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Mixture modeling is an increasingly popular analysis in applied research settings.
Confirmatory factor mixture modeling can be used to test for the presence of multiple
populations that differ on one or more parameters of afactor model in asample lacking a
priori information about popul ation membership. There have, however, been
considerable difficulties regarding convergence and parameter recovery in confirmatory
factor mixture models. The present study uses a Monte Carlo simulation design to
expand upon a previous study by Lubke, Muthén, & Larsen (2002) which investigated
the effects on convergence and bias of introducing intercept heterogeneity across latent
classes, abreak from the standard approach of intercept invariance in confirmatory factor

modeling when the mean structure is modeled.



Using convergence rates and percent bias as outcome measures, eight design
characteristics of confirmatory factor mixture models were manipulated to investigate
their effects on model performance: N; mixing proportion; number of indicators; factor
saturation; number of heterogeneous intercepts, location of intercept heterogeneity,
magnitude of intercept heterogeneity, and the difference between the latent means (Ax) of
the two modeled latent classes. A small portion of the present study examined another
break from standard practice by having models with noninvariant factor loadings.

Higher rates of convergence and lower bias in the parameter estimates were found
for models with intercept and/or factor loading noninvariance than for models that were
completely invariant. All manipulated model conditions affected convergence and bias,
often in the form of interaction effects, with the most influential facets after the presence
of heterogeneity being N and Ak, both having adirect relation with convergence rates and
an inverse relation with bias magnitude. The findings of the present study can be used to
some extent to inform design decisions by applied researchers, but breadth of conditions
was prioritized over depth, so the results are better suited to guiding future
methodological research into confirmatory factor mixture models. Such research might
consider the effects of larger Nsin models with complete invariance of intercepts and
factor loadings, smaller values of Ak in the presence of noninvariance, and additional

levels of loading heterogeneity within latent classes.
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Chapter 1

Introduction

Overview of mixture models

Mixture modeling is becoming an increasingly useful tool in applied research
settings. At the most basic end of the continuum, such methods might be used to
determine whether a single univariate data set arose from one population or from a
mixture of multiple populations differing in their univariate distributions (e.g., mean
and/or variance). More advanced applications of mixture modeling are used to assess
potential mixtures of populations that have different multivariate distributions (e.g., mean
vectors and/or covariance matrices). Mixture analyses can even be conducted for
samples in which mixtures are hypothesized to exist as the result of sampling from
multiple populations differing in latent variable distributions. In all cases, the question of
mixtures may be regarded as a question about parameter invariance throughout the data.

Before proceeding further into details about mixture analyses, a definition of the
term mixture analysis should be developed. In a manner of speaking, any samplethat is
made up of observations from two or more popul ations can be thought of as a mixed
sample. In ANOVA, for example, the available information about population
membership is used to estimate a mean for each population represented in the sample for
the purpose of statistically testing the invariance of population means. Advanced
multisample latent variable analyses are commonly used in construct validation studies to

test the invariance of factor structure across known populations of interest and in test



validation settings in which test items themselves are assessed for differential item
functioning across multiple populations.

When population membership is not known (or not made available) a priori, or
when it is not even known whether a mixture of populations existsin a sample, similar
statistical questions can be addressed, but the analyses are more complicated. Itisin
such situations that a mixture analysisis called upon. A mixture analysisistherefore an
analysis that estimates parameters for a given number of populations hypothesized to
have contributed to a single sample, without the availability of a classification variable or
other such a priori information about population membership with which to sort the data.

Latent profile analysis (see Gibson, 1959), for example, utilizes patternsin
continuous variables to infer the existence of multiple populationsin a suspected data
mixture and is thus avariation of traditional cluster analysis. Latent classanaysis (see
Dayton, 1999; McCutcheon, 1987) seeks to identify whether response patterns within
categorical data are consistent with the presence of multiple populations (latent classes),
each giving rise to adistinct response set in the data. Data-model fit indices (e.g., 73,
AIC, BIC) alow for model comparison/selection and parameter invariance assessment,
and the membership of individual casesin each latent class may be assessed
probabilistically.

Modelsin item response theory (IRT) posit that individual differences along
continuous latent variables are responsible for patternsin categorical item responses. The
latent variables are typically used to represent cognitive factors (e.g., ability, attitude,
etc.), and the measured variables are the observabl e manifestations of those latent

variables. An example of mixture modeling applied in an IRT framework is the work by



Midlevy and Verhelst (1990), who expounded a general method for the probability of
examinees response vectors x; that accommodated the possibility of J latent solution
strategy classes (each occurring with probability ¢;) with differing Rasch model item

parameters a.:
J
Prx, le,g.m) = Y o, [Pr(x, 10,,¢, =La)g;(®, |n,)dd, (D)
j=1

where ¢ indicates solution strategy, ¢ contains strategies’ probabilities of usage, and n
contains parameters specific to subjects using each strategy. By using examinee
responses to create one class of apparent guessers and applying a Rasch model to a group
of people who seemed to have made alegitimate attempt at responding correctly to the
items, the authors employed a mixture model and improved the fit of the model, relative
to applying a single-population Rasch model to the data.

Confirmatory factor mixture modds

With continuous measured variables, confirmatory factor analysis (CFA) methods
allow for the assessment of models positing underlying continuous latent factors. For the
single-population (i.e., unmixed) CFA model, the jth person’ s vector of values, x;, on the

p manifest variables of the mfactors, is the function

Xi= T+AE +9d, 2
wheret isap x 1 vector of variable intercept terms, values on the theoretical |atent
variable hypothesized to cause the manifest variables are contained in the m x 1 vector

Ei , the unstandardized slope of the theoretical regression of x on § (i.e., the factor

loadings) are contained in the p x m matrix A, and 3i isap x 1 vector of residualsfor the

i™individual. For this general CFA model, the first moment implied by the model is



i =E[x] = T+Ak , ©)
wherexk isthe mx 1 vector of factor means (k isascalar if thereis only one factor). The
second moment implied by the model is

E[(x, —B)(X, ~R)]=E=ADA'+ 0, @
where® isthe mx mfactor variance-covariance matrix and® is the p X p variance-
covariance matrix of residual 5(5).

Assuming multivariate normality (specifically, p-variate normality), parametersin
T, K, A, @, and O in the single-population model are estimated in the full sample by

maximizing the likelihood function
N 12 1w -1/ 2 ~ 1y -1 ~
[T1Co) 221V exp|(-5)(x; —p) E7(x; — 1), 5)
i=1

which isthe product across observations of each observation’s manifest variable values
(x;) entered into the p-variate normal distribution with model-implied mean p (Equation
3) and model-implied varianceX (Equation 4). Thismaximization is equivaently
accomplished using the maximum likelihood fit function F, where
F=[n|Z]+w(SE™*) ~In|S|- p]+(m-f)E*(Mm-f), 6)
expressed using summary statistics in the vector m of observed means and matrix S of
observed variances and covariances (Bollen, 1989). For models across J populations for

which population membership isknown a priori, parametersin al J subsamples

respective matrices are estimated by maximizing the likelihood function,

[TT1 @02 1%, 1 expl-5)0x - i,y ERx i) @

j=1 i=L



or equivalently via the multisample maximum likelihood fit function, G (Equation 8)
G= il[”%j{[mp“:j |+ t(S,Z)~In|S; |- p]+[(mj ~R)Zi(m, - ﬁj)]}.
=

If one believes a mixture exists at the latent variable level, that is, that patternsin
the measured variables reflect a mixture of multiple subpopulations differing in latent
mean, latent variance, and/or |atent-to-measured variable relations, then techniques
combining mixture modeling with continuous latent variable methods become necessary.
Such asituation arose, for example, amost four decades ago when French (1965) learned
from participants that different solution strategies might have been used in achievement
test responses he had factor analyzed as coming from a single population. Using follow-
up questions about the solution strategies participants had employed, he divided
participants into groups and found support for the hypothesis that different factor
structures were operating for the different solution strategies. In this manner, French first
established potential subpopulations and then tested for model and parameter invariance.

When multiple populations are believed to underlie the data but cannot be
distinguished in the data a priori, then a generalized confirmatory factor mixture model
(GCFMM) can be applied. Because we do not know which cases came from which

populations (or even if there are multiple populations), we must evaluate each casein the

context of each of the J hypothesized populations. For each of these hypothesized
populations, there is a set of model parameters (i.e., %j , fcj : f\j , <i)j , (:)j)to be
estimated, along with J — 1 mixing proportions. Supposing there are two populations

believed to underlie the data, all of these quantities are estimated simultaneously by

maximizing the product across al observations of



Li=¢Liz1+(1-9)Li2, 9)
where the likelihoods in Equation 9 are
Lia = f(x |%,, Ky, A,, ®,, ©,) (10)
and
Liz =f(Xi |T,, Ry, Ay, @, 0,). (12)

The probability of all observations, assuming independence, becomes

lﬁ[{i%f(xiI%j,ﬁj,ﬁj,éj,éj)] (12)

i=1 | j=1
or

N

H{_ Q; (Zn)_plz

i=1

&) e [@eS)rxi(—ﬁj)(i',-)l(xi—ﬁ,-)]}, (13 )

w h e r e

io=% +A K, (1 4)
a n d
L =A®A +0, (15 )
N ot e t h at i n addi t i o n t o
m o d e | d e pi ct e d i n Bh g 8 &t uw o 0
i s a n e c e s s ar y f e at ur e o f a
m i X t ur e o f p o p ul at i o n s cC a n r
m a n i f e s t v ar i a b |l e sm omr etlh e gm
c a s e w h e n p a p m dtaht e& 0ens tmi emma bt @&
i nv ol v e s a n i n d et er min acy t
f i r st p o p ul at i oen 'ssi tfuaactti oorn¢(, s



factor loadings are by convention constrained to be invariant across populationsin a
mixture model when the mean structure is analyzed.

Various restrictions on the CFA mixture model yield different types of mixture
tests. Restricting the corresponding factor means, factor variances, and factor
covariances to be equal across populations tests a mixture of indicator covariance patterns
among the populations. In this manner, the mixture analysisis essentially a
multipopulation CFA but with unknown populations. To test for amixture at the latent
variable level, the factor loadings are fixed to be equal across populations while the factor
means, factor variances, or both are freely estimated (along with the manifest variable
error variances). Note that with only the factor means freely estimated across
popul ations, the mixture analysisis basicaly a structured means model but with unknown
popul ation membership for the observations (see e.g., Hancock, 2004).

General structural equation mixture models

Equation 13 is a CFA-specific version of the following general formulafor a J-

popul ation latent variable mixture model:

lﬁ[{iwh)““ &))" e o0 - iy ) 0x, - ﬁn}}. (16)

El e
For confirmatory factor analysis, ) ; isreplaced per Equation 15, and ﬁj is replaced per
Equation 14 in order to give Equation 13. For measured-variable path analysis (MVPA)
and latent-variable path analysis (LVPA), the substitutions for the model-implied mean

vector are different, and for the model-implied variance-covariance matrix, the

substitutions are different and quite a bit more complicated.



M easured-variable path analysis mixture models. For MV PA mixture models, the

means of the t exogenous variables (i.e., variables modeled to cause other variablesin the
model without themselves modeled to be caused by any variables) are modeled to be the
intercepts. The w endogenous variables (i.e., variables that are modeled to be caused by
one or more variables) are modeled as a function of the exogenous variables and

potentially as a function of the other endogenous variables,

Yi=1,+T x +By, +&;, (17)
where B ;isaw x w matrix of the effects of the endogenous variables on each other, r j
isat x wmatrix of the effects of the exogenous variables on the endogenous variables in
the model, and ; isthe model-implied w x 1 vector of error variances for the

endogenous variables. The model-implied mean vector for the endogenous variablesis

therefore

Elyl = i, =(1-B )%+ (1 =B,) T i, (18)
where | istheidentity matrix. The datavector in the general mixture equation, although
labeled here with “x”, would contain values for the y-variables and for the x-variables.
With the y-values appearing first in the column vector and the x-values below them, the
model-implied mean vector would first have the values computed per Equation 16
followed by the sample means of the x-variables.

