ABSTRACT

Title of dissertation: From Form to Function:
Detecting the Affordance of Tool Parts
using Geometric Features
and Material Cues
Austin O. Myers, Doctor of Philosophy, 2016

Dissertation directed by: Professor Yiannis Aloimonos
Department of Computer Science

With recent advances in robotics, general purpose robots like Baxter are
quickly becoming a reality. As robots begin to collaborate with humans in ev-
eryday workspaces, they will need to understand the functions of objects and their
parts. To cut an apple or hammer a nail, robots need to not just know a tool’s name,
but they must find its parts and identify their potential functions, or affordances.
As Gibson remarked, “If you know what can be done with a[n] object, what it can
be used for, you can call it whatever you please.”

We hypothesize that the geometry of a part is closely related to its affordance,
since its geometric properties govern the possible physical interactions with the en-
vironment. In the first part of this thesis, we investigate how the affordances of tool
parts can be predicted using geometric features from RGB-D sensors like Kinect.
We develop several approaches to learn affordance from geometric features: using
superpixel based hierarchical sparse coding, structured random forests, and convo-

lutional neural networks. To evaluate the proposed methods, we construct a large

RGB-D dataset where parts are labeled with multiple affordances. Experiments
over sequences containing clutter, occlusions, and viewpoint changes show that the
approaches provide precise predictions that can be used in robotics applications.
In addition to geometry, the material properties of a part also determine its
potential functions. In the second part of this thesis, we investigate how material
cues can be integrated into a deep learning framework for affordance prediction. We
propose a modular approach for combining high-level material information, or other
mid-level cues, in order to improve affordance predictions. We present experiments
which demonstrate the efficacy of our approach on an expanded RGB-D dataset,
which includes data from non-tool objects and multiple depth sensors. The work
presented in this thesis lays a foundation for the development of robots which can
predict the potential functions of tool parts, and provides a basis for higher level

reasoning about affordance.

From Form to Function:
Detecting the Affordance of Tool Parts
using Geometric Features and Material Cues

by

Austin O. Myers

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2016

Advisory Committee:

Professor Yiannis Aloimonos, Chair/Advisor
Dr. Cornelia Fermiiller, Co-Advisor
Professor Hal Daumé 111

Professor David Jacobs

Professor John Baras

(© Copyright by
Austin O. Myers
2016

Acknowledgments

This thesis would not have been possible without the generous guidance and
support of my advisors: Prof. Yiannis Aloimonos and Dr. Cornelia Fermuller.
Yiannis and Cornelia provided valuable direction and advice throughout my Ph.D
while allowing me the freedom to explore many research problems. Their feedback
has been instrumental in improving my ability to conduct research and clearly com-
municate ideas in papers and presentations. I was also fortunate enough to spend
a summer at Google Research working on exciting semantic segmentation prob-
lems with Kevin Murphy, Nick Johnston, Vivek Rathod, and the rest of the VALE
team. I learned invaluable lessons from many talented researchers in the Machine
Perception group and I owe them a great debt of gratitude for their support and
inspiration.

I would like to thank my colleagues; Ching Lik Teo, Francisco Barranco, Alex
Ecins, Yezhou Yang, and many others for their insightful discussions and encourage-
ments. [am thankful for all of those who were involved with the Computer Vision
Student Seminars and the camaraderie and community atmosphere which the semi-
nars fostered. My graduate student life would also not have gone smoothly without
the help of Janice, Jenny, Fatima, Brenda, Sharron and Arlene, who have always
been understanding and quick to help with any issues that arose. I would also like
to thank all of the UMIACS support staff who have been outstanding in their re-
sponsiveness to the many technical issues and hard drive failures that I experienced

throughout the years.

i

Finally, I cannot express how grateful I am for the love and support from my
family, and especially from Angjoo. Thank you all so much, and to all those that I

could not list here, this thesis is dedicated to you all.

1ii

Table of Contents

List of Figures

1

Introduction

2 Predicting the Affordance of Tool Parts in RGB-D Images

2.1 Imtroduction
2.2 Related Work
2.3 Part Candidates via RGB-D Superpixel Segmentation
2.4 Learning Geometric Feature Representations
2.5 Affordance Prediction Refinement
2.6 RGB-D Part Affordance Dataset
2.7 Experiments

2.7.1 Implementation Details

2.7.2 Comparison of Individual Features

2.7.3 Results for Known and Novel Categories
2.8 Conclusion

Dense Part Affordance Prediction in Real-time
3.1 Introduction
3.2 Related Work oo
3.3 Robust Geometric Features
3.3.1 Depth Features
3.3.2 Surface normals (SNorm)
3.3.3 Principle curvatures (PCurv)
3.3.4 Shape-index and curvedness (SI+CV)
3.4 Structured Random Forest oL
3.5 Convolutional Neural Networks
3.6 Experiments
3.6.1 Grasping Detection Baseline
3.6.2 Dataset
3.6.3 Evaluation Metrics 0oL
3.6.4 Comparison on RGB-D Tool Dataset

v

vi

3.6.5 Performance in clutter and occlusions
3.6.6 Ablation Experiments
3.7 Conclusion

4 Using Material Cues to Reason about Affordance

4.1 Introduction
4.2 Related Work
4.3 Integrating Material Cues to Learn Affordance
4.4 Experiments e

4.4.1 Extended Affordance and Material Dataset

442 Results.
4.5 Conclusion

5 Conclusion
A Im2Calories: towards an automated mobile vision food diary

Bibliography

2.1

2.2

2.3

2.4

2.5

List of Figures

Affordance detection using S-HMP. An RGB-D image is segmented

into superpixels, where each segment serves as a candidate part sur-

face (left). For each superpixel, hierarchical sparse codes are ex-
tracted from geometric features such as depth, surface normal, and
curvature information (middle). Superpixels’ codes are pooled and

then classified using a linear SVM, and the final labeling is refined
using a CRF (right). 0. 13
Sample objects from the RGB-D Part Affordance Dataset. (Left)
Each column shows two close-up examples of objects with parts that
share the same affordance. (Right) An example of a full frame image

(top) with hand-labeled ground truth (bottom). 15
Average affordance accuracy for each of the raw features RGB, grayscale,
depth, normals, and curvature. Results are shown for known category

and novel category settings. 18
Comparison of different raw features for each affordance in the known
category setting. Blue-green bars show the results of “Appearance”
features (rgb and grayscale). Orange-yellow bars show results of the
“Geometry” features (depth, normal, curvature). 18
Examples of results from our method from known category (a. top

row) and novel category (a. bottom row) experimental settings. Fail-

ure cases show missed part errors and confusion between similar af-
fordances (b). CRF refinement is an important step for producing
output that is consistent and usable for a robot (c). Although CRF
improves labeling in many cases (c. columns 1-3), it can also make
additional mistakes (c. column 4). 22

vi

3.1 Affordance detection using SRF. (A) Input image with example patch
highlighted. (B) Features extracted from each patch (top) and sam-
pled annotation patches from data (below). (C) Training different
patches, X with corresponding binary affordance annotations,),
learns the optimal 6; at each split node. The leaf nodes store per
pixel confidence scores for each) encountered. (D) During infer-
ence, a test patch is assigned to a leaf node that contains affordance
prediction. Averaging the predictions over the K trees produces an
affordance confidence score per pixel. 28
3.2 Estimating pixel accurate annotations from the Cornell Grasping
Dataset. (Left) Input RGB image. (Middle) Overlay of several gras-
pable rectangles. (Right) Edge detection and hole filling produces a
pixel accurate segment.o oo 34
3.3 Grasping locations predicted by SRF. (Top) Input RGB-D images
for four example objects. (Bottom) Predicted graspable locations.
Notice the large difference in shape of the graspable regions. Brighter
means higher probability. 0000 35
3.4 Results of affordance detection across three different input RGB-D
frames (left) using HMP (middle) and SRF (right) over the clut-
tered sequence: two target affordances per method — contain (I)
and wrap-grasp (r). Brighter means higher probability of the target
affordance. 41

4.1 CNN architectures for affordance prediction using material cues. Sin-

gle stream CNN (a) and the proposed two-stream CNN (b). 49
4.2 Examples results for the methods CNN and CNN+material. Original

color images (a), ground truth affordance labels (b), predictions from

the CNN (c), and predictions from the CNN with material cues (d). 54

vil

Chapter 1: Introduction

Visual perception is a key ability for systems which interact with the world,
and while seemingly effortless to humans, it has proven exceedingly difficult for ma-
chines. The potential importance of vision for machines has fueled decades of study
in computer vision, robotics, and machine learning. With new advances in sensors,
computing power, availability of data, and learning techniques, the progress in com-
puter vision has been astounding. Recently, vision systems have quickly approached
and even beaten human performance on tasks such as street sign recognition [1], face
recognition [2], and image classification [3]. Still, while many efforts focus on lever-
aging large internet image databases, there remains a gap in what state-of-the-art
methods provide and what robots need to interact with the world. Namely, in or-
der for robots to collaborate with humans in everyday environments, they need to
understand the functionality of objects and their parts.

Imagine Baxter in a kitchen, trying to serve soup from a pot into a bowl.
Baxter needs to find a ladle, grab the handle, dip the bowl of the ladle into the
pot, and transfer the soup into the serving bowl. Today, computer vision may
allow Baxter to recognize the objects, providing a bounding box around the ladle.

However, in these situations Baxter needs to not just detect the ladle, but more

importantly he needs to know which part of the ladle he can grasp and which part
can contain the soup. As Gibson remarked, “If you know what can be done with
a[n] object, what it can be used for, you can call it whatever you please” [4]. In this
thesis, we address the novel problem of localizing and identifying part affordance
from RGB-D data, so that a robot can explain how an object and its parts can be
used, and generalize this knowledge to novel scenarios.

Gibson defined affordances as the latent “action possibilities” available to an
agent, given their capabilities and the environment [4]. In this sense, for a human
adult, stairs afford climbing, an apple affords eating, and a knife affords the cutting
of another object. The latter is most relevant to a robot using tools in a kitchen
or workshop, and we use the term effective affordance in this thesis to differentiate
the affordances of tools from those found in other settings. We define objects with
effective affordances as those that an agent can use as tools to produce an effect on
another object. Man-made tools are typically composed of parts, where each part
has multiple effective affordances such as cut, pound, scoop, or contain. If robots
could identify these affordances, it would open the possibility to use a wide variety
of tools, including those that have not been seen before.

From a computer vision perspective, predicting effective affordances from im-
ages presents many challenges. For example, tools from different categories, with
unique shapes and appearances, can have parts with the same effective affordances.
Furthermore, robots observe tools in a much wider variety of conditions than often
found in internet images, and require precise predictions in order to interact with

parts and their surfaces.

In order to address these challenges, in Chapter 2 we begin by defining the
novel problem of predicting the effective affordance of tool parts. We then present a
superpixel region based method for localizing and identifying part affordance, using
geometric features learned from RGB-D data, so that robots can understand how
objects and their parts can be used. In order to evaluate the proposed approach,
we introduce a new RGB-D Part Affordance Dataset which consists of 105 kitchen,
workshop, and garden tools. The dataset provides hand-labeled ground truth at the
pixel level for more than 10,000 RGB-D images. We hypothesize that there is a deep
relationship between a part’s effective affordance and its geometric properties, so we
analyze the performance of different feature types on our task. We show results
of our method for predicting affordance of objects from a known category, and the
more difficult task of predicting affordance of parts of objects from novel categories.
We demonstrate that, unlike the case of RGB-D object detection, geometric features
are paramount for accurate affordance identification.

In Chapter 3, we investigate the problem in a more realistic environment
with object clutter and ranked affordances for each tool part. For this we propose
real time solutions using two state-of-the-art methods, one with structured random
forests and the other with convolutional neural networks on geometric features. Here
the affordances are solved in a per-pixel manner instead of superpixels, making the
approach efficient and parallelizable.

In Chapter 4, we hypothesize that in addition to geometric cues, materials
properties contain important information about part affordances. However, naively

combining material with geometry cues does not necessarily improve affordance

prediction, since some materials are shared in multiple affordances. So we propose
a two-stream deep convolutional neural network, with one stream for predicting
affordance from geometric features, a second stream trained to recognize materials
from RGB data, and a final stage to combine these high level cues. We show that
this approach helps affordance prediction, particularly for metallic or dark objects

where geometric information is unreliable.

Chapter 2: Predicting the Affordance of Tool Parts

in RGB-D Images

2.1 Introduction

Every day, we use tools for ordinary activities, like cutting an apple, hammer-
ing a nail, or watering a flower. While interacting with the world, we effortlessly
draw on our understanding of the functions that tools and their parts provide. Using
vision alone, we can identify potential functions of object parts, in order to find a
tool suited to our needs. As robots like PR2, Asimo, and Baxter begin to collab-
orate with humans in everyday workspaces, they will also need to understand the
functionality of a wide variety of tools, even when they have never seen a particular
tool before. However, from a computer vision perspective, predicting affordance
from an image presents a major challenge because objects from many different cate-
gories, with unique shapes and appearances, can have parts with the same effective
affordance. This is a stark contrast to most previous approaches to tool use in
robotics which largely rely on instance detection of 3D object models [5,6], and are
not concerned with generalizing to a variety of tool appearances.

To address this problem, we propose a method to localize and identify part

affordance, where the output is a collection of part surfaces with their predicted
affordances and 3D location, which can be used by a robot for manipulation. Given
an RGB-D image, we first oversegment the scene using superpixel segmentation to
divide objects into small surface fragments. Then, treating each of these regions as
a candidate part, and we extract a hierarchy of features learned from raw data. We
hypothesize that there is a deep relationship between a part’s effective affordance and
its geometric properties, so we learn higher level features from low level geometric
features computed from raw depth data. Using these learned features, we train
linear classifiers to predict each surface fragment’s affordance. Finally, we model
the interactions between neighboring superpixels using a conditional random field

to encourage a consistent labeling of parts.

2.2 Related Work

The study of affordance has a rich history in the computer vision and robotics
communities. Early work sought a function-based approach to object recognition for
3D CAD models of objects like chairs [7]. More recently, many works have focused
on predicting grasping points for objects from 2D images [8] [9] [10]. For tool use,
Kemp et al. [11] detects tips of tools being held by a robot. From the computer
vision community, Kjellstrom et al. [12] classify human hand actions in context of
the objects being used, and Grabner et al. [13] detect surfaces for sitting from 3D
data.

Affordances might be considered a subset of object attributes, which have been

shown to be powerful for object recognition tasks as well as transferring knowledge
to new categories. Ferrari and Zisserman [14] learn color and 2D shape patterns
to recognize the attributes in novel images. Parikh and Grauman [15] show that
relative attributes can be used to rank images relative to one another, and Lampert
et al. [16] and Yu et al. [17] show that attributes can be used to transfer knowledge
to novel object categories.

In the robotics community, the authors of [18] identify color, shape, material,
and name attributes of objects selected in a bounding box from RGB-D data. Her-
mans et al. [19] explored, using active manipulation of different objects, the influence
of the shape, material and weight in predicting good pushable locations. Aldoma
et al. [20] used a full 3D mesh model to learn so-called 0-ordered affordances that
depend on object poses and relative geometry. Koppula et al. [21] view affordance
of objects as a function of interactions, and jointly model both object interactions
and activities via a Markov Random Field using 3D geometric relations (‘on top’,
‘below’ etc.) between the tracked human and object as features.

Recently, unsupervised feature learning approaches have been applied to prob-
lems with 3D information. Bo et al. [22] propose hierarchical matching pursuit
(HMP), and Socher et al. [23] propose using a convolutional recursive neural net-
work to recognize objects from RGB-D images. We build upon the recent work
of [24] which uses multipath HMP to achieve state of the art performance on chal-
lenging computer vision image datasets. However, in contrast to these previous
works which perform whole image classification using spatial pyramids, we extract
features and make predictions at the level of superpixels.

