing 

a and 29.8% of the participants choosing b.  These results indicate that students do not 

have a strong understanding of the significance level and its role in statistical hypothesis 

testing. 

 Conceptual Understanding of p-value.  As mentioned above, the p-value often 

plays a role in the analysis of a sample.   The p-value is the probability that the observed 

11.  To test the hypothesis that private schools are more effective than public schools, researchers 
plan to compare mean starting salaries of private and public school graduates.  But they cannot 

agree on whether to test the results at a significance level of 0.10 (α = 0.10) or at a significance 

level of 0.05 (α = 0.05).   
 
What effect will using 0.10 rather than 0.05 have on the study? 
 
a. Using 0.10 will result in a greater chance that they will incorrectly retain the null hypothesis. 

b. Using 0.10 will result in a greater chance that the null hypothesis is actually true. 

c. Using 0.10 will result in a greater chance that they will incorrectly reject the null hypothesis. 

d. Using 0.10 will result in a greater chance that the alternative hypothesis is actually true. 
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value, or more extreme, would occur if the null hypothesis described the true nature of 

the situation.  It is a value that is attached to the sample.  This value is useful in statistical 

hypothesis testing in that it gives a measure of “unusualness” for the sample, conditioned 

on the null.  If the p-value associated with a sample is small, the sample is considered to 

be an unlikely occurrence if the null were true.  Since the sample was randomly chosen 

from the population, the production of an unusual sample leads to less confidence that the 

null is correct.   

 Item number 13 on the multiple-choice assessment asks students to choose the 

option that correctly “explains” what the p-value represents and how it is used in 

statistical hypothesis testing. 

Figure 4.8 

Item Number 13, Multiple-Choice Assessment 

 

13.  To test the effectiveness of a new method of teaching reading, researchers used the new 
method with a class of 35 second-grade students and found that 70% of those students were then 
reading above grade level.  In a typical year, 50% of second-grade students are reading above grade 
level.  In order to test the significance of the new program effect, researchers calculated the test 
statistic  
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What is the best explanation of what the researchers learn by using a statistical table to find a p-
value for the test statistic 2.37? 
 
a. The p-value tells the probability that the new teaching method results in a 20% gain in the 

number of students reading above grade level. 

b. The p-value tells the probability that the new teaching method does not result in a 20% gain in 

the number of students reading above grade level. 

c. The p-value tells the probability of getting the observed results, if the new program does result 

in better reading skill. 

d. The p-value tells the probability of getting the observed results, if the new program does not 

result in better reading skill. 
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This item is classified in the Analysis of the Sample category and assesses student 

understanding of the role of p-values in the logic and reasoning of statistical hypothesis 

testing.  Answer choice d is the correct answer.  Answer choice c is similar to option d in 

that it attaches the p-value to the sample.  However it is different from answer choice d in 

that it states that the probability is conditioned on the null hypothesis being false.  

Students might choose this option if: (a) they thought the probability was conditioned on 

the null being true; and/or (b) they thought the probability was conditioned on whichever 

hypothesis supports the data (note that the data support the fact that there is a difference 

in reading programs – this might have led a student to choose this option).   Answer 

choices a and b do not attach p-value to the sample.  These options test whether a student 

understands p-value to be: (1) the probability that the null is/is not true; and/or (2) the 

probability that the observed difference does/does not describe the true nature of things. 

 Only 11.5% of the participants chose the correct answer while 45.2% of the 

participants chose c, and 29.8% of the participants chose a.  These results suggest that 

students do not have strong understandings of p-value:  what it represents and how it is 

used. 

 In summary, the analysis of the results in the Analysis of the Sample and 

Decision Rule categories indicates that students do not have strong understandings of the 

statistical concepts of sampling distributions, significance, and p-value.  These are all 

ideas and concepts that must be referenced when performing a statistical hypothesis test.  

The relatively high scores earned on the course exam, however, indicate that students 

were able to use the statistical tables (which give probabilities associated with sampling 

distributions), the level of significance, and p-values to solve the problems found there.  
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On the other hand, analysis of student response on the multiple-choice assessment 

indicates that students do not understand the underlying concepts.  This is an example 

where the relationship between students’ understandings of the procedures and the 

concepts and logic is not strong.  We next turn to the analysis of results from the 

Conclusion and Recognizing Applicability items to gain further insight into student 

understanding of the logic and reasoning of statistical hypothesis testing. 

 

Conclusion and Recognizing Applicability Categories 

 The Conclusion and (in part) the Recognizing Applicability categories assess 

students’ understanding of the conclusions that can be made as a result of statistical 

hypothesis testing and how those conclusions are of value.  Statistical hypothesis testing 

is a method by which an inference about a population can be drawn from analysis of a 

sample.  With that inference comes a degree of uncertainty.  Statistical hypothesis testing 

provides a means of quantifying that uncertainty and, because this is the case, it is a 

powerful method of inference.  Performance on items within these categories indicates 

that students have misunderstandings about these issues.  Given sample information 

and/or results from a statistical hypothesis test, introductory students struggle to draw 

appropriate inferences about the population.  In particular, they believe that statistical 

hypothesis tests establish the “truth” of a hypothesis and that sample information directly 

translates to population characteristics. 

 Hypothesis Testing and the “Truth” of a Hypothesis.  Statistical hypothesis 

testing relies on indirect reasoning to determine whether or not to reject the null 

hypothesis.  Regardless of the decision to reject or fail to reject, statistical hypothesis 
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testing does not provide a proof of either the null or the alternative hypotheses.  Nor does 

it establish the probability that either the null or the alternative hypotheses is true.  It 

does, however provide a means of quantifying the uncertainty associated with a decision 

to reject or fail to reject the null hypothesis.  Using the level of significance, one is able to 

make a claim about the probability that a decision to reject the null hypothesis is incorrect 

if the null hypothesis is, indeed, correct.  In addition, if one fails to reject the null 

hypothesis it is possible to calculate the probability that this decision is in error if, indeed, 

the null hypothesis is not true. This calculation relies on a specified effect size and the 

parameter value under the alternative hypothesis.  This understanding is essential to 

statistical hypothesis testing as it provides a foundation for sample analysis and for the 

kinds of conclusions that may be made about that sample. 

 Item number 3 is classified in the Recognizing Applicability category and 

assesses whether students understand statistical hypothesis testing as a means for making 

a decision about a population based on information from a sample and that the 

uncertainty associated with that decision can be quantified. 

Figure 4.9 

Item Number 3, Multiple-Choice Assessment 

 

 

3.  Which of the following statements is the best justification for using a statistical 
hypothesis test to answer the question: Are female students as successful as male students in 

college mathematics? 
 
a. It allows you to talk about uncertainty associated with your decision. 

b. It allows you to use only a sample of students to prove something for all students.  

c. It allows you to calculate means and use statistical tables to answer the question. 

d. It allows you to find and prove the answer using mathematical calculation. 
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Answer choice a is correct and answer choices b and d were written to test whether 

participants believe statistical hypothesis testing to be a proof. Answer choice c, while 

true, is not the best justification.  If a student chooses this option over choice a, b, or d 

this is an indication, that the student understands that statistical hypothesis testing is not a 

proof. Additionally, he/she either doesn’t understand statistical hypothesis testing as a 

measure of uncertainty associated with a decision or he/she thinks that value in doing 

statistical hypothesis testing is in using means and statistical tables, rather than providing 

a way to talk about uncertainty.  The latter could, potentially, result from a very 

procedural understanding of statistical hypothesis testing. 

 Only 11.5% of the participants chose a, 35.6% of the participants chose b, 28.8% 

of the participants chose d, and 24% of the participants chose answer choice c.  Over half 

of the participants chose one of b or d.  This result provides evidence that students 

understand statistical hypothesis testing to be a proof, rather than a process by which to 

make a claim and to talk about the uncertainty associated with making that claim.  When 

given the choice from among various options, they do not associate statistical hypothesis 

testing with providing a means to make a decision about a claim for which there is always 

uncertainty, while quantifying the potential error associated with that decision if, in 

reality, the assumed claim is/is not true.  Introductory statistics students do not value 

statistical hypothesis testing as an inferential method used to “make sense” of variable 

data. 

 The results from item number 5 provide further insight into this issue.  Classified 

in the Conclusion category, this item assesses whether students understand that statistical 

hypothesis testing gives information about the degree that the sample provides a 
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counterexample to an assumed (null) hypothesis. It assesses whether students understand 

that the results of statistical hypothesis tests do not provide proofs of claims, nor do they 

provide the probability that a particular claims are true or untrue.   

Figure 4.10 

Item Number 5, Multiple-Choice Assessment 

 

 

Although answer choice d is correct, only 6.7% of the students chose it.  An 

overwhelming number of participants chose answer choice c:  87.5% of the participants.  

Very few chose b or a.  These results indicate that students believe the level of 

significance to be associated with the probability that the null (or alternative) hypothesis 

is true. 

 Combined, the results reported for these two items provide evidence that 

introductory statistics students associate statistical hypothesis testing with a means to 

establish the “truth” of a given hypothesis and/or as a means to determine the degree to 

which a hypothesis is true.  They do not understand statistical hypothesis testing to rely 

5.  In 1950 the mean IQ of undergraduates at a university was 110.  To test the hypothesis that 
students today are smarter, a study of 500 current students found a mean IQ of 120.  The 
difference between the two means is significant at the 0.05 level.  (α = 0.05)  
 
Which of the following statements is necessarily true? 
 
a. Undergraduates at the university today are smarter than those in 1950. 

b. The claim that undergraduates today are not smarter than those in 1950 is true with a 

probability less than 0.05. 

c. The claim that undergraduates today are smarter than those in 1950 has been established 

with 95% certainty. 

d. If undergraduates today are no smarter than those in 1950, the probability of the observed 

mean IQ is less than 0.05. 
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on indirect reasoning to test the feasibility of an assumed null hypothesis.  And, they do 

not understand that the conclusions to statistical hypothesis tests have some degree of 

uncertainty associated with them. 

 Sample Statistics and Population Parameters.  In addition to difficulty 

interpreting a conclusion, introductory statistics students seem to struggle with the idea of 

inference, in general.  In statistical hypothesis testing, sample statistics are used to make 

an inference about a claim about a population parameter.  Though sample statistics are 

used to make a claim about the feasibility of a hypothesis about population parameters, 

they are not direct measures of those populations’ parameters.  The inference from a 

sample to a population is not a direct conversion of sample statistic to population 

parameter.  It is an inference about the relative magnitude of the population parameter. 

Unfortunately, students do not have this understanding, as evidenced by the results of 

item number 6. 
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Figure 4.11 

Item Number 6, Multiple-Choice Assessment 

 

 

Answer choice c is the correct option and 36.5% of the participants chose this option.  

The other answer choices were written to assess whether students believe that there is a 

direct translation from the sample statistics to the population parameters.  Only a few 

participants chose option a.  Answer choices b and d, however, were fairly popular with 

34.6% of the participants choosing b and 21.2% of the participants choosing d.  These 

results indicate that students believe that a direct translation from sample to population is 

a valid inference to make.  This belief is not in alignment with the logic and reasoning of 

statistical hypothesis testing.  Samples vary, as do their summary statistics.  Therefore, it 

is not correct to infer that sample statistics directly translate to population parameters. 

6. A study tested the claim that: Transfer students are less successful at the state university 

than students admitted as first time freshmen.  Results showed a difference in first 
semester grade point averages that is significant at the 0.05 level.  Information from 
samples of transfer and first time freshmen is shown in the table below. 

 

 Transfer Admits Freshman Admits 

n 50 50 

mean gpa 2.5 2.8 

 

What is the most reasonable inference about the population of all first semester 
students that can be drawn from this information? 
 
a. There are equal numbers of transfer and first time freshman students on campus. 

b. The mean first semester GPA of all freshman admits is 0.3 greater than that of all 

transfer admits. 

c. It is unlikely that the first semester GPA of all transfer admits equals that of all 

freshman admits. 

d. The mean first semester GPA of all University students is 2.5+2.8
2

 or about 2.65. 
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 The results reported in this section are interesting especially when compared with 

the results of the course exam.  On the course exam and in well-defined statistical 

hypothesis testing problems, students are asked to make a “concluding statement.”  They 

must state whether or not the null hypothesis should be rejected.  Relatively high scores 

on the course exam indicate that students are able to make the correct concluding 

statement.  However, as the preceding analysis indicates, students do not necessarily 

understand the logic and reasoning that supports that concluding statement, nor do they 

understand what that concluding statement really “means,” so to speak.  The concept of 

inference is problematic and students do not consistently make valid inferences about 

sample information. 

Research Sub-question Number 3 

 Analysis of the results associated with the items classified as method and context 

is useful to better describe how introductory students understand the relationship between 

the method of statistical hypothesis testing and the context within which it is employed.  

Table 4.8 gives aggregate data for items in this category. 

Table 4.8 

Method and Context Category, Multiple-Choice Results 

Item Framework Category Percent Correct Average 

1 
2 

10 
12 
14 

Recognizing Applicability 
Recognizing Applicability 

Collect a Sample 
Implication for Practice 
Implication for Practice 

43.27 
61.54 
45.19 
36.54 
13.46 

 
 

40.00 

 

On average, 40% of these items were answered correctly.  There is evidence, therefore, 

that introductory statistics students have a stronger understanding of the relationship 
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between statistical hypothesis testing and the context in which it is employed than they do 

of the overall logic and reasoning associated with the method. 

 The items labeled method and context are classified in the Recognizing 

Applicability, Collect a Sample, and Implication for Practice categories of the 

Framework for Assessing Understanding.  Though not a strong performance by common 

standards, performance on the items classified in the Recognizing Applicability and 

Collect a Sample categories (item numbers 1, 2, and 10) of the method and context 

grouping was relatively high while performance on the Implication for Practice items 

(numbers 12 and 14) was relatively low.  Analysis of the frequencies associated with the 

various answer choices for these items gives some insight into student understanding of 

these pieces of statistical hypothesis testing. 

 The strongest performance was on item number 2 (of the Recognizing 

Applicability category). This item assesses whether students understand that statistical 

hypothesis testing may only be used to address research questions that can be answered 

through analysis of a measure.  That is, it must be possible to quantify the question. 

Given the results, it seems that students understand this to be the case. Over half of the 

participants (61.5%) choose the correct answer, option d. 
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Figure 4.12 

Item Number 2, Multiple-Choice Assessment 

 

After option choice d, the distractor most chosen was answer choice b, with 25% of the 

participants choosing that option.  Though d is the most important thing to determine 

first, option b is important.  However, the test can not even be conducted, if the 

researcher cannot find a way to quantify his/her question. 

 Fairly strong performances were reported on items 1 (of the Recognizing 

Applicability category) and item 10 (of the Collect a Sample category).  Though 

performance on these items was relatively high (a little under half of the participants 

answered them correctly), it is interesting to note that, for each item there was a single 

attractive distractor.  That is, the majority of participants either chose the correct option 

or they chose only one of the distractors. 

 Item number 1 assessed student ability to identify situations where hypothesis 

testing might be used to answer questions of interest:  The question is answerable by a 

measure of the population, it is only feasible to test a sample of the population, and there 

are two contradictory hypotheses that can answer the question.  

2.  Which of the following actions is the most important first step in designing a 
statistical hypothesis test to answer the question:  Are out-of-state students more 

successful at the state university than students who are in-state residents? 

 
a. Agree on a statistical test to compare the groups. 

b. Agree on a sample size from each population. 

c. Identify available statistical software. 

d. Agree on a way of measuring student success. 
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Figure 4.13 

Item Number 1, Multiple-Choice Assessment 

 

 

Performance on this item was relatively high with 43.3% of the participants choosing the 

correct answer.  However, over half of the participants chose answer choice d.  This 

result indicates that, while introductory statistics students understand statistical 

hypothesis testing to be useful in comparing two groups, they do not necessarily 

understand the power of the test in making inferences from a sample to a population. 

 Item number 10 was written to assess whether students understand that samples 

vary and, therefore, in order to make a claim about a population, the sample must be 

randomly chosen and must be representative of the population. 

1.   Which of the following questions is most likely to be answered by a study that 
requires statistical hypothesis testing? 
 
a. Do athletes have a lower GPA than other students?   

b. What equation predicts a student’s freshman GPA from his/her SAT score? 

c. What are typical costs for full-time resident students in U. S. colleges? 

d. Do the 12:00 noon sections of STAT 100 perform better than the 2:00 p.m. 

sections this semester? 
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Figure 4.14 

Item Number 10, Multiple-Choice Assessment 

 

 

Answer choice c is the correct answer and 45.2% of the participants chose this option.  

However, many of the participants (32.7%) chose answer choice b.  This result provides 

evidence that many introductory statistics students do not understand the variability 

associated with samples, and believe that only one sample is needed to confirm a 

hypothesis.  If this were the case, then statistical hypothesis testing would not be 

necessary, as analysis of summary statistics of a sample would be all that is needed to 

confirm a claim. 

 Weaker performances were associated with items 12 and 14 from the Implication 

for Practice category.  These items assess whether students understand that statistical 

significance does not necessarily imply practical significance.  In addition to statistical 

10.  When Consumer Reports studied response times for a random sample of 60 
computer help-line calls, they found a mean of 15 minutes and standard deviation 
of 4.5 minutes.  After hearing complaints about decline in service, they repeated the 
study (again using a sample of 60 calls) and found a mean response time of 16.5 
minutes and standard deviation of 6.0 minutes. 
 
What is the most plausible interpretation of the difference between the two study 
results? 
 
a. Because the second study showed a higher mean, that study must have only 

looked at computer help-lines that received a lot of consumer complaints.  

b. The increase in mean response time confirms a decline in services by computer 

help-lines. 

c. The observed difference in mean response times is quite possibly due to 

chance variation. 

d. The increase in standard deviation is the reason for the increase in mean 

response time. 
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significance and p-value, policy makers must consider a variety of factors when making a 

decision.  Sample size, effect size, and Type I and Type II errors are all important factors 

to consider when making potentially costly decisions. 

 Item number 12 assesses student understanding of these issues and, for this item, 

participants chose a variety of answer choices. 

Figure 4.15 

Item Number 12, Multiple-Choice Assessment 

 

 

Answer choice a is correct and 36.5% (or 38) of the participants chose this option.  

Answer choice b assesses whether students believe that, when statistical significance has 

been achieved, there is no need to consider other factors before action.  Answer choice c 

relates to item number 11 in assessing student understanding of significance level.  

Answer choice d assesses whether students understand that statistical hypothesis tests 

provide a powerful means of drawing an inference about large populations from which it 

is too costly and time consuming to collect information on all members.  It is also costly 

12.  In an educational study the mean test score of students studying from a new, 
experimental textbook A was greater than that for students studying from a 
previously used, traditional textbook B, with significance at the α = 0.05 level. 
  
What action in response to that result makes most sense to you? 
 
a. Compare the mean scores to see if the difference is great enough to merit the 

cost of new books. 

b. Schools should adopt textbook A because its use leads to significantly better 

learning. 

c. Re-analyze the data to see if the difference in means is significant at the 0.10 

level. 

d. Take no action until the study is repeated, because the difference in scores 

could be due to chance. 
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and time consuming to collect sample information from such populations.  This is the 

case for the study described in item number 12.  Given that the sample size was sufficient 

(and there is no reason to believe it is not) the study should not be repeated as data 

collection would be costly.  Thus, answer choice a is the best option.   However, answer 

choices b, c, and d were very popular with 20.2% of the participants choosing answer 

choice b, 19.2% of the participants choosing answer choice c, and 24% of the participants 

choosing answer choice d.  The variability in responses indicates that students do not 

understand how to use the results of a statistical hypothesis test in context. 

 This claim is confirmed by the results of item number 14, where students were 

asked to consider issues that may/may not be effective in challenging the results of a 

study for which statistical significance was achieved. 

Figure 4.16 

Item Number 14, Multiple-Choice Assessment 

 

 

14.  To evaluate a new computer-based approach to teaching pre-calculus, 200 
volunteers among the 1000 pre-calculus students took the course on-line.  At the 
end of the semester the mean final exam scores were 83.5 for the on-line students 
and 83.1 for the other students, a difference that proved to be significant at the 0.05 
level. 
 
If you were unhappy with the resulting recommendation that the course be taught 
on-line to all students, which of the following critiques is least likely to be effective 
in challenging the recommendation? 
 
a. While the difference in means may be statistically significant, it is very small 

in practical terms.  

b. The study did not use random assignment of subjects to treatment groups. 

c. The experimental group was too small—only 200 out of 1000 students. 

d. A previous experiment on the calculus course did not show positive results for 

on-line instruction. 
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Here, the correct answer is choice d.  The other options present legitimate challenges to 

the results of the study.  Only 14 (or 13.5%) of the participants chose the correct answer.  

Answer choices a, b, and c were all popular with 34 (or 32.7%), 26 (or 25%), and 29 (or 

27.9%) of the participants choosing each, respectively.  These results are questionable, 

however, as the students may have inadvertently interpreted the question to ask for the 

“most likely” rather than the “least likely”. 

 Overall the results in this category indicate that, though introductory statistics 

students have a better grasp of the role of context in statistical hypothesis testing than 

they do of the reasoning and logic, this understanding is not strong.  It does seem that 

students understand, to some degree, that various factors within the context must be 

considered when (1) setting up and conducting a statistical hypothesis test and when (2) 

using the results to influence action. 

 

Summary and Conclusions: Quantitative Phase 

 The analysis of the quantitative results presented in this chapter provides evidence 

that, though students in traditional, introductory statistics courses do well on exams 

constructed with traditional, well-defined statistical hypothesis testing problems, they do 

not necessarily have the desired understandings of the concepts, logic, and uses of the 

method.  From the stranded perspective of proficiency offered by Adding It Up 

(Kilpatrick et. al, 2001) these results indicate that a high degree of procedural fluency 

does not necessarily mean high degrees of conceptual understanding, strategic 

competence, adaptive reasoning, and productive disposition (at least, in regard to having 

an understanding of the value of the method) with respect to statistical hypothesis testing. 
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 In particular, the results indicate that introductory statistics students do not 

understand the role of probability and inference in statistical hypothesis testing.  This 

difficulty is most likely enhanced by demonstrated weak understandings of sampling 

distributions and of the role that sampling distributions play in statistical hypothesis 

testing.  They do not seem to understand the degree to which samples vary and believe 

that statistical hypothesis tests prove a given hypothesis and/or provide a measure of the 

degree to which a given hypothesis is true.  In addition, introductory statistics students 

believe that sample statistics provide direct measures of the population.  They do not 

understand that probability is used in the inferential process to quantify the uncertainty 

associated with the stated conclusion and do not value statistical hypothesis testing as an 

inferential method used to study large populations for which only sample information can 

be obtained.  Though they can correctly state the hypotheses and understand the method 

to be useful in comparing two populations, introductory statistics students do not 

understand that the power of the method lies in its ability to draw inferences about large 

populations through analysis of only a sample. Finally, the data provide evidence that the 

misunderstandings students have concerning the role of probability and inference 

influence the ways in which they interpret and apply the results of a statistical hypothesis 

test in “real world” contexts. 

 Though the items and distractors were carefully constructed and the analysis 

seems reasonable, the conclusions here are limited.  As is the case with all multiple-

choice assessments, inferences about student thinking based on information obtained 

from these instruments may be incomplete or even flawed.  Therefore, it is important to 

interview students who represent a range of performance patterns on the two quantitative 
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assessments to gain more insight into their thinking.  The results and analysis of this 

qualitative phase of the study are presented in the next chapter.  
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CHAPTER 5 

QUALITATIVE RESULTS AND ANALYSIS 

 

In this chapter, results of the qualitative phase of the study will be presented and 

analyzed.  Eleven students representing the various performance patterns in the 

quantitative phase participated in follow-up interviews.  Analysis of student responses 

yielded information that addresses the three identified research sub-questions and 

provides insight into introductory statistics students’ understandings of statistical 

hypothesis testing.  The chapter is organized into three sections:  (1) outline of the 

interview design, (2) presentation of the data and the analysis of that data, and (3) 

summary of the data and conclusions associated with the qualitative phase of the study. 

 

Interview Design 

 The follow-up interview was designed to provide more insight into student 

thinking about statistical hypothesis testing than could be provided on the multiple-choice 

assessment and to provide a means of data triangulation to validate the claims made in 

the quantitative phase of the study.  Interviewees were asked to explain their thinking on 

various items from the multiple-choice assessment, why they chose the option they did as 

well as why they did not chose the other options.  Additional questions were asked to 

probe each individual’s thinking about each item.  Interviewees were provided with 

pencil and paper and could use these tools as necessary to explain their thinking.  They 

were also told that they could change their answers at any point during the interview.  
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Every attempt was made to insure that the interview was conducted as a natural 

conversation between interviewer and interviewee. 

 From the pilot study, it was determined that the follow-up interview should last no 

longer than an hour.  Introductory statistics students begin to fatigue after having 

explained their thinking for longer than an hour.  From the pilot study, it was also 

determined that asking students to explain their thinking for 9 multiple-choice items was 

a reasonable request for an hour-long, follow-up interview.  Thus, 5 of the 14 multiple-

choice items were eliminated from the interview protocol. 

 Because the follow-up interview was designed to extend the analysis conducted in 

the quantitative phase, the results of the assessments were used to inform the design of 

the follow-up interviews.  The 9 items included in the follow-up interview were 

strategically chosen to be representative of the categories of the Framework for Assessing 

Understanding of Statistical Hypothesis Testing.  They were also chosen to maximize the 

potential for variability that might exist among student responses (i.e. choosing items for 

which performance was low).  The results of the assessment, therefore, were useful in 

helping to determine which 9 items should be included.  Additionally, as it was not 

possible to interview all 104 participants from the quantitative phase, the results of the 

assessments were used to inform the choice of interviewees.   Interviewees were chosen 

so that they were representative of the groups of students participating in the quantitative 

phase.  This selection process allowed for the potential for variability among responses to 

be maximized. 
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Item Elimination 

 In order to address the second and third research sub-questions, more than half of 

the logic and reasoning items (6 of 9 items) and more than half of the method and 

context items (3 of 5 items) were included in the follow-up interview.  Furthermore, these 

items were chosen to be representative of each of the 7 categories identified by the 

Framework.  Finally, these items were chose to maximize the potential for variability 

among responses.  Items for which performance was low best served that purpose. 

 Within the logic and reasoning category, item numbers 7, 8, and 13 were 

eliminated.  Item number 7 is classified in the Generating Statistical Hypotheses (GH) 

category and, of the logic and reasoning items, it showed strongest performance.  

Because performance on this item was strong and because another item representing the 

GH category could be included, item number 7 was eliminated.  Item numbers 8, 9, and 

13 are all classified in the Analysis of the Sample category.  Item numbers 8 and 9 both 

address the concept of sampling distributions and item number 13 addresses the concept 

of p-value.  Responses were more varied for item number 9 than they were for item 

numbers 8 and 13.  Additionally, it was possible within the context of item number 9 to 

ask probing questions that addressed the ideas associated with item numbers 8 and 13.  

Therefore, item numbers 8 and 13 were eliminated. Ultimately, item numbers 3, 4, 5, 6, 

9, and 11 from the logic and reasoning category were included in the follow-up 

interview. 

 Within the method and context category, item numbers 2 and 14 were eliminated.  

Item number two is classified in the Recognizing Applicability (RA) category and, of 

the method and context items, it showed the strongest performance.  Because 
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performance on this item was strong and because two other items representing the RA 

category could be included, it was eliminated.  Additionally, item number 14 (classified 

in the Implication for Practice category) was eliminated in favor of item number 12 

from the same category.  Performance on item number 14 was low and may have been 

due to misinterpretation of the item (see Chapter 4).  It was, therefore, expected that more 

insight about student thinking about Implication for Practice would be gained by 

including item number 12, rather than 14.  Ultimately, item numbers 1, 10, and 12 from 

the method and context category were included in the follow-up interview. 

 As a result of this elimination process, nine items were included in the follow-up 

interview.  These items (1) are representative of the various categories outlined in the 

Framework, (2) maximize the potential for variability among student responses, and (3) 

address research sub-questions 2 and 3.  The items and their classifications are shown in 

Table 5.1.   

Table 5.1 

Items Used in the Interview and Their Classifications 

Item Number Framework Category  Research Sub-question Category 

1 Recognizing Applicability Method and Context 
3 Recognizing Applicability Logic and Reasoning 
4 Generating Statistical Hypotheses Logic and Reasoning 
5 Conclusion Logic and Reasoning 
6 Conclusion Logic and Reasoning 
9 Analysis of the Sample Logic and Reasoning 

10 Collect a Sample Method and Context 
11 Decision Rule Logic and Reasoning 
12 Implication for Practice Method and Context 

 

Given this set of 9 items, quantitative results for each item were analyzed and used to 

determine whether there were particular issues and/or questions that should be raised in 
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the follow-up interview.  A list of these additional questions and issues can be found in 

appendix C. 

Participants 

 In order to maximize the variability among participants, interviewees were chosen 

to represent the various performance patterns on the course exam and multiple-choice 

assessment.  As described in Chapter 3, these groups were constructed using the quartiles 

into which scores on the course exam and multiple-choice assessment fell.  Three groups 

of students were of particular interest for the follow-up interview:  those who scored in 

the top quartile of scores on both assessments (HH); those who scored in the top quartile 

of scores on the course exam, but in the bottom quartile of scores on the multiple-choice 

assessment (HL); and those who scored in the bottom quartile of scores on the course 

exam, but in the top quartile of scores on the multiple-choice assessment (LH).  The 

groupings are shown in Table 5.2. 

Table 5.2 

Groupings for Interviews 

 
 
 

Category 

 
 

Course Exam 
Score (%) 

 
 

Multiple-Choice  
Score (%) 

Number of 
Participants 
Quantitative 

Phase 

Number of 
Participants 
Qualitative 

Phase 

HH Greater than 
or equal to 90 

Greater than or 
equal to 43 

11 3 

HL Greater than 
or equal to 90 

Less than or 
equal to 21 

7 4 

LH Less than or 
equal to 58 

Greater than or 
equal to 43 

5 4 

 

Once students were placed into appropriate groups, interviewees were chosen at random 

from each group. If these students consented to the follow-up interview, they were 
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invited to participate.  If a potential interviewee declined, another was chosen at random 

until the desired number of participants was obtained.  Unfortunately, in the case of the 

HH and LH groups, it was not possible to schedule interview times with the required 

number of individuals.  In both cases, however, an effort was made to locate individuals 

who earned scores that were close to the desired boundaries.  As a result, one individual 

who obtained an 86% on the course exam and a 71% (the highest score earned, overall) 

on the multiple-choice assessment was included in the HH group.  And, an individual 

who earned a 65% on the course exam and a 57% on the multiple-choice assessment (the 

second highest score earned, overall) was included in the LH group. 

 There was diversity among the group of interviewees with respect to gender, race, 

major, and year in school.  Table 5.3 illustrates this diversity.  Note that interviewees are 

identified by their survey number. 

Table 5.3 

Participant Characteristics 

Interviewee 
Number 

Group 
Classification 

 
Gender 

 
Race 

 
Major 

Year in 
School 

      
15 HH Female White Conservation Science Junior 

112 HH Male White Journalism Freshman 
132 HH Female White Pre-nursing Junior 

      
77 HL Female Asian Pre-nursing Senior 

122 HL Female Asian Family Sciences Junior 
169 HL Male Asian Journalism Freshman 
172 HL Female White Journalism Freshman 

      
29 LH Female Asian Pharmacy Junior 
81 LH Male White Kinesiology Sophomore 

191 LH Male White Kinesiology Sophomore 
192 LH Female Black Pre-nursing Junior 
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As much as possible, the follow-up interviews were scheduled before students left 

campus for winter break.  Due to scheduling conflicts, however, three of the eleven 

interviews were conducted during the winter session, in January. 

Implementation 

 To situate the interview, and to gain insight into the interviewees’ general 

impressions of statistical hypothesis testing, each interview began by asking the 

interviewee to describe statistical hypothesis testing and to explain how it could be used.  

Then, over the course of an hour, each interviewee was given the opportunity to explain 

his or her reasoning about each of the 9 identified multiple-choice items.  Every attempt 

was made to ask similar probing questions with respect to those items.  However, in some 

cases, as the hour drew to an end, there was not time for additional probing questions.   

 Each interview was audio-taped and transcribed.  Within groups (HH, LH, and 

HL), the data was analyzed for commonality as well as uniqueness of answers.  Analysis 

then continued across the groups in search of common themes that transcended 

performance patterns.  Though it was hypothesized that different themes would arise for 

each group, with only some commonality between groups, this was not the case.  The 

groups were not dissimilar from each other in their reasoning about the items in any 

recognizable way.  This result, however, is not entirely unreasonable given that 

performance on the multiple-choice assessment was low for each of the groups.  Because 

overall performance was low on the multiple-choice assessment, the groups appeared 

very similar when asked about their reasoning for the items on that instrument.  

Therefore, there will be no distinction between the groups of interviewees in the 

presentation of the data and analysis in this chapter. 



 

 168 
 

 Overall, the interviews were useful in providing insight into student thinking and 

in triangulation of data sources.  The results and analysis of the interviews will be 

presented in the next section. 

 

Data and Analysis 

 Data collected in the qualitative phase gives information about introductory 

statistics students’ understandings of statistical hypothesis testing.  Specifically, this data 

addresses the following research sub-questions: 

1. What is the relationship between introductory students’ understanding of the 

procedures and the concepts, logic, and uses of statistical hypothesis testing?  

2. What are the understandings that introductory students have of the overall logic 

and reasoning of statistical hypothesis testing? 

3. What are introductory students’ understandings of the relationship between the 

method of statistical hypothesis testing and the context in which it is employed?   

 

and provides information about the overriding research question that guided data 

collection in this study:  What are the understandings of statistical hypothesis testing held 

by students who have completed a traditional, introductory course in statistics at a large 

university?  The data collected in the follow-up interviews confirmed that which was 

found in the quantitative phase of the study.  Introductory statistics students do not have 

strong, connected understandings of statistical hypothesis testing.  Additionally, this data 

points to particular aspects of the method and its uses that are problematic for 

introductory statistics students and illustrates the understandings that these students do 

have of statistical hypothesis testing.  In this section, the data collected in the follow-up 

interviews and analysis of that data will be presented. 
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 In order to situate the presentation of the analysis, student responses to the lead-

off question from the interview will be presented first.  Not only does this lead-off 

question situate the analysis, but it is also useful to address the guiding research question 

of the study.  Then, the results and analysis of the data with respect to the research sub-

questions will be presented. 

 Research sub-question number 1 is an inquiry into the relationship between 

student understanding of the procedures and the concepts, logic, and uses of statistical 

hypothesis testing.  In explaining their reasoning for the answers they chose in each of the 

logic and reasoning and method and context items, interviewees often referred to their 

knowledge of procedures as well as to their knowledge of the concepts, logic, and uses.  

Thus, for this qualitative analysis, data used to address research sub-question number 1 is 

subsumed within data used to address research sub-questions 2 and 3. For this reason, the 

analysis of data with respect to research sub-questions 2 and 3 will be presented before 

the analyses with respect to research sub-question number 1. 

 In each section, a summary of student responses will be provided and followed by 

an analysis of those responses.  Excerpts from individual interviews are included.  In 

these excerpts, it should be noted that statements preceded by an “M” were made by the 

interviewer and statements preceded by an “I” were made by the interviewee. 

 Overall, analyses of the three research sub-questions across the groups of 

participants provides insight into the way in which introductory statistics students 

understand statistical hypothesis testing and extends the analysis that was conducted in 

the quantitative phase of the study. 
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Overall Description and Impression of Statistical Hypothesis Testing 

 At the beginning of each follow-up interview, interviewees were asked to describe 

hypothesis testing and how it might be used.  Analysis of student responses to this 

question indicates that introductory statistics students have somewhat different 

impressions of statistical hypothesis testing.  For many of the interviewees, these 

differences were similar to those outlined by approaches taken by Fisher and by Neyman 

and Pearson.  For others, their description of statistical hypothesis testing was very 

different from either Fisher or Neyman and Pearson.  The way in which students describe 

statistical hypothesis testing provides insight into their understanding of the method and 

its uses. 

Interviewee Descriptions:  A Summary 

 When asked to describe statistical hypothesis testing and how it might be used, 

two interviewees described it as a process by which one attempts to find evidence against 

an assumed null hypothesis.  For these interviewees, the null hypothesis represents the 

status quo and the alternative hypothesis represents that which the researcher is trying to 

prove.  Thus, hypothesis testing allows researchers to test whether the null (status quo) is, 

indeed, true and if not, then confidence is placed in the alternative hypothesis.  This 

understanding of statistical hypothesis testing is reflected in the following quotes: 

Excerpt:  Interview 81 
I: Yeah, it’s kind of you’re testing to see if…if the alternative’s actually what’s 
correct, I guess.  You’re testing it…it’s not like you’re testing it against each other.  It’s 
more like you’re just…you’re…you’re, you already knew the null hypothesis to be right.  
You’re trying to see if it’s still right…or if it’s sort of changed or something like that. 

          
Excerpt:  Interview 191 
I: Um, I remember it’s establishing, ah, the success failure, so a null hypothesis and 
an alternative hypothesis.  Um, I’m trying to think.   
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discussion continues 
 
M: Success and failure, you mean [I:  Yeah] like…can you say more about that, what 
you mean by that? 
 
I: Um, well, there’s, there’s two tests, one, ah, that it’s based on a question, so, um, 
you’ll have… you’ll have one hypothesis that states one thing, like ah, I remember we 
did some…usually it would be u is equal to a certain value, um, and the alternative 
hypothesis would be, ah, u is less than, or greater than, or not equal to certain value, um, 
depending on the question, so if the question asked, um, if something was less than, ah, a 
certain value, you’d use that for your, ah, alternative hypothesis.  [M:  Ok].  Um, yeah, it 
was, it was based on a question.  Ah, your a, alternative hypothesis was…your null 
hypothesis I think was usually only like a standard, if it’s equal to something.   
 
M: Ok.  Ok, and so you have these two things and then the success failure comes in 
–  
 
I: Based, based on whether…whether you prove if the, ah, null hypothesis is, is 
correct.  [M:  Ok] If it’s correct, then it’s success.  If it’s false, then it’s a failure. 

             

 An understanding of hypothesis testing as a test of the null hypothesis aligns with 

the logic Fisher used in his thinking of statistical hypothesis testing.  Though 

Interviewees 81 and 191 understand statistical hypothesis testing as a test of the null 

hypothesis, it is not clear that these individuals understand statistical hypothesis testing as 

an application of (modified) proof by contradiction.  However, one interviewee, number 

112, stated this logic very clearly. 

Excerpt:  Interview 112 

I:  Pretty much you compare…like…you have two different ideas that there’s H0 
and H1 and H0’s like what the already accepted thing is and H1’s what you’re trying to 
prove.  But, in order to prove H1 you have to be able to disprove H0.  And, there’s 
different alpha values you can use, but usually a good one to use is like 95.  Ninety-five is 
like alpha value 0.05, 0.25. 

 

His comment indicates that, on some level, he understands that statistical hypothesis 

testing relies on indirect reasoning to reach a conclusion. 

 Other interviewees (5 of the 11 interviewees) expressed an understanding of 

statistical hypothesis testing as a test in which one hypothesis “competes” against 

another.  The following quotes reflect this understanding. 
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Excerpt:  Interview 77 
I: Um…I guess pretty much testing…you’re trying to test the claim and whether 
it’s true or not….it’s like the null hypothesis and the alternative hypothesis.  And, so you 
want to find out, like, which one to, I guess, which hypothesis is true. 
        
Excerpt:  Interview 172 
I: Sure, um, well…the way I understand it is that hypothesis testing is used to 
um…I guess it…decide whether…ah…one measurement, I guess, is correct or not and, 
ah….I don’t know.  The way most of the problems that we’ve been presented with work 
is…ah…they’ll have sort of a known, ah, status quo, I guess of a…so to speak…that, 
ah…this many students got, failed this class or this many students passed or 
something…and then they’ll be a new study or a new thing that…says that’s a different 
type of number and you test to see which one is correct under a 
certain…ah…significance level.  And, I know how it can change based on the 
significance level that you use. 

 

This approach to hypothesis testing aligns with that described by Neyman and Pearson.  

In this approach, the null and alternative hypotheses are tested against each other to 

determine which hypothesis the sample supports.  It is not clear, however, that the 

interviewees understand the way in which these two hypotheses are tested against each 

other.  Based on their statements, we do not know if the interviewees understand how the 

data collected provides evidence for or against the null or alternative hypotheses. 