For MV PA mixture models, the p x p model-implied variance-covariance

matrix,)f,j , Where p =t + w, and where

;= El(x - B - /)T, (19)



can be divided into four submatrices, each of which can be computed separately from the
other three. The upper left (UL) submatrix isthe w x w model-implied variance-

covariance matrix for just the endogenous variables, and is computed as
UL=(1-B)™(,® I'+¥)(I-B)"+0, (20)
where ‘i’j , isthe w x w variance-covariance matrix of the errors, ; (Joreskog & Sorbom,

1988). The upper right (UR) submatrix isaw x t matrix of covariances between the

endogenous variables and the exogenous variables, the equation for which is
UR=(1-B,)"'T,®,. (21)

The lower left (LL) submatrix is simply the transpose of the upper right submatrix or
LL=@ I, '(1-B)™. (22)

The matrix (i)l. iIsthet x t variance-covariance matrix of the exogenous variables, making

it equal to its transpose and aso making it the only quantity in the lower right (LR)

submatrix of the overall variance-covariance matrix

A

LR= . (23)

J
Each of these submatricesis arranged as described in one p X p matrix to form the model-
implied variance-covariance matrix to be used in the general equation for MVPA mixture
models. Recall that as the parameters in the model-implied mean vectors and the model -
implied variance-covariance matrix are being estimated for each of the J populations, the
mixing proportions are also being estimated in the iterative process of maximizing the
likelihood function of the data

Latent-variable path analysis mixture models. In LVPA mixture analysis, the

exogenous factors have multiple manifest indicators while being modeled to cause one or



more endogenous factors, which themselves have multiple manifest indicators.
Exogenous factors may covary amongst themselves, endogenous factors may cause other
endogenous factors, and the disturbances of the endogenous factors may covary. If a

mixture model isto be estimated, then Equation 16 can again be called upon, with the
appropriate substitutions for | and)A:j in order to estimate the parameters for each of the

J populations and to estimate the mixing proportions.

The model-implied data vector for the manifest indicators of the exogenous
factorsis computed as per Equation 2, while the model-implied means of the exogenous
factors' indicators are computed as per Equation 3. The model-implied data vector for

the manifest indicators of the endogenous factors is computed as
Yi :%yj +ijﬁj +§ij , (24)

where 7, isthew x 1 model-implied vector of values on the endogenous latent variables,

computed by

ﬁij :&j+fj§i+éjﬁij+§ij , (25)

where o, isthew x 1 vector of intercepts for the endogenous factors and &,— isthewx 1

model-implied vector of disturbances (errors) for the endogenous latent variables. The

model-implied mean vector for the y-variablesis

Ry =T, +A R, (26)
where ﬁm. is the model-implied mean vector of the endogenous latent variables,
computed as

Ky =(1-B))%a; +(1-B )Tk, . (27)

10



The model-implied variance-covariance matrix is similar in form to that of
MV PA mixture modeling in that the p x p matrix can be considered in four distinct
submatrices: variance-covariance matrix for the endogenous variables (UL); the
covariances between the endogenous variables and the exogenous variables (UR); the
transpose of that matrix (LL); and the variance-covariance matrix of the exogenous

variables (LR). The UL submatrix,

UL=A,(1-B)™T,® T, +¥)(I-B)"A,+0,, (29)
incorporates multiple non-unity factor loadings for the endogenous factor by
premultiplying the main term of the equation by f\yj and postmultiplying by its transpose
(Joreskog & Sorbom, 1988). For the upper right submatrix, endogenous and exogenous
variables are crossed, so instead of using A , and its transpose, we useA ;i With the

transpose of the loadings of the exogenous factor indicators,

A

UR=A,(I-B)"'T,®A,", (29)

Yl

the transpose of which gives the lower left submatrix,

A

_ o - ETR
LL=A,® T, '(1-B)"A," (30)

The lower right submatrix, the model-implied variance-covariance matrix for the

exogenous variables, isidentical toX, in CFA,

LR=A,® A, +0,. (31)

Implementation issues in continuous latent variable mixture modeling

To date, the critical issues of model identification and parameter estimation have
not been explored extensively for continuous latent variable mixture analyses. Primary

attention has been given only to ahighly restricted form of GCFMM, that of the

11



generalized growth mixture model (GGMM; Muthén, 2001). Traditional latent growth
curve models evaluate longitudinal change in ameasured variable in terms of specific
growth components. Linear models, for example, typically express the amount of the
variable at each time point as afunction of alatent initial amount and alatent growth rate,
where observations are likely to differ in their amounts of these latent factors. With
regard to the less restricted GCFMM, however, very little methodological or applied
work has been done to date. Such models appear to present unusually difficult problems
regarding model identification, solution convergence, and parameter accuracy.

In arecent unpublished investigation, Lubke, Muthén, and Larsen (2002)
conducted a Monte Carlo study in an attempt to investigate these problems and to
develop potential remedies. These authors simulated data for eight measured variables
all loading on asingle factor, where the data were a mixture of three latent classes (¢ =
4, ¢ = .3, and @3 = .3). Thefactor |oadings were constrained to be equal across classes
as were the error variances. The researchers varied the number of classesin the latent
mixture model fit to the data, the number of intercepts that were free to vary across
classes (zero, two, four, or eight out of eight), and the percentage of observations out of N
= 5000 for which the true group membership was included in the analysis. Their results
demonstrated that relative to amodel of complete invariance, the presence of at least two
noninvariant item intercepts yields solutions that have much better parameter recovery
and greater efficacy at placing observations into their correct classes. They also found
that using prior knowledge of group membership improved the accuracy of parameter

estimates.

12



Manipulation of model conditions yielded useful results in the above study, but
severa potentially influential design characteristics were held constant, so the results are
somewhat limited. Simulation studies have found that convergence rate and parameter
recovery in single-population CFA models are affected by sample size, the number of
indicators, and the magnitude of the loadings (Gagné & Hancock, 2002; Marsh, Hau,
Balla, & Grayson, 1998). These conditions may also affect the performance of CFA
mixture models, as could the mean structure (x and/or t) and the mixing proportions (¢).

Asthere are several design characteristics of confirmatory factor mixture models
that influence convergence and parameter estimate accuracy, athorough, systematic
treatment of all of them in one study would be unwieldy. The present study is therefore
meant to expand the Lubke et al. (2002) study by exploring more design characteristics
than they did but varying each by incorporating only two or three levels. The cursory
manipulation of design characteristics in the present study limits its capacity to assist
applied researchers in making design decisions, as does the fact that most of the design
characteristics manipulated herein are not actually under the control of an applied
researcher. Such assistance, however, is but a secondary purpose of the present study.
The present study primarily seeks to inform the direction of future research that might

explore fewer design characteristics but explore them in greater depth.
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Chapter 2

Method

Primary design: Partial invariance of intercepts

Before describing the conditions that were manipulated in the present study, the
design characteristics that were held constant will be presented. Aswas the casein the
Lubke et a. (2002) study, only single-factor models were used. The factor variancein
each data-generating population was 1, but for model estimation, the factor variance was
neither fixed to 1 nor constrained equal across classes. The number of latent classes was
also not varied, but holding it at two in the present study offered some variability relative
to the three latent classes modeled by Lubke et al.

The sample size of 5000 used in the Lubke et a. (2002) study is reasonable for
simulating large-scale assessments, but there is strong potentia for the application of
GCFMM to situations involving smaller sample sizes. The present study used simulated
datafor whole samples of 200, 500, and 1000 observations to investigate such situations.
The number of manifest variables (p) in the cells of the design was varied at four and
eight for the lone factor, but within each cell, the number of indicators of the factor was
constant for the two latent classes. Among the design characteristics manipulated in the
present study, N and p were the only characteristics which, in an applied setting, are
under the control of the researcher to afunctional extent.

The magnitudes of the factor loadings (A) were combinations of .8 and .4, which
differed within and across latent classes, depending on the cell. Three within-cell loading

combinations (Ic) were used: 1) 100% A = .4 (Ic = 4); 2) 50% A = .8, 50% A = .4 (Ic = 6);

14



and 3) 100% A = .8 (Ic = 8). When both .8 and .4 were used in the same factor,
corresponding loadings across classes were equal (e.g., with eight indicators, Ic = 6 had
A1 through A4; = .8 in both classes and As; through Ag; = .4 in both classes). The error
variances were .36 for indicators that had factor loadings of .8, and the error variances
were .84 for indicators with A = .4. For factor identification purposes, the loading of the
second indicator was fixed to itstrue valuein all cells. (Note: This does not artificially
improve parameter recovery; fixing the loading to any other value would necessitate
rescaling al parameter values in order to examine bias which would then yield the same
values of proportional bias.)

Three conditions of intercept noninvariance were investigated: completely
invariant intercepts; one noninvariant intercept; and two noninvariant intercepts. Lubke
et a. (2002) found that relative to amodel with completely invariant intercepts,
parameter recovery improved appreciably when there were two noninvariant intercepts
across the populations, but having more than two generally yielded slight or no
improvement beyond that found with two. By examining the effects of having only one
intercept free to vary, the present study made an effort to clarify whether the gainin
parameter accuracy is afunction of increasing the number of free intercepts or simply a
function of having any free intercepts. When the intercepts were homogeneous across
classes, the values were arbitrarily chosentobe{2045} and {60721 4 8 3} for the
cellswith four and eight indicators, respectively.

For the heterogeneous intercept conditions, two additional variables were
mani pul ated: magnitude of the intercept difference across classes (standardized

difference of 1.0 and 1.5) and for Ic = 6, the indicators for which the intercepts differed

15



across classes. With one heterogeneous intercept and all loadings equal, T, was higher in
the second latent class. For Ic = 6, the p" indicator had a different loading than half of
the other indicators; this combination was therefore run once with t; higher in the second
class and a second time with only 1, higher in the second latent class. When two
intercepts differed across classes, both 1, and t, were higher in the second latent class,
and two combinations of magnitude of heterogeneity were used: 1.0/1.0 and 1.5/1.5.

The standardized difference between the latent means (Ak) was manipul ated, and
it had two levels: 2.0 and 2.5. Thesetwo levels of latent mean difference, when
multiplied through the factor loadings, contributed a range of additional standardized
differencesin the observed meansfrom .8 (A = .4, Ak = 2.0) upto 2.0 (A = .8, Ax = 2.5).
The mixing proportion (¢) was varied in the present study to be .50 or .70. The class
membership of each observation was known, but that information was not incorporated
into the analyses, so the analyses were conducted as though the presence and potential
nature of a mixture was not known, except for the accurate “hypothesis’ that two
populations underlie the data. The eight manipulated model conditions (N, p, Ic, number
of heterogeneous intercepts, At, location of intercept heterogeneity, Ak, and ¢) were
crossed to the extent possible, which resulted in atotal of 408 cells.

Secondary design: Partial invariance of factor loadings

An additional 12 cells were incorporated into the design to investigate partial
invariance of factor loadings. It is standard practice to constrain loadings to be equal
across classes when the mean structure is modeled (Bollen, 1989), but the effects of
having partial invariance in the factor loadings has not been explored in mixture models.

To begin to address this issue, afourth loading combination was included in the design:
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one class with afactor with 100% A = .8 and the other class with a factor with 75% A = .8
and 25% A = .4. This combination created asymmetry in the factor structure between the
classes, so .50 was the only value of ¢ used for these cells. When indicators have
heterogeneous loadings across classes, the issue of intercept invariance is not meaningful,
so a set of intercepts was chosen such that t;, and 1, differed across classes by 1.5
standard deviations. The remaining design characteristics (N, p, and Ax) had al of and
only their levels described for the primary study.

