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Mixture modeling is an increasingly popular analysis in applied research settings.  

Confirmatory factor mixture modeling can be used to test for the presence of multiple 

populations that differ on one or more parameters of a factor model in a sample lacking a 

priori information about population membership.  There have, however, been 

considerable difficulties regarding convergence and parameter recovery in confirmatory 

factor mixture models.  The present study uses a Monte Carlo simulation design to 

expand upon a previous study by Lubke, Muthén, & Larsen (2002) which investigated 

the effects on convergence and bias of introducing intercept heterogeneity across latent 

classes, a break from the standard approach of intercept invariance in confirmatory factor 

modeling when the mean structure is modeled.



Using convergence rates and percent bias as outcome measures, eight design 

characteristics of confirmatory factor mixture models were manipulated to investigate 

their effects on model performance: N; mixing proportion; number of indicators; factor 

saturation; number of heterogeneous intercepts, location of intercept heterogeneity, 

magnitude of intercept heterogeneity, and the difference between the latent means (∆κ) of 

the two modeled latent classes.  A small portion of the present study examined another 

break from standard practice by having models with noninvariant factor loadings.

Higher rates of convergence and lower bias in the parameter estimates were found 

for models with intercept and/or factor loading noninvariance than for models that were 

completely invariant.  All manipulated model conditions affected convergence and bias, 

often in the form of interaction effects, with the most influential facets after the presence 

of heterogeneity being N and ∆κ, both having a direct relation with convergence rates and 

an inverse relation with bias magnitude.  The findings of the present study can be used to 

some extent to inform design decisions by applied researchers, but breadth of conditions 

was prioritized over depth, so the results are better suited to guiding future 

methodological research into confirmatory factor mixture models.  Such research might 

consider the effects of larger Ns in models with complete invariance of intercepts and 

factor loadings, smaller values of ∆κ in the presence of noninvariance, and additional 

levels of loading heterogeneity within latent classes.
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Chapter 1

Introduction

Overview of mixture models

Mixture modeling is becoming an increasingly useful tool in applied research 

settings.  At the most basic end of the continuum, such methods might be used to 

determine whether a single univariate data set arose from one population or from a 

mixture of multiple populations differing in their univariate distributions (e.g., mean 

and/or variance).  More advanced applications of mixture modeling are used to assess 

potential mixtures of populations that have different multivariate distributions (e.g., mean 

vectors and/or covariance matrices).  Mixture analyses can even be conducted for 

samples in which mixtures are hypothesized to exist as the result of sampling from 

multiple populations differing in latent variable distributions.  In all cases, the question of 

mixtures may be regarded as a question about parameter invariance throughout the data.

Before proceeding further into details about mixture analyses, a definition of the 

term mixture analysis should be developed.  In a manner of speaking, any sample that is 

made up of observations from two or more populations can be thought of as a mixed 

sample.  In ANOVA, for example, the available information about population 

membership is used to estimate a mean for each population represented in the sample for 

the purpose of statistically testing the invariance of population means.  Advanced 

multisample latent variable analyses are commonly used in construct validation studies to 

test the invariance of factor structure across known populations of interest and in test 
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validation settings in which test items themselves are assessed for differential item 

functioning across multiple populations.

When population membership is not known (or not made available) a priori, or 

when it is not even known whether a mixture of populations exists in a sample, similar 

statistical questions can be addressed, but the analyses are more complicated.  It is in 

such situations that a mixture analysis is called upon.  A mixture analysis is therefore an 

analysis that estimates parameters for a given number of populations hypothesized to 

have contributed to a single sample, without the availability of a classification variable or 

other such a priori information about population membership with which to sort the data.

Latent profile analysis (see Gibson, 1959), for example, utilizes patterns in

continuous variables to infer the existence of multiple populations in a suspected data 

mixture and is thus a variation of traditional cluster analysis.  Latent class analysis (see 

Dayton, 1999; McCutcheon, 1987) seeks to identify whether response patterns within 

categorical data are consistent with the presence of multiple populations (latent classes), 

each giving rise to a distinct response set in the data.  Data-model fit indices (e.g., χ², 

AIC, BIC) allow for model comparison/selection and parameter invariance assessment, 

and the membership of individual cases in each latent class may be assessed 

probabilistically.

Models in item response theory (IRT) posit that individual differences along 

continuous latent variables are responsible for patterns in categorical item responses.  The 

latent variables are typically used to represent cognitive factors (e.g., ability, attitude, 

etc.), and the measured variables are the observable manifestations of those latent 

variables.  An example of mixture modeling applied in an IRT framework is the work by 
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Mislevy and Verhelst (1990), who expounded a general method for the probability of 

examinees' response vectors xi that accommodated the possibility of J latent solution 

strategy classes (each occurring with probability φj) with differing Rasch model item 

parameters αααα:

∑ ∫
=

==
J

1j
ijjijjijijiji θηθαθxηφαx d)|(g),1,|Pr(φ),,|Pr( φφφφ (1)

where φφφφ indicates solution strategy, φ contains strategies’ probabilities of usage, and ηηηη
contains parameters specific to subjects using each strategy.  By using examinee 

responses to create one class of apparent guessers and applying a Rasch model to a group 

of people who seemed to have made a legitimate attempt at responding correctly to the 

items, the authors employed a mixture model and improved the fit of the model, relative 

to applying a single-population Rasch model to the data.

Confirmatory factor mixture models

With continuous measured variables, confirmatory factor analysis (CFA) methods 

allow for the assessment of models positing underlying continuous latent factors.  For the 

single-population (i.e., unmixed) CFA model, the ith person’s vector of values, xi, on the 

p manifest variables of the m factors, is the function

xi = ii δξΛτ ˆˆˆˆ ++  , (2)

where τ̂ is a p x 1 vector of variable intercept terms, values on the theoretical latent 

variable hypothesized to cause the manifest variables are contained in the m x 1 vector 

iξ̂ , the unstandardized slope of the theoretical regression of x on ξ (i.e., the factor 

loadings) are contained in the p x m matrix ,Λ̂ and iδ̂  is a p x 1 vector of residuals for the 

ith individual.  For this general CFA model, the first moment implied by the model is
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µ̂  = E[xi] = κΛτ ˆˆˆ + , (3)

where κ̂ is the m x 1 vector of factor means κ̂( is a scalar if there is only one factor).  The 

second moment implied by the model is

])'ˆ)(ˆ[(E µxµx −− ii = Σ̂ = ΘΛΦΛ ˆ'ˆˆˆ + , (4)

where Φ̂  is the m x m factor variance-covariance matrix andΘ̂ is the p x p variance-

covariance matrix of residuals ).ˆ(δ

Assuming multivariate normality (specifically, p-variate normality), parameters in 

ττττ, κκκκ, ΛΛΛΛ, ΦΦΦΦ, and ΘΘΘΘ in the single-population model are estimated in the full sample by 

maximizing the likelihood function

[ ]∏
=

−−− −−−
N

i
ii

p

1

12/12/ )ˆ(ˆ)'ˆ)(5.(exp|ˆ|)π2( µxΣµxΣ , (5)

which is the product across observations of each observation’s manifest variable values 

(xi) entered into the p-variate normal distribution with model-implied mean µ̂ (Equation 

3) and model-implied variance Σ̂  (Equation 4).  This maximization is equivalently 

accomplished using the maximum likelihood fit function F, where

)ˆ(ˆ)'ˆ(]||ln)ˆtr(|ˆ|[lnF̂ 11 µmΣµmSΣSΣ −−+−−+= −− p , (6)

expressed using summary statistics in the vector m of observed means and matrix S of 

observed variances and covariances (Bollen, 1989).  For models across J populations for 

which population membership is known a priori, parameters in all J subsamples’ 

respective matrices are estimated by maximizing the likelihood function,

[ ]∏∏
= =

−−− −−−
J

j

n

i
jijjij

p

1 1

12/12/
j

)ˆ(ˆ)'ˆ)(5.(exp|ˆ|)π2( µxΣµxΣ , (7)
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or equivalently via the multisample maximum likelihood fit function, G (Equation 8) 

[ ] [ ]{ }∑
=

−− −−+−−+


=
J

j
jjjjjjjjj

j pN
n

1

11 )ˆ(ˆ)'ˆ(||ln)ˆtr(|ˆ|lnĜ µmΣµmSΣSΣ . 

If one believes a mixture exists at the latent variable level, that is, that patterns in 

the measured variables reflect a mixture of multiple subpopulations differing in latent 

mean, latent variance, and/or latent-to-measured variable relations, then techniques 

combining mixture modeling with continuous latent variable methods become necessary.  

Such a situation arose, for example, almost four decades ago when French (1965) learned 

from participants that different solution strategies might have been used in achievement 

test responses he had factor analyzed as coming from a single population.  Using follow-

up questions about the solution strategies participants had employed, he divided 

participants into groups and found support for the hypothesis that different factor 

structures were operating for the different solution strategies.  In this manner, French first 

established potential subpopulations and then tested for model and parameter invariance.

When multiple populations are believed to underlie the data but cannot be 

distinguished in the data a priori, then a generalized confirmatory factor mixture model 

(GCFMM) can be applied.  Because we do not know which cases came from which 

populations (or even if there are multiple populations), we must evaluate each case in the 

context of each of the J hypothesized populations.  For each of these hypothesized 

populations, there is a set of model parameters (i.e., ,ˆ jτ ,ˆ jκ ,ˆ
jΛ ,ˆ

jΦ )ˆ
jΘ to be 

estimated, along with J – 1 mixing proportions.  Supposing there are two populations 

believed to underlie the data, all of these quantities are estimated simultaneously by 

maximizing the product across all observations of
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      Li = φLi1 + (1 – φ)Li2 , (9)

where the likelihoods in Equation 9 are

Li1 = f(xi | ,ˆ 1τ ,ˆ 1κ ,ˆ
1Λ ,ˆ

1Φ )ˆ
1Θ (10)

and

           Li2 = f(xi | ,ˆ 2τ ,ˆ 2κ ,ˆ
2Λ ,ˆ

2Φ )ˆ
2Θ . (11)

The probability of all observations, assuming independence, becomes

∏ ∑
= =




 ϕ
N

i j
jjjjjij f

1

2

1

)ˆˆˆˆˆ|( Θ,Φ,Λ,κ,τx , (12)

or

( ) ( )[ ] .)ˆ(ˆ) 'ˆ) (5.(e x pˆ)π2(
1

2

1

12/1
2/∏ ∑

= =

−−−





 −−−ϕ

N

i j
jijjij

p
j µxΣµxΣ , ( 1 3 )

w h e r e  

jjjj κΛτµ ˆˆˆˆ += ( 1 4 )

a n d

jjjjj Θ'ΛΦΛΣ ˆˆˆˆˆ += . ( 1 5 )

N o t e  t h a t  i n  a d d i t i o n  t o  t h e  s t a n d a r d  c o n f i r m a t o r y  f a c t o r  a n a l y s i s ,  t h e  m i x t u r e  

m o d e l  d e p i c t e d  i n  E q u a t i o n  1 3  i n c o r p o r a t e s  a n  a n a l y s i s  o f  t h e  f a c t o r  m e an  s t r u c t u r e .   T h i s  

i s  a  n e c e s s a r y  f e a t u r e  o f  a  l a t e n t  v a r i a b l e  m i x t u r e  m o d e l ,  b e c a u s e  a  l a t e n t  v a r i a b l e  

m i x t u r e  o f  p o p u l a t i o n s  c a n n o t  b e  a n t i c i p a t e d  t o  b e  d e t e c t e d  i f  i n  e a c h  p o p u l a t i o n ,  a l l  

m a n i f e s t  v a r i a b l e s  i n  t h e  m o d e l  h a v e  t h e  s a m e  m e a n s .   F o r  m i x t u r e m o d e l i n g ,  a s  i s  t h e  

c a s e  w h e n  p o p u l a t i o n  m e m b e r s h i p  i s  k n o w n  a  p r i o r i,  t h e  e s t i m a t i o n  o f  t h e  m e a n  s t r u c t u r e  

i n v o l v e s  a n  i n d e t e r m i n a c y  t h a t  i s  t y p i c a l l y  r e s o l v e d  b y  c o n s t r a i n i n g  t h e  m e a n ( s )  o f  t h e  

f i r s t  p o p u l a t i o n ’ s  f a c t o r ( s )  t o  0 .   A l s o  l i k e  t h e  n o n m i x t u re  s i t u a t i o n ,  t h e  i n t e r c e p t s  a n d  
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factor loadings are by convention constrained to be invariant across populations in a 

mixture model when the mean structure is analyzed.