 Other interviewees described hypothesis testing in slightly different terms.  For 

example interviewee number 15 described it as a method researchers use to show “that 

they just aren’t making it up.  They have all this data that proving like that there actually 

is a conclusion that they can come across and that they’re not just kind of like pulling it 

out of thin air and throwing it out there” (Interview 15, 2008).  Interviewee 15 

understands hypothesis testing to be means by which researchers can prove their claim to 

a larger community.  Her statement, however, does not indicate whether or not she 

understands how this method “proves” a claim to a given community of individuals. 

 Interviewee number 122 described it as follows: 

Excerpt:  Interview 122 
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I: Well, it usually to make, uh, kind of get, ana – like, kind of analysis of data, like, 
they’re just for random samples and they’re raw data.  So you try and use that to 
formulate a hypothesis regarding to probably different population from another or a 
certain topic that you’re trying to figure out like for like student scores or something of 
that sort. 
 
M: Okay.  So analysis of data and it’s – comes from randomly, random sampling. 
 
I: Um-hum. 
 
M: And you said something about hypotheses? 
 
I: Yeah, like you’re trying to find, um, like, probably have to find a comparison if 
it’s, um, it’s like – it asks – you have like a question or something and you’re trying to 
see if it’s true or f – true or false, so you’re gonna use a hypothesis, like the chi-square 
hypothesis testing, or the – the sample mean, um, hypothesis also, because see that deals 
with the two sample means. 
 

Based on her statement, it seems that Interviewee 122 understands hypothesis testing to 

be a means by which a hypothesis can be shown to be true or false.  In addition, she 

focuses on the fact that the data should be randomly chosen.  Her comments are 

somewhat disconnected and it is not clear whether she understands how these ideas relate 

to each other.  

 Finally, interviewee number 29 described statistical hypothesis testing as follows: 

Excerpt:  Interview 29 
I: I think hypothesis testing is um…a way of like…way of I guess…with a big 
group of people and you’re looking for a certain characteristic…characteristic and you’re 
looking for like I guess how many people have like the average?  I don’t know if that 
makes any sense (laughs).  But, um, yeah like for example like if you’re looking at skulls, 
scores and stuff like how many people get the middle range. And, like, what’s, I guess, 
the probability of being in that middle range…kind of (laughs). 
         

It seems that Interviewee 29 might have confused confidence intervals with hypothesis 

testing.  Though hypothesis testing does connect to the concept of confidence intervals, 

the goal of hypothesis testing is not to determine a middle range. 

Analysis 
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 Though the interviewees were not very articulate in explaining their 

understanding of the goal of hypothesis testing, their responses give some insight into 

what they think statistical hypothesis testing is and what it does.  Overall, the 

interviewees seem to understand hypothesis testing as a way for researchers to test new 

theories or hypotheses.  Based on their responses to this question, however, it is not clear 

whether the interviewees understand the logic behind statistical hypothesis testing, nor is 

it clear they understand the various statistical and probabilistic concepts that support this 

logic.  It is also not clear whether the interviewees have a strong understanding of the 

uses of statistical hypothesis testing and/or how to interpret the results within the context 

in which it is employed.  For more insight into these issues, we turn to a presentation and 

analysis of the data with respect to the identified research sub-questions. 

Research Sub-Question Number 2 

 Results from the multiple-choice assessment indicated that introductory statistics 

students do not have strong understandings of the logic and reasoning of statistical 

hypothesis testing.  In particular, the quantitative data indicated introductory statistics 

students do not have strong conceptual understandings of sampling distributions and p-

values. Furthermore, the data indicated that introductory statistics students do not 

understand the role of sampling distributions in the overall logic and reasoning of 

statistical hypothesis testing, nor do they understand the role of inference.  When 

introductory statistics students are told the conclusion of a statistical hypothesis test, they 

often draw invalid inferences from that information.  They often think that a sample 

statistic provides a direct measure of the population parameter and/or they think that 

hypothesis tests provide measure of the degree to which the null (or alternative) 
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hypothesis is true.  Given these difficulties, however, it was found that introductory 

statistics students are able to read a scenario and state the correct null and alternative 

hypotheses for the situation. 

 As is the case with any multiple-choice assessment, the results of the multiple-

choice instrument used in the quantitative phase of this study are limited.  They only tell 

part of the story.  By asking the interviewees about their reasoning for the items, it was 

possible to gain more insight into how students thought about these concepts and ideas. 

 Six multiple-choice items were chosen to address the second research sub-

question in the follow-up interviews and these six items represented five categories of the 

Framework (see Table 5.1).  Analysis of the data will be presented as organized by the 

five Framework categories.  However, given that similar concepts are assessed in the 

Analysis of the Sample and Decision Rule categories and for the Recognizing 

Applicability and Conclusion categories, data and analysis for these categories will be 

presented together. 

 For each section, a summary of student explanations will be presented, followed 

by an analysis of that data.  After the data and analysis for each group of items has been 

presented, the information will be synthesized into a final summary of the data and 

conclusions associated with research sub-question number 2. 

 

Generating Statistical Hypotheses 

 Items in the Generating Statistical Hypotheses category were designed to assess 

whether students understood that, in order to employ indirect reasoning, a researcher 

must establish the null and alternative hypotheses so that they both specify the measure of 
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the population to be tested and so that they both contradict each other.  In the quantitative 

phase, performance on items from this category was relatively strong.  Given a scenario, 

students were generally able to choose the option that stated the correct null and 

alternative hypotheses.  However, it was hypothesized that this phenomenon may be due 

to procedural fluency, rather than a deep understanding of the logic and reasoning that 

support the construction of those hypotheses.  Introductory statistics students may not 

have strong understandings of the reason the hypotheses are set up in the way that they 

are.  The follow-up interviews provided an opportunity to explore the degree to which 

this was the case. 

 Item number 4 from the Generating Statistical Hypotheses category was 

included in the follow-up interview.  This item assessed whether, given a scenario, 

students could identify the null and alternative hypotheses to be used in a statistical 

hypothesis test. 

Figure 5.1 

Item Number 4, Multiple-Choice Assessment 

 

 

4.  A researcher would like to establish that freshmen in the humanities have 
higher SAT scores than freshmen in the sciences.  Which of the following null 

hypotheses should be tested? 
 
The mean SAT score of humanities students is … 
 
a. greater than that of science students. 

b. greater than or equal to that of science students. 

c. less than or equal to that of science students. 

d. less than that of science students. 
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Answer choice c is correct.  Option a represents the alternative hypothesis.  Options b 

and d completed the null hypothesis using different combinations of equality and 

inequality.  Any of the distractors might be chosen if a student does not understand how 

to state the hypotheses in this scenario. 

 Overall student performance on this item was relatively high with 32% of the 

participants choosing the correct answer.  Answer choice a, however, was the most 

popular and was chosen by 51% of the participants.  These results provided evidence that 

relative to the other concepts assessed on the multiple-choice instrument, introductory 

statistics students can successfully establish the null and alternative hypotheses associated 

with a given situation. 

 Within the group of interviewees, 3 people chose a, 2 people chose b, 6 people 

chose c, and no one chose d.  During the course of the interview, however, 2 interviewees 

switched their answer from a to c and 1 interviewee switched from b to c.  Ultimately, by 

the end of the interview, 1 person had picked a, 1 picked b, 9 picked c, and no one picked 

d. 

Interviewee Explanations:  A Summary 

 As the interviewees explained their reasoning about their answer choices, it 

became clear that there were some commonalities in their thinking.  Ten of the 11 

interviewees explained that the null hypothesis always expresses equality and that it must 

contradict the alternative.  The rule “the null is always equal” seems to have been 

strongly reinforced in class.  Many of the interviewees claimed that when they set up the 

problems in class, the null always expressed equality. 

Excerpt:  Interview 77 
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I: Yeah.  I guess from what we’ve learned in class like we never really worked with 
like the null is…like mu is greater than or less than.  It’s always the mu is always equal to 
something and then the alternative from that is mu is greater than that claim, or less than 
that claim [M:  Right], or not equal to… 
 

Excerpt:  Interview 15 
I: I think this one was a little hard because usually in class you do…like the null 
hypothesis always equals something, but not with a greater than or less than sign with it.  
Um…so I picked that one because you want to prove that they have higher SAT scores.  
So the thing that you wouldn’t want to happen is that they have equal to scores or just 
like what you could test and what you really don’t want to happen is that they have less 
than the science scores. 

  
 Excerpt:  Interview 172 

I: Ok.  So…for this one…um…I mean in our classes we’ve been using for the null 
hypothesis, the mean is equal to a certain number.  Um…so…that’s why I didn’t choose, 
I guess, a or d.  Um…and…I remember when we were first introduced the subject of, 
like, null hypothesis that…it was either a greater than or a less than is what some people 
used and then but the book, our book used equal to so that’s what we used in the 
class…so.  I think I just picked that I thought it was greater than or equal to, but…I 
wasn’t sure.  But, that’s at least how I came to b and c instead of a and d.  

 

In addition, some interviewees mentioned that their instructors had given the “null is 

equal” rule. 

Excerpt:  Interview 132 
M: Why the alternative’s not the one that has the equal in it? 
 
I: Ah…yeah I don’t know why the alternative doesn’t really have equals.  I guess 
cause we were explained, null always has equals (laughs). 

  
 Excerpt:  Interview 192 

M: Why don’t you have the testing hypothesis…like isn’t it that the alternative is the 
equal one and the null is the greater than or the less than? 
 
I: I guess because that’s the way I’ve been taught (both laugh).  Whenever we do it 
the…the null is always equal to and then the…whatever that you, 
whatever…ah…inequality that you want to know.  So if you want to know if it’s greater 
than or less than or different that’s the…the alternative, the H1.  
 

The “null is equal” rule helped these interviewees to eliminate answer choices a and d.  

However, it did not help them to decide between answer choices b and c.   Therefore, 

more explanation was needed as to how the interviewees chose between these two 

options. 
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 Some of the interviewees acknowledged that they were not used to seeing an 

inequality in the statement of the null hypothesis.  However, the interviewees reasoned 

that, since the alternative hypothesis represents the claim (freshmen in the humanities 

have higher SAT scores than freshmen in the sciences) then, though it has an “equals” in 

it, answer choice b cannot represent the null.  The null must contradict the alternative.  

Therefore, answer choice c is the better of the two options. 

 This reasoning is evident in the quotes from Interviewees 15 and 192 presented 

above, and is also reflected in the following quote from Interviewee number 191. 

Excerpt:  Interview 191 
I: Ok.  Ok, um, I think, looking at these answers, um…it asks, um, the null 
hypothesis of ah…if freshmen in the humanities have higher SAT scores than freshmen 
in the sciences.  So…I think figuring out the null hypothesis, um, I always assume the 
null hypothesis to be equal, um, and then the alternative, the hypothesis to have a greater 
than, or less than, or not equal to, um…so I think a few of these would work.  It just 
depends on which one you would establish it as, whether it’s a null hypothesis or 
alternative, um…So for c.  c is the answer I chose.  Mean SAT scores of humanities 
students is less than or equal to that of science students.  Um…I think I chose that as 
opposed to, ah, b, which is greater than or equal to that of science students, um, because I 
think looking back at it, I think the greater than value would be, um, the alternative 
hypothesis, because that’s what the researcher’s trying to prove or establish, and that’s 
why I chose c as the null hypothesis. 

 

 Though the interviewees understood that the null hypothesis is a statement of 

equality and that it must contradict the alternative hypothesis, they did not have a good 

understanding of why this is the case.  As demonstrated in the excerpts from the 

conversations with Interviewees 132 and 192 above, when the interviewees were asked to 

explain why the null hypothesis must be a statement of equality that contradicts the 

alternative hypothesis, many of them cited a rule about the null hypothesis being equal 

and/or about the alternative hypothesis representing the claim of the researcher.  In fact, 

when asked whether the two could be switched (the alternative hypothesis claims equality 
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while the null claims inequality), many of the interviewees thought the two could be 

switched. 

 Excerpt:  Interview 81 
I: Um…I guess if you switched them…it probably wouldn’t…um…but I’m really 
not sure…as long as you switched them evenly. 
 
Excerpt:  Interview 191 
I: Well, I’m just, again, it’s like with this, um, they’re just opposites, so it depends 
on which one you want to be, your null, or alternative.  Either way, you’d still prove, you 
could still prove the same answer.  It’s just that it, like for this one, um…I chose c as my 
null hypothesis.  If c was, or if less than was wrong, um, then that means my null 
hypothesis would be wrong.  If I reverse these two and I chose greater than, um, as my 
null hypothesis, and that was right, that would still prove the same information.   
 
M: Ok, so it doesn’t matter. 
 
I: Yeah, it I don’t think that’s as important as long as you, you’d, like these, um, are 
just complementary.  The data would still prove the same answer regardless of whether 
this was your null or that was your alternative. 
 
M: Does there have to be an equal in there somewhere?  Like for example, could the 
null have been less than and the alternative be greater, so a researcher wants to establish 
that the freshmen in the humanities have higher SAT scores, so that would have – the 
researcher – maybe alternative being that the humanities is greater than the science, and 
the null that the humanities is less than the science, so there’s no equal in either of them.  
Is that possible do you think? 
 
I: Yeah.  Um, again, I guess it depends on, ah, what question you wanna answer.   
 
Excerpt:  Interview 169 
M: So why isn’t it…could I have it something that I’m trying to prove that the 
null…or, sorry that the mean is equal to 15 and the null is that the mean is less than 15? 
 
I: Say it again…I just…I thought I heard you… 
 
M: I know…so let’s say I want to prove that means are equal…and it’s assumed that 
the one mean is less than the other.  So that would be my null.  Could I do that? 
 
I: I don’t know if I’ve seen that done…but, I mean, I suppose it’s reasonable if 
you…yeah, I’ve, I’ve never seen that done.  But, again, it seems like it’s possible. 
 

These responses indicate a weak understanding of the logic and reasoning of statistical 

hypothesis testing.  Statistical hypothesis tests rely on indirect reasoning to draw 

inferences about populations based on information from a sample. To do so, the null 

hypothesis is assumed to be the true descriptor of the population and the sample is 
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analyzed to determine the degree to which it is unusual under the assumed null condition.  

Sampling distributions are used to find the probability of obtaining a test statistic as 

extreme, or more extreme, than the observed under the assumed null condition.  If the 

probability is small, the sample is deemed unusual and the null hypothesis is rejected.  In 

order to employ this logic, the null hypothesis must describe a clearly defined population.  

Then, a sampling distribution can be defined and used to determine if the sample 

collected is unusual.  Therefore, the null and the alternative hypotheses can not be 

switched.  The null must be the assumed hypothesis.  The interviewees in this study did 

not recognize this to be the case. 

Analysis 

 As was hypothesized in the quantitative phase, the interviewees’ reasoning about 

this item was “rule based”.  The interviewees remembered that the alterative hypothesis 

should represent the claim that the researcher is attempting to demonstrate and that the 

null hypothesis contains a statement of equality that contradicts the alternative 

hypothesis.  However, the interviewees did not have a strong understanding of why those 

“rules” exist.  They did not understand that statistical hypothesis testing relies on indirect 

reasoning and assesses the degree to which the sample presents an unusual case 

conditioned on the null hypothesis.  Interviewee 112 came closest to expressing an 

understanding of this logic.  He understood the logic of proof by contradiction.  However, 

based on his comments, it was not clear that he understood that statistical hypothesis 

testing does not rely on proof by contradiction in the formal sense, but that it relies on 

probability to determine whether a sample is unusual.  It is not clear that Interviewee 112 
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understood this logic and, based on their responses to item number 4, it certainly wasn’t 

clear that any of the other interviewees had this understanding.  

 

Analysis of the Sample and Decision Rule Categories 

 Items from the Analysis of the Sample and Decision Rule categories were 

written to assess whether introductory statistics students understand the concepts and 

reasoning involved in deciding whether or not the null hypothesis should be rejected.  

These items address sampling distributions and their role in determining whether or not a 

sample is unusual, conditioned on the null hypothesis.  The items assess whether students 

understand that, if a sample is deemed unusual, the result is said to be statistically 

significant and whether they understand that the level of significance (decision rule) has 

an impact on that result.  These items also address the concept of p-value and its role in 

the progression from sample analysis to the statement of a conclusion. 

 In the multiple-choice assessment, performance on items in the Analysis of the 

Sample and Decision Rule categories was relatively weak.  The concepts of sampling 

distribution, p-value, and significance level were troubling for students.  The quantitative 

results indicated that introductory statistics students do not understand that a sampling 

distribution represents the distribution of sample statistics calculated for all possible 

samples of a given size from a population with a related, known population parameter.  

The results also indicated that introductory statistics students do not understand that the 

level of significance signifies the probability with which the researcher is willing to make 

a Type I error and that it provides the “cut point” for which a sample is deemed unusual.  

Finally, the results indicated that introductory statistics students do not understand that 
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the sampling distribution and decision rule are useful in deciding whether or not to reject 

the null hypothesis. 

 However, the results of the quantitative phase tell only part of the story.  The 

follow-up interview included one item each from the Analysis of the Sample and 

Decision Rule categories and provided more insight into student thinking about these 

components of statistical hypothesis testing. 

 Item number 9 was included in the follow-up interview.  It is classified in the 

Analysis of the Sample category from the Framework and was written to assess whether 

introductory statistics students understand how sampling distributions are used in 

determining whether a sample is unusual conditioned on the null hypothesis. 
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Figure 5.2 

Item Number 9, Multiple-Choice Assessment 

 

 

The correct answer is option a.  Answer choice c is the opposite of a, and answer choices 

b and d are based on misunderstandings identified in the literature. 

 On the multiple-choice assessement, 40.4% of the participants chose a, 21.2% 

chose b, 8.7% chose c, and 27.9% chose d.  These results indicated that while many 

introductory statistics students were able to read the graph to determine whether the 

results were statistically significant, a good number of students are not able to do so. 

 Of the eleven Interviewees, 6 chose a, 2 chose b, and 2 chose c, and 1 chose d.  

Over the course of the interview, however, the interviewee who chose option d changed 

9.  Tests show that fuel efficiency of cars in the current model year averages 30 miles per gallon.  
A test of 100 new car models gave mean fuel efficiency of 31.5 miles per gallon.  To see whether it 
is correct to claim that the new car models are more fuel-efficient than those in the current model 
year, a researcher constructed the sampling distribution of average fuel efficiencies of many 
samples of 100 current model cars shown in the following graph. 
 

Sampling Distribution
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Which of these conclusions is best supported by the graph above? 
 
a. The difference in fuel efficiency of current and new model cars is not statistically significant. 

b. Half of current and new model cars have fuel-efficiencies below 30 miles per gallon. 

c. The difference in fuel efficiency of current and new model cars is statistically significant. 

d. Nothing can be concluded.  The graph should be centered at 31.5. 
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her answer to option c.  Unfortunately, the data collected in the interviews indicated that 

though over half of the interviewees chose the correct answer, they did not have strong 

understandings of sampling distributions and their role in determining whether or not a 

result statistically significant. 

Interviewee Explanations:  A Summary 

 In the analysis of the data, it was abundantly clear that the interviewees did not 

know what the graph associated with this item represented.  The interviewees were not 

familiar with the term “sampling distribution” and did not realize that the graph 

represented the distribution of average fuel efficiencies for all possible samples of size 

100 in a population where the average fuel efficiency is 30 miles per gallon.  Five 

interviewees (15, 81, 122, 169, and 191) were not able to interpret the graph at all.  Five 

of the remaining six interviewees (29, 77, 112, 172, and 192) understood that the x-axis 

referred to fuel efficiency.  However, it was not clear that these interviewees understood 

that the x-axis referred to average fuel efficiency in a sample of 100 current cars.   Of 

those five, Interviewees 112 and 192 thought the y-axis represented the percentage of cars 

in “the sample” that had a given fuel efficiency.  Interviewee 77 thought the y-axis 

represented the probability that a car in “the sample” had a given fuel efficiency.  

Interviewee 29 thought the y-axis represented the proportion of cars in the population that 

had a given fuel efficiency.  Interviewee 172 thought the y-axis represented the standard 

deviation.  Interviewee 132 had a completely different interpretation of the graph.  She 

thought the x-axis represented the number of cars out of “the sample” of 100 and the y-

axis represented the number of cars out of “the sample” of 100 while the y-axis 

represented the difference from the mean (of 30). 
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 The phrase “the sample” here is in quotes because, at times, the interviewees 

confused the type of car represented in the sample.  Though the interviewees could read 

the item and understood it to tell them that the graph represented the sample means of 

samples of current cars, the interviewees would often reason as if the sample of 100 cars 

had been drawn from the population of new cars. 

 It is interesting to note that though they did not understand precisely what the 

graph represented, none of the interviewees chose option d.  They reasoned that (1) 

something could be concluded and/or (2) the graph should be centered at 30 because, in 

the text, the reader is told that the graph represents the sampling distribution of current 

cars.  With answer choice d eliminated, the interviewees focused on answer choices a, b, 

and c. 

 The way that the interviewees interpreted the graph influenced the reasoning they 

used to justify their choice of a, b, or c.  Interviewees 15 and 169 chose b because they 

did not think that graphs could be used to determine statistical significance. 

Excerpt:  Interview 15 
I: Well for that, cause like the graph just looks like it’s a distribution…like you just 
took all your data from your current cars and you put it in a graph.  So it’s not 
like…um…there’s no mention of like an alpha or like a confidence interval or anything 
or a test.  So you can’t like say that it’s statistically significant like you could hypothesize 
that like oh maybe it’s significant but you’re not like analyzing it at all you’re just kind of 
like here’s a graph kind of thing. 
 
Excerpt:  Interview 169 
M: B Sorry, yeah.  So a and c are kind of opposites, whether it’s statistically 
significant or not [I:  Right].  So why didn’t you pick either of those? 
 
I: Well, it’s not supported by the graph.  The graph…as far as I’m…as far as I 
think, I don’t think a graph can tell me about statistical significance.  A test statistic has 
to…and, ah, nowhere on the graph above does it make a comparison of a current versus a 
new model.  There’s just a simple line…so. 
 
M: Ok, so the fact that the second thing gave me 31.5…and the other one’s 30…so 
the, the means in the [I:  Right] in that was different.  So…that makes them…how would 
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they be statistically significant?  I mean, I could say well they must be different because I 
got 31.5 [I:  Right] and it was 30. 
 
I: Um…well you’d have to use a hypothesis…you’d have to use a test statistic and 
then a rejection region to determine if it was statistically significant…meaning, I guess 
statis, statistically significant to me means…if you accept H1 and reject H0. 
 

Because Interviewees 15 and 169 did not know how to interpret the graph, and because 

they did not think a graph could be used to determine whether or not a result is 

statistically significant, they chose option b.  That answer choice did not mention 

statistical significance. 

 Interviewees 81 and 191 also did not know how to interpret the graph.  However, 

they chose the correct answer, option a.  Interviewee 81 did so because he didn’t think 

there was a big difference between a mean of 30 and a mean of 31.5. 

Excerpt:  Interview 81 
I: Yeah, I chose a…the difference in fuel efficiency of current and new model cars 
is not statistically significant.  Um…I figure that was the best answer because the 
difference between the two is very slim and you’re only testing 100 cars.  You know 
there’s…um…more than 100 new car models out there.  Um…and b said half of current 
and new model cars have fuel-efficiencies below 30 miles per gallon.  Um…let me 
see…well first off…I wasn’t really sure what this graph was saying because it wasn’t 
really labeled.  Um…so I, I didn’t really like that and then c the difference in fuel 
efficiency of current and new model cars is statistically significant.  Well, I felt it wasn’t 
statistically significant so obviously saying it was is the opposite. 
 

Interviewee 191 chose a for a different reason.  His reasoning is illustrated in the excerpt 

included below: 

Excerpt:  Interview 191 
I: Um, so between a and c, not statistically different.  I – I think it says that there 
was, um – well, this – the graph shows that there’s many samples of 100 current model 
cars, um, that were taken, um, so many samples of 100, whereas, um, with the, ah, test of 
new cars, there was only 100 that were sampled or tested, um, so I think, ah, ah – I’m 
trying to think.  Although I guess the test would be better if they did many samples of 
100 new car models, um, I remember we went over the, ah, central limit theorem, and I 
think, ah, that with n being greater than 30, that you can assume that it’s normal, and that 
I guess it’s significant.  Um, so I think that the answer would be c in that case. 
 
M: And so why are you choosing c now? 
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I: Um, because they tested 100 new cars, although they tested – that it was 
obviously many more than 100 cars, current cars, um, the fact that they tested 100 new 
cars, even though they tested many more current cars, um, because 100 is greater than 30, 
you can use the central limit theorem, um, to assume something about the population, um, 
and because 31.5, the fuel efficiency they determined of the 100 new cars, um, is greater 
than 30, um, it’s statistically significant.   

 

Interviewee 191 reasoned that because the sample was greater than 30, one can assume it 

is “normal”.  Therefore, the result is statistically significant.  For him, statistical 

significance means that “it can be approximated to the normal curve”.  Thus, Interviewee 

191 did not use the graph to answer the question.  He merely applied some (incorrect) 

definitions he remembered from class.  Like Interviewee 81, Interviewee 191 did not use 

the graph in his reasoning, but chose the correct answer.  In both cases, however, the 

reasoning used was not correct. 

 Interviewees 29, 132, 112, and 192 also chose the correct answer, option a.  

However, unlike Interviewees 81 and 191, Interviewees 29, 132, 112, and 192 did refer to 

the graph in their reasoning.  Unfortunately, these interviewees did not interpret the graph 

correctly in the first place.  Their misinterpretation of the graph caused them to rely on 

incorrect reasoning in choosing the correct answer. 

 Interviewees 112 and 192 both thought the graph represented the percent of cars 

in the sample that had a given fuel efficiency.  Interviewee 112 relied on this 

interpretation to justify his answer choice. 

Excerpt:  Interview 112 
I: I think I put a because it looked like…it pretty much looked like how the old one 
would be also…like the old model averages 30 and this was centered around 30 also.  
And, d, nothing can be concluded. The graph should be centered at 3 point…31.5.  I was 
thinking maybe outliers made that…and be like 30 if you looked at all the data…it would 
be like a more accurate measure of center.  But as it’s almost the same, it’s not 
statistically significant, which is why c is wrong.  And, I also think …think you could 
assume that’s half and half.  So probably is outliers in there. 
 
discussion continues 
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M: And why did you pick a again?  I know I wrote it down but I want to just…now 
that I know what you’re thinking about with the graph…why did you pick a? 
 
I: Ok, cause it looked like that since most were …like 20% were around what the 
old average miles per gallon…and how it seemed like there were around 50% of each 
were going the other way, that it wasn’t really statistically significant.  Probably that the 
mean of 31.5 miles per gallon was just derived using outliers.  Cause I was assuming it 
was a correct graph, unlike what d said that it should be centered at 31.5.  Although I 
could be wrong about that. 

 

Interviewee 112 interpreted the point (30, .20) to signify that 20% of the cars had fuel 

efficiency of 30 miles per gallon.  Therefore, the difference wasn’t statistically 

significant.  In addition, Interviewee 112 reasoned that a mean of 31.5 was the result of 

having outliers in the sample.  If these outliers had not been included, the sample would 

have a mean of 30 as indicated by the graph.   He also thought 31.5 was not too different 

from 30.  Although his reasoning wasn’t entirely clear, Interviewee 112 did not think the 

difference was statistically significant and chose answer choice a.  He chose the correct 

answer for the wrong reason. 

 Interviewee 192 interpreted the graph in the same way that Interviewee 112 did.  

However, she chose answer choice a for a very different reason.  Her reasoning is 

illustrated in the following excerpt. 

Excerpt:  Interview 192 
I: It just, yeah, it just…it…had the normal shape.  [M:  Ok]  I did realize something 
that it was wrong with the way it was centered.  So…I just chose a…cause I know that 
you could conclude…I figured that you could conclude something from that.  So that’s 
why I didn’t choose d.  And, I couldn’t really read it, so I wasn’t sure about b.  Even 
though I couldn’t read it…regularly. 
  
discussion continues 
 
M: Ok, and a you chose because since it looks normal [I:  Yeah] but not correctly 
normal [I:  Yeah]…(writing) but not correctly normal, it’s not statistically significant.  
And if it were centered with the y-axis in the middle, then you would have picked c? 
 
I: Yeah… 
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Interviewee 192 associated the normal curve with statistical significance.  However, for 

Interviewee 192, a result is only statistically significant if that normal curve is symmetric 

about the y-axis.  Because the graph in item number 9 is not centered over the y-axis, the 

result is not statistically significant.  Therefore, Interviewee 192 chose option a.  

Unfortunately, she chose the correct answer for the wrong reason. 

 Interviewee 132 also employed incorrect reasoning in her choice of the correct 

answer, option a.  Her interpretation of the graph influenced her reasoning.  Her thinking 

is illustrated in the following excerpt. 

Excerpt:  Interview 132 
M: Ok.  So now that I know how you’re reading the graph…[I:  Ok]…what, you 
chose a….[I:  a]…why? 
 
I: Ah…well looking at it, it looks like, ah, well 24 and 36 of the cars are at same 
level.  So that’s 60 cars, and so that means 60% of all the new cars have the same av…as 
the old gas mileage.  So, it doesn’t look like they’re significantly different.  Cause the 60 
just seems too high…it’s more than half. 

 

Here, Interviewee 132 focuses on the points (24, 0) and (36, 0) on the graph.  Because, 

for her, the y-axis represents difference from 30, she interprets these points to signify that 

24 + 36 = 60 cars have a fuel efficiency of 30 miles per gallon.  That means that 60/100 = 

60% of the new cars have the same mean as the older cars. Because 60% is more than 

half, the difference is not statistically significant.  Using this incorrect reasoning, 

Interviewee 132 chose the correct answer, a. 

 In her explanation for choosing answer choice a, Interviewee 29 came the closest 

to using correct reasoning.  Her thinking is illustrated in the following excerpt. 

Excerpt:  Interview 29 
I: Ok, I was confused on this one, so I kind of guessed (laughs).  Cause I wasn’t 
sure what like…well…no, never mind.  I, I picked this one I think because it said the 
mean was 35…or 31.5 and like…and the distribution like the middle range was like 
around 30…so that’s why I picked a because it didn’t look like it was very different. 
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Her explanation indicates that she was looking at the graph to see how close 31.5 was to 

30.  She thought they were close on the graph, so she did not think that the difference was 

statistically significant.  This reasoning is correct.  However, given that Interviewee 29 

thought the graph represented that proportion of cars in the population that have a given 

fuel efficiency (rather than a distribution of average fuel efficiencies in samples of size 

100), the degree to which she has a deep understanding of the way in which statistical 

significance is determined is suspect. 

 Of the three interviewees who chose option c, only one referred to the graph.   

Like Interviewee 191, Interviewee 172 focused on the fact that the graph had the shape of 

a normal curve. 

Excerpt:  Interview 172 
I: Ok.  All right.  Um…ok, I think…well…I remember this one…I like went back 
and forth about this one but I think I chose c just because it resembles a bell shape curve 
so it could be approximated to the normal distribution which could, I guess, make it 
significant in terms of…um…if you wanted to do any type of hypothesis testing with it 
you knew that it could be approximated…um… and I didn’t think a because I…, I mean 
it…I definitely think it is statistically significant because it resembles a bell shaped curve.  
And, then…um…(discussion about flipping the tape).  Um…so…right, I didn’t, I didn’t 
choose a because I did think it was signif, statistically significant because it resembled a 
bell shaped curve.   

 

Here, Interviewee 172 saw that graph was “normal” which meant that it was statistically 

significant.  Unlike, Interviewee 191, she was not concerned with the fact that it was 

centered at 30 rather than over the y-axis. 

 Interviewees 77 and 122 did not use the graph in their reasoning for choosing 

option c.  Instead, they focused on the fact that there was a difference between the mean 

of the sample and the mean of the current cars. 

Excerpt:  Interview 122 
I: Hum, I think c can work.  Um, the significance and fuel efficiency of current and 
new model cars assumed that this statistically significant because there is a difference 
between the average from the current model then new model also.  So there’s the change.   
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Excerpt:  Interview 77 
I: Ok.  Well, it’s not d because…because it’s a graph of the current model cars and 
not the new ones.  The average is 30 miles per gallon, not 31.5.  And, it’s centered at 30 
so that’s right.  And, um…I said that…the difference in the fuel efficiency of the current 
and new model cars is statistically significant because there is a difference in the mean 
fuel efficiency that the cars get and…I didn’t really take this from the graph…because, 
the graph just showed me that this was a…a distribution of the current model cars, and 
their fuel efficiency, which is 30…um.  But, from what the problem said that, the new car 
models…had a mean fuel efficiency of 31.5 compared to the current car models with a 
mean fuel efficiency of 30 miles per gallon.  Since there was a difference, I said that was 
significant. 
 

Like Interviewee 81, Interviewees 122 and 77 focused solely on the difference between 

31.5 and 30.  Interviewee 81, however, had some understanding that statistical 

significance should take into account the size of the difference with respect to the size of 

the sample.  As a result, he did not think the difference in means was significant.  

Interviewees 77 and 122 did not take sample size into consideration.  They considered 

any difference in means to be statistically significant. 

 The discussion above provides evidence that the interviewees did not have deep, 

connected understandings of sampling distributions and statistical significance, and how 

the two relate.  They are unfamiliar with the term “sampling distribution” and, on the 

whole, do not have strong understandings of what it means for a result to be statistically 

significant.  Even when they chose the correct answer, the interviewees used the wrong 

reasoning.  Overall, the group of interviewees did not have strong understandings of these 

concepts and ideas. 

 Tied into the concept of statistical significance is the level of significance, or the 

decision rule.  Examination of student thinking about the item representing the Decision 

Rule category provides additional insight into student thinking about the way in which 

statistical hypothesis testing can be used to draw a conclusion about the null (and 

alternative) hypotheses. 
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 Item number 11 was included in the follow-up interview.  This item is classified 

in the Decision Rule category and assesses whether introductory students understand 

significance level and its role in hypothesis testing.  In particular, this item assesses 

student understanding of the effect of different significance levels on the overall 

conclusion of the statistical hypothesis test. 

Figure 5.3 

Item Number 11, Multiple-Choice Assessment 

 

The correct answer is option c.  Answer choice a states the opposite.  Answer choices b 

and d are counterparts to a and c, except they make general claims about the truth of the 

hypotheses. 

 In the multiple-choice assessment, 33.7% of the participants chose option a, 

28.8% chose option b, 29.8% chose option c, and 7.7% chose option d.  These results 

indicate that introductory statistics students do not have strong understandings of the 

effect of significance level in a statistical hypothesis test. 

11.  To test the hypothesis that private schools are more effective than public schools, 
researchers plan to compare mean starting salaries of private and public school graduates.  But 

they cannot agree on whether to test the results at a significance level of 0.10 (α = 0.10) or at a 

significance level of 0.05 (α = 0.05).   
 
What effect will using 0.10 rather than 0.05 have on the study? 
 
a. Using 0.10 will result in a greater chance that they will incorrectly retain the null 

hypothesis. 

b. Using 0.10 will result in a greater chance that the null hypothesis is actually true. 

c. Using 0.10 will result in a greater chance that they will incorrectly reject the null 

hypothesis. 

d. Using 0.10 will result in a greater chance that the alternative hypothesis is actually true. 
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 Of the 11 interviewees, 5 chose a, 1 chose b, 4 chose c, and 1 chose d.  However, 

over the course of the interview, 3 people changed their answer from a to c and 1 person 

from d to c.  Therefore, after the interviews were completed, 2 people had picked a, 1 

person picked b, 8 people picked c, and no one picked d. 

Interviewee Explanations:  A Summary 

 With the exception of one person, the interviewees did not choose answer choices 

b or d.  It was hoped that the interviewees eliminated these options because they each 

make very broad claims about the truth of the either the null or alternative hypotheses. 

This was the case for two of the interviewees. 

Excerpt:  Interview 15 
I: Um…I guess because like when you’re doing the test you’re kind of between like 
either accept or reject and not necessarily true or false.   
 
M: Why don’t you…do you know why you don’t do true/false?  Why they keep 
telling you to use those words accept and reject? 
 
I: I guess cause like…like it seems to me like you can’t really prove anything cause 
true is really concrete and you can’t prove anything absolutely unless you go and take 
like every bit of data available to you.  And, you …like in most cases you actually can’t 
physically do that.  And, like even where you can, like it’s just really difficult to do so it’s 
not practical, I guess.  Like …it’s very rare, I suppose that you’ll come across a study 
when they can say like this is true because I went out and sampled every single student at 
every single college and, found that this would be true.  But, then like, again, it would 
only be true for like that point in time, at that instant.  Like, you can’t really say 
something like so concrete about like such a…like a big thing. 
 
M: Ok. 
 
I: So like if you say reject, you’re saying like you’re not talking absolutes.  You’re 
talking more of like in relative terms for what you worked on. 
 
Excerpt:  Interview 112 
M: …why not b or d?  Feel free to…if you need to write at any point… 
 
I: (reads b out loud, somewhat inaudible) They pretty much are saying the same 
thing (laughs) 
 
M: Ok 
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I: Well, I guess you can’t ever know for sure if it’s true, though.  That’s probably 
why I didn’t look at those.   
 

For other interviewees, it was not clear whether they had deep understandings of why 

these options are incorrect.  The following excerpts illustrate these somewhat incomplete 

explanations. 

Excerpt:  Interview 169 

I: Well…(inaudible) I mean, b and d…I don’t believe that you’re…and maybe 
there is some correlation between your significance level and whether or not your null 
hypothesis has a greater chance of being true…or of either hypothesis actually being true.  
But, I, I didn’t know, and still don’t know that answer.  So I can’t…those, those answers 
don’t seem right to me. 
 
Excerpt:  Interview 132 
I: …But…ah…I guess c would be better than d. 
 
M: Why? 
 
I: Um…because you’re saying that the…you could incorrectly reject the null 
hypothesis whereas in d they talk about the alternate hypothesis being actually true.  
So…just your…your acceptance or rejection region doesn’t determine if something is 
true or false.  It just is…it’s naming the, your parameters for you graph to label 
acceptance and rejection. 
 
Excerpt:  Interview 29 
I: Well, b it’s not…like 0.1 would then give you a greater chance that null 
hypothesis is actually true…0.1 gives you a greater chance that it’s rejected. 
 

Still others did not pick b and/or d because they did not know whether the null hypothesis 

was actually rejected or not.  This was the case for Interviewees 77 and 172. 

Excerpt:  Interview 77 
M: …Why not b or d? 
 
I: Um…well because if you use alpha 0.10…with the p-value like I said 0.8, you’re 
rejecting null hypothesis…and that’s not true.  Cause if you reject the null hypothesis 
then the null hypothesis is…is…isn’t actually true.  Um…and with that said, I guess d 
could be possible.  Cause if the null hypothesis isn’t true then the alternative hypothesis 
is.  But, based on what I learned with using alpha, that use…that’s most…mostly…you 
usually use that for the null hypothesis, not so much with the alternative hypothesis.  
Because…well, yeah.  Yeah. 
 
Excerpt: Interview 172 
I: Right, because…it’s the opposite.  And, then, ah…I don’t, I just, I didn’t think b 
and d were even like correct because you didn’t really know anything about how it turned 
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out.  Like, if it was rejected or accepted, though I think they’re talking about is they just 
can’t decide on what significance level to test it at. 
 
M: So because the, you don’t know whether they accept or reject, you don’t know 
whether b or d? 
 
I: Right. 
 

In both cases, the interviewees made their decision about b and/or d based on whether or 

not they thought the null hypothesis was rejected or not.  This reasoning indicates that 

Interviewees 77 and 172 did not reject b and/or d because the claims were too broad. 

 With the exception of  Interviewee 81 who simply guessed when he chose answer 

choice b, the interviewees chose either a or c.  Some of the interviewees justified their 

choice by referring to rejection regions on a graph, some used numerical justifications, 

and others simply expressed “rules” to justify their choice. 

 Interviewees 191, 29, and 15 referred to graphs as illustrated in the following 

excerpts.  The accompanying graphs were drawn by the interviewees to support their 

explanations. 

Excerpt:  Interview 15 
I: Um…this one…like the…when you have, um, a bigger significance level, that 
means like you’re more sure what your result can be.  That’s like…in confidence 
intervals, at least… like you’re more sure that the mean is in there but it doesn’t 
necessarily mean you’re more precise.  So with, like a 0.1 confidence interval instead of 
0.5, like if you look at the picture, the…the um… confidence intervals are like… 
(draws)…like a 0.5 would be out here and then…um…because you’d have a greater area 
your 0.1 would be out here.  And, like if you did a test, then your test statistic would be 
right there then if you use the .5 then you’re accepting the null hypothesis.  But, if you 
use the 0.1, then you’re rejecting it.  So…um…there’s a greater chance that you might 
incorrectly reject it. 
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Excerpt: Interview 29 
I: (Reads a somewhat inaudibly)  Well…it also says like will result in a greater 
chance that….they will incorrectly retain the null hypothesis.  Well, 0.10 is like …it’s 
usually the area at the ends, which is like…um…the rejection region for the null 
hypothesis.  So…yeah…so I said…um…it will not retain…I don’t know…(laughs).  You 
know, because 0.1 is the rejection region for like the null hypothesis and that’s why I 
didn’t pick that one…(inaudible). 