Description of outcome measures

Convergence. With an upper limit of 20,000 replications, enough replications
were attempted for each cell to obtain 500 properly converged replications. A replication
was considered properly converged if it both converged to a solution according to the
program’ s default convergence criterion and had parameter estimates that were within the
range of possible values (e.g., no negative variances). Convergence was measured by the
number of replications needed to acquire 500 properly converged replications (C), with
failure to achieve 500 after 20,000 replications described as C > 20,000. For cellswith C
> 20,000 but at least 200 proper solutions, the number of proper solutions was
specificaly reported instead of C, and bias was computed but was not included in
detailed accounts of bias behavior. A stop criterion was used such that after every 2000
replications, if the percentage of properly converged solutions was statistically
significantly less than 1% (p < .025), then the simulation was ended for that cell. Such
cells were designated to have C > 20,000, and it was inferred that they would not have

reached the 200/20000 designated for bias computation.
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Bias. Averaging across the proper solutions within a cell, the accuracy of the

parameter estimates in each cell was assessed by computing the percent bias,

percent bias = 100(average estimate — parameter) / parameter. (32)
Biasin the loading, the error variance, and the intercept for the first and p™ indicators of
the factor in each latent class was evaluated, as was bias in the variance of the factor in
each class, the difference between the means of the two factors, and the mixing
proportion. Positive values for percent bias occurred for estimates that were above the
true value by the percent magnitude listed, whereas negative values for percent bias
indicate that the average estimate was the percent magnitude below the true value.

Computer software and programs

Two statistical software packages were used for the simulations, SAS (v8.1) and
Mplus (v2.02; Muthén & Muthén, 1999), in afour-stage process. Stage 1 was the
generation of the mixed sample, which was donein SAS. Data were drawn from each of
two multivariate normally distributed popul ations in accordance with the mixing
proportion for a particular cell. Intercepts and applicable contributions to the scores of
the factor mean were then added to the values. The cases were then combined into a
single sample and exported out of SAS to Mplus for stage 2, which was the mixture
anaysisitself. The modelsin stage 2 were always the correct model in terms of factor
structure, with al manifest variables loading onto a single factor, and in terms of
intercept heterogeneity, with the number of intercepts free to differ across classesin the
computer program being the same as the number of noninvariant intercepts across the

data-generating populations.
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In stage 3, SAS was used to obtain the quantities of interest from the Mplus
output. Stages 1-3 were repeated until any one of the aforementioned conditions for
simulation termination was met. In the final stage, SAS was used to compute the
averages and variances across the successful replications in each cell and then to export
that information, along with the convergence information, into text files. Appendix A
contains an example of a SAS program used in this study, the supporting batch file for

the SAS code, and an example of Mplus code used for conducting the mixture analyses.
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Chapter 3

Results

Dataregarding convergence, bias, and standard errors are provided for the 72
cells with homogeneous intercepts, the 12 cells with heterogeneous intercepts and
heterogeneous loadings, and then the 336 cells with only heterogeneous intercepts.
Convergence data are discussed al in one section, but the bias information is separated
into three sections. Convergence data have their own tables, while percent bias data
tables include or are followed by tabulated standard errors of the corresponding
parameters.

For the presentation of bias, no formal cutoffs are used to label bias as high, low,
or anything in between. In general, estimates that contained 10% bias or more in either
direction were considered definitely biased, and biases |ess than 3% in magnitude were
regarded as being quite small. The 10% “cutoff” is applied casually, but the 3% level has
an important implication: The patterns described herein of the changes in percent bias as
afunction of the design characteristics are not assumed to hold once the magnitude of the
bias drops below 3%. Some of the trends held below 3%, but quite afew yielded to
erratic or indiscernible patterns.

For exhibition purposes, standard errors are presented for each of the parameter
estimates. For the cells with heterogeneous intercepts but homogeneous factor loadings,
the standard errors for a given parameter estimate are provided in a separate table
immediately following the bias table for that parameter estimate. The other cells have the

standard errors presented in the same table as the bias data. Biasin the standard errors
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could not be computed, because true standard errors could not be obtained, so the listed
standard errors are simply the estimated standard errors, not percent biases. Except for
the mixing proportion, the standard errors are the average standard error across the
successful replications for a given parameter in agiven cell. For the mixing proportion, a
standard error was not available for each replication, so an empirical standard error was
directly computed as the variance of the mixing proportion across the successful
replicationsin agiven cell.
Convergence

Convergence datafor the 72 cellsin which all intercepts were homogeneous
across classes can be found in Table 1. Although C isthe primary quantity of interest for
convergence, most of the cells with homogeneous intercepts did not have a value of C,
for failing to achieve 500 successful replications in the maximum allotted 20,000
attempts. Such cellsinstead have the attained number of proper solutions tabulated. A
distinction is made between cells that had a convergence rate of at least 1% after 20,000
attempts and those that were stopped from reaching 20,000 attempts for having a
convergence rate significantly (p < .025) below 1% at arate checkpoint. Table 1
therefore contains numbers in three different type settings. Standard typeface is used for
values of C. Italics are used for the number of successful replicationsin cells that were
stopped before 20,000 attempts, with al but one of those cells (p =4, ¢ =.7, Ak = 2.5,
and Ic = 6 with N = 200) being stopped after 2000 attempts (the one exception ran 6000
attempts). For cellsthat did run the full 20,000 but failed to reach 500 successful
replications, the number of successful replications is underlined. For the 12 cells that had

heterogeneous factor loadings, Table 2 provides convergence information, using the same
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key for the typefaces as Table 1. Table 3 contains values of C for the 336 cells that had
at least one heterogeneous intercept but homogeneous factor loadings.

For the homogeneous intercept cells, convergence rates were very low, with 50
cells being stopped after 2000 replications (33 of which had 0 successes at that point). Of
the 6 cells that were not stopped before reaching 20,000 but failed to reach 500 successes,
the highest convergence rate was 1.94%. Fifteen cells did attain 500 replications that had
aproper solution, including all 12 cellsthat had four manifest variablesloading at .8. In
these cells, C ranged from a high of 12,746 (convergence rate = 3.92%) to alow of 794
(convergence rate = 62.97%). C had an inverse relation with N and with Ak, and a direct
relation with o.

For the 12 cells in which factor loadings were heterogeneous across classes and
two intercepts varied across classes, convergence rates were strongly related to p. All six
cellsthat had eight manifest variables had perfect convergence. With p=4and Ak = 2.5,
all cells reached 500 successes, with Cn=200 = 2972, Cn=s00 = 1945, and Cn=1000 = 1522.
With p =4 and Ak = 2.0, two of the cellsran the full 20,000 replications without reaching
500 successes, and one had 500 successes but had C = 18764. The successful cell was,
curioudly, the cell with N = 200.

All 336 cells that had homogeneous factor loadings but at |east one heterogeneous
intercept had 500 successful replications. The highest value of C was 8489 (convergence
rate = 5.89%), and only 13 other cells had C > 2000. The lowest value of C was 500 (i.e.,
perfect convergence), which occurred in 100 cells. Sample size and C wereinversely
related but for afew exceptions at Ic = 6 as C approached 500. C was alsoinversely

related to Ak (with a couple of scattered exceptions), At, and the number of
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heterogeneous intercepts. Vaues of C were lower when t, was the [one heterogeneous
intercept than when t; was the lone heterogeneous intercept. The effect on C of ¢ was
inconsistent.

Finally, there was a complex interaction involving p and the location of intercept
heterogeneity. When t; varied across classes, cells with p = 4 had lower values of C than
corresponding cells with p = 8, but when 1, was heterogeneous (with or without t1 being
heterogeneous), lower values of C were found in cells with eight manifest variables than
in the corresponding cells with four manifest variables. This interaction was further
complicated by an interaction with Ic: The advantage of p = 4 when t; was noninvariant
wasclearly lessat Ic=6than at Ic =4, and at Ic = 8, values of C were consistently lower
in cellswith p = 8 than in cellswith p = 4, regardless of the location of intercept
heterogeneity.

Biasin cdlls with homogeneous intercepts

For the cells with homogeneous intercepts, Tables 4-8 contain data about the bias
in the estimates of the model parameters and of the mixing proportion, but data are
presented for only the pairings of p and Ic for which there was at least one value of C: p =
4,Ic=6and p=4, |lc=8. Patternsregarding bias, however, will be discussed only for
the 12 cells that paired p = 4 with the largest loading combination, because the bias
estimates for the other pairing are based on averages across a differing number of
replications (ranging from 9 to 500). This unfortunately limited the number of potentially
influential design characteristicsto three (N; Ax; and ), but afew patterns were evident.

For the factor loadings, there was relatively little bias, with the magnitude of the

bias exceeding 3% in only two cells, both of which were for the estimate of the p
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Table 4: Percent Bias and Standard Errors of A;; and Ay in Cells with Homogeneous | ntercepts

Both classes
p ¢ Ax Ic| N =200] N =500 [N =1000
45 2 6| -136 -0.02 0.12
4 525 6| -005 0.17 -0.02
4.7 2 6] 236 0.45 -0.12
i 4 725 6| -038 0.87 0.03
45 2 8] 024 0.29 0.22
4 5258| 041 0.03 0.04
4 .7 2 8] 010 0.16 0.11
4 725 8| 0.07 0.11 0.09
45 2 6| .0784 .0455 .0398
4 525 6| .0472 .0344 .0256
4 .7 2 6| .0917 .0414 .0331
SE A 4 725 6| .0490 .0354 .0253
4 5 2 8| .0523 .0296 .0221
4 525 8| .0402 .0248 .0177
4 .7 2 8| .0531 .0388 .0248
4 725 8| .0427 .0265 .0185
45 2 6] 397 1.09 0.45
4 5256 137 1.02 0.51
4.7 2 6| 875 0.63 0.61
Aot 4 7256| 021 1.33 -0.10
4 5 2 8] 101 0.36 0.23
4 5258] 071 0.47 -0.01
4.7 2 8] 101 0.22 0.26
4 725 8| 0.65 0.33 0.17
4 5 2 6| .0546 .0348 .0372
45 5 6| .0467 .0295 .0210
4 7 2 6| .0638 .0355 .0251
4 7 5 6| .0508 .0307 .0217
SE A1
45 2 8| .0471 .0310 .0213
4 5 5 8| .0392 .0250 .0176
4 7 2 8| .0493 .0439 .0235
4 7 5 8| .0437 .0261 .0186
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Table 5: Percent Bias and Standard Errors of 813 and 8y in Cells with Homogeneous | ntercepts

Class 1 Class 2
p ¢ Ak Icf| N =200 | N =500 |N =1000] | N =200 | N =500 |N =1000
4 5 2 6| -37.04 | -5471 | -45.89 11.85 0.61 -0.10
4 5256 -5205 | -28.04 | -18.17 -2.36 -1.05 0.18
4 7 2 6| -30.86 | -6215 | -38.72 -10.44 0.01 0.80
511 4 7256| -3575 | -36.26 | -17.47 4.47 -1.53 0.07
4 5 2 8| -18.05 -8.79 -17.56 1.23 -0.20 0.24
4 525 8| -6.47 -5.75 -0.62 0.43 -0.48 -0.54
4 7 2 8| -2416 | -15.06 | -13.97 -1.06 -0.02 -0.39
4 725 8| -1312 -4.34 -0.05 1.08 0.63 -0.68
4 5 2 6| .1986 1355 .1803 1310 .0644 .0597
4 525 6| .1187 .1550 .0001 .0913 .0655 .0494
4 7 2 6| .4719 1107 1529 .0899 .0618 .0484
SE 6y 4 725 6| .1230 .0876 .0879 .0927 .0728 .0559
4 5 2 8| .2070 .2304 1672 .0633 .0370 .0251
4 525 8| .1748 .1017 .0548 .0633 .0433 .0330
4 7 2 8| .1870 2321 .2154 .0550 .0512 .0312
4 725 8| .1852 .1010 .0612 .0720 .0547 .0410
4 5 2 6| 329 21.34 36.72 6.30 -0.05 -0.40
4 525 6| 1140 12.05 3.37 3.12 0.15 -0.13
4.7 2 6| 3627 29.73 28.91 0.67 0.88 0.04
51 4 725 6| 1412 3.76 4.36 2.24 0.60 0.38
4 5 2 8| -16.16 | -1472 | -10.07 -0.28 0.39 0.53
4 525 8| -6.09 -3.77 -1.41 -1.18 -0.29 -0.21
4 .7 2 8| -2323 | -1586 | -11.00 0.62 0.81 -0.07
4 7258| -7.04 -5.92 -2.33 -0.08 0.24 0.65
45 2 6| .3348 .5429 .6170 .0961 .0592 .0504
45 5 6| .4465 .3886 .2381 1022 .0766 .0555
4 7 2 6| 12147 .6319 .5063 .1589 .0686 .0487
SE 5 4 7 5 6| .6180 .3048 2247 .0982 .0826 .0679
45 2 8| .218 .2093 .2026 .0562 .0371 .0253
45 5 8| .1790 .0928 .0541 .0619 .0436 .0329
4 7 2 8| .1932 .2363 .2230 .0577 .0440 .0333
4 7 5 8| .2021 .1018 .0537 0777 .0538 .0415
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Table 6: Percent Bias and Standard Errors of t1 and 7, in Cells with Homogeneous | ntercepts