Various restrictions on the CFA mixture model yield different types of mixture 

tests.  Restricting the corresponding factor means, factor variances, and factor 

covariances to be equal across populations tests a mixture of indicator covariance patterns 

among the populations.  In this manner, the mixture analysis is essentially a 

multipopulation CFA but with unknown populations.  To test for a mixture at the latent 

variable level, the factor loadings are fixed to be equal across populations while the factor 

means, factor variances, or both are freely estimated (along with the manifest variable

error variances).  Note that with only the factor means freely estimated across 

populations, the mixture analysis is basically a structured means model but with unknown 

population membership for the observations (see e.g., Hancock, 2004).

General structural equation mixture models

Equation 13 is a CFA-specific version of the following general formula for a J-

population latent variable mixture model:

( ) ( ) .)ˆ(ˆ)'ˆ)(5.(expˆ)π2(
1 1

12/1
2/∏ ∑

= =

−−−







 −−−ϕ
N

i

J

j
jijjij

p
j µxΣµxΣ (16) 

For confirmatory factor analysis, jΣ̂ is replaced per Equation 15, and jµ̂ is replaced per 

Equation 14 in order to give Equation 13.  For measured-variable path analysis (MVPA) 

and latent-variable path analysis (LVPA), the substitutions for the model-implied mean 

vector are different, and for the model-implied variance-covariance matrix, the 

substitutions are different and quite a bit more complicated.
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Measured-variable path analysis mixture models.  For MVPA mixture models, the 

means of the t exogenous variables (i.e., variables modeled to cause other variables in the 

model without themselves modeled to be caused by any variables) are modeled to be the 

intercepts.  The w endogenous variables (i.e., variables that are modeled to be caused by 

one or more variables) are modeled as a function of the exogenous variables and 

potentially as a function of the other endogenous variables,

yi = ijijijj εyBxΓτ ˆˆˆˆ +++ , (17)

where jB̂ is a w x w matrix of the effects of the endogenous variables on each other, jΓ̂

is a t x w matrix of the effects of the exogenous variables on the endogenous variables in 

the model, and  ijε̂ is the model-implied w x 1 vector of error variances for the 

endogenous variables.  The model-implied mean vector for the endogenous variables is 

therefore 

  E[y] = yjµ̂ = jj τBI ˆ)ˆ( 1−− + (I – xjjj µΓB ˆˆ)ˆ 1− , (18)

where I is the identity matrix.  The data vector in the general mixture equation, although 

labeled here with “x”, would contain values for the y-variables and for the x-variables.  

With the y-values appearing first in the column vector and the x-values below them, the 

model-implied mean vector would first have the values computed per Equation 16 

followed by the sample means of the x-variables.

For MVPA mixture models, the p x p model-implied variance-covariance 

matrix, jΣ̂ , where p = t + w, and where

jΣ̂ = ])'ˆ)(ˆ[(E jiji µxµx −− , (19)
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can be divided into four submatrices, each of which can be computed separately from the 

other three.  The upper left (UL) submatrix is the w x w model-implied variance-

covariance matrix for just the endogenous variables, and is computed as

           UL ≡ jjjjjjj ΘBIΨΓΦΓBI ˆ')ˆ)(ˆ'ˆˆˆ()ˆ( -11 +−+− − , (20)

where jΨ̂ , is the w x w variance-covariance matrix of the errors, ijε̂ (Jöreskog & Sörbom, 

1988).  The upper right (UR) submatrix is a w x t matrix of covariances between the 

endogenous variables and the exogenous variables, the equation for which is

      UR ≡ jjj ΦΓBI ˆˆ)ˆ( 1−− . (21)

The lower left (LL) submatrix is simply the transpose of the upper right submatrix or

      LL ≡ ')ˆ('ˆˆ -1
jjj BIΓΦ − . (22)

The matrix jΦ̂ is the t x t variance-covariance matrix of the exogenous variables, making 

it equal to its transpose and also making it the only quantity in the lower right (LR) 

submatrix of the overall variance-covariance matrix

     LR ≡ jΦ̂ . (23)

Each of these submatrices is arranged as described in one p x p matrix to form the model-

implied variance-covariance matrix to be used in the general equation for MVPA mixture 

models.  Recall that as the parameters in the model-implied mean vectors and the model-

implied variance-covariance matrix are being estimated for each of the J populations, the 

mixing proportions are also being estimated in the iterative process of maximizing the 

likelihood function of the data.

Latent-variable path analysis mixture models.  In LVPA mixture analysis, the 

exogenous factors have multiple manifest indicators while being modeled to cause one or 
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more endogenous factors, which themselves have multiple manifest indicators.  

Exogenous factors may covary amongst themselves, endogenous factors may cause other 

endogenous factors, and the disturbances of the endogenous factors may covary.  If a 

mixture model is to be estimated, then Equation 16 can again be called upon, with the 

appropriate substitutions for jµ̂ and jΣ̂ in order to estimate the parameters for each of the 

J populations and to estimate the mixing proportions.

The model-implied data vector for the manifest indicators of the exogenous 

factors is computed as per Equation 2, while the model-implied means of the exogenous 

factors’ indicators are computed as per Equation 3.  The model-implied data vector for 

the manifest indicators of the endogenous factors is computed as

ijjyjyji εηΛτy ˆˆˆˆ ++=  , (24)

where jη̂ is the w x 1 model-implied vector of values on the endogenous latent variables, 

computed by

ijijjijjij ζηBξΓαη ˆˆˆˆˆˆˆ +++=  , (25)

where jα̂ is the w x 1 vector of intercepts for the endogenous factors and ijζ̂  is the w x 1 

model-implied vector of disturbances (errors) for the endogenous latent variables.  The 

model-implied mean vector for the y-variables is

jjyjyj η+= κΛτµ ˆˆˆˆ  , (26)

where jηκ̂  is the model-implied mean vector of the endogenous latent variables, 

computed as

jjjjjj ξ
−−

η −+−= κΓBIαBIκ ˆˆ)ˆ(ˆ)ˆ(ˆ 11  . (27)
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The model-implied variance-covariance matrix is similar in form to that of 

MVPA mixture modeling in that the p x p matrix can be considered in four distinct 

submatrices: variance-covariance matrix for the endogenous variables (UL); the 

covariances between the endogenous variables and the exogenous variables (UR); the 

transpose of that matrix (LL); and the variance-covariance matrix of the exogenous 

variables (LR).  The UL submatrix,

    UL ≡ jyjjjjjjjyj ε
− +−+− ΘΛ'BIΨΓΦΓBIΛ ˆ'ˆ)ˆ)(ˆ'ˆˆˆ()ˆ(ˆ -11 , (28) 

incorporates multiple non-unity factor loadings for the endogenous factor by 

premultiplying the main term of the equation by yjΛ̂ and postmultiplying by its transpose 

(Jöreskog & Sörbom, 1988).  For the upper right submatrix, endogenous and exogenous 

variables are crossed, so instead of using yjΛ̂ and its transpose, we use yjΛ̂ with the 

transpose of the loadings of the exogenous factor indicators,

 UR ≡ 'ˆˆˆ)ˆ(ˆ 1
xjjjjyj ΛΦΓBIΛ −− , (29)

the transpose of which gives the lower left submatrix,

LL ≡ 'ˆ')ˆ('ˆˆˆ -1
yjjjjxj ΛBIΓΦΛ − . (30)

The lower right submatrix, the model-implied variance-covariance matrix for the 

exogenous variables, is identical to jΣ̂ in CFA,

       LR ≡ jxjjxj δ+ΘΛΦΛ ˆ'ˆˆˆ . (31)

Implementation issues in continuous latent variable mixture modeling

To date, the critical issues of model identification and parameter estimation have 

not been explored extensively for continuous latent variable mixture analyses.  Primary 

attention has been given only to a highly restricted form of GCFMM, that of the 
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generalized growth mixture model (GGMM; Muthén, 2001).  Traditional latent growth 

curve models evaluate longitudinal change in a measured variable in terms of specific 

growth components.  Linear models, for example, typically express the amount of the 

variable at each time point as a function of a latent initial amount and a latent growth rate, 

where observations are likely to differ in their amounts of these latent factors.  With 

regard to the less restricted GCFMM, however, very little methodological or applied 

work has been done to date.  Such models appear to present unusually difficult problems 

regarding model identification, solution convergence, and parameter accuracy.

In a recent unpublished investigation, Lubke, Muthén, and Larsen (2002) 

conducted a Monte Carlo study in an attempt to investigate these problems and to 

develop potential remedies.  These authors simulated data for eight measured variables 

all loading on a single factor, where the data were a mixture of three latent classes (φ1 = 

.4, φ2 = .3, and φ3 = .3).  The factor loadings were constrained to be equal across classes 

as were the error variances.  The researchers varied the number of classes in the latent 

mixture model fit to the data, the number of intercepts that were free to vary across 

classes (zero, two, four, or eight out of eight), and the percentage of observations out of N

= 5000 for which the true group membership was included in the analysis.  Their results 

demonstrated that relative to a model of complete invariance, the presence of at least two 

noninvariant item intercepts yields solutions that have much better parameter recovery 

and greater efficacy at placing observations into their correct classes.  They also found 

that using prior knowledge of group membership improved the accuracy of parameter 

estimates.
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Manipulation of model conditions yielded useful results in the above study, but 

several potentially influential design characteristics were held constant, so the results are 

somewhat limited.  Simulation studies have found that convergence rate and parameter 

recovery in single-population CFA models are affected by sample size, the number of 

indicators, and the magnitude of the loadings (Gagné & Hancock, 2002; Marsh, Hau, 

Balla, & Grayson, 1998).  These conditions may also affect the performance of CFA 

mixture models, as could the mean structure (κκκκ and/or ττττ) and the mixing proportions (φ).

As there are several design characteristics of confirmatory factor mixture models 

that influence convergence and parameter estimate accuracy, a thorough, systematic 

treatment of all of them in one study would be unwieldy.  The present study is therefore 

meant to expand the Lubke et al. (2002) study by exploring more design characteristics 

than they did but varying each by incorporating only two or three levels.  The cursory 

manipulation of design characteristics in the present study limits its capacity to assist 

applied researchers in making design decisions, as does the fact that most of the design 

characteristics manipulated herein are not actually under the control of an applied 

researcher.  Such assistance, however, is but a secondary purpose of the present study.  