7

2.3 Part Candidates via RGB-D Superpixel Segmentation

Although 2D image segmentation is a challenging problem in computer vi-
sion, recent work has shown that incorporating depth data produces more co-
herent boundaries that adhere to depth discontinuities not apparent in color im-
ages [25] [26]. Usually, the goal is that each segment to correspond to an object,
and great care must be taken to find segments that have not over-segmented or
under-segmented an object of interest [27]. However, in our approach we consider
tools composed of several parts, each formed by a collection of surfaces, so in this
case oversegmentation is advantageous. Therefore, we employ an extension of Simple
Linear Iterative Clustering (SLIC) for RGB-D images, since SLIC produces segments
that adhere well to part boundaries, are consistent in size and shape, and are simple
and fast to compute.

SLIC [28] consists of three main steps: initialization of cluster centers by
sampling the image on a regular grid, performing spatially constrained k-means
clustering on 2D spatial and color features for a fixed number of iterations, and
finally post processing to enforce cluster connectivity. SLIC is first initialized with

k cluster centers C; = [z, ys,l;, a;, b

sampled from the image on a regular grid.
Here, x; and y; are the location of the sampled pixel in image coordinates, and
l;,a;,b; are its CIELAB color space components. For a fixed number of iterations,
pixels are assigned to clusters within a constrained spatial range using k-means with
a custom distance metric. In [28], the distance is defined as D = (%)2 + (%)2,

where d. and d are euclidean distances between the color and spatial dimensions

respectively, and « and [are hyperparameters which control how the algorithm
balances color and spatial components.

We adapt SLIC for RGB-D images by clustering RGB-D pixels represented by
f = (z,¢,n), f € R?, where z is the 3D position of a pixel, ¢ is its CIELAB color
components, and n is its normal vector. We define the distance metric for clustering

as,

D = \J(defa) + (d/B) + (du/7)’ (2.1)

where d. and d, are the euclidean distance between color and spatial feature
vectors, and d,, is the angle between normals. Hyper-parameters «, 3, and v control
how the distance metric and resulting superpixels balance color, spatial, and normal
components. Affordance parts are usually connected to other parts with different
affordances, and these parts may only differ in either color, depth, or normal ori-
entation. For this reason, all three components are important to achieving a good

superpixel segmentation.

2.4 Learning Geometric Feature Representations

Given a superpixel segmentation where each segment is potentially a tool part,
we next need to extract relevant information about the segment which can be used
to predict its affordance. We hypothesize that affordances are strongly characterized
by their geometric properties, since geometry is closely related to the physics of how

objects can interact with their environment. For instance, the concavity of the inner

surface of a bowl is what allows it to have the function to contain liquid, and a blade
can be used for cutting because it is long, thin, and sharp. Therefore, we make use
of three geometric features depth, normal, and curvature obtained from a Kinect
depth sensor to predict the affordance of a particular surface. Rather than hand
engineering descriptors for each of these “raw” geometric features, we propose to
learn higher level features from the data, and analyze which geometric features are
most useful for affordance recognition.

Recently, unsupervised feature learning methods such as deep belief networks
[23] and hierarchical sparse coding [24] have been successful in a number of vision and
robotics tasks. These methods have the advantage to learn discriminative structures
directly from data and encode mid-level information that are shown to be useful for
various recognition tasks. Following their success, we build on the recent work of
multipath hierarchical matching pursuit (M-HMP) by Bo et al [24] to learn features
representations from raw features obtained from a RGB-D image.

HMP [22] is a hierarchical sparse coding method that learns feature hierarchies
called paths. A path has a unique architecture which captures information at varying
scales and abstractions, where in each layer of the hierarchy the input is encoded
by sparse coding and undergoes a max-pooling operation. Specifically, we learn a
hierarchy of dictionaries D such that the data Y can be represented by a sparse

linear combination of dictionary entries.

10

min ||Y — DX|%
X (2.2)

s.t.¥m, ||dyll, =1 and Vn, ||z,||, < K

where ||| and ||-||, denote the Frobenius norm and L, norm respectively, K
is the sparsity regularization parameter, and X is the matrix of coefficients. Given
a learned dictionary, an image is represented by its coefficients or sparse codes.

In previous works, on image attribute recognition [18] or image classification
[24], these codes were max-pooled over the whole image or over an image pyramid.
However, we max-pool HMP features within each superpixel, which yields a feature
vector for each surface. These features can be classified with a linear SVM, thereby
providing a prediction of each affordance for each segment. In our experiments we
use features from two-layer and three-layer architectures, which capture features at
different scales and abstractions.

M-HMP is suitable for our purposes for multiple reasons. First is its strong
performance in wide-array of computer vision tasks. Second, affordance can be cap-
tured by it’s deep architecture allows the representation to be invariant to small
local deformations and noise. Third, extracting features from multiple path allows
us to capture both local and global information which is important for affordance.
For example, at a local scale, a flat surface on a knife blade and a spatula may have
similar geometric properties, but at a larger scale, their neighborhood structure is
not the same. Furthermore, the advantage of using a feature learning approach as
opposed to using a collection of hand-engineered features is that it provides a con-
sistent way to extract features from these raw data. This provides an equal footing

11

for comparing which raw features are discriminative for affordances recognition.

2.5 Affordance Prediction Refinement

Given an RGB-D image we compute superpixel segmentation using the method
in Section 2.3. We predict the affordance of each super pixel with a Conditional
Random Field (CRF) [29]. Regarding each superpixel segments as a random variable
S = {s1,...,8,}, we define a graph G(S, F), with label assignments & = {¢y,...,¢,}
for each superpixel. We model the posterior distribution of each image as

—log P(c|G) = ®(cilsi) +w D> Ulei,¢5lsi,55), (2.3)

;€S (si,55)€E
where ® is the unary potential, ¥ is the edge potential that smoothes label discon-
tinuities depending on data, and w is a weight parameter. For the unary potential,
we first train a multi-class linear SVM using spatially max-pooled M-HMP features
extracted from superpixel segments. We use the output of the SVM directly for the

unary potential, ®(¢;|s;) = —log P(¢;|s;). The pairwise potential U is defined as

B(SZ',S]')
L+ |[si — sl

V(ci, cilsiy s5) = (> o(ci # ¢j), (2.4)

where § is an indicator function, and B(s;, s;) is a regularization term defined to be
the length of the shared boundary between s; and s; [30]. Since we only have one
parameter w, we set the value by cross validation on the training data. We initialize
the graph using the unary potentials and solve for the optimal labeling ¢* using the
alpha-expansion graph-cut algorithm of [31]. The proposed S-HMP framework is

illustrated in Figure 2.1.

12

Raw Features Segmentation Hierarchical Sparse Coding Prediction CRF Refinement

| it TT—

x=[| Feature 1 |‘| Feature 2 H Feature 3 ‘

Linear SVM

Figure 2.1: Affordance detection using S-HMP. An RGB-D image is
segmented into superpixels, where each segment serves as a candidate
part surface (left). For each superpixel, hierarchical sparse codes are
extracted from geometric features such as depth, surface normal, and
curvature information (middle). Superpixels’ codes are pooled and then

classified using a linear SVM, and the final labeling is refined using a
CRF (right).

2.6 RGB-D Part Affordance Dataset

To investigate the problem of localizing and identifying affordance, we propose
a new RGB-D Part Affordance Dataset which focuses on everyday tools annotated
with the affordances of their parts. We consider tool parts corresponding to a
collection of surfaces which provide a certain functionality. We define each surface’s
effective affordances by the way it comes in contact with the objects that they affect.
For example, a coffee mug has two affordance parts, the inner surface and the outer
surface. The inner surface of a mug has the effective affordance “contain”, because it
comes in contact with the liquid that is contained. The surface of the mug’s handle
has the affordance “grasp” as it can be tightly held by a hand or robot gripper. The
dataset provides pixel-level affordance labels for 105 kitchen, workshop, and garden

tools. The tools were collected from 17 different categories covering seven types

13

Affordance || Description

grasp Can be enclosed by a hand for manipulation (handles).

cut Used for separating another object (the blade of a knife).

scoop A curved surface with a mouth for gathering soft material (trowels).
contain With deep cavities to hold liquid (the inside of bowls).

pound Used for striking other objects.(the head of a hammer).

support Flat parts that can hold loose material (turners/spatulas).
wrap-grasp || Can be held with the hand and palm (the outside of a cup).

Table 2.1: Description of the seven affordance labels.

of affordance which are summarized in Table 2.1. Each affordance is represented
by objects from a variety of categories with different appearances, as shown in
Figure 2.2. For example, parts with the affordance “cut” are found in kitchen
knives, workshop saws, and garden shears.

While there are several RGB-D object datasets, most are designed for instance
and category level object recognition [32], attribute learning [18] or for specific
robotic gripping locations [33]. In addition to testing with tools from a known
category, the dataset is designed for evaluating part affordance identification for
objects from completely novel categories. To our knowledge this is the first dataset
specifically designed for robots to identify and localize part affordances from RGB-D
data.

Data was collected using a Kinect sensor, which records RGB and depth images
at a resolution of 640x480 pixels. Since many of the parts we want to capture

are small, we collected data at the minimum distance required for accurate depth

14

cut pound contain support scoop

Figure 2.2: Sample objects from the RGB-D Part Affordance Dataset.
(Left) Each column shows two close-up examples of objects with parts
that share the same affordance. (Right) An example of a full frame
image (top) with hand-labeled ground truth (bottom).

readings, approximately 0.8 meters. We recorded each tool on a revolving turntable
to collect images covering a full 360° range of views. On average, approximately 300
frames are captured for each tool, producing more than 30,000 RGB-D image pairs.
Of these, more than 10,000 images have pixel-level ground truth affordance labels.

Labeling such a large dataset at the pixel level would ordinarily be a very
expensive task, so we reduced labeling effort by taking advantage of the superpixel
segmentation method described in Section 2.3. We segmented images into superpix-
els, at a finer scale than in our experiments, and allowed annotators to click on the
segments that corresponded to the desired affordances. Since data was also collected
on a rotating turntable, after an annotator finished labeling a frame, we propagated
labels to the next image based on superpixel proximity and similarity. This greatly
reduced labeling effort, since in the majority of images annotators only needed to
correct a small number of segments, and only occasionally would annotators need

to click on many segments in the image. While still a time consuming task, labeling

15

approximately 10,000 images became manageable using this approach.

2.7 Experiments

In our experiments, we first analyze the effectiveness of individual raw feature
types in order to test our hypothesis that geometric features are essential for affor-
dance identification. We then present the results of our method for known category
and novel category affordance localization and prediction. We perform experiments
using the RGB-D Part Affordance Dataset described in Section 2.6. In the known
category setting, we evaluate using a 10-fold randomized leave-one-out procedure,
as used in the RGB-D dataset for category-level recognition [32]. For each fold, an
object from each category is left out for testing, and the remaining objects are used
for training. This provides approximately 8,000 RGB-D images for training and
2,000 for testing. Performance is reported as the average class accuracy over the
10 folds. For the novel category setting, categories of the dataset are split into two
groups, so that each affordance is represented by tools from different environments
in training and testing. In all experiments, we measure performance using average

class accuracy.

2.7.1 Implementation Details

For superpixel segmentation, we found that parameters o = 1, § = 0.05, and
v = 0.125 produce segments that adhere well to object boundaries. On average this

produces 300 superpixel segments for each image. To compute M-HMP features and

16

dictionaries we build on the publicly available M-HMP code of Bo et al [24]. We
learn dictionaries for five raw feature types; RGB color, grayscale, depth, surface
normal, and curvature. Surface normals and curvature images are computed from
depth images. For each raw feature, we learn two paths P1 and P2. P1 is a two layer
architecture, which learns dictionaries on 5 x 5 raw feature patches in the first layer,
followed by 4 x 4 max-pooling. The second layer learns dictionaries on 4 x 4 patches
of the resulting sparse codes, corresponding to 16 x 16 raw feature patches. P2 is
a three layer architecture, whose first two layers are the same as the layers of P1.
The third layer learns dictionaries on 3 x 3 patches of 3 x 3 max-pooled sparse codes
from layer 2, corresponding to 36 x 36 raw feature patches. To learn each feature
hierarchy, we sample approximately 1,000,000 patches from raw feature images, and
normalize the brightness of patches by subtracting their mean. M-HMP features
are extracted for each segment and concatenated, resulting in a 4600 dimensional
feature. We also ensure that test data is not used for dictionary learning by splitting
the data into two groups and learning a separate set of dictionaries for each group.
At test time, features are extracted using the dictionaries which did not use the test

data for learning.

2.7.2 Comparison of Individual Features

Recent results for RGB-D object recognition have shown that visual fea-
tures outperform geometry features in instance and category level recognition set-

tings [32] [22]. However, for the task of affordance identification, we hypothesize

17

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 2.3: Average affordance accuracy for each of the raw features
RGB, grayscale, depth, normals, and curvature. Results are shown for

average affordance accuracy for raw feature types

[novel categories
[known categories

rgb_img_crop

gray_img_crop

I
depth

normals

known category and novel category settings.

affordance accuracy for each feature types

curvature

T T T T T T T
— — — random [l rgb [N gray [depth [normals [curvature

0.9

0.8

accuracy
o o o °
S (4] (=] ~

o
&)

0.2

0.1

Figure 2.4: Comparison of different raw features for each affordance in
the known category setting. Blue-green bars show the results of “Ap-
pearance” features (rgb and grayscale). Orange-yellow bars show results

grasp

cut

scoop

contain

support grasp-wrap

of the “Geometry” features (depth, normal, curvature).

18

that geometric features are essential. To validate this hypothesis, we train an inde-
pendent multi-class linear SVM for each of the five raw features and compare their
performance, as shown in Figure 2.3. In both known and novel category settings,
we find that geometric features significantly improve over appearance features. We
can also see that the novel category setting is significantly more challenging than
the known category setting as expected, since novel objects have very different color
and shape appearance. For a more detailed analysis, we also show the accuracy
of each affordance separately, in the known category setting, in Figure 2.4. From
this breakdown, we can see that geometry features are superior for “scoop”, “con-
tain”, “pound”, “support”, and “wrap-grasp”. All five feature types show similar
performance for “grasp” and “cut”, with the exception of RGB outperforming other
features for “cut”. We suspect that RGB information is useful for cut since many
of the cutting blades lay flat against the table, with few discriminative geometric
features. Geometric features offer substantial improvement for other affordances.
Based on these experiments, we find grayscale, depth, normal, and curvature to be
the most effective features. We concatenate these M-HMP features and refer to this
final feature representation as All. We also refer to the concatenation of RGB and
grayscale as Appearance, and the concatenation of depth, normal, and curvature as

Geometry.

19

2.7.3 Results for Known and Novel Categories

We evaluate our complete framework using All features with CRF refinement
for affordance identification of parts from objects of known and novel categories.
We compare the performance of Appearance, Geometry, All, and our framework in
Figure 2.2. As anticipated from our initial experiments, geometry features have rela-
tive improvement over appearance features in both known and novel settings by 18%
and 38% respectively. Even more telling, combining both appearance and geomet-
ric features does not provide significant improvement for either task, a significantly
different conclusion from category-level object recognition results, where combining
appearance and geometric features increases performance [32] [22]. This indicates
that geometric features are primary for the problem of predicting affordance.