Both classes

¢ Ax Ic] N =200 | N =500 [N = 1000

5 2 6| -5928 | -76.07 | -69.46
525 6| -51.69 | -35.72 | -19.43
7 2 6| -6940 | -67.65 | -55.01
725 6| -67.57 | -40.15 | -23.61
5 2 8| -6451 | -57.45 | -50.39
525 8| -3342 | -16.77 -6.68
7 2 8| -70.30 | -58.68 | -43.22
725 8| -3r.71 | -17.09 -8.42

T1

5 2 6| .4002 2119 .2236
525 6( .2030 .2050 1851
7 2 6| .2065 .1692 .1818
725 6[ 2172 1497 .1348
5 2 8| .2840 3104 2795
525 8| .2702 .2239 .1588
g 2 8| 2255 .2635 .2502
725 8| .2636 .1580 .1055
5 2 6| -1392 | -1550 | -14.01
525 6| -1061 -7.37 -4.02
7 2 6| -1539 | -1364 | -11.14
725 6| -1416 -8.08 -4.73

SE’El

A AN AEDMNDDEAEAEDMNDDEAEADIMNDDEAEAADMDDAEADIMNDAELSEDdMNPDEALAEDSMDdMO

e 5 2 8| 2624 | 2296 | -20.16
5258| -1352 | -687 | -265
7 2 8| -2835 | -2348 | -17.30
7258| -1522 | -684 | -339
5 2 6| 2532 | 1545 | .1339
5 5 6| 1654 | .1378 | .1059
7 2 6| 1763 | .1277 | .1089
e, [47 56 102 | o2 | oae
5 2 8| 2887 | 3105 | 2775
5 5 8| 273 | 2243 | .1586
7 2 8| 280 | 2645 | .23
7 5 8| 2690 | .1588 | .1051
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Table 7: Percent Bias and Standard Errors of @ ;; and Ak in Cells with Homogeneous | ntercepts

Class 1 Class 2

p ¢ Ac Ic| N=200| N =500 |N =1000] | N =200 | N =500 [N =1000
45 2 6| -9293 | -8852 | -86.99 106.01 85.45 85.10

4 5256| -80.89 | -64.84 | -40.98 121.42 97.38 55.18

4.7 2 6| -93.83 | -87.37 | -85.54 52.40 75.20 79.73

Dy 4 7256| -91.62 | -67.23 | -48.84 109.15 93.02 77.26
4 5 2 8| -75.81 | -7436 | -72.49 71.12 74.31 76.43

4 5258| -51.26 | -30.95 | -14.59 77.42 47.37 19.47

4.7 2 8| -8334 | -79.29 | -76.52 71.51 76.28 79.31

4 725 8| -6453 | -40.17 | -24.88 103.08 70.30 48.67

45 2 6| .4688 1477 .1627 .2491 .1959 1520

4 525 6| .1527 2104 .2128 3171 .2831 .2285

4.7 2 6| .3082 .1440 .1668 .3163 .1866 .1420
SEdy 4 7256| .1138 1702 .1913 .3095 .2832 .2399
4 5 2 8| 224 .2572 .2401 .2626 .2172 .1565

4 525 8| .3083 .2542 .2006 .3667 .2860 .2084

4 7 2 8| .1588 .2303 .2023 .2678 .2024 1526

4 725 8| .2545 .2387 1701 .3908 .3138 .2497
4526 - -- -- 32.47 50.56 4211

4 5256 - -- -- 12.13 0.78 -1.32

4.7 2 6 - -- -- 21.06 21.09 5.20

A 4 7256 - -- -- 6.70 -7.59 -11.92
452 8 - -- -- 41.10 32.03 22.90

4 5258 - -- -- 8.34 154 0.48

4.7 2 8 - -- -- 26.29 12.06 -6.13

4 7258 - -- -- -9.24 -13.44 | -10.96

45 26 - -- -- .3654 .2846 .2637
4556 - -- -- 2751 .2202 .1662

47 2 6 - -- -- .2818 .2354 .2365

E Ak 47 56 - -- -- .3048 .2421 .2321
45 2 8 - -- -- .3509 .3576 .3217
4558 - -- -- .3005 .2035 1119

47 2 8 - -- -- .2920 .3408 .3052

47 5 8 - -- -- 3774 .2663 .2060
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Table 8: Percent Bias and Empirical Standard Errors of ¢ in Cells with Homogeneous | ntercepts

Class 1 Class 2

p o Ax Icf| N=200 | N =500 |N =1000] | N =200 | N =500 |N =1000

45 2 6| -9038 | -91.38 | -90.36 90.38 91.38 90.36

4 5256| -8025 | -6451 | -38.28 80.25 64.51 38.28

4.7 2 6| -91.02 | -89.37 | -8327 212.4 208.5 206.0

4 7256| -8.60 | -6366 | -47.04 202.1 148.5 100.8

N 4 5 2 8| -81.8 | -81.37 | -81.32 81.82 81.37 81.32
4 525 8| -5148 | -31.37 | -13.12 51.48 31.37 13.12

4 .7 2 8| -87.83 | -8583 | -8212 204.9 200.3 191.6

4 725 8| -6341 | -3958 | -24.78 147.9 92.35 57.82

45 2 6| .0319 .0773 .0830 .0319 .0773 .0830

4 525 6| .1348 .2023 .2076 .1348 .2023 .2076

4.7 2 6| .0677 1272 1106 .0677 1272 1106
Empirical |4 .7 2.5 6| .1623 .2551 2734 .1623 .2551 .2734
SEe |45 2 8| .1227 1276 1227 1227 1276 1227
4 525 8| .1999 .2011 1525 .1999 2011 1525

4 .7 2 8| .1253 .1490 1417 1253 .1490 1417

4 725 8| .2318 .2540 .2299 .2318 .2540 .2299
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loading when the p™ loading was .4. Biasin the error variances was larger in magnitude
than in the factor loadings, but only in class 1. In class 2, there was no bias greater than
3% in magnitude for the estimates of d, whereasin class 1, there were six cells that had
negative biasin excess of 13% in magnitude. The effect of N on bias was generally
inverse, but a notable exception occurred when ¢ = .5 and Ak = 2.0, where negative bias
in 811 from N =500 to N = 1000 increased in magnitude from 8.79% to 17.56%. The
effect of Ak on biaswas consistently and strongly inverse. Biastended to be larger in
magnitude in cellswith ¢ =.7 than in cellswith ¢ = .5.

Biasin the estimates of the intercepts was consistently negative, and for t;, bias
was generally copious, with five magnitudes in excess of 50%; by contrast, the largest
magnitude of bias for T, was 28.35%. Sample size and Ak separately had strong inverse
effects on the magnitude of the bias, and they had an interaction effect: The effect of N
was stronger when Ak = 2.5 than when Ak = 2.0. The same effect of ¢ seen with the bias
in values of 6 occurred for the intercept bias, with the magnitudes being larger for cells
with ¢ = .7 than with ¢ = .5.

The estimates of @4, were substantially biased in both classes, with large negative
biasesin class 1, large positive biasesin class 2, and no biases below 14% in magnitude.
Several cells had bias that exceeded 70% in magnitude, with one cell having +103.08%
bias in the class 2 estimate of the factor variance. There did not seem to be an effect of N
in cellswith Ax = 2.0, but when Ak = 2.5, bias magnitude clearly decreased as N
increased. The mixing proportion again had a consistently direct relation with bias

magnitude.
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For the estimation of Ak, the bias magnitudes and the effects of design
characteristics on them was largely a function of ¢. In cellswith ¢ = .5, biaswas
consistently positive, bias was clearly larger in the cells with Ak = 2.0, and bias decreased
asNincreased. Incellswith ¢ = .7, bias magnitude and changesin it were difficult to
describe; the reader is simply referred to the relevant portion of Table 7. Biasin the
estimation of ¢ generally was even larger in magnitude than the bias for the factor
variance. Sample size interacted separately with Ax and with ¢, having an inverse
relation to bias magnitude overall, but with the effect being stronger at the larger values
of Ak and ¢.

Biasin cdls with heterogeneous factor 1oadings

Table 9 and Table 10 contain the percent bias and the standard errors for the
parameter estimates in the 12 cells that had heterogeneous intercepts and heterogeneous
factor loadings. Among all of the parameter estimates, there were only afew bias
magnitudes in excess of 3% and only three that exceeded 6% (max = +11.24%). With
the biases generally so low, it was difficult to locate a pattern in the change in the bias
that could not be described astrivial.

Biasin cdlls with heterogeneous intercepts

The tables for the percent bias of the parameter estimates for the 336 cellsin
which factor loadings were homogeneous while at |east one heterogeneous intercept
varied across classes are not specifically referenced in this chapter, but for exhibition
purposes, they are presented in Appendix B. The results are summarized below, with the
order of presentation for the parameters being: A11; Ap1; 811; Spa; T1; Tp; P11y Ax; and ¢.

Within each parameter, a general description of bias magnitudesis provided,
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Table 9: Percent Bias and Standard Errors of Parameter Estimates in Cells with Heterogeneous
Factor Loadings

Class 1 Class 2
p o Ax] N =200 | N =500 |N =1000| [ N =200 | N =500 |N = 1000
45 2| 452 1.09 0.06 0.59 -1.24 -0.36
At 4 525 297 0.62 -0.04 -0.71 -0.02 0.30
8.5 2| 098 0.40 0.31 1.36 -0.48 -0.06
8 525 151 0.32 0.20 -0.10 0.29 -0.18
45 2| .1215 .0749 .0522 1242 .0691 .0483
S 4 525 .118 .0713 .0496 .1156 .0664 .0463
8.5 2| .1091 .0653 .0450 .0885 .0533 .0379
8 525 .1072 .0631 .0445 .0849 .0517 .0365
452 341 1.59 0.73 -7.00 -5.09 -1.63
At 4 525 143 0.38 -0.18 -4.28 -1.51 -1.28
8.5 2| 029 0.37 0.21 0.29 -1.50 -0.53
8 525 0.78 0.48 0.37 -0.11 0.02 -0.13
45 2| .1170 .0723 .0506 .1433 .0803 .0553
SE A 4 525 .1153 .0696 .0483 .1325 .0746 .0523
8.5 2| .1039 .0624 .0435 1174 .0698 .0494
8 .5 25 .1028 .0614 .0432 .1107 .0681 0477
452 101 0.40 0.53 -6.11 -1.17 0.37
511 4 525 -3.03 -0.86 -0.51 -2.81 -0.91 -0.23
8.5 2| -279 -0.15 -0.19 -1.57 -0.76 0.10
8 525 -316 -0.46 0.21 -3.67 -1.77 -1.24
4 5 2| .0801 .0498 .0351 .0976 .0585 .0406
SE 5y 4 525 .07%4 0471 .0330 .0912 .0539 .0384
8.5 2| .0698 .0421 .0300 .0720 .0438 .0312
8 .525 .0639 .0406 .0288 .0663 .0417 .0292
45 2| -08 -0.49 -0.93 -2.21 0.21 -0.17
dm |4 525 -237 -0.81 -0.62 -4.58 -1.16 -0.67
8.5 2| -250 -1.40 -1.27 -2.52 -1.08 -0.45
8 .525 -289 -1.41 0.13 -3.14 -0.93 -0.78
4 5 2| .0740 .0470 .0332 .1387 .0815 .0571
SESp |4 525 .0728 .0455 .0321 1270 .0785 .0560
8.5 2| .0632 .03%4 .0276 .1253 .0786 .0558
8 .5 25 .0601 0382 .0275 1191 0771 .0546