The present study primarily seeks to inform the direction of future research that might 

explore fewer design characteristics but explore them in greater depth.
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Chapter 2

Method

Primary design: Partial invariance of intercepts

Before describing the conditions that were manipulated in the present study, the 

design characteristics that were held constant will be presented.  As was the case in the 

Lubke et al. (2002) study, only single-factor models were used.  The factor variance in 

each data-generating population was 1, but for model estimation, the factor variance was 

neither fixed to 1 nor constrained equal across classes.  The number of latent classes was 

also not varied, but holding it at two in the present study offered some variability relative 

to the three latent classes modeled by Lubke et al.

The sample size of 5000 used in the Lubke et al. (2002) study is reasonable for 

simulating large-scale assessments, but there is strong potential for the application of 

GCFMM to situations involving smaller sample sizes.  The present study used simulated 

data for whole samples of 200, 500, and 1000 observations to investigate such situations.  

The number of manifest variables (p) in the cells of the design was varied at four and 

eight for the lone factor, but within each cell, the number of indicators of the factor was 

constant for the two latent classes.  Among the design characteristics manipulated in the 

present study, N and p were the only characteristics which, in an applied setting, are 

under the control of the researcher to a functional extent.

The magnitudes of the factor loadings (λ) were combinations of .8 and .4, which 

differed within and across latent classes, depending on the cell.  Three within-cell loading 

combinations (lc) were used: 1) 100% λ = .4 (lc = 4); 2) 50% λ = .8, 50% λ = .4 (lc = 6); 
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and 3) 100% λ = .8 (lc = 8).  When both .8 and .4 were used in the same factor, 

corresponding loadings across classes were equal (e.g., with eight indicators, lc = 6 had 

λ11 through λ41 = .8 in both classes and λ51 through λ81 = .4 in both classes).  The error 

variances were .36 for indicators that had factor loadings of .8, and the error variances 

were .84 for indicators with λ = .4.  For factor identification purposes, the loading of the 

second indicator was fixed to its true value in all cells. (Note: This does not artificially 

improve parameter recovery; fixing the loading to any other value would necessitate 

rescaling all parameter values in order to examine bias which would then yield the same 

values of proportional bias.)

Three conditions of intercept noninvariance were investigated: completely 

invariant intercepts; one noninvariant intercept; and two noninvariant intercepts.  Lubke 

et al. (2002) found that relative to a model with completely invariant intercepts, 

parameter recovery improved appreciably when there were two noninvariant intercepts 

across the populations, but having more than two generally yielded slight or no 

improvement beyond that found with two.  By examining the effects of having only one 

intercept free to vary, the present study made an effort to clarify whether the gain in 

parameter accuracy is a function of increasing the number of free intercepts or simply a 

function of having any free intercepts.  When the intercepts were homogeneous across 

classes, the values were arbitrarily chosen to be {2 0 4 5} and {6 0 7 2 1 4 8 3} for the 

cells with four and eight indicators, respectively.

For the heterogeneous intercept conditions, two additional variables were 

manipulated: magnitude of the intercept difference across classes (standardized 

difference of 1.0 and 1.5) and for lc = 6, the indicators for which the intercepts differed 
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across classes.  With one heterogeneous intercept and all loadings equal, τ1 was higher in 

the second latent class.  For lc = 6, the pth indicator had a different loading than half of 

the other indicators; this combination was therefore run once with τ1 higher in the second 

class and a second time with only τp higher in the second latent class.  When two 

intercepts differed across classes, both τ1 and τp were higher in the second latent class, 

and two combinations of magnitude of heterogeneity were used: 1.0/1.0 and 1.5/1.5.

The standardized difference between the latent means (∆κ) was manipulated, and 

it had two levels: 2.0 and 2.5.  These two levels of latent mean difference, when 

multiplied through the factor loadings, contributed a range of additional standardized 

differences in the observed means from .8 (λ = .4, ∆κ = 2.0) up to 2.0 (λ = .8, ∆κ = 2.5).  

The mixing proportion (φ) was varied in the present study to be .50 or .70.  The class 

membership of each observation was known, but that information was not incorporated 

into the analyses, so the analyses were conducted as though the presence and potential 

nature of a mixture was not known, except for the accurate “hypothesis” that two 

populations underlie the data.  The eight manipulated model conditions (N, p, lc, number 

of heterogeneous intercepts, ∆τ, location of intercept heterogeneity, ∆κ, and φ) were 

crossed to the extent possible, which resulted in a total of 408 cells.

Secondary design: Partial invariance of factor loadings

An additional 12 cells were incorporated into the design to investigate partial 

invariance of factor loadings.  It is standard practice to constrain loadings to be equal 

across classes when the mean structure is modeled (Bollen, 1989), but the effects of 

having partial invariance in the factor loadings has not been explored in mixture models.  

To begin to address this issue, a fourth loading combination was included in the design: 
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one class with a factor with 100% λ = .8 and the other class with a factor with 75% λ = .8 

and 25% λ = .4.  This combination created asymmetry in the factor structure between the 

classes, so .50 was the only value of φ used for these cells.  When indicators have 

heterogeneous loadings across classes, the issue of intercept invariance is not meaningful, 

so a set of intercepts was chosen such that τ1 and τp differed across classes by 1.5 

standard deviations.  The remaining design characteristics (N, p, and ∆κ) had all of and 

only their levels described for the primary study.

Description of outcome measures

Convergence.  With an upper limit of 20,000 replications, enough replications 

were attempted for each cell to obtain 500 properly converged replications.  A replication 

was considered properly converged if it both converged to a solution according to the 

program’s default convergence criterion and had parameter estimates that were within the 

range of possible values (e.g., no negative variances).  Convergence was measured by the 

number of replications needed to acquire 500 properly converged replications (C), with 

failure to achieve 500 after 20,000 replications described as C > 20,000.  For cells with C

> 20,000 but at least 200 proper solutions, the number of proper solutions was 

specifically reported instead of C, and bias was computed but was not included in 

detailed accounts of bias behavior.  A stop criterion was used such that after every 2000 

replications, if the percentage of properly converged solutions was statistically 

significantly less than 1% (p < .025), then the simulation was ended for that cell.  Such 

cells were designated to have C > 20,000, and it was inferred that they would not have 

reached the 200/20000 designated for bias computation.
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Bias.  Averaging across the proper solutions within a cell, the accuracy of the 

parameter estimates in each cell was assessed by computing the percent bias,

           percent bias = 100(average estimate – parameter) / parameter. (32)

Bias in the loading, the error variance, and the intercept for the first and pth indicators of 

the factor in each latent class was evaluated, as was bias in the variance of the factor in 

each class, the difference between the means of the two factors, and the mixing 

proportion.  Positive values for percent bias occurred for estimates that were above the 

true value by the percent magnitude listed, whereas negative values for percent bias 

indicate that the average estimate was the percent magnitude below the true value.

Computer software and programs

Two statistical software packages were used for the simulations, SAS (v8.1) and 

Mplus (v2.02; Muthén & Muthén, 1999), in a four-stage process.  Stage 1 was the 

generation of the mixed sample, which was done in SAS.  Data were drawn from each of 

two multivariate normally distributed populations in accordance with the mixing 

proportion for a particular cell.  Intercepts and applicable contributions to the scores of 

the factor mean were then added to the values.  The cases were then combined into a 

single sample and exported out of SAS to Mplus for stage 2, which was the mixture 

analysis itself.  The models in stage 2 were always the correct model in terms of factor 

structure, with all manifest variables loading onto a single factor, and in terms of 

intercept heterogeneity, with the number of intercepts free to differ across classes in the 

computer program being the same as the number of noninvariant intercepts across the 

data-generating populations.
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In stage 3, SAS was used to obtain the quantities of interest from the Mplus 

output.  Stages 1-3 were repeated until any one of the aforementioned conditions for 

simulation termination was met.  In the final stage, SAS was used to compute the 

averages and variances across the successful replications in each cell and then to export 

that information, along with the convergence information, into text files.  Appendix A 

contains an example of a SAS program used in this study, the supporting batch file for 

the SAS code, and an example of Mplus code used for conducting the mixture analyses.
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Chapter 3

Results

Data regarding convergence, bias, and standard errors are provided for the 72 

cells with homogeneous intercepts, the 12 cells with heterogeneous intercepts and 

heterogeneous loadings, and then the 336 cells with only heterogeneous intercepts.  

Convergence data are discussed all in one section, but the bias information is separated 

into three sections.  Convergence data have their own tables, while percent bias data 

tables include or are followed by tabulated standard errors of the corresponding 

parameters.

For the presentation of bias, no formal cutoffs are used to label bias as high, low, 

or anything in between.  In general, estimates that contained 10% bias or more in either 

direction were considered definitely biased, and biases less than 3% in magnitude were 

regarded as being quite small.  The 10% “cutoff” is applied casually, but the 3% level has 

an important implication: The patterns described herein of the changes in percent bias as 

a function of the design characteristics are not assumed to hold once the magnitude of the 

bias drops below 3%.  Some of the trends held below 3%, but quite a few yielded to 

erratic or indiscernible patterns.

For exhibition purposes, standard errors are presented for each of the parameter 

estimates.  For the cells with heterogeneous intercepts but homogeneous factor loadings, 

the standard errors for a given parameter estimate are provided in a separate table 

immediately following the bias table for that parameter estimate.  The other cells have the 

standard errors presented in the same table as the bias data.  Bias in the standard errors 
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could not be computed, because true standard errors could not be obtained, so the listed 

standard errors are simply the estimated standard errors, not percent biases.  Except for 

the mixing proportion, the standard errors are the average standard error across the 

successful replications for a given parameter in a given cell.  For the mixing proportion, a 

standard error was not available for each replication, so an empirical standard error was 

directly computed as the variance of the mixing proportion across the successful 

replications in a given cell.

Convergence

Convergence data for the 72 cells in which all intercepts were homogeneous 

across classes can be found in Table 1.  Although C is the primary quantity of interest for 

convergence, most of the cells with homogeneous intercepts did not have a value of C, 

for failing to achieve 500 successful replications in the maximum allotted 20,000 

attempts.  Such cells instead have the attained number of proper solutions tabulated.  A 

distinction is made between cells that had a convergence rate of at least 1% after 20,000 

attempts and those that were stopped from reaching 20,000 attempts for having a 

convergence rate significantly (p < .025) below 1% at a rate checkpoint.  Table 1 

therefore contains numbers in three different type settings.  Standard typeface is used for 

values of C.  Italics are used for the number of successful replications in cells that were 

stopped before 20,000 attempts, with all but one of those cells (p = 4, φ = .7, ∆κ = 2.5, 

and lc = 6 with N = 200) being stopped after 2000 attempts (the one exception ran 6000 

attempts).  For cells that did run the full 20,000 but failed to reach 500 successful 

replications, the number of successful replications is underlined.  For the 12 cells that had 

heterogeneous factor loadings, Table 2 provides convergence information, using the same 
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key for the typefaces as Table 1.  Table 3 contains values of C for the 336 cells that had 

at least one heterogeneous intercept but homogeneous factor loadings.