We show example results of our full framework for both known and novel
category settings in Figure 2.5 (a-b). While adding CRF does not appear to change
performance significantly, it is an important step for producing a final output that
is useful for a robot. The refinement step removes small inconsistent regions so that
the output is more consistent and usable by a robot. Overall the CRF does not
have a large impact on performance, since while refinement corrects small errors,
it also makes mistakes when small correct regions are surrounded by an incorrectly
labeled neighborhood. In Figure 2.5 (c¢) we show results where CRF benefits the
framework, as well as cases where it increases errors.

Overall, the affordances of parts are well localized, and the 3D labeled points

could be used directly by a robot for tool manipulation. Novel category results are

20

Known Object Category
Appearance | Geometry All All + CRF
732435 | 86.5+6.6 | 86.2+56| 86.5+5.0

Novel Object Category
Appearance | Geometry All All + CRF
46.0 63.6 64.8 64.8

Table 2.2: Part affordance identification on the RGB-D Part Affordance
Dataset for known and novel object settings. Performance using appear-
ance features, geometry features, all features, and the complete frame-
work.

also promising, for example the blade of the “pruning shears” is correctly labeled
as “cut” even though the system only saw “knives” and “scissors” during training.
However, while some affordances are accurately identified, others are easily confused
as illustrated by example errors in Figure 2.5 (b). In one case, the tips of a small pair
of “scissors” are mistaken as part of the handle. In another, the flat surface of the
“shovel” is correctly labeled as “support”, whereas the edges are labeled “scoop”.
As shown by the example errors in Figure 2.5 (b-c), we found that affordances such
as “contain” and “scoop” or “support” and “scoop” are sometimes confused. This
occurs for example, when one trowel’s head, which is flatter than others, is often con-
fused as a supporting part. In some views, food scoops are confused with containing
parts, like the concavity of a bowl. These mistakes are not completely wrong, and
would actually be quite useful for a robot. More importantly, these mistakes reveal

the similarity shared between related affordances, opening new avenues for future

21

Grasp

B
- Scoop

Contain

- Pound

Support

- Wrap-grasp

All

All + CRF

Figure 2.5: Examples of results from our method from known category
(a. top row) and novel category (a. bottom row) experimental settings.
Failure cases show missed part errors and confusion between similar af-
fordances (b). CRF refinement is an important step for producing output
that is consistent and usable for a robot (c). Although CRF improves
labeling in many cases (c. columns 1-3), it can also make additional
mistakes (c. column 4).

work.

2.8 Conclusion

For robots to collaborate with humans in everyday workspaces, it is critical
that they understand the functionality of objects and their parts. However, recog-

nition of part affordances is a challenging problem due to the fact that parts with

22

similar affordances can come from a variety of object classes.

In this chapter, we have presented an approach to localize and identify the
affordance of tool parts, and we introduced a new RGB-D Part Affordance Dataset
which we used to evaluate our approach. Through experiments, we also demon-
strated the importance of geometry for affordance prediction, showing that geomet-
ric features outperform appearance features by a significant margin, and that the
addition of appearance features does not yield a significant performance improve-
ment. Finally, we also showed that affordances can be learned from a set of training
objects, and successfully applied to novel objects from classes not seen in training.

This work shows the potential for learning to detect affordances, as apposed
to previous techniques focused on detecting object instances. In contrast to works
which provide image labels or bounding boxes, the proposed approach localizes and
predicts affordances at the pixel level, which provides information that can be readily
used in robotics applications. This also opens new research directions, by raising
interesting questions about the relationships between similar affordances, and the

potential for tool parts to have multiple affordances.

23

Chapter 3: Dense Part Affordance Prediction in Real-time

3.1 Introduction

In the previous chapter we developed a framework that can localize and iden-
tify tool part affordances, using superpixel segmentation and HMP to learn a hier-
archy of geometric features from raw depth data. This demonstrated the potential
for learning to predict the affordance of tool parts in contrast to traditional in-
stance based object recognition approaches commonly used in robotics applications.
However, the proposed S-HMP approach is limited by the quality of the superpixel
segmentation and more importantly the computational complexity of sparse cod-
ing for patches in the image. In this chapter, instead of predicting affordance of
superpixel regions, we propose two approaches for dense part affordance prediction
in real-time. The first approach leverages the fast inference of structured random
forests (SRF) to detect part affordances in real-time. Secondly, we proposed a
deep convolutional neural network approach which learns to predict part affordance
from raw geometric features. Finally, we also demonstrate the robustness of the
approaches in challenging real-world situations containing clutter, occlusions and

viewpoint changes which were not explored in prior works.

24

3.2 Related Work

Recently, deep learning methods have achieved impressive results on visual
classification tasks like street sign recognition [1], face recognition [2], and image
classification [3]. These approaches have demonstrated the ability to learn complex
patterns by building increasingly abstract representations layer by layer, and have
been able to leverage advances in GPU hardware to learn from large amounts of
data. Convolutional Neural Networks (CNNs) have subsequently been applied to
many problems in computer vision very recently, but much less deep learning work
has addressed RGB-D data and vision problems in robotics. Recently, [34] used
CNNs for semantic segmentation of RGB-D scenes, and [23] proposed a convolu-

tional recursive neural network to recognize objects from RGB-D images.

3.3 Robust Geometric Features

The key hypothesis of this thesis is that shape and geometry are physically
grounded qualities which are deeply tied to the affordances of a tool part. When
characterizing geometric qualities of a part, it is important that the features we
compute are robust to variations, such as changes in viewpoint. At the same time, we
would like to gain insight into the influence of basic geometric measures. Therefore,
we leverage simple geometric features, such as surface normals and curvature, to
learn the relationship between geometry and part affordance. In order to detect

affordances for a variety of tools in cluttered scenes with occlusions, we derive the

25

following local geometric features from small RGB-D input patches.

3.3.1 Depth Features

We first apply smoothing and interpolation operators to reduce noise and miss-
ing depth values. Then, we remove the mean from the patch to gain robustness to
absolute changes in depth. These patches are used directly by HMP to learn hierar-
chical sparse code dictionaries. In the first layer, HMP captures primitive structures
such as depth edges at various orientations, and higher layers encode increasingly
abstract representations [22]. To provide comparable depth edge information to the
SRF, we compute histograms over depth gradients (HoG-Depth). Similar to the 2D
Histogram of Gradients (HoG) image descriptor [35], we compute gradients on the
depth image and quantize them into four orientations to create a compact histogram

feature.

3.3.2 Surface normals (SNorm)

We use the depth camera’s intrinsic parameters to recover the 3D point cloud,
from which we can estimate 3D surface normals. As with the depth, we remove
the patch mean during feature learning, to make the representation more robust to

changes in viewpoint.

26

3.3.3 Principle curvatures (PCurv)

The principle curvatures [36] are an extrinsic invariant of the local patch ge-
ometry, and are independent of viewpoint. The principal curvatures (K1, k2), Ki>Ko

characterize how the surface bends in different directions.

3.3.4 Shape-index and curvedness (SI+CV)

The shape index (SI) and curvedness (CV) measures were introduced by Koen-
derink et al. [37] to characterize human perception of shape. These measures, which

are derived from (ky, k2), are also viewpoint invariant and are defined as

2 2 2
SI = ——arctan </{1 i /@2> ,CV = F (3.1)

T K1 — Ko 2
ST and CV are continuous in the range [—1, +1], where the shape index cap-

tures the type of local shape (elliptic, parabolic, etc.) and the curvedness its per-

ceived strength.

3.4 Structured Random Forest

The random forest (RF), introduced by [38], is an ensemble learning technique
that combines K decision trees, (11, -+ ,Tk), trained over random permutations of
the data to prevent overfitting. The output of the model can either be a class
label (for multilabel classification) or a continuous value (for regression). The main

advantage of random forests is that inference is extremely efficient [39], since data

27

(A) RGB-D Input (B) Features (C) Learning Decision weights (D) Affordance prediction

o=z~ Il “fﬁ

| | I

. . 7 b

. J@LICHCY mgg%]
>

ﬂ Forest with K trees

mZ“JHiJ

ﬂAvera ging predictions

. —— "
Annotation patches I I J_I_ J_I_ _ll_ -‘;ﬂ

Annotations W from data / Leaf nodes with affordance probabilities

Figure 3.1: Affordance detection using SRF. (A) Input image with exam-
ple patch highlighted. (B) Features extracted from each patch (top) and
sampled annotation patches from data (below). (C) Training different
patches, X with corresponding binary affordance annotations,), learns
the optimal 6; at each split node. The leaf nodes store per pixel confi-
dence scores for each) encountered. (D) During inference, a test patch
is assigned to a leaf node that contains affordance prediction. Averaging
the predictions over the K trees produces an affordance confidence score
per pixel.

only needs to be passed through several binary decision functions. Due to their
speed and flexibility, RFs have been widely applied in both computer vision and
robotics problems.

We propose an approach using a structured random forest (SRF), an extension
of the standard RF that imposes structured constraints on the input and output.
This enables the SRF to learn more expressive information, such as shapes, sizes,
or even abstract relationships between entities while still retaining all the inherent
advantages of standard RFs. Structured random forests were introduced by [40] to
impose spatial constraints for scene segmentation, and they were recently extended
by [41] for 2D edge detection.

Different from these previous works, we impose here a novel structure that

28

relates affordances to the local patch geometry and shape. To this end, we train a
SRF that takes as input X, features from local N x N patches described in Sec-
tion 3.3 with pixel accurate annotations of the target affordance, Y (Figure 3.1 (B)).
The annotations impose the expected spatial structure of how the affordance should
appear in the final prediction. For the j*® split (internal) node, we train a binary
decision function h(x,6;) € {0,1} over random subsets, x € X, of the input features
so that the parameters 6; = (f, p) send z(f) (where f is the feature dimension for
each feature described in Section 3.3) to the left child when h(-) = 1if [z(f) < p]
and to the right child otherwise. The decision threshold, p, is obtained by maxi-
mizing a standard information gain criterion G; over D; C X x Y, the features and

annotations:

Gy =H(D;)— Y ‘g—;‘H(Dj) (32)

ce{L,R} | J|

where D$,c € {L, R} indicates the portion of the data that is split by p
into the left and right child nodes respectively. We use here the Gini impurity
measure: H(D;) = > p,(1 —p,) with p, denoting the proportion of features in D;
with ownership label y € V. Eq. (3.2) is computed via an intermediate mapping
IT: Y — L of structured affordance labels into discrete labels [€ £ following [41].
To determine II, we first cluster via k-means random annotation patches that have
the same affordance labels and select the largest |£| cluster centers. We repeat
the training procedure until a maximum tree depth, Dy, is reached and we store

at the leaf nodes per pixel confidence scores for each affordance annotation patch

29

encountered during training. (Figure 3.1 (C)). Each tree in the SRF therefore learns
jointly, the 2D spatial structure together with the 2.5D features that describe the
affordance within a patch. Inference using the trained SRF is extremely simple.
Given a forest of K trees and a testing patch with extracted features, the learned
decision thresholds in each split node will send the patch to a leaf node that contains
the predicted affordance labeling and confidence scores. We then average all K
predictions for the final prediction (Figure 3.1 (D)).

In our implementation, we train a SRF with K = 8 trees with a maximum
training depth of D; = 64. We use patches of size N = 16 and we set |£| = 10 cluster
centers for II. Training over the entire Affordance RGB-D dataset (Section 3.6.2) in
parallel with approximately 5000 RGB-D images per split takes around 20 minutes
on a 16 core Xeon 2.9GHz machine with 128GB of ram. Inference for a single RGB-
D image of size (640 x 480) (height, width), takes an average of 0.1s which includes

the time for feature extraction.

3.5 Convolutional Neural Networks

In Chapter 2, we used hierarchical matching pursuit (HMP) to compute hier-
archical sparse codes from raw geometric features, with the goal of learning multiple
layers of features with each successive layer encoding increasingly abstract represen-
tations. Unfortunately, HMP is computationally expensive, since for every patch
we need to compute sparse coefficients using orthogonal matching pursuit (OMP),

so it is not well suited for real-time robotics applications. While SRFs are efficient

30

enough to run in real-time scenarios, they compute binary decision functions from
existing features, and do not learn new feature representations from the data. So, in
order to learn features for predicting affordance in real-time, we we propose a Deep
Convolutional Neural Network (DCNN) based approach.

Convolutional Neural Networks (CNNs) have recently reemerged in the in
the computer vision community, obtaining state-of-the-art results on a number of
tasks. Like HMP, CNNs learn multiple layers of feature representations, with each
layer learning higher-level and more abstract features. Whereas HMP uses a learned
dictionary to compute sparse codes at each layer, CNNs convolve learned filters over
the input features to produce the layer’s output, before transforming the outputs
using a non-linear activation function. In addition, HMP and CNNs both use max-
pooling layers to aggregate features over image patches and to achieve invariance
to small spatial perturbations. In practice, CNNs have also become more accessible
with the recent development of publicly available libraries like Caffe [42]. Since
CNNs are feedforward and highly parallelizable, they can also be run efficiently
on GPUs, and with appropriate architectural considerations can enabling real-time
operation.

Following the HMP architecture used in Chapter 2, we propose a DCNN archi-
tecture with 3 intermediate convolution layers, where the outputs of each convolution
layer are passed through a ReLU non-linearity. The first two convolution layers are
also followed by a max-pooling operation on overlapping 3 x 3 patches. After 3
convolution layers, we apply a final pair of convolution and logistic layers to output
an affordance probability map. We note that the logistic classifiers are independent,

31

Name Kernel size (dilation) | Stride | Output size (C' x H x W)
conv_1 X7 2 64 x 105 x 140
pool_1 3x3 2 64 x 52 x 70
conv_2 5 X b 1 128 x 52 x 70

pool 2 3 %3 1 128 x 50 x 68
conv_3 3x3(2) 1 256 x 50 x 68
conv_class 1x1 1 7 x 50 x 68
sigmoid 7 x50 x 68

Table 3.1: Affordance CNN Architecture.

which in contrast to a softmax layer, allows for multiple positive classes.

We also process patches with a stride of 2 pixels in the first convolution and
pooling layers, while all remaining layers use a stride of 1. Many similar architectures
also use a stride of 2 in the later convolution and pooling layers [3,43], however this
would further reduce the spatial resolution of the output probability map. Instead,
we achieve equivalent receptive fields while preserving spatial resolution by using
dilated convolution kernels in later layers. The overall architecture is detailed in
Table 3.1.

In order to train the network using the different geometric features described
in Section 3.3, we concatenate the desired feature maps into a tensor which is then
input to the first convolution layer. For each of the features, we center and normalize
the data using each channel’s mean and standard deviation, computed on all pixels

in the training data.

32

3.6 Experiments

We conduct several experiments to compare the proposed approaches with re-
lated approaches in the literature, understand the importance of different geometric
features, and evaluate the performance of the proposed methods on everyday tools
in controlled and cluttered environments. First, in Section 3.6.1, we present ex-
periments on a baseline task of predicting good robotic grasping regions (a specific
affordance), and compare the proposed S-HMP and SRF approaches with the ap-
proach of Lenz et al. [33]. In Section 3.6.2, we describe extensions made to the part
affordance dataset, which is used to evaluate the SSHMP, SRF, and CNN approaches.
We present the evaluation metrics used for all experiments in Section 3.6.3. Lastly,

we present and discuss the results of our experiments in Sections 3.6.4-3.6.6.