Table 10: Percent Bias and Standard Errors of Parameter Estimates in Cells with Heterogeneous
Factor Loadings

Class 1 Class 2
p @ Ax|] N=200| N =500 |N =1000| | N =200 | N =500 |N =1000
45 2| 347 0.46 0.11 0.41 0.77 0.01
T1 4 525 297 0.59 0.11 1.94 0.29 -0.04
8.5 2| 009 0.05 0.07 -0.12 0.17 0.09
8 525 0.08 0.09 0.01 0.13 -0.02 0.04
45 2| .1762 .0963 .0649 .3345 .1864 1294
SEtw |4 525 .1534 .0848 .0584 .3627 .2055 1424
8.5 2| .1435 .0813 .0561 .2440 411 .0984
8 525 .1308 .0767 .0632 .2681 1574 .1106
45 2| 064 0.06 0.00 1.32 0.45 -0.08
Tp 4 525 0.83 0.19 0.07 113 0.33 0.18
8.5 2| 013 0.05 0.09 0.21 0.33 0.18
8 525 0.08 0.16 0.03 0.10 0.08 0.01
452 1579 .0877 .0598 .3524 .1960 1339
SEt |4 525 .1385 .0787 .0543 .3763 2131 .1493
8.5 2| .1289 .0748 .0518 .2884 .1687 .1185
8 525 .1193 .0717 .0500 3176 1922 .1346
45 2| 1124 0.48 -1.05 5.45 -0.85 -3.03
®y 4 525 5.68 -0.32 0.12 -0.41 -0.61 -0.45
8.5 2| 081 0.15 0.21 -1.43 -0.08 -0.36
8 525 -127 0.52 -0.31 -0.96 -0.25 -0.60
45 2 2805 .1630 1124 .2699 .1546 .0918
SE by 4 525 .2681 .1580 1107 2161 1317 .0925
8.5 2| .2484 .1495 1045 .1874 1184 .0833
8 525 .2373 1477 1029 .1853 .1158 .0809
45 2 - -- -- -1.88 -2.37 -1.69
Ak 4 525 - -- -- -1.95 -0.54 -0.32
8.5 2 - -- -- -1.05 0.13 -0.24
8 525 - -- -- -0.08 -0.21 0.04
452 - -- -- 2129 1213 .0841
SE A 4 525 -- -- -- 1954 1161 .0817
8.5 2 - -- -- .1869 1139 .0799
8 525 - -- -- .1804 1125 .0790
45 2| 450 0.52 -0.22 -4.50 -0.52 0.22
4 525 216 0.15 0.07 -2.16 -0.15 -0.07
N 8.5 2| 012 0.25 0.21 -0.12 -0.25 -0.21
8 525 014 0.15 0.06 -0.14 -0.15 -0.06
45 2| .0813 .0315 .0136 .0813 .0315 .0136
SE o 4 525 .0533 0145 .0105 .0533 .0145 .0105
8.5 2| .0272 .0147 .0098 .0272 .0147 .0098
8 525 .0209 .0120 .0079 .0209 .0120 .0079
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followed by a more detailed account of changesin bias as afunction of interactions
among the design characteristics.

AM1. The percent bias for the first factor loading was generally positive, with no
negative bias exceeding 1%. Biaswas largest (above +50% in some cells) when the
factor had eight indicators all loading at .4 with At; = 1. The biasin A1; was smallest
(less than 1%) when only the p™ manifest variable's intercept differed across classes.
The effect of having only the p™ intercept differ across classes was so strong that there
was no sample size effect on the bias of 13 in those cells. For the other cells, bias
decreased as N increased, with three notable interactions occurring. The effect of sample
Size was stronger when Ak = 2.5 than when Ak = 2.0. It was aso stronger when there
were four manifest variables rather than eight and when At = 1.5 instead of 1.

The number of manifest variables in the model was involved in a complicated
interaction with |c and the location of intercept heterogeneity. When all A = .8, biaswas
higher with four indicators than with eight. For the other two loading combinations, bias
was smaller at p =4 when only t; differed across classes, but biaswas smaller at p =8
when both 1, and t,, differed. Regarding other design characteristics, the higher value of
Ax generaly yielded smaller biasesin A1, with the benefit of having the larger Ak
increasing as N increased (as per the interaction described in the previous paragraph).
There was an interaction between ¢ and p such that the cellswith ¢ = .7 had less bias
than the corresponding cells with ¢ = .5 when p = 4, but the bias was greater in the cells
with ¢ =.7 whenp = 8.

There was also an interaction between At, p, number of heterogeneous intercepts,

Ic, and N. With two heterogeneous intercepts, the biasesin cellswith At = 1 were
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consistently higher than in the corresponding cells with At = 1.5. Thiswas also the case
with only t; being heterogeneous while p = 4. At p = 8, there was actually a direct
relation between the magnitude of the bias and At, but only forlc=4andlc=6a N =
200, and only with Ic =4 at N = 500.

Ap1. Patternsin the bias of the p™ factor loading were difficult to detect, because
the bias was relatively low in most cells. Like the bias of 111, the bias of A was smallest
when its manifest variabl€' s intercept was held equal across classes, exceeding 3% in
only one of the cellsin which t, was equal across classes while t; was heterogeneous.
Where appreciable bias was present, it was positive bias, with the largest biases occurring
in the cluster of cells under N = 200 that had two heterogeneous intercepts with four
manifest variables, al loading at .4. The only conditions that clearly affected the bias
were N and Ax. As N increased, bias decreased, and cells with Ak = 2.5 generally had
less bias than the corresponding cells with Ak = 2.0. The interaction between N and Ak
described for the bias of A;; were less consistent for the bias of A,1, and there wasllittle, if
any, evidence of the other aforementioned interactions.

d11. The magnitude of the biases for the error variance of the first indicator
substantially varied across classes. In class 1, with eight manifest variables, all biases
that exceeded 2% in magnitude were negative. The largest biases occurred in cells that
had 11 varying across classes and al A = .4, with afew negative biases exceeding 60% in
magnitude and several more in excess of 40%. With four manifest variables, however,
the only biases that surpassed 10% in magnitude were positive and occurred only in cells

that had all A = .8, 11 varying across classes, and ¢ = .5. In cells with two heterogeneous
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intercepts, no bias exceeded 10% in magnitude, and in cells that had only 1, differ across
classes, no |bias| was larger than 3%.

Although increasesin N and in Ak did decrease the magnitude of the biasin class
1, and those two design characteristics again demonstrated their aforementioned
interaction, the effect of p on bias was clearly stronger. Loading combination also
affected bias, but its effect interacted with p. At p = 8, bias consistently decreased in
magnitude as the factor loadings increased, while at p = 4, bias generally changed only
dightly from Ic = 4 to Ic = 6, but then increased in the positive direction, sometimes to
rather appreciable levels, in cellswith Ic =.8. The value of the mixing proportion also
affected the bias of 6,5 in that the biases at ¢ = .7 were more negative than the biases for
the corresponding cells with ¢ = .5.

In class 2, biases of 613 in cells with heterogeneous t; radically changed direction
relative to the values found in class 1. The cellsthat had four indicators on the lone
factor had many strongly negative biases, while in cells with eight indicators, all biases
that exceeded 10% in magnitude were positive. Cells with two heterogeneous intercepts
still had biases that were negative, but the magnitudes of bias were consistently higher in
class 2 thanin class 1, with severa cells having magnitudes above 10% when N = 200.
Biases in cells with only heterogeneous t, were consistently but only slightly more
negative in class 2 than in class 1 when N = 200, but no bias of 815 in these cells exceeded
5% in magnitude.

The inverse relations of bias with N and bias with Ak held in class 2 as did their
interaction, with N having a stronger effect at the higher value of Ak and the proportional

differencesin the bias between levels of Ak increasing with N. The effect of loading
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combination was peculiar but did not interact with p. From Ic =4 to Ic = 6, bias became
more positive in all cells but never enough such that biases switched signs. Fromlc=6
to Ic = 8, bias generally became more negative but not enough to put the levels back to
their valuesat Ic = 4.

Another pattern that emerged only in class 2 was a complex interaction of At with
p, number of heterogeneous intercepts, loading combination, and N. When two intercepts
differed across classes, the relation between bias and At was inverse. When only one
intercept differed, the relation between bias and At at N = 200 was inverse at p = 4 but
direct in cellswith p=8. This pattern weakened at N = 500, while at N = 1000, only Ic =
4 demonstrated a direct relation between biasand At at p = 8.

dp1. Thebiasesin the error variance of the p™ indicator were generally negative
and relatively low. The largest magnitude for bias in either class was -20.86%, and only
14 other cells had magnitudes above 10%, all occurring with N =200. Inclass 1, the
largest biasesin 5,1 occurred when 1, differed across classes, with the largest biases in the
cellswith only 1, heterogeneous. In class 2, this pattern held, but the biases in cells that
had p = 4 and Ic = 4 had anomolously high magnitudes relative to the other cells. These
biases, in fact, clearly exceeded those found in the cells that had only 1, being
heterogeneous (which, by design, had Ic = 6).

With the bias being so low overal, it was difficult to describe patternsin their
change, but afew were notable. 1n both classes, N was inversely related to bias
magnitude. The value of Ak, however, had an inconsistent effect on bias, even when
[bias| > 3%. Inclass 2, At wasinversely related to bias, but in class 1, this relation was

somewhat less consistent. There were faint signs of the previously detailed complex
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interaction among At, p, number of heterogeneous intercepts, loading combination, and
N.

11. Thebias of the first intercept was below 1% in magnitude for the cells that
had t; equal across classes, so these cells will be ignored for the rest of the summary of
the bias of 11. In class 1, the direction of bias was afunction of p, with biasat p =4 being
generdly positive (i.e., no negative bias in excess of 0.5%) and biases a p = 8 being
generdly negative (i.e., no positive bias in excess of 0.7%). The magnitudes were at their
highest (twice exceeding 35%) in the cells in which t; was the only heterogeneous
intercept among four manifest variables. The highest magnitudes for the negative biases
(three cells exceeding 20%) also occurred when t; was the only heterogeneous intercept,
but when p = 8.

Sample size and Ax clearly demonstrated inverse relations with biasin class 1,
and their interaction was also clearly evident. There was an interaction between ¢ and p:
When p = 8, biasin cellswith ¢ = .7 was just slightly more negative than in cellswith ¢
= .5, but when p = 4, bias was considerably more negative (though still positivein
direction) for ¢ = .7 than for the cellswith ¢ = .5. There were main effects for At and for
number of heterogeneous intercepts, with the magnitude of the bias being smaller at the
larger levels of these design characteristics. They each also interacted with sample size
in such away that their effects were increasingly apparent as N increased. Loading
combination interacted with p to affect bias such that a p = 8, bias consistently decreased
in magnitude as the factor loadings increased, while in cells with p = 4, bias decreased

fromlc=4tolc =6 but then increased from lc = 6 tolc = 8. These effects were
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influenced by N in that the decrease was more pronounced as N increased while the
ensuing increase from Ic = 6 to Ic = 8 was more tempered as N increased.

In class 2, the bias in 11 was generally negative with the highest magnitudes
reaching just above 20%. There were, however, afew positive biases, including three
cells in which the magnitude exceeded 10% (where 1, varied across classesin cells with
four manifest variables all loading at .4). Bias decreased in magnitude as N increased,
and bias generally decreased in magnitude as Ak increased, with the same N x Ak
interaction seen previously. Biaswas consistently more negative in cellswith ¢ =.7 than
in the corresponding cellswith ¢ =.5. The effect on bias of the number of heterogeneous
intercepts interacted with p such that the effect was inconsistent in cellswith p =4, but in
cellswith p = 8, bias was acutely reduced in magnitude when two intercepts varied across
classesinstead of just 1;.