                                                

Excerpt:  Interview 191 
I: Well, ‘cause – Ok, so if this is a one sided test, if alpha is this, if that’s .05 and 
this is .01, um, if your value that you calculated fell here, um, um, point – what was 
that… yeah,… .10 means that there’s a greater chance, um, that yeah, so if this was the 
value that proved that your null hypothesis was right – if you use .05, then that means it’s 
– wait a minute.  No, it would be c, I think, ah, because you would reject – if the null 
hypothesis fell in that region, you would reject it at .1, because it’s beyond that value.  If 
it was at .5, it would still be within that value, so the answer is c. 

                    

                                              

Interviewees 191 and 15 reasoned that if the test statistic fell in between 0.05 and 0.1, 

then the null hypothesis would be rejected at the significance level of 0.05 but not at 0.10.  

.05 .1 

.10 

 
    accept 

H0 

 

.5 .1 

test 
stat 
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Therefore, c must be correct.  Though Interviewee 29 also used a graph, her reasoning 

was slightly different.  She reasoned that since the graph shows rejection regions, then c 

must be correct, not a.  The claim in option c contains the word “reject” while the claim 

in option a contains the word “retain”. 

 It is interesting to note that, though the discussion surrounding item number 9 

indicated that Interviewees 15, 29, and 191 did not understand graphs of sampling 

distributions, these interviewees used graphs to justify their answer choice for item 

number 11.  As a result, the degree to which they understand why the graph they drew 

justifies their answer to item number 11 is questionable.  In fact, further conversation 

with Interviewee 15 revealed that, indeed, she didn’t understand why the graph supported 

her answer. 

Excerpt:  Interview 15 
M: So what is this graph of that you drew?  I mean, I understand the point…but what 
does this curve represent? 
 
I: Um…like it would be either like the z or the t depending on like how big your 
sample size is. 

 
M: z or t distributions? 
 
I : Yeah. 
 
M: What are those things?  Do you know? 
 
I: No. 

 

These comments provide evidence that Interviewee 15 did not have a deep understanding 

of the way in which the graph supported her answer choice.  Due to time constraints, the 

same questions were not asked of Interviewees 29 and 191.   Therefore, the question as to 

the depth of these interviewees’ understandings with respect to this issue remains 

unanswered. 
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 Interviewees 112 and 77 also chose c, but they did not refer to graphs to justify 

their choice.  Instead they relied on calculations and p-values.  The following excerpt 

illustrates Interviewee 112’s reasoning. 

Excerpt:  Interview 112 
I: All right…(reads out loud, somewhat inaudible) I put c because 0.10 is…it’s less 
accurate than 0.05 cause there’s a more chance that they’ll incorrectly reject the null 
hypothesis.  Ok, cause it’s much more of a range.  Ok cause they’re not going to retain 
the null hypothesis more with…at 0.10.  Ok…all…(reads out loud, somewhat 
inaudible)…wait a minute…I might of…I might have had this backwards, 
though…(reads out loud, somewhat inaudible)…cause it’s gonna be larger with 
0.10…yeah, so it might actually be a.  They might incorrectly retain the null hypothesis 
when they could have rejected it.  Cause it’s a larger range with 0.10.  Yeah, and 
it’s…they didn’t correctly reject the um…the non-null hypothesis, the one they’re trying 
to test.  Yeah, so I’ll change that one to a. 
 
He writes the following on his paper 
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I: (Writes) The z-value of 0.10…it’s gonna be larger…so that would be x…five 
eight…(writing and talking out loud, somewhat inaudible)…I might have had it right to 
begin with…looking at it this way (laughs).  It’s easier to reject 1.58 than 1.645. 
 
M: Ok.  What was that that you were writing out there?  What was all this? 
 
I: Oh, first I was doing like…like the confidence interval.  Then I realized that 
wasn’t going to do anything good (laughs). 
 
M: Ok 
 
I: Yeah, so then I did rejection range. 
 
M: So this is different from all of that (draws black line to separate work) 
 
I: Yes.  Um hum.  This is the stuff that actually matters (points to right side of 
black line). 
 
M: Ok.  And what were you doing?  X greater or equal to z… 
 
I: Yeah, I was assuming it was a z-value. 
 
M: Ok.  And, what’s the 1.58? 
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I: For the…the alpha equals 0.1. 
 
M: And so what does 1.58 represent? 
 
I: The z-value for 80% confidence. 
 
 

After having done a calculation to find the confidence interval, Interviewee 112 changed 

his approach and, instead, wrote inequalities that represented the requirements that would 

result in rejection of the null hypothesis under significance levels of 0.10 and then of 

0.05.  With these calculations, Interviewee 112 reasoned that it was “easier” to reject the 

null hypothesis under a significance level of 0.1 rather than at a significance level of 0.05.  

Therefore, he chose answer choice c. 

 Interviewee 77 also relied on a numerical justification for her choice.  However, 

she referred to p-values in her explanation.  Her reasoning is illustrated in the following 

excerpt. 

Excerpt:  Interview 77 
I: Ok.  Um…well…from what we learned about using alpha levels…um…to find 
out whether to reject or accept a null hypothesis…um.  I knew that when we take the p-
value…or when we would find the p-value of the test statistic, that’s the …to determine 
the probability that …um…that the value is more extreme…um…probability 
that…yeah…so, the p-value is the probability that the value you find is more extreme 
than the…then the value you’re testing?  And, once you find that p-value, you compare 
that to the alpha level.  And, if it’s less than the alpha level, then you reject the null 
hypothesis.  If it’s greater than the alpha level or it’s not less than the alpha level then you 
accept the null hypothesis.  So if you were to use a alpha level of 0.1 compared to 
0.05…um…I said that’s true that they…there will be a greater chance that they will 
incorrectly retain the null hypothesis.  Because 0.05 is a, it’s a much smaller alpha 
value…or alpha level…um…and if you use a smaller alpha level…alpha level…it’s kind 
of a stronger, I guess, a stronger number…it kind of…ok, well.  Like say you get the p-
value is like 0.8 and so if this is the p-value, then you compare that to alpha.  If alpha is 
0.10…that would …that’s saying that the p-value is less than alpha so you reject the null 
hypothesis.  But if you compare that p-value, the same one to 0.05…it’s not less than the 
alpha.  It’s greater.  So, you’re saying accept the null hypothesis.  So, kind of using a 
smaller alpha value gives you…a more…a certain…decision on what to do with the null 
hypothesis…um…  
 
She wrote the following on her paper – arranged in precisely this way 
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P(you get a more extreme value than with µ0) 
 
p-value .8                  .05 
  α = .10      accept H0  
  reject H0 
 
I: Ok, so I think I picked the wrong one because I picked the one that says 
incorrectly retain, when it should be the one that says incorrectly reject, if you’re using 
alpha 0.10…cause, I just…did not (both laugh).   

 

Interviewee 77 reasoned that if the significance level was set at α = 0.10 and the p-value 

was calculated to be 0.08, the null hypothesis would be rejected.  However, if the 

significance level was set at α = 0.05 and the p-value was calculated to be 0.08, the null 

hypothesis would be retained.  Thus, it was “easier” to reject the null hypothesis under a 

significance level of 0.10 than at a significance level of 0.05.  Therefore, she chose 

answer choice c. 

 It should also be noted that Interviewee 77 did not state a correct definition for p-

value.  An important piece of defining p-value is the notion that, while it is a probability, 

it is a probability conditioned on the null hypothesis.  It is not clear whether Interviewee 

77 understood that the p-value is the probability of a obtaining a test statistic as extreme, 

or more extreme, than the observed, given that the null hypothesis is the true descriptor of 

the population. 

 As was the case for Interviewees 15, 29, and 191, it is not clear that Interviewees 

112 and 77 had deep understandings of why their work on item 11 justified their answer.  

Though Interviewees 112 and 77 used correct reasoning from a procedural standpoint in 

determining the effect of various levels of significance on the conclusion, it was not clear 

that they understood that their calculations were based on the assumption that the null is 

the correct description of the population under question. 
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 Other interviewees reasoned without graphs or calculations and, instead, stated 

rules about the relationship between significance level, certainty, and size of rejection 

regions.  The following excerpts from Interviewees 132 and 169 illustrated such 

reasoning. 

Excerpt:  Interview 132 
I: Ok (reads out loud, somewhat inaudibly)…um...well I said a…but, um…if you 
use…ah…the area of significance of 0.1 or 0.5…if you use 0.5, you’re acceptance region 
for the null hypothesis gets larger…if you’re using like 5%.  Um…so I guess I said a 
because you could…can…you could keep the null hypothesis even if it was very far out 
to the sides.  Um…oh, I mixed it up.   Because it’s 10% it should be a smaller acceptance 
region.  Can I change my answer now? 
 
discussion continues 
 
I: Oh…um...if like…if has like a 95% confidence interval that means it’s going to 
have like a larger…ah…start, endpoint.  So anything in between those two endpoints 
would be accept…you’d accept your null hypothesis.  But, if you made your acceptance 
region smaller, that means there’s more chance that you would reject your null 
hypothesis. 
 
Excerpt:  Interview 169 

I: Um…and…when it’s asking for a significance level…as I believe, if I 
understand it correctly…and it’s entirely possible that I don’t…um…if I…increase the 
significance level that means I decrease my certainty and that means…for um, the 
rejection region that I decrease the size of my rejection region…meaning that…there…by 
the law…by the, you know,…by, you know, intuitive probability that there is a smaller 
chance that I…accept my…second hypothesis.  So…a seems to verbalize that best for 
me. 
 
M: Ok.  So increase of significance level means decrease in certainty which mean 
decrease in the rejection region [I:  Yes] which means a smaller chance you’ll accept the 
null.  Did I get that right? 
 
I: A smaller chance that you’ll accept the secondary hypothesis. 
 

 

Here, we see that Interviewees 169 and 132 used a rule to justify their choice.  

Interviewee 132 stated the correct rule: the larger the significance level, the larger the 

rejection region.   Therefore, increasing the significance level from 0.05 to 0.1 will result 

in a larger rejection region, making it “easier” to reject the null hypothesis.  Thus, she 

chose answer choice c. However, Interviewee 169 did not state the correct rule.  He 
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claimed that larger significance levels correspond to smaller the rejection regions.  

Therefore, increasing the significance level from 0.05 to 0.10 will make it “easier” to 

retain the null hypothesis.  Thus, he chose answer choice a. 

 Another “rule” quoted by some of the interviewees used to justify their choice 

involved α  and Type I error.  These interviewees relied on the fact that α gives the 

probability that the null hypothesis will be rejected, given that it is actually true, to justify 

their choice.   Interviewee 172 used this definition in her reasoning for choosing answer 

choice c. 

Excerpt:  Interview 172 
I: Ok.  Um…oh ok well, um…I chose c…because…the way I understand the alpha 
value is the probability of…um…re, incorrectly rejecting the null hypothesis.  So, that, c 
like actually, actually says that, so.  Um…and because 0.1 is greater than 0.05 then it 
would be a greater chance of incorrectly rejecting the null hypothesis the, I guess that was 
just based on what I had learned.  Like, a principle or, I guess, or a concept. 
 

Interviewee 172 merely remembered that α is the probability of committing a Type I 

error and looked for the answer choice that supported that definition.  Thus, she chose 

answer choice c. 

 Interviewee 192 also used the definition of Type I error in justifying her decision 

to change from answer choice a to answer choice c.  However, throughout the discussion 

she became confused about the definition of Type I error.  The following excerpt 

illustrates her confusion and use of the definition of Type I error. 

Excerpt:  Interview 192 
I: Yeah, a, um… I think it goes back to the confidence interval thing?  The way I 
see it, the bigger the…or the larger the alpha, the larger your confidence interval.  I could 
be wrong but that’s what I was thinking.  Um…so, the larger your confidence interval the 
greater the chance of your null hypothesis falling in that interval and there’s no way to 
know whether or not it’s right or wrong since that is your acceptance interval. 
 
M: (Writing)  Larger alpha means larger confidence interval? 
 
I: Um hum. 
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M: (Writing)  And a greater confidence interval makes the null…there’s a greater 
chance the null’s gonna fall into it. 
 

Here we see that Interviewee 192 used similar reasoning as that of Interviewee 169 in her 

initial choice of option a.  Over the course of the discussion, however, Interviewee 192 

changed her mind and used the fact that α is the probability of a Type I error to justify her 

decision to change her answer choice c. 

Excerpt:  Interview 192 (continued) 

M: Ok, so how does that differ from b, c, and d? 
 
I: Um…(reads b out loud).  Um (reads out loud, somewhat inaudibly)…I think 
it…it goes into Type errors…like Type I error, Type II error, Type III, and Type IV error. 
And then type…ah… a is Type I and I know that’s being…that’s the worse one you can 
have…so. 
 
M: Oh, a meaning, letter a or choice a. 
 
I: Choice a is, um, Type I error.  [M:  Ok, and…] Do you really want me to go on 
to b, c, and d? (Laughs) 
 
M: Yeah…(laughs) 
 
I: Um…b would be…(reads out loud, somewhat inaudibly)  I really don’t know 
which one b, c, and d fall into…but I remember the teacher or the substitute talking that 
day, as going into the whole case thing.  So like the worst… Type I would be like locking 
an innoc, innocent person up.  That’s how I think of it (inaudible).  I really don’t 
remember the rest. 
 
discussion continues 
 
M: But you like a better because? 
 
I: Yeah.  Because it falls into the… it…it’s the Type I error.  That’s what struck 
me…like it’s wrong but it’s right.  (Both laugh) 
 
M: Ok.  All right.   
 
I: That they will…or c…that they will incorrectly reject the null hypothesis?  
Meaning that the…it was right and it….and you, and you didn’t accept it.  That’s wrong.  
I think I choose that…I think I might have gotten a and c confused now that I’m thinking 
about it.  Because if it was true…and you said it’s not true.  I think that’s kind of 
worse…worse situation to have. 
 
M: Than a? 
 
I: Than a. 
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M: So you’re kind of evaluating these based on what’s a bad situation? 
 
I: Yeah, like honest, honestly I can’t really tell you the definition like I remember 
reading them.  But, I don’t remember them.  Like what she said to me in the classroom 
struck me…like was more memorable to me then the um…than what I read in the book.  
So that’s what I used to base it on. 
 
M: Ok. 
 
I: When doing my work, it’s usually right…so (laughs). 
 
M: Ok. 
 

 

Interviewee 192 remembered having learned the definitions of Type I, Type II, Type III, 

and Type IV errors.  When asked to explain why she did not chose b, c, or d, she was 

reminded of those definitions and tried to fit each of those answer choices to one of the 

error types.  Ultimately, she chose option c because it was the worst error one could 

make.  It seems that throughout the discussion, she lost sight of the question itself.  

However, the discussion illustrates the fact that she did not have a strong, resilient 

understanding of the concepts involved. 

Analysis 

 With regard to the Analysis of the Sample and Decision Rule items, the data 

collected in the follow-up interviews confirmed the findings of the quantitative phase.  

The explanations offered by the interviewees indicated that they did not have strong 

understandings of sampling distributions or levels of significance.  In fact, many of the 

interviewees did not even know what the term sampling distribution meant.  Furthermore, 

the interviewees did not understand the role of sampling distributions and/or significance 

level in the overall logic and reasoning of statistical hypothesis testing.  Often, the 

explanations offered by the interviewees were incorrect and, when their explanations 
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weren’t incorrect, they were merely statements of “rules” without reference to the 

concepts and reasoning that support those rules. 

 In fact, it was not clear that the interviewees understand that statistical hypothesis 

tests employ indirect logic to determine whether or not the collected sample is unusual 

under the null hypothesis.  Hence, it is not clear that the interviewees understand the role 

of probability and, more specifically, of sampling distributions in determining whether 

the collected sample is unusual, conditioned on the null. 

 However, there are limitations to the analysis conducted on the two items 

representing these categories.  These items appeared late in the assessment and were 

covered late in the interview.  Often, additional probing questions were not asked about 

these items because (a) the hour was coming to an end and the interviewees were 

beginning to fatigue and/or (b) these questions had been asked in relation to other items.  

Therefore, before drawing broad conclusions about student understanding of the logic 

and reasoning of statistical hypothesis testing, it is necessary to consider student 

responses to the remaining items. 

 

Recognizing Applicability and Conclusion Categories 

 Items from the Recognizing Applicability and Conclusion categories were 

written to assess whether introductory statistics students understand the value of 

statistical hypothesis testing as a method by which inferences about a population can be 

made based on information from a sample.  In particular, these items assess whether 

introductory statistics students understand that the method offers a means by which an 

inference, or conclusion, can be made about the legitimacy of the null hypothesis as the 
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true descriptor of a population, given sample information.  In so doing, these items assess 

whether students understand the concepts and reasoning that support the development of 

a conclusion statement (reject or fail to reject the null hypothesis).  In addition, the items 

in these categories assess whether, given the data and ultimate conclusion statement 

associated with a particular statistical hypothesis test, introductory statistics students can 

make valid claims about that information. 

 In the multiple-choice assessment, performance on the items representing the 

Recognizing Applicability and Conclusion categories was relatively weak.  The 

quantitative results indicated that introductory statistics students understood statistical 

hypothesis tests to be a measure of the truth of the null or alternative hypotheses.  

Additionally, the results indicated that some students believe that statistical hypothesis 

tests prove one or the other hypotheses to be true and/or that some students think that 

sample statistics provide direct measures of the population parameters.  Overall, the 

results indicated that introductory statistics students do not understand the value of the 

method nor do they understand what inferences (conclusions) are valid as a result of 

applying that method. 

 However, as was the case in the proceeding sections, the results of the 

quantitative phase tell only part of the story.  The follow-up interviews provide a venue 

by which these issues may be explored further so that we may better understand student 

thinking about these components of statistical hypothesis testing.  As a result, one item 

from the Recognizing Applicability category and two items from the Conclusion 

category were included in the follow-up interview. 
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 Item number 3 was included in the follow-up interview.  This item is classified in 

the Recognizing Applicability category and assesses student understanding of the value 

of statistical hypothesis testing as an inferential method used to make inferences about 

populations based on data from samples of those populations.   

Figure 5.4 

Item Number 3, Multiple-Choice Assessment 

 

 

Answer choice a is the correct option.  Answer choices b and d should be eliminated 

because statistical hypothesis tests are not methods of proof.  Answer choice c is not the 

best reason for using statistical hypothesis tests. 

 In the multiple-choice assessment, only 11.5% of the students chose the correct 

option; 37% chose answer choice b; 25% chose answer choice c; and 30% chose answer 

choice d.  Of the eleven interviewees, 2 chose a, 4 chose b, 3 chose c, and 2 chose d. 

Over the course of the interview, one interviewee changed his answer from b to d and one 

from c to a.  Ultimately, then, 3 people had chosen a, 3 people chose b, 2 people chose c, 

and 3 people chose d. 

Interviewee Explanations:  A Summary 

3.  Which of the following statements is the best justification for using a statistical 
hypothesis test to answer the question: Are female students as successful as male students in 

college mathematics? 
 
a. It allows you to talk about uncertainty associated with your decision. 

b. It allows you to use only a sample of students to prove something for all students.  

c. It allows you to calculate means and use statistical tables to answer the question. 

d. It allows you to find and prove the answer using mathematical calculation. 
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 The explanations offered by the interviewees for their choices on this item 

provided valuable information about their understanding both of hypothesis testing and of 

the language used in the item itself.  Of the eleven interviewees, 7 did not choose a (the 

correct answer choice) because they were uncomfortable with and/or didn’t understand 

the use of the word “uncertainty”.  This difficulty is illustrated in the following excerpts: 

Excerpt:  Interview 169 
I: I didn’t choose a because nowhere in the…in this…the question within the 
question does it ask about…ah…confidence intervals or how certain are you, type of 
thing…. 
 
M: Ok.  In a, what about that made you think that that…cause you said that it, it 
doesn’t…in the question they’re not talking about confidence intervals…so, what 
prompted you in a to think that it should…that it was talking about confidence intervals? 
 
I: Ah…when we started ended it…we started getting into, ah, 95%, 99% whatever 
confidence intervals and then some of the follow-up questions on those questions would 
be how certain….you know, comment on the strength of the evidence.  And, the strength 
of the evidence, it’s, you know, the stronger…the more certain you are there, you, strong, 
the stronger the evidence for your conjecture, whatever it is.   
 
Excerpt:  Interview 192 
I: The major differences…um…well…a is, talks about uncertainty…and, honestly, 
I don’t like that word, especially when it comes to math.  So I kind of stay away from it. 
 
M: Why don’t you like that word? 
 
I: Because math is usually black or white and uncertainty is that gray in there.  It’s 
like ah…it’s not…I’m pretty sure in…with anything regarding math, uncertainty must 
not be right.  Um…b allows you to use a sample of students…um…we’ve been doing 
that all year…kind of…getting…using small populations to assume things about the 
larger populations.  
 
Excerpt:  Interview 77 
I: Um…I don’t…I think I didn’t pick a, because I wasn’t sure what it meant by like 
I guess, the uncert, uncertainty associated with your decision.  Um…I mean I guess that’s 
talking about…like….there’s a possibility that female students aren’t as successful as 
male students.  Um...but that was just…I didn’t really know what that was talking about. 
 
Excerpt:  Interview 191 

I: A?  Allows you to talk about uncertainty associated with – um, well, I’m a little 
ah… unclear on the, talk on, on the phrase, “Talk about uncertainty.”  I don’t know 
exactly, ah…I mean I guess that might have something to do with maybe standard 
deviations or, um, how accurate the data is, but, ah,… I don’t know through hypothesis 
testing you can, um….where that information is really critical.  Yeah, ‘cause when I think 
of uncertainty, I think of um, you know, correlations or um how the data is spread apart, 
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and, ah, I don’t think of that…I don’t remember that being, um, too important or even 
used really in the hypothesis testing.   
 
discussion continues 
 
I: Well, I think you would just calculate standard deviation or, ah, correlations with 
that, um…‘cause again, when I read, “Uncertainty,” that’s what I think of, data or, 
um,…values that’ll, um, indicate, ah, you know, how the data is spread apart, um…any 
correlations whether, you know, female students are as successful as male students.  
Um…I just don’t remember that being a reason, um…or that being answered when we 
did hypothesis testing.   
 

 

The responses indicate that these interviewees did not associate the word “uncertainty” 

with statistical hypothesis testing.  Interviewee 169 only associated the word 

“uncertainty” with problems that involved confidence intervals.  Interviewee 77 did not 

understand the use of the word in this context.  Interviewee 191 only associated 

uncertainty with spread of data, not with using hypothesis tests to make an inference.  

Interviewee192 thought that statistics is mathematics and since “uncertainty” is not a 

concept associated with mathematics, it must not be a concept associated with statistics, 

either.  Her comments are interesting, but problematic because statistics is not 

mathematics.  In fact, it is the ability of statistics to deal with variability, chance, and 

uncertainty that distinguishes it from mathematics.  As we will see, this issue arises with 

other interviewees at other times. 

 Interviewee 29 chose the correct answer, option a. However, she did not choose 

that option for the correct reason.  Her explanation indicates some confusion over the use 

of the word “uncertainty”. 

Excerpt:  Interview 29 
I: Um… I think I chose this one because…um…because I feel like we used 
hypothesis tests…I guess it was try to see if…like…um…say you think…or you guess, 
like, you’re not sure if something is…is like, I don’t…like the one group has like the 
same characteristic as the other.  So, I guess you use hypothesis testing to see if there is a 
difference.  So, that’s why I picked a because you’re not sure about something so you’re 
applying, ah, these statistics to see if there’s actually a difference and…using math. 
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M: So you use hypothesis testing, it’s hard to say all that [I:  Yeah (laughs)].  You 
use hypothesis testing when you’re unsure about something? 
 
I: Right, because then maybe like the numerical answers can support like…like, 
you know, your original thought, or guess or something. 
 

Though Interviewee 29 chose the correct answer, her reason for doing so did not indicate 

an understanding of the role of hypothesis testing in drawing an inference about a 

population.  Rather, she chose this option because she associated the word “uncertainty” 

with the uncertainty a researcher has prior to conducting the study:  uncertainty about the 

answer to her question.  It is this initial uncertainty that prompted Interviewee 29 to 

choose answer choice a, not the uncertainty associated with the ultimate conclusion made 

at the end of the test. 

 Many of the interviewees chose either answer choice b or answer choice d.  

Unfortunately both b and d are incorrect options because statistical hypothesis tests are 

not methods of proof.  They can not prove the null hypothesis nor can they prove the 

alternative hypothesis.  In the quantitative phase, if a student chose one of b or d, it was 

inferred that the student believed statistical hypothesis testing to be a method of proof 

and, furthermore, that the student believed the best justification for conducting a 

statistical hypothesis test is that it provides a proof of the null (or alternative) hypothesis.  

However, in the explanations offered by the interviewees, it is not clear that this inference 

about student understanding is correct. 

 The interviewees cited a wide variety of reasons for choosing either b or d. 

Consider the following excerpt from Interviewee 77:  

Excerpt:  Interview 77 
I: Ok…um…I think I chose b from what we like learned about from…if you have 
like a large population sample…or, not sample, a large population and you want to test a 
certain claim…then you can take a smaller sample from those populations, um…that 
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and…do a statistic…or statistical test…um…to…prove or disprove that claim.  And, 
that’s justified because if the population’s large enough, then you can, um, assume that 
it’s like normal…or normally distributed.  That’s why you can use the sample.  Um… 
 

As Interviewee 77 continues, she explains that c and d are very similar.  Since they were 

both so similar, and since she could only pick one, she went with the option that was 

most familiar, option b.  She did not necessarily choose option b because she thought 

statistical hypothesis tests prove or disprove a given hypothesis.  Instead, she used test 

taking skills and chose the option that was most familiar to her. 

 Interviewee 192 gave a similar reason for choosing answer choice b.  She chose 

the option that was familiar to her. 

Excerpt:  Interview 192 

I: Ok. (Reads number three out loud).  Um…(reads out loud, somewhat 
inaudibly)…hmm…honestly I don’t know why I chose that one. 
 
M: Which did you choose?  B? 
 
I: B, yeah.  I might have chose it because it’s the only thing that looked familiar to 
me.  Cause even looking at now, I (inaudible) (laughs). 
 

Because option a was eliminated (due to the word “uncertainty” – see excerpt included 

above) and because c and d were not familiar to her, Interviewee 192 chose option b.   

She remembered that when she solved statistical hypothesis testing problems in class, she 

used sample data to draw a conclusion about the population. 

 Interviewee 172, gave quite a different reason for choosing answer choice b.  Her 

reasoning is illustrated in the following excerpt. 

Excerpt:  Interview 172 
I: Ok.  Ok.  I chose b for this one.  And…ok…I guess…I’m trying to think…um…I 
guess I, you know, knew from this that you could do, you would have to take a sample 
from both female and male students to be able to apply to hypothesis testing.  And…I’m 
not sure why I chose this and not the other ones, cause I guess the other ones 
could…yeah, I…they also apply but…um…and I know that there would be uncertainty 
in…this test because it would only be a sample of the students and not the…general 
population.   
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M: And so c and d?  You think they’re ok or…because the question asks what’s the 
best justification [I:  Right].  So, it could be that three of them are reasonable but [I:  Um 
hum] only one is the best or it could be that two of them are reasonable or…there’s only 
one that’s actually could even be considered.  So what [I:  Right], where do you, what 
camp do you see yourself falling into? 
 
I: Well…I mean, I guess that I could, c is reasonable because if you took a sample 
of the students then you can figure out the…the mean and all the other, ah, like standard 
deviation, things like that from your sample.  And, I guess, then apply it to the…all 
female students or all male students.  Um…and then…I don’t know, I guess after, I 
mean, you would have to do all of that calculating and then afterwards, you know, be 
able to come to a conclusion…that, I guess.  I guess I kind of thought about it in like a 
sequence of events that…you’d have to chose your sample first and then…do the 
calculations and then actually prove the answer. 
         
 

Interviewee 172 thought that all four answer choices were reasonable.  However, she 

could choose only one.  Subsequently, she chose the statement that described the first 

step in statistical hypothesis testing.  Once again, we see evidence that students who 

chose option b did not necessarily do so because they thought statistical hypothesis tests 

were proofs. 

 This focus on aspects other than the word “prove” was also evident in the 

explanations offered by the interviewees who chose d.  Consider the following excerpt 

from Interviewee 122: 

Excerpt:  Interview 122 
I: Three?  Well, I chose d from all the answers because, um, d is – it allows you to 
find and prove the answer using mathematical calculation.  Well, because if you gather 
all the data from each female and, um, male, you could find the mean, median, and the 
mode regarding to the – and also make those, um, uh, diagrams like the histograms go 
box-and-plot – box-and-whiskers plot and then be able to make you have a decision also.  
Yeah, because, um, I was like, regarding to this, it kind of goes with letter d because 
regarding mathematical calculation, that deals with mostly a whole range of math.  Um, 
like I said, the mean, you could find the standard deviation, you could find the mode, you 
can find everything thing just regarding to this mathematical calculation.  So, all of, like, 
c falls into d.  And the other two, on a it allows you to talk about uncertainty associated 
with your decision, well this falls also with d because you’re trying to make a decision, 
but you’re proving your answer.  And b, um, it allows you to use only a sample of 
students to prove something for all students.  Well, that also kind of falls into d because it 
does – you need to find a particular, um, sample to actually make mathematical 
calculations.  That’s my opinion. 
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Here we see that, like Interviewee 172, Interviewee 122 thought all four options were 

reasonable justifications for using statistical hypothesis tests.  In order to choose only one 

option, Interviewee 122 relied on her overall understanding of statistical hypothesis 

testing.  She understood statistical hypothesis testing to be a process that relies on a series 

of calculations to arrive at a conclusion.  Each of the options discusses aspects of 

statistical hypothesis testing.   But, for Interviewee 122, the statement in option d sums up 

the test and its value.   Though Interviewee 122 used the word “prove”, it was not central 

in her reasoning.  Rather, she depended on her understanding of the method and its uses 

to choose answer choice d. 

 Interviewee 81 also chose answer choice d.  In fact, he initially chose b and, over 

the course of the interview, he changed his answer from b to d.  His reasoning is 

highlighted in the following excerpt from that interview: 

Excerpt:  Interview 81 
I: Ok, yeah I chose b…um...it allows you to use only a sample of students to prove 
something for all students.  Um…I think, hold up…oh.  I might have misread the 
question.  I’m not sure though.  Ok…um…I would probably…I’d say b or…d.  Or, I 
think I chose b because you’re using like a sample of students to prove something for all 
students….cause ah…because…um…statistical hyp…because statistical hypothesis 
testing, you can’t test everybody.  You can only test, like…so you can’t test everybody in 
the world, or everybody in college.  Yeah, you can only test, like a certain number.  So, I 
think that’s why I went with b. 
 
M: Ok.  And…you now like d…why? 
 
I: Um…well because it allows you to find and prove your answer using 
mathematical calculation.  And, like…cause, like in any math you have to use 
calculations, right?  And, um since you’re sort of testing, you know female students and 
male students, you would have to have calculate which is…if they are as successful.  So 
you would need to use mathematical calculation to do the statistical hypothesis for this 
question. 
 
discussion continues 
 
I:  Whether that’s…a is the answer or not…I don’t know…but I don’t like it 
personally.  Um…I would probably go with d if I was to change my answer…allows you 
to…ah…find and prove the answer using mathematical calculations.  That’s why you, 
you kind of use statistics.  You use math, mathematical calculations to prove something 
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wrong or right.  So, I kind of like d…um…if I were to change my answer, which I 
probably would if I were to retake the test, I guess.  So…     
    

Initially, like Interviewees 77 and 192, Interviewee 81 chose answer choice b because it 

represented something that was familiar to him.  However, he changed his answer to 

choice d because, for him, it described the goal of statistical hypothesis testing.   Again 

the word “prove” was not a central idea in his choice of an answer. 

 Interviewee 15 also chose answer choice d.  However, her reasoning for doing so 

is interesting in that she explicitly did not pick option b because she did not think that 

statistical hypothesis tests “prove” a given hypothesis but then chose d, which also uses 

the word “prove”. 

Excerpt:  Interview 15 
I: I guess I chose d because it’s like really straight forward.  Like…if you’re doing 
mathematical calculations, like…that’s something concrete.  Um…cause like if you’re 
just, if you’re talking about uncertainty, like hypothesis testing is (inaudible) give you a 
lot of stuff about uncertainty cause like uncertainty with that would be stuff like um 
…you don’t know all the variables for female students versus males students.  And that’s 
not really math.  And, then, like you can never really prove something for all students, 
like you can suggest something that would apply to all students.  But, you can’t really 
prove it unless you sit there and talk to every single student (inaudible). 
 
M: Hold on, let me get some of this down here.  I want to just double check because 
I’m afraid that that won’t pick up everything.  Ok, so…uncertainty for a is not 
mathematical? 
 
I: Yeah, not…yeah, not really most of the time, I guess. 
 
M: So a is just not concrete enough? 
 
I: Yeah. 
 
M: Ok, and then what were you saying for b? 
 
I: Um, I guess it’s just unlikely that you like could really prove something for all 
students.  Because like the hy…like different things let you suggest things that are 
probably true for all students.   But like…um... just like the confidence intervals, that’s 
why you use them because it’s not like absolute.  You’re just suggesting and throwing it 
out there. 
 
M: Ok.  And, c? 
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I: C?  I mean I guess like…I think calculating means and using statistical tables is 
kind of part of a hypothesis test but you can do that without using a hypothesis test.  Like 
you don’t need to use it for that. 
 
M:  Ok.  So do you see any similarities between the choices, or not? 
 
I: Yeah, um, I guess like they’re all like really close to being an answer…like 
calculating mean that’s part, that’s like because you need the mean to be able to do the 
hypothesis test.  But like I think you could also just (inaudible) I mean not do the 
hypothesis test too.  And, you …you are using like a sample but like… then again like 
you are not really proving anything concretely unless sit there and go through every 
single student.  Then you’d be able to say that you could prove it. 
 

This excerpt highlights the fact that, though she picked answer choice d, interviewee 15 

does not believe statistical hypothesis testing to be a method of proof.  She focused on the 

word “prove” in her decision to eliminate answer choice b but the word “prove” did not 

have the same impact in her consideration of answer choice d.  Instead, she chose answer 

choice d because it was “concrete”.  Option c presented a justification that might be 

applied to other concepts. Option a presented a justification based on the concept of 

“uncertainty”, a concept with which she was uncomfortable in this context.  Note that, 

once again, we have encountered an individual who associates mathematics with 

statistics.  Ultimately, Interviewee 15 chooses option d as it is the statement that 

represents the more concrete, mathematical ideas she associated with statistical 

hypothesis testing. 

 Of the 5 interviewees who did not choose options b or d, only 2 of them 

eliminated b and d explicitly because of the word “prove”.   These two interviewees 

explained that nothing can be proved using statistical hypothesis testing unless all 

members of the population were included in the analysis.  Two of the remaining three 

eliminated answer choice b because the statement did not clarify the type of sample and 

eliminated choice d because mathematical calculations are used in other statistical 

methods, not just statistical hypothesis testing. 
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 In summary, though the word “prove” was explicitly included in two of the 

distractors to assess whether students believed statistical hypothesis testing to be a proof, 

this was not the deciding factor used by the interviewees in choosing their answers.  The 

issue of proof was not central in the justifications interviewees gave for choosing answer 

choices b or d, nor was it central in the justifications interviewees gave for eliminating 

answer choices b and d.   The fact that the interviewees did not focus on word “prove” in 

their reasoning for item number 3 challenges the conclusion posited by the results in the 

quantitative phase.  This issue will be explored further in the analysis of student 

explanations for choosing (and not choosing) various answer choices on items five and 

six from the Conclusion category. 

 Item number five assesses whether students are able to interpret the conclusion to 

a statistical hypothesis test in which a significant difference is found. 

Figure 5.5 

Item Number 5, Multiple-Choice Assessment 

 

 

5.  In 1950 the mean IQ of undergraduates at a university was 110.  To test the hypothesis that 
students today are smarter, a study of 500 current students found a mean IQ of 120.  The 
difference between the two means is significant at the 0.05 level.  (α = 0.05)  
 
Which of the following statements is necessarily true? 
 
a. Undergraduates at the university today are smarter than those in 1950. 

b. The claim that undergraduates today are not smarter than those in 1950 is true with a 

probability less than 0.05. 

c. The claim that undergraduates today are smarter than those in 1950 has been established 

with 95% certainty. 

d. If undergraduates today are no smarter than those in 1950, the probability of the observed 

mean IQ is less than 0.05. 
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Answer choice d is correct.   Answer choice a was written to assess whether introductory 

statistics students believed that statistical hypothesis tests constituted proofs of 

hypotheses. Answer choice c was written to assess whether introductory students 

believed that, when a result is statistically significant, the significance level can be used 

to find the probability that the alternative hypothesis is true.  Answer choice b is a 

variation on c but states the significance level directly, as a probability. 

 Overall performance in the quantitative phase on this item was low.  Only 6.7% of 

the participants chose the correct answer choice, d; 87.5% chose option c; 3.8% chose 

option b; and 1.9% chose option a.  Because very few chose a, it was inferred (contrary 

to what was suggested by performance on item number 3) that introductory statistics 

students do not believe statistical hypothesis tests to be methods of proof.  With the 

overwhelming majority of students choosing option c, however, it was concluded that 

introductory statistics students believe that statistical hypothesis tests provide a measure 

of the “truth” of a given hypothesis. 

 Of the eleven interviewees, none of them chose a or b, 9 chose c, and 2 chose d.  

Over the course of the interview, one person changed his answer from c to d and one 

changed from d to c.   Ultimately, then, the frequencies with which answer choices were 

picked remained the same as they were prior to the interviews.  The follow-up interviews 

provided more insight into student thinking about the meaning of the conclusions reached 

by statistical hypothesis tests. 

Interviewee Explanations:  A Summary 

 Each of the interviewees did not choose answer choice a because it was too broad 

a statement.  However, there was variance in the way that the interviewees thought 
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answer choice a was too broad. Two interviewees noted that a was not correct because it 

made a broad claim about a population based solely on information about a sample. 

Excerpt:  Interview 15 
M: So what do you think…ok, so why didn’t you choose a? 
 
I: Um…cause you’re looking at just a sample of students.  So like you can’t like 
really come out and say like these students are definitely smarter than those students 
cause you didn’t really look at all the students.  So you can’t really say anything concrete 
cause there’s the possibility that the other 500 students at the university that you didn’t 
test are geniuses and …or like are really dumb or something… so then you won’t know 
cause you never tested those other students so you can’t really say anything like with 
concrete certainty. 
 
Excerpt:  Interview 77 
I: Um…letter a.  Since the study only tested 500 current students, I mean there 
could be a chance that those 500 students were, I guess, smarter than the average…um, 
average student.  So, I felt that a was too general to say…or to assume that was true. 
 

These statements indicate that interviewees 15 and 77 understand that, because a sample 

is being used for the analysis, the test does not necessarily constitute a proof for the entire 

population.  Thus, they did not pick answer choice a, as it made a broad, general 

statement about a population based solely on information from a sample. 

 It was not so clear from the other responses that everyone had this understanding.  

Eight of the eleven interviewees claimed that they did not pick a because the statement 

was incomplete.  It did not provide information on the level of certainty associated with 

the test.  Some examples of this line of reasoning are included in the excerpts below. 

Excerpt:  Interview 132 

I: Ok.  (reads out loud, somewhat inaudible) Um…well a says like the same 
thing…I chose c.  But…ah…but a says the same thing except it doesn’t have…an…a 
certainty level.  So that means it’s missing out information, cause here we can only know 
to a 95% uncertainty.  Um…so that’s why I chose c.   
 
Excerpt:  Interview 191 
I: Hum.  Ok.  All right, well a…Ok, reading this, a is not necessarily true because 
you can test at different, um…ah, levels.  I guess alpha, um,…I think that’s the critical 
value or…I don’t remember.  Basically, it, it…the question tells you what alpha level it’s 
being tested at, and that can change, um, so because that can change depending on what 
alpha you test at, um, this isn’t necessarily true, where undergraduates are smarter than 
those in 1950.  Um,…(reads options somewhat inaudibly).  Ok (Laughs).  I think I chose 
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c, undergraduates today are smarter than those in 1950, has been established with 95% 
certainty.  Ah…yeah, I chose that because, um, the alpha value, ah, corresponds with this 
level of certainty.   
 