3.6.1 Grasping Detection Baseline

Since there are no prior works on part affordance detection with which we
can compare, we turn to the related robotics task of determining where to grasp (a
specific affordance) as a baseline. We used the recently introduced Cornell Grasping
Dataset of Lenz et al. [33] and compare against their sparse auto-encoder based
approach to validate the effectiveness of our SRF and S-HMP approaches. The
dataset contains 1035 RGB-D images of 280 graspable objects, where objects are
captured from a small discrete number of viewpoints. Each image contains a single
object, and is annotated with a set of rectangles indicating good or bad graspable

locations. Following the testing procedure in [33], we averaged results from 5 random

33

splits, and report both recognition accuracy and detection accuracy. For detection,
we report the point-wise metric following [33] and [8], which considers the detection
a success if it is within some distance from at least one ground-truth rectangle
center. In order to use S-HMP in this setting, we treat the candidate rectangles
as superpixel segments, and perform max-pooling over the rectangle to make a
prediction. To obtain structured labels for the SRF, we estimated the ground-truth
annotations of graspable regions by first applying a mask obtained over all graspable

rectangles followed by a edge detection and hole filling operation (Figure 3.2).

Input RGB-D Graspable Rectangles Estimated segment

Figure 3.2: Estimating pixel accurate annotations from the Cornell
Grasping Dataset. (Left) Input RGB image. (Middle) Overlay of several
graspable rectangles. (Right) Edge detection and hole filling produces a
pixel accurate segment.

We applied the proposed approaches to the Cornell Grasping Dataset and com-
pared recognition and detection results to those of the sparse auto-encoder (SAE)
with a two-stage structured regularization in [33]. Table 3.2 summarizes the recog-
nition accuracy, r,, and detection accuracy (point-wise), d,, of the SRF, SAE, and
S-HMP methods. In order to highlight the contribution of the structured constraints
in the SRF, we trained a standard random forest (RF) with 20 trees over the an-
notated grasping rectangles in the dataset, using the same feature set of the SAE:

RGB + Depth + SNorms.

34

We note first that using the baseline feature set used in SAE with a standard
RF results only in mediocre performance. By adding the structured constraints and
the proposed robust features, the SRF is able to achieve recognition and detection
performances comparable to the deep learning based SAE. S-HMP outperforms the
other approaches by a large margin, achieving state-of-the-art performance for this
dataset. It is important to note however, that the SRF provides very reasonable
predictions of graspable locations with pixel-wise accuracy (Figure 3.3), within a
fraction of the time needed for inference using SAE (30s) vs. 0.1s in SRF. Such
real-time performance is crucial for practical robotics applications and we show in
the supplementary video an example of real-time detection over the cluttered RGB-

D Affordance Dataset.

Sponge Comb Slipper Toothbrush

RGBD Input

&
o
G

Figure 3.3: Grasping locations predicted by SRF. (Top) Input RGB-
D images for four example objects. (Bottom) Predicted graspable lo-
cations. Notice the large difference in shape of the graspable regions.
Brighter means higher probability.

3.6.2 Dataset

In Section 2.6 we introduced a new RGB-D Part Affordance Dataset to in-
vestigate the problem of localizing and identifying part affordances. The dataset

35

Method || r, % | dy %
RF 85.3 | 62.5
SRF 93.5 | 87.0
SAE [33] | 93.7 | 88.4
S-HMP 95.2 | 92.0

Table 3.2: Performance comparisons in the Cornell Grasping dataset.

provides pixel-level affordance labels for 105 kitchen, workshop, and garden tools
from 17 different categories. However, results from experiments on the dataset
showed that some affordance predictions were confused with similar affordances.
Although these labelings do not match the ground truth, in some cases they are
not completely wrong. For example, the inside of a bowl might be annotated with
the affordance “contain”, but a prediction of scoop is somewhat reasonable. This
highlights the fact that tool parts may have multiple affordances, where some affor-
dances may be more likely than others. To address this, we engaged several human
annotators to rank affordances for each part with respect to the essential affordance
category, while allowing for ties. This allows us to determine, on an ordinal scale,
how well the affordance detector generalizes to related affordances which is impor-
tant when novel objects are observed. In addition, we expanded the dataset with
three sequences of approximately 1000 RGB-D frames, each collected by a mobile
robot observing novel tools in clutter under changing viewpoints. Example frames

are shown in Figure 3.4 (left).

36

3.6.3 Evaluation Metrics

We use three evaluation metrics to provide different perspectives on the per-
formance of our approaches over the RGB-D Part Affordance dataset. The proposed
approaches output a probability map over the image for each affordance, which can
be evaluated against ground truth labels to fairly compare their performance. First,
we use the Weighted F-Measure, FY, introduced recently by Margolin et al. [44]
to evaluate saliency maps with continuous valued responses against binary valued
ground-truths.

The well-known F-measure Fj is defined by the harmonic mean of the precision
and recall values: Fz = (1 + 52).% and is used as a measure of the accuracy
of the Pr and Rc scores. The weight [is a positive value that gives preferences

to either Rc, when 8 > 1, or Pr, when g < 1. The Weighted F-Measure, is an

extension of the F-measure,

with 3 = (3.3)

TP

7prrpand

where Pr* and Rc" are weighted versions of the standard precision Pr =

TP

recall Re = TP+FN

measures. Here, TP, TN, FP, I'N refer to true positives, true
negatives, false positives and false negatives respectively. The key insight from [44]
is to extend the standard precision and recall measures with weights derived by
comparing the binary ground-truth and the continuous valued responses in order to

reduce biases inherent in the standard measures. To do this, the authors proposed

weights that measure the dependency of foreground pixels (pixels clustered together

37

near the ground-truth are weighted higher), and assign lower weights to pixels far
from the ground-truth.
Since the ground-truth in the RGB-D Affordance dataset provides rankings

across multiple affordances, for a second measure we define a rank weighted Fg’,

Ry = Zwr.Fé“(r),WichwT =1 (3.4)

that sums weighted Fy’(r) over their corresponding r ranked affordances. The ranked
weights w, are chosen so that the top ranked affordance is given the most weight,
followed by the secondary affordance and so on. This allows us to capture if the
detector is generalizing across multiple affordances appropriately. Note that when
we impose w; = 1, (3.4) reduces to (3.3), where we consider only the top ranked
affordance.

Finally, we use a third measure to evaluate whether multiple affordance pre-
dictions agree with the ground-truth rankings. We rank the continuous affordance
predictions at each pixel, and compute the ranked correlation score, Kendall’s
T, € [—1,1] [45]. 7 approaches 1 as the predicted ranks agree more closely with the
ground-truth, but nears -1 as the ranks are reversed. We report 7, € [—1,1], the

average 73 of all pixels over the test images.

3.6.4 Comparison on RGB-D Tool Dataset

We report results that demonstrate the performance of our approaches using
the proposed metrics described above: (F 5 Rg, 7y) for affordance detectors trained

using the S-HMP, SRF, and CNN methods. We used the same train/test splits of

38

Affordance | CNN (Fy, RY,7}) HMP (Fg, RY,7y) | SRF (Fy§, R§, Tx)

grasp 0.520, 0.216, 0.908 0.367, 0.149, 0.711 | 0.314, 0.133, 0.409
cut 0.534, 0.062, 0.916 0.373, 0.043, 0.831 | 0.285, 0.033, 0.798
scoop 0.581, 0.101, 0.854 0.415, 0.046, 0.627 | 0.412, 0.097, 0.559
contain 0.815, 0.176, 0.916 0.810, 0.168, 0.814 | 0.635, 0.142, 0.579
pound 0.686, 0.045, 0.949 0.643, 0.035, 0.787 | 0.429, 0.033, 0.801
support 0.701, 0.049, 0.911 0.524, 0.030, 0.717 | 0.481, 0.039, 0.724
wrap-grasp || 0.864, 0.115, 0.963 0.767, 0.102, 0.867 | 0.666, 0.089, 0.821
Mean 0.672, 0.109, 0.917 | 0.557, 0.082, 0.751 | 0.460, 0.081, 0.643

Table 3.3: Performance over the RGB-D Affordance dataset.

the RGB-D Affordance dataset used for the experiments presented in Section 2.7,
and we report averaged results over the splits. We used the features described in
Section 3.3 for a fair comparison. Table 3.3 summarizes the performance over the
seven affordance labels considered.

From the results, we can see that between S-HMP and the SRF, SSHMP con-
sistently outperforms SRF in all three evaluation metrics. The difference is most
significant using the F§” measure, which shows that the sparse codes obtained by S-
HMP are able to distinguish the top ranked affordance class much better than SRF,
which tends to produce weaker responses across multiple affordance categories. This
is not surprising since, unlike HMP which learns new high-level features from the
raw data, SRF only selects the most discriminative input features. Furthermore, the
CNN performs better than both SSHMP and the SRF by a large margin on all met-

rics. In the sections that follow, we describe ablation experiments that demonstrate

39

Affordance | CNN (Fy, RY,7}) HMP (Fg, RY,7y) | SRF (Fy§, R§, Tx)

grasp 0.330, 0.196, 0.713 0.227, 0.124, 0.583 | 0.200, 0.122, 0.165
cut 0.221, 0.090, 0.831 0.160, 0.065, 0.754 | 0.072, 0.030, 0.724
scoop 0.225, 0.176, 0.705 0.165, 0.083, 0.519 | 0.114, 0.106, 0.446
contain 0.437, 0.231, 0.688 0.437, 0.222, 0.627 | 0.322, 0.178, 0.316
pound 0.261, 0.096, 0.732 0.257, 0.079, 0.609 | 0.072, 0.023, 0.595
support 0.376, 0.075, 0.636 0.297, 0.049, 0.462 | 0.098, 0.022, 0.509
wrap-grasp || 0.232, 0.128, 0.563 0.208, 0.109, 0.482 | 0.156, 0.099, 0.482
Mean 0.298, 0.142, 0.695 | 0.250, 0.105, 0.563 | 0.165, 0.083, 0.435

Table 3.4: Performance over the clutter subset.

the contribution of geometric features and how they help in real-world scenarios

with clutter, occlusions and viewpoint changes.

3.6.5 Performance in clutter and occlusions

In order to test the performance of the approach in real-world situations con-
taining clutter, occlusions and viewpoint changes, we tested our approach over the
clutter subset of the RGB-D Part Affordance dataset. Table 3.4 compares the per-
formance of the approaches using the (Fjy’, RY, 7)) metrics.

We show in Figure 3.4 a series of three frames illustrating the responses of HMP
and SRF for two specific affordances: contain and wrap-grasp. Despite changes in
viewpoint, the approaches make reasonable predictions, such as correctly predicting
the inner surfaces of bowls and cups as contain. HMP exhibits precisely localized

predictions, and SRF demonstrates generalization, such as predicting wrap-grasp

40

HMP SRF

I

RGB-D Input Contain Wrap-grasp Contain Wrap-grasp

Figure 3.4: Results of affordance detection across three different input
RGB-D frames (left) using HMP (middle) and SRF (right) over the
cluttered sequence: two target affordances per method — contain (1)
and wrap-grasp (r). Brighter means higher probability of the target
affordance.

on the convex surface of the bowl. From Table 3.4, we note further that although
both HMP and SRF’s performance did drop under such challenging scenarios, the
drop in HMP is less than SRF, which indicates that the learned features, unlike
those obtained from SRF are far more robust to viewpoint changes and clutter than

SRF. Still, the CNN is best performing method by far.

3.6.6 Ablation Experiments

We performed a series of feature ablations to demonstrate the contribution
of each feature type in improving the results reported above. Table 3.5 shows the
influence of additional features over the baseline smoothed and de-meaned depth
features, denoted as Depth, with respect to the F§’ measure.

We see that the HMP baseline performs very well, and by learning multiple

41

Feature Sets CNN FB”“” HMP Fé“ SRF Fé”

Depth 0.430 0.539 0.323
Depth+SNorm 0.659 (+0.228) | 0.547 (+0.008) | 0.444 (+0.121)
Depth+SNorm+PCurv 0.663 (+0.232) | 0.562 (+0.023) | 0.449 (+0.126)

Depth+SNorm+PCurv+SI+CV || 0.672 (+0.241) | 0.557 (+0.018) | 0.460 (+0.137)

Table 3.5: Ablation experiment results. 4z indicates the amount of
change over Depth.

layers of features with increasing invariance and abstraction, HMP is able to extract
discriminative information. Consequently, additional features provide better but
diminishing returns on performance, consistent with the results in Section 2.7.2.
One possible explanation of this effect is that increasing feature dimensionality could
make SVM learning more difficult. Although the full set of features has a slightly
lower Fg’ measure, we note that it has the best performance on ranked measures and
clutter. The SRF, on the other hand, benefits more from the addition of new features
as they introduce more diversity into the random feature subsets used during training
(Section 3.4). Using the full feature set the SRF achieves a large improvement
over the ablated counterparts. Interestingly, we notice that although SI+CV are
derived from PCurv, they improve the results further. This validates that the shape-
index and curvedness measures capture discriminative information not provided
directly by the other features. Finally, for the CNN we find that using only depth
is significantly poorer performance than other feature subsets. Unlike for S-HMP
and the SRF, the additional features are crucial, and each additional feature yields

a noted performance improvement.

42

3.7 Conclusion

In this chapter, we have presented two methods for associating affordances with
local shape and geometry information. These methods localize and identify multiple
affordances of tool parts, providing functional information that can be used by a
robot. The HMP method provides accurate results at a high computational cost,
while SRF gives reasonable predictions in real-time. We have also demonstrated
the importance of geometry for affordance identification, showing the importance
of robust geometric features. We also validated our baseline on an existing dataset,
achieving performance on par with a state-of-the-art deep learning approach, but
at a fraction of the computation time. Finally, we extended the RGB-D Part Affor-

dance Dataset with ranked affordance labels and cluttered 3 scenes.

43

Chapter 4: Using Material Cues to Reason about Affordance

4.1 Introduction

The functionality of a tool not only depends on its geometric structure, but
also on the underlying properties of the constituent materials. For example, if a
robot needed a container to serve soup from a pot, we would expect it look for
an object which has a concavity, and which is also made of a nonporous material.
Therefore, it is important to utilize both geometry and material information to pre-
dict the affordances of tool parts. However, it’s not immediately clear how material
cues should be obtained and combined with geometry features to predict affordance.
Building on the Convolutional Neural Network proposed in Chapter 3, we hypothe-
size that affordance predictions can be improved by integrating high level material
cues, allowing the network to learn the relationship between geometry, affordance,
and materials.

To this end, we propose to learn the relationships between materials and affor-
dances using a two-stream deep convolutional neural network, with one stream for
predicting affordance from geometric features, a second stream trained to recognize
materials from RGB data, and a final stage to combine these high level cues. In this
chapter, we first present the details of our approach in Section 4.3. In Section 4.4.1,

44

we introduce an Extended Part Affordance Dataset tailored towards material and
affordance recognition. Lastly, we present experimental results which demonstrate

the efficacy of the proposed method in Section 4.4.2.

4.2 Related Work

Texture classification has been long studied in the computer vision community,
with early work on pattern recognition of grayscale images emerging half a century
ago [46]. Since then, a wide variety of statistical, geometrical, model-based, and
signal processing techniques have been proposed, with applications to such com-
puter vision problems as face recognition, object recognition, action recognition,
and background subtraction [47] [48]. Texture recognition laid the foundation for
material recognition, but recognizing materials from images presents a much larger
challenge, since it aims to infer the underlying physical properties of objects in im-
ages. Texture is often an important part of what defines a material’s appearance,
as is the case with materials like wood, leather, stone, and fabric which have unique
textures. However, in many cases different materials may have similar textures,
and in some cases objects made of the same material may have different textures.
Consequently, common texture recognition approaches are not always well suited
for material recognition [49-51].