For the homogeneous intercept cells, convergence rates were very low, with 50 

cells being stopped after 2000 replications (33 of which had 0 successes at that point).  Of 

the 6 cells that were not stopped before reaching 20,000 but failed to reach 500 successes, 

the highest convergence rate was 1.94%.  Fifteen cells did attain 500 replications that had 

a proper solution, including all 12 cells that had four manifest variables loading at .8.  In 

these cells, C ranged from a high of 12,746 (convergence rate = 3.92%) to a low of 794 

(convergence rate = 62.97%).  C had an inverse relation with N and with ∆κ, and a direct 

relation with φ.

For the 12 cells in which factor loadings were heterogeneous across classes and 

two intercepts varied across classes, convergence rates were strongly related to p.  All six 

cells that had eight manifest variables had perfect convergence.  With p = 4 and ∆κ = 2.5, 

all cells reached 500 successes, with CN=200 = 2972, CN=500 = 1945, and CN=1000 = 1522.  

With p = 4 and ∆κ = 2.0, two of the cells ran the full 20,000 replications without reaching 

500 successes, and one had 500 successes but had C = 18764.  The successful cell was, 

curiously, the cell with N = 200.

All 336 cells that had homogeneous factor loadings but at least one heterogeneous 

intercept had 500 successful replications.  The highest value of C was 8489 (convergence 

rate = 5.89%), and only 13 other cells had C > 2000.  The lowest value of C was 500 (i.e., 

perfect convergence), which occurred in 100 cells.  Sample size and C were inversely 

related but for a few exceptions at lc = 6 as C approached 500.  C was also inversely 

related to ∆κ (with a couple of scattered exceptions), ∆τ, and the number of
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heterogeneous intercepts.  Values of C were lower when τp was the lone heterogeneous 

intercept than when τ1 was the lone heterogeneous intercept.  The effect on C of φ was 

inconsistent.

Finally, there was a complex interaction involving p and the location of intercept 

heterogeneity.  When τ1 varied across classes, cells with p = 4 had lower values of C than 

corresponding cells with p = 8, but when τp was heterogeneous (with or without τ1 being 

heterogeneous), lower values of C were found in cells with eight manifest variables than 

in the corresponding cells with four manifest variables.  This interaction was further 

complicated by an interaction with lc: The advantage of p = 4 when τ1 was noninvariant 

was clearly less at lc = 6 than at lc = 4, and at lc = 8, values of C were consistently lower 

in cells with p = 8 than in cells with p = 4, regardless of the location of intercept 

heterogeneity.

Bias in cells with homogeneous intercepts

For the cells with homogeneous intercepts, Tables 4-8 contain data about the bias 

in the estimates of the model parameters and of the mixing proportion, but data are 

presented for only the pairings of p and lc for which there was at least one value of C: p = 

4, lc = 6 and p = 4, lc = 8.  Patterns regarding bias, however, will be discussed only for 

the 12 cells that paired p = 4 with the largest loading combination, because the bias 

estimates for the other pairing are based on averages across a differing number of 

replications (ranging from 9 to 500).  This unfortunately limited the number of potentially 

influential design characteristics to three (N; ∆κ; and φ), but a few patterns were evident.

For the factor loadings, there was relatively little bias, with the magnitude of the 

bias exceeding 3% in only two cells, both of which were for the estimate of the pth
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Table 4: Percent Bias and Standard Errors of λ11 and λp1 in Cells with Homogeneous Intercepts

p φ ∆κ lc N  = 200 N  = 500 N  = 1000
4 .5 2 6 -1.36 -0.02 0.12
4 .5 2.5 6 -0.05 0.17 -0.02
4 .7 2 6 2.36 0.45 -0.12
4 .7 2.5 6 -0.38 0.87 0.03
4 .5 2 8 0.24 0.29 0.22
4 .5 2.5 8 0.41 0.03 0.04
4 .7 2 8 0.10 0.16 0.11
4 .7 2.5 8 0.07 0.11 0.09
4 .5 2 6 .0784 .0455 .0398
4 .5 2.5 6 .0472 .0344 .0256
4 .7 2 6 .0917 .0414 .0331
4 .7 2.5 6 .0490 .0354 .0253
4 .5 2 8 .0523 .0296 .0221
4 .5 2.5 8 .0402 .0248 .0177
4 .7 2 8 .0531 .0388 .0248
4 .7 2.5 8 .0427 .0265 .0185
4 .5 2 6 3.97 1.09 0.45
4 .5 2.5 6 1.37 1.02 0.51
4 .7 2 6 8.75 0.63 0.61
4 .7 2.5 6 0.21 1.33 -0.10
4 .5 2 8 1.01 0.36 0.23
4 .5 2.5 8 0.71 0.47 -0.01
4 .7 2 8 1.01 0.22 0.26
4 .7 2.5 8 0.65 0.33 0.17
4 5 2 6 .0546 .0348 .0372
4 5 5 6 .0467 .0295 .0210
4 7 2 6 .0638 .0355 .0251
4 7 5 6 .0508 .0307 .0217
4 5 2 8 .0471 .0310 .0213
4 5 5 8 .0392 .0250 .0176
4 7 2 8 .0493 .0439 .0235
4 7 5 8 .0437 .0261 .0186

SE λp1

Both classes

λ11

SE λ11

λp1
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Table 5: Percent Bias and Standard Errors of δ11 and δp1 in Cells with Homogeneous Intercepts

p φ ∆κ lc N  = 200 N  = 500 N  = 1000 N  = 200 N  = 500 N  = 1000
4 .5 2 6 -37.04 -54.71 -45.89 11.85 0.61 -0.10
4 .5 2.5 6 -52.05 -28.04 -18.17 -2.36 -1.05 0.18
4 .7 2 6 -30.86 -62.15 -38.72 -10.44 0.01 0.80
4 .7 2.5 6 -35.75 -36.26 -17.47 4.47 -1.53 0.07
4 .5 2 8 -18.05 -8.79 -17.56 1.23 -0.20 0.24
4 .5 2.5 8 -6.47 -5.75 -0.62 0.43 -0.48 -0.54
4 .7 2 8 -24.16 -15.06 -13.97 -1.06 -0.02 -0.39
4 .7 2.5 8 -13.12 -4.34 -0.05 1.08 0.63 -0.68
4 .5 2 6 .1986 .1355 .1803 .1310 .0644 .0597
4 .5 2.5 6 .1187 .1550 .0901 .0913 .0655 .0494
4 .7 2 6 .4719 .1107 .1529 .0899 .0618 .0484
4 .7 2.5 6 .1230 .0876 .0879 .0927 .0728 .0559
4 .5 2 8 .2070 .2304 .1672 .0633 .0370 .0251
4 .5 2.5 8 .1748 .1017 .0548 .0633 .0433 .0330
4 .7 2 8 .1870 .2321 .2154 .0550 .0512 .0312
4 .7 2.5 8 .1852 .1010 .0612 .0720 .0547 .0410
4 .5 2 6 3.29 21.34 36.72 6.30 -0.05 -0.40
4 .5 2.5 6 11.40 12.05 3.37 3.12 0.15 -0.13
4 .7 2 6 35.27 29.73 28.91 0.67 0.88 0.04
4 .7 2.5 6 14.12 3.76 4.36 2.24 0.60 0.38
4 .5 2 8 -16.16 -14.72 -10.07 -0.28 0.39 0.53
4 .5 2.5 8 -6.09 -3.77 -1.41 -1.18 -0.29 -0.21
4 .7 2 8 -23.23 -15.86 -11.00 0.62 0.81 -0.07
4 .7 2.5 8 -7.04 -5.92 -2.33 -0.08 0.24 0.65
4 5 2 6 .3348 .5429 .6170 .0961 .0592 .0504
4 5 5 6 .4465 .3886 .2381 .1022 .0766 .0555
4 7 2 6 1.2147 .6319 .5063 .1589 .0686 .0487
4 7 5 6 .6180 .3048 .2247 .0982 .0826 .0679
4 5 2 8 .2185 .2093 .2026 .0562 .0371 .0253
4 5 5 8 .1790 .0928 .0541 .0619 .0436 .0329
4 7 2 8 .1932 .2363 .2230 .0577 .0440 .0333
4 7 5 8 .2021 .1018 .0537 .0777 .0538 .0415

SE δp1

Class 2Class 1

δ11

SE δ11

δp1
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Table 6: Percent Bias and Standard Errors of τ1 and τp in Cells with Homogeneous Intercepts

p φ ∆κ lc N  = 200 N  = 500 N  = 1000
4 .5 2 6 -59.28 -76.07 -69.46
4 .5 2.5 6 -51.69 -35.72 -19.43
4 .7 2 6 -69.40 -67.65 -55.01
4 .7 2.5 6 -67.57 -40.15 -23.61
4 .5 2 8 -64.51 -57.45 -50.39
4 .5 2.5 8 -33.42 -16.77 -6.68
4 .7 2 8 -70.30 -58.68 -43.22
4 .7 2.5 8 -37.71 -17.09 -8.42
4 .5 2 6 .4002 .2119 .2236
4 .5 2.5 6 .2030 .2050 .1851
4 .7 2 6 .2065 .1692 .1818
4 .7 2.5 6 .2172 .1497 .1348
4 .5 2 8 .2840 .3104 .2795
4 .5 2.5 8 .2702 .2239 .1588
4 .7 2 8 .2255 .2635 .2502
4 .7 2.5 8 .2636 .1580 .1055
4 .5 2 6 -13.92 -15.50 -14.01
4 .5 2.5 6 -10.61 -7.37 -4.02
4 .7 2 6 -15.39 -13.64 -11.14
4 .7 2.5 6 -14.16 -8.08 -4.73
4 .5 2 8 -26.24 -22.96 -20.16
4 .5 2.5 8 -13.52 -6.87 -2.65
4 .7 2 8 -28.35 -23.48 -17.30
4 .7 2.5 8 -15.22 -6.84 -3.39
4 5 2 6 .2532 .1545 .1339
4 5 5 6 .1654 .1378 .1059
4 7 2 6 .1763 .1277 .1089
4 7 5 6 .1922 .1022 .0805
4 5 2 8 .2887 .3105 .2775
4 5 5 8 .2733 .2243 .1586
4 7 2 8 .2181 .2645 .2334
4 7 5 8 .2690 .1588 .1051