Excerpt:  Interview 29 
I: I guess, I chose…I didn’t choose a…I chose c because it said with 95% 
certainty…and that was just, I guess, being more specific.  Um...I don’t have a really 
good answer, it’s just basically because it’s just more specific to the problem. 
 
M: So you do think a is true?  It’s just that c was more specific?  Or, you don’t think 
a is true? 
 
I: I think, a is true. 
 
Excerpt:  Interview 122 
I: Okay.  Undergraduates at the university today are smarter than those in 1950.  
They’re just saying that, um, they’re just stating the fact that the students of today is just 
– has a higher IQ than – than the 1950.  It doesn’t tell anything else about the – the level 
of significance.  That’s why I, um, kind of crossed that out. 
 
M: Okay. 
 
I: Because every time when your trying to make a statement you need to know 
what your alpha is, your degree of sig – uh, certainty is. 
 
M: Why?  Why do you need to know that? 
 
I: Because then whoever’s like reading it knows what kind of, um, populate – like, 
um, the kind of like the region or area where it’s, um, it should lie between, their scores. 
 
Excerpt:  Interview 81 

I: And, I thought it was a or c.  And, I thought it was at the 95% certainty level.  
So, that’s why I chose c, cause other, other than that, a and c are pretty much the same. 
 

For these interviewees, it was important that the final statement of the conclusion to a 

statistical hypothesis test be accompanied by some indication of the degree of certainty 

associated with the test.  Therefore, they did not choose option a.  As we will see, these 

interviewees believe the degree of certainty is related to the level of significance used in 

the test. 

 Of those who chose option c, the reasons given for eliminating b and d were 

varied.  Some of the interviewees claimed that b and d were difficult to understand. 

Excerpt:  Interview 191 



 

 221 
 

I: …Ah…and ah…and yeah, b and d ah…a lot of things going on in those answers 
[M: (laughs)]…and so, yeah, I’m having trouble understanding them. 
 
Excerpt:  Interview 169 

I: Yes.  Um…c looks…to me the most right between a, b, and c.  D doesn’t make a 
lot of sense to me…so.  Um…I chose c over b because…you’re not proving, when you’re 
hypothesis testing, to my knowledge, you’re not proving that…something’s true.  You’re 
claiming that they are with a 90, with a certain amount of, ah…strength with your 
evidence.  And, in this case the strength would be 95% certainty. 
 
Excerpt:  Interview 77 
I: So b is saying that there’s a less than…0.05…I guess percent chance that the 
claim is not true, since the hypothesis was testing undergraduates today are smarter.  That 
one’s kind of confusing to me.  Same with d.  I’m trying to… 
 

When asked to try to express the meaning of option b their own words, interviewees 191 

and 169 were eventually able to see that b and c were actually the same claim, stated 

differently.  Interviewees 29 and 15 also made this realization.  However, none of them 

chose option b.  There was a general feeling that c made the statement more clearly.  

Therefore, the interviewees chose that option.  The following examples illustrate this 

reasoning. 

Excerpt:  Interview 15 
I: Um because we never really I guess like associated the alpha like with a certain 
probability and like I guess it could be true because like they found that they were 
smarter with a lot of certainty so claiming that they’re not smarter with a really low 
probability seems like it would be similar.  But, like c was more straightforward and 
made more sense.  
 
discussion continues 

 
I: Yeah, like…cause it’s like…it’s like too many negative words…like no smarter 
and like less than.  So it’s like harder to sort it out, I guess.  You gotta like really sit there 
and like stare at it to sort it out and make it mean something.  Like, b…it said like not 
smarter and less than.  So it seems like you have to flip it around before you can figure 
out what it’s really saying. 
 
M: So once you do figure it out what b and d are saying, you still don’t think they’re 
true? 
 
I: Um, I just feel more confident with c. 
 
Excerpt:  Interview 169 
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I: The more I actually read b and c the more b looks like just the opposite of c.  
Um…I must have misread…I must have sped read through…not taken the whole time, 
but I still think that...they just seem like opposites to me. 
 
M: But, you still like c better? 
 
I: Yes, I don’t think I’ve seen something phrased in the way that b is phrased.  It’s 
like a…a negative answer…a negative answer in that it’s asking for the opposite of 
something and then, again, with a less than…I’m not really…it just seems like it’s asking 
for two negative versus two positive things in c. 

 

Though Interviewees 15, 29, 169, and 191 were able to understand the claim made in 

answer choice b, the statement in option d remained somewhat mysterious to them.  

Thus, they did not choose that option and, instead, chose answer choice c. 

 Other interviewees appealed to the sample data to justify the elimination of 

choices b and d. Because the sample data supported the claim that the current students are 

smarter than those of 1950, Interviewees 81, 122, and 132 eliminated options b and d.  

This reasoning is illustrated in the following excerpts. 

Excerpt:  Interview 81 
M: Ok, so what are…what is b saying, in your own words? 
 
I: The claim that…oh, basically it says that people today are not smarter than the 
people back then.  And that doesn’t make any sense because it says the IQ is higher today 
than it was back then. 
 
M: And, what is d saying? 
 
I: They say they are no smart…and that means like equally as smart and that was 
proven wrong because the IQ is higher than it was back then. 
 
Excerpt:  Interview 122 
I: Um-hum.  Okay, b, the claim that undergraduates who – undergraduates today 
are not smarter than those in 1950 is true above probability 0.05, which I disagree 
because, um, they actually, the undergraduates today is greater than, um, 1950.   
 
discussion continues 
 
M: And d you don’t like now because –  
 
I: Um, uh, if undergraduates today are no smarter than those in 1950, the 
probability of observing IQs less than 0.05, well for that one, is, um, it’s kind of just, like, 
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it – the – the undergraduate today are no smarter than those – well, they kind of are 
smarter than them because regarding to the, um, the answer, like the mean for 120 versus 
110.  So you can tell there is a graduate – there’s some increase. 
 
Excerpt:  Interview 132 
I: C would mean that they’re accepting the alternative hypothesis.  They’re saying 
that present…ah…graduates nowadays…would…are smarter than those from the 1950s.  
And, that is true to a 95% certainty so that means there is 5% …um…there’s 
5%...ah…area that you could doubt the results.  For the most part they’re certain that it’s 
right. 
 
M: So how is that different from b?  Or is it? 
 
I: Um…well in b they’re accepting the null hypothesis and in this one, they’re 
accepting the alternate hypothesis. 
 
discussion continues 
 
I: Because…ah…the data like ah…the mean from now is higher than the …than 
the mean from the 1950s, so.  I didn’t go through the math [M:  Ok] but it looks like the 
data is leaning towards…  For some reason I thought we couldn’t do math when we took 
the… 
 
M: Well, that’s true…that’s right.  You didn’t have to do any calculations.  It was all 
supposed to be…Ok, so because the data supported the null… 
 
I: Ah…supported the alternate. 
 
M: Or, the alternative 
 
I: That’s why I chose…um…c, which is alternate. 
 
M: Ok.  I’m just trying to work through what you…how you were thinking about 
this.  So you saw…you saw b and d as being about the null? 
 
I: Um hum 

 

In their explanations we see that Interviewees 81, 122, and 132 focused on the claim 

offered in the beginning of each statement.  They did not focus on the probability 

associated with each statement.  They were mostly concerned with whether or not the 

data supported the initial claim of the statement.  Hence, they chose answer choice c 

because, in contrast to b and d, the sample data supported the claim being made in the 

beginning of that statement. 
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 Overall, for those who chose answer choice c, there was strong discomfort with 

option d.  This result is interesting in that answer choice d is the correct option.  Two 

interviewees, however, finished the interview having chosen option d.  Unfortunately, 

their explanation for doing so was not correct.   Consider the following reasoning offered 

by Interviewee 172: 

Excerpt:  Interview 172 
I: Ok.  Um…I guess I chose this one…because I was kind of…thinking of…what 
the…significance level actually meant…and…I’m trying to think back now, but…I knew 
that the…the p-value is based on that and the…p-value is where you could ….the 
smallest number you could pick and still reject the null hypothesis, I think.  
And…um…well…I don’t know.  I think I didn’t pick a I don’t think because…it only 
says that it’s significant at the…this level.  So, I mean, I didn’t know if that meant 
that…it really wasn’t…that I guess the…it wasn’t really any different than, like whatever 
your test statistic ended up to be, it didn’t fall in the rejection region or it did.  So, you 
couldn’t tell whether…ah…today’s students were smarter or not.  And, then….I think I 
was probably deciding between b and c.  And…I don’t know just…I, I mean b and d, I’m 
sorry.  I don’t think c sounded right to me.  I just…I…for some reason I didn’t think it 
had anything to do with, the amount of, the percent certainty, I guess.  But, like that 
confidence associated with it, but… 
 
M: You didn’t think it had anything to do with the confidence? 
 
I: Yeah, well it’s like it’s been established with this 95% certainty.  I just, I don’t 
know, that sounded like it didn’t…um…have to with it.  I don’t know, it just…it didn’t 
sound right to me.  And then…b and d do kind of try, I mean, I guess, the way I was 
thinking is that it related somehow…the…um…to, I guess, it being accepted or rejected.  
Um…based on the level…so.  I’m not sure why I decided on d…but…that’s at least how 
I got down to those two. 
 
discussion continues 
 
I: Um…well…the…0.05 in this case since it’s…the alpha value it’s…that is the 
probability of making a Type I error, which I guess, which is when you reject the null 
hypothesis although it’s true.  So, again, you’re just …just like in the, when…if you’re 
just doing confidence intervals or any type of approximation, I guess to the normal 
distribution.  And, alpha is used…ah…it’s all about, it’s still a probability here.  So, 
that’s, I guess what led me to b and d that it was referencing this as a probability.  
Um…and…I guess…um…in this case it would have to…whatever the…um…z-value 
turns out to be…it would be some…like the z is greater than or equal to z of 0.05 so…I 
guess…ah…you…find this and then based on the test statistic…um…it…I guess…if it’s 
significant at this level then that means either it’s accepted or rejected but…I don’t know 
because…I wasn’t sure whether it was or not.  I think 
 
discussion continues 
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M: So…and why did you like that one better than b? 
 
I: Um…I don’t know, I guess because this one did provide, like, at least the if 
undergraduates today are smarter than those in 1950 which makes you think either it’s 
um…I don’t know, at least that gives you some indication that, in this case it, at least in 
this selection that it was…um…retained.  Whereas the other ones, I mean…b just kind 
of…I don’t know (reads b somewhat inaudibly).  I don’t know, I guess this d just gave 
me some indication of accept or reject so it was easier for me to relate the…alpha equals 
0.05 to the testing. 
 

The reasoning that Interviewee 172 used to arrive at option d is not indicative of deep 

understanding of the logic and reasoning of statistical hypothesis testing.  She did not 

associate the word “certainty” with statistical hypothesis testing (as the interview 

progressed, it became clear that she associated the word “certainty” with confidence 

intervals, not hypothesis testing).  Thus, she did not choose option c. Though the item 

stated that a significant difference was found, she wasn’t sure whether the null hypothesis 

was rejected or accepted.  She remembered that alpha is the probability of making a Type 

I error.  Both b and d included the words “with a probability of 0.05”.  Therefore, her 

attention was focused on these two options.  However the statement in option d included 

the word “if” while the statement in option b did not.  She, therefore, had a sense that the 

hypothesis might be rejected or retained in answer choice d.  This seemed familiar to her 

so she chose it.  Unfortunately, she did not choose it for the correct reason. 

 One other interviewee chose option d.  As was the case for Interviewee 172, the 

reasoning used by Interviewee 112 for choosing option d was not correct.  Initially, 

Interviewee 112 chose option c. But, as he reread the item he realized this was not the 

correct choice and changed his answer to d.  His reason for doing so is illustrated in the 

following excerpt. 

Excerpt:  Interview 112 
I: (reads out loud, somewhat inaudible)  I put the claim that un…I put c the claim 
that undergraduates today are smarter than in 1950 has been established with 95% 
certainty.  It…hmm…for this I had 90% certainty (laughs and reads out loud, somewhat 
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inaudible)  Well, I guess, you can’t put a because there is like a percent error margin.  
(reads out loud, somewhat inaudible)  I guess, I’ll go back to b.  (reads out loud, 
somewhat inaudible)  Actually, d might actually be right.  Cause, it probably does need 
alpha over two there.   
 
M: Why? 
 
I: I’m not really sure why but it kind of strikes me is that now though…yeah, 
because 0.05 you probably need the 0.05 at the beginning and the 0.05 at the end also.  
You need like .9 in the middle.  So it’s 90% certainty, not 95%. 
 
discussion continues 

 
M: So a you aren’t concerned with.  Right?  You pretty much said no… ok.  So what 
are b, c, and d actually saying?  Can you say those in your own words, what they are 
telling you? 
 
I: (reads out loud, somewhat inaudible) Well…I guess it’s saying that they’re 
not…there’s a 0.05%...there’s a 0.05 probability that undergraduates today are not 
smarter…and that’s not…that’s not real…that’s not necessarily true because they could 
also be equally as smart.  Cause it’s just the error margin that they’re not smarter so it’s 
leaving out the equal to part.  And, then, c?  It says, 95% certainty but with 0.05, it should 
be 90% certainty.  And with d, if undergraduates today are no smarter than those in 1950, 
the probability …are no smarter…the probability of the observed IQ is less than 0.05.  
Hmm…(reads out loud, somewhat inaudible)…hmm…like d can almost be the same 
thing I said for b.  I guess…(reads out loud, somewhat inaudible)…I guess cause it 
doesn’t say is true like b says … that’s probably why d seems more a better choice.   
 
discussion continues 
 
I: Um… think I’m gonna go with d now. 
 
M: And mainly because…? 
 
I: I think it’s cause it doesn’t have the is true part that b has.  Because that kind of 
implies that there has to be less than.  Whereas it seemed like without the is true, it leaves 
open the possibility of equal to in d. 
 

Interviewee 112 was confused about whether it should be “alpha over two” or not.  

Though he later stated the hypotheses as if the scenario required a one-tail test, 

Interviewee 112 maintained that it “probably does need alpha over two there”.  He 

reasoned that, if alpha equals 0.05, the degree of certainty should be 90%, not 95%.  

Thus, he decided that option c is not correct.  In considering option b, he was bothered by 

the fact that the statement merely said “probability that undergraduates today are not 
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smarter”.  It did not include the “equals” in it.  He might have been thinking that the null 

hypothesis should allow for the samples to be equal and therefore, did not believe this 

was a correct statement of the null hypothesis.  He reasoned that, because the statement in 

answer choice d did not include the phrase “is true”, it allowed for the possibility of 

equality.  Therefore, he chose that option.  Though Interviewee 112 chose the correct 

response, we see that his reasoning was not due to a deep understanding of the concepts 

assessed by the item. 

 Overall, this item was difficult for the interviewees to answer.  Most of the 

interviewees did not choose the correct answer and, as evidenced by the data, it is 

questionable whether those who did answer correctly did so for the right reason.  It is, 

though, an item that really addresses the heart of the logic and reasoning of statistical 

hypothesis testing.  Because performance on this item was low, more time was spent 

discussing this item than was for others in the interview.  In particular, probing questions 

were asked to determine the understandings students had of the concepts, logic, and 

reasoning that are drawn upon to reach a conclusion.  Through these probing questions, 

an effort was made to gain insight into student understanding of how the numbers given 

for significance levels and the use of sample data connects to the overall logic of 

statistical hypothesis testing. 

 When probed to determine their understanding of how a conclusion is reached, 

the interviewees frequently referred to rejection regions, confidence intervals, and 

statistical tables and calculations.  Many of the interviewees gave “rules” associated with 

certainty, rejection regions, and confidence intervals as illustrated in the excerpts below. 

Excerpt:  Interview 132 
M: Like, how does this all connect?  Where do these numbers come from…and…I 
mean…yeah, no not the math 
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I: The percentage? 
 
M: Yeah. 
 
I: Well cause whenever you do hypothesis testing you need to know to a level of 
certainty.  Like you either you know 80% certainty or 99% certainty.  So, like if you do 
like …ah…um…like a confidence interval.  Like the longer your…the bigger your 
certainty, that the wider your interval will be.  So the same thing…you 
would…um…you’re…what is it?  The area where you could still reject your null 
hypothesis becomes smaller and smaller with the more with certainty you have.  Right 
you always have a level of uncertainty with the data.  Like, to form your conclusions. 
         
Excerpt:  Interview 77 
I: Right.  Um…with the 95% um…like when we learned about confidence 
intervals…um…when you find a confidence interval….you take, if there’s an alpha level 
given, then you take that from 100…um…to find, like, how confident that interval 
from…or how confident…you are…or how confident…trying to word this.  Ok, so when 
you find the confidence interval you’re, you’re finding the interval for…um…the set of 
numbers in which the mean is contained.  And…with…like say you find a 95% 
confidence interval and you find that the mean is contained in that interval of numbers 
then you’re saying that you’re 95% sure that the mean is within that confidence interval.  
So it’s pretty much, um, much like the cert…it’s like um…assuring a certainty in which 
like that number is in there…um…So when I think about this where it says with a 95% 
certainty, I’m thinking that…that study is 95% sure that the claim is true because the 
mean that they found was within the 95% confidence interval. 
 
Excerpt:  Interview 29 
I: Um…I guess I think about it in terms of probability.  So if there’s like a higher 
percent…of…certainty that means there is a high probability of like that data like…or 
that characteristic occurring within…or, you know…like, it happening in the middle 
range, I guess.  Um…so when there’s like 0.05 or, you know, 0.1 or whatever…that’s 
just basically like narrowing…or like, yeah narrowing the interval of …of that range of 
data…occurring.  So (laughs)…so I guess it’s just like a higher…like if it’s greater than 
0.05 or whatever then it’s just…um…it’s…I guess it’s narrowing the interval?  So, it 
just…makes it…less…ah (laughs)…um…sorry I’m confusing myself (laughs). 
 
Excerpt:  Interview 191 
I: Um, I think, I think that has to do with the level of certainty.  Um,…ok, so if 
you’re using ah, a distribution, the normal distribution, the alpha, um, is sort of, I think it 
was the critical value.  I think alpha was the critical value.  Um, so, um, if you have your 
bell curve, um, your alpha would establish, um, how confident you were, um, that your, 
ah, answer was true, so depending on what value you get on this, it’s a z distribution, I 
think, and you would get a value, um, that would either be – you, or sorry – so you would 
establish a value, um, among the first steps.  You would establish a value that’s a 
rejection, um, value, um, and that would be anywhere on this distribution, and then you 
would calculate, um, a value, not – so if that’s your rejection region there, you’d calculate 
a value, um – I don’t remember exactly how – that would either lie – that would lie 
somewhere in relation to this, um, so in this case, you’re trying to test if it’s greater than 
– so if your value that you calculated fell here at this line [referring to a graph of a normal 
curve], then it would be greater than the rejection region, but I think in that case you 
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would accept the alternative.  Um, now the alpha value, um, I think will tell you how 
certain you can be of your answer being correct, um.  I remember alpha values are at the 
end of the distribution, um, and, ah, the smaller the alpha value, the more confident you 
can be that your answer’s correct, um, because as the alpha value increases, then that 
means, like, if you have a smaller alpha value here, then that means you can be pretty 
certain of information for data that’s represented within that region.  As the alpha value 
grows, this region gets smaller, and I think that means that this information becomes – 
you’re less confident that it’s correct. 
 

These excerpts are representative of the reasoning that most of the interviewees used to 

connect the notion of significance level to the decision to reject (or fail to reject) the null 

hypothesis.  We see that generally, the interviewees recited a set of rules used to 

determine the conclusion to a statistical hypothesis test.  These rules referenced technical 

terms such as rejection regions, z-tables, t-tables, and normal curves. 

 When probed to explain the terms they were using, the interviewees struggled.  

Again, it seemed they knew how to use the concepts to solve the problems they were 

given in class, but weren’t sure what they represented.  Consider the following excerpts 

from discussions about rejection regions. 

Excerpt:  Interview 172 

M: So, I’m trying to make connections and some of the things you were talking 
about were these things called rejection regions. [I:  Um hum]  And…um…accepting and 
rejecting, and then p-values…so can you talk to me a little bit about what you mean by 
acceptance region, or rejection regions? 
 
I: Right…um…well…when you’re doing a hypothesis test I…you would take 
the…um…x bar minus the…um…mu that you’re given, or the mean that you’re given in 
the null hypothesis and then…divide it by…ah…the standard deviation divided by the, 
ah, the number or the n which is the sample size.  So…and…I mean, in this it’s a large, 
ah…population so you would use…ah…z-values or…and…I…you would get a certain 
statistic but…when…because you could do a 0.05 ah…level or that’s what the alpha 
equals then um…you have to look at the z-value of 0.05 and because in this case your 
alternative hypothesis is…that the mean is greater than 110 then your rejection region 
would be…um…the z-value greater than whatever…um…it is at 0.05.  So, if…the test 
statistic you ended up coming up with…um…is actually greater than whatever z of 0.05 
is then you reject the null hypothesis in favor of the alternative which…in this case 
is…that the mean IQ is greater than 110.  Um…and then, the p-value from what I 
remember it to be was the…like, smallest number you could choose and then still…reject 
the null hypothesis….so you would take the probability of whatever your test statistic 
was in this case and it would also be z greater than or equal to that number…and then…to 
find it you would have to do 1 minus z less than or equal that number. 
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M: Ok (both laugh).  I’m not sure I got all this.  Ok, let’s just back track [I:  Ok] to 
the z-value.  Um…so you did this kind of calculation, if I got it right [I:  Um hum] x bar 
minus the null mu and then divided by the standard deviation divided by n [I:  Yeah].  
So…do you know why you do all of this? 
 
I: Well…I don’t know exactly why you put it in that form….but….I mean, that’s 
the way that we had been taught for a while, or that type of form to…um…test for 
confidence intervals or test for…ah…like an something approximated to the normal 
distribution…so…I guess that that’s what that’s trying to do is to approximate this test to 
the normal distribution so you’re able to test it cause you can actually find values then 
from the table…um. 
 
Excerpt:  Interview 192 
M: …can you explain to me this rejection region and confidence interval is that you 
keep talking about? 
 
I: (Laughs)  Oh…um…I can’t define them.  I just know how to do ‘em.  (Both 
laugh)  [M:  Ok]  Um…the confidence interval, when we do the calculation, if the 
number falls in the confidence inter, interval, it’s more likely that…that it…it’s accepted.  
I think we did that before we did the null hypothesis, or whatever.  But, that (inaudible) 
and then the rejection we would do…we would use the alpha to come up with 
that…alpha, the degrees of freedom, and all that jazz.  And, we would…um…if the 
number falls in the rejection region then the null hypothesis is rejected. 
 
M: So what does that mean, the rejection region?  How does that…? 
 
I: They would…it’s, um…it would be like…we need to do a calculation, come up 
with a number that…and the…and based on things that we learned in class like…ah…a 
whole bunch of things like with the z affective, I believe, he called it…do you know, of 
course you know (laughs).  Z…um…with the…yeah when we come up with z and if the 
null hypothesis is that z alpha is…wish I had my notes (laughs) …it like, I think that 
(inaudible). Z alpha is…wait, wait, wait.  If the null hypothesis is that mu is equal 
to…equal to….mu 2, I’m just going to use that number because I’m not sure what it, 
what it actually is…then, z alpha, the rejection region is that the absolute value of z is less 
than or equal to…a number (laughs) that we would ultimately find when we look it up in 
the chart and whatnot. 
 
M: Ok. 
 
I: So that would be the rejection region using the number.  So, if it’s greater than or 
less than or equal to, whatever (number).  If it’s…ah…falls within that, then you’re 
supposed to reject it. 
 
Excerpt:  Interview 169 
M: What is…what is this rejection region you keep talking about? 
 
I: It’s…ah…threshold for which your second hypothesis either crosses or doesn’t 
[M:  Ok] and when it crosses…and this actually for a while confused me because it seems 
a little counterintuitive to call it a rejection region.  I was like, oh ok, well, if it gets above 
this number or if crosses that threshold then you reject the second one.  But, it’s actually 
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not.  When it crosses that threshold you accept your second hypothesis and then reject 
your initial hypothesis, your null hypothesis. 
 
M: If it crosses the threshold, you reject and if not… 
 
I: And, if not, you accept… you retain H0. 
 
M: So…if what crosses? 
 
I: Like a test statistic. 
 
M: And, what is a test statistic? 
 
I: It is your mathematical…it is your number that you derive 
from…ah…manipulating your sample mean and standard deviation as well as your 
purported…um…sample mean…and usually that’s what you’re testing, your sample 
mean.  Um…you manipulate those three variables and then your sample size, which is 
usually n…um…and you add ‘em up, subtract and do whatever you need to do...and, if 
the number crosses ah…the threshold whatever, of your rejection region, whatever that 
might be…if it’s greater than some number or less than some number or the absolute 
value is greater than some number you…and then…and obviously you apply those three 
types of rejection regions in different, for different reasons and in different types of 
problems…ah, if it crossed that threshold then you make the determination. 
 
M: And, where does this threshold come from?  [I:  Um]  What does that mean? 
 
I: Um…it’s…it’s based on…your…I believe the symbol is alpha…where you’re 
given, it says test such and such at alph, alpha equals…we’ll say 0.1 and then that means 
to me…divide that number, divide 0.1 by 2 and that gets your alpha divided by 2, alpha z 
divided by 2 number…for z alpha divided by 2, I’m getting my variables mixed up…and, 
ah, look it up in your z-chart if that’s appropriate or your t-chart for smaller 
samples…and you get this number, whatever it is and…your rejection region…ah…you 
set it equal…depending on what you’re second hypothesis is in which if the second 
hypothesis is asking for a greater than…greater than or equal to, a less than or equal to, or 
a does not equal…you change your rejection region’s symbol based on that.  And, your 
rejection region’s simply…measuring one number versus another and seeing if it falls 
above that, below that…if it fits the criteria that you set out, that you set forth for it. 
 

These examples are representative of the explanations that the interviewees gave for 

rejection regions.  Again, we see that the interviewees describe a set of rules and/or 

openly express that they do not know exactly what the regions truly represent.  There was 

no mention of the fact that these rejection regions are determined by referring to a 

sampling distribution of the sample statistic conditioned on the null.  Nor did anyone 

mention that the rejection region provides a means of determining whether the sample 
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collected in the study represents an unusual event conditioned on the null.  Instead, the 

explanations offered by the students were very rule driven with a focus on procedures. 

 Additional attempts were made to probe student understanding of the logic and 

reasoning.  As the interviewees mentioned z-scores and z- or t-tables in their explanations 

of rejection regions, they were asked to explain what these objects represented.  These 

probing questions provided the interviewees with more opportunities to make the 

connection between the procedures and the underlying logic and reasoning.  

Unfortunately, this did not happen.  Some examples of the interviewees’ answers to 

questions about these concepts are included here. 

Excerpt:  Interview 81 
M: Ok.  So what do you mean by alpha level? 
 
I: Um…this test…I don’t really.  It’s the alpha.  It just, like I, it just goes into the 
equation to test things.  I really, I don’t honestly know what it even means.  I don’t think I 
was ever told what it truly means.  And, if I was I…I kind of just…I kind of just learn the 
equations (both laugh). 
 
M: So can you explain at all, like, maybe not what it means but how it’s used? 
 
I: You find it on the chart like you…(writing) you have like alpha and then you 
have to find, like, 1 minus alpha and then alpha over two and then it goes and then you 
find that on the t-chart.  And, that’s a value you plug into the equation.  What I…honestly 
just really not sure other than it’s in the equation.   
 
M: So you do alpha, one minus alpha, and you do alpha over 2? 
 
I: Yeah…. 
 
M; And, you’re putting it into a t-chart.  What do you mean by a t-chart? 
 
I: It’s a t-table.  It’s some table we got that once you found that what alpha equals 
you looked it up and you found, I guess what z was…and, you put it into the equation you 
use to figure some of this stuff out. 
 
M: So do you remember what that…t-table was telling you, or what those numbers 
all meant? 
 
I: No…I don’t…I…either I wasn’t really told what they truly meant, or I didn’t 
really note it down.  Because, honestly I was just trying to remember how to do problems 
to get through the class…so…I don’t really remember in all honesty.  Sorry. 
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Excerpt:  Interview 172 
M: Ok.  So then you look this up on, cause alpha’s 0.05, then you said you look up 
the z-value of 0.05…and you’re looking this up on tables [I:  Right] I assume.  Ok, so 
what do those tables…represent, like, what are the all these numbers that you see in the 
tables? 
 
I: Well, they represent…um…well…the table…(draws) I guess, it, the all the table 
numbers are set up in this type of form…like the z-number less than or equal to some 
little z.  And, the table gives you…um…across…ah, like a…0, 1, 2, 3,…and all the way 
up to about, like, 3.5 and then you can go across and find…ah…like 1 if this was 
like…1.1 you could find like 1.11 and if that’s the little z that you’re trying to look up 
then it gives you…um…the…ah…I think it, this is the probability of this?  So this gives 
you the probability that z is less than 1.11 and the 1.11 refers to the place on the actual 
graph…the…bell curve (draws) where…um…so like this would be 1.11 on 
here…and…this number that you actually look up in the chart refers to…ah…the 
probability that it’s less than that…so.  And…I mean, before we did hypoth, hypothesis 
testing we were kind of finding…ah…z-values in terms of confidence intervals for…you 
could be sure…you know, 95% sure what the mean looking up, ah, where on the chart in 
here the probability is…if you were 95% sure you’d be finding 0.05 or as close to it as 
you could on the chart.  And, then, seeing what little z that was. 
 
Excerpt:  Interview 169 
M: (Writing)…of the rejection region.  Ok, so what are…can you talk to me a little 
about what these z-scores are, this table that you’re looking up?  What is that telling you?  
What’s the table show? 
 
I: Um…it always, I far as I can say, it determine…it’s ah…the distribution…it 
shows a distribution of…it reflects the distribution of your population.  I was always 
really fuzzy about this, me and my friends always…me and my one friend from class 
were like…I really don’t know, some of the time, what the differences are…but I know 
when to use which one.  I can, you know, there are like small tells that you know to use a 
different table. 
 
M: But you don’t know what those numbers are representative of? 
 
I: I’m thinking that it…I’m…I’m trying to say that it is…the probability that a 
number falls…ah, is less than on, on the z-chart itself, that a number is…a given number 
is less than…some other given number. 
 
M: Do you know what those numbers are? 
 
I: I don’t think I do…I keep thinking…I keep just going it’s either in the chart or 
you start out of the chart and work your way in. 
 
Excerpt:  Interview 122 

I: So, like, I understand how they get the numbers, I just, um, will follow their 
concept.  (both laugh)  So I understand how they get everything.  It just – I don’t know 
how they come up with like, establish everything, but I understand by using the tables, 
like this SNV table, the chi-square table, like, I understand how they try to get these 
numbers. 
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M: Which also brings me to another question, then, these z-scores, what do you 
mean by a z-score? 
 
I: Z-scores is, um, usually there’s like an equation regarding to that, like, to 
determine, if I remember it, x minus…(writing)… er…x square over standard deviation, 
like if you give, um, if you’re trying to find like a member of some sort, it’s kind of like 
difficult to explain because I don’t have my tables with me.  This like – It’s just telling 
you there’s like a huge table.  And then there’s like this area of all these numbers.  And 
that’s your probability.  The z-score, just is – just like a address kind of to place where 
your number is at. 
 
M: Okay. 
 
I: To see where your rejection area is at. 
 
M: And then what do those probabilities for?  They’re probability of what? 
 
I: Like, probability of some – something to occur, like try and do the hypothesis 
testing was a probability in 95% of this occurring.  So we’re trying to use that 95% con – 
change that to a decimal to 0.95 and then look at the – the SND table which is the 
standard normal, uh, distribution table to determine what is your z-s – well, your z-score 
to get this number. 
 
M: Okay. 
 
I: And like, by doing that, like you subtract the 1 minus 0.95 and you get a 0.05.  
And then if you find this number in the area, you – there’s like – this is kind of difficult 
without the table, like you have these – you have numbers here [refers to her drawing of 
the table] and then you have numbers here and then you have the probabilities, the 
different number of probabilities you’d look was close enough to this, and then you had 
to find the other the go across to your, what is that, vertical to get that number  And then 
you go to horizontal and get that number and add them together to get this. 
 
Excerpt:  Interview 192 
M: Ok.  So do you know what these z things come from? 
 
I: The…(laughs)…honestly, no, because I’ve been trying to figure that out since we 
learned them…where…the…where we can find them in the chart.  To a point where I 
just gave up (laugh) and used the numbers they gave us in…um…the z alpha numbers 
they, that they gave us in the book.  So there’s a little chart so you know if you 
have…when 1 minus alpha equals you know 99, 90% then ah…the z alpha over 2 is 
1.945 or something. 
 
M: And, was ever…were there any graphs associated with this at all? 
 
I: Well with…with finding z itself, yeah there’s graphs in the back of the book.  
But, the z alpha…the z alpha over 2, I really don’t…know.  It’s like I go to class and he 
starts talking about it and they’re like oh it’s equal to this, it’s equal to that and I’m like 
how do you find it?  And, they’re like look in the chart.  And, I’m trying to look in the 
chart and I don’t see it.  So I just went to the book, opened the book to the chapter and 
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there’s a small little chart there.  But then I would get questions about, you know…ah, 
percentiles that aren’t in the book so in the book, like on the chart it goes from 80 to 99 
and then I would get, you know what’s the …80 to 99…but then it would go 80, 85, 90, 
95, 97, 98, and 99 (laughs).  Then, I would get, you know, what’s the 96 confidence…get 
a…give me a confidence interval with a 96%. 
 

Here, again, we see that the interviewees did not have a strong understanding of a 

concept important to the overall logic and reasoning of statistical hypothesis testing.  The 

interviewees did not understand that the statistical tables give probabilities associated 

with the sample data under the assumed null condition.  In some cases, the interviewees 

explicitly stated that they didn’t know what the tables represented.  In others, they offered 

very procedural explanations of the tables. 

 Another concept that came up in the interviews is that of the normal distribution.  

As evidenced by some of the excerpts presented above, some of the interviewees used 

graphs to explain their thinking about the item and/or to explain rejections and statistical 

tables.  In the previous section (presentation of interviewee responses to the Analysis of 

the Sample and Decision Rule items) we saw that the interviewees do not understand 

what the graphs represent.  Nevertheless, some of the interviewees referred to normal 

curves to explain their thinking for this item.  These interviewees talked about the 

assumption of normality that is associated with statistical hypothesis testing. However, 

this discussion was often rule-bound as evidenced by the following examples. 

Excerpt:  Interview 192 

M: So you don’t know what this graph is a curve of…what that is? 
 
I: No.  I just know it’s a normal distribution.  Right?  But, that…cause that’s what 
he tells me (laughs). 
 
M: So you don’t…do you know what normal means? 
 
I: (Laughs) 
 
M: No. 
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I: (Laughs) I just do the graph. (Both laugh) 
 
M: Ok…um…and do you…so then do you know why it’s that shape and not some 
kind of other thing that would be…? 
 
I: No 
 
M: Like a parabola or a line or anything like that? 
 
I: No.  I just, they just tell me that normal distribution, shaped like a bow and I 
work with it. 
 
Excerpt:  Interview 172 
M: Ok (both laugh).  I’m not sure I got all this.  Ok, let’s just back track [I:  Ok] to 
the z-value.  Um…so you did this kind of calculation, if I got it right [I:  Um hum] x bar 
minus the “null mu” and then divided by the standard deviation divided by n [I:  Yeah].  
So…do you know why you do all of this? 
 
I: Well…I don’t know exactly why you put it in that form….but….I mean, that’s 
the way that we had been taught for a while, or that type of form to…um…test for 
confidence intervals or test for…ah…like an something approximated to the normal 
distribution…so…I guess that that’s what that’s trying to do is to approximate this test to 
the normal distribution so you’re able to test it cause you can actually find values then 
from the table…um. 
 
M: Ok, so…this gives you a z-score, right? 
 
I: Right. 
 
M: Ok.  And, then, so you’re saying that you think that this is to approximate it to 
the normal distribution. 
 
I: Um hum. 
 
M: And, why the normal distribution? 
 
I: Because the sample in this case at least is…in the class we’ve been using that 
you approximate it to the normal distribution if your sample size is greater than 30.  So, 
in this case, it’s a sample of 500 students…um…so that’s definitely greater than 30 so 
you would use the normal distribution as opposed to the t-distribution for samples that are 
smaller than 30. 
 

In addition to a “rule-bound” understanding of the connection of the normal distribution 

to the logic and reasoning of statistical hypothesis testing, the interviewees also did not 

have a strong understanding of what was assumed to be normally distributed.  Many of 
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the interviewees explained that the values in the sample were normally distributed, not 

the sample statistics for all samples of a given size. 

 In summary, a great deal of time was spent probing interviewees to not only 

explain their thinking about this item specifically, but also to explain their understanding 

of the overall logic of statistical hypothesis testing, in general.  As a result, the discussion 

surrounding item number 5 was very useful in gaining insight into student understanding 

of the overall logic and reasoning associated with statistical hypothesis testing.  

Unfortunately, however, the discussion revealed that the interviewees did not have deep, 

connected understandings of the logic and reasoning associated with statistical hypothesis 

testing. They did not understand the test to be an analysis of the degree to which the 

sample collected is unusual conditioned on the null hypothesis.  Hence, the interviewees 

did not interpret a statistically significant result correctly. 

 One final item from the Recognizing Applicability and Conclusion grouping 

was included in the follow-up interview and was used to further investigate the claims 

that introductory statistics students make when given a conclusion and the sample data.  

Classified in the Conclusion category, item number 6 assesses whether, given the results 

of a statistical hypothesis test, students understand what kinds of claims about that 

information are valid and which are not. 
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Figure 5.6 

Item Number 6, Multiple-Choice Assessment 

 

 

This item is similar to that of number 5.  However different information is given and the 

answer choices address different aspects of what can be inferred from a conclusion 

statement.  The answer choices in this item address inference from a sample to the 

population.  Answer choice c is correct.  Answer choices a, b, and d are incorrect 

inferences because they are too conclusive.  Each of a, b, and d make correct claims 

about the sample but these claims do not necessarily hold for the population.  Even 

though the difference in GPAs was found to be significant at a significance level of 0.05, 

this does not mean that the sample statistics provide direct measures of the population 

parameters. 

6. A study tested the claim that: Transfer students are less successful at the state university 

than students admitted as first time freshmen.  Results showed a difference in first 
semester grade point averages that is significant at the 0.05 level.  Information from 
samples of transfer and first time freshmen is shown in the table below. 

 

 Transfer Admits Freshman Admits 

n 50 50 

mean gpa 2.5 2.8 

 

What is the most reasonable inference about the population of all first semester 
students that can be drawn from this information? 
 
a. There are equal numbers of transfer and first time freshman students on campus. 

b. The mean first semester GPA of all freshman admits is 0.3 greater than that of all 

transfer admits. 

c. It is unlikely that the first semester GPA of all transfer admits equals that of all 

freshman admits. 

d. The mean first semester GPA of all University students is 2.5+2.8
2

 or about 2.65. 
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 In the multiple-choice assessment, 7.7% of the participants chose answer choice 

a, 34.6% chose b, 36.5% chose c, and 21.2% chose d.  Thus, performance was not very 

strong on this item.  Based on the percentage of students who chose answer choices b and 

d, it was concluded that introductory statistics students often think that sample statistics 

provide direct measures of population parameters. 

 Of the eleven interviewees, 1 person chose a, 2 people chose b, 5 people chose c, 

and 3 people chose d.  Over the course of the interviews, however, several people 

changed their answers.  One person changed from a to b, 2 people from d to c, and 1 

person from c to d.  With these changes, no one had chosen a, 3 people chose b, 6 people 

chose c, and 2 people chose d. 

Interviewee Explanations:  A Summary 

 Over half of the interviewees chose answer choice c and used similar reasoning to 

justify their choice.  They eliminated option a because they did not it was reasonable to 

assume that just because the sample size was 50, that meant that each of the populations 

also had 50 members.  They eliminated answer choice b because it was too conclusive.  

The interviewees felt that it was not reasonable to assume that, just because the sample 

means showed a difference of 0.3 points, the population means would necessarily differ 

by 0.3.  Many of them said the same for answer choice d, claiming it was too conclusive.   

Examples of this reasoning are presented in the excerpts presented below. 