Several prior works have addressed recognition of a specific material such as
glass [52] and human skin [53]. As the field of material recognition has progressed,

more comprehensive datasets have been developed to measure performance. The

45

CURET database [54] contains 61 material samples, each under 205 different lighting
and viewing conditions. The KTH-TIPS2 database [55] was introduced with 11 ma-
terial categories, 4 material sample instances per category, with each photographed
under a variety of lighting conditions. The dataset was introduced to provide di-
verse material samples with greater intra-class variation, although the proposed
SVM-based classifier was shown to achieve 98.5% accuracy on the database [55].
The Flickr Materials Database (FMD) introduced by [56] was one of the first mate-
rial databases which leveraged internet images, consisting of 10 material categories,
and 100 samples per category, hand picked from internet images on Flickr. Several
approaches and hand engineered features have been proposed targeting the Flickr
Materials Database including reflectance based edge features [57], features based
on variances of oriented gradients [58], and pairwise local binary pattern (LBP)
features [59].

Recently, and most relevant to this work, Bell et al. [60] introduced the Materi-
als in Context (MINC) dataset with 3 million material samples mined from internet
images on Flickr and images of staged interiors from professional photographers.
MINC was developed from the OpenSurfaces dataset [61], which consists of 20,000
scenes and 105,000 segmentations from real world images. Unlike previous work on
material recognition on the Flickr Materials Database where each image was asso-
ciated with only a single label, MINC was designed for semantic segmentation, and
the authors in [60] propose an approach based on deep convolutional neural networks
with conditional random field refinement for the task. Lastly, a few recent works

have shown that jointly predicting objects and materials can improve recognition

46

performance [58, 62].

4.3 Integrating Material Cues to Learn Affordance

The affordance of an object depends on both geometric and material proper-
ties, so naturally, we would expect any system for affordance prediction to utilize
both of these cues. However, this raises questions regarding how geometry and ma-
terial information should be combined, and their relative importance for the task.
Intuitively, many objects in the world share similar materials, but only a few possess
the necessary geometric features to satisfy a particular affordance. For example, a
cutting tool could have a metal, ceramic, or even plastic blade, and a multitude of
everyday objects are made of these materials, but only a few objects are sharp and
thin enough to be used for cutting. So, the geometry of a part is generally the pri-
mary factor in determining its possible affordances, and this intuition is supported
by experimental results from Chapters 2 and 3. Nevertheless, material properties
still determine an object’s affordances, as a sharp and thin object must be made a
of a material hard enough to be used for cutting. Therefore, we propose to learn
the relationships between materials and affordances using a two-stream deep convo-
lutional neural network, with one stream for predicting affordance from geometric
features, a second stream trained to recognize materials from RGB data, and a final
stage to combine these high level cues.

The first stream is identical to the DCNN architecture proposed in Section 4.4.

The network takes a tensor of geometric features as input, followed by 3 intermediate

47

convolution layers, and then a final convolution layer outputs an initial affordance
prediction map y4, with depth k, the number of affordance classes. Convolution
layers are followed by ReLLU non-linearities, and by overlapping 3 x 3 max-pooling
with stride 2. As previously proposed, dilated convolution kernels are used to re-
tain spatial resolution in the network output probability map. The second material
stream follows the same structure as the first, except that it takes RGB data as
input, and its output is a material class probability map y,,. The material stream is
also followed by an auxiliary pixel-wise softmax layer and cross entropy loss. Both
streams are finally combined through the element-wise addition of the initial affor-
dance prediction map and the output of convolutions of the two stream’s outputs,
Ya = Ya, + F(ya,) + F(yu). Intuitively, this should allow the network to learn
the relationships between materials and affordances and use this information to to
refine the initial affordance predictions y4,. The final affordance output y, is then
followed by a pixel-wise softmax layer and cross entropy loss. The overall network
architecture is illustrated in figure 4.1. The network can be trained end-to-end using
the loss on the final affordance predictions and the auxiliary loss on the material
prediction, or we can instead pretrain the material stream of the network first, on
possibly a different dataset, before learning to predict affordance. This approach
also has the advantage that gradient information from the material prediction will
not be passed to the geometry stream of the network, and we can enforce that gradi-
ents are not passed to the material stream as well. This way we can include material
information without affecting the performance of the material network, and other

modalities could be added with their own objectives.

48

affordance loss
T
pixel-wise softmax
T
conv_class

T

conv_n

conv_2

affordance loss

T

conv_1

T

RGB +

geometry features

(a) Single Stream CNN

7
pixel-wise softmax
material loss CH:
t
pixel-wise softmax conv_M+A
¥ FF
conv_M_class conv_A class 0 —
t 1
conv_M_n conv_A_n
H H
conv_M_2 conv_A 2
i f
conv_M_1 conv_A 1
i t
RGB features geometry features

(b) Two-Stream CNN

Figure 4.1: CNN architectures for affordance prediction using material
cues. Single stream CNN (a) and the proposed two-stream CNN (b).

49

4.4 Experiments

We conduct experiments to evaluate the proposed approach and compare
against the CNN proposed in Section as a baseline. In Section 4.4.1, we describe
extensions made to the part affordance dataset to add new objects and material

labels, and we present and discuss the results of our experiments in Section 4.4.2.

4.4.1 Extended Affordance and Material Dataset

The RGB-D Part Affordance Dataset, detailed in Section 2.6, consists of over
100 kitchen, workshop, and garden tools from 17 different categories. The tools
in the dataset are made of a variety of materials, where even different instances
from the same tool category are composed of different materials. For, example the
dataset includes knives with plastic, metal, and wooden handles and even metal,
ceramic, and plastic blades. However, one shortcoming of the dataset is that is
does not include any non-tool objects. Recognizing when an object does not have
any of the target affordances is a necessary ability in a robotics setting, and in
many cases material information is an important cue to make such a distinction.
For example, common office object made of paper or fabric might result in falsely
detected affordances if material information is not properly used, so it is important
that we train and test on such objects.

Therefore we extended the dataset by adding 123 non-tool objects from the
UW RGB-D Object Dataset [32], which provides color and depth data of objects

commonly found in home and office environments. Similar to the part affordance

20

dataset, the data is collected using a Kinect sensor, and objects are captured from
multiple views on a rotating turntable. Approximately 250 images are collected for
each object. A major difference between this data and the part affordance data
is that the objects do not have labeled parts. Most of the objects are everyday
non-tool objects such as fruits, food boxes, office supplies, and cleaning supplies. In
choosing objects to expand our dataset, we selected those that clearly could not be
used for any of our 7 affordances.

Data in both the RGB-D Part Affordance Dataset and the UW RGB-D Object
Dataset [32] is collected using the Kinect sensor. Due to the limitations of the Kinect
sensor, images are taken from approximately 1 meter away, and thus for some objects
it is difficult to capture detailed material information. In addition, the Kinect sensor
is primarily designed for human body gesture recognition in low light settings for
video game applications, so the sensor’s color images are not high quality.

So, in addition to adding new non-tool object data, we also collected new data
from another 58 objects using a Intel Realsense Softkinetic RGB-D Camera. The
Softkinetic sensor is designed for hand gesture recognition and person computer in-
teraction applications at close range. In contrast to the Kinect sensor which has
a minimum range of approximately 0.8 meters, the Softkinetic sensor has a mini-
mum range closer to 0.3 meters. Furthermore, while the Kinect sensor estimates
depth from projected structured infrared light patterns, the Softkinetic sensor uses
a time-of-flight approach which can capture fine details. Following the same proce-
dure described in 2.6, we recorded 58 new tool and non-tool objects on a revolving

turntable to collect images covering a full 360° range of views, and we labeled tools

o1

and their parts by ranking their affordances. Finally, for all of the data collected,
we also labeled the objects’ materials using the same labeling tool used to label
affordances. The material labels in the dataset include, ceramic, fabric, food, metal,

paper, plastic, rubber, sponge, and wood.

4.4.2 Results

We report results that demonstrate the performance using the metrics (F, 5 Rg, Tk)
for the baseline CNN and the CNN+material information. We use a 5-fold train-
ing and testing methodology to split the Extended RGB-D Part Affordance dataset
described in Section 4.4.1 into 5 folds. The data is split by object, resulting in
approximately 12,000 images for training and 3000 images for testing per fold. For
each of the metrics, we report the average over all 5 folds. We used the same ge-
ometric features for each network, and for simplicity we use the depth and surface
normals since this combination performed well in our experiments in Chapter 3. Ta-
ble 4.1 summarizes the two methods’ performance over the seven affordance labels
considered.

From the results, we can see that the material network outperforms the base-
line in all evaluation metrics. The difference is most significant using the F" mea-
sure, which shows that the integration of material information helps distinguish the
top ranked affordance class much better than the baseline. We show example results
for both methods in Figure 4.2. We can see that the material network makes better

predictions in general, but specifically in cases where the tool parts are made of

52

Affordance CNN (Fy, Rg,7r) | CNN+Material (Fy, RY,7})
grasp 0.211, 0.088, 0.950 | 0.282, 0.117, 0.950

cut 0.111, 0.013, 0.989 | 0.335, 0.039, 0.986

scoop 0.167, 0.029, 0.947 | 0.271, 0.047, 0.959
contain 0.711, 0.153, 0.963 | 0.628, 0.135, 0.970

pound 0.123, 0.008, 0.957 | 0.186, 0.012, 0.965
support 0.134, 0.009, 0.969 | 0.225, 0.016, 0.967
wrap-grasp 0.776, 0.103, 0.987 | 0.723, 0.096, 0.990

no affordance || 0.991, 0.290, 0.991 | 0.992, 0.290, 0.991

Mean 0.403, 0.087, 0.969 | 0.4551, 0.094, 0.972

Table 4.1: Results on the Extended RGB-D Part Affordance Dataset for the baseline
CNN and the CNN with material information.

metal or dark materials, where depth data is unreliable. For example, we can see
that in the case of the knife, the network without material cues does not predict that
the metal blade can be used for cutting, while the network using material correctly
identifies the affordance in this case. Similarly, in the cases with the spatula and
mallet, the objects’ dark colors can result in noisy depth data, so we see marked

improvements when material information is used.

4.5 Conclusion

The functionality of a tool depends on both its geometric and material proper-
ties. In this chapter, we have proposed to learn the relationships between materials
and affordances using a two-stream deep convolutional neural network, with one
stream for predicting affordance from geometric features, a second stream trained

to recognize materials from RGB data, and a final stage to combine these high

93

(a) Image (b) Ground Truth (c) CNN (d) CNN+Material

Figure 4.2: Examples results for the methods CNN and CNN-+material.
Original color images (a), ground truth affordance labels (b), predictions
from the CNN (c), and predictions from the CNN with material cues (d).

o4

level cues. In addition, we developed an Extended Part Affordance Dataset tailored
towards material and affordance recognition, with 181 addition objects from multi-
ple types of depth sensors. Through experiments we showed that integrating high
level material cues allowing the proposed approach to learn the relationship between
geometry, affordance, and materials, thereby improving affordance predictions com-
pared to other approaches. Ultimately, material recognition cannot always be solved
by vision alone, and other sensing modalities may need to be employed for robust
performance in robotics applications. For example, a robot looking for a metal fork
might be fooled by a plastic fork with a chrome paint finish, since it would be nearly
indistinguishable visually. The proposed approach is also suitable for mid-level cues

other than materials and presents interesting directions for future work.

95

Chapter 5: Conclusion

In this thesis, we propose the novel problem of predicting part affordances of
tools. This is in contrast to previous approaches in image classification and robotic
applications that predominantly focuses on instance or object level classification.
This work opens up possibilities for robots to identity novel objects it has not
seen before and understand their functionality. Since tools can have more than
one affordance, we propose ranked affordance labels, where an object is assigned
a multiple affordances, ordered by its significance. We propose multiple datasets
for the evaluation of this task for tools in a cluttered and occluded environments
with material information and per-pixel ground truth labels and rankings. We also
propose several evaluation metrics for this task. We hope this work opens up exciting
new research directions for reasoning about novel objects and manipulating them

by their affordance.

o6

Appendix A: Im2Calories: towards an automated mobile vision food

diary

While this thesis presents the problem of predicting part affordances, the ap-
proaches proposed therein are also applicable to other similar research problems.
During the summer of 2015, I interned at Google Research, where I worked with
Kevin Murphy’s team on a project to estimate the number of calories in an image of
food. T used many of the semantic segmentation and deep learning techniques and
lessons learned from my affordance work in order to solve this problem. Estimat-
ing the nutritional information of food from an image also differs from many more
common vision problems, since it’s necessary to recoginze the parts of various foods
and ingredients in order to produce a precise segmentation. In this appendix, we

include the paper describing this work.

o7

Im2Calories: towards an automated mobile vision food diary

Austin Myers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban
Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang, Kevin Murphy
amyers @umd.edu, (nickj, rathodv, kbanoop, gorban) @google.com
(nsilberman, sguada, gpapan, jonathanhuang, kpmurphy)@google.com

We present a system which can recognize the contents
of your meal from a single image, and then predict its nu-
tritional contents, such as calories. The simplest version
assumes that the user is eating at a restaurant for which we
know the menu. In this case, we can collect images offline
to train a multi-label classifier. At run time, we apply the
classifier (running on your phone) to predict which foods
are present in your meal, and we lookup the corresponding
nutritional facts. We apply this method to a new dataset of
images from 23 different restaurants, using a CNN-based
classifier, significantly outperforming previous work. The
more challenging setting works outside of restaurants. In
this case, we need to estimate the size of the foods, as
well as their labels. This requires solving segmentation and
depth / volume estimation from a single image. We present
CNN-based approaches to these problems, with promising
preliminary results.

1. Introduction

Many people are interested in tracking what they eat to
help them achieve weight loss goals or manage their di-
abetes or food allergies. However, most current mobile
apps (MyFitnessPal, Loselt, etc) require manual data entry,
which is tedious and time consuming. Consequently, most
users do not use such apps for very long [9]. Furthermore,
amateur self-reports of calorie intake typically have an error
rate that exceeds 400 calories per day [31, 5].

Rather than rely purely on data entry, several approaches
make use of a mobile camera to aid in this task. Cordeiro et
al. [8] records a photo of the meal but does not perform any
visual analysis of the image. Several previous approaches
[23] [29] rely on an expert nutritionists to analyse the im-
age offline (at the end of each day). Other approaches [26]
[25] use crowd sourcing to interpret the image, in lieu of an
expert. However, crowd sourcing is both costly and slow,
which hinders widespread adoption.

Several existing works [39, 21, 37] do use computer vi-
sion algorithms to reason about meals but only work in lab-
oratory conditions where the food items are well separated
and the number of categories is small. Furthermore, most of

these methods use traditional, hand-crafted visual features,
and only use machine learning at the classification stage.

The holy grail is an automatic method for estimating the
nutritional contents of a meal from one or more images. Un-
fortunately, even a perfect visual interpretation of the scene
cannot perfectly predict what is inside many foods, e.g., a
burrito. Consequently, an ideal system is one which cor-
rectly infers what is knowable and prompts the user for
feedback on inherantly ambiguous components of a meal.
Our goal is to minimize user effort for completing food di-
aries by offering smart ”auto-complete” functionality, rather
than complete automation.

In this paper, we take some initial steps towards such
a system. Our approach utilizes several deep learning al-
gorithms, tailored to run on a conventional mobile phone,
trained to recognize food items and predict the nutrional
contents meals from images taken “in the wild”. We re-
fer to this task as the “Im2Calories” problem, by analogy to
the recent line of work on the “Im2Text” problem. It should
be stressed, however, that we are interested in estimating
various other properties of a meal (such as fat and carbohy-
drates) and not just calories.

We start by building on [!], who developed a system
that can predict the calorie content of a meal from a sin-
gle image. Their key insight (also made in [2]) was that the
problem becomes much simpler if we restrict the setting to
one where the user is eating in a restaurant whose menu is
known. In this case, the problem reduces to one of detecting
which items, out of the K possible items on the menu, the
user has chosen. Each item typically has a standard serv-
ing size', and we typically know its nutritional contents.,
whereas getting nutritional information for arbitrary cooked
foods is much harder, as discussed in Section 7.