1p. Thebiasin the estimate of the p™ intercept was generally low in both classes,
with six cells having negative bias above 10% in magnitude and only one cell having
positive bias that reached 10%. The largest bias magnitudes occurred in the cellsin
which only t; was heterogeneous across classes, which were cellsin which 1, was
constrained equal across the two classes. Among the cells with only 1, or with both 11
and 1, different across classes, only three had |bias| > 5%, making patterns of changein
bias difficult to detect. In the cellswith t; differing across classes, bias was inversely
related to N and generally inversely related to Ak, with the usual interaction between N
and Ak of the effect of N being stronger for the larger Ak and the benefit of larger Ax
being stronger as N increased. Inthe cellswith ¢ =.7, the bias of t, was consistently

more negative than in the corresponding cellswith ¢ = .5.
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®;1. Biasin the estimate of the factor variance was substantial in many cells, with
several magnitudesin excess of 50%, including afew cellsin which N = 1000. In class
1, the number of manifest variables seemed to determine the direction of bias, except for
the cellsin which only 1, varied across classes, which led to negative biasin ®1;
regardless of p. Biasin cellswith p =4 was generaly positive, with no negative bias
greater than 4% in magnitude (excepting the 1, heterogeneous cells). Biasin cellswith p
= 8 was generally negative, with no positive bias greater than 5%. The largest
magnitudes appeared in cells with heterogeneous t;, with considerably less biasin cells
that had t,, or both 1, and T, varying across classes.

With the biases in class 1 being so large in magnitude, many patternsin the
change in bias were readily apparent. Increasing N decreased bias magnitude except in
one combination of conditions: eight manifest variables, al loading at .4, with a 50/50
mixture of the two classes, Ax = 2.0, and At; = 1. For this set of conditions, the biasesin
VF1 were -49.98%, -59.03%, and -58.98% for N = 200, 500, and 1000, respectively. The
effect on bias of increasing Ak wasinconsistent in cells with N = 200, but at the other
levels of N, there was an inverse relation between Ak and the magnitude of the bias.
Sample size and Ak interacted in the same manner as described for the other parameters.

The value of ¢ interacted with p and the location of intercept heterogeneity to
affect bias such that in cells with four manifest variables, bias was smaller in magnitude
in cellswith ¢ =.7, but in cells with eight manifest variables or with 1, heterogeneous,
the cellswith ¢ = .5 had bias of lower magnitude than their ¢ = .7 counterparts. In cells
with heterogeneous t;1 (whether or not 1, varied across classes), there was an inverse

relation between At and bias magnitude except in cells with N = 200 and eight manifest
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variables all loading at .4, where the relation was direct. Loading combination interacted
with p to affect bias, with bias decreasing in magnitude as loading combination increased
in cellswith p = 8, while a more complicated pattern occurred in cellswith p=4. For
those cells, shifting from Ic = 4 to Ic = 6 decreased bias, but continuingontolc=8
tended to increase bias.

In class 2, the cells that had appreciable bias in class 1 tended to have appreciable
bias, but with the opposite sign. The negative biases with the largest magnitudes (two
greater than 50%) occurred in cells that had only t; varying across classes and four
manifest variables al loading a .8. Thelargest positive biases occurred in cells with 1,
as the lone heterogeneous intercept and eight manifest variables loading at .4, and these
biases were exceptionally high, in excess of 120% in three cells and above 80% in 11
other cells. By contrast, the largest bias, positive or negative, when t; and t, were both
heterogeneous was -28.48%, with only eight other cells having bias magnitudes above
10%.

As happened in class 1, N was not perfectly inversely related to bias, with three
cells showing an increase in bias from N = 200 to N = 500, al of which were cellsin
which Aty =1 withlc =4, ¢ = .5, and Ax = 2.0. Thelarger value of Ak did not aways
have less bias, surpassing Ak = 2.0 in eight pairs of cells, all of which were cellswith p =
8 and with t; asthe only heterogeneous intercept. The interaction between N and Ax led
to thebiasin cellswith Ak = 2.5 being of lesser magnitude than the corresponding cells
with Ak =2.0 at N =500 in all but one case.

Increasing the magnitude of the factor loadings also restored (or further clarified)

the advantage of the larger factor mean difference once lc was increased to 8, except in
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the pair of cellswithp=8, Aty =1, and ¢ =.7. Thisfalureof Ax =2.5toreganits
advantage was the result of a complex interaction involving ¢, p, Ic, and the number of
heterogeneous intercepts. The magnitude of the biasin ®1; decreased as |oading
combination increased in cells with p = 8; when t; was the only heterogeneous intercept,
this effect was relatively weak when ¢ = .7, but when two intercepts varied across
classes, the effect of loading combination when p = 8 was strong in cellswith ¢ =.7.
One final effect found in class 2: At wasinversaly related to the magnitude of bias, with
the effect increasing as N increased.

Ak. Biasin the standardized difference between the factor means (i.e., biasin the
factor mean of class 2) was generally negative, with only one positive bias above 10%
(12.21%). Severd cellsthat had only one heterogeneous intercept, but no cell that had
two heterogeneous intercepts, had negative biases that exceeded 10% in magnitude. The
negative biases with the highest magnitudes were in the mid-30% range and occurred in
cellsthat had eight manifest variables loading at .4 with ¢ =.7.

Sample size generally had an inverse relation with bias, but there were afew
important exceptions, including two conditions (both with p = 8, Ak = 2.0, Ic = 4, and Aty
= 1) in which bias magnitude steadily increased as N increased. There did not appear to
be a consistent main effect for the biasin Ak as afunction of the value of the parameter
itself, but the interaction of N with Ak was present. The number of heterogeneous
intercepts had a generally inverse relation with the magnitude of the bias, while At had a
more definitively inverse relation to bias magnitude.

©. Although the percent biases in the mixing proportion differed across classes,

the summary of the bias will focuson only the biasin class 1. The signs differ across



classes, because, with only two classes, bias in the mixing proportion in one class must be
compensated in sign by the bias in the mixing proportion of the other class. Infact, for ¢
= .5, the bias must also be identical in magnitude across classes. When ¢ = .7, the
percent bias varies across classes, but only due to the denominator; raw bias in the mixing
proportion of one class must be compensated in both sign and magnitude by the raw bias
in the other class. The only reason for addressing both classes would therefore be to
make note of the tremendously large biasesin ¢, when ¢, = .3 in the population.

Biasin ¢; was generally negative at p = 8 and positive at p = 4, with the exception
of negative biases for cellsin which only t, was heterogeneous regardiess of p. The
largest positive biases were in the mid-50% range, appearing in cells that had N = 200, ¢
=.5, Ax = 2.0, and At; = 1. The negative biases with the largest magnitude were in the
mid-80% range, and they occurred in cellswith Ax = 2.0 and At; = 1 but were not
restricted to only the lowest N, with two negative biases at N = 1000 exceeding 70% in
magnitude and several others with magnitudes above 20%.

The inverse relations of N with bias magnitude and Ak with bias magnitude were
clear and consistent, as was their usual interaction effect. Having two heterogeneous
intercepts yielded bias lower in magnitude than in corresponding cells with only one
heterogeneous intercept, and having t, vary across classes resulted in alower bias
magnitude than did having t; be heterogeneous. Regardless of the location of
heterogeneity, At had an inverse relation with the magnitude of bias, with the effect
increasing as N increased. There was the oft occurring interaction between p and |c such
that at p = 8, bias magnitude consistently decreased as loadings increased, while at p = 4,

the bias magnitudes were largest with |c = 4 and smallest with Ic =6 . There was also an
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interaction among ¢, Ak, and p. In cells with four manifest variables, the magnitude of
the biasin ¢ was higher for cellswith ¢ =.5 than for their corresponding cellswith ¢ =
.7, regardless of the value of Ax. In cellswith eight manifest variables, the magnitude of
the bias was higher for cells with Ak = 2.0 than for their corresponding cells with Ak =

2.5, regardless of the value of .
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Chapter 4

Discussion

The present study sought to answer two questions. The first question was: In
terms of convergence rates and bias under the standard restrictions of homogenous factor
loadings and homogeneous intercepts in CFA mixture models, how do CFA mixture
models with the standard restrictions relaxed compare? Lubke et a. (2002) found that
the presence of two or more heterogeneous intercepts in a CFA mixture model improved
the accuracy of the parameter estimates relative to amodel with completely invariant
intercepts. The present study provides additional detail in answering the heterogeneity
guestion by investigating the effects of having only one heterogeneous intercept and by
varying the magnitude of the intercept difference. The second question posed by this
study extends the first by asking: What effects do other design characteristics have on the
convergence rates of and biasin CFA mixture models? Prior research (e.g., Gagné &
Hancock, 2002; Marsh et al., 1998) has demonstrated that sample size, the number of
manifest indicators, and factor saturation affect the convergence rates and bias of single-
popul ation factor models, so these design characteristics were manipulated in the present
study as was the mixing proportion.

Cross-class heterogeneity

The convergence data al one demonstrate such an advantage to models with at
least some degree of heterogeneity in the intercepts over completely invariant models that
the standard practice of constraining al intercepts to be equal across classes should be

reconsidered. Among the cells with complete invariance, 33 out of 72 had a convergence
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rate of 0%, and none of the convergence rates compared favorably to the convergence
rates of corresponding cells with at |east one heterogeneous intercept. Whatever
theoretical utility thereisin forcing homogeneity on amodel solution seems slight
relative to the obvious futility of having no solution at all.

For the few completely invariant cells for which bias was computed, the biasin
the estimation of A,; did tend to be smaller in magnitude than the bias in the estimation of
A11 in the corresponding heterogeneous intercept cells. Biasin Ay tended to be
comparable between the two conditions. For all of the other parameter estimates, cells
with at least one heterogeneous intercept had clearly smaller bias magnitudes than the
homogeneous intercept cells, with a substantial advantage to the heterogeneous cellsin
estimating both intercepts, Ak, @11, and the mixture proportion.

That the intercept bias was higher in magnitude in the completely invariant
models has a more subtle meaning than just the numerical differencein the bias. With
intercepts that are invariant in the populations, even arandom partitioning of amixed
sample should yield subsamples that have roughly the same intercept as each other, asthe
full sample, and as any of the data-generating populations. Given that the biases were
smaller in magnitude when afull sample (of equal overal N) had different intercepts than
either of the data-generating populations, it seems that a mixture of intercept-invariant
popul ations somehow yields samples that have more bias in the intercepts than mixture
samples from populations with heterogeneous intercepts.

Moving aong the heterogeneity continuum to models that have heterogeneous
factor loadings had a curious effect on convergence while having an even more beneficial

effect on bias than relaxing only the intercept invariance assumption. Convergence for
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models with eight manifest variables was perfect when two factor loadings differed
between classes. Convergence for models that had four manifest variables was
substantially worse when two loadings varied across classes than when the loadings (but
not the intercepts) were invariant, even with Ic = 4, a condition with considerably lower
factor reliability than the heterogeneous factor loading combination of 100% A = .8 in
classland 75% A = .8 & 25% A = .4inclass2. A possible explanation for thisisa
confounding of p with the percentage of loadings that were heterogeneous across classes.
Given the very few heterogeneous loading cellsin the present study, however, it is not
possible to elaborate further on the potential presence or nature of such a confound
beyond that it would have to be an interaction effect (percentage of noninvariant loadings
did not diminish the convergence rates of models with p = 8).

Onefina note about heterogeneity should be made regarding the heterogeneity of
factor loadings within each class. Theinteraction of p and Ic in cells with noninvariant
intercepts was such that with four manifest variables, models with heterogeneous
loadings within each class consistently outperformed models that had homogeneous
loadings within each class in terms of both higher convergence rates and lower bias
magnitudes. At present, no explanation is offered for this effect, except for the
possibility of a benefit to there being heterogeneous loadings within classes; additional
study of this issue seems warranted.

Other design characteristics

In addition to the presence or absence of cross-class heterogeneity of the
intercepts and factor loadings in the models, several other design characteristics were

manipulated to examine their effects on convergence and bias. To attempt to summarize
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these effects efficiently, an effort will be made to rank them in terms of their effects at
increasing convergence rates and decreasing the magnitude of bias in the parameter
estimates. Ranking the importance of each of the design characteristicsis difficult, given
the numerous interactions reported in Chapter 3 (some of which are also discussed in this
section). Such an undertaking does, however, seem germane in order to inform design
decisions of applied mixture modeling researchers.