Excerpt:  Interview 132 
I: So…(reads out loud, somewhat inaudible)…hmm.  Um…let’s see, I don’t…I 
don’t know.  None of them really seem that…ah…clear, now that I think about it.  
Um…I chose c but it…um…I guess I just looked at from like 2.5 and 2.8, they seem so 
similar that they’re probably isn’t a difference.  But, that was just by like looking at 
numbers.  A…um…I didn’t consider correct because you’re just taking a small sample of 
just 50 students and so that doesn’t really even talk about how many students applied that 
were transfers and how many students who applied that were freshmen…so.  And…and I 
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guess b and c are both…they both seem unlikely to happen because this is just you’re 
taking 50 students who are transfers and freshmen, and so…yeah, the freshmen do have a 
0.3 higher GPA but ah…it says that all freshmen have a higher GPA than all transfer 
students…and, so.  That didn’t really seem very likely.   
 
M: Ok.  And what was d? 
 
I: D…ah…for the same reasons.  They’re talking about all university 
students…ah…so that means seniors, juniors, sophomores, and freshmen.  And, none of 
that information is given, and so.  Yeah.  Oh yeah I said all students and so, but here it’s 
just freshmen and transfer students and so that prob…that doesn’t represent all the 
students in the college. 
 
Excerpt:  Interview 15 
I: Well, for like a in 6…like you didn’t…um, you didn’t test all of them so you 
can’t say that um, the whole populations are equal.  You just had equal sample numbers. 
 
M: Um hum. 
 
I: And like again you can’t make a concrete conclusion about all of them, because 
you didn’t test all of them, you only tested a sample. 
 
M: Is that for b? (inaudible) 
 
I:  Yeah, so b would be true for your sample but you can’t like really say that it’s for 
all of them.  Cause, that may not true…like, if you go back and test all of them, it might 
be different.  And then…like for c, that’s your sample found that…like they’re not equal.  
So you can probably say like based on your sample that it’s unlikely for all of them.  
Because you’re not like going out there and making like a concrete statement about all of 
them, because you can’t possibly know that because you didn’t test all of them.  So 
saying it’s unlikely means that like you’re pretty sure but, you know, there’s a possibility 
that you’re wrong.  And, like, d again is like making a statement about all of them. 
 
M: Does the fact that they did this test up in the beginning, the stem…and they found 
it to be significant at the 0.05 level, does that enter into anything that you’re answering 
there?  Your thinking about these? 
 
I: Um…I guess because it’s significant like you can …um…say that like since the 
population like this…that you can…I guess you can say that freshmen GPA’s greater 
than the transfer for your sample.  And, so, you can say like they’re unequal and then so 
you can project some of that conclusion to the population. 
 
Excerpt:  Interview 169 

I: I chose d but that’s not…that’s not what I would choose now.  I must have just 
completely read c wrong, because I would now choose c. 
 
M: Ok.  And, why? 
 
I: Um…because…(inaudible)…well it’s conjecturing that the study…the study’s 
claiming that transfer students are less successful than first time freshmen and so…that 
means to me, that tells me, that helps me…ah…made…you know, make obvious that 
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transfers are a small group out of a large group…that transfers versus all freshmen.  And, 
the assumption being that it’s, there’s only two groups in the large group of freshmen 
students.  that transfers are one and…ah…everyone else is another.  And, so…it’s 
claiming that…my first impressions of the data…lead me, lead me to believe that that’s 
right.  And, they’re and c fits that…c fits that criteria…or c wait, no, c helps me put that, 
verbalize that.  D is not right (laughs).  I don’t know why I chose it. 
 
M: Why isn’t d right? 
 
I: Um…it’s asking for…it’s trying to make a claim for all University 
students…when it’s not…it doesn’t take into account…when it says all university 
students that means…freshmen through graduate students, freshman through seniors.  It’s 
not the right…and not only that, you can’t know the mean based on a small sample, like 
that.  Or, I mean, a small sample consider, you know, under that assumption that a 
University has a lot of…people at it. 
 
M: So, if it would have said that the mean of, mean first semester GPA of fresh, 
freshman and transfer students is that…would that be correct?  Or still not correct? 
 
I: It’s making its way toward correct but it’s still not.  Um… 
 
discussion continues 
 
I: A is not right…um, it just, the sample just happened to be the same size.  And, 
again, b makes a very general claim.  I mean the whole point of hypothesis testing is that 
you can’t test an entire population. 
 
Excerpt:  Interview 112 
I: (reads aloud, somewhat inaudible) Yeah, you can’t assume there’s equal number 
of freshmen and transfer students on campus just because the sample size is the same.  
So, that’s why a can be thrown out.  (reads b out loud, somewhat inaudible) You can’t 
assume… that, that for all either.  Cause that hasn’t been proven beyond the 0.05 
significance level.  (reads out loud, somewhat inaudible) 
 
M: Oh, wait.  It did say that it was. 
 
I: Well…well, yeah, it is significant at the 0.05 level, but only there.  Yeah, it 
doesn’t go beyond that…necessarily.  Like it might not be significant at the 0.01 
level…or like the 0.001 level. 
 
M: Oh, ok. 
 
I: So you can’t assume that it necessarily has to be. 
 
M: Ok, so it may not be at a smaller level 
 
I: Yeah 
 
M: (writes)… be significant at a smaller level, so it can’t assume it’s true for all.  Ok. 
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I: (reads c out loud) Yeah, I figure that…I figured that one was the best because 
they’re…cause at the significance level, they’re not equal.  And, it…like…I don’t think 
it’s like a good enough significance level like you can…can assume that that is the…like 
difference there but at least you can know that there…there is like a… it…it is higher for 
the freshman admits.  It’s fairly significantly known that.  And, then d the mean first 
semester GPA of all university students is…yeah, I thought… that just didn’t seem right 
to me adding them together and getting an average using that. 
 
M: Why not? 
 
I: Hmm…I thought that…hmm…I don’t know (laughs).  I thought they should 
probably have to like add out all of them from the individuals and then divide it.  I could 
be wrong, though.   
 
M: All the individuals….? 
 
I: And anyway it’s only…anyway it’s only at the 0.05 confidence level too. 
 

Others eliminated d because they were not sure whether the calculation of the mean was 

correct.  Some excerpts that illustrate this reasoning are included below. 

Excerpt:  Interview 77 

I: Ok.  Ok, well a is kind of obvious that there’s equal numbers of 
transfer….no…wait.  Well a’s not true because these numbers were from the sample.  It’s 
not saying that there’s 50 transfer admits and 50 freshmen admits.  And, so a would not 
be true cause it’s saying that there are equal number of transfer and first time freshmen 
students on campus, since these numbers are just taken from…these are sample from a 
larger population. 
 
M: So you can’t just [I:  Yeah] believe that that’s going to be the case? 
 
I: Yeah.  Um…I …I mean, I would say, c because it’s showing that the mean GPA 
between the transfer and the freshmen students, um, is different…between the samples 
that were taken.  And, so you could say that it’s unlikely that the GPA in the two…two 
categories of students are equal.  Um…b…I …didn’t think would be the most reasonable 
inference because this is just a sample that was taken so, the number where it’s saying is 
0.3 greater…um…that could be much higher or lower within the whole population.  I’m 
not really sure about d, um…I don’t think it’s right…or I don’t think that you could just 
say that the mean first semester GPA of all university students is just the average of the 
two…um.  I mean it could be…but… 
 
Excerpt:  Interview 29 
I: Maybe I just didn’t read.  (Both laugh)  Um…I guess c could be true (laughs).  
Now, I guess I change my answer to c (laughs). 
 
M: Ok.  So now why don’t you like d…or a or b? 
 
I: Um…(reading a out loud) there are equal numbers of transfer and first time 
freshman students…like, I don’t know.  It seems…kind of…I mean that’s just like the 
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size of the sample, so…I mean, you don’t know how many like transfers or freshmen are 
actually on campus.  [M:  Ok]  And, um…and like because of the small sample you don’t 
know…I don’t know…like…I guess because like I thought the sample was like…it was 
only like 50 people, or 50 of each…so, I guess to say…that the mean is 0.3 greater than 
that ….it’s just….it is…too conclusive (laughs)?  Cause, I mean, you’re actually sure for 
certain so, I don’t know, yeah (laughs). 
 
discussion continues 
 
M: Ok.  And, why not d now?  You switched to c now. 
 
I: Um…I guess c just seems like a better answer now (laughs).  I’m not really sure 
about d.  Like I don’t know whether like taking the average of two means, like, if that 
would…um…you get a better average, I guess, of….the two groups. 
 

These excerpts illustrate that, on the whole, the reasoning used by the interviewees who 

chose the correct answer was similar.  It is interesting to note, however, that in their 

reasoning, only a few of these interviewees referenced the fact that the results were found 

to be statistically significant.  Answer choice c is legitimate, especially since we are told 

that the results were found to be statistically significant at a level of α = 0.05.  With the 

exception of Interviewee 112, none of the interviewees mentioned this fact.  Based on 

their responses, it is not clear whether they chose c merely because the sample data 

supported the notion that the two GPA’s are not equal (as did Interviewee 132) or 

whether they did so because the results were significant and they simply neglected to 

mention it in their reasoning.  Nevertheless, they all understood that a, b, and d were not 

appropriate inferences. 

 Two interviewees chose answer choice d. Interviewee number 172 thought both c 

and d were reasonable inferences but she was more comfortable with answer choice d 

because she remembered doing the calculation suggested in option d. Her reasoning is 

illustrated in the following excerpt: 

Excerpt:  Interview 172 
I: Ok.  (Laughs)  Um…ok, well I chose d in this case at least I think just 
because…um…I knew that…ah…this is how you could find the, ah, the mean from 
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examples that we’ve done in class where they just give you information like this and then 
it asks you for the mean and standard deviation.  Or, the, not the standard deviation, the 
standard error.  Um…so I knew that that was how you could find the mean of all 
the…ah…students and, um…. 

 
discussion continues 
 
I: …And, then, also because it says there are equal numbers.  I mean, in this case, 
this is just a sample of both of them, so…and you would want your samples to be equal 
to be able to…um…perform hypothesis tests.  And…the same thing with b that it’s just 
like because these are both just samples…um…you don’t know if like….in general you 
can make the assumption that all freshman admits have the 0.3 greater GPA than 
transfers.  And, um…I mean, I guess….c is a…reasonable…inference but it’s 
just…um…I don’t know I was more sure about d because I knew that that was a way that 
you could calculate the mean from the things that were given. 

 
M: Ok.  So again, this is one of those what’s the most.  So it sounds like to me that 
you knocked out a and b and said they’re not [I:  Um hum] even possible.  But then c and 
d are possible but d you felt more comfortable with because you’ve done those kind of 
calculations before [I:  Right].  Ok.   
 

Interviewee 172 was used to performing the calculation described in answer choice d.  

Therefore, she chose that option.  She did, however, recognize that answer choice c was 

also a valid option. 

 Interviewee 192 also chose answer choice d, but not until she had struggled to 

decide whether answer choice c was correct.  She had initially picked option c but then, 

over the course of the discussion about item number 6, changed her mind.  Her reasoning 

is illustrated in the following excerpt: 

Excerpt:  Interview 192 
I: (Reads number 6 out loud)  So…mean GPA 2.5, freshmen admits 2.8…it is 
unlikely that the first semester GPA of all transfer admits equals that of all freshman 
admits…hmm…why did I chose that?  Um…not looking…intuitively, I guess…because 
transfer…for the transfer admits…hmmm…  (Reading a) There are equal numbers of 
transfer and first time freshman students on campus…I mean, a is…  I think that I did it 
by elimination.  I mean, a is not a…something that didn’t make sense to me.  There’s no 
way there would be equal numbers of both. 
 
M: Even those these numbers (pointing to the 50 in both columns) are the same? 
 
I: I mean, it…I got…I mean…that I guess that’s true, but…(reads b out loud, 
somewhat inaudibly).  Hmm…why’d I pick c?  I don’t know why I picked c. Because, 
looking at a, b, and c they’re all true based on the chart.  And, then, d…would it be d?  
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Because the d is something you logic, logically infer based on the chart because…that the 
mean GPA of all first semester…students… 
 
discussion continues 
 
I: I wanna choose d. 
 
M: D.  Why? 
 
I: Because a, b, and c…you can get from the chart and d is something that you have 
to actually…ah…put together from the information in the chart. 
 

Here we see that Interviewee 192 changed her answer to d because, for her, it was the 

only option that constituted an inference.  She reasoned that the claims made in answer 

choices a, b, and c could all be justified directly from the table.  However the claim made 

in answer choice d could not.  A calculation was required to make that claim.  Therefore, 

it is the only statement that was inferred from the table.  Unfortunately a 

misunderstanding of the meaning of the word “inference” caused Interviewee 192 to 

change her answer from one that was correct, to one that was incorrect. 

 A misunderstanding of the word “inference” was also an issue for two other 

interviewees.  Interviewees 81 chose answer choice b because he thought it was the 

strongest inference that could be made from the data.  His reasoning is illustrated below. 

Excerpt:  Interview 81 
I: Ok.  Um… I said b, the mean first semester GPA of all freshmen admits is 0.3 
greater than that of all transfer admits.  And, the reason I said that is because it, it is…the 
mean GPA for freshmen admits is, ah, 2.8 and transfer is 2.5, which is .3 higher.  Which 
is why I chose that cause it was basically directly from the data.  I felt that was the best 
answer.  Like, there, there were an equal number of transfer and first time freshmen 
students on campus didn’t really seem to have much to do with it.  Um…it’s unlikely that 
the…well that was a.  Ah, b was what I chose.  C says it is unlikely that the first semester 
GPA of all transfer admits equals that of all freshman admits, which was true but I didn’t 
really believe that the, ah, study was really about that.  And, d, the mean first semester 
GPA of all University admits is 2.5 plus 2.8 over 2, or about 2.65, I mean, again that’s 
true.  Um…but I still felt b was the best answer because it was taken directly from the 
data like you could…obviously c there was a 0.3 difference in the, ah, GPAs. 
 
M: Ok.  So, you said you didn’t pick c because you didn’t think that was what the 
study was about.  So, can you say more …what you mean about that. 
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I: Um…it is unlikely that first…(reads out loud, somewhat inaudibly).  I mean, it 
says that it’s unlikely but I mean it’s not really proving that because it wasn’t asking you 
if it was likely they were the same.  I mean 0.3 off is, isn’t that much.  So, I, that’s 
technically true.  Um…but I, I felt b was a more obvious and better answer because it, it 
was taken directly from the data.  I didn’t really think c had much to do with it, due to the 
fact that…um…the question was talking about inference.  Even though it’s true I just 
didn’t think…I didn’t think it was a strong of an inference as b. 
 

Interviewee 81 chose answer choice b because it was information that “could be directly 

taken from the data”.  For him, that was what constituted an “inference”. 

 Interviewee 122 also struggled with the meaning of the word inference.  Consider 

the following excerpt from her interview. 

 Excerpt:  Interview 122 

I: Six?  Okay.  A study tested in the claim that transfer students are less successful 
at the state university than students admitted as first time freshman.  The resu – results 
show the difference in first semester grade point average that is significant at the 0.05 
level.  Information from samples of transfer and first time freshman is shown in the table 
below.  What is the most reasonable inference about the population of all first semester 
students that can be drawn from this information?  Um…Okay, what I… what I got the 
answer to, um, a.  There are equal numbers of transfer first time freshman students on 
campus.  Um, this usually is, like in my opinion, or most of the time, like they have the 
same sample size so you could tell, um, that there is a great change or not, but then…but 
like, um, it kind of makes sense, because, um, I don’t know how to explain it.  Um, 
because it’s easier to work with a sample size that have, if you have, ch… look at the 
transfer students that are 50 and the freshman 50, you could do a better comparison, 
because you have a, um, same amount of, um, like GPA, say like, uh, a odd number, like 
one is 43 and the other one is like 47. 
 
M: Okay. 
 
I: That’s my reasoning for that one.  Um, b, the mean for semester GPA of all 
freshmen admits is 0.3 greater than that of all transfer admits.  Well, usually, um, 
regarding to make an inference, they don’t really look at, because you’re trying to find 
which actually was your samp, your sample size and your mean.  Um, this will probably 
come later on regarding to trying to determine the, a reference.  It’s like the, the 
difference part, it’ll probably be later on.  Um, c, it is unlikely that the first semester GPA 
of all transfer students equal that of all freshman admits…well, it kind of, that kind of 
like, kind of seemed, kind of a bit biased in regarding to transfer students and freshman 
like ad, admits, because sometimes you never know that probably transfer students can 
do this as well as freshman students also.  They just – this sample size, it just 50, so you 
can’t really get a broad aspect regarding to that one.  Um, d, the mean first semester GPA 
of all university students is 2.65.  Hum, well I could use actually a and d.  Okay.  I think 
like I’d be able to, I don’t know why I crossed it out, but I think I’d be able to use d 
because regarding to trying to find a, um, a statistical inference, you would need to, like, 
try to find a way to use the mean, median, mode and the mean is like the best way to 
determine a difference between the two population or see an average between the two. 



 

 247 
 

 
M: Okay.  So…  
 
I: Because like mostly to me, like in my opinion, like the sample size and the 
mean…like, the GPAs are more important than like finding like subtracting those two 
because I can’t really…I mean as much. 

 

Interviewee 122 chose option a because, for her, the most reasonable inference was the 

part of the test that was the most important.  She thought it was most important to have 

equal sample sizes, so she chose answer choice a.  Hence, the discussion with 

Interviewee 122 is another example for which an interviewee did not understand the 

meaning of the word “inference” and chose the incorrect option.  By the end of the 

discussion, however, Interviewee 122 changed her answer to choice b.  But, it wasn’t 

clear why she did so and, due to time constraints, there was not time to probe more into 

her thinking. 

 As was the case (with the exception of Interviewee 112) for the interviewees who 

chose the correct answer, we do not see evidence that the interviewees who chose the 

incorrect answers considered the fact that the difference was found to be statistically 

significant at the α = 0.05 level in their thinking about this item.  Thus, we are not sure 

whether the interviewees used that piece of information in their reasoning or if they 

simply ignored it.  If the interviewees ignored that piece of information, the question 

remains as to how their reasoning may or may not have changed if they had paid attention 

to it.  Fortunately, there was an opportunity to raise this issue with one person:  

Interviewee 191. 

 Interviewee 191 initially chose answer choice b but began to question his choice.  

In the interview, he was asked how the fact that the difference was found to be 
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statistically significant at the α = 0.05 level of significance impacted his reasoning.  The 

following excerpt illustrates his thinking with that additional piece of information. 

Excerpt:  Interview 191 
I: Ok, so looking, just looking at the information and not the answers yet, um, 
obvious inference would be that this, this hypothesis or this claim, transfer students are 
less successful at the state university than students admitted as first time freshmen, um, 
the table shows that to be true. 
 
M: Ok. 
 
discussion continues 
 
I: No…for…no, um, sorry, I’m getting confused with the population and the 
sample.  All right, well you can’t infer that based on – because these are only samples, so 
you can’t infer that  
 
M: Ok.  Ok. 
 
I: Um …the mean, or c, it is unlikely that the first semester GPA of all transfer 
admits equals that of all freshmen admits.  It’s unlikely that…I would say c isn’t the most 
reasonable because, ah…well, I didn’t…grades vary throughout everybody.  Um, it’s 
unlikely…so I don’t think this conveys…that’s asking about individual grades of 
students.  Um, you can’t really infer anything about the individual grades, I don’t think.  
Wait a minute.  It is unlikely that the first semester GPA of all transfer admits equals that 
of all freshman admits.  Ok, that, that is likely, but I don’t think you use the table to find 
that out.  Um, the…the mean first semester GPA of all university students is…um, um, d 
I wouldn’t use because well, you don’t know the size of the university, so you don’t 
know how valid these samples are.  It could be a very small percentage or it could be a 
very large percentage.  You don’t know that for sure. 
 
M: Ok. 
 
I: So that’s why, um, I wouldn’t choose d, ah, and so yeah, I chose b.  Ah, I chose 
b, the mean first semester GPA of all freshman admits is 0.3, greater than that of all 
transfer admits.  Well…well, actually that’s kind of, looking back at b, it’s asking, ah, 
you to assume something about every student’s individual grade… 
 
M: Ok, the question asks for all – most reasonable inference for all – with all the 
information, so not just the table, but also the fact that they did the test and it was – the 
differences were found to be significant at the .05 level.  
 
I: Mm hmm. 
 
M: So they already did everything, and this was just their sample information, so 
taking that altogether, I’m hearing you say that a and d are not inferences that could be 
made.  Am I correct? 
 
I: Um, yeah. 
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M: You shouldn’t make those inferences.  B you chose, but now you’re thinking that 
you shouldn’t make the inference either.   
 
I: Well, that – when I was – when I was looking at that though, again, you 
mentioned that, um, it’s proven significant at the .05 level.  Um, so I think considering 
that, that means that this information you can be pretty confident in, so I think they’re 
saying with that, you can assume that, ah, the average – if you take a student, um, a 
freshman student, you can assume that his – his or her grade is somewhere around a 2.8, 
um, and you can assume with transfer students that their grade is going to be about a 2.5, 
and you – with – because it’s significant at the .05 level, you could be confident in those 
assumptions, I think. 
 

Immediately after Interviewee 191 reread the item, he made a statement that sounded 

very much like the claim made in answer choice c.  However, Interviewee 191 noticed 

that he chose answer choice b.  As he talked through the options, he began to question his 

choice.  He was concerned that the claim in answer choice b was too conclusive.  After it 

was pointed out that the difference was found to be significant at the 0.05 level of 

significance, however, he convinced himself that b was, indeed, the best option.  Because 

0.05 is low, one can assume that the sample statistics provide (fairly) direct measures of 

the population parameters.  He reasoned that this direct translation of measures was 

reasonable because the results were found to be significant at a low level of significance. 

 Based on these results, it is reasonable to ask whether the same reasoning would 

have been employed by the other interviewees had their attention been drawn to the fact 

that the difference was statistically significant.  It may be, however, that the interviewees 

did consider this piece of information in their reasoning.  Nevertheless, there seems to be 

a general consensus that the sample data is just that.  It is data from a sample.  The 

population may or may have the exact same parameters as the sample statistics. 

Analysis 
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 Overall, the explanations provided by the interviewees for the items from the 

Recognizing Applicability and Conclusion categories indicated that they did not have 

strong understandings of the role of inference in statistical hypothesis testing.  They did 

not appreciate the value of the method as an inferential tool, nor did they understand the 

nature of the inference drawn by statistical hypothesis tests.  They were uncomfortable 

with the words “uncertainty” and “probability” and were quick to make strong claims 

about populations based on information from a sample and/or based on the results of a 

statistical hypothesis test.  While the interviewees did not believe statistical hypothesis 

tests to be methods of proof, they did believe that statistical hypothesis tests provide 

information on the degree to which a given hypothesis is true.  In addition, given sample 

information and a statistically significant result, the interviewees believed that there is a 

strong chance that the sample statistics provide direct measures of the population. 

 The follow-up interviews provided additional insight into student thinking about 

the overall logic and reasoning of statistical hypothesis testing.  Based on their 

explanations for their answer choices, it was clear that the interviewees did not have 

connected, complete understandings of the logic and reasoning of statistical hypothesis 

testing and that this lack of understanding impacted the way in which they drew 

inferences about sample information and the conclusions offered by statistical hypothesis 

tests.  The interviewees did not understand the role of indirect reasoning in the method 

and, therefore, did not have a strong understanding of what it means to say that a result is 

statistically significant.  In addition, they did not understand the role of probability and 

sampling distributions in determining whether a result is statistically significant.  When 

asked to explain these concepts, the interviewees recited rules and procedures.  Such 
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responses indicated that the interviewees’ understanding was not well developed.  

Analyses of student responses to further questioning indicated that the interviewees did 

not understand the reasoning and logic that supports the procedures they were describing.  

They did not understand how those procedures are used to determine if a sample is 

unusual conditioned on the null hypothesis.  Unfortunately, this gap in understanding 

impacted their overall reasoning about the results of a statistical hypothesis test and how 

those results are valuable. 

 

Summary 

 The data and analysis in this qualitative phase of the study confirms what was 

found in quantitative phase:  introductory statistics students do not have strong 

understandings of the logic and reasoning that support statistical hypothesis testing.   The 

data collected in this phase indicates though introductory statistics students can perform 

the operations involved in statistical hypothesis testing, they do not have a deep, 

connected understanding of the logic, reasoning, and concepts that support those 

procedures.  Analysis of interviewees’ explanations for choosing the answers they chose 

on the multiple-choice assessment indicated that students have disconnected, incomplete 

understandings of the logic and reasoning of statistical hypothesis testing.  In addition, 

the data indicates that introductory statistics students struggle to make those connections 

and, thus, are not able to articulate their thinking very well.  These results extend 

conclusions from the quantitative phase as they pinpoint more specific components of 

statistical hypothesis testing that introductory statistics students do and do not understand. 
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 The results of the qualitative phase indicate that introductory statistics students do 

not understand that statistical hypothesis tests employ indirect logic in testing to see if the 

sample presents an unusual case, conditioned on the null hypothesis.  They do not have a 

conceptual understanding of sampling distributions.  They do not understand what the 

graphs of sampling distributions represent, nor do they understand the reasoning that 

supports their use in statistical hypothesis testing.  In particular, introductory statistics 

students do not have a strong understanding of the role of probability in the logic and 

reasoning.  In fact, many of them do not associate the words “probability” and 

“uncertainty” with statistical hypothesis testing.  They do not understand that a result is 

statistically significant if the probability of obtaining the collected sample, conditioned on 

the null, is low.  They are able to use statistical tables and the level of significance to 

determine whether or not to reject the null hypothesis, but they do not know that those 

tables give probabilities associated with sampling distributions for a given sample size 

conditioned on the null hypothesis.  They do not understand that a rejection of the null 

hypothesis is an indication that the sample is unusual. 

 Furthermore, the results indicate that because introductory statistics students do 

not understand the overall logic and reasoning associated with statistical hypothesis 

testing, they do not have strong understandings of the role of inference.  They often make 

inferences about the population directly from the sample data, rather than noting whether 

or not the result was statistically significant to begin with.  Hence, introductory statistics 

students do not understand the value of statistical hypothesis tests in providing a means of 

taking the variability that exists in sample data into consideration when drawing a 

conclusion about the population.  In addition, many of the inferences that students make 
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are invalid.  They believe that statistical hypothesis tests, through the level of 

significance, provide a measure of the degree to which a given hypothesis is true or false.  

However, they don’t know why they can or cannot make that claim.  They do not have a 

strong understanding of statistical significance, how it is attained or of what inferences 

may be made based on it. 

 Though they do not understand the overall logic and reasoning of statistical 

hypothesis testing, the results of the qualitative phase indicate that  introductory statistics 

students do understand that sample data is being used to determine whether or not one 

should “have faith” in a null or alternative hypothesis.  They understand that the null and 

alternative hypotheses must be contradictory and that the alternative hypothesis 

represents that which the researcher would like to “prove”.  Introductory statistics 

students, however, do not have an understanding of why the alternative hypothesis 

represents that which the researcher would like to prove.  When asked about this idea, 

they tend to cite rules, rather than connect it to the overall logic. 

 Finally, the results of the qualitative phase indicate that introductory statistics 

students understand that statistical hypothesis testing does not necessarily “prove” a 

hypothesis.  This result is interesting in that it wasn’t clear this was the case based on the 

results of the quantitative phase.  Often, students chose answer choices that contained the 

word “prove”.  As a result of the follow-up interviews, however, we see that students 

often do not associate this word with its formal, mathematical definition.  Based on the 

responses to the questions offered by the interviewees in the follow-up interview, it 

seems that introductory statistics students consider statistical hypothesis testing to be a 

“proof” in the sense that it provides an accepted way to justify a conclusion to a particular 
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community.  This additional information about student thinking helps to clarify some of 

the results obtained in the quantitative phase. 

 In summary, the results of the qualitative phase indicate that introductory statistics 

students do have a general idea about overall goal of statistical hypothesis testing.  These 

students understand that the test is used to determine the validity of a given hypothesis.  

They also understand that the test is not a proof.  However, introductory statistics 

students do not fully understand the logic and reasoning that supports the procedures that 

move a researcher from sample to conclusion.  They do not understand the roles of 

inference, probability, and indirect reasoning in statistical hypothesis testing.  

Unfortunately, these ideas are the very essence of statistical hypothesis testing.  

Therefore, more must be done to help introductory statistics students develop stronger 

understandings of the logic and reasoning of statistical hypothesis testing. 

Research Sub-Question Number 3 

 Results from the quantitative phase indicated that, overall, introductory statistics 

students have stronger understandings of the relationship between the context and the 

method than they do of the logic and reasoning associated with statistical hypothesis 

testing.  However, these understandings are still fairly weak. 

 Analysis of the results of the method and context items multiple-choice 

assessment indicated that introductory statistics students know when statistical hypothesis 

testing can be applied to answer a question of interest.  However, they do not have a 

strong sense of statistical hypothesis testing as an inferential method that relies on 

probabilistic concepts to deal with the variability associated with samples.  Therefore, 

introductory statistics students do not have a strong understanding of the factors that 
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should be taken into consideration when using and interpreting the results of a statistical 

hypothesis test within “real world” contexts. 

 As was the case for research sub-question 2, the results of the multiple-choice 

assessment only tell part of the story.  It was, therefore, important to explore the issues 

raised in the quantitative phase in the follow-up interviews. By asking the interviewees 

about their reasoning for the items, it was possible to further understanding how students 

thought about these concepts and ideas. 

 In order to address the third research sub-question, three multiple-choice items 

were included in the interview (see Table 5.1).  These items represent the Recognizing 

Applicability, Collect a Sample, and Implication for Practice categories from the 

Framework.  For each category, a summary of student explanation will be presented and 

followed by an analysis of those responses.  This analysis will be followed by a final, 

overall summary of the data and conclusions associated with research sub-question 

number 3.  

 

Recognizing Applicability 

 From a method and context perspective, items in the Recognizing Applicability 

category were written to assess whether students understood the value of statistical 

hypothesis testing for answering questions about populations for which it is impossible or 

impractical to collect information from every member of those populations.  These items 

assess the degree to which introductory statistics students recognize the conditions under 

which statistical hypothesis testing would be an appropriate, valuable method of 

investigation.  Introductory statistics students should understand that in order for 
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statistical hypothesis testing to be a useful method of investigation (1) the research 

question must address a well-defined population, (2) it must be possible to answer the 

research question using a measure of that population, and (3) it must be possible to 

construct two mutually exclusive, contradictory hypotheses to answer that research 

question.  That is, introductory statistics students should understand that statistical 

hypothesis testing is a powerful inferential tool used to answer “measureable” research 

questions about large population and items classified in the Recognizing Applicability 

and method and context categories assess whether introductory statistics students have 

these understandings. 

 The results of the quantitative phase indicated that introductory statistics students 

understand that statistical hypothesis testing is useful for answering research questions in 

which two populations are compared.  Furthermore, the results indicated that introductory 

statistics students understand that in order to compare populations using statistical 

hypothesis tests, it must be possible to define a measure of the populations that will be 

useful to answer the research question.  They do not however, seem to understand that 

statistical hypothesis tests are valuable inferential methods and are useful when data on 

the entire population is impossible to collect.  They do not understand that statistical 

hypothesis testing is not useful if information on the entire population can be collected. 

 These results give some indication of how students think about the value and uses 

of statistical hypothesis testing.  However, data collected in the follow-up interview 

provides more insight into their thinking.  Therefore, one item from the Recognizing 

Applicability category was included in the follow-up interview:  Item number 1. 
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 Item number 1 assesses whether, given a set of research questions, introductory 

statistics students are able to choose which question is appropriately addressed by 

statistical hypothesis testing. 

Figure 5.7 

Item Number 1, Multiple-Choice Assessment 

 

 

Answer choice a is correct.  The measure and populations are clearly defined and 

contradictory hypotheses exist that could answer the research question.  The research 

questions offered in answer choices b and c do not meet the criteria for use in statistical 

hypothesis testing.  Answer choice d is tempting distractor.  The research question meets 

the criteria.  However, the question can be answered without statistical hypothesis testing.  

Because the populations are small, there is no need to collect a sample.  The question can 

be answered through direct comparison of the means for the entire populations described.  

There is no need for inference. 

 In the multiple-choice assessment, 43.3% of the participants chose a, 1.9% chose 

b, 2.9% chose c, and 51.9% chose d.  These results indicate that students understand 

statistical hypothesis testing to be a means of comparing two groups but that they don’t 

1.   Which of the following questions is most likely to be answered by a study that 
requires statistical hypothesis testing? 
 
a. Do athletes have a lower GPA than other students?   

b. What equation predicts a student’s freshman GPA from his/her SAT score? 

c. What are typical costs for full-time resident students in U. S. colleges? 

d. Do the 12:00 noon sections of STAT 100 perform better than the 2:00 p.m. 

sections this semester? 
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understand the role of inference in that test.  This issue was explored further in the 

follow-up interviews. 

 Of the eleven interviewees, 4 chose a and 7 chose d.  No one chose options b or c.  

Over the course of the interview, 2 people changed their answer from d to a so that, 

ultimately, 6 interviewees had chosen a and 5 had chosen d. 

Interviewee Explanations:  A Summary 

 As was indicated by the results reported above, none of the interviewees chose 

answer choices b or c.  The explanations offered by the interviewees for eliminating these 

options were very similar.  Many of the interviewees eliminated b and c because the 

research questions proposed in those answer choices were not questions that compared 

two groups.  Some examples of such explanations are presented below: 

Excerpt:  Interview 192 
I: Um…because….b doesn’t really, I can’t see a hypoth… I can’t get a hypothesis, 
or a null hypothesis from b.  And c,  (reads c out loud, inaudibly).  C asks a direct 
question.  I’m not really comparing two hypotheses. 
 
Excerpt:  Interview 172 
I: Um…well, I guess it’s just because the way it was presented it seemed…most 
like the, ah, test that we had been doing in class but…um…I think I started looking at, 
ah…I knew, I didn’t think it would be b…because…I don’t know, I just…I couldn’t 
think of a way to put it into that…um…type of formula, I guess.  And…same thing with 
c because you weren’t testing…ah…something against another thing.  And…I also, I was 
kind of just, I came down to between a and d…but…I don’t…I just thought that d fit it 
more than a, I guess. 
 
Excerpt:  Interview 77 
M: Ok, why not b or c? 
 
I: Um…because b is asking for just an equation to predict a…ah…that population 
GPA but that’s not really testing whether it’s lower or higher against another population.  
And, c, um…that also was just asking for like a certain type of data.  It’s not like 
comparing.  It’s not saying, you know, are the typical costs higher for full-time residents 
or like lower for…part-time…that kind of stuff.  It’s just asking for like a 
certain…certain quantities. 
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While the majority of interviewees cited a lack of comparison as a reason for eliminating 

answer choices b and c, there were a few interviewees who offered other justifications.  

Consider the following explanation offered by Interviewee 132. 

Excerpt:  Interview 132  
I: Um…the other two ones, b and c, like you’re talking about multiple equations so 
it couldn’t be just one or…one equation or another.  And, same with typical costs for full-
time students in college.  There are many different costs and so it would be hard to just 
have two hypotheses.  You’d want multiple, I guess. 
 

Here, Interviewee 132 did not focus on the lack of comparison in answer choices b and c.  

Instead, she was concerned that more than two hypotheses could be generated to answer 

the research question.  Thus, she did not think these options were appropriate. 

 Other explanations were offered by Interviewees 112 and 122 who knew that 

statistical hypothesis tests did not find equations or average costs. 

Excerpt:  Interview 112 
I: Well, b - what equation predicts a student’s freshman GPA from his or her SAT 
score – I pretty much like…hypothesis testing doesn’t find equations.  So I ruled that one 
out immediately.  And, then c was for the typical costs and I thought that was more of an 
average type thing.  So I crossed that one out.  And, then, I was kind of divided on a or d, 
because it was both two different groups.  One was athletes versus the other students and 
the other one was like…sect…noon section versus 2 pm section.  I mainly just chose a 
because it seemed like an example from the textbook. 
 
Excerpt:  Interview 122 
I: Um, well, b, what equation predicts a student’s freshman GPA from his or – SAT 
score?  Um, well, it’s kind of difficult to find an actual equation to be able to determine 
how a GPA ref – um, correlates with the SAT scores.  And with C, what are typical costs 
for full-time residence students in U.S. colleges?  Well, it depends, like, you can’t really 
find, like, a statistical hypothesis because it varies from each person because there is 
financial aid, there’s – uh, that assist with the, um, full-time residents, and then 
sometimes they pay full.  So you don’t have the requirements met for this it kind of 
depends on what the population of the college is. 
 

Overall, regardless of the justification offered, the interviewees understood that statistical 

hypothesis testing was not an appropriate means of answering the research questions 

stated in answer choices b and c.  They did, however, differ in their decision to choose 

either a or d. 
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 Most of the interviewees realized that a and d were very similar and admitted they 

struggled to make a decision between the two.  In fact, Interviewees 29, 191, and 81 

could give no real reason for choosing one over the other.  Interviewees 81 and 191 both 

chose a and Interviewee 29 chose d. 

 Other interviewees could give a clear reason for making the choice they did.  Five 

of the interviewees who chose answer choice d did so because there was a sense that 

answer choice a was too broad.  Consider the following excerpts. 

Excerpt:  Interview 192 
I: …Because d actually compares two specific things, to me. 
 
M: Ok. 
 
I: So, a is a bit more broad, a bit more general, a bit too general. 
 
Excerpt:  Interview 122 
M: …So what made you chose d over a? 
 
I: Because it would be, it’s easier con – to conduct this, uh, statistic analyst because 
you have, uh, a population already regarding to the students.  There are probably like 40 
or 50 students in one class.  So you’d be able to do more, a comparison between the two 
because…and it’s less…and it’s less time consuming to me also to try to make a 
hypothesis testing, because regarding to trying to walk, walk around or find students who 
wants to be…participate in the, um, this survey or the hypothesis test might take a long 
time. 
 
Excerpt:  Interview 15 
M:  Do you have any idea why people would pick a as opposed to d? 
 
I: I guess you’re still like comparing two different groups.  But I feel like d is like a 
better choice because like it’s a lot more specific like the groups are both learning the 
same things in class.  The only difference is the times so you really only have like one 
variable.  But with like an athlete and a random student, like the athlete could be going to 
games all the time and that’s like why they have a lower GPA but the other student could 
be like a drug user who is just high all the time and doesn’t go to class and they’re gonna 
have a lower GPA.  And, then like another random student could be like your top 
scholarship winner who is like going to every single class and doing awesome and … but 
like that doesn’t mean that every other student is just like them.  Like, there’s just so 
many variations in the category of other students.  I guess it’s just not specific enough. 
 
Excerpt:  Interview 169 
I: Ah, the reason I chose that one…ah….is because [M:  You chose d?] it was a 
specific, and I chose d…it was the most specific of all the questions.  And moreover b 
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and c are not, to my knowledge something that can …you can test with hypothesis testing 
at least in STAT100.  And, then a while along the same lines as d, isn’t very 
specific…ah, which athletes, you know…you know in what courses…because there’s, 
you know, there’s a lot of variables to that equation that can’t necessarily be answered for 
that, a statistical hypothesis test, versus d where it’s…you’re taking the same course.  It’s 
just at a different time.  If you look at it from like a very scientific method point of view 
it’s your in kind of variable is the time. 
 
Excerpt:  Interview 172 

M: A lot of people struggled between a and d.  In fact, very few people chose b or c 
[I:  Yeah].  So it was almost half split, people who chose a and d.  So can you talk about, 
is it, are you, is it possible to think about or talk about why you were more comfortable 
with d than a? 
  
I: Um…I guess…I was a little…I knew that these two, like the two sections that 
you were testing were kind of set numbers of people.  Whereas, a was a larger population 
of people or, I mean, you could take a sample, I guess, from both but…I don’t’ know.  I 
guess I found it like it’s more…ah…sss….you’re, I guess you could be more sure about 
the hypothesis test when you have like the exact same number of people…or about in the 
two statistics sections. 
 

Each of these interviewees chose d because it was more specific in some sense.  

Interviewee 192 did not give a specific reason.  She simply thought a was too broad.  

Interviewee 122 thought that the populations addressed be the research question in 

answer choice a were too large.  She thought d was a better answer because it wouldn’t 

be difficult to find students to participate.  Interviewees 15 and 169 thought a was too 

broad in that there was too much variance in the populations described in the research 

question.  Therefore, they thought d was the better option.  Finally, Interviewee 172 was 

more comfortable with answer choice d because the researcher could be sure that the 

populations were approximately the same size.  The populations addressed in answer 

choice a were too large. 