SE τp

Both classes

τ1

SE τ1

τp
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Table 7: Percent Bias and Standard Errors of Φ 11 and ∆κ in Cells with Homogeneous Intercepts

p φ ∆κ lc N  = 200 N  = 500 N  = 1000 N  = 200 N  = 500 N  = 1000
4 .5 2 6 -92.93 -88.52 -86.99 106.01 85.45 85.10
4 .5 2.5 6 -80.89 -64.84 -40.98 121.42 97.38 55.18
4 .7 2 6 -93.83 -87.37 -85.54 52.40 75.20 79.73
4 .7 2.5 6 -91.62 -67.23 -48.84 109.15 93.02 77.26
4 .5 2 8 -75.81 -74.36 -72.49 71.12 74.31 76.43
4 .5 2.5 8 -51.26 -30.95 -14.59 77.42 47.37 19.47
4 .7 2 8 -83.34 -79.29 -76.52 71.51 76.28 79.31
4 .7 2.5 8 -64.53 -40.17 -24.88 103.08 70.30 48.67
4 .5 2 6 .4688 .1477 .1627 .2491 .1959 .1520
4 .5 2.5 6 .1527 .2104 .2128 .3171 .2831 .2285
4 .7 2 6 .3082 .1440 .1668 .3163 .1866 .1420
4 .7 2.5 6 .1138 .1702 .1913 .3095 .2832 .2399
4 .5 2 8 .2234 .2572 .2401 .2626 .2172 .1565
4 .5 2.5 8 .3083 .2542 .2006 .3667 .2860 .2084
4 .7 2 8 .1588 .2303 .2023 .2678 .2024 .1526
4 .7 2.5 8 .2545 .2387 .1701 .3908 .3138 .2497
4 .5 2 6 -- -- -- 32.47 50.56 42.11
4 .5 2.5 6 -- -- -- 12.13 0.78 -1.32
4 .7 2 6 -- -- -- 21.06 21.09 5.20
4 .7 2.5 6 -- -- -- 6.70 -7.59 -11.92
4 .5 2 8 -- -- -- 41.10 32.03 22.90
4 .5 2.5 8 -- -- -- 8.34 1.54 0.48
4 .7 2 8 -- -- -- 26.29 12.06 -6.13
4 .7 2.5 8 -- -- -- -9.24 -13.44 -10.96
4 5 2 6 -- -- -- .3654 .2846 .2637
4 5 5 6 -- -- -- .2751 .2202 .1662
4 7 2 6 -- -- -- .2818 .2354 .2365
4 7 5 6 -- -- -- .3048 .2421 .2321
4 5 2 8 -- -- -- .3509 .3576 .3217
4 5 5 8 -- -- -- .3005 .2035 .1119
4 7 2 8 -- -- -- .2920 .3408 .3052
4 7 5 8 -- -- -- .3774 .2663 .2060

SE ∆κ

Class 2Class 1

Φ 11

SE Φ 11

∆κ
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Table 8: Percent Bias and Empirical Standard Errors of φ in Cells with Homogeneous Intercepts

p φ ∆κ lc N  = 200 N  = 500 N  = 1000 N  = 200 N  = 500 N  = 1000
4 .5 2 6 -90.38 -91.38 -90.36 90.38 91.38 90.36
4 .5 2.5 6 -80.25 -64.51 -38.28 80.25 64.51 38.28
4 .7 2 6 -91.02 -89.37 -88.27 212.4 208.5 206.0
4 .7 2.5 6 -86.60 -63.66 -47.04 202.1 148.5 109.8
4 .5 2 8 -81.82 -81.37 -81.32 81.82 81.37 81.32
4 .5 2.5 8 -51.48 -31.37 -13.12 51.48 31.37 13.12
4 .7 2 8 -87.83 -85.83 -82.12 204.9 200.3 191.6
4 .7 2.5 8 -63.41 -39.58 -24.78 147.9 92.35 57.82
4 .5 2 6 .0319 .0773 .0830 .0319 .0773 .0830
4 .5 2.5 6 .1348 .2023 .2076 .1348 .2023 .2076
4 .7 2 6 .0677 .1272 .1106 .0677 .1272 .1106

Empirical 4 .7 2.5 6 .1623 .2551 .2734 .1623 .2551 .2734
SE φ 4 .5 2 8 .1227 .1276 .1227 .1227 .1276 .1227

4 .5 2.5 8 .1999 .2011 .1525 .1999 .2011 .1525
4 .7 2 8 .1253 .1490 .1417 .1253 .1490 .1417
4 .7 2.5 8 .2318 .2540 .2299 .2318 .2540 .2299

Class 2Class 1

φ
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loading when the pth loading was .4.  Bias in the error variances was larger in magnitude 

than in the factor loadings, but only in class 1.  In class 2, there was no bias greater than 

3% in magnitude for the estimates of δ, whereas in class 1, there were six cells that had 

negative bias in excess of 13% in magnitude.  The effect of N on bias was generally 

inverse, but a notable exception occurred when φ = .5 and ∆κ = 2.0, where negative bias 

in δ11 from N = 500 to N = 1000 increased in magnitude from 8.79% to 17.56%.  The 

effect of ∆κ on bias was consistently and strongly inverse.  Bias tended to be larger in 

magnitude in cells with φ = .7 than in cells with φ = .5.

Bias in the estimates of the intercepts was consistently negative, and for τ1, bias 

was generally copious, with five magnitudes in excess of 50%; by contrast, the largest 

magnitude of bias for τp was 28.35%.  Sample size and ∆κ separately had strong inverse 

effects on the magnitude of the bias, and they had an interaction effect: The effect of N

was stronger when ∆κ = 2.5 than when ∆κ = 2.0.  The same effect of φ seen with the bias 

in values of δ occurred for the intercept bias, with the magnitudes being larger for cells 

with φ = .7 than with φ = .5.

The estimates of Φ11 were substantially biased in both classes, with large negative 

biases in class 1, large positive biases in class 2, and no biases below 14% in magnitude.  

Several cells had bias that exceeded 70% in magnitude, with one cell having +103.08% 

bias in the class 2 estimate of the factor variance.  There did not seem to be an effect of N

in cells with ∆κ = 2.0, but when ∆κ = 2.5, bias magnitude clearly decreased as N

increased.  The mixing proportion again had a consistently direct relation with bias 

magnitude.
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For the estimation of ∆κ, the bias magnitudes and the effects of design 

characteristics on them was largely a function of φ.  In cells with φ = .5, bias was 

consistently positive, bias was clearly larger in the cells with ∆κ = 2.0, and bias decreased 

as N increased.  In cells with φ = .7, bias magnitude and changes in it were difficult to 

describe; the reader is simply referred to the relevant portion of Table 7.  Bias in the 

estimation of φ generally was even larger in magnitude than the bias for the factor 

variance.  Sample size interacted separately with ∆κ and with φ, having an inverse 

relation to bias magnitude overall, but with the effect being stronger at the larger values 

of ∆κ and φ.

Bias in cells with heterogeneous factor loadings

Table 9 and Table 10 contain the percent bias and the standard errors for the 

parameter estimates in the 12 cells that had heterogeneous intercepts and heterogeneous 

factor loadings. Among all of the parameter estimates, there were only a few bias 

magnitudes in excess of 3% and only three that exceeded 6% (max = +11.24%).  With 

the biases generally so low, it was difficult to locate a pattern in the change in the bias 

that could not be described as trivial.

Bias in cells with heterogeneous intercepts

The tables for the percent bias of the parameter estimates for the 336 cells in 

which factor loadings were homogeneous while at least one heterogeneous intercept 

varied across classes are not specifically referenced in this chapter, but for exhibition 

purposes, they are presented in Appendix B.  The results are summarized below, with the 

order of presentation for the parameters being: λ11; λp1; δ11; δp1; τ1; τp; Φ11; ∆κ; and φ.  

Within each parameter, a general description of bias magnitudes is provided,
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Table 9: Percent Bias and Standard Errors of Parameter Estimates in Cells with Heterogeneous
Factor Loadings

p φ ∆κ N  = 200 N  = 500 N  = 1000 N  = 200 N  = 500 N  = 1000
4 .5 2 4.52 1.09 0.06 0.59 -1.24 -0.36
4 .5 2.5 2.97 0.62 -0.04 -0.71 -0.02 0.30
8 .5 2 0.98 0.40 0.31 1.36 -0.48 -0.06
8 .5 2.5 1.51 0.32 0.20 -0.10 0.29 -0.18
4 .5 2 .1215 .0749 .0522 .1242 .0691 .0483
4 .5 2.5 .1185 .0713 .0496 .1156 .0664 .0463
8 .5 2 .1091 .0653 .0450 .0885 .0533 .0379
8 .5 2.5 .1072 .0631 .0445 .0849 .0517 .0365
4 .5 2 3.41 1.59 0.73 -7.00 -5.09 -1.63
4 .5 2.5 1.43 0.38 -0.18 -4.28 -1.51 -1.28
8 .5 2 0.29 0.37 0.21 0.29 -1.50 -0.53
8 .5 2.5 0.78 0.48 0.37 -0.11 0.02 -0.13
4 .5 2 .1170 .0723 .0506 .1433 .0803 .0553
4 .5 2.5 .1153 .0696 .0483 .1325 .0746 .0523
8 .5 2 .1039 .0624 .0435 .1174 .0698 .0494
8 .5 2.5 .1028 .0614 .0432 .1107 .0681 .0477
4 .5 2 1.01 0.40 0.53 -6.11 -1.17 0.37
4 .5 2.5 -3.03 -0.86 -0.51 -2.81 -0.91 -0.23
8 .5 2 -2.79 -0.15 -0.19 -1.57 -0.76 0.10
8 .5 2.5 -3.16 -0.46 0.21 -3.67 -1.77 -1.24
4 .5 2 .0801 .0498 .0351 .0976 .0585 .0406
4 .5 2.5 .0754 .0471 .0330 .0912 .0539 .0384
8 .5 2 .0698 .0421 .0300 .0720 .0438 .0312
8 .5 2.5 .0639 .0406 .0288 .0663 .0417 .0292
4 .5 2 -0.85 -0.49 -0.93 -2.21 0.21 -0.17

δp1 4 .5 2.5 -2.37 -0.81 -0.62 -4.58 -1.16 -0.67

8 .5 2 -2.50 -1.40 -1.27 -2.52 -1.08 -0.45
8 .5 2.5 -2.89 -1.41 0.13 -3.14 -0.93 -0.78
4 .5 2 .0740 .0470 .0332 .1387 .0815 .0571

SE δp1 4 .5 2.5 .0728 .0455 .0321 .1270 .0785 .0560

8 .5 2 .0632 .0394 .0276 .1253 .0786 .0558
8 .5 2.5 .0601 .0382 .0275 .1191 .0771 .0546

λp1

SE λp1

δ11

SE δ11

Class 1 Class 2

λ11

SE λ11



35

Table 10: Percent Bias and Standard Errors of Parameter Estimates in Cells with Heterogeneous
Factor Loadings

p φ ∆κ N  = 200 N  = 500 N  = 1000 N  = 200 N  = 500 N  = 1000
4 .5 2 3.47 0.46 0.11 0.41 0.77 0.01

τ1 4 .5 2.5 2.97 0.59 0.11 1.94 0.29 -0.04
8 .5 2 0.09 0.05 0.07 -0.12 0.17 0.09
8 .5 2.5 0.08 0.09 0.01 0.13 -0.02 0.04
4 .5 2 .1762 .0963 .0649 .3345 .1864 .1294

SE τ1 4 .5 2.5 .1534 .0848 .0584 .3627 .2055 .1424
8 .5 2 .1435 .0813 .0561 .2440 .1411 .0984
8 .5 2.5 .1308 .0767 .0532 .2681 .1574 .1106
4 .5 2 0.64 0.06 0.00 1.32 0.45 -0.08

τp 4 .5 2.5 0.83 0.19 0.07 1.13 0.33 0.18
8 .5 2 0.13 0.05 0.09 0.21 0.33 0.18
8 .5 2.5 0.08 0.16 0.03 0.10 0.08 0.01
4 .5 2 .1579 .0877 .0598 .3524 .1960 .1339