In Section 3, we show that by simply replacing the hand-
crafted features used in [1] with a convolutional neural net-
work (CNN), we can significantly improve performance,

! There may be variants, but these are typically few in number (e.g.,
small, medium or large fries). Hence we an treat these as different items.

2 The US Food and Drug Administration has passed a law requiring
all major chain restaurants to post the nutritional contents of their meals,
starting in December 2016. See [15] for details.

both at labeling the foods and estimating total calories. We
then extend their method from 3 restaurants to 23 restau-
rants, increasing the coverage from 41 food items to 2517.
We show that the same basic multilabel classification sys-
tem continues to work.

Unfortunately, it is hard to get enough images for all the
menu items for all the restaurants in the world. And even if
we could, this would not help us when the user is not eating
at a restaurant. Therefore, in Section 4, we develop a set
of 201 generic, restaurant-independent food tags. We then
extend the existing public Food101 dataset [3] with these
tags using crowdsourcing. We call the resulting dataset
Food201-multilabel and plan to release it publicly.’ We
show that the same kind of CNN-based multi-label clas-
sifier also works fairly well on this new (larger and more
challenging) dataset, although we found it necessary to per-
form some clustering of visually indistinguishable labels in
order to get acceptable performance.

Of course, detecting the presence of a food item in an
image is not sufficient, since most items can be “parameter-
ized” in terms of size, toppings, etc. Note that this is true
even in the restaurant setting. We could of course ask the
user about these variants, but we would like to do as much
as possible automatically.

To be able to perform such fine grained classification,
we need to be able to localize the objects within the image
and extract detailed features. We argue that a segmentation-
based approach is more appropriate than the traditional
bounding-box approach, since food items can have highly
variable shape. In Section 5, we present the new Food201-
segmented dataset, and our approach to semantic image seg-
mentation. We show that leveraging the multilabel classifier
from the earlier stage can help with segmentation, since it
provides a form of “context”.

Once we have segmented the foods, we can try to esti-
mate their volume. To do this, we need to know the sur-
face height of the foods above the plate. In Section 6, we
present some preliminary results on estimating the depth of
each pixel from a single RGB image, using a CNN. We then
show promising results on estimating the volumes of foods.

In summary, this paper makes 3 main contributions.
First, we develop a system that can recognize the contents
of a restaurant meal much more accurately than the previ-
ous state of the art, and at a much larger scale. Second, we
introduce a new dataset, Food201, and show how it can be
used to train and test image tagging and segmentation sys-
tems. Third, we show some promising preliminary results
on the challenging problem of mapping image to calories
from images taken in the wild, in a non-restaurant setting.
Our overall system is illustrated in Figure 1.

3 See https://storage.googleapis.com/food201/

food201.zip.

DB

Restaurant
CES detector
4 Im2Depth %‘

500 (£100)
calories

ize 3
Priors. ™ 2 Fried
Pancakes | 2 | 30z Whle
wheat
R -, Bocon | 3 100
N p ! P
8 Soz Fred
07 i
q |
o6
02

Figure 1. Illustration of the overall system. Dotted boxes denote
components that have not yet been implemented. The input is one
or more images, and optionally a GPS signal and user priors (e.g.,
concerning food preferences). The output is a food diary, and an
estimated total calorie count (in cases where a suitable nutritional
database is available, such as from a restaurant’s menu).

Name #Classes | #Train #Test Comments
Food101 101 75,750 | 25,250 | [3]
Food101-Background | 2 151,500 | 50,500 | Food vs non-food
Food201-MultiLabel | 201 35,242 | 15,132 | Multi label
Food201-Segmented | 201 10,100 | 2,525 | Label per pixel
Restaurant 2517 75k 25k Single label
Gfood-3d - 150k 2471 Depth per pixel
Nfood-3d - - 1050 Depth per pixel

Table 1. Summary of the datasets used in this paper. The Restau-
rant dataset contains web images for 23 restaurants. Gfood-3d is
from 50 Google meals. Nfood-3d is from 11 meals made with
Nasco food replicas.

2. Meal detection

The first step in our pipeline is to determine if the im-
age is an image of a meal at a “reasonable” distance from
the camera. We can phrase this as a simple binary classifi-
cation problem. To tackle this problem, we need to have a
suitable dataset. We start by taking the Food101 dataset de-
veloped in [3], which contains 101 classes of food, 1000 im-
ages each (750 train, 250 test). Food101 is the largest pub-
licly available dataset of food images we are aware of (see
Table | for a comparison with some other public datasets).

The Food101 dataset is designed for multi-class classifi-
cation. To make a dataset suitable for binary classification,
we combined all the food classes into one generic “food”
class, and then randomly extracted an equal number of im-
ages from the ImageNet challenge dataset [30] to create the
“non-food” class.*

Each image is rescaled (if necessary) so that its maxi-
mum height or width is 512 pixels, but preserving the orig-
inal aspect ratio. We call this new dataset the Food101-

4 ImageNet actually contains 51 food classes, so we removed these
images from the negative set.

Background dataset.

To train a classifier for this problem, we took the
GooglLeNet CNN model from [34], which had been pre-
trained on ImageNet, removed the final 1000-way softmax,
and replaced it with a single logistic node. Then we fine
tune the whole model on the Food101-Background dataset;
this takes about 12 hours using a single Titan X GPU with
12 GB of memory. The final test set accuracy is 99.02%.

3. Restaurant-specific im2calories

Once we have determined that the image contains a meal,
we try to analyze its contents. The first step is to deter-
mine which restaurant the user is in. In this paper, we use
Google’s Places API [27] for this. We then retrieve the
menu of the nearest restaurant from the web,” parse the
menu into a list of K food items, and retrieve images for
each of these, either by performing web search (as in [2]) or
by asking users to collect images (as in [1]).°

Once we have the dataset, we can train a classifier to map
from image to label. Since the user may have multiple food
items on their plate, it is better to use a multi-label classi-
fier rather than using a multi-class classifier, which assumes
the labels are mutually exclusive. Next we can estimate the
set of foods that are present by picking a suitable thresh-
old ¢, and then computing S = {k : p(yr = 1|z) > ¢},
where p(yr = 1|z) is the probability that food k is present
in image x. Finally, we can lookup each of these food
items in our (restaurant specific) database, and then esti-
mate the total calories as follows: C' = > kes Ok, where
C); is the calorie content of menu item k. Alternatively, to
avoid having to specify the threshold ¢, we can compute
C = Zszl p(yr = 1|z)C). We compare these methods
below.

3.1. Experiments on MenuMatch dataset

To evaluate this approach, we used the dataset from [1],
known as “MenuMatch”. This consists of 646 images,
tagged with 41 food items, taken from 3 restaurants. Un-
like other datasets, each image in MenuMatch has a cor-
responding ground truth calorie estimate, computed by an
expert nutritionist. In addition, each restaurant’s menu has
corresponding ground truth calorie content per item.

[1] used various hand-crafted features together with a
linear SVM, trained in a one-vs-all fashion. Their best per-
forming system achieved a mean average precision (mAP)

5 This data is available for many US chain restaurants in semi-
structured form from https://www.nutritionix.com.

6 In practice, it is suprisingly complicated to parse the menus and re-
trieve relevant images. For example, the restaurant “16 handles” contains
the folowing items: NSA Blueberry Tease, NSA Chocolate Eruption, NSA
Strawberry Fields, and 65 other similar entries. You need to know that
these are from the frozen yogurt section of the menu, and that NSA stands
for “no sugar added”, in order to make any sense of this data.

Method Mean error Mean absolute error
Baseline —37.3+3.9 239.9+14

Meal Snap —268.5+13.3 3309=£11.0

Menu Match —21.0+11.6 232.0+£7.2

C —31.90 £28.10 163.43 +£16.32

C —25.354+26.37 152.95 £ 15.61

Table 2. Errors in calorie estimation on the MenuMatch dataset.
C and C are our methods. Numbers after the + sign are standard
errors estimated by 5-fold cross-validation. See text for details.

of 51.2% on the test set. By contrast, we get much better re-
sults using a deep learning approach, as we explain below.

We took the GoogLeNet CNN model from [34], which
had been pre-trained on ImageNet, removed the final 1000-
way softmax, replaced it with a 101-way softmax, and fine-
tuned the model on the Food101 dataset [3]. The resulting
model has a classification accuracy on the Food101 test set
of 79%, which is significantly better than the 50.76% re-
ported by [3] (they used hand crafted features plus an SVM
classifer using a spatial pyramid matching kernel).

Next, we took the model which was trained on Food101,
removed the 101-way softmax, replaced it with 41 logistic
nodes, and fine-tuned on the MenuMatch training set. (Pre-
training on Food101 was necessary since the MenuMatch
dataset is so small.) The resulting mAP on the test set is
81.4%, which is significantly higher than the best result of
51.2% reported in [1].

Finally, we wanted to assess the accuracy of calorie pre-
diction. We compared 5 methods: the MenuMatch system
of [1], the MealSnap app [25] that uses crowdsourcing, our
method using C, our method using C, and finally, a baseline
method, which simply computes the empirical mean of the
calorie content of all meals from a specific restaurant. The
results are shown in Table 2. We see that our system has
considerably lower error than MenuMatch and the crowd-
sourced MealSnap app. (The unreliability of MealSnap was
also noted in [26].) In fact, we see that MenuMatch barely
beats the baseline approach of predicting the prior mean.

3.2. Scaling up to more restaurants

The MenuMatch results are based on 646 images of 41
food items from 3 restaurants. In this Section, we discuss
our attempts to scale up these experiments.

First, we downloaded the menus for the top 25 restau-
rants in the USA, as ranked by sales.” We decided to
drop “Pizza Hut” and “Chipotle”, since gathering images
for their menu items was tricky.® From the remaining 23

7 Source: http://nrn.com/us-top-100/

top-100-chains-us-sales.

8 For example, “Pizza Hut” has menu items such as “chicken”, “pep-
peroni”, etc. But these are toppings for a pizza, not individual food items.
Similarly, “Chipotle” lists “chicken”, “beans”, etc. But these are fillings
for a burrito, not individual food items.

misclassification rates per restaurant

0.9 ———— —T
0.8+ I top 1 before clustering | |
[top1 after clustering
0.7+ [CJtop5 before clustering J
[__1top5 after clustering
0.6+
0.5}
0.4}
0.3F i
0.2}
0.1} “
O 2= =
LD HDDNAL XONET KT D O 0 >= 0
DXEC==0>0%5 O OXBCLEXTO>
SCLFeEc R0 T8 25922 8
© fole] © =3 Tos@L23 0P 2 o0
s 5 2882 3 8¢%cdd a8z
£ 306 § °% 5 225258 &
m a c ==38&§ox
S [OR=\
[a) >
(@]

Figure 2. Top 1 and top 5 error rates on the test set for 23 different
restaurants, before and after clustering the most confusable labels.

restaurants, we collected 4857 menu items. We manually
removed drinks and other miscellaneous items, and then
scraped 1.2 million images by issuing image search queries
of the form “<restaurant name> <item name> (yelp |
flickr | instagram | pinterest | foodspotting)”. (These site
restricts were chosen to increase the chances that we col-
lected user-generated photos, rather than “official” photos
from the restaurant itself, which tend to be too easy.) Of
the scraped images, 270k were sent to Amazon Mechani-
cal Turk for verification, producing a final set of 2517 menu
items and 99k images. We call this the Restaurant dataset.

We then took our GoogleLeNet model, which had been
trained on ImagetNet and then Food101, and replaced the
101-softmax with 2517 logistic nodes. We trained the final
layer of this model on 75% of the data, and tested on the
rest. We then computed the top 1 and top 5 error rates,
averaged over the food items, for each of the 23 restaurants.
The results are shown in Figure 2.

The top 1 error rate is quite high. This is because many
food items are extremely similar, and it is hard, even for
a human expert, to tell them apart. For example, McDon-
alds has the following items on its menu: Quarter Pounder
Deluxe, Quarter Pounder Bacon Cheese, Quarter Pounder
with Cheese, etc. (See Figure 3 for an illustration of these
food items.)

To combat this issue, we computed the class confusion
matrix on the training set for each restaurant, and then per-
formed a very simple clustering of similar items. In partic-
ular, we computed the K nearest neighbor graph, in which
we connected each label to the K other labels it is most of-
ten mapped to (which can include itself). We then computed
the connected components to form a set of clusters.

Figure 3. The first two images are put into the same vi-
sual cluster, the third is kept distinct. Image sources:

aldsmenu.mobi/beefburgersmenu/deluxequarterpounder/.

smenu.mobi/beefburgersmenu/bac uarterpounder/.

s/en/food/product_nutrition.burgerssandwiches.7.

We found qualitatively that using K = 1 gave a good
tradeoff between merging the most confusable classes and
overclustering. With K = 1, the number of clusters was
about 0.9 times the original number of items; most clusters
were singletons, but some had 2 or 3 items in them. Fig-
ure 3 gives an example of two clusters we created from the
McDonald’s menu; the first cluster contains two very vi-
sually similar items (Quarter Pounder Deluxe and Quarter
Pounder Bacon Cheese), and the second cluster contains a
visually distinctive item (Quarter Pounder with Cheese).

Finally, we evaluated performance of the classifier on the
clustered test labels, by defining the probability of a cluster
as the max probability of any label in the cluster. Figure 2
shows that, not surprisingly, the error rates decrease. In the
future, we hope to try using a hierarchical classifier, which
can tradeoff specificity with error rate c.f., [11].

4. Generic food detection

The results from Section 3 required images for each
menu item from each restaurant. It is difficult to acquire
such data, as previously remarked. To create a more generic
dataset, we took half of the Food101 dataset (50k images),
and asked raters on Mechanical Turk to name all the food
items they could see in each image. We included the origi-
nal class label as one of the choices, and manually created
a list of commonly co-occuring foods as additional choices
in the drop-down menu (e.g., eggs often co-occur with ba-
con). We also allowed raters to enter new terms in a text
box. We used 2 raters per image. After manually merging
synonymous terms, and removing terms that occurred less
than 100 times, we ended up with a vocabulary of 201 la-
bels. On average, each image had 1.9 labels (with a median
of 1 and a max of 8).

We split the resulting dataset into 35,242 training im-
ages and 15,132 test images, in a way which is consistent
with the Food101 train/ test split. We call this the Food201-
MultiLabel dataset. See Table 1 for a summary of how this
dataset compares to other public food datasets.

Next, we developed a multi-label classifier for this

FR curves for 2 highest, 2 median and 2 smallest classes by mAP
T T T T T T T T T

gk T

LT T T O PP OT P U POY-UU U SN

S,
0.7k /W\LLM

b T

OB Frree i i L O U SRR
edamane
0.4 || 7 macarons
garnish
03| T Perrers
SYrup B
sour eream | e ST

precision

0,21

01k

S i U SRS PR S s
0 01 0z 0LE 0 0.4 0.8 06 0T 0.8 0.9 1
recall

Figure 4. Precision-recall curves for 6 classes, ranging from best
to worst, on the Food201-MultLabel dataset.

dataset, using the same method as in Section 3 (namely tak-
ing the GooglLeNet model, replacing the 101-way softmax
with 201 logistic nodes). This takes about half a day to train
on a single GPU. We then compute the average precision
(area under the precision-recall curve) for each class, and
average this over the classes, to compute the mean average
precision (mAP).