 With the exceptions of those who guessed, the interviewees who chose answer 

choice d over answer choice a did so because the populations addressed were smaller, 

more specific, and less variable.  In contrast to this reasoning, two of the interviewees 
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who chose option a (and who did not guess) did so because the populations addressed in 

that answer choice were larger.  The following excerpts illustrate this reasoning. 

Excerpt:  Interview 112 
I: Well, b - what equation predicts a student’s freshman GPA from his or her SAT 
score – I pretty much like…hypothesis testing doesn’t find equations.  So I ruled that one 
out immediately.  And, then c was for the typical costs and I thought that was more of an 
average type thing.  So I crossed that one out.  And, then, I was kind of divided on a or d, 
because it was both two different groups.  One was athletes versus the other students and 
the other one was like…sect…noon section versus 2 pm section.  I mainly just chose a 
because it seemed like an example from the textbook. 
 
M: (laughs) Ok. 
 
I: Yeah, cause it seemed like it was…like two larger groups and like the noon and 2 
pm…that kind of just didn’t seem like a real good reason to test it.  I don’t know why.  It 
just kind of struck me that way. 
 
M: Ok.  Um…so mainly chose because it’s an example from the text and it was two 
larger groups? 
 
I: Yeah. 
 
M: And, d seemed too small. 
 
Excerpt:  Interview 132 
I: Um hum.  (reads the problem out loud)  Um…um…well I …I don’t know why I 
decided between a and d.  Probably because…um… a had a broader…ah…like 
population to go by because you’re talking about all athletes versus non-athletic students.  
And, so you’re hypothesis would be just what are the GPAs of all of the other students 
and then are athletes higher or lower than that. 

 

Interviewee 112 was uncomfortable with answer choice d because the populations 

described were too small.  He did not understand why someone would want to test it.  

Interviewee 132 also chose a because the populations addressed were larger than in 

answer choice d. 

 One other interviewee chose answer choice a, but did so for a different reason 

than that offered by Interviewees 112 and 132.  Interviewee 77 initially chose option d 

but then changed her answer.  The following excerpt illustrates her reasoning: 

Excerpt: Interview 77 
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M: Ok, so a you would have picked.  [I:  Um hum]  You feel more comfortable with 
a now. [I:  Um hum]  You’re allowed to change your answers, too, [I:  Yeah] throughout.  
So why, now are you more comfortable with a? 
 
I: Because it’s …you can make that direct claim out of this thing.  Um…like you 
can say, you know, like with athletes and other students you can say…um like the 
alternative hypothesis would be mew1 less than mew2.  So that’s pretty…I mean that’s a 
solid claim that you can make…and you could do a…hypothesis test…um…to find it out.  
This one it’s…the wording is kind of vague where it says perform better…um…so, I 
guess, that’s why I would switch to a. 
 

As she re-read the item, Interviewee 77 had trouble remembering why she chose answer 

choice d over a.  She ultimately decided to change her answer to option a because she did 

not know what was meant by “perform better” in answer choice d.  So, because the 

measure of interest was clearly defined in answer choice a she chose that over option d. 

Analysis 

 The explanations offered by the interviewees for their choices on this item 

confirm what was found in the quantitative phase.  The interviewees understood 

statistical hypothesis testing to be a useful method to answer research questions that 

compare two groups.  However, they did not understand the value of statistical 

hypothesis testing as an inferential method.  It seems they were focused on minimizing 

the variance that might exist within populations in order to have a “more accurate” test.  

To do so, the populations should be smaller and more manageable.  Unfortunately, the 

interviewees did not understand that statistical hypothesis testing is a powerful, 

inferential method that takes into account the variability that exists between and among 

samples making it most valuable when used to test hypotheses about large populations. 

 It should be noted that even when interviewees chose the correct option, their 

reason for doing so did not necessarily provide evidence that they understood the value of 

statistical hypothesis testing as an inferential method.  Some of the interviewees guessed 
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the correct answer and others merely said they thought it was better to use hypothesis 

testing to address research questions about large populations.  In their explanations, 

however, they did not explain why this was the case.  They did not mention the role of 

inference in statistical hypothesis testing.  They did not mention that statistical hypothesis 

tests provide a means of dealing with the variability that exists between and among 

samples.  Thus, on the basis of their response to this item, we do not know, for sure, 

whether these interviewees understood all of these ideas. 

 We now turn to another category of items classified in the context and method 

grouping:  Collect a Sample.  Analysis of student responses within this category might 

provide more insight into student understanding of sample variance and the role of 

statistical hypothesis testing in dealing with that variance. 

 

Collect a Sample 

 Items from the Collect a Sample category were written to assess whether 

introductory statistics students understand that samples are expected to vary and that, in 

order to apply statistical hypothesis testing, the samples must be randomly chosen and 

representative of the population.  If the sample is randomly chosen and representative of 

the population, statistical hypothesis testing may then be used to determine whether the 

sample is unusual under the assumed null condition.  The test, therefore, takes into 

consideration the variability that exists among samples. 

 Only one item from this category was included on the multiple-choice assessment.  

It was, therefore, also included in the follow-up interview.  Item number 10 assesses 

whether introductory statistics students understand that samples vary and that it is, 
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therefore, difficult to draw a conclusion about populations based solely on one sample.  

Statistical hypothesis testing is useful to draw an inference about a population based on 

information from a sample.  However, any conclusions reached by a statistical hypothesis 

test are inferences, not confirmations or proofs. 

Figure 5.8 

Item Number 10, Multiple-Choice Assessment 

 

 

The correct answer is option c.  It reflects the notion that samples vary.  Answer choices 

a and b are incorrect in that they attribute the difference in means to some characteristic 

of either the study or of the population itself. There is no reason to assume that the 

sample was not randomly chosen.  Therefore, option a is not correct.  Answer choice b 

makes a broad, general statement about the population based solely on information from 

the sample.  This is not a reasonable interpretation.  Answer choice d is incorrect in that 

10.  When Consumer Reports studied response times for a random sample of 60 
computer help-line calls, they found a mean of 15 minutes and standard deviation 
of 4.5 minutes.  After hearing complaints about decline in service, they repeated the 
study (again using a sample of 60 calls) and found a mean response time of 16.5 
minutes and standard deviation of 6.0 minutes. 
 
What is the most plausible interpretation of the difference between the two study 
results? 
 
a. Because the second study showed a higher mean, that study must have only 

looked at computer help-lines that received a lot of consumer complaints.  

b. The increase in mean response time confirms a decline in services by computer 

help-lines. 

c. The observed difference in mean response times is quite possibly due to 

chance variation. 

d. The increase in standard deviation is the reason for the increase in mean 

response time. 
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the difference in means is attributed to the difference in standard deviation.  The two are 

not related in this way. 

 Performance on this item in the multiple-choice assessment was relatively strong.  

Of the 104 participants, 10.6% chose answer choice a, 32.7% chose b, 45.2% chose c, 

and 11.5% chose d.  These results indicated that a fair number of introductory statistics 

students understand that samples may vary.  However, an almost equally large percentage 

of introductory statistics students think that one sample confirms a hypothesis.  This issue 

was explored further in the follow-up interview. 

 Of the eleven interviewees, no one chose a, 4 people chose b, 6 people chose c, 

and 1 person chose d.  Over the course of the interviews, only one person changed his 

answer.  He changed from c (the correct answer) to b (an incorrect answer). 

Interviewee Explanations:  A Summary 

 The explanations offered by the interviewees for the elimination of answer choice 

a were very similar.  By and large, they all felt that a was not a strong assumption to 

make based on the information that was given.  Some examples of this reasoning are 

included in the following excerpts. 

Excerpt:  Interview 169 
I: …Ok. Um…I still agree with my answer that…um…yeah…so I still agree with 
my answer…the more I think about it, the more I’m confused (both laugh).  
Um…um…a…um…if Consumer Reports…that just doesn’t seem…that doesn’t seem 
plausible.  I mean, I, I…the question asks for the most plausible interpretation of the 
difference…um. [M:  You don’t think…] Because if you, if Consumer Reports, again, if 
they looked at a…um…if they looked at only computer help lines that received a lot of 
customer complaints it would, of course, be obvious that it would, that the mean and the 
standard deviation would go up.  But, it’s not a useful…it wouldn’t have been a useful 
thing to do. 
 
Excerpt:  Interview 81 
I: Um…yeah, I said c.  I didn’t think a was right it says because the second study 
showed a higher mean, that study must have only looked at computer help-lines that 
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received a lot of consumer complaints, cause it doesn’t really say that.  I don’t think you 
can just assume that.  I think that’s assuming a lot. 
 
Excerpt:  Interview 191 
I: …a says because the second study showed a higher mean, that study must have 
only looked at computer help lines that received a lot of consumer complaints.  Um, I – I 
think you assume that they, um – they tested a random sample.  Also, the fact that, um, 
although the, ah, mean response time was greater in the second sample, the standard 
deviation is greater, so that means that there were some times that, ah, were relatively low 
or significantly lower, um, so because of that, not all of them would have been, ah, lines 
that received computer or consumer complaints.   
 

These examples are representative of some of the more common explanations offered by 

the interviewees.  Like Interviewee 81, Interviewees 15, 77, and 122 didn’t think it was a 

reasonable interpretation because nowhere in the description did it say anything to 

assume that the sample was not randomly collected.  Like Interviewee 169, Interviewees 

112 and 192 considered the context and didn’t think that Consumer Reports would do 

things differently in the second study.  Finally, like Interviewee 191, Interviewee 132 

reasoned that, since the mean and standard deviation increased, it was possible that some 

of those help lines were better than the others.  Therefore, the study did not simply 

consider those help lines for which there were complaints. 

 With the exception of 1 interviewee, none of the interviewees chose option d.  

Some of the interviewees reasoned that a change in standard deviation does not 

necessitate a change in the mean. This reasoning is illustrated in the following excerpts. 

Excerpt:  Interview 15 
I: Um…they’re trying to say that like…um…higher standard deviations means that 
you have a greater range in your data.  Um...and so, like with a greater range you have 
more of higher numbers…and that could make your mean higher.  But, like, some data 
sets…like if you have a very small data set…and like a certain mean…you could have 
one standard deviation that would be really small.  But, if you have a large data set that’s 
kind of like more distributed but still (inaudible) evenly then you could come up with the 
same mean but your standard deviation would be really big.  So, like, just standard 
deviation alone can’t really explain an increase or a decrease in the mean.  Because it 
like…it goes both ways to the mean.  Like, not just one way. 
 
Excerpt:  Interview 132 
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I: …And, d doesn’t sound reasonable enough.  Just because your standard deviation 
gets larger, that means there’s…the mean response time would change.  Because, you 
don’t necessarily have to have a lot of variation to increase your average.  Did I answer it 
all clearly enough? 

 

These excerpts indicate strong understandings of the definitions of and relationship 

between mean and standard deviation.  This understanding was shared by Interviewees 

122, 112, and 191 who reasoned similarly to Interviewees 15 and 132. 

 Other interviewees did not have such strong understandings of mean and standard 

deviation. Therefore, they did not choose option d. Interviewee 77 did not remember how 

the two were or were not related and, therefore, did not choose d.  Interviewee 172 did 

not think that it mattered.  Interviewee 81 thought d was plausible, but he liked answer 

choice b better.   And, Interviewees 192 and 169 found the statement in d confusing 

because they didn’t know how the two were related.  Therefore, they did not choose d 

either. 

 Interviewee 29 did, however, choose option d.  Her reasoning is illustrated in the 

following excerpt. 

Excerpt: Interview 29 
I: I think this was one of the ones that I kind of guessed on (laughs)….but…yeah 
(laughs).  Um…I think I picked this one because…like there was an increase in standard 
deviation so when I think of standard deviation it’s like how much…um…like data varies 
or deviates from a middle range, the average (laughs).  So, I guess, think of that a lot 
more data deviated.  It caused the mean to go up because…um…now because you have 
to, I guess, more data that was farther away from the average. 
 
M: Ok.  Um…what about the other ones?  Why didn’t you pick the other ones? 
 
I: Um…I wasn’t sure like…um…whether there was chance variation 
(laughs)…and… 
 
M: In general, or… or for this study…for this, these two studies?  Like, I’m not sure, 
I just want to interpret what you said.  [I:  Right]  You said you’re not sure whether there 
was chance variation.  Like, that it doesn’t exist in life?  Or, that it didn’t exist for these 
two studies? 
 
I: I guess for these two studies because…I don’t know.  I mean you don’t know all 
the factors that are involved in it…so.  I guess cause I wasn’t really sure if there was 
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actually chance.  Like, I mean, you know, it could be that, I don’t know, the call…or 
calling this place like, you know, they just have bad service or something (laughs).  You 
know, it’s…so, yeah.  That’s why I didn’t pick that one.  I wasn’t sure. 
 
M: Ok. 
 
I: And…(reads out loud, somewhat inaudibly)…and, then b…I felt like because 
you weren’t sure of chance variation you’re also…weren’t sure of like factors involved 
like…so I mean…yeah they could have bad service too, but like you really don’t know 
for sure.  So it’s hard to say like these were plausible interpretations. 
 
M: Ok.  And then a? 
 
I: Also you don’t know if they’re consumer complaints (laughs).  Yeah, I mean you 
don’t know what they tested or you don’t know the callers and you don’t know whether it 
was because…of…um…consumer complaints. 
 

This excerpt from Interviewee 29 is interesting in that it highlights the struggle she had 

with the notion that samples from the same population may vary by chance.  She claims 

that she doesn’t know all the factors involved and, thus, does not know if chance could be 

one of those factors.  However, chance is always a factor and should always be a 

consideration.  Statistical hypothesis testing is useful in attempting to quantify the degree 

to which the variation may be due to chance, but even it doesn’t eliminate the possibility. 

 The issue of “chance” was problematic for other interviewees and led to the 

elimination of answer choice c in favor of answer choice b.  Interviewee 112 did not 

think that answer choice c should be considered as an option.  

Excerpt:  Interview 112 
M: And, c… 
 
I: I didn’t think you should just assume it’s due to chance variation. 
 
M: Why not? 
 
I: I wasn’t really sure (laughs).  It just didn’t seem right to assume anything 
 

In contrast to Interviewee 112, Interviewees 169, 81, 191, and 172 all recognized that c 

was a possible answer.  However they felt that the difference in mean times justified their 

choice of answer choice b.  The following excerpts illustrate this thinking. 
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Interviewee 169 
I: Um…I don’t…quite understand d but it doesn’t seem right to me.  And, then, 
let’s see…um…and c seems kind of like a cop, a cop out to me.  It seems like, yeah, I 
mean, it could be it…but based on the fact that…and it’s asking due to chance 
variation…and then…but it doesn’t seem like that would be necessarily something that 
would raise it that much.  It’s a pretty decent increase in mean time…doesn’t seem right 
to me. 
 
M: So you think the…the fact that it’s so big…b confirms it, that…? 
 
Interviewee 81 
I: …Um…let me see…mmm….huh…actually it’d probably be b.  Um…god, I 
misread that one, yet again.  Way to go.  Um…I would definitely say b or c and I’m 
leaning closer towards b now. 
 
M: Ok.  Why? 
 
I: Um…because it says increasing mean response time confirms a decline in 
services by computer help-lines.  Um…I mean, the fact that it did…you have to wait an 
extra minute and a half after everybody complained about it.  Ah…shows that there 
is…has been a decline in services.  And since the, ah, standard variation went up 2, it sort 
of shows a decline because it means, you know some people are, you know, might 
be…helping you earlier but some people might be helping you even later.   
 
discussion continues 
 
I: Um…chance variation…I think it’s cause I misread b as an answer.  Um…if 
I…had read it properly I definitely, I definitely would have chosen b.  Um, I just…I just 
said chance variation cause I mean, it could be per chance, it could just happen to be that 
study was different.  No, really, you know, you do multiple studies of stuff like this.  It’s 
not always gonna be the same thing. 
 
Excerpt:  Interview 191 
I: – um, of calls, so the sample sizes are the same.  Um, and they found that the 
second study, there was, um, a larger mean response time.  Um, which would suggest that 
there’s a decline in service, um, so I think that’s why I chose b 
 
discussion continues 
 
I: c, the observed difference in mean times is quite possibly– c is possible, but, um, 
again, the chances of that, um, are low.   
 
Excerpt:  Interview 172 
I:  …And, um…I chose…I mean, I guess c is plausible too because it just says it’s due to 
a chance variation so, I, I mean…it could be because it is just a sample.  I mean…it, it 
could increase or decrease just based on chance, like it says, you know, depending on the 
people that they get.  Um…but I think I chose b just because…it’s talking about 
a…um…response times.  So, I was thinking of it like…they didn’t respond like the mean 
time before was 15 minutes they hadn’t responded…and then the next mean was 16 
minutes.  So, I was thinking of it as…um…they…put them on hold, I guess, like even 
longer and…so…the increase in the mean response time confirmed a decline in, like, the 
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services…so.  I mean, if they’re keeping you on hold longer then…it’s a decline in 
service so…I guess that’s how I thought about it.   
 

Each of Interviewees 169, 81, 191, and 172 thought that c was a possible answer.  

However, they thought that since the sample data supported the statement in answer 

choice b, it was the best answer. Again, we see some discomfort with the idea that the 

difference could be due to chance.  Interviewee 169 thinks that it is a “cop out” to make 

that claim and Interviewee 191 thinks “the chances of that are low”.  Unfortunately, this 

claim is not a “cop out” so to speak and should not be discounted, even if a more formal 

comparison of the samples were made through a statistical hypothesis test. 

 Five interviewees chose the correct answer, c.  However, 2 of those interviewees 

also thought that answer choice b was correct.  Excerpts from these interviews are 

included here. 

Excerpt:  Interview 77 
I: Um…I said c because…um…ok.  I said c because it’s possible that, you know, 
there might have been…there might have been a longer time for the calls to be responded 
to…depending on the length of calls…you know, the length of each call and…how many 
people were working the telephones.  Um…so I definitely think that there is a chance due 
to variation.  Um…it’s possible that it could have been b also because it does say that…in 
the second sample…the mean time did prove to be higher than the first sample, which 
could show that there’s a decline in service.   
 
Excerpt:  Interview 132 
I: Ok.  (reads out loud, somewhat inaudibly)  Ok…I said c the observed 
difference…um…make…um…a seemed,…ah…like the answer just seemed…seemed 
complicated so…ah…because ah…yeah…so that’s why I didn’t choose a.  Ah…the 
increase in time…b is saying that…that like…they’ve gotten worse at receiving 
complaints, ah…which is true.  Like they’re…they’re…ah…response time got longer, 
but the variance was also much higher…the standard deviation was 6 minutes.  And, 
that’s why I chose c because that means that there was a lot of calls that were very 
short…were shorter than how they were originally.  But, they did have some longer ones.  
So it could have been just…ah…problems with those specific 60 calls that they sampled 
from. 
 

Both Interviewees 77 and 132 thought that the increase in mean times confirmed a 

decline in service. However they each thought that c was a better answer.  Interviewee 77 
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did not clarify why this was the case for her.  Interviewee 132, on the other hand, 

considered the change of standard deviation to justify her thinking that the difference in 

means may have just been due to the sample. 

 Interviewee 122 also thought that answer choices b and c were correct.  However, 

her reason for choosing c is due to misinterpretation of the phrase “chance variation”. 

 Excerpt:  Interview 122 
I: Because some calls can last for three minutes, one, sometimes could last six 
minutes, so it just depends how long, um, the calls are.  So that couldn’t be a.  Um, b, the 
increase in mean response time confirms the decline in services by computer help lines.  I 
think b makes sense also.  Um, b, makes sense. The increase in mean response time 
confirms the decline in services by computer help lines because every time like, in for a 
call center, or, um, help line, like if you have a longer mean, then…you’re supposed to 
have the shortest amount of time too, but use it effectively, ‘cause if you have a long 
phone calls that you’re kind of like, um, like being more effective because the increase in 
mean offers a decline services.  Yeah, but you’re not being able to get more calls in also.  
Um, c, the observed difference in mean response time is quite possible due to chance 
variation, and the variation is in regarding to the standard deviation, and, um, standard 
deviation of the first sample of 60 is 4.5 minutes and the second standard deviation is 6 
minutes.  Most likely, like, with my, like, trying put, like cons – like my experience or 
put some constant into it, like, um, the best work help line it’s best to have the, um, the 
least the shortest amount of time.  Like it’s a big, huge jump from 4.5 to 6 minutes.  It 
makes a big difference regarding to the variation between the two.   
 

Interviewee 122 interpreted the word “variation” to mean variance, or standard deviation.  

She thought that answer choice b was correct but felt that answer choice c was a better 

answer.  In her experience working help lines, she knew that a change of standard 

deviation from 4.5 to 6 minutes was a big difference.  Therefore, she chose option c.  

This response is interesting in that Interviewee 122 drew on her own experience to 

answer the question.  However, she misinterpreted the meaning of answer choice c. 

 Two interviewees chose answer choice c and did not think that answer choice b 

was acceptable.  Their reasoning is illustrated in the following excerpts: 

Excerpt:  Interview 192 
I: Ten.  (Reads number 10 out loud).  I chose c.  I think I was thinking along the 
lines of chance variation.  Something could have happened there…could have 
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been…something happened that day…or whatever that caused the variation in…in the 
times. 
 
discussion continues 
 
I: Um…b was…I thought was ridiculous, so…. 
 
M: Why? 
 
I: I mean…just because it takes…to me when it, decline in service by computer 
help lines…that like…they’re helping you with situations, not the time that it takes for 
them to help in the situations, because you’re still being helped.  So it doesn’t affect 
quality of help therefore it doesn’t affect the service, in my opinion. 
 
Excerpt:  Interview 15 
I: Um, and then like b you can’t really confirm anything because you’re just 
comparing them and they obviously have different standard deviations.  So, like it’s not 
necessarily true.  So you can’t really confirm it unless you do a test about it.  …And like 
with c, like chance variation happens because you’re just taking a sample.  You’re not 
using all of them.  So, like…it’s a possibility.  And without looking at like anything else, 
just looking at like here are the two means from the two samples with different standard 
deviations…like, that’s something that you could say…and like I think that that’s 
something you would say and people would agree with you.  They’d be like yeah that 
could be true. 
 

In eliminating answer choice b, Interviewee 192 considered the context and claimed that 

longer phone calls may or may not have affected the quality of the service.  Therefore, 

she did not think that a difference in mean times implied a decline in service.  

Interviewee 15, on the other hand, eliminated answer choice b because such a broad 

claim could not be made using only a sample of the population.  Regardless of their 

reason for eliminating answer choice b, Interviewees 192 and 15 both recognized that the 

sampling process could produce samples with different means by chance.   Thus, they 

chose answer choice c. 

Analysis 

 In summary, the explanations offered by the interviewees for their choices on 

Item number 10 indicated that, though the interviewees recognize that samples may vary, 
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they tend to attribute the difference in samples to a difference in the populations.  

Unfortunately, many of the interviewees were uncomfortable attributing a difference in 

sample statistics to chance.  They were willing to draw conclusions about a population 

based solely on information from a sample.  Such a lack of understanding could impact 

the way in which they interpret the results of a statistical hypothesis test and, ultimately, 

use those interpretations to make decisions in the real world.  Analysis of student 

reasoning in the final category of this section provides more insight into the ways that 

students interpret results of a statistical hypothesis test in context. 

 

Implication for Practice 

 Items from the Implication for Practice category were written to assess whether 

students understand that a statistically significant result does not necessarily imply 

practical significance.  Before making real world decisions, various factors should be 

considered besides the fact that a hypothesis test found a result to be statistically 

significant.  Type I and Type II errors, effect size, and sample size should all be 

considered when taking action based on the results of a hypothesis test. 

 In the quantitative phase, performance on items from this category was fairly 

weak.  Two items from the Implication for Practice category were included on the 

multiple-choice assessment.  However, it was hypothesized that students misread one of 

the two items and chose answers that were incorrect for the wrong reason.  Nevertheless, 

results from the quantitative phase indicated that introductory statistics students do not 

have a strong understanding of the factors that should be considered when interpreting 

the results of a statistical hypothesis test in the “real world”.  It was hypothesized that 
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because students do not understand the role of probability and inference in statistical 

hypothesis testing, they have difficulty considering the role of context when using the 

results of a test to make decisions in real world context. 

 In the follow-up interview these issues were addressed to gain more insight into 

student thinking.  One item from this category was included in the follow-up interview:  

Item number 12.  Item number 12 was written to assess student understanding of the 

factors to consider when using the results of a statistical hypothesis test to take action in 

the “real world”. 

Figure 5.9 

Item Number 12, Multiple-Choice Assessment 

 

 

The correct answer is answer choice a.  This option highlights the fact that statistical 

significance does not necessarily imply practical significance.  One must take into 

consideration the effect size by analyzing the actual difference in means with respect to 

the sample size.  Answer choice b was written to assess whether students think that action 

12.  In an educational study the mean test score of students studying from a new, 
experimental textbook A was greater than that for students studying from a 
previously used, traditional textbook B, with significance at the α = 0.05 level. 
  
What action in response to that result makes most sense to you? 
 
a. Compare the mean scores to see if the difference is great enough to merit the 

cost of new books. 

b. Schools should adopt textbook A because its use leads to significantly better 

learning. 

c. Re-analyze the data to see if the difference in means is significant at the 0.10 

level. 

d. Take no action until the study is repeated, because the difference in scores 

could be due to chance. 
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should be taken on the basis of the results of a statistical hypothesis test, without further 

consideration of other factors.  Answer choice c was written to identify those students 

who do not understand the relationship of the decision rule to the conclusion of a 

statistical hypothesis test.  Answer choice d was written to assess whether students 

understand that, in reality, a study such as the one described is costly and time-

consuming.  Statistical hypothesis testing is a powerful tool for comparing two groups 

based on analysis of one sample.  With such a tool, it is not efficient to conduct a costly, 

time-consuming study again. 

 In the multiple-choice assessment, 36.5% of the participants chose answer choice 

a, 20.2% chose b, 19.2% chose c, and 24% chose d.  Hence, the participants chose a 

variety of answers, very few of which were correct.  These results indicate a range of 

potential ways of reasoning about this item and the follow-up interviews were very 

helpful in uncovering these ways of reasoning. 

 Of the eleven interviewees, 6 chose a, 2 chose b, 1 chose c, and 2 chose d.  

Unfortunately, over the course of the interview, 1 person changed his answer from a to b 

and one from a to d.  Ultimately, 4 people had chosen a, 3 people had chosen b, 1 person 

had chosen c, and 3 people had chosen d. 

Interviewee Explanations:  A Summary 

 There seemed to be a general feeling among those who chose a or d that 

something should be reanalyzed.  Some understood that the suggestion in answer choice c 

would not be helpful in that the difference would still be significant at a significance level 

of 0.05.  Some did not.  Generally, though, the interviewees thought some kind of 
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analysis was appropriate before deciding to buy the books (as suggested by answer 

choice b). 

 Of the 4 interviewees who settled on answer choice a, 2 eliminated c because it 

would result in the same conclusion, 1 wasn’t sure what c meant, and 1 thought c was a 

reasonable, but not the best, option.  Various justifications were given for eliminating 

answer choice b.  Most of the interviewees thought that answer choice d was reasonable 

but thought that a was the best option.  Examples of the explanations given for choosing 

answer choice a are given in the following excerpts. 

Excerpt:  Interview 132 
I: (Reads 12 out loud, somewhat inaudibly)  Um…I chose a…ah…because it 
seemed…well it made the most…made the most sense…ah.  I don’t know, because if the 
mean scores are better with the new textbook that means it’s a better instrument for 
education.  Ah…b says the same thing but it doesn’t really say it when you’re talking 
about data.  It’s just saying it’s better for learning.  So it doesn’t really directly talk about 
data…or…calculations.  I almost chose c…that is significant…um…so, if I…if I made 
my acceptance region smaller that means that’d be more chance I could accept 
my…um…alternate hypothesis and so that it’d seem reason…reasonable. 
 
M: Ok, so if you made which region smaller are you talking about? 
 
I: My acceptance region for my null hypothesis.  That means I make my acceptance 
for my alternate hypothesis larger and so I would be wanting to make my acceptance 
region for alternate hypothesis smaller to see if it would still work.  And, d just, I don’t 
know, seemed silly.  I don’t know.  Take no action until the study is repeated.  Um…well 
they didn’t really talk about variance in the first place.  Well…I mean…(inaudible). 
 
Excerpt:  Interview 15 
I: Um…I guess you’re using…cause like with the little description before the 
question…the purpose of this study is to see if you wanna get these new books or not.  
So, if you did this study and found out that the new books are better than the old books 
and there is a significance to it, then um…like…practically you’d wanna…like take no 
action until the study is repeated is just kind of silly cause what if it’s never repeated and 
you’re just sitting around forever and nothing’s ever going to get done. 
 
M: (laughs)  Ok 
 
I: And, then, um…like…I guess like you could sit there and reanalyze it 
but…like…if it’s like …so what if it’s not…and so does that mean like…oh because it’s 
not significant at our chosen level….cause the levels are kind of a little bit arbitrary like 
different people have different preferences for levels.  So, like…just because it may not 
be significant, if you test it again at the 0.1 level doesn’t mean that there’s some gain that 
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you could get out of these books….I guess like especially in a school where budgets are 
kind of tight.  If you do like a cost analysis and see like oh these books are only a dollar 
more than the old books, then they’re probably worth getting.  If they’re like a thousand 
dollars more then the old books, then you may not want them and then…like…if you do 
that, then you may want to reanalyze it and see like oh well it is greater at the 0.1 level, 
too, like maybe you can better justify spending a greater amount of money on them. 
 
Excerpt:  Interview 81 
I: All right.  Um, I said a compare the mean scores to see if the difference is great 
enough to merit the cost of new books.  Um…I basically said, well the, the experiment 
is…is that textbook A was greater than…well…all right, sorry.  In an educational study 
the mean test score of students studying from a new, experimental textbook A was 
greater than that for students studying from a previously used, textbook B, with 
significance at…alpha equals, ah, 0.05 level.  And, what action in response to that result 
makes most sense to you.  Compare the mean scores to see if the difference is great 
enough to merit the cost of new text books.  That’s sort of what they did…um… and b 
says schools should adopt textbook A because its use leads to significantly better 
learning.  C says re-analyze the data to see if the difference in means is significant at the 
0.10 level.  And, d says take no action until the study is repeated, because the difference 
in scores could be due to chance.  Um…I guess a made most sense cause you 
could….you could compare them enough to see how much greater it is, if it’s actually 
worth getting new books.  I think that’s why I chose a…cause it seemed…cause, like, 
sort of because getting new books seems like what somebody would do after this 
experiment, which is why I chose a. 
 
M: Ok.  And, why not b, c, or d? 
 
I: Um…because…it didn’t really say how, if it was significant enough…to…adopt 
textbook A…for better learning.  And…for c it says…um…re-analyze at the 0.10 level 
and, of course I really, as in question 11, I really wasn’t sure how that would make a 
difference so I didn’t choose that answer. 
 
Excerpt:  Interview 122 
I: Okay.  Twelve is, um, is asking what makes the most sense regarding to in the 
education study the mean test scores of students studying from a new experimental test 
book A was greater than that for students studying from previous used, um, traditional 
text book B with significance of – off of 0.05.  I chose a, compare the mean scores to see 
the difference great enough to merit the cost of new books.  And I chose that because 
when you look at the other ones, like B, schools should adopt textbook A because it use – 
it’s use leads to significantly better learning.  Well, they can’t really actually find, um, 
because they don’t actually have the exact numbers to see if it’s great – actually how 
much greater it is by using textbook A and textbook B. 
 
M: Okay. 
 
I: In my opinion.  On c, reanalyze the data to see if the first mean is significant at 
the 0.10 level, well if you’re trying to reanalyze that actually will cover some portions of 
the 0.05 ‘cause that’s 95% of that, um, the results.  So that will still be included there. 
 
M: Okay. 
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I: Um, d, take no actions to the studies repeated because of difference in scores 
should, um, scores could be due to chance.  Um, well, it may be possible because it is a 
random sample, but regarding to the student test score what are they studying. 
 

These excerpts highlight the fact that though the interviewees all settled on answer choice 

a, they had different reasons for eliminating the other answer choices.  Interviewees 81 

and 122 eliminated b because they weren’t told the exact numbers so they didn’t know 

whether they could make the claim in statement b.  Interviewee 132 eliminated b as 

opposed to a because a mentioned “mean scores” whereas b did not.  None of the 

interviewees eliminated b for the correct reason.  It should have been eliminated because 

it was too broad a statement.  Additionally, answer choice d was eliminated for the 

correct reason by only one interviewee, Interviewee 15. 

 Of the 3 interviewees who chose answer choice d, only Interviewee 77 eliminated 

c for the correct reason.  Two interviewees, Interviewees 77 and 192 eliminated b for the 

correct reason.  They all thought that a was reasonable, but that d was the best option. 

Excerpt:  Interview 77 
I: Ok…um…it’s definitely not b because this was just from one study…it’s not like 
it was a repeated study of the compare, the comparison of the two textbooks and the 
mean test scores.  Um…and I didn’t think it was c because if you use…the significance 
level of alpha being 0.10…um…then you have a greater chance that you will incorrectly 
reject the null hypothesis…um.  You should actually, if you want to reanalyze the data 
you should test it with an alpha that’s smaller, not greater. 
 
discussion continues 
 
I: Um…I guess because it was just…so far it seemed like it’s been only one 
study…and…I guess when you, when I’m looking at a and d, since a is talking about the 
cost of new books and, you know, trading the newer ones for the traditional ones 
were…gonna cost more…if you were going to do that you, it would make sense to repeat 
the study to…be absolutely sure that there is a difference in the mean scores and that it 
wasn’t just due to chance.  Um…and once you find that, like if….you did…more studies 
and found that…the difference in the, there was a significant difference in the mean 
scores than that would…that would kind of…I guess, give you enough reason to switch 
out the textbooks. 
 
Excerpt:  Interview 192 
I: (Reads number 12 out loud)  Ok…um…I chose d, take no action until the study 
is repeated, because the difference in scores could be due to chance.  Um…(reads out 
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loud, inaudibly)…ah…I think I got my answer…compare the mean scores to see if the 
difference is great enough to merit the cost of new textbooks…I didn’t choose that one, 
because I think they can’t just do a test one time and say that it’s correct.  And, a kind of 
is just going off of those answers off that one test.  B, schools should adopt text A 
because it leads to significantly better learning.  Again, you can’t act on it unless you test 
it more than one time. C, reanalyze the data to see if the difference in means is significant 
at the 0.10 level…yeah, you could do that but I would prefer to retest it again just to 
make sure that you get the same answer.  [M:  Ok]  So I stuck with d.  So you would 
repeat the study. 
 
Excerpt:  Interview 29 
I: Um…I really, I picked d because…I mean, I don’t know how they actually use 
test hypoth…I mean, yeah…I don’t know how they actually use test statistics and what 
they do when, like they find one to support…I mean one who’s gonna support it or reject 
it.  So I guess I was thinking because, you know, there’s still like you can find a 
conclusion but it could, you know, still be wrong.  So, I guess you need to verify it or you 
need to validate it so…I guess that’s why I picked d because, you know…to repeat the 
study…you can see if it’s still supported and…I guess could help confirm whether your 
original conclusion is still…you know…right. 
 
discussion continues 
 
M: So why didn’t you like a and b? 
 
I: Cause I don’t know how you compare…like…like how would you….decide 
whether like the difference is big enough to…buy new books?  Like, I wasn’t sure like 
how you would decide that…so I didn’t…I didn’t pick that one.  And…ah…and, then, b 
kind of goes with it about…like how do you know…like how do…like how do you know 
the difference is big enough so that you should get brand new books or something. 
 

As illustrated by the excerpts above, the three interviewees who chose answer choice d 

had different reasons for eliminating a, b, and c.  However, they all thought the study 

should be repeated. 

 Three interviewees chose answer choice b.  Among the three there was a general 

consensus that a significance level of 0.05 was low enough to take action.  Two of the 

three interviewees eliminated answer choice c for the correct reason.  They each gave 

different reasons for eliminating a and d.  Their explanations are included below. 

Excerpt:  Interview 112 
I: (reads out loud, somewhat inaudible)  Well you don’t…you don’t know anything 
about the cost of the book.  Like textbook A could be cheaper for all we know so that’s 
why I didn’t…disregarded a.  (reads out loud, somewhat inaudible) And you already 
know it’s significant at the 0.10 level if it’s significant at the 0.05 level.  That’s why you 
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can x out c.  And then it is significant…statistically significant at 0.05 so I didn’t think 
you had to repeat the study…I chose b because it is…it does lead to significantly better 
learning…yeah, based on the study. 
 
M: Ok, let me make sure…you went through those kind of quickly.  I wanna make 
sure I got them…so you’re disregarding a. 
 
I: Yeah, cause we don’t know what the cost of these books are. 
 
M: If you knew them? 
 
I: Yeah maybe if you knew A was like, incredibly expensive then…but then that 
would bring in d also.  You’d have to redo it and maybe make it like 0.01.  But, for all we 
know A could be less expensive. 
 
Excerpt: Interview 191 
I: Um, in an educational study, the mean test score of students studying from a new 
experimental textbook, A was greater than that for students studying from previously 
used textbook, B…significance at alpha .05.  Response, the reaction in response to that 
result makes most sense to you.  Ok, so without reading these options, I would say, ah, 
you can be confident because it’s at .05, it’s a low alpha level, so that means there’s a 
high confidence level.  Um, you can be confident, um, that, um, textbook A is better than 
textbook B, um, so I chose a, compare the mean scores to see if the difference is great 
enough to merit the cost of new books.   
 
Um,…b schools should adopt...  Well, I guess I think a would be wrong, because that’s 
what the test – that’s what this information is a result of.  Um, the – the question already 
tells you that they already did a test and that the test scores for A were better than that of 
B. 
 
M: Ok. 
 
I: So a has already been done.  Um, ok, I wouldn’t do c because, ah, that means 
there’s – you’re less confident, so if alpha’s at .05, you’re 95% confident.  If it’s at .1, 
you’re 90% confident. 
 
M: Ok. 
 
I: b and d, um, I would do b, because you can be pretty confident, um, in the 
information.  d I would do if – if, ah, it was done at a higher, um, alpha level. 
 

Excerpt:  Interview 169 
I: Hmm.  Now I’m not quite sure of my answer…um, mainly because it 
doesn’t…um…it doesn’t say, the problem does not mention how much better in any way 
shape or form…and therefore, it’s kind of difficult to…talk about, um, action or…the, the 
difference in scores, things about that.  Um…I think that if, like, based on like…the 
circumstances that this italic section up here mentions that…um…teachers and school 
administrators are always interested in helping out their students and increasing their 
success…then, I guess that’s why I chose b…just based on the circumstances behind the 
problem.  But, if, if I’m looking at it from a purely analytic method 
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then…then…um…a…a, c, and d all seem plausible…like they’re very, very plausible…I 
mean, and like ah hypothesis testing, like…. 
 
M: But you would want to…you think that b is the best option…just go ahead and 
buy the books because the test showed that it was significant at the 0.05 level. 
 
I: Yeah, based on the circumstances that it mentions up at the top.  I put myself in 
their shoes, you know, if I have the money, if I have the, the means, then…go 
ahead…give it a shot, I feel like embracing technology and things like that, you 
know…um…they’re always good things to do.  I feel like a lot of public schools don’t do 
that, having spent 12 years in the system…13, I guess, but. 

 

These excerpts highlight the different justifications used by Interviewees 112, 191, and 

169 for eliminating answer choices a and d in favor of answer choice b.  Interviewee 112 

eliminated a because he didn’t actually know the cost of the books.  If he knew the cost, 

and they were expensive, then he would want to take the action suggested in option d.  

Otherwise, in choosing one answer, he thought that b was reasonable because the 

conclusion to the statistical hypothesis test was that the books were different.  

Interviewee 191 thought that if a significant difference was found at a significance level 

of α = 0.05, he could be confident in the results and take action.  He thought this level of 

significance was low enough.  Answer choice a was eliminated because he interpreted 

that to be the same as b and answer choice d would be reasonable if only the test were 

done at a lower (he said higher – but meant lower) level of significance.  Finally, like 

Interviewee 112, Interviewee 169 eliminated answer choice a because he didn’t know the 

cost of the books.  He thought answer choices c and d were both reasonable.  However, 

based on his experience in the school system, he thought the school should simply buy 

the books, if they have the means. 

 One Interviewee chose answer choice c.  However, in her explanation, she 

struggled to justify her choice.  The following excerpt illustrates her reasoning. 