SE τp 4 .5 2.5 .1385 .0787 .0543 .3763 .2131 .1493
8 .5 2 .1289 .0748 .0518 .2884 .1687 .1185
8 .5 2.5 .1193 .0717 .0500 .3176 .1922 .1346
4 .5 2 11.24 0.48 -1.05 5.45 -0.85 -3.03
4 .5 2.5 5.68 -0.32 0.12 -0.41 -0.61 -0.45
8 .5 2 0.81 0.15 0.21 -1.43 -0.08 -0.36
8 .5 2.5 -1.27 0.52 -0.31 -0.96 -0.25 -0.60
4 .5 2 .2805 .1630 .1124 .2699 .1546 .0918
4 .5 2.5 .2681 .1580 .1107 .2161 .1317 .0925
8 .5 2 .2484 .1495 .1045 .1874 .1184 .0833
8 .5 2.5 .2373 .1477 .1029 .1853 .1158 .0809
4 .5 2 -- -- -- -1.88 -2.37 -1.69
4 .5 2.5 -- -- -- -1.95 -0.54 -0.32
8 .5 2 -- -- -- -1.05 0.13 -0.24
8 .5 2.5 -- -- -- -0.08 -0.21 0.04
4 .5 2 -- -- -- .2129 .1213 .0841
4 .5 2.5 -- -- -- .1954 .1161 .0817
8 .5 2 -- -- -- .1869 .1139 .0799
8 .5 2.5 -- -- -- .1804 .1125 .0790
4 .5 2 4.50 0.52 -0.22 -4.50 -0.52 0.22
4 .5 2.5 2.16 0.15 0.07 -2.16 -0.15 -0.07
8 .5 2 0.12 0.25 0.21 -0.12 -0.25 -0.21
8 .5 2.5 0.14 0.15 0.06 -0.14 -0.15 -0.06
4 .5 2 .0813 .0315 .0136 .0813 .0315 .0136
4 .5 2.5 .0533 .0145 .0105 .0533 .0145 .0105
8 .5 2 .0272 .0147 .0098 .0272 .0147 .0098
8 .5 2.5 .0209 .0120 .0079 .0209 .0120 .0079

∆κ

SE ∆κ

φ

SE φ

Class 1 Class 2

Φ 11

SE Φ 11
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followed by a more detailed account of changes in bias as a function of interactions 

among the design characteristics.

λ11.  The percent bias for the first factor loading was generally positive, with no 

negative bias exceeding 1%.  Bias was largest (above +50% in some cells) when the 

factor had eight indicators all loading at .4 with ∆τ1 = 1.  The bias in λ11 was smallest 

(less than 1%) when only the pth manifest variable’s intercept differed across classes.  

The effect of having only the pth intercept differ across classes was so strong that there 

was no sample size effect on the bias of λ11 in those cells.  For the other cells, bias 

decreased as N increased, with three notable interactions occurring.  The effect of sample 

size was stronger when ∆κ = 2.5 than when ∆κ = 2.0.  It was also stronger when there 

were four manifest variables rather than eight and when ∆τ = 1.5 instead of 1.

The number of manifest variables in the model was involved in a complicated 

interaction with lc and the location of intercept heterogeneity.  When all λ = .8, bias was 

higher with four indicators than with eight.  For the other two loading combinations, bias 

was smaller at p = 4 when only τ1 differed across classes, but bias was smaller at p = 8 

when both τ1 and τp differed.  Regarding other design characteristics, the higher value of 

∆κ generally yielded smaller biases in λ11, with the benefit of having the larger ∆κ 

increasing as N increased (as per the interaction described in the previous paragraph).  

There was an interaction between φ and p such that the cells with φ = .7 had less bias 

than the corresponding cells with φ = .5 when p = 4, but the bias was greater in the cells 

with φ = .7 when p = 8.

There was also an interaction between ∆τ, p, number of heterogeneous intercepts, 

lc, and N.  With two heterogeneous intercepts, the biases in cells with ∆τ = 1 were 
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consistently higher than in the corresponding cells with ∆τ = 1.5.  This was also the case 

with only τ1 being heterogeneous while p = 4.  At p = 8, there was actually a direct 

relation between the magnitude of the bias and ∆τ, but only for lc = 4 and lc = 6 at N = 

200, and only with lc = 4 at N = 500.

λp1.  Patterns in the bias of the pth factor loading were difficult to detect, because 

the bias was relatively low in most cells.  Like the bias of λ11, the bias of λp1 was smallest 

when its manifest variable’s intercept was held equal across classes, exceeding 3% in 

only one of the cells in which τp was equal across classes while τ1 was heterogeneous.  

Where appreciable bias was present, it was positive bias, with the largest biases occurring 

in the cluster of cells under N = 200 that had two heterogeneous intercepts with four 

manifest variables, all loading at .4.  The only conditions that clearly affected the bias 

were N and ∆κ.  As N increased, bias decreased, and cells with ∆κ = 2.5 generally had 

less bias than the corresponding cells with ∆κ = 2.0.  The interaction between N and ∆κ 

described for the bias of λ11 were less consistent for the bias of λp1, and there was little, if 

any, evidence of the other aforementioned interactions.

δ11.  The magnitude of the biases for the error variance of the first indicator 

substantially varied across classes.  In class 1, with eight manifest variables, all biases 

that exceeded 2% in magnitude were negative.  The largest biases occurred in cells that 

had τ1 varying across classes and all λ = .4, with a few negative biases exceeding 60% in 

magnitude and several more in excess of 40%.  With four manifest variables, however, 

the only biases that surpassed 10% in magnitude were positive and occurred only in cells 

that had all λ = .8, τ1 varying across classes, and φ = .5.  In cells with two heterogeneous 
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intercepts, no bias exceeded 10% in magnitude, and in cells that had only τp differ across 

classes, no |bias| was larger than 3%.

Although increases in N and in ∆κ did decrease the magnitude of the bias in class 

1, and those two design characteristics again demonstrated their aforementioned 

interaction, the effect of p on bias was clearly stronger.  Loading combination also 

affected bias, but its effect interacted with p.  At p = 8, bias consistently decreased in 

magnitude as the factor loadings increased, while at p = 4, bias generally changed only 

slightly from lc = 4 to lc = 6, but then increased in the positive direction, sometimes to 

rather appreciable levels, in cells with lc = .8.  The value of the mixing proportion also 

affected the bias of δ11 in that the biases at φ = .7 were more negative than the biases for 

the corresponding cells with φ = .5.

In class 2, biases of δ11 in cells with heterogeneous τ1 radically changed direction 

relative to the values found in class 1.  The cells that had four indicators on the lone 

factor had many strongly negative biases, while in cells with eight indicators, all biases 

that exceeded 10% in magnitude were positive.  Cells with two heterogeneous intercepts 

still had biases that were negative, but the magnitudes of bias were consistently higher in 

class 2 than in class 1, with several cells having magnitudes above 10% when N = 200.  

Biases in cells with only heterogeneous τp were consistently but only slightly more 

negative in class 2 than in class 1 when N = 200, but no bias of δ11 in these cells exceeded 

5% in magnitude.

The inverse relations of bias with N and bias with ∆κ held in class 2 as did their 

interaction, with N having a stronger effect at the higher value of ∆κ and the proportional 

differences in the bias between levels of ∆κ increasing with N.  The effect of loading 
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combination was peculiar but did not interact with p.  From lc = 4 to lc = 6, bias became 

more positive in all cells but never enough such that biases switched signs.  From lc = 6 

to lc = 8, bias generally became more negative but not enough to put the levels back to 

their values at lc = 4.

Another pattern that emerged only in class 2 was a complex interaction of ∆τ with 

p, number of heterogeneous intercepts, loading combination, and N.  When two intercepts 

differed across classes, the relation between bias and ∆τ was inverse.  When only one 

intercept differed, the relation between bias and ∆τ at N = 200 was inverse at p = 4 but 

direct in cells with p = 8.  This pattern weakened at N = 500, while at N = 1000, only lc = 

4 demonstrated a direct relation between bias and ∆τ at p = 8.

δp1.  The biases in the error variance of the pth indicator were generally negative 

and relatively low.  The largest magnitude for bias in either class was -20.86%, and only 

14 other cells had magnitudes above 10%, all occurring with N = 200.  In class 1, the 

largest biases in δp1 occurred when τp differed across classes, with the largest biases in the 

cells with only τp heterogeneous.  In class 2, this pattern held, but the biases in cells that 

had p = 4 and lc = 4 had anomolously high magnitudes relative to the other cells.  These 

biases, in fact, clearly exceeded those found in the cells that had only τp being 

heterogeneous (which, by design, had lc = 6).

With the bias being so low overall, it was difficult to describe patterns in their 

change, but a few were notable.  In both classes, N was inversely related to bias 

magnitude.  The value of ∆κ, however, had an inconsistent effect on bias, even when 

|bias| > 3%.  In class 2, ∆τ was inversely related to bias, but in class 1, this relation was 

somewhat less consistent.  There were faint signs of the previously detailed complex 
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interaction among ∆τ, p, number of heterogeneous intercepts, loading combination, and 

N.

τ1.  The bias of the first intercept was below 1% in magnitude for the cells that 

had τ1 equal across classes, so these cells will be ignored for the rest of the summary of 

the bias of τ1.  In class 1, the direction of bias was a function of p, with bias at p = 4 being 

generally positive (i.e., no negative bias in excess of 0.5%) and biases at p = 8 being 

generally negative (i.e., no positive bias in excess of 0.7%).  The magnitudes were at their 

highest (twice exceeding 35%) in the cells in which τ1 was the only heterogeneous 

intercept among four manifest variables.  The highest magnitudes for the negative biases 

(three cells exceeding 20%) also occurred when τ1 was the only heterogeneous intercept, 

but when p = 8.

Sample size and ∆κ clearly demonstrated inverse relations with bias in class 1, 

and their interaction was also clearly evident.  There was an interaction between φ and p: 

When p = 8, bias in cells with φ = .7 was just slightly more negative than in cells with φ

= .5, but when p = 4, bias was considerably more negative (though still positive in 

direction) for φ = .7 than for the cells with φ = .5.  There were main effects for ∆τ and for 

number of heterogeneous intercepts, with the magnitude of the bias being smaller at the 

larger levels of these design characteristics.  They each also interacted with sample size 

in such a way that their effects were increasingly apparent as N increased.  Loading 

combination interacted with p to affect bias such that at p = 8, bias consistently decreased 

in magnitude as the factor loadings increased, while in cells with p = 4, bias decreased 

from lc = 4 to lc = 6 but then increased from lc = 6 to lc = 8.  These effects were 
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influenced by N in that the decrease was more pronounced as N increased while the 

ensuing increase from lc = 6 to lc = 8 was more tempered as N increased.

In class 2, the bias in τ1 was generally negative with the highest magnitudes 

reaching just above 20%.  There were, however, a few positive biases, including three 

cells in which the magnitude exceeded 10% (where τ1 varied across classes in cells with 

four manifest variables all loading at .4).  Bias decreased in magnitude as N increased, 

and bias generally decreased in magnitude as ∆κ increased, with the same N x ∆κ 

interaction seen previously.  Bias was consistently more negative in cells with φ = .7 than 

in the corresponding cells with φ = .5.  The effect on bias of the number of heterogeneous 

intercepts interacted with p such that the effect was inconsistent in cells with p = 4, but in 

cells with p = 8, bias was acutely reduced in magnitude when two intercepts varied across 

classes instead of just τ1.