The mAP is 0.8 for classes in Food 101, 0.2 for classes
outside Food 101, and 0.5 overall. Not surprisingly, we do
better on the original Food101 classes, since the new classes
often correspond to side dishes or smaller food items, and
are much less frequent in the training data. The top 3
classes were: edamame (0.987), macarons (0.976), hot and
sour soup (0.956). The bottom 3 classes were: cream
(0.015), garnish (0.014), peppers (0.010). Figure 4 shows
the precision-recall curves for some of these classes.

5. Semantic image segmentation

In addition to predicting the presence of certain foods, it
is useful to localize them in the image. Since most foods
are amorphous, it is better to segment out the region corre-
sponding to each food, rather than putting a bounding box
around them. Such a segmented image will enable further
analysis, such as counting and size estimation (see below),
which is essential for nutrition estimation. We can also al-
low the user to interactively edit the estimated segmentation
mask, in order to improve accuracy of the system (although
we leave this to future work).

To train and evaluate semantic image segmentation sys-
tems, we took a subset of the Food201-MultiLabel dataset
(12k images), and asked raters on a crowd computing plat-
form to manually segment each of the food items that have
been tagged (in an earlier stage) in that each image. We used
1 rater per image, and an internal tool that leverages grab-

cut to make this labeling process reasonably fast. Raters
had the option of skipping foods that were too hard to seg-
ment. Thus some foods are not segmented, resulting in false
negatives. We call this the Food201-segmented dataset.

Note that we are segmenting each class, as in the PAS-
CAL VOC semantic segmentation challenge [13]. Ar-
guably, instance-level segmentation (see e.g., [17]) would
be more useful, since it distinguishes different instances of
the same class, which would enable us to count instances.’.
However, this is quite difficult. For example, consider dis-
tinguishing pancake 1 from pancake 2 in the food image in
Figure 1: this is quite challenging, since the top pancake
almost completely covers the bottom one. Furthemore, seg-
menting the eggs into 2 instances is even harder, since the
boundary is not well defined. We leave instance-level seg-
mentation to future work.

To tackle the segmentation problem, we use the
“DeepLab” system from [6].!° This model uses a CNN to
provide the unary potentials of a CRF, and a fully connected
graph to perform edge-sensitive label smoothing (as in bi-
lateral filtering).

The model is initialized on ImageNet, and then fine-
tuned on Food201-segmented, which takes about 1 day on
a single GPU. For the 3 CRF parameters, which control the
strength of the edge potentials, we use the parameter val-
ues from [6]; these were chosen by grid search, to minimize
validation error on held-out training data.

The label set in the Food201-Segmented dataset is much
larger than in the VOC challenge (201 labels instead of just
20). Consequently, the baseline model has a tendency to
generate a lot of false positives. To improve performance,
we take the probability vector p(yx = 1|z) computed by the
multi-label classifier from Section 4, find the top 5 entries,
and then create a binary mask vector, which is all Os except
for the top 5 labels, plus the background. We then multiply
the per-pixel label distribution from the segmentation CNN
by this sparse vector, before running the CRF smoothing.
This provides a form of global image context and improves
the results considerably (see below).

We show some sample results in Figure 5. Consider the
last row, for example. We see that the context from the mul-
tilabel model helps by eliminating false positives (e.g., cap-
rese salad and caesar salad). We also see that the ground
truth is sometimes incomplete (e.g., the burrito is not actu-

9 It is more natural for the user if the system records in their food diary
that they ate 3 slices of pizza rather than, say, 120 ounces of pizza. It is
also much easier for the user to interactively fix errors related to discrete
counts than continuous volumes. Of course, this assumes we know what
the size of each slice is. We leave further investigation to future work.

10 At the time this paper was submitted, DeepLab was the
best performing method on the PASCAL VOC challenge (see
http://host.robots.ox.ac.uk:8080/leaderboard/
displaylb.php?challengeid=11l&compid=6). At the time
of writing the camera ready version, the best performing method is an
extension of DeepLab that was additionally trained on MS-COCO data.

hamburger coleslaw ncakes
?oabster roll sandwich

Input Truth CRF

butter tiramisu
pancakes

salad
lettuce greek salad
caprese salad

Figure 5. Examples of semantic image segmentation on some im-
ages from the Food201-Segmented test set. First column: original
image. Second column: ground truth. Third column: predictions
using CNN/CREF. Fouth column: predictions using CNN/CRF with
multilabel context. Best viewed in color.

CRF? | Context? | Acc | Recall | IoU
0 0 0.71 | 0.30 0.19
1 0 0.74 | 0.32 0.22
0 1 0.74 | 0.32 0.23
1 1 0.76 | 0.33 0.25

Table 3. Performance on the Food101-Segmented test set.

ally labeled by the human). Finally, we see that the label
space is somewhat arbitrary: the ground truth uses the term
“salad”, whereas the model predicts “lettuce”. Currently we
ignore any semantic similarities between the labels.

The performance of our system with and without the
CRF, and with and without multilabel context, is shown in
Table 3. The performance in terms of IoU is much lower
than on the PASCAL VOC 2012 segmentation challenge.
We believe this is due to several factors: (1) we have 201
foreground labels to predict, whereas VOC just has 20;
(2) our labeled dataset suffers from incompleteness, which
can result in correct predictions being erroneously being
counted as false positives, as well as “polluting” the back-
ground class during training; (3) our task is arguably intrin-
sically harder, since the categories we wish to segment are
more deformable and varied in their appearance than most
of the VOC categories.

6. Volume estimation

Having segmented the foods, the next step is to estimate
their physical size (3d volume).

We first predict the distance of every pixel from the cam-
era, using the same CNN architecture as in [12] applied to
a single RGB image. We trained our model on the NYU
v2 RGBD dataset of indoor scenes, and then fine tuned it
on a new 3d food dataset we collected which we call the
GFood3d dataset (G for Google). This consists of short
RGBD videos of 50 different meals from various Google
cafes collected using the Intel RealSense F200 depth sen-
sor.'" In total, the dataset has about 150k frames. (Note
that each RGB image has a corresponding depth image, but
otherwise this is unlabeled data.)

On a test set of 2,471 images (recorded in a different set
of Google cafes), we get an average relative error of 0.18
meters, which is slightly better to the performance reported
in [12] on the NYU dataset. Figure 6 shows a qualitative
example. We see that the CNN is able to predict the depth
map fairly well, albeit at a low spatial resolution of 75 x
55. (For comparison with the F200 data, we upsample the
predicted depth map).

The next step is to convert the depthmap into a voxel
representation. To do this, we first detect the table surface
using RANSAC. Next, we project each pixel into 3d space,
exploiting the known intrinsic parameters of the F200 sen-
sor. Finally, we tile the table surface with a 2d grid (using a
cell size of 2mm x 2mm), and compute the average height
of all the points in each cell, thus creating a “tower” of that
height. For an example of the result of this process, see
Figure 7.

Given a voxel representation of the food, and a segmen-
tation mask, we can estimate the volume of each food item.
To measure the accuracy of this approach, we purchased the
“MyPlate” kit from Nasco.'” This contains rubber replicas
of 42 food items in standard sizes, and is used for training
nutritionists. We verified the actual size of these items using
the water displacement method (we found that the measured
size was somewhat smaller than the quoted sizes). We then
created 11 “meals” from these food replicas, and recorded
images of them using the F200. Specifically, we put the
meals on a turntable, and automatically took 100 images as
the plate went through a full rotation. The resulting dataset
has 1050 depth images. We call this the NFood-3d dataset
(N for Nasco).

To measure performance of our system, we compute the
absolute error in the volume estimate. We can estimate the
volume using the true depth map (from F200) or the pre-

11 The F200 has a spatial resolution of 1920 x 1080 pixels, and a sensing
range of 0.2-1.2m. The Kinect2 camera has the same resolution, but a
sensing range of 0.8-3.5m. Thus the F200 is a better choice for close up
images.

12 Source: http://www.enasco.com/product /WA29169HR.

Figure 6. (a) An image from the GFood-3d test set. (b) Depth recorded from RealSense RGBD sensor. (c) Depth predicted by CNN.

Figure 7. (a) An image from the NFood-3d dataset. (b) Voxel grid derived from RealSense depthmap. (c) Voxel grid estimated from CNN

predicted depthmap. Size of grid cell is 2mm X 2mm.

700} — RealSense | |
€ 600} . — Predicted

+

— -+

fv

i
L

5 6 7 8 9
meal index

N W
=)
)
b - - -
-

V- - - - -1+
4
- - - -
-

o
- - o
W
|- - -
-

i

M-

| - - - - -

il &I
,

1| - -— - - - -

O -

Figure 8. Absolute error in volume estimation (in ml) across the
11 meals in the NFood-3d dataset. Each meal has 100 images,
taken from different viewing angles. The boxplots plot the distri-
bution of errors across these 100 images.

dicted depth map (from CNN), and using the true segmen-
tation mask (from human) or the predicted segmentation
mask (from CNN). Unfortunately, we have found that our
segmentation system does not work well on the NFood im-
ages, because their color and texture properties are too dis-
similar to real food. However, we were able to compare
the quality of using the true depth map and predicted depth
map. The results are shown in Figure 8. We see that for
most of the meals, our CNN volume predictor is quite accu-
rate.

7. Calorie estimation

The final step is to map from the volume to the calorie
content. This requires knowing the calorific density of each
kind of food. The standard source for this is the USDA Na-
tional Nutrient Database (NNDB). The latest version (May
2015) is Standard Release 27 [35], which lists nutritional
facts about 8618 basic foods. However, we have noted a
discrepancy of up to 35% in the calorie contents between
the USDA NNDB and the numbers quoted by Nasco for
their food replicas.'?

A more serious problem is that the NNDB focuses on
“raw” foods, rather than cooked meals. For example,
NNDB contains information such as the calorie content of a
pound of beef, but this does not help us estimate the calorie
content of a cooked burger. For prepared foods, it is better
to use the USDA Food and Nutrient Database for Dietary
Studies (FNDDS) [16], which is derived from NNDB.!*
However, the calorie content can vary a lot depending on
exactly how the food was prepared (e.g., grilling vs frying).
Consequently, we do not yet have a broad coverage nutri-
tional database for prepared foods, and therefore we have
not yet been able to conduct an end-to-end test of our sys-
tem outside of the restaurant setting.'”

13 According to http://www.enasco.com/product/

WA29109HR, “nutrition data is provided by The Nutrition Company
using their FoodWorks nutrient analysis software”. Recall that these food
replicas are used to train professional nutritionists, so the information
cards that accompany them are designed to be as accurate as possible.

14 For a detailed comparison of NDB-SR and FNDDS, see
http://www.nutrientdataconf.org/PastConf/NDBC36/
W-3_Montville NNDC2012.pdf

15 Companies such as MyFitnessPal have developed much larger nutri-

O ¥ 4 @028

hamburger - 0.81

Figure 9. Screenshot of the mobile app. Note that it is running in
airplane mode (no internet connection).

8. Mobile app

The complete system is sketched in Figure 1. We have
ported the restaurant detector, meal detector, and food de-
tectors (the multi-label classifiers) to the Android mobile
phone system. The app can classify any image in under
1 second. The memory footprint for the model is less
than 40MB (using unquantized floats to represent the CNN
weights). However, we have not yet ported the segmenta-
tion or depth estimation CNNSs.

To use the app, the user takes a photo and then our sys-
tem processes it. First the system determines if the image
contains a meal, and if you are at a known restaurant. If
S0, it applies the multilabel classifiers. We sort the possible
labels by their predicted probability, taking all those above
a threshold of 0.5, and then truncating to the top 5, if neces-
sary. We then show these labels to the user (see Figure 9 for
a screenshot). The user can dismiss any labels that are incor-
rect. He/ she can also enter new labels, either by selecting
from a pull-down menu (sorted in order of probability), or
by entering free text. The user’s image and labels are then
optionally stored in the cloud for subsequent offline model
retraining (although we have not yet implemented this).

9. Related work

There is a large number of related prior publications.
Here we mention a few of them.

In terms of public datasets, we have already mentioned
Food101 [3], which has 101 classes and 101k images. In
addition, there are various smaller datasets, such as: PFID
[71, which has 61 classes (of fast food) and 1098 images;
UNICT-FD889 [14], which has 889 classes and 3853 im-
ages; and UECFOOD-100 [24], which has 100 classes (of
Japanese food), and 9060 images.

tional databases using crowd sourcing [22], but this data is proprietary, and
its quality is not guaranteed (since most casual users will not know the true
nutritional content of their food).

In terms of classifiers, [3, 18] use SVMs for generic
foods. [2] and [1] develop restaurant-specific multi-label
classifiers. Some recent papers on food segmentation in-
clude [28, 33, 38, 37].

There are many papers that leverage structure from mo-
tion to develop a 3d model of the food, including [28, 21,

, 36, 32]. However, all these methods require multiple
images and calibration markers. In terms of single images,
[4] use parametric shape models for a small set of food types
(e.g., sphere for an apple), and [19] use a nearest neigh-
bor regression method to map the 2d image area to physical
mass of each food item.

There are very few papers that predict calories from im-
ages. [33] apply semantic image segmentation, and then
train a support vector regression to map from the number of
pixels of each class to the overall number of calories in the
meal. [4, 19] calculate calories by multiplying the estimated
volume of each food by the calorie density. [26] use crowd-
sourcing to estimate calories. [1] relies on the restaurant’s
menu having the calorie information.

10. Discussion

Besides its obvious practical use, the Im2Calories prob-
lem is also very interesting from the point of view of com-
puter vision research. In particular, it requires solving var-
ious problems, such as: fine-grained recognition (to dis-
tinguish subtly different forms of food); hierarchical label
spaces (to handle related labels); open-world recognition
(to handle an unbounded number of class names); visual at-
tribute recognition (to distinguish fried vs baked, or with or
without mayo); instance segmentation; instance counting;
amodal completion of occluded shapes [20]; depth estima-
tion from a single image; information fusion from multiple
images in real time, on-device; etc. We have tackled some
of these problems, but it is clear that there is much more
work to do. Nevertheless, we believe that even a partial so-
lution to these problems could be of great value to people.

References

[1] O. Beijbom, N. Joshi, D. Morris, S. Saponas, and S. Khullar.
Menu-match: restaurant-specific food logging from images.
In WACV, 2015.

[2] V. Bettadapura, E. Thomaz, A. Parnami, G. D. Abowd, and
I. Essa. Leveraging context to support automated food recog-
nition in restaurants. In WACV, pages 580-587, 2015.

[3] L. Bossard, M. Guillaumin, and L. Van Gool. Food-101:
Mining discriminative components with random forests. In
ECCV, 2014.

[4] J. Chae, I. Woo, S. Kim, R. Maciejewski, F. Zhu, E. J. Delp,
C. J. Boushey, and D. S. Ebert. Volume estimation using
food specific shape templates in mobile image-based dietary
assessment. In Proc. SPIE, 2011.

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

C. Champagne, G. Bray, A. Kurtz, J. Montiero, E. Tucker,
J. Voaufova, and J. Delany. Energy intake and energy ex-
penditure: a controlled study comparing dietitians and non-
dietitians. J. Am. Diet. Assoc., 2002.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected CRFs. In ICLR, 2015.
M. Chen, K. Dhingra, W. Wu, L. Yang, R. Sukthankar, and
J. Yang. PFID: Pittsburgh fast-food image dataset. In ICIP,
pages 289-292, 2009.

F. Cordeiro, E. Bales, E. Cherry, and J. Fogarty. Rethink-
ing the mobile food journal: Exploring opportunities for
lightweight Photo-Based capture. In CHI, 2015.

F. Cordeiro, D. Epstein, E. Thomaz, E. Bales, A. K. Jagan-
nathan, G. D. Abowd, and J. Fogarty. Barriers and negative
nudges: Exploring challenges in food journaling. In CHI,
2015.