Excerpt:  Interview 172 
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I: Ok.  Um…ok, um…well I thought that they were all…or…except for b, I mean 
because b I think you should, at least in this case, reanalyze it.  Um…and the other 
ones…are still like talking about thinking about something else before just like buying, 
you know, the new text, textbook.  Um…I think I just came down to c and d because I 
thought it, the thing that made sense to me the most was to repeat it…to you know, to just 
make sure that it was the same and d made sense because…ah…the difference in scores 
could be due to chance, like…there’s always like an…ah…element of chance, I 
guess…and then it based on the, ah, the test scores of certain students if tested maybe a 
different class it could come out differently.  But, um…I think I chose c just because it 
was…um…a different level of significance so…you could see if, um…like…I don’t 
know…the way I have to think about this on the curve…um…(drawing on paper) so then 
like this in here is like 0.05 and I…at 0.05 it was rejected…so…then it here 
is…0.1…and…I don’t know, I would have to like see, cause if it’s…if whatever the test 
statistic like turned out to be, like it doesn’t really tell you here, um…was like close to 
being accepted or rejected based on the like 0.05, you know…maybe like here’s the 
rejection region.  If it was like right here, I mean if it was like right here or 
something…maybe if this…I don’t know.  I was thinking just based on, like, if it was just 
outside it or…just inside it…or something, I don’t know, that based on um…if you had it 
at a different significance level, like…if was inside it here and it was in, still in the 
rejection region in this, then you knew that…um…it wasn’t just like…I guess…right on 
the boarder of being accepted or rejected.  I don’t know I was just thinking, I guess, in 
terms of…you test within a greater um…um…interval, I guess, to see whether it 
definitely should be rejected or maybe it could be accepted. 
 

Interviewee 172 thought that more analysis should go into the situation than answer 

choice b would suggest.  Therefore, she thought that a, c, and d made sense as next steps.  

In particular, she thought that c and d were the best options.  As she tried to justify her 

choice of c over d, she seemed to be confused.  She was not able to justify her reasoning.  

Unfortunately, at this point, the hour was coming to an end and there was not time to ask 

more questions to probe her thinking. 

Analysis 

 The explanations that interviewees gave for this item were interesting in that there 

was a great deal of variation in their reasoning.  Answer choice c was clearly an incorrect 

answer because it would not be helpful.  The difference was found to be statistically 

significant at α = 0.05 and, therefore, would be found to be statistically significant at α = 

0.10.  However, though the vast majority of interviewees did not choose this option, 
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many interviewees thought that answer choice c was reasonable.  This result is surprising 

in that many of them answered item number 11 correctly and seemingly understood this 

phenomenon, on some level.  Admittedly, the discussions surrounding item number 12 

were not as long as others due to the fact that the hour was coming to an end.  Given 

more time, the interviewees might have recognized their error. 

 Answer choice b was written to be a clearly incorrect answer.  It makes a broad 

claim about a population based solely on the results of a statistical hypothesis test.  These 

tests are not proofs.  There is room for error.  This should be taken into consideration.  If, 

as in other items on the test, the interviewees did not interpret the statement in answer 

choice b to be a broad claim resulting from a notion of statistical hypothesis testing as 

proof, this option is not clearly incorrect.  And, in fact, three of the interviewees chose 

this option. It does not necessarily mean that these individuals assume that statistical 

hypothesis tests prove a claim.  They thought the other answer choices were reasonable, 

given they were provided with the necessary information and/or resources. 

 The choice between answer choices a and d was not so clear.  And, in fact it was 

in deciding between these two options that many interviewees struggled.  There was a 

general feeling that action should not be taken based on the results of one study alone.  

More analysis should be done.  However, answer choice a is, in reality, the only 

reasonable choice.  These studies are costly and time consuming.  In addition, no matter 

how many studies are done, there will always be a degree of uncertainty associated with 

the results.  Therefore, answer choice d is not the best answer.  Though a couple of 

interviewees recognized this to be the case, many did not.  It seems introductory statistics 
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students do not have a good handle on the factors involved in conducting and interpreting 

results in a real world setting. 

 

Summary 

 Overall, the data collected in the qualitative phase of the study confirm findings in 

the quantitative phase.  Introductory statistics students do not have a strong understanding 

of the role of inference in statistical hypothesis testing and, therefore, do not fully 

understand the value of statistical hypothesis testing as an inferential method.  They are 

uncomfortable reasoning about populations based solely on information from a sample. 

In addition, introductory statistics students do not have strong understandings of the 

factors that must be considered in making real world decisions based on the results from 

a statistical hypothesis test. 

 The qualitative phase, however, provided more insight into student reasoning 

about the role of context in statistical hypothesis testing.  The real world is “messy” so to 

speak.  There is great deal of variability and uncertainty associated with real world data.  

Statistical hypothesis testing is a valuable tool used to get a handle on that variability and 

uncertainty.  The method helps researchers make a conclusion about the population 

through consideration of the fact that samples do vary.  Through the follow-up interviews 

we see that students really do not have an understanding of these ideas.   Though, on 

some level, they understand that sample data is variable, they are very uncomfortable 

with this idea.  As indicated by the discussion surrounding item number 10, introductory 

statistics students are hesitant to attribute a difference in sample data to chance, whereas 

the assumption that the difference in sample data is due to chance should be the first 
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assumption one would make.  Formal statistical analyses, like hypothesis tests, are then 

used to determine to what degree “chance” can be ruled out as an explanation. 

 Without such an understanding of the value and power of statistical hypothesis 

tests as a means of making conclusions under conditions of high variability and 

uncertainty, introductory students do not fully understand the relationship of the context 

and the method.  This lack of understanding impacts the way they interpret and take 

action based on the results of a statistical hypothesis test in a real world context.  And, it 

influences their understanding of when statistical hypothesis testing is an appropriate 

method to use in research.  The evidence provided by both the quantitative and 

qualitative phases confirms this notion.   

Research Sub-Question Number 1 

 Results from the quantitative phase indicated that though introductory statistics 

students are able to perform the procedures associated with statistical hypothesis testing, 

they do not necessarily have strong understandings either of the logic and concepts that 

support those procedures or of the uses of the method in real world contexts.  Students 

generally scored well on the course exam that assessed (mainly) student ability to apply 

the procedures to well defined, traditional statistical hypothesis testing problems.  They 

did not, however, score well on the multiple-choice instrument that assessed student 

understanding of the overall logic, associated concepts, and uses of statistical hypothesis 

testing.  In addition, the correlation coefficient between the two sets of scores was low.  

Hence, it was concluded that students who can perform the procedures do not necessarily 

have strong understandings of the logic, concepts, and uses of statistical hypothesis 

testing, and vice-versa. 
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 However, as was demonstrated in the previous sections, scores on assessments tell 

only part of the story.  More information on the nature of the relationship between 

student understanding of the procedures and of the logic, concepts, and uses of statistical 

hypothesis testing can be obtained through analysis of the follow-up interview data 

collected in the qualitative phase of the study. 

 The data used to address the second and third research sub-questions presented in 

the previous two sections can be used to address research sub-question number 1.  In their 

explanations of their reasoning for the multiple-choice items, the interviewees often 

referred to procedures to justify their choices.  This data, therefore, provides information 

on the relationship of the interviewees’ understandings of the procedures and of the logic, 

concepts, and uses of statistical hypothesis testing.   

 

Understanding of the Procedures and of the Logic and Concepts  

 Analysis of the data associated with the logic and reasoning items indicated that 

the interviewees did not have strong, connected understandings of the roles of indirect 

reasoning, probability, and inference in statistical hypothesis testing.  When they were 

asked to explain the overall logic and reasoning of statistical hypothesis testing, the 

interviewees were not able to give explanations that demonstrated deep understanding of 

either the logic of hypothesis testing or of the concepts and reasoning that supported that 

logic. Instead, the interviewees often relied on their memory of procedures to explain 

statistical hypothesis testing.  It was as if the interviewees used knowledge of procedures 

to “fill in the gaps”, so to speak, of their knowledge.  Unfortunately, they were not able to 



 

 288 
 

go beyond the procedures and give explanations that evidenced a deep, connected 

understanding of the logic and concepts that supported those procedures. 

 One of the points at which interviewees relied on procedural understandings in the 

interviews was in their attempt to explain why the null hypothesis should be a statement 

of equality and the alternative a statement of inequality.  We saw in the discussion of 

research sub-question number 2 that the interviewees often cited rules for establishing the 

null and alternative hypotheses.  They claimed that the null hypothesis always included 

an “equal sign” and represented the “status quo”, so to speak.  The alternative hypothesis, 

on the other hand, represented the claim the researcher is trying to demonstrate.  Thus, it 

represents a change, and should be a statement of inequality.  When asked whether the 

two could be switched, many of the interviewees thought that they could.  This thinking 

provides evidence that, though the students know how to set up the hypotheses, they do 

not know how that “procedure” connects with the overall logic and reasoning associated 

with statistical hypothesis testing.  The hypotheses are arranged in that way so that 

indirect reasoning may be used.  The null hypothesis is clearly defined with a statement 

of equality.  Hence, the assumed population is clearly defined and sampling distributions 

can be used to determine whether or not the sample presents an unusual occurrence.  The 

interviewees do not seem to have an understanding of these concepts and ideas. 

 Another point at which interviewees relied on procedures to justify their thinking 

was in their explanation of the reasoning that supports the transition from the analysis of 

the sample to the statement of the conclusion.  A great deal of time was spent with the 

interviewees in discussing this piece of the logic of statistical hypothesis testing.  As the 

interviewees explained their reasoning, they referred to rejection regions, z- and t-tables, 
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and significance levels.  However, as indicated by the data presented in the discussion 

surrounding research sub-question number 2, the interviewees struggled to explain what 

these concepts were and/or why they were used. 

 When asked about rejection regions, the interviewees typically recited a set of 

rules used to determine whether or not to reject the null hypothesis.  These rules 

inevitably referred to statistical tables and levels of significance.  When asked what these 

concepts were, the interviewees either said that they didn’t really know (they simply used 

them) or they recited more procedures to explain how they are used.  In reciting more 

procedures some of the interviewees drew graphs, some sketched the outline of the 

tables, and some performed calculations.  Using these tools, the interviewees explained 

how to use the level of significance, α, to decide whether or not the null hypothesis 

should be rejected. 

 The word “probability” was curiously absent in many of the interviewees’ 

explanations of rejections regions, z- and t-tables, and significance levels.  Most of the 

interviewees talked about the degree to which one is confident, or certain, of his final 

conclusion.  They linked what they referred to as the “degree of confidence (or 

certainty)” to the significance level of a given statistical hypothesis test.  The 

interviewees explained that the statistical tables were used to determine whether to reject 

the null hypothesis or not and the level of significance was used to indicate the degree to 

which the researcher is certain in his/her decision.  Only a few interviewees mentioned 

the term “probability”.  And, of those interviewees, none of them indicated that the 

probabilities in the table were conditional probabilities, conditioned on the null 

hypothesis.  Overall, none of the interviewees explained that probability was used to 
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determine whether the sample was unusual, conditioned on the null hypothesis.  

However, most of the interviewees could recite the steps required to make a decision 

about the null hypothesis. 

 Another term that was absent in the interviewees’ explanations was that of 

sampling distributions.  None of the interviewees referred to sampling distributions in 

their reasoning.  As we saw in the data associated with item number 9, when the 

interviewees were presented with the graph of a sampling distribution, the interviewees 

did not know what the graph represented nor did they understand its role in statistical 

hypothesis testing.  They only thing familiar about this graph was the distribution.  It was 

a normal distribution.  However, the interviewees didn’t really understand why it would 

be normally distributed.  This reaction to the graph gives further information about the 

nature of the relationship between students’ understandings of the procedures and the 

logic and concepts.  Though the concept of a sampling distribution is central in statistical 

hypothesis testing, the students did not have an understanding that this was the case.  This 

“gap” in their understanding of statistical hypothesis testing was filled by an 

understanding of the procedures. 

 It is interesting to note that the places where the interviewees relied on procedures 

to explain the logic and reasoning of statistical hypothesis testing were those where 

probability and inference were involved.  Sampling distributions, rejection regions, levels 

of significance, and statistical tables are all concepts used to apply probability to 

determine the degree to which the sample is unusual under the null condition.  In relying 

on probability, then, statistical hypothesis tests are useful as inferential methods.  As with 

all inferential methods, statistical hypothesis testing deals with the variability and 
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uncertainty associated with samples in order to draw conclusions about the population.  

Though there is evidence that, on some level, though the interviewees understood that 

there was uncertainty involved in statistical hypothesis testing, the interviewees tended to 

rely on rules and procedures to deal with that uncertainty.  And, they did so without really 

appreciating the role of probability in those procedures.  Thus, the relationship between 

student understandings of the procedures and of the logic and concepts is not very strong. 

 We now turn to an analysis of the relationship between introductory statistics 

students’ understandings of the procedures and the uses of statistical hypothesis testing.  

For that, we will analyze student responses to the method and context items. 

 

Understanding of the Procedures and of the Uses 

 The relationship between student understanding of the procedures and of the uses 

of statistical hypothesis testing is not as clear as that of the relationship of between 

student understanding procedures and the logic and concepts.  In the explanations offered 

by the interviewees for their reasoning for the method and context items, there is not a 

great deal of evidence supporting the notion that the interviewees relied on procedures to 

answer the questions.  This does not mean, however, that the interviewees used correct 

reasoning to choose correct answer choices.  Their reasoning on these method and 

context items was limited by a lack of understanding of the “messiness” of real world 

data and of the way that statistical hypothesis tests deal with that “messiness” in drawing 

an inference about a population based on information from a sample.  Because, as 

indicated above, the interviewees had knowledge of the procedures but exhibited a lack 

of understanding about the use of those procedures in “real world” settings, we know 
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something about the relationship between the interviewees’ understandings of the 

procedures and of the uses of statistical hypothesis testing. 

 In order to answer the method and context items, the introductory statistics 

students had to consider the context presented in each item.  Given a set of potential 

research questions, they had to choose the one for which statistical hypothesis testing was 

an appropriate method of investigation.  Given the mean and standard deviation of two 

samples of help line calls (with no other analyses), the students had to choose the most 

reasonable explanation for the differences.  Given that the results of a statistical 

hypothesis test comparing two textbooks were statistically significant, the students had to 

determine which factors to consider in deciding whether or not to adopt the books.  In 

order to answer each question correctly, the introductory statistics students had to 

understand that (1) “real world” data is messy; (2) that samples vary; and (3) that 

statistical hypothesis testing, while not a proof, is useful in helping to draw inference 

amidst that variability.  In the analysis of the interviewees’ explanations for their answer 

choices, it was found that they did not have strong, connected understandings of these 

concepts and ideas. 

 As indicated by the previous discussion, the interviewees did have knowledge of 

the procedures associated with statistical hypothesis testing.  However, they did not have 

strong understandings of the logic and concepts, especially as related to the role of 

inference and probability.  These concepts are central to an understanding of the role of 

context in the use of the method.  Therefore, the explanations of the interviewees in the 

follow-up interviews provide further evidence that knowledge of the procedures of 

statistical hypothesis testing does not necessarily translate into an appreciation of the 
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complexity of the context in which statistical hypothesis testing is employed.  That is, the 

relationship between students’ understandings of the procedures and of the uses of 

statistical hypothesis testing is not strong.  An understanding of the uses of statistical 

hypothesis testing requires understanding of more than simply the procedures.  It requires 

an appreciation of the complexity of the context and the role of statistical hypothesis 

testing in dealing with that complexity. 

 

Summary 

 The analysis of the qualitative data with respect to research sub-question number 

1 confirms the findings of the quantitative phase:  the relationship between introductory 

statistics students’ understandings of the procedures and of the logic, concepts, and uses 

of statistical hypothesis testing is not strong.  The follow-up interviews, however, 

extended this finding and provided more information on why that relationship is not 

strong.  The data supports the claim that just because a student knows the procedures 

associated with statistical hypothesis testing, he/she does not necessarily have an 

understanding of or appreciation for the role of probability and inference in statistical 

hypothesis testing.  Even with an understanding of the procedures, introductory statistics 

students do not fully appreciate the value of statistical hypothesis testing as an inferential 

method which relies on indirect reasoning and probability to draw an inference about a 

population based on information from a sample. 
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Summary and Conclusions:  Qualitative Phase 

 Overall, the results and analyses of the qualitative data confirm that which was 

found in the quantitative phase:  Introductory statistics students do not have strong, 

connected understandings of the method and its uses and they are not very articulate in 

explaining their understandings of these ideas.  The data collected in the qualitative phase 

provides more insight into why this is the case.  In particular, the qualitative data (1) 

highlights the fact that introductory statistics students do not understand the role of 

indirect reasoning in statistical hypothesis and (2) provides evidence that introductory 

statistics students do not have strong understandings of and are uncomfortable with 

uncertainty, variability, probability, and inference.  This struggle permeates through 

virtually every aspect of introductory statistics students’ reasoning about the various 

components of statistical hypothesis testing. 

 From the Adding It Up (Kilpatrick, Swafford, & Findell, 2001) stranded 

perspective of proficiency, it can be said that introductory statistics students have fairly 

strong degrees of procedural fluency with respect to statistical hypothesis testing.  They 

can perform the steps and are able to solve well-defined, traditional statistical hypothesis 

testing problems.  However, there are gaps in the degree to which introductory statistics 

students have conceptual understanding, adaptive reasoning, strategic competence, and 

productive disposition in relation to statistical hypothesis testing.  And, as indicated by 

the qualitative data, in particular, these competencies are limited by a lack of 

understanding of uncertainty, variability, probability, and inference. 

 Introductory statistics students do not understand that statistical hypothesis tests 

use sampling distributions and probability to determine whether a sample is unusual, 
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conditioned on the null hypothesis.  In fact, they do not understand what sampling 

distributions are. This lack of understanding speaks to the degree to which introductory 

statistics students have conceptual understanding and adaptive reasoning with respect to 

statistical hypothesis testing.  They do not have deep, connected understandings of the 

overall logic and reasoning nor do they understand why concepts such as sampling 

distributions are fundamental to the overall reasoning.  They do not understand the use of 

probability to determine whether the sample is unusual and to ultimately draw an 

inference about the population. 

 This lack of understanding of the overall logic of statistical hypothesis testing is 

complicated by the lack of appreciation introductory statistics students have of the 

variance that exists within and among samples from the same population.  The data 

collected in the qualitative phase indicated that introductory students’ reasoning is limited 

by a superficial understanding of the uncertainty and variability associated with sampling.  

This weak understanding impacts the ways in which introductory students interpret 

sample data and the results from a statistical hypothesis test as well as the ways in which 

they use that information to make decisions in “real world” contexts.  Because 

introductory statistics students do not have strong understandings of these concepts, they 

tend to draw inferences from samples and hypothesis tests that are invalid.  In addition, 

they do not have a sense of which factors they should take into consideration when using 

the results to inform real world practice.  These are all indications of a weak degree of 

adaptive reasoning with respect to statistical hypothesis testing as they do not know how 

the ideas and concepts connect so that they may justify the decisions they make. 
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 Introductory statistics students are, however, able to determine, for the most part, 

when statistical hypothesis testing is useful to answer a research question.  Given a 

situation, introductory statistics students are able to set up the hypotheses that would be 

used in a statistical hypothesis test.  These skills indicate a degree of strategic 

competence.  However, as indicated by the qualitative data, this competence is limited by 

the fact that introductory statistics students do not understand the value of statistical 

hypothesis testing as an inferential method.  Because introductory statistics students do 

not fully appreciate the way in which statistical hypothesis tests deal with the variability 

that is present within and among samples, they do not understand that statistical 

hypothesis tests are most useful to answer research questions about large populations.  

This lack of appreciation speaks to the degree to which introductory statistics students 

have a productive disposition toward the method and it uses. 

 In summary, the results of the qualitative phase highlight components of statistical 

hypothesis testing for which introductory statistics students do not have strong 

understandings.  Because introductory students do not have strong understandings of 

uncertainty, variance, probability, and inference, they are not able to see the part these 

concepts play in the method of statistical hypothesis testing.  Introductory statistics 

students do not understand that indirect reasoning is employed by statistical hypothesis 

tests to draw inferences about populations using information for a sample.  Without these 

understandings, introductory statistics students do not have an appreciation for the 

method and its uses.  Hence, these are understandings that should be developed 

throughout the introductory statistics course and that should be the focus of instruction. 
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CHAPTER 6 

DISCUSSION 

The study presented in this dissertation used a mixed methods approach to explore 

introductory statistics students’ understandings of statistical hypothesis testing.  In the 

quantitative phase, a multiple-choice assessment and course exam were used to provide 

large scale information about student understanding of the method and its uses.  In the 

qualitative phase, follow-up interviews were used to probe students’ thinking about the 

items on the multiple-choice assessment.  Overall, the data collected in this study provide 

information about the degree to which introductory statistics students understand the “big 

picture” of statistical hypothesis testing. 

 In this chapter, a discussion of the study will be presented.  This discussion is 

broken into the following four sections:  (1) summary of the results and overall 

conclusion of the study, (2) presentation of the contributions and implications of the 

study, (3) statement of the limitations of the study, and (4) suggestions for future 

research. 

 

Summary of Results and Overall Conclusion 

 The study presented in this dissertation was designed to explore introductory 

statistics students’ understandings of statistical hypothesis testing.  In particular, this 

study addressed the following research question: What are the understandings of 

statistical hypothesis testing held by students who have completed an introductory course 
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in statistics at a large university?  More specifically, the following three research sub-

questions were addressed: 

1. What is the relationship between introductory students’ understanding of the 

procedures and the concepts, logic, and uses of statistical hypothesis testing?  

2. What are the understandings that introductory students have of the overall logic 

and reasoning of statistical hypothesis testing? 

3. What are introductory students’ understandings of the relationship between the 

method of statistical hypothesis testing and the context in which it is employed? 

 
In order to address these research sub-questions, large scale quantitative and small scale 

qualitative data were collected and analyzed.  The results of this analysis indicate that 

introductory statistics students do not have strong, connected understandings of the 

overall “big picture” of statistical hypothesis testing. 

Research Sub-question Number 1  

 With regard to the first research sub-question, the qualitative and quantitative data 

indicated that the relationship between introductory statistics students’ understandings of 

the procedures and the concepts, logic and uses of statistical hypothesis testing is not 

strong.  In the quantitative phase, participants scored well on the course assessment 

(largely a measure of procedural fluency) but did not score well on the multiple-choice 

assessment (a measure of conceptual understanding, strategic competence, adaptive 

reasoning, and, to some degree, procedural fluency).  In addition, the scores on the two 

assessments were not strongly correlated.  These results indicate that, though introductory 

statistics students may be able to perform the steps required to solve well-defined, 

traditionally worded statistical hypothesis testing problems, it does not necessarily mean 

they have strong, connected understandings of the “big picture”. 
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 The data collected in the qualitative phase provided more insight into the nature 

of the relationship between introductory statistics students’ understandings of the 

procedures and the concepts, logic, and uses of statistical hypothesis testing.  As they 

explained their reasoning on the multiple-choice items, the interviewees tended to rely on 

statements of procedures to justify their answers. 

 A reliance on procedures was particularly evident in the interviewees’ discussion 

of the logic and reasoning items.  The interviewees referred to the rule “the null 

hypothesis is equal” to establish the null hypothesis but couldn’t explain why the null 

hypothesis should be a statement of equality.  The interviewees also found it difficult to 

explain the logic and concepts that support the transition from sample analysis to 

statement of a conclusion.  They could explain procedures that involved formulas and 

statistical tables to determine whether or not the null hypothesis should be rejected, but 

they didn’t know what those tables represent or why the formulas and tables are used.  

The interviewees did not understand how probability and/or sampling distributions are 

used in the process. 

 In addition, a reliance on procedural knowledge hindered the interviewees’ ability 

to consider the role of context when using and interpreting the results of a statistical 

hypothesis test.   This struggle was evident in the discussions surrounding the method 

and context items. The interviewees did not seem to understand or be comfortable with 

concepts such as variability, uncertainty, and inference.  When these concepts arose in 

discussion, the interviewees struggled to talk about them.  Instead they recited a set of 

rules. 
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 Together the data collected from the quantitative and qualitative phases indicate 

that the relationship between introductory statistics students’ understandings of the 

procedures and the concepts, logic, and uses of statistical hypothesis testing is not strong.  

In particular, students tend to rely on procedures when asked to reason about those parts 

of statistical hypothesis testing that involve inference, probability, and uncertainty. 

Research Sub-question Number 2 

 With regard to the second research sub-question, the qualitative and quantitative 

data indicated that introductory statistics students do not have strong understandings of 

the logic and reasoning of statistical hypothesis testing.  They do not have strong 

understandings of the role of indirect reasoning in the method nor do they understand the 

concepts that support that logic and reasoning. 

 In the quantitative phase, scores on the logic and reasoning items from the 

multiple-choice assessment were low.  Particularly low performances were recorded for 

items classified in the Analysis of the Sample, Decision Rule, and Conclusion 

categories.  Analysis of the frequencies with which various distractors were chosen 

indicated that the students did not have strong conceptual understandings of sampling 

distributions, statistical significance, and p-values.  In addition, given information about a 

sample and/or the conclusion made in a statistical hypothesis test, the introductory 

statistics students did not draw valid inferences.  Their answer choices indicated that they 

understood statistical hypothesis tests to be methods of proof and/or methods by which 

the “truth” of a hypothesis can be measured.  Furthermore, their answer choices indicated 

that they believed that sample statistics provide direct measures of population parameters.  
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These results indicate that introductory statistics students do not have strong 

understandings of sample variability. 

 The data collected in the qualitative phase confirmed most of these findings and 

provided more insight into how introductory statistics students understand the logic and 

reasoning of statistical hypothesis testing.  Overall, the explanations offered by 

interviewees did not evidence an understanding of the roles of indirect reasoning and 

inference in the method.  They did not understand that statistical hypothesis tests are used 

to assess the degree to which the collected sample is unusual under an assumed null 

condition and that, as a result of this analysis, an inference about the population can be 

made. 

 In addition, the interviewees did not understand statistical significance nor were 

they comfortable with the concepts of probability, uncertainty, and inference.  In fact, 

some of the interviewees did not even know how to interpret the words “inference”, 

“uncertainty”, and “statistically significant”.  In their explanations of their thinking for 

items in which those words appeared, many of the interviewees struggled to talk about 

those words.  Some of the interviewees even claimed that “(un)certainty” and 

“probability” are not concepts associated with statistical hypothesis testing.  Furthermore, 

the interviewees did not have an understanding of the degree to which samples vary nor 

did they have an understanding of sampling distributions and their role in statistical 

hypothesis testing.  These ideas are foundational to the logic and reasoning of statistical 

hypothesis testing and provide a means by which inferences can be made.  Because they 

did not understand the logic and reasoning that supports the method, the interviewees did 

not appreciate the value of statistical hypothesis as an inferential method and often drew 
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conclusions about the population directly from sample information.  These results 

confirm, but extend, findings in the quantitative phase. 

 Contrary to the results reported in the quantitative phase, however, the results 

reported in the qualitative phase indicated that introductory statistics students do not 

necessarily think that statistical hypothesis tests prove a given hypothesis.  On the 

multiple-choice assessment interviewee’s answers indicated belief that statistical 

hypothesis tests are proofs.  But the interview data suggested this was not the case.  The 

interviewees understood that the decision to reject or fail to reject the null hypothesis is 

based on information from a sample and that, unless all members of the population are 

tested, the conclusion is not necessarily true.  However, since the interviewees did not 

fully understand the logic and reasoning that supports the conclusion, they often 

incorrectly interpreted the results of a statistical hypothesis test.  They believed that the 

level of significance indicates the degree to which the researcher may be certain that the 

“accepted” hypothesis is true. 

 Together, the information collected from the quantitative and qualitative phases 

indicates that introductory statistics students do not have strong understandings of the 

logic and reasoning of statistical hypothesis testing.  In particular, these students do not 

understand the role of indirect reasoning and probability in the method nor do they 

understand the role of inference in the transition from sample analysis to the statement of 

the conclusion.  Hence, they do not value statistical hypothesis testing as an inferential 

method useful for studying large populations. Ultimately, this lack of understanding 

impacts the way in which introductory statistics students interpret the conclusions of 

statistical hypothesis tests.  



 

 303 
 

Research Sub-Question Number 3 

 With regard to the third research sub-question, the qualitative and quantitative 

data indicated that introductory statistics students do not have very strong understandings 

of the relationship between the method and the context of statistical hypothesis testing.  

In particular, they do not appreciate the “messiness” of real world data and do not have 

strong understandings of statistical hypothesis tests as inferential methods used to “make 

sense” of that “messy” data. 

 In the quantitative phase, scores on the method and context items were stronger 

than those for the logic and reasoning items.  However, these scores were still low.  In 

particular, low scores were reported for items classified in the Implication for Practice 

category.  Answers to items in that category indicated that introductory statistics students 

did not necessarily have a sense of the factors that should be considered when using the 

results of a statistical hypothesis test to inform decisions made in the “real world”.  In 

addition, answer choices for the method and context items indicated that introductory 

statistics students were reluctant to attribute variability in sample statistics to chance. 

These results indicate a lack of appreciation for the variability that exists in data as well 

as a lack of appreciation for the value of statistical hypothesis testing.  In using a 

statistical hypothesis test to analyze data, a researcher is able to make inferences about 

the degree to which the results may have differed by chance.  Further evidence of an 

appreciation for statistical hypothesis testing as an inferential method was evidenced in 

the Recognizing Applicability category.  Though students understood that statistical 

hypothesis tests could be used to compare two populations, their answer choices 
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indicated a preference for applying statistical hypothesis testing in situations that did not 

require an inference to be made. 

 The results of the qualitative phase confirmed those of the quantitative phase but 

provided insight into the struggles that introductory statistics students face in linking the 

statistical hypothesis testing method to the context in which it is employed.  As was 

found in the analysis of interview data for the logic and reasoning items, interviewees 

were uncomfortable with the concepts of uncertainty and variability.  Hence, they did not 

appreciate the value of statistical hypothesis testing as a means of making inferences 

about populations amidst the variability and uncertainty associated with samples.  The 

interviewees thought that statistical hypothesis tests are best used when the population 

being studied is not too “broad”, so to speak.  The interviewees were uncomfortable 

applying statistical hypothesis testing to research questions that addressed large 

populations when, in fact, these are the very populations statistical hypothesis testing is 

designed to address.  In addition, as indicated in the quantitative phase, the interviewees 

were reluctant to attribute differences in samples to chance.  Instead, the interviewees 

gave causal reasons for the differences and/or drew upon their own experiences to 

explain those differences.  However, as indicated in the interview data for the logic and 

reasoning items, the interviewees did recognize that the results of a statistical hypothesis 

test do not necessarily prove a hypothesis and, thus, understood that action should not 

necessarily be taken based on the results of one study alone. They felt that before action 

is taken, further analysis should be done.  However, they did not know what kind of 

analysis is appropriate in those circumstances. 
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 Together, the results from the quantitative and qualitative phases indicate that 

introductory statistics students do not have strong understandings of the relationship 

between the statistical hypothesis testing method and the context in which it is employed.  

In particular, introductory statistics students do not have strong understandings of the 

variability associated with samples and they do not value statistical hypothesis testing as 

an inferential method.  This lack of understanding impacts their reasoning about 

situations in which the method should be applied and their reasoning about the ways in 

which the results of a statistical hypothesis test should be used to inform “real world” 

decision making. 

Conclusion 

 Taken together, the quantitative and qualitative phases of this study provide 

information about introductory statistics students’ understandings of the “big picture” of 

statistical hypothesis testing.  As is evident from the results presented above (and in 

Chapters 4 and 5) the two phases of the study informed each other.  The quantitative 

phase was conducted on a large scale, and provided general information about the overall 

understandings of many introductory statistics students.  The qualitative data confirmed 

and extended the findings of the quantitative phase.  Through the data collected in the 

follow-up interviews, it was possible to gain more insight into student thinking than that 

which was provided in the quantitative phase.   In addition, through the follow-up 

interviews, we saw that introductory statistics students are not very articulate in 

expressing their understandings of the concepts and ideas associated with statistical 

hypothesis testing. 
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 Overall, the data collected indicates that introductory statistics students, who have 

completed a traditional course at a large university, do not have strong, connected 

understandings of the “big picture” of statistical hypothesis testing.  Though these 

students can solve well-defined, traditionally worded, statistical hypothesis testing 

problems, they do not have strong understandings of the logic and reasoning of statistical 

hypothesis testing.  In addition, they do not have strong understandings of the 

relationship between the method and the context in which it is employed.  In particular, 

introductory statistics students do not understand the role of indirect reasoning in the 

method.  They are uncomfortable with concepts such as probability, uncertainty, and 

variability and do not understand sampling distributions and their role in statistical 

hypothesis testing.  Introductory statistics students do not value statistical hypothesis 

testing as an inferential method used to draw inferences from “messy” real-world data. 

 However, the results indicated that introductory statistics students do understand 

that statistical hypothesis tests are not proofs and that the conclusion reached is not 

necessarily correct.  In addition, introductory statistics students understand statistical 

hypothesis tests to be useful in comparing two groups. 

 From the perspective of proficiency offered by Adding It Up (Kilpatrick, et al., 

2001), these results indicate that, at the end of a traditional, introductory statistics course 

at a large university, students have fairly high degrees of procedural fluency with respect 

to statistical hypothesis testing. However, they do not have high degrees of conceptual 

understanding, strategic competence, adaptive reasoning, or procedural fluency (at least 

with respect to understanding the value of the method).  In addition the relationship 

between and among these “strands” is weak. 
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 Introductory statistics students, however, are not without any understanding.  

They do have some understandings that are useful and that can be built upon.  It may be 

the case, that over time, with more exposure to statistical hypothesis testing and to 

statistics in general, these understandings will develop.  However, introductory statistics 

students do not have these understandings when they complete a first, introductory course 

in statistics. 

 

Contributions and Implications 

 The results of this study advance a growing body of knowledge about student 

understanding of statistical hypothesis testing.  Additionally, the instrumentation 

developed in this study provides a guide for assessment of that understanding.  Taken 

together, the results and products of this study have implications for instructional design 

and student assessment in introductory statistics courses. 

Contributions 

 A major contribution of this study is the fulfillment of a gap in the literature on 

student understanding of statistical hypothesis testing.  Few studies examine 

understandings of the overall “big picture” of statistical hypothesis testing. The literature 

includes some studies that examine student understanding of the procedures (Aquilonius, 

2005; Evangelista & Hemenway, 2002; Hong & O’Neil, 1992; Link, 2000) and of the 

components (Hong & O’Neil, 1992; Krauss & Wassner, 2002; Lane-Getaz, 2007; Lipson, 

Kokonis, & Francis, 2003; Mittag & Thompson, 2000; Wilkerson & Olson, 1997) of 

statistical hypothesis testing.  However, only two studies have been conducted that 
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examine understandings of statistical hypothesis testing beyond procedural knowledge 

(Aquilonius, 2005; Liu, 2005) and these studies are limited in that they (1) did not 

examine understandings of all aspects of the “big picture” of statistical hypothesis and (2) 

were done with only small numbers of participants. Therefore, large scale study of 

student understanding of the overall “big picture” of statistical hypothesis testing was 

needed to advance the field.  This study addresses that need.  It provides large scale 

information on the degree to which students enrolled in a traditional, introductory 

statistics course at a large university understand the overall “big picture” of statistical 

hypothesis testing.  Furthermore, in order to support the large scale analysis of student 

understanding, this study included analysis of data collected in follow-up interviews 

designed to further explore student thinking on a small scale. 

 The results of this study confirm many of the findings reported in the literature on 

student understanding of statistical hypothesis testing.  Like the students in Aquilonius’ 

(2005) study, the participants in the present study were able to implement the procedures 

associated with statistical hypothesis testing but did not have strong understandings of the 

concepts that supported those procedures.  The students in both studies did not readily 

refer to sampling distributions or probability in their reasoning, did not understand p-

values, and relied on well-rehearsed rules to justify their reasoning. 

 In addition, like the teachers in Liu’s (2005) study, the participants in the present 

study did not understand the role of indirect reasoning in statistical hypothesis testing. 

Neither group of participants understood that statistical hypothesis tests are used to 

determine the degree to which the collected sample is unusual under the assumed null 

condition.   And, neither group had strong understandings of the relationship between the 
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method and the context.   When presented with sample information, participants in both 

studies relied on their own personal experience to judge whether or not the null 

hypothesis should be rejected, rather than appealing to statistical hypothesis testing to 

make that decision.  And, both groups were reluctant to attribute variability in sample 

information to chance.  Instead, they attributed the difference to an actual difference in 

the population or to some other causal event. 

 Though the findings of the present study confirm those of Aquilonius’ (2005) and 

Liu’s (2005) studies, these findings also provide additional information about student 

understanding useful in advancement of the field.  Because the present study was done on 

a large scale with introductory statistics students at a large university, we now have 

evidence that many of these students have incomplete understandings of the method and 

its uses. In addition, as a result of the present study, we now have more information about 

student understanding of other aspects of the overall “big picture” of statistical hypothesis 

testing.  We know more about student understanding of the logic and reasoning of 

statistical hypothesis testing and we know more about their understanding of the 

relationship of the method to the context in which it is employed.  Specifically, we now 

have evidence that introductory statistics students do not have strong understandings of 

the variability and uncertainty associated with samples, they do not understand sampling 

distributions and their role in statistical hypothesis testing, and they do not understand the 

way in which statistical hypothesis tests draw inferences about a population based on 

information from a sample.  Furthermore, we now have evidence that introductory 

statistics students do not value statistical hypothesis testing as an inferential method that 
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is reliant on probability theory and that is useful for making decisions in “real world” 

contexts. 

 The results of the present study also confirm, but extend, what is known about 

student understanding of the individual components of statistical hypothesis testing.  In 

the present study, we saw evidence that introductory statistics students do not understand 

the components of statistical hypothesis testing.  These findings are consistent with that 

which has been reported in the literature on student understanding of those components.  

As a result of this study, however, we now see how difficulty understanding the 

components can limit the degree to which introductory statistics students understand 

statistical hypothesis testing overall. 

 In addition to a contribution of results that advance the field, the present study 

makes a contribution to field of statistics education in the creation of products useful to 

the study of student understanding of statistical hypothesis testing.  Prior to this study, the 

literature did not contain a framework that outlines understandings important to a strong, 

connected understanding of statistical hypothesis testing.  Additionally, none of the 

studies in the literature had reported on a multiple-choice assessment of those 

understandings.  In order to assess student understanding of the concepts, logic, and uses 

of statistical hypothesis testing on a large scale, it was necessary to create such a 

framework and instrument.  Thus, initial versions of a Framework for Assessing 

Understanding of Statistical Hypothesis Testing and a multiple-choice assessment of 

student understandings of the concepts, logic, and uses of statistical hypothesis testing 

were created.  Though the Framework and multiple-choice assessment are not perfected, 

they are products of this study that may be used and/or refined to be used in future studies 
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of instruction and student understanding.  In offering these products, the present study 

makes a contribution to the field of statistics education. 

Implications 

 Taken together, the results of the studies on student understanding of statistical 

hypothesis testing (past and present) have implications for instruction on statistical 

hypothesis testing.  The results indicate that instruction should focus more attention on 

the development of student understanding of the overall “big picture” of statistical 

hypothesis testing, in addition to mastery of the procedures.  In particular, more emphasis 

should be placed on the development of strong understandings of the logic of indirect 

reasoning and its role in statistical hypothesis testing.  In addition, more emphasis should 

be placed on the development of an understanding of statistics as a field of study different 

from mathematics.  In so doing, care should be taken to help introductory statistics 

students become more comfortable with uncertainty and variability.  They should come 

to appreciate statistical hypothesis testing as an inferential method used to “manage” 

variability in samples. Instruction should help students to understand sampling 

distributions as necessary components to the overall logic and reasoning of statistical 

hypothesis testing.  Finally, instruction should provide students with plenty of 

opportunities to apply statistical hypothesis testing to ill-defined problems that involve 

“real world” data.   In summary, instruction should provide students with activities and 

tasks that help them to build understandings of the “big picture” of statistical hypothesis 

testing such that they appreciate the value of the method and its uses. 

 In addition, the Framework and multiple-choice assessment developed in this 

study offer implications for instruction in statistical hypothesis testing.  These products of 
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the study highlight important understandings of the method and its uses that have been 

advocated for by leaders in the field (e.g. ASA, 2005; Cobb, 1992; Garfield & Chance, 

2000; Moore, 1997; Snee, 1999).  As such, they are useful in guiding instruction about 

and/or assessing student understanding of the concepts, logic, and uses of statistical 

hypothesis testing. 

 

Limitations 

 Though the study described in this dissertation contributes to the field of statistics 

education, there are limitations to the conclusions that can be drawn from the findings.  

As is the case for all studies in the field of education, the conclusions of this study are 

limited by the overall design. 