τp.  The bias in the estimate of the pth intercept was generally low in both classes, 

with six cells having negative bias above 10% in magnitude and only one cell having 

positive bias that reached 10%.  The largest bias magnitudes occurred in the cells in 

which only τ1 was heterogeneous across classes, which were cells in which τp was 

constrained equal across the two classes.  Among the cells with only τp or with both τ1
and τp different across classes, only three had |bias| > 5%, making patterns of change in 

bias difficult to detect.  In the cells with τ1 differing across classes, bias was inversely 

related to N and generally inversely related to ∆κ, with the usual interaction between N

and ∆κ of the effect of N being stronger for the larger ∆κ and the benefit of larger ∆κ 

being stronger as N increased.  In the cells with φ = .7, the bias of τp was consistently 

more negative than in the corresponding cells with φ = .5.
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Φ11.  Bias in the estimate of the factor variance was substantial in many cells, with 

several magnitudes in excess of 50%, including a few cells in which N = 1000.  In class 

1, the number of manifest variables seemed to determine the direction of bias, except for 

the cells in which only τp varied across classes, which led to negative bias in Φ11

regardless of p.  Bias in cells with p = 4 was generally positive, with no negative bias 

greater than 4% in magnitude (excepting the τp heterogeneous cells).  Bias in cells with p

= 8 was generally negative, with no positive bias greater than 5%.  The largest 

magnitudes appeared in cells with heterogeneous τ1, with considerably less bias in cells 

that had τp or both τ1 and τp varying across classes.

With the biases in class 1 being so large in magnitude, many patterns in the 

change in bias were readily apparent.  Increasing N decreased bias magnitude except in 

one combination of conditions: eight manifest variables, all loading at .4, with a 50/50 

mixture of the two classes, ∆κ = 2.0, and ∆τ1 = 1.  For this set of conditions, the biases in 

VF1 were -49.98%, -59.03%, and -58.98% for N = 200, 500, and 1000, respectively.  The 

effect on bias of increasing ∆κ was inconsistent in cells with N = 200, but at the other 

levels of N, there was an inverse relation between ∆κ and the magnitude of the bias.  

Sample size and ∆κ interacted in the same manner as described for the other parameters.

The value of φ interacted with p and the location of intercept heterogeneity to 

affect bias such that in cells with four manifest variables, bias was smaller in magnitude 

in cells with φ = .7, but in cells with eight manifest variables or with τp heterogeneous, 

the cells with φ = .5 had bias of lower magnitude than their φ = .7 counterparts.  In cells 

with heterogeneous τ1 (whether or not τp varied across classes), there was an inverse 

relation between ∆τ and bias magnitude except in cells with N = 200 and eight manifest 
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variables all loading at .4, where the relation was direct.  Loading combination interacted 

with p to affect bias, with bias decreasing in magnitude as loading combination increased 

in cells with p = 8, while a more complicated pattern occurred in cells with p = 4.  For 

those cells, shifting from lc = 4 to lc = 6 decreased bias, but continuing on to lc = 8 

tended to increase bias.

In class 2, the cells that had appreciable bias in class 1 tended to have appreciable 

bias, but with the opposite sign.  The negative biases with the largest magnitudes (two 

greater than 50%) occurred in cells that had only τ1 varying across classes and four 

manifest variables all loading at .8.  The largest positive biases occurred in cells with τ1
as the lone heterogeneous intercept and eight manifest variables loading at .4, and these 

biases were exceptionally high, in excess of 120% in three cells and above 80% in 11 

other cells.  By contrast, the largest bias, positive or negative, when τ1 and τp were both 

heterogeneous was -28.48%, with only eight other cells having bias magnitudes above 

10%.

As happened in class 1, N was not perfectly inversely related to bias, with three 

cells showing an increase in bias from N = 200 to N = 500, all of which were cells in 

which ∆τ1 = 1 with lc = 4, φ = .5, and ∆κ = 2.0.  The larger value of ∆κ did not always 

have less bias, surpassing ∆κ = 2.0 in eight pairs of cells, all of which were cells with p = 

8 and with τ1 as the only heterogeneous intercept.  The interaction between N and ∆κ led 

to the bias in cells with ∆κ = 2.5 being of lesser magnitude than the corresponding cells 

with ∆κ = 2.0 at N = 500 in all but one case.

Increasing the magnitude of the factor loadings also restored (or further clarified) 

the advantage of the larger factor mean difference once lc was increased to 8, except in 
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the pair of cells with p = 8, ∆τ1 = 1, and φ = .7.  This failure of ∆κ = 2.5 to regain its 

advantage was the result of a complex interaction involving φ, p, lc, and the number of 

heterogeneous intercepts.  The magnitude of the bias in Φ11 decreased as loading 

combination increased in cells with p = 8; when τ1 was the only heterogeneous intercept, 

this effect was relatively weak when φ = .7, but when two intercepts varied across 

classes, the effect of loading combination when p = 8 was strong in cells with φ = .7.  

One final effect found in class 2: ∆τ was inversely related to the magnitude of bias, with 

the effect increasing as N increased.

∆κ.  Bias in the standardized difference between the factor means (i.e., bias in the 

factor mean of class 2) was generally negative, with only one positive bias above 10% 

(12.21%).  Several cells that had only one heterogeneous intercept, but no cell that had 

two heterogeneous intercepts, had negative biases that exceeded 10% in magnitude.  The 

negative biases with the highest magnitudes were in the mid-30% range and occurred in 

cells that had eight manifest variables loading at .4 with φ = .7.

Sample size generally had an inverse relation with bias, but there were a few 

important exceptions, including two conditions (both with p = 8, ∆κ = 2.0, lc = 4, and ∆τ1
= 1) in which bias magnitude steadily increased as N increased.  There did not appear to 

be a consistent main effect for the bias in ∆κ as a function of the value of the parameter 

itself, but the interaction of N with ∆κ was present.  The number of heterogeneous 

intercepts had a generally inverse relation with the magnitude of the bias, while ∆τ had a 

more definitively inverse relation to bias magnitude.

φ.  Although the percent biases in the mixing proportion differed across classes, 

the summary of the bias will focus on only the bias in class 1.  The signs differ across 
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classes, because, with only two classes, bias in the mixing proportion in one class must be 

compensated in sign by the bias in the mixing proportion of the other class.  In fact, for φ

= .5, the bias must also be identical in magnitude across classes.  When φ = .7, the 

percent bias varies across classes, but only due to the denominator; raw bias in the mixing 

proportion of one class must be compensated in both sign and magnitude by the raw bias 

in the other class.  The only reason for addressing both classes would therefore be to 

make note of the tremendously large biases in φ2 when φ2 = .3 in the population.

Bias in φ1 was generally negative at p = 8 and positive at p = 4, with the exception 

of negative biases for cells in which only τp was heterogeneous regardless of p.  The 

largest positive biases were in the mid-50% range, appearing in cells that had N = 200, φ

= .5, ∆κ = 2.0, and ∆τ1 = 1.  The negative biases with the largest magnitude were in the 

mid-80% range, and they occurred in cells with ∆κ = 2.0 and ∆τ1 = 1 but were not 

restricted to only the lowest N, with two negative biases at N = 1000 exceeding 70% in 

magnitude and several others with magnitudes above 20%.

The inverse relations of N with bias magnitude and ∆κ with bias magnitude were 

clear and consistent, as was their usual interaction effect.  Having two heterogeneous 

intercepts yielded bias lower in magnitude than in corresponding cells with only one 

heterogeneous intercept, and having τp vary across classes resulted in a lower bias 

magnitude than did having τ1 be heterogeneous.  Regardless of the location of 

heterogeneity, ∆τ had an inverse relation with the magnitude of bias, with the effect 

increasing as N increased.  There was the oft occurring interaction between p and lc such 

that at p = 8, bias magnitude consistently decreased as loadings increased, while at p = 4, 

the bias magnitudes were largest with lc = 4 and smallest with lc =6 .  There was also an 
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interaction among φ, ∆κ, and p.  In cells with four manifest variables, the magnitude of 

the bias in φ was higher for cells with φ = .5 than for their corresponding cells with φ = 

.7, regardless of the value of ∆κ.  In cells with eight manifest variables, the magnitude of 

the bias was higher for cells with ∆κ = 2.0 than for their corresponding cells with ∆κ = 

2.5, regardless of the value of φ.
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Chapter 4

Discussion

The present study sought to answer two questions.  The first question was: In 

terms of convergence rates and bias under the standard restrictions of homogenous factor 

loadings and homogeneous intercepts in CFA mixture models, how do CFA mixture 

models with the standard restrictions relaxed compare?  Lubke et al. (2002) found that 

the presence of two or more heterogeneous intercepts in a CFA mixture model improved 

the accuracy of the parameter estimates relative to a model with completely invariant 

intercepts.  The present study provides additional detail in answering the heterogeneity 

question by investigating the effects of having only one heterogeneous intercept and by 

varying the magnitude of the intercept difference.  The second question posed by this 

study extends the first by asking: What effects do other design characteristics have on the 

convergence rates of and bias in CFA mixture models?  Prior research (e.g., Gagné & 

Hancock, 2002; Marsh et al., 1998) has demonstrated that sample size, the number of 

manifest indicators, and factor saturation affect the convergence rates and bias of single-

population factor models, so these design characteristics were manipulated in the present 

study as was the mixing proportion.

Cross-class heterogeneity

The convergence data alone demonstrate such an advantage to models with at 

least some degree of heterogeneity in the intercepts over completely invariant models that 

the standard practice of constraining all intercepts to be equal across classes should be 

reconsidered.  Among the cells with complete invariance, 33 out of 72 had a convergence 
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rate of 0%, and none of the convergence rates compared favorably to the convergence 

rates of corresponding cells with at least one heterogeneous intercept.  Whatever 

theoretical utility there is in forcing homogeneity on a model solution seems slight 

relative to the obvious futility of having no solution at all.

For the few completely invariant cells for which bias was computed, the bias in 

the estimation of λ11 did tend to be smaller in magnitude than the bias in the estimation of 

λ11 in the corresponding heterogeneous intercept cells.  Bias in λp1 tended to be 

comparable between the two conditions.  For all of the other parameter estimates, cells 

with at least one heterogeneous intercept had clearly smaller bias magnitudes than the 

homogeneous intercept cells, with a substantial advantage to the heterogeneous cells in 

estimating both intercepts, ∆κ, Φ11, and the mixture proportion.

That the intercept bias was higher in magnitude in the completely invariant 

models has a more subtle meaning than just the numerical difference in the bias.  With 

intercepts that are invariant in the populations, even a random partitioning of a mixed 

sample should yield subsamples that have roughly the same intercept as each other, as the 

full sample, and as any of the data-generating populations.  Given that the biases were 

smaller in magnitude when a full sample (of equal overall N) had different intercepts than 

either of the data-generating populations, it seems that a mixture of intercept-invariant 

populations somehow yields samples that have more bias in the intercepts than mixture 

samples from populations with heterogeneous intercepts.

Moving along the heterogeneity continuum to models that have heterogeneous 

factor loadings had a curious effect on convergence while having an even more beneficial 

effect on bias than relaxing only the intercept invariance assumption.  Convergence for 
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models with eight manifest variables was perfect when two factor loadings differed 

between classes.  Convergence for models that had four manifest variables was 

substantially worse when two loadings varied across classes than when the loadings (but 

not the intercepts) were invariant, even with lc = 4, a condition with considerably lower 

factor reliability than the heterogeneous factor loading combination of 100% λ = .8 in 

class 1 and 75% λ = .8 & 25% λ = .4 in class 2.  A possible explanation for this is a 

confounding of p with the percentage of loadings that were heterogeneous across classes.  

Given the very few heterogeneous loading cells in the present study, however, it is not 

possible to elaborate further on the potential presence or nature of such a confound 

beyond that it would have to be an interaction effect (percentage of noninvariant loadings 

did not diminish the convergence rates of models with p = 8).