J. Dehais, S. Shevchik, P. Diem, and S. G. Mougiakakou.
Food volume computation for self dietary assessment appli-
cations. In /3th IEEE Conf. on Bioinfo. and Bioeng., pages
1-4, Nov. 2013.

J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei. Hedging
your bets: Optimizing accuracy-specificity trade-offs in large
scale visual recognition. In CVPR, pages 3450-3457, June
2012.

D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common Multi-Scale convolu-
tional architecture. Arxiv, 18 Nov. 2014.

M. Everingham, S. M. Ali Eslami, L. Van Gool, C. K. L.
Williams, J. Winn, and A. Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. IJCV, 111(1):98-
136, 25 June 2014.

G. M. Farinella, D. Allegra, and F. Stanco. A benchmark
dataset to study the representation of food images. In ECCV
Workshop Assistive CV, 2014.

FDA. www.fda.gov/Food/ IngredientsPackaginglabel-
ing/LabelingNutrition/ucm248732.htm.

USDA FNDDS. www.ars.usda.gov/ba/bhnrc/fsrg.

B. Hariharan, P. Arbel, R. Girshick, and J. Malik. Simulta-
neous detection and segmentation. In ECCV, 2014.

H. He, F. Kong, and J. Tan. DietCam: Multiview Food
Recognition Using a MultiKernel SVM. IEEE J. of Biomed-
ical and Health Informatics, 2015.

Y. He, C. Xu, N. Khanna, C. J. Boushey, and E. J. Delp. Food
image analysis: Segmentation, identification and weight es-
timation. In ICME, pages 1-6, July 2013.

A. Kar, S. Tulsiani, J. Carreira, and J. Malik. Amodal com-
pletion and size constancy in natural scenes. In Intl. Conf. on
Computer Vision, 2015.

F. Kong and J. Tan. DietCam: Automatic dietary assess-
ment with mobile camera phones. Pervasive Mob. Comput.,
8(1):147-163, Feb. 2012.

R. Macmanus. How myfitnesspal became the king of
diet trackers, 2015. readwrite.com/2015/02/23/trackers-
myfitnesspal-excerpt.

C. K. Martin, H. Han, S. M. Coulon, H. R. Allen, C. M.
Champagne, and S. D. Anton. A novel method to remotely

(24]

(25]
(26]

(27]
(28]

(29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

measure food intake of free-living individuals in real time:
the remote food photography method. British J. of Nutrition,
101(03):446-456, 2009.

Y. Matsuda, H. Hoashi, and K. Yanai. Recognition of
Multiple-Food images by detecting candidate regions. In
ICME, pages 25-30, July 2012.

Mealsnap app. tracker.dailyburn.com/apps.

J. Noronha, E. Hysen, H. Zhang, and K. Z. Gajos. PlateMate:
Crowdsourcing nutrition analysis from food photographs. In
Proc. Symp. User interface software and tech., 2011.
Google places API. https://developers.google.com/places/.
M. Puri, Z. Zhu, Q. Yu, A. Divakaran, and H. Sawhney.
Recognition and volume estimation of food intake using a
mobile device. In WACYV, pages 1-8, Dec. 2009.

Rise app. https://www.rise.us/.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. arXiv:1409.0575, 2014.

D. Schoeller, L. Bandini, and W. Dietz. Inaccuracies in self-
reported intake identified by comparison with the doubly la-
belled water method. Can. J. Physiol. Pharm., 1990.

T. Stutz, R. Dinic, M. Domhardt, and S. Ginzinger. Can mo-
bile augmented reality systems assist in portion estimation?
a user study. In Intl. Symp. Mixed and Aug. Reality, pages
51-57,2014.

K. Sudo, K. Murasaki, J. Shimamura, and Y. Taniguchi. Esti-
mating nutritional value from food images based on semantic
segmentation. In CEA workshop, pages 571-576, 13 Sept.
2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015.

USDA National Nutrient Database for Standard Reference,
Release 27 (revised). http://www.ars.usda.gov/ba/bhnrc/ndl.
C. Xu, N. Khanna, C. B. Y. He, and A. Parra. Image-Based
food volume estimation. In CAE workshop, 2013.

W. Zhang, Q. Yu, B. Siddiquie, A. Divakaran, and H. Sawh-
ney. ’Snap-n-eat’: Food recognition and nutrition estima-
tion on a smartphone. J. Diabetes Science and Technology,
9(3):525-533, 2015.

FE. Zhu, M. Bosch, N. Khanna, C. J. Boushey, and E. J. Delp.
Multiple hypotheses image segmentation and classification
with application to dietary assessment. /EEE J. of Biomedi-
cal and Health Informatics, 19(1):377-388, Jan. 2015.

F. Zhu, M. Bosch, I. Woo, S. Kim, C. J. Boushey, D. S. Ebert,
and E. J. Delp. The use of mobile devices in aiding dietary
assessment and evaluation. /IEEE J. Sel. Top. Signal Process.,
4(4):756-766, Aug. 2010.

1]

Bibliography

Dan Ciresan, Ueli Meier, Jonathan Masci, and Jiirgen Schmidhuber. A com-
mittee of neural networks for traffic sign classification. In Neural Networks
(IJCNN), The 2011 International Joint Conference on, pages 1918-1921. IEEE,
2011.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface:
Closing the gap to human-level performance in face verification. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition, pages 1701-1708.
IEEE, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842,
2014.

James J. Gibson. The theory of affordances. Perceiving, Acting, and Knowing:
Toward and Ecological Psychology, pages 67-82, 1977.

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz
Mosenlechner, Dejan Pangercic, Thomas Riihr, and Moritz Tenorth. Robotic
roommates making pancakes. In International Conference on Humanoid
Robots, pages 529-536. IEEE, 2011.

Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic, Kurt
Konolige, Nassir Navab, and Vincent Lepetit. Multimodal templates for real-
time detection of texture-less objects in heavily cluttered scenes. In Proc. In-
ternational Conference on Computer Vision, pages 858-865. IEEE, 2011.

Louise Stark and Kevin Bowyer. Function-based generic recognition for multiple
object categories. CVGIP: Image Understanding, 59(1):1-21, 1994.

Ashutosh Saxena, Justin Driemeyer, and Andrew Y Ng. Robotic grasping of
novel objects using vision. The International Journal of Robotics Research,
27(2):157-173, 2008.

67

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Michael Stark, Philipp Lies, Michael Zillich, Jeremy L. Wyatt, and Bernt
Schiele. Functional object class detection based on learned affordance cues.
In International Conference on Computer Vision Systems (ICVS), May 2008.

Jeannette Bohg and Danica Kragic. Grasping familiar objects using shape
context. In Int. Conf. on Advanced Robotics, 2009.

Charles C Kemp and Aaron Edsinger. Robot manipulation of human tools:
Autonomous detection and control of task relevant features. In Proc. of the
Fifth Intl. Conference on Development and Learning, 2006.

Hedvig Kjellstrom, Javier Romero, and Danica Kragi¢. Visual object-action
recognition: Inferring object affordances from human demonstration. Computer
Vision and Image Understanding, 115(1):81-90, 2011.

H. Grabner, J. Gall, and L. Van Gool. What makes a chair a chair? In
Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages
1529-1536, 2011.

V. Ferrari and A. Zisserman. Learning visual attributes. In Advances in Neural
Information Processing Systems, 2007.

Devi Parikh and Kristen Grauman. Relative attributes. Proc. International
Conference on Computer Vision, 0:503-510, 2011.

Christoph H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect
unseen object classes by between-class attribute transfer. In Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 951-958, 2009.

Xiaodong Yu and Yiannis Aloimonos. Attribute-based transfer learning for
object categorization with zero/one training example. In Proc. European Con-
ference on Computer Vision, 2010.

Yuyin Sun, Liefeng Bo, and Dieter Fox. Attribute based object identification.
In International Conference on Robotics and Automation, 2013.

T. Hermans, F. Li, J. M. Rehg, and A. F. Bobick. Learning contact locations
for pushing and orienting unknown objects. In International Conference on
Humanoid Robots, 2013.

Aitor Aldoma, Federico Tombari, and Markus Vincze. Supervised learning of
hidden and non-hidden 0O-order affordances and detection in real scenes. In
Robotics and Automation (ICRA), 2012 IEEE International Conference on,
pages 1732-1739. IEEE, 2012.

Hema Swetha Koppula, Rudhir Gupta, and Ashutosh Saxena. Learning human
activities and object affordances from rgb-d videos. International Journal of
Robotics Research, 32(8):951-970, 2013.

68

[22]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Unsupervised feature learning for
rgb-d based object recognition. In International Symposium on Ezperimental
Robotics, 2012.

Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, and An-
drew Y. Ng. Convolutional-recursive deep learning for 3d object classification.
In Advances in Neural Information Processing Systems, 2012.

Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Multipath sparse coding using
hierarchical matching pursuit. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, 2013.

N. Silberman and R. Fergus. Indoor scene segmentation using a structured light
sensor. In Proceedings of the International Conference on Computer Vision -
Workshop on 3D Representation and Recognition, 2011.

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor
segmentation and support inference from rgbd images. In Proc. European Con-
ference on Computer Vision, 2012.

Andrej Karpathy, Stephen Miller, and Li Fei-Fei. Object discovery in 3d scenes
via shape analysis. In International Conference on Robotics and Automation,
2013.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and Sabine Susstrunk. SLIC
superpixels compared to state-of-the-art superpixel methods. IEFE Transac-
tions on Pattern Analysis and Machine Intelligence, 34(11):2274-2282, 2012.

John Lafferty, Andrew McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.

Brian Fulkerson, Andrea Vedaldi, and Stefano Soatto. Class segmentation and
object localization with superpixel neighborhoods. In ICCV, 2009.

Y. Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization
via graph cuts. IEEFE Transactions on Pattern Analysis and Machine Intelli-
gence, 2001.

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical
multi-view rgb-d object dataset. In International Conference on Robotics and
Automation, 2011.

Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting
robotic grasps. International Journal of Robotics Research (IJRR), 2014.

Clément Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learn-
ing hierarchical features for scene labeling. IEEFE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1915-1929, 2013.

69

[35]

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 1, pages 886-893. IEEE, 2005.

M.P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall,
1976.

Jan J Koenderink and Andrea J van Doorn. Surface shape and curvature scales.
Image and vision computing, 10(8):557-564, 1992.

Tin Kam Ho. Random decision forests. In Document Analysis and Recognition,
1995., Proceedings of the Third International Conference on, volume 1, pages
278-282. IEEE, 1995.

Antonio Criminisi and Jamie Shotton. Decision forests for computer vision and
medical image analysis. Springer, 2013.

Peter Kontschieder, Samuel Rota Bulo, Horst Bischof, and Marcello Pelillo.
Structured class-labels in random forests for semantic image labelling. In Com-
puter Vision (ICCV), 2011 IEEE International Conference on, pages 2190—
2197. IEEE, 2011.

Piotr Dollar and C Lawrence Zitnick. Structured forests for fast edge detection.
In Computer Vision (ICCV), 2013 IEEE International Conference on, pages
1841-1848. IEEE, 2013.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXww preprint arXiv:1408.5093, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 10971105, 2012.

R. Margolin, L. Zelnik-Manor, and A Tal. How to evaluate foreground maps?
In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2014.

Maurice George Kendall. Rank correlation methods. Griffin, 1948.

Phil Brodatz. Textures: a photographic album for artists and designers. Dover
Pubns, 1966.

Matti Pietikainen, Abdenour Hadid, Guoying Zhao, and Timo Ahonen. Com-
puter vision using local binary patterns, volume 40. Springer Science & Business
Media, 2011.

Majid Mirmehdi, Xianghua Xie, and Jasjit Suri. Handbook of texture analysis.
World Scientific, 2008.

70

[49]

[52]

[53]

[54]

[58]

[59]

[60]

Thomas Leung and Jitendra Malik. Representing and recognizing the visual
appearance of materials using three-dimensional textons. International journal
of computer vision, 43(1):29-44, 2001.

Manik Varma and Andrew Zisserman. A statistical approach to texture clas-

sification from single images. International Journal of Computer Vision, 62(1-
2):61-81, 2005.

Manik Varma and Andrew Zisserman. A statistical approach to material clas-

sification using image patch exemplars. IEFE transactions on pattern analysis
and machine intelligence, 31(11):2032-2047, 2009.

Mario Fritz, Gary Bradski, Sergey Karayev, Trevor Darrell, and Michael J
Black. An additive latent feature model for transparent object recognition. In
Advances in Neural Information Processing Systems, pages 558-566, 2009.

David A Forsyth and Margaret M Fleck. Automatic detection of human nudes.
International Journal of Computer Vision, 32(1):63-77, 1999.

Kristin J Dana, Bram Van Ginneken, Shree K Nayar, and Jan J Koenderink.
Reflectance and texture of real-world surfaces. ACM Transactions on Graphics

(TOG), 18(1):1-34, 1999.

Barbara Caputo, Eric Hayman, Mario Fritz, and Jan-Olof Eklundh. Classifying
materials in the real world. Image and Vision Computing, 28(1):150-163, 2010.

Lavanya Sharan, Ruth Rosenholtz, and Edward Adelson. Material perception:
What can you see in a brief glance? Journal of Vision, 9(8):784-784, 2009.

Ce Liu, Lavanya Sharan, Edward H Adelson, and Ruth Rosenholtz. Exploring
features in a bayesian framework for material recognition. In Proc. IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 239-246. IEEE,
2010.

Diane Hu, Liefeng Bo, and Xiaofeng Ren. Toward robust material recognition
for everyday objects. Proceedings of the British Machine Vision Conference,
pages 48.1-48.11, 2011.

Xianbiao Qi, Rong Xiao, Chun-Guang Li, Yu Qiao, Jun Guo, and Xiaoou
Tang. Pairwise rotation invariant co-occurrence local binary pattern. IEEFE

transactions on pattern analysis and machine intelligence, 36(11):2199-2213,
2014.

Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition
in the wild with the materials in context database. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, pages 3479-3487, 2015.

71

[61] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Opensurfaces: A
richly annotated catalog of surface appearance. ACM Transactions on Graphics
(TOG), 32(4):111, 2013.

[62] Shuai Zheng, Ming-Ming Cheng, Jonathan Warrell, Paul Sturgess, Vibhav Vi-
neet, Carsten Rother, and Philip HS Torr. Dense semantic image segmentation
with objects and attributes. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3214-3221, 2014.

72

	List of Figures
	Introduction
	Predicting the Affordance of Tool Parts in RGB-D Images
	Introduction
	Related Work
	Part Candidates via RGB-D Superpixel Segmentation
	Learning Geometric Feature Representations
	Affordance Prediction Refinement
	RGB-D Part Affordance Dataset
	Experiments
	Implementation Details
	Comparison of Individual Features
	Results for Known and Novel Categories

	Conclusion

	Dense Part Affordance Prediction in Real-time
	Introduction
	Related Work
	Robust Geometric Features
	Depth Features
	Surface normals (SNorm)
	Principle curvatures (PCurv)
	Shape-index and curvedness (SI+CV)

	Structured Random Forest
	Convolutional Neural Networks
	Experiments
	Grasping Detection Baseline
	Dataset
	Evaluation Metrics
	Comparison on RGB-D Tool Dataset
	Performance in clutter and occlusions
	Ablation Experiments

	Conclusion

	Using Material Cues to Reason about Affordance
	Introduction
	Related Work
	Integrating Material Cues to Learn Affordance
	Experiments
	Extended Affordance and Material Dataset
	Results

	Conclusion

	Conclusion
	Im2Calories: towards an automated mobile vision food diary
	Bibliography