 The participants in this study were enrolled in a traditional, introductory statistics 

course at a large university.  Though there is evidence to suggest that statistical 

instruction in introductory statistics courses on the whole is very similar across 

universities (Garfield, Hogg, Schau, & Whittinghill, 2002; Shaughnessy, 1992), caution 

should be exercised in generalizing the results of this study to other populations. 

 Though comparison of performance on the third course exam of the participants 

in the study with the overall performance of students enrolled in STAT 100 indicated that 

the sample was representative of the overall population (see Chapter 4), it should be 

noted that the participants in this study were volunteers.  Therefore, self-selection bias 

should be taken into consideration when attempting to generalize the results to other 

populations. 
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 In addition, because this study was not an investigation of instruction, classroom 

observations were not conducted.  We do not know how each instructor presented the 

material and/or talked about the concepts and ideas involved.  Furthermore, we do not 

know how individual instructors graded each of the third course exams.  In essence, we 

do not know the effect of the instructor and/or course design on student performance. The 

approach used by other instructors at other universities may be different and the extent to 

which concepts are addressed may be different from university to university and from 

course to course.  We do know, however, that instruction in this course was lecture-based 

and guided by a traditional textbook.  In addition, we know that assessments in this 

course were composed of well-defined, traditional statistical hypothesis testing problems.  

Hence, to the extent that that other university courses are taught in similar lecture-style 

formats with a focus on procedures, the results of this study inform our understanding of 

student learning about statistical hypothesis testing from introductory statistics courses at 

large universities. 

 This study was also limited by its use of a multiple-choice assessment to gather 

large scale data on student understanding of statistical hypothesis testing.  Though items 

from the instrument were piloted and modifications were made, the final version of the 

instrument was not piloted.  This instrument has not been subjected to tests of reliability 

or validity.  In fact, as indicated by student responses in the follow-up interview, students 

often did not interpret the language used in the instrument to mean what was intended 

when the instrument was developed. Additionally, because the instrument used a 

multiple-choice format, the participants were provided with potential answers.  Had the 

items been presented in a “free response” format, the participants may have offered 
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answers quite different from those provided on the assessment.  Given four answer 

choices, however, the participants were able to use test taking strategies to eliminate 

distractors and make “educated” guesses as to which answer choice is correct, whether or 

not it was the answer they had in mind upon reading the question.  These issues highlight 

the limitations associated with the use of multiple-choice assessments in general.  Thus, 

the mixed methods approach used in this study was useful to gain more insight into 

student thinking and to provide triangulation of data sources. 

 Finally, there are limitations associated with the results reported in the qualitative 

phase.  Though care was taken to choose interviewees who were representative of the 

various performance patterns on quantitative instruments, the interviewees chosen 

represent a small fraction of the overall population of introductory statistics students.  

Each of the interviewees is an individual with unique characteristics and unique 

understandings.  Therefore, caution should be exercised in generalizing the results of this 

phase of the study to other populations.  However, because the interviewees were chosen 

to maximize the potential for variability that could exist in student responses, their 

responses do provide some insight into the ways introductory statistics students may or 

may not understand statistical hypothesis testing. 

 

Future Research 

 Given the results and limitations of this study, there are several follow-up studies 

that can be done to build on this work and advance the field.  Given the results reported 

in this and other studies, it is of interest to study instruction itself.  We have evidence that 

introductory statistics students do not have strong, connected understandings of statistical 
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hypothesis testing and we know where students have difficulty in developing those 

understandings. These results imply that instruction should be enhanced to focus on those 

areas for which introductory statistics students are weak. 

 As a “next step” it is important to study the current state of instruction.  Studies of 

instruction in introductory statistics courses at large universities would provide 

information on how statistical hypothesis testing is addressed in these courses.  Because 

instruction at large universities is often guided by textbooks, a textbook analysis would 

provide useful information about how the concept is treated and dealt with in the context 

of traditional courses.  In fact, a textbook analysis of a variety of textbooks (not just those 

typically used in university settings) would be useful. It is of interest to see how different 

textbooks discuss the logic, reasoning, and uses of statistical hypothesis and/or to what 

extent they focus on the procedures relative to other aspects of the “big picture”. 

Additionally, a discourse analysis of classroom discussions would provide information 

about how statistical hypothesis testing is presented and discussed as well as how the 

students respond.  Such studies would provide valuable information about the 

relationship between instruction and student learning and would inform future design of 

instruction at large universities. 

 As instruction is modified, it is important then to study the impact of those 

modifications on student understanding.  Research on instruction should study the 

learning process itself so that educators and researchers develop stronger understandings 

how various instructional activities promote (or limit) the development of strong 

understandings of the “big picture” of statistical hypothesis testing.  Here again, discourse 
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and/or textbook analysis would be useful to study the impact of those enhancements to 

instruction. 

 The Framework and multiple-choice assessment developed in the present study 

should be refined.  With further refinement, these objects can be useful in evaluating the 

success of various instructional designs on the development of student understanding of 

the concepts, logic, and uses of statistical hypothesis testing. 

 Ultimately, the line of inquiry addressing student understanding of statistical 

hypothesis testing should be applied to studies of teacher understanding of the “big 

picture” of statistical hypothesis testing.  As was the case in this study, many introductory 

statistics teachers are trained in mathematics.  They, too, should develop strong, 

connected understandings of statistical hypothesis testing (and of statistics, in general).  

Research on the development of teacher understanding of these ideas therefore, is of 

value. 

 Ultimately, a line of inquiry that includes studies both of instructional design in 

introductory statistics course and of the development of teacher knowledge about 

statistical hypothesis testing have the potential to improve the degree to which students 

complete an introductory statistics course with strong, connected understandings of the 

statistical hypothesis testing and its uses.  And, given today’s data driven world, these 

understandings are of value. 
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APPENDIX A 

REASONS FOR DISTRACTORS 

Item and Code Code 

Answer 

Distractor Assesses 

Which of the following questions is most likely to be answered by a study that 
requires statistical hypothesis testing? 
 
a. Do athletes have a lower GPA than other students?   

b. What equation predicts a student’s freshman GPA from his/her SAT score? 

c. What are typical costs for full-time resident students in U. S. colleges? 

d. Do the 12:00 noon sections of STAT 100 perform better than the 2:00 p.m. 

sections this semester? 

 

RA  
(1.1, 1.2, 

1.3) 
 

A 

All distractors address indication from the research that 
individuals do not know when to use hypothesis testing (Liu, 
2005) and/or which test to use (Aquilonius, 2005) 
 
 
d.  Assesses whether students understand that statistical hypothesis 
testing is not necessary when it is possible to obtain information 
from the entire population.  Assesses whether students value 
statistical hypothesis testing as an inferential method used to make 
inferences about a population based on information from a sample. 

 

Which of the following actions is the most important first step in designing a 
statistical hypothesis test to answer the question:  Are out-of-state students more 
successful at the state university than students who are in-state residents? 
 
a. Agree on a statistical test to compare the groups. 

b. Agree on a sample size from each population. 

c. Identify available statistical software. 

d. Agree on a way of measuring student success. 
 

 
RA 

(1.1) 
 

D 

All distractors address indication from research that individuals do 
not know when  or how to use hypothesis testing (Liu, 2005; 
Aquilonius, 2005) 
 
Although all distractors present important decisions that must be 
made, a statistical hypothesis test cannot be under consideration 
unless that question can be quantified. 

Which of the following statements is the best justification for using a statistical 
hypothesis test to answer the question: Are female students as successful as male 

students in college mathematics? 
 
a. It allows you to talk about uncertainty associated with your decision. 

 
RA 
(2) 

 
A 

b.  Assesses whether students think that statistical hypothesis 
testing provides a proof for either the null or alternative 
hypotheses.  This understanding might arise from a belief that one 
sample proves a statement for a population (Bady, 1979; 
Klaczynski, 2000; Kuhn & Dean, 2004; Wason, 1960), from 
reasoning according to the representativeness heuristic (Kahneman 
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b. It allows you to use only a sample of students to prove something for all 

students.  

c. It allows you to calculate means and use statistical tables to answer the 

question. 

d. It allows you to find and prove the answer using mathematical calculation. 
 

and Tversky, 1972, 1982) and/or from difficulty in managing the 
tension between sample representativeness and sample variability 
(Bruce, 2006; Reading & Shaughnessy, 2004) 
 
c.  Might be the kind of response from someone who thinks of the 
test only as a procedure consisting of calculations (Aquilonius, 
2005).   
 
d.  Might be the kind of response from someone who thinks of the 
test as a procedure (Aquilonius, 2005).  Also assesses whether 
students think that statistical hypothesis testing provides a proof 
for either the null or alternative hypotheses (see justification for 
distractor b, above). 
 

A researcher would like to establish that freshmen in the humanities have higher 
SAT scores than freshmen in the sciences.  Which of the following null hypotheses 
should be tested? 
 
The mean SAT score of humanities students is … 
 
a. greater than that of science students. 

b. greater than or equal to that of science students. 

c. less than or equal to that of science students. 

d. less than that of science students. 

 
GH 
(1) 

 
C 

All distractors assess whether individuals confuse the inequality 
statements when establishing the null and alternative hypotheses 
(Link, 2002) 

A local dry cleaner uses Stain Away stain remover, which is known to remove 85% 
of stains.  A new, more expensive product Erase Away claims to be more effective 
than Stain Away.  Which set of hypotheses should be used to test whether the dry 
cleaner should consider switching? 
 

a. H0:   Erase Away removes more than 85% of stains. 

       H1:   Erase Away removes no more than 85% of stains. 

b. H0:   Erase Away removes 85% of stains. 

 
GH 

(1, 2, 3) 
 

D 

All distractors assess whether individuals confuse the inequality 
statements when establishing the null and alternative hypotheses 
(Link, 2002) 
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       H1:   Erase Away does not remove 85% of stains. 

c. H0:   Erase Away removes more than 85% of stains. 

       H1:   Erase Away removes less than 85% of stains. 

d. H0:   Erase Away removes no more than 85% of stains. 

      H1:   Erase Away removes more than 85% of stains.  

To test the hypothesis that private schools are more effective than public schools, 
researchers plan to compare mean starting salaries of private and public school 
graduates.  But they cannot agree on whether to test the results at a significance 

level of 0.10 (α = 0.10) or at a significance level of 0.05 (α = 0.05).   
 

What effect will using 0.10 rather than 0.05 have on the study? 

 

a. Using 0.10 will result in a greater chance that they will incorrectly retain the 

null hypothesis. 

b. Using 0.10 will result in a greater chance that the null hypothesis is actually 

true. 

c. Using 0.10 will result in a greater chance that they will incorrectly reject the 

null hypothesis. 

d.    Using 0.10 will result in a greater chance that the alternative hypothesis is 

actually true. 

 
DR 
(1) 

 
C 

This item assesses student understanding of significance level.   
 
The distractors assess whether students understand significance 
level as the probability of making a Type I error, if the null is, in 
reality, correct. 
 
Individuals do not have a good understanding of p-value and 
interpret it to be 
1.  The probability that the null is/is not true 
2.  The probability that the alternative is/is not true   
(Lane-Getaz, 2007; Haller & Krauss, 2002; Nickerson, 2000) 
 
Interpretation of p-value relates to interpretation of significance 
level.  Individuals believe 
1.  That alpha is the probability of making a Type I error 
2.  That alpha is the probability of making a Type I error if the 
study is repeated over time with the same alpha level 
3.  That alpha is the probability that if one has rejected the null, 
he/she has made a Type I error 
(Nickerson, 2000;) 
 
The distractors build off of these notions in assessing student 
understanding of significance level. 

When Consumer Reports studied response times for a random sample of 60 
computer help-line calls, they found a mean of 15 minutes and standard deviation 
of 4.5 minutes.  After hearing complaints about decline in service, they repeated the 
study (again using a sample of 60 calls) and found a mean response time of 16.5 
minutes and standard deviation of 6.0 minutes. 

 
CS 

(1, 2) 
 

C 

a.  Assesses whether students are reasoning according to the 
representativeness heuristic (Kahneman and Tversky, 1972, 1982) 
and/or are struggling to manage the tension between sample 
representativeness and sample variability (Reading & 
Shaughnessy, 2004; Bruce, 2006).  Additionally, he/she many be 
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What is the most plausible interpretation of the difference between the two study 
results? 

 
a. Because the second study showed a higher mean, that study must have only 

looked at computer help-lines that received a lot of consumer complaints.  

b. The increase in mean response time confirms a decline in services by computer 

help-lines. 

c. The observed difference in mean response times is quite possibly due to chance 

variation. 

d. The increase in standard deviation is the reason for the increase in mean 

response time. 

reasoning according to personal beliefs (Klaczynski, 2000; Kuhn 
and Dean, 2004) while  misunderstaning the notion of sample bias 

(Konold & Higgins, 2003; Watson & Moritz, 2000) 
 
 
b.  Assesses whether students think that one sample proves a 
statement for a population (Bady, 1979; Klaczynski, 2000; Kuhn 
& Dean, 2004; Wason, 1960). 
 
d.  Assesses students’ understanding of variability and its’ 
relationship to summary statistics. 
 

The typical distribution of usable lifetimes for light bulbs is shown in the following 
sketch.  It’s clearly not a normal distribution.  However, when doing a test to 
compare the mean lifetimes of two light bulb brands (using large samples of both 
brands), a statistician used a normal distribution to find the p-value of the 
difference. 

 

 

 

 

 

 

 

 

 

Which of the following statements best explains why the test for significance 
involves normal probabilities, rather than probabilities from the light bulb lifetime 

 
AS 
(2) 

 
A 
 

b.  Assesses whether students confuse the sampling distribution of 
the statistic with the distribution of values in a sample (delMas, 
Garfield, & Chance, 2004; Saldanha & Thompson, 2002) 
 
c.  Assesses whether students have a procedural as opposed to a 
conceptual understanding of sampling distributions and their use 
in statistical hypothesis testing.  Indicates a superficial 
understanding. 
 
d.  Assesses whether students confuse the sampling distribution of 
the statistic with the distribution of values in a sample (delMas, 
Garfield, & Chance, 2004; Saldanha & Thompson 2002) 
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distribution? 
 
a. The distribution of the difference of means of large samples is always 

approximately normal. 

b. The distribution of values in large samples is always approximately normal. 

c. Values of the standard normal probability distribution are always given in 

reference tables. 

d. The distribution of differences of values in two samples is always 

approximately normal.  

Tests show that fuel efficiency of cars in the current model year averages 30 miles 
per gallon.  A test of 100 new car models gave mean fuel efficiency of 31.5 miles 
per gallon.  To see whether it is correct to claim that the new car models are more 
fuel-efficient than those in the current model year, a researcher constructed the 
sampling distribution of average fuel efficiencies of many samples of 100 current 
model cars in the following graph. 

Sampling Distribution
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Which of these conclusions is best supported by the graph above? 
 
a. The difference in fuel efficiency of current and new model cars is not 

statistically significant. 

b. Half of current and new model cars have fuel-efficiencies below 30 miles per 

gallon. 

 
AS 

(2, 3) 
 

A 

 
b and d.  Assess whether students confuse the sampling 
distribution of the statistic with the distribution of values in a 
sample (delMas, Garfield, & Chance, 2004; Saldanha & 
Thompson, 2002) 
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c. The difference in fuel efficiency of current and new model cars is statistically 

significant. 

d. Nothing can be concluded.  The graph should be centered at 31.5. 

To test the effectiveness of a new method of teaching reading, researchers used the 
new method with a class of 35 second-grade students and found that 70% of those 
students were then reading above grade level.  In a typical year, 50% of second-
grade students are reading above grade level.  In order to test the significance of the 
new program effect, researchers calculated the test statistic  
 
  

( )
37.2

35

5.015.0

5.07.0
≈

−

−
=z

 

 
What is the best explanation of what the researchers learn by using a statistical 
table to find a p-value for the test statistic 2.37? 
 
a. The p-value tells the probability that the new teaching method results in a 20% 

gain in the number of students reading above grade level. 

b. The p-value tells the probability that the new teaching method does not result 

in a 20% gain in the number of students reading above grade level. 

c. The p-value tells the probability of getting the observed results, if the new 

program does result in better reading skill. 

d. The p-value tells the probability of getting the observed results, if the new 
program does not result in better reading skill. 

 

 
AS 
(3) 

 
D 
 

This item assess whether students understand p-value as the 
probability of the observed sample conditioned on the null 
hypothesis. 
 
Individuals do not have a good understanding of p-value and 
interpret it to be 
1.  The probability that the null is/is not true 
2.  The probability that the alternative is/is not true   
(Lane-Getaz, 2007; Krauss & Wassner, 2002; Nickerson, 2000) 
 
The distractors assess whether students have these, or related, 
misunderstandings of p-value. 

In 1950 the mean IQ of undergraduates at a university was 110.  To test the 
hypothesis that students today are smarter, a study of 500 current students found a 
mean IQ of 120.  The difference between the two means is significant at the 0.05 
level.  (α = 0.05) 

Which of the following statements is necessarily true? 

 
C 

(1, 2, 3) 
 

D 
 

a.  Assesses whether students think that statistical hypothesis 
testing provides a proof for either the null or alternative 
hypotheses.  This understanding might arise from a belief that one 
sample proves a statement for a population (Bady, 1979; 
Klaczynski, 2000; Kuhn & Dean, 2004; Wason, 1960), from 
reasoning according to the representativeness heuristic (Kahneman 
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a. Undergraduates at the university today are smarter than those in 1950. 

b. The claim that undergraduates today are not smarter than those in 1950 is true 

with a probability less than 0.05. 

c. The claim that undergraduates today are smarter than those in 1950 has been 

established with 95% certainty. 

d. If undergraduates today are no smarter than those in 1950, the probability of 

the observed mean IQ is less than 0.05. 

and Tversky, 1972, 1982) and/or from difficulty in managing the 
tension between sample representativeness and sample variability 
(Bruce, 2006; Reading & Shaughnessy, 2004) 
 
 
b, c.  Assesses whether students are interpreting statistical 
significance as the probability of either the null or alternative 
hypothesis being true.  Relates to misunderstandings of p-value  
(Lane-Getaz, 2007; Krauss & Wassner, 2002; Nickerson, 2000) 
 
 
 
 
 
 
 

A study tested the claim that: Transfer students are less successful at the state 

university than students admitted as first time freshmen.  Results showed a 
difference in first semester grade point averages that is significant at the 0.05 level.  
Information from samples of transfer and first time freshmen is shown in the table 
below. 
 

 Transfer Admits Freshman Admits 

n 50 50 

mean gpa 2.5 2.8 

 
What is the most reasonable inference about the population of all first semester 
students that can be drawn from this information? 

 
a. There are equal numbers of transfer and first time freshman students on 

campus. 

b. The mean first semester GPA of all freshman admits is 0.3 greater than that of 

all transfer admits. 

c. It is unlikely that the first semester GPA of all transfer admits equals that of all 

 
C 

(1, 2) 
 

C 

a, b, d.  Assess whether students think that one sample proves a 
statement for a population (Bady, 1979; Klaczynski, 2000; Kuhn 
& Dean, 2004; Wason, 1960;) and/or assesses whether individuals 
are reasoning according to the representativeness heuristic 
(Kahneman and Tversky, 1972, 1982) and are struggling to 
manage the tension between sample representativeness and sample 
variability (Bruce, 2006; Reading & Shaughnessy, 2004) 
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freshman admits. 

d. The mean first semester GPA of all University students is 2.5+2.8
2

 or about 

2.65. 

In an educational study the mean test score of students studying from a new, 
experimental textbook A was greater than that for students studying from the 
previously used, traditional textbook B, with significance at the α = 0.05 level. 
  
What action in response to that result makes most sense to you? 

 
a. Compare the mean scores to see if the difference is great enough to merit the 

cost of new books. 

b. Schools should adopt textbook A because its use leads to significantly better 

learning. 

c. Re-analyze the data to see if the difference in means is significant at the 0.10 

level. 

d. Take no action until the study is repeated, because the difference in scores 

could be due to chance. 

 
IP 

(1, 2, 3) 
 

A 

This item assesses whether students understand that statistical 
significance does not always imply practical significance and that 
students recognize the need to examine effect size, at least 
informally. 
 
b.  Assesses whether students think that statistical hypothesis 
testing provides a proof for either the null or alternative 
hypotheses.  This understanding might arise from a belief that one 
sample proves a statement for a population (Bady, 1979; 
Klaczynski, 2000; Kuhn & Dean, 2004; Wason, 1960), from 
reasoning according to the representativeness heuristic (Kahneman 
and Tversky, 1972, 1982) and/or from difficulty in managing the 
tension between sample representativeness and sample variability 
(Bruce, 2006; Reading & Shaughnessy, 2004) 
 
c.  Assesses whether students understand significance level.  (See 
item number 11) 
 
 
d.  Assesses whether students understand that role of statistical 
hypothesis testing in establishing a means for decision making 
based on evidence collected from one, usually expensive study.  
This distractor was written to reflect the findings that  
1. teachers want to take another sample to “prove” the statement 
(Liu, 2005) 
2.  student don’t think that one sample gives enough information 
(Jacobs, 1999)  
3.  individuals generally misunderstand sampling distributions 
(delMas, Garfield, & Chance, 2004; Saldanha & Thompson, 2002) 
and their role in hypothesis testing  (Liu, 2005) 
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To evaluate a new computer-based approach to teaching pre-calculus, 200 
volunteers among the 1000 pre-calculus students took the course on-line.  At the 
end of the semester the mean final exam scores were 83.5 for the on-line students 
and 83.1 for the other students, a difference that proved to be significant at the 0.05 
level.  

If you were unhappy with the resulting recommendation that the course be taught 
on-line to all students, which of the following critiques is least likely to be effective 
in challenging the recommendation? 

a. While the difference in means may be statistically significant, it is very small 

in practical terms.  

b. The study did not use random assignment of subjects to treatment groups. 

c. The experimental group was too small—only 200 out of 1000 students. 

d.     A previous experiment on the calculus course did not show positive results for 

on-line instruction. 

 
IP 

(1, 2) 
 

D 

This item assesses whether students understand (1) common areas 
for which to critique a study and (2) that statistical significance 
does not always mean practical significance. 
 
Distractors a, b, and c are all legitimate challenges. 
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APPENDIX B 

MULTIPLE-CHOICE ASSESSMENT 

STAT 100 Multiple Choice Survey 

Cover Sheet 
 

This survey contains questions about hypothesis testing.  Please read each 

question and answer choice carefully before choosing the best option.  Your 

answers to the questions will not affect your grade but will be used in a 

large-scale study of student understanding of statistical hypothesis testing, 

which may ultimately inform instruction for future students. 

 

If you have not completed the appropriate consent form, please ask your 

instructor for the form so that you may participate in the study.  You may 

choose to participate in the survey phase only or you may choose to 

participate in both the survey and follow-up interview phases.  In either 

case, you must have completed the consent form.   

 

Thanks so much for your participation!  ☺ 

 

 

Name (print): 

_______________________________________________________ 

 

 

 

Name (sign):  

_______________________________________________________ 

 

 

 

Email:  

_________________________________________________________ 
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Multiple Choice Survey 
 
 
After reading the question and each answer choice, circle the best response to each 

of the following. You may write on this survey. 
 

  
Researchers conduct many studies that describe and compare traits of university students. Items 1 - 6 

ask about design, analysis, and interpretation of statistical studies to answer common questions. 

 
1.   Which of the following questions is most likely to be answered by a study that requires statistical 
hypothesis testing? 
 
a. Do athletes have a lower GPA than other students?   

b. What equation predicts a student’s freshman GPA from his/her SAT score? 

c. What are typical costs for full-time resident students in U. S. colleges? 

d. Do the 12:00 noon sections of STAT 100 perform better than the 2:00 p.m. sections this semester? 

 

 
2.  Which of the following actions is the most important first step in designing a statistical hypothesis 
test to answer the question:  Are out-of-state students more successful at the state university than 

students who are in-state residents? 

 
a. Agree on a statistical test to compare the groups. 

b. Agree on a sample size from each population. 

c. Identify available statistical software. 

d. Agree on a way of measuring student success. 

 
 

3.  Which of the following statements is the best justification for using a statistical hypothesis test to 
answer the question: Are female students as successful as male students in college mathematics? 
 
a. It allows you to talk about uncertainty associated with your decision. 

b. It allows you to use only a sample of students to prove something for all students.  

c. It allows you to calculate means and use statistical tables to answer the question. 

d. It allows you to find and prove the answer using mathematical calculation. 
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4.  A researcher would like to establish that freshmen in the humanities have higher SAT scores than 
freshmen in the sciences.  Which of the following null hypotheses should be tested? 
 
The mean SAT score of humanities students is … 
 
a. greater than that of science students. 

b. greater than or equal to that of science students. 

c. less than or equal to that of science students. 

d. less than that of science students. 

 

 

5.  In 1950 the mean IQ of undergraduates at a university was 110.  To test the hypothesis that 
students today are smarter, a study of 500 current students found a mean IQ of 120.  The difference 
between the two means is significant at the 0.05 level.  (α = 0.05)  
 
Which of the following statements is necessarily true? 
 
a. Undergraduates at the university today are smarter than those in 1950. 

b. The claim that undergraduates today are not smarter than those in 1950 is true with a probability 

less than 0.05. 

c. The claim that undergraduates today are smarter than those in 1950 has been established with 

95% certainty. 

d. If undergraduates today are no smarter than those in 1950, the probability of the observed mean 

IQ is less than 0.05. 

 
 
6.  A study tested the claim that: Transfer students are less successful at the state university than 

students admitted as first time freshmen.  Results showed a difference in first semester grade point 
averages that is significant at the 0.05 level.  Information from samples of transfer and first time 
freshmen is shown in the table below. 
 

 Transfer Admits Freshman Admits 

n 50 50 

mean GPA 2.5 2.8 

 
What is the most reasonable inference about the population of all first semester students that can be 
drawn from this information? 
 
a. There are equal numbers of transfer and first time freshman students on campus. 

b. The mean first semester GPA of all freshman admits is 0.3 greater than that of all transfer admits. 

c. It is unlikely that the first semester GPA of all transfer admits equals that of all freshman admits. 

d. The mean first semester GPA of all University students is 
2.5+2.8

2  or about 2.65. 

 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Before deciding to make costly purchases, consumers often read reports of product quality.  Items 7 -

10 ask about design, analysis, and interpretation of statistical product quality studies. 

 
7.  A local dry cleaner uses Stain Away stain remover, which is known to remove 85% of stains.  A 
new, more expensive product Erase Away claims to be more effective than Stain Away.  Which set of 
hypotheses should be used to test whether the dry cleaner should consider switching? 
 
a. H0:   Erase Away removes more than 85% of stains. 

       H1:   Erase Away removes no more than 85% of stains. 

b. H0:   Erase Away removes 85% of stains. 

       H1:   Erase Away does not remove 85% of stains. 

c. H0:   Erase Away removes more than 85% of stains. 

       H1:   Erase Away removes less than 85% of stains. 

d. H0:   Erase Away removes no more than 85% of stains. 

      H1:   Erase Away removes more than 85% of stains. 

 
 
8.  The typical distribution of usable lifetimes for light bulbs is shown in the following sketch.  It’s 
clearly not a normal distribution.  However, when doing a test to compare the mean lifetimes of two 
light bulb brands (using large samples of both brands), a statistician used a normal distribution to find 
the p-value of the difference. 
 

 
 
 
 
 
 
 
 
 
 
 

 
Which of the following statements best explains why the test for significance involves normal 
probabilities, rather than probabilities from the light bulb lifetime distribution? 
 
a. The distribution of the difference of means of large samples is always approximately normal. 

b. The distribution of values in large samples is always approximately normal. 

c. Values of the standard normal probability distribution are always given in reference tables. 

d. The distribution of differences of values in two samples is always approximately normal. 
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9.  Tests show that fuel efficiency of cars in the current model year averages 30 miles per gallon.  A 
test of 100 new car models gave mean fuel efficiency of 31.5 miles per gallon.  To see whether it is 
correct to claim that the new car models are more fuel-efficient than those in the current model year, a 
researcher constructed the sampling distribution of average fuel efficiencies of many samples of 100 
current model cars shown in the following graph. 
 

Sampling Distribution
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Which of these conclusions is best supported by the graph above? 
 
a. The difference in fuel efficiency of current and new model cars is not statistically significant. 

b. Half of current and new model cars have fuel-efficiencies below 30 miles per gallon. 

c. The difference in fuel efficiency of current and new model cars is statistically significant. 

d. Nothing can be concluded.  The graph should be centered at 31.5. 

 

 
10.  When Consumer Reports studied response times for a random sample of 60 computer help-line 
calls, they found a mean of 15 minutes and standard deviation of 4.5 minutes.  After hearing 
complaints about decline in service, they repeated the study (again using a sample of 60 calls) and 
found a mean response time of 16.5 minutes and standard deviation of 6.0 minutes. 
 
What is the most plausible interpretation of the difference between the two study results? 
 
a. Because the second study showed a higher mean, that study must have only looked at computer 

help-lines that received a lot of consumer complaints.  

b. The increase in mean response time confirms a decline in services by computer help-lines. 

c. The observed difference in mean response times is quite possibly due to chance variation. 

d. The increase in standard deviation is the reason for the increase in mean response time. 

 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Teachers and school administrators are always interested in new textbooks or forms of instruction 

that will result in more success for their students.  Items 11-14 ask about design, analysis, and 

interpretation of statistical studies to test the effectiveness of educational programs. 
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11.  To test the hypothesis that private schools are more effective than public schools, researchers plan 
to compare mean starting salaries of private and public school graduates.  But they cannot agree on 

whether to test the results at a significance level of 0.10 (α = 0.10) or at a significance level of 0.05 (α 
= 0.05).   
 
What effect will using 0.10 rather than 0.05 have on the study? 
 
a. Using 0.10 will result in a greater chance that they will incorrectly retain the null hypothesis. 

b. Using 0.10 will result in a greater chance that the null hypothesis is actually true. 

c. Using 0.10 will result in a greater chance that they will incorrectly reject the null hypothesis. 

d. Using 0.10 will result in a greater chance that the alternative hypothesis is actually true. 

 
 
12.  In an educational study the mean test score of students studying from a new, experimental 
textbook A was greater than that for students studying from a previously used, traditional textbook B, 
with significance at the α = 0.05 level. 
  
What action in response to that result makes most sense to you? 
 
a. Compare the mean scores to see if the difference is great enough to merit the cost of new books. 

b. Schools should adopt textbook A because its use leads to significantly better learning. 

c. Re-analyze the data to see if the difference in means is significant at the 0.10 level. 

d. Take no action until the study is repeated, because the difference in scores could be due to chance. 

 

 
13.  To test the effectiveness of a new method of teaching reading, researchers used the new method 
with a class of 35 second-grade students and found that 70% of those students were then reading 
above grade level.  In a typical year, 50% of second-grade students are reading above grade level.  In 
order to test the significance of the new program effect, researchers calculated the test statistic  
 

( )
37.2

35

5.015.0

5.07.0
≈

−

−
=z

 
 
What is the best explanation of what the researchers learn by using a statistical table to find a p-value 
for the test statistic 2.37? 
 
a. The p-value tells the probability that the new teaching method results in a 20% gain in the number 

of students reading above grade level. 

b. The p-value tells the probability that the new teaching method does not result in a 20% gain in the 

number of students reading above grade level. 

c. The p-value tells the probability of getting the observed results, if the new program does result in 

better reading skill. 

d. The p-value tells the probability of getting the observed results, if the new program does not result 

in better reading skill. 
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14.  To evaluate a new computer-based approach to teaching pre-calculus, 200 volunteers among the 
1000 pre-calculus students took the course on-line.  At the end of the semester the mean final exam 
scores were 83.5 for the on-line students and 83.1 for the other students, a difference that proved to be 
significant at the 0.05 level. 
 
If you were unhappy with the resulting recommendation that the course be taught on-line to all 
students, which of the following critiques is least likely to be effective in challenging the 
recommendation? 
 
a. While the difference in means may be statistically significant, it is very small in practical terms.  

b. The study did not use random assignment of subjects to treatment groups. 

c. The experimental group was too small—only 200 out of 1000 students. 

d. A previous experiment on the calculus course did not show positive results for on-line instruction. 
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APPENDIX C 

FOLLOW-UP INTERVIEW QUESTIONS 

 
Format:  Semi-Structured, conversational 
 
First Question:  What is statistical hypothesis testing?  If you had to explain it to someone, how would you explain what it is, what it does, how it’s used? 
 
Format for Remaining Questions:  Look at item ________.  Why did you choose the answer you chose and why didn’t you choose the others? 
 
Participants are told to explain their thinking as much as possible.  In addition, they are told that they may change their answers, if they like. 

 

The table below highlights important issues associated with each item that should be raised if they do not come up naturally in the course of the discussion. 

 

Item Code/Answer Associated Issues to Raise 

 
Method and Context 

 

  

1.   Which of the following questions is most likely to be answered by a study that requires statistical hypothesis 
testing? 
 
a. Do athletes have a lower GPA than other students?   

b. What equation predicts a student’s freshman GPA from his/her SAT score? 

c. What are typical costs for full-time resident students in U. S. colleges? 

d. Do the 12:00 noon sections of STAT 100 perform better than the 2:00 p.m. sections this semester? 

 

 
RA 

1.1, 1.2, 1.3 
 

A 

Consider similarities and differences of 
a and d. 
 
(A is the correct answer.  Statistical 
hypothesis testing is not needed for d – 
there is no need to sample.)  

10.  When Consumer Reports studied response times for a random sample of 60 computer help-line calls, they 
found a mean of 15 minutes and standard deviation of 4.5 minutes.  After hearing complaints about decline in 
service, they repeated the study (again using a sample of 60 calls) and found a mean response time of 16.5 
minutes and standard deviation of 6.0 minutes. 
 
What is the most plausible interpretation of the difference between the two study results? 

 
 

CS 
1, 2 

 
C 

The question asks for the “most 
plausible interpretation”.  Is each option 
plausible, and only one is the best?  Or, 
are one or more options implausible? 
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a. Because the second study showed a higher mean, that study must have only looked at computer help-lines 

that received a lot of consumer complaints.  

b. The increase in mean response time confirms a decline in services by computer help-lines. 

c. The observed difference in mean response times is quite possibly due to chance variation. 

d. The increase in standard deviation is the reason for the increase in mean response time. 

 

12.  In an educational study the mean test score of students studying from a new, experimental textbook A was 
greater than that for students studying from a previously used, traditional textbook B, with significance at the 
0.05 level. 
  
What action in response to that result makes most sense to you? 
 
a. Compare the mean scores to see if the difference is great enough to merit the cost of new books. 

b. Schools should adopt textbook A because its use leads to significantly better learning. 

c. Re-analyze the data to see if the difference in means is significant at the 0.10 level. 

d. Take no action until the study is repeated, because the difference in scores could be due to chance. 

 

 
IP 

1, 2, 3 
 

A 

This question asks what makes the most 

sense.  Does each option make sense, 
but only one makes the most?  Or, do 
one or more of the options make no 
sense? 
 
 

 

Logic and Reasoning 
 

  

3.  Which of the following statements is the best justification for using a statistical hypothesis test to answer the 
question: Are female students as successful as male students in college mathematics? 
 
a. It allows you to talk about uncertainty associated with your decision. 

b. It allows you to use only a sample of students to prove something for all students.  

c. It allows you to calculate means and use statistical tables to answer the question. 

d. It allows you to find and prove the answer using mathematical calculation. 

 

 
RA 
2 
 

A 

This question asks for the best 

justification.  Is each option a 
justification, but only one is the best?  
Or, are one or more of the options not 
justifications? 
 

4.  A researcher would like to establish that freshmen in the humanities have higher SAT scores than freshmen in 
the sciences.  Which of the following null hypotheses should be tested? 
 
The mean SAT score of humanities students is … 
 

 
GH  
1 
 

C 

Does the statement “the null is always 
equal” make sense? 
 
Could the alternative be the “equal one” 
and the null be the “not equal” one? 
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a. greater than that of science students. 

b. greater than or equal to that of science students. 

c. less than or equal to that of science students. 

d. less than that of science students. 

 

 

5.  In 1950 the mean IQ of undergraduates at a university was 110.  To test the hypothesis that students today are 
smarter, a study of 500 current students found a mean IQ of 120.  The difference between the two means is 
significant at the 0.05 level.  
 
Which of the following statements is necessarily true? 
 
a. Undergraduates at the university today are smarter than those in 1950. 

b. The claim that undergraduates today are not smarter than those in 1950 is true with a probability less than 

0.05. 

c. The claim that undergraduates today are smarter than those in 1950 has been established with 95% 

certainty. 

d. If undergraduates today are no smarter than those in 1950, the probability of the observed mean IQ is less 

than 0.05. 

 

 

 
C 

1, 2, 3 
 

D 
 

What are the null and alternative 
hypotheses? 
 
In your own words, what is each choice 
saying? 
 
Are there similarities and/or differences 
in the choices? 
 
What is the reasoning behind hypothesis 
testing and how do these options relate 
to that logic?  How do the numbers cited 
in this item connect to the logic?  
(Connect back to definition of 
hypothesis testing the participant gave in 
the beginning of the interview) 
 
(As they talk about rejection regions, 
etc.) Did you use graphs when you did 
hypothesis testing?  What do the graphs 
represent?  What were the labels on the 
axes? 
 
(If they talk about tables, z-scores, etc. ).  
What do the numbers in the table/z-score 
represent? 
 
Does this make sense to you? 
 

6.  A study tested the claim that: Transfer students are less successful at the state university than students 

admitted as first time freshmen.  Results showed a difference in first semester grade point averages that is 
significant at the 0.05 level.  Information from samples of transfer and first time freshmen is shown in the table 
below. 
 

 
C 

1, 2 
 

C 

The item asks for the most reasonable 

inference.  All they all reasonable with 
only one the best?  Or, are there one or 
more that are unreasonable? 
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 Transfer Admits Freshman Admits 

n 50 50 

mean GPA 2.5 2.8 

 
What is the most reasonable inference about the population of all first semester students that can be drawn from 
this information? 
 
a. There are equal numbers of transfer and first time freshman students on campus. 

b. The mean first semester GPA of all freshman admits is 0.3 greater than that of all transfer admits. 

c. It is unlikely that the first semester GPA of all transfer admits equals that of all freshman admits. 

d. The mean first semester GPA of all University students is 

2.5+2.8
2  or about 2.65. 

 

 
 

Be sure they understand what the table 
represents and that the difference was 
already found to be significant at the 
0.05 level. 

9.  Tests show that fuel efficiency of cars in the current model year averages 30 miles per gallon.  A test of 100 
new car models gave mean fuel efficiency of 31.5 miles per gallon.  To see whether it is correct to claim that the 
new car models are more fuel-efficient than those in the current model year, a researcher constructed the 
sampling distribution (for samples of size 100 of the current model) in the following graph. 
 

Sampling Distribution

0

0.05

0.1

0.15

0.2

0.25

24 26 28 30 32 34 36

 
 
Which of these conclusions is best supported by the graph above? 
 
a. The difference in fuel efficiency of current and new model cars is not statistically significant. 

b. Half of current and new model cars have fuel-efficiencies below 30 miles per gallon. 

c. The difference in fuel efficiency of current and new model cars is statistically significant. 

d. Nothing can be concluded.  The graph should be centered at 31.5. 

 

 
AS  
2, 3 

 
A 

What are the null and alternative 
hypotheses in this situation? 
 
What does the graph represent?  What 
are the labels on the axes? 
Did you use the graph in choosing your 
answer? 
 
When you answered this, was there only 
one answer, or do you think several 
could be correct? 
 
What do each of the choices mean?  Can 
you explain them in your own words? 
 
If possible, bring up the fact that the 
data supports the alternative.  Doesn’t 
that mean statistical significance 
automoatically? 
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11.  To test the hypothesis that private schools are more effective than public schools, researchers plan to 
compare mean starting salaries of private and public school graduates.  But they cannot agree on whether to test 

the results at a significance level of 0.10 (α = 0.10) or at a significance level of 0.05 (α = 0.05).   
 
What effect will using 0.10 rather than 0.05 have on the study? 
 
a. Using 0.10 will result in a greater chance that they will incorrectly retain the null hypothesis. 

b. Using 0.10 will result in a greater chance that the null hypothesis is actually true. 

c. Using 0.10 will result in a greater chance that they will incorrectly reject the null hypothesis. 

d. Using 0.10 will result in a greater chance that the alternative hypothesis is actually true. 

 

 
DR 
1 
 

C 

What are the null and alternative 
hypotheses? 
 
Note similarities and/or differences in 
the choices. 
 
Address rejection region, graphs, tables, 
z-scores issues here (from problem 
number 5) if not already addressed. 
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