Methodological studies of CFA when population membership is known for al
observations have consistently found that sample size is of paramount importance to
model convergence and to the accuracy of the parameter estimates, with
recommendations always being that N should be aslarge as possible. The results of the
present study indicate that for mixture CFA, sample size strongly affected model
convergence and the bias of the parameter estimates, with larger N leading to better
convergence and generally smaller magnitudes of bias. The most important design
characteristic, however, was not N. The shift from a completely invariant model to onein
which there was any degree of cross-class heterogeneity in the intercepts hugely
improved convergence rates, doing so to a clearly greater extent than increasing N for the
range of N examined. The presence of heterogeneity also more strongly reduced bias
magnitude than did increasing N for the range of N examined.

After N, the next most influential design characteristic was the magnitude of Ax,
which generally had a direct relationship with convergence rate and an inverse
relationship with bias magnitude. The ranking of Ak as third most important may,
however, be unduly low. The smallest value of Ak examined was a standardized

difference of 2.0, which is astatistically significant difference at the .05-level for a z-test.
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Biasin the estimation of this parameter when Ax = 2.0 was high and positive in the few
completely invariant cells that had reasonabl e convergence rates, suggesting that an
aready statistically significant mean difference had to be adjusted further upward in
order to detect a mixture of populations that differ in their latent means when no other
parameters differed across populations. Biasin Ak was generally negative, if at all
appreciable, when any degree of heterogeneity was introduced for the intercepts, but that
seems to alow only the conclusion that the critical value (so to speak) of Ak islower with
heterogeneous intercepts than without. The relative importance of the presence of
heterogeneity and of N might therefore need to be modified by the phrase “given afactor
mean difference of at least 2.0”. Smaller and smaller values of Ak would eventually
render impossible the convergence of a completely invariant model and could have
deleterious effects on the convergence of noninvariant models beyond the ability of N to
compensate.

Following Ax are the effects of the presence of additional heterogeneity in the
form of either a second heterogeneous intercept or larger magnitude of the difference
between heterogeneous intercepts, both of which yielded higher convergence rates and
lower bias magnitudes. For the bias of the factor loadings and, to alesser extent, for the
bias of the error variances, both of these effects were overshadowed by the location of the
heterogeneity, with bias seeming to follow wherever the intercept heterogeneity went.

For convergence and for the bias of the remaining parameters, however, once there was
any heterogeneity, the extent of the heterogeneity was an important characteristic.

It isdifficult to speak to the effects of p and of loading combination. The effect of

p on bias, athough stronger than N in a manner of speaking for certain parameters, was
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either wild beyond what can be summarized or was involved in the interaction with
loading combination. Loading combination had no notable effect on some parameter
estimates and had the interaction effect with p on other parameter estimates and on
convergence. These results are inconsistent with those found in studies of the effects of p
and Ic in single-population CFA models (e.g., Gagné & Hancock, 2002; Marsh et al.,
1998) in which both p and Ic had a direct (and separate) relation with convergence rate
while having an inverse (and separate) relation with bias.

Varying the value of ¢ did not have amain effect on convergence or bias. It was,
however, involved in an interaction with p to have a sometimes weak but very consistent
effect on convergence and bias. When p = 4, convergence rates were lower and bias
magnitudes were higher with ¢ = .5 than with ¢ = .7, but with p = 8, convergence rates
were lower and bias magnitudes were higher with ¢ =.7 than with ¢ =.5. For biasin the
estimate of Ax, @13, and @, the ¢ X p interaction effect interacted with the location of
intercept heterogeneity such that when t, was the lone heterogeneous intercept,
convergence rates were lower and bias magnitudes were higher with ¢ = .7 than with ¢ =
Sregardless of p. It isworth reiterating that the interaction effects involving ¢ were very
consistent, indicating that estimated value of ¢ isimportant to consider when evaluating
the rest of the parameter estimates in a confirmatory factor mixture model.

The only other interaction effect that consistently arose was the interaction
between N and Ak. The effects of N were stronger at larger levels of Ak, and the
advantage of Ak = 2.5 over Ak = 2.0 was greater as N increased (or in some cases, first
created and then strengthened as N increased, because at N = 200, there were a number of

instancesin which Ak = 2.0 had a slight advantage in terms of higher convergence rate or
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lower bias magnitude). Thisinteraction effect was quite strong, and as mentioned, was
quite consistent.

To summarize the rankings of the import of the design characteristics, the most
influential design characteristic was the presence of any degree of noninvariance in the
model, with such models having drastically higher convergence rates and generally
substantialy lower bias magnitudes compared to models with completely invariant
intercepts. The next most important characteristic is one that an applied researcher can
typically control, and that is sample size: Increasing N yielded higher convergence rates
and generally decreased bias magnitudes. The third was the magnitude of the factor
mean difference: Models with larger values of Ak tended to have higher convergence
rates and lower bias magnitudes. To aclearly lesser, but still quite notable, extent than
any of the first three characteristics, models with more heterogeneity in the intercepts,
either in number of noninvariant intercepts or in the magnitude of the heterogeneity,
generaly had higher convergence rates and lower bias magnitudes than models with less
heterogeneity. Ranking the effects of the number of manifest variables, the magnitude of
the factor loadings, the location of intercept heterogeneity, and the mixing proportion is
not feasible based on the results of the present study, because the effects of these facets
were so entangled with other design characteristics.

Recommendations for applied researchers

Many of the design characteristics manipulated in the present study actually
represent different levels of characteristics of nature rather than the characteristics of an
applied study that aresearcher can control. The degree of intercept heterogeneity, the

magnitude of the difference between factor means, and the proportion of the sample that
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came from each of the hypothesized populations are under nature' s control, so knowing
convergence and bias patterns as a function of such design characteristics is only helpful
in apost facto sense. The magnitude of the factor loadings, although somewhat
predictable in certain contexts, istypically afeature of the model that a researcher can
only reflect on after the data have been analyzed.

Decisions regarding sample size and number of indicators, however, can be made
by an applied researcher in the planning phase. The results of the present study lead to
the usual recommendation to use the largest N available. Specific guidelinesfor N are
difficult to provide, given that the extent of the effect of N tended to be influenced by
variations in nature-controlled design characteristics such as intercept heterogeneity and
the magnitude of the factor mean difference, but it can be said with confidence that to
improve convergence and to reduce bias in most of the parameter estimates, N should be
aslarge as practically possible.

The results of the present study unfortunately render it difficult to make a
straightforward recommendation for the number of manifest variables, because the effect
of p on bias and convergence depended heavily on the extent of intercept heterogeneity.
Completely invariant models had such difficulty converging that having eight manifest
variables to sift through rendered convergence essentially nil. Although clearly
improved, convergence was generally very poor when there were only four manifest
variables in the completely noninvariant models. In models with one noninvariant
intercept, the influence of p was exceedingly complex, but with two noninvariant
intercepts, there was a clear advantage of eight manifest variables over four, in terms of

both improved convergence rates and smaller bias magnitudes.



For two reasons, the recommendation is made to use a greater number of
indicators per factor when theoretically feasible. The first reason is the support for such a
recommendation in the single-population CFA research (e.g., Gagné & Hancock, 2002;
Marsh et a., 1998). The second reason is the suggestion early in this chapter that
researchers move away from the practice of forcing interceptsto be invariant in
confirmatory factor models. The advantage of smaller p in completely noninvariant
modelsis essentially meaningless, given that such models had such poor convergence
rates. When convergence rates were reasonable, the effect of p was either enigmatic or in
favor of larger p.

Directions for future research

As apreliminary investigation into the effects of different design characteristics
on convergence and bias in mixture models, the present study manipulated severa facets
but did so to avery limited extent. Four of the design characteristics manipulated in the
present study had only two levels (Ax, p, At, and ¢) and none had more than three levels.
Dueto, and potentially based on, the many interaction effects described in the present
study, additional studies arein order that will more extensively investigate a smaller set
of design characteristics in order to flesh out their influences on convergence rates and
bias.

There were also important design characteristics not manipulated in the present
study that deserve some attention. An additional preliminary investigation could be
undertaken to examine the same facets manipulated herein but for three or more
populations rather than for only two. The number of latent variables in the model could

also be expanded; the presence of multiple factors would likely not influence the patterns
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of biasin the parameters investigated in the current study, but by using models that had
only one factor, the present study did not inform the quality of the estimation of factor
covariances in mixture CFA or how factor covariances might influence model
convergence. Factor variances were fredly estimated across classes in the present study,
but they were actually equal across the data-generating populations. Given the influence
of factor variance on the factor loadings (and thereby on the error variances), the
magnitude of the factor variance could be a useful design characteristic to manipulate as
could the magnitude of a difference in factor variance across populations (with the
present study providing a head start on determining the effects of A®;; = 0inthe

popul ations).

A subtle but potentially very important confound arose in the present study
between number of heterogeneous intercepts in the populations and the number of
intercepts allowed to vary in the agorithm estimating the parameters of the mixture
models. Cellswith two heterogeneous intercepts, for example, demonstrated better
convergence rates than cells with one heterogeneous intercept, which in turn, had better
convergence rates than cellsin which al intercepts were homogeneous. It is possible,
that to some extent, convergence rates improved with increasing number of
heterogeneous intercepts just by virtue of granting the algorithm the flexibility of not
having to force the intercepts to be exactly equal across classes. Some degree of
difference (likely a nonsignificant difference) in the values of the intercepts will exist
between classes in asample even if all of the intercepts are equal across the populations.
Requiring the estimation algorithm to constrain all of the interceptsto be literally equal

across classes could be creating convergence difficulties that might be alleviated to a
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useful degreeif even one intercept isfreed. For applied purposes, after freeing up one or
more intercepts in the estimation agorithm, afollow-up significance test could be used to
determine whether the freely estimated intercepts differ statistically across classes; if all
of the tests are statistically nonsignificant, then it can be empirically inferred (rather than
forced by convention) that the intercepts are homogeneous in the populations.

The results of the present study also point to the potential utility of expanding
mixture modeling research of the cross-class heterogeneity of factor loadings. With only
12 cellsincorporated into the pilot study of models with heterogeneous factor loadings, it
was not reasonable to draw many meaningful conclusions about the effects of design
characteristics on convergence and/or biasin such models. Additional methodological
research of mixture models with heterogeneous factor |oadings could be conducted by
using the design of the primary portion of the present study as atemplate and making
some adjustments. Two such adjustments would, of course, be crossing the
heterogeneous |oading combination with more of the design characteristics and the
inclusion of more levels of factor heterogeneity. A third and very important adjustment
would be to control for the potential effect of the percentage of loadings that vary across

classes.
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Appendix A: Code for Simulation Programs

SAS code

opti ons nodate nonunber |inesize=90;
proc in;
goseed1=1000085; goseed2=1000091;
reps=20000;
p=4;
m x={0.5 0. 5};
del t akap=2.5;
m x| oad={ 0.0 1.0};
| oad={0.8 0. 4};
trnsint1={2 0 4 5};
trnsint2={3 0 4 5};
error={0.36 0.84};
phi={1 1};
n={ 200, 500, 1000} ;
fitstuff=repeat (0,3, 12);
cl assone=repeat (0, 3, 34);
cl asst wo=r epeat (0, 3, 34);
keept hi s=r epeat (0, 1500, 39);
wk={0, 0, 0};
do sanpsize=1 to 3;
w=0; needed=0;
seedl=goseedl+2*(sanpsi ze-1);
seed2=goseed2+2*(sanpsi ze- 1) ;
print seedl;
print seed2;
hol dt hi s=r epeat (0, 500, 39);
nmor nmmt s=r epeat (0, 500, 39);
do i=1 to reps;
var check=r epeat (0, p*2+2, 1) ;
pass=1,
| anbdal=repeat (0, p, 1);
| anbda2=r epeat (0, p, 1);
t het del 1=repeat (0, p, p);
t het del 2=r epeat (0, p, p);
sdsl=repeat (0, p, p);
sds2=repeat (0, p, p);
nl=m x[ 1, 1] *n[ sanpsi ze, 1] ;
n2=m x[ 1, 2] *n[ sanpsi ze, 1] ;
maknlbyp=repeat (1, nl, 1);
makn2byp=repeat (1, n2, 1);
i nt 1=maknlbyp*trnsint1;
i nt 2=makn2byp*t r nsi nt 2;

if mxload[1, 1] >0 then do;
do jg=1 to (mxload[1,1]*p);
| anbdal[j g, 1] =l oad[ 1, 1] ;
| anbda2[j g, 1] =l oad[ 1, 1] ;
thetdel 1[jg,jg]=error[1,1];
thetdel 2[jg,jg]=error[1,1];
end,
end,
if mxload[1,2]>0 then do;
do rw=(m x|l oad[ 1, 1] *p+1) to p;
| anbdal[rw, 1] =l oad[ 1, 2] ;
| anbda2[ rw, 1] =l oad[ 1, 2] ;
thetdel 1[rw, rwj =error[1, 2];
thetdel 2[rw, rwj =error[1,2];
end,
end,

si gmal=l anbdal*phi[ 1, 1] *| anbdal” +t het del 1;

si gma2=l anbda2*phi [ 1, 2] *| anbda2" +t het del 2;

si gma3=mi x[ 1, 1] *si gmal+m x[ 1, 2] *si gma2;

do h=1 to p;
sdsi[ h, h] =r oot (| anbdal[ h, 1] *| anbdal[ h, 1] *phi [ 1, 1] +t het del 1[ h, h] ) ;
sds2[ h, h] =r oot (| anbda2[ h, 1] *| anbda?2[ h, 1] *phi [ 1, 2] +t het del 2[ h, h] ) ;
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end;

z1l=nor mal (repeat (seedl, nl, p));

R1=i nv(sds1l) *si gmal*i nv(sdsl);

g=root (R1);

D=i nt 1+z1*g*sds1;

z2=nor mal (repeat (seed2,n2,p));

R2=i nv(sds2) *si gma2*i nv(sds2);

h=r oot (R2) ;

E=i nt 2+( nakn2byp*del t akap*| anbda2" ) +(z2* h*sds2) ;

file 'C\mxed. dat"';
do r=1 to ni;
do c=1 to p;
put (D[r,c]) +1 @
end;
put;
end;
do r=1 to n2;
do c=1 to p;
put (E[r,c]) +1 @
end;
put;
end;
closefile 'C \m xed. dat';
start systemconmand);

call push(" x '",command,"'; resune;");
pause;
finish;
run systen(' C \dissertation\prograns\nakeitgo');
infile 'C\dissertation\prograns\ Mjo_p04. out';
input / /L
A A A A A A A N
A A A A N
{11111 @3 test $char8.;
if test={"NORMALLY"} then do;
input / [/ [/ /1 I | @1 likelibh;
input / / | @9 freeparm/ @1 AIC/ @1 BIC/ @1 BlCadj / /| @6 entropy;

input / / /1 1 1 1 11 ] @3 Llcl @3 se_Llcl @1 cheknine 7.3;
i f chekni ne=999. 000 t hen elc1=0;
el se i f chekni ne<999. 000 t hen do;
input @3 L2cl @3 se_L2cl / @3 L3cl @3 se_L3cl / @3 L4cl @3 se_L4cl;
i nput | @3 elcl @3 se_elcl / /| | | @3 e2cl @3 se_e2cl
@3 e3cl @3 se_e3cl / @3 ed4cl @3 se_e4dcl;
/| @3 vflcl @3 se_vflcl / / | @3 nflcl @3 se_nflcl;
/| @3 ilcl @3 se_ilcl/ @3 i2cl @3 se_i2cl/ @3 i3cl @3 se_i3cl
@3 i4cl @3 se_idcl;

/
/
i nput /
/
/
input / / / | @3 Llc2 @3 se_Llc2 / @3 L2c2 @3 se_L2c2
/
/
/
/
/
/

i nput

@3 L3c2 @3 se_L3c2 /| @3 L4c2 @3 se_L4c2;

i nput | @3 elc2 @3 se_elc2 /| @3 e2c2 @3 se_e2c?2
@3 e3c2 @3 se_e3c2 /| @3 ed4c2 @3 se_e4c?;
i nput /| @3 vflc2 @3 se_vflc2 / /| | @3 nflc2 @3 se_nflc2;
i nput | @3 ilc2 @3 se_ilc2 / @3 i2c2 @3 se_i2c2 / @3 i3c2 @3 se_i3c2

@3 i4c2 @3 se_i4cz;
input / /[ /11 1] ] @7 mxpl/ @7 mxp2;
var check[ 1, 1] =elcl; varcheck[ 2, 1] =e2c1; varcheck[ 3, 1] =e3c1;
var check[ 4, 1] =e4c1; varcheck[5, 1] =vf1c1;
var check[ 6, 1] =elc2; varcheck[ 7, 1] =e2c2; varcheck][ 8, 1] =e3c2;
var check[ 9, 1] =e4c2; varcheck[ 10, 1] =vf 1c2;
end,
end;
closefile 'C \dissertation\progranms\ Mjo_p04. out "' ;
do v=1 to (p*2+2);
i f varcheck[v, 1] <=0 then pass=0;
end;
if (test={"NORVALLY"} & pass=1) then do;
W=wWH1;
needed=needed+1,;
hol dt hi s[w, 1] =l'i kel i h; hol dt hi s[w, 2] =AI C; hol dt hi s[ w, 3] =BI C,
hol dt hi s[ w, 4] =Bl Cadj ; hol dt hi s[ w, 5] =ent r opy;
hol dt hi s[w, 6] =L1c1; hol dthis[w, 7] =se_L1c1; hol dthis[w, 8] =L4c1; hol dthis[w, 9] =se_L4c1,;
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hol dt hi s[w, 10] =elc1; hol dthis[w, 11] =se_elcl; hol dthis[w, 12] =e4cl;
hol dt hi s[w, 13] =se_e4c1,;
hol dt hi s[w, 14] =i 1c1; hol dt hi s[w, 15] =se_i 1c1; hol dt hi s[w, 16] =i 4c1;
hol dt hi s[w, 17] =se_i 4c1;
hol dt hi s[w, 18] =vf1c1; hol dthis[w, 19] =se_vf1lcl; hol dthis[w, 20] =nf 1c1;
hol dt hi s[w, 21] =se_nf 1c1;
hol dt hi s[w, 22] =m xp1;
hol dt hi s[w, 23] =L1c2; hol dt hi s[w, 24] =se_L1c2; hol dt hi s[ w, 25] =L4c2;
hol dt hi s[w, 26] =se_L4c2;
hol dt hi s[w, 27] =elc2; hol dt hi s[w, 28] =se_elc2; hol dt hi s[w, 29] =e4c?2;
hol dt hi s[ w, 30] =se_e4c2;
hol dt hi s[w, 31] =i 1c2; hol dt hi s[w, 32] =se_i 1c2; hol dt hi s[ w, 33] =i 4c2;
hol dt hi s[w, 34] =se_i 4c2;
hol dt hi s[w, 35] =vf1c2; hol dt hi s[w, 36] =se_vf1c2; hol dthis[w, 37] =nf 1c2;
hol dt hi s[ w, 38] =se_nf 1c2;
hol dt hi s[ w, 39] =m xp2;

end;
el se needed=needed+1;
t menmod(i, 25) ;

if tme0 then do;
file "C\dissertation\tm"';
put sanpsize +1 @

put i +1 @
put w;
closefile "C\dissertation\tm"';

end,

wWKk[ sanpsi ze, 1] =w,

if w=500 then i=reps;

testbhail=wi;

if testbail < .0087 then do;
if (i=2000 & w=11) then i=reps;
else if (i=4000 & w=28) then i=reps;
else if (i=6000 & w=45) then i=reps;
else if (i=8000 & w=63) then i=reps;
else if (i=10000 & w=81) then i=reps;
else if (i=12000 & w=99) then i=reps;
else if (i=14000 & w=117) then i=reps;
else if (i=16000 & w=136) then i=reps;
else if (i=18000 & w=154) then i=reps;

end;

end; /* Replications */

do r=1 to wk[sanpsize, 1];
do c=1 to 39;
keept hi s[ r+(500* (sanpsi ze-1)), c] =hol dthi s[r, c];
end,
end,
do 1 =1 to 17;
cl assone[ sanpsi ze, | *2- 1] =sunm(hol dt hi s[, | +5] )/ w;
cl asstwo[ sanpsi ze, | *2- 1] =sun{ hol dt hi s[, | +22] )/ w,
if w< 500 then do;
do k=1 to w,
mor mmt s[ k, | +5] =( hol dt hi s[ k, | +5] - cl assone[ sanpsi ze, | *2-1]) ##2;
mor mmt s[ k, | +22] =(hol dt hi s[ k, | +22] - cl asst wo[ sanpsi ze, | *2- 1] ) ##2;
end,
cl assone[ sanpsi ze, | *2] =sum(mormmt s[, | +5] )/ w,
cl asst wo[ sanpsi ze, | *2] =sum(nor mmt s[, | +22])/w,
end;
el se do;
cl assone[ sanpsi ze, | *2] =(sun( hol dt hi s[ ##, | +5] ) - ((sum(hol dt hi s[, | +5] ) ##2)/ 500) ) / 500;
cl asstwo[ sanpsi ze, | *2] =(sum( hol dt hi s[ ##, | +22] ) - ((sum( hol dt hi s[, | +22]) ##2) / 500) ) / 500;
end;
end,
do f=1 to 5;
fitstuff[sanpsize, f*2-1] =sun(hol dthis[,f])/w
if w< 500 then do;

do g=1 to w,
mor nnmt s[ g, f] =(hol dt hi s[ g, f]-fitstuff[sanpsize,f*2-1])##2;
end;
fitstuff[sanpsize, f*2] =sum(normmts[,f])/w,
end,
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el se fitstuff[sanpsize, f*2]=(sun(hol dthis[##, f])-((sum(hol dthis[,f])##2)/500))/500;
end,
fitstuff[sanpsize, 11]=w, fitstuff[sanpsize, 12] =needed,;
end; /* Sanple sizes */

file 'C\dissertation\classone.dat';
do r=1to 3;
do c=1 to 34;
put (classone[r,c]) +1 @
end;
put;
end;
closefile 'C \dissertation\classone.dat';
file 'C\dissertation\classtwo. dat';
do r=1to 3;
do c=1 to 34;
put (classtwo[r,c]) +1 @
end;
put;
end;
closefile 'C \dissertation\classtwo. dat';
file "C\dissertation\fitstuff.dat';
do r=1to 3;
do c=1 to 12;
put (fitstuff[r,c]) +1 @
end;
put;
end;
closefile 'C\dissertation\fitstuff.dat';
file 'C\dissertation\keepthis.dat';
do sanmp=1 to 3;
do r=1 to wk[sanp, 1];
do c=1 to 39;
put (keepthis[r+(500*(sanp-1)),c]) +1 @
end;
put;
end;
end;
closefile 'C\dissertation\keepthis.dat';
print wk;
quit;

Batch file makeitgo.bat

C:\ npl us\ npl us. exe C:\dissertation\prograns\ngo_p04. npl
copy C:\docunme~1\phill\ngo_p04.out C: \dissertation\progranms
exit

Mplus code

title: Mxture CFA61rom SAS generated data, p = 4
data: file=C \mxed.dat;
vari abl e: nanes are vi1-v4,
cl asses=c(2);
anal ysis: type=m xture;
m terati ons=1000;

nodel :
Y%overal | %
fl by vi*1.5 v2@. 4 v3-v4*1l. 25;

fi*;
%e#2%
f1*1.2;
v1-v4*0.9;
[v1*10. 5] ;

! [v1*11 v4*10.5];
out put: stand;
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Appendix B: Bias and Standard Errors for Cells with Heterogeneous I ntercepts
Included in this Appendix are 29 tables containing biases of parameter estimates
and standard errors for every cell of the study that had at least one heterogeneous
intercept but homogeneous factor loadings. The order of presentation of the tablesis the
same as the order of presentation of the parameters in Chapter 3: A11; Ap1; 8115 Sp1; T1; Tp;

®41; Ax; and o.
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