One final note about heterogeneity should be made regarding the heterogeneity of 

factor loadings within each class.  The interaction of p and lc in cells with noninvariant 

intercepts was such that with four manifest variables, models with heterogeneous 

loadings within each class consistently outperformed models that had homogeneous 

loadings within each class in terms of both higher convergence rates and lower bias 

magnitudes.  At present, no explanation is offered for this effect, except for the 

possibility of a benefit to there being heterogeneous loadings within classes; additional 

study of this issue seems warranted.

Other design characteristics

In addition to the presence or absence of cross-class heterogeneity of the 

intercepts and factor loadings in the models, several other design characteristics were 

manipulated to examine their effects on convergence and bias.  To attempt to summarize 
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these effects efficiently, an effort will be made to rank them in terms of their effects at 

increasing convergence rates and decreasing the magnitude of bias in the parameter 

estimates.  Ranking the importance of each of the design characteristics is difficult, given 

the numerous interactions reported in Chapter 3 (some of which are also discussed in this 

section).  Such an undertaking does, however, seem germane in order to inform design 

decisions of applied mixture modeling researchers.

Methodological studies of CFA when population membership is known for all 

observations have consistently found that sample size is of paramount importance to 

model convergence and to the accuracy of the parameter estimates, with 

recommendations always being that N should be as large as possible.  The results of the 

present study indicate that for mixture CFA, sample size strongly affected model 

convergence and the bias of the parameter estimates, with larger N leading to better 

convergence and generally smaller magnitudes of bias.  The most important design 

characteristic, however, was not N.  The shift from a completely invariant model to one in 

which there was any degree of cross-class heterogeneity in the intercepts hugely

improved convergence rates, doing so to a clearly greater extent than increasing N for the 

range of N examined.  The presence of heterogeneity also more strongly reduced bias 

magnitude than did increasing N for the range of N examined.

After N, the next most influential design characteristic was the magnitude of ∆κ, 

which  generally had a direct relationship with convergence rate and an inverse 

relationship with bias magnitude.  The ranking of ∆κ as third most important may, 

however, be unduly low.  The smallest value of ∆κ examined was a standardized 

difference of 2.0, which is a statistically significant difference at the .05-level for a z-test.  
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Bias in the estimation of this parameter when ∆κ = 2.0 was high and positive in the few 

completely invariant cells that had reasonable convergence rates, suggesting that an 

already statistically significant mean difference had to be adjusted further upward in 

order to detect a mixture of populations that differ in their latent means when no other 

parameters differed across populations.  Bias in ∆κ was generally negative, if at all 

appreciable, when any degree of heterogeneity was introduced for the intercepts, but that 

seems to allow only the conclusion that the critical value (so to speak) of ∆κ is lower with 

heterogeneous intercepts than without.  The relative importance of the presence of 

heterogeneity and of N might therefore need to be modified by the phrase “given a factor 

mean difference of at least 2.0”.  Smaller and smaller values of ∆κ would eventually 

render impossible the convergence of a completely invariant model and could have 

deleterious effects on the convergence of noninvariant models beyond the ability of N to 

compensate.

Following ∆κ are the effects of the presence of additional heterogeneity in the 

form of either a second heterogeneous intercept or larger magnitude of the difference 

between heterogeneous intercepts, both of which yielded higher convergence rates and 

lower bias magnitudes.  For the bias of the factor loadings and, to a lesser extent, for the 

bias of the error variances, both of these effects were overshadowed by the location of the 

heterogeneity, with bias seeming to follow wherever the intercept heterogeneity went.  

For convergence and for the bias of the remaining parameters, however, once there was 

any heterogeneity, the extent of the heterogeneity was an important characteristic.

It is difficult to speak to the effects of p and of loading combination.  The effect of 

p on bias, although stronger than N in a manner of speaking for certain parameters, was 
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either wild beyond what can be summarized or was involved in the interaction with 

loading combination.  Loading combination had no notable effect on some parameter 

estimates and had the interaction effect with p on other parameter estimates and on 

convergence.  These results are inconsistent with those found in studies of the effects of p

and lc in single-population CFA models (e.g., Gagné & Hancock, 2002; Marsh et al., 

1998) in which both p and lc had a direct (and separate) relation with convergence rate 

while having an inverse (and separate) relation with bias.

Varying the value of φ did not have a main effect on convergence or bias.  It was, 

however, involved in an interaction with p to have a sometimes weak but very consistent 

effect on convergence and bias.  When p = 4, convergence rates were lower and bias 

magnitudes were higher with φ = .5 than with φ = .7, but with p = 8, convergence rates 

were lower and bias magnitudes were higher with φ = .7 than with φ = .5.  For bias in the 

estimate of ∆κ, Φ11, and φ, the φ x p interaction effect interacted with the location of 

intercept heterogeneity such that when τp was the lone heterogeneous intercept, 

convergence rates were lower and bias magnitudes were higher with φ = .7 than with φ = 

.5 regardless of p.  It is worth reiterating that the interaction effects involving φ were very 

consistent, indicating that estimated value of φ is important to consider when evaluating 

the rest of the parameter estimates in a confirmatory factor mixture model.

The only other interaction effect that consistently arose was the interaction 

between N and ∆κ.  The effects of N were stronger at larger levels of ∆κ, and the 

advantage of ∆κ = 2.5 over ∆κ = 2.0 was greater as N increased (or in some cases, first 

created and then strengthened as N increased, because at N = 200, there were a number of 

instances in which ∆κ = 2.0 had a slight advantage in terms of higher convergence rate or 
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lower bias magnitude).  This interaction effect was quite strong, and as mentioned, was 

quite consistent.

To summarize the rankings of the import of the design characteristics, the most 

influential design characteristic was the presence of any degree of noninvariance in the 

model, with such models having drastically higher convergence rates and generally 

substantially lower bias magnitudes compared to models with completely invariant 

intercepts.  The next most important characteristic is one that an applied researcher can 

typically control, and that is sample size: Increasing N yielded higher convergence rates 

and generally decreased bias magnitudes.  The third was the magnitude of the factor 

mean difference: Models with larger values of ∆κ tended to have higher convergence 

rates and lower bias magnitudes.  To a clearly lesser, but still quite notable, extent than 

any of the first three characteristics, models with more heterogeneity in the intercepts, 

either in number of noninvariant intercepts or in the magnitude of the heterogeneity, 

generally had higher convergence rates and lower bias magnitudes than models with less 

heterogeneity.  Ranking the effects of the number of manifest variables, the magnitude of 

the factor loadings, the location of intercept heterogeneity, and the mixing proportion is 

not feasible based on the results of the present study, because the effects of these facets 

were so entangled with other design characteristics.

Recommendations for applied researchers

Many of the design characteristics manipulated in the present study actually 

represent different levels of characteristics of nature rather than the characteristics of an 

applied study that a researcher can control.  The degree of intercept heterogeneity, the 

magnitude of the difference between factor means, and the proportion of the sample that 
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came from each of the hypothesized populations are under nature’s control, so knowing 

convergence and bias patterns as a function of such design characteristics is only helpful 

in a post facto sense.  The magnitude of the factor loadings, although somewhat 

predictable in certain contexts, is typically a feature of the model that a researcher can 

only reflect on after the data have been analyzed.

Decisions regarding sample size and number of indicators, however, can be made 

by an applied researcher in the planning phase.  The results of the present study lead to 

the usual recommendation to use the largest N available.  Specific guidelines for N are 

difficult to provide, given that the extent of the effect of N tended to be influenced by 

variations in nature-controlled design characteristics such as intercept heterogeneity and 

the magnitude of the factor mean difference, but it can be said with confidence that to 

improve convergence and to reduce bias in most of the parameter estimates, N should be 

as large as practically possible.

The results of the present study unfortunately render it difficult to make a 

straightforward recommendation for the number of manifest variables, because the effect 

of p on bias and convergence depended heavily on the extent of intercept heterogeneity.  

Completely invariant models had such difficulty converging that having eight manifest 

variables to sift through rendered convergence essentially nil.  Although clearly 

improved, convergence was generally very poor when there were only four manifest 

variables in the completely noninvariant models.  In models with one noninvariant 

intercept, the influence of p was exceedingly complex, but with two noninvariant 

intercepts, there was a clear advantage of eight manifest variables over four, in terms of 

both improved convergence rates and smaller bias magnitudes.
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For two reasons, the recommendation is made to use a greater number of 

indicators per factor when theoretically feasible.  The first reason is the support for such a 

recommendation in the single-population CFA research (e.g., Gagné & Hancock, 2002; 

Marsh et al., 1998).  The second reason is the suggestion early in this chapter that 

researchers move away from the practice of forcing intercepts to be invariant in 

confirmatory factor models.  The advantage of smaller p in completely noninvariant 

models is essentially meaningless, given that such models had such poor convergence 

rates.  When convergence rates were reasonable, the effect of p was either enigmatic or in 

favor of larger p.

Directions for future research

As a preliminary investigation into the effects of different design characteristics 

on convergence and bias in mixture models, the present study manipulated several facets 

but did so to a very limited extent.  Four of the design characteristics manipulated in the 

present study had only two levels (∆κ, p, ∆τ, and φ) and none had more than three levels.  

Due to, and potentially based on, the many interaction effects described in the present 

study, additional studies are in order that will more extensively investigate a smaller set 

of design characteristics in order to flesh out their influences on convergence rates and 

bias.

There were also important design characteristics not manipulated in the present 

study that deserve some attention.  An additional preliminary investigation could be 

undertaken to examine the same facets manipulated herein but for three or more 

populations rather than for only two.  The number of latent variables in the model could 

also be expanded; the presence of multiple factors would likely not influence the patterns 
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of bias in the parameters investigated in the current study, but by using models that had 

only one factor, the present study did not inform the quality of the estimation of factor 

covariances in mixture CFA or how factor covariances might influence model 

convergence.  Factor variances were freely estimated across classes in the present study, 

but they were actually equal across the data-generating populations.  Given the influence 

of factor variance on the factor loadings (and thereby on the error variances), the 

magnitude of the factor variance could be a useful design characteristic to manipulate as 

could the magnitude of a difference in factor variance across populations (with the 

present study providing a head start on determining the effects of ∆Φ11 = 0 in the 

populations).

A subtle but potentially very important confound arose in the present study 

between number of heterogeneous intercepts in the populations and the number of 

intercepts allowed to vary in the algorithm estimating the parameters of the mixture 

models.  Cells with two heterogeneous intercepts, for example, demonstrated better 

convergence rates than cells with one heterogeneous intercept, which in turn, had better 

convergence rates than cells in which all intercepts were homogeneous.  It is possible, 

that to some extent, convergence rates improved with increasing number of 

heterogeneous intercepts just by virtue of granting the algorithm the flexibility of not 

having to force the intercepts to be exactly equal across classes.  Some degree of 

difference (likely a nonsignificant difference) in the values of the intercepts will exist 

between classes in a sample even if all of the intercepts are equal across the populations.  

Requiring the estimation algorithm to constrain all of the intercepts to be literally equal 

across classes could be creating convergence difficulties that might be alleviated to a 
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useful degree if even one intercept is freed.  For applied purposes, after freeing up one or 

more intercepts in the estimation algorithm, a follow-up significance test could be used to 

determine whether the freely estimated intercepts differ statistically across classes; if all 

of the tests are statistically nonsignificant, then it can be empirically inferred (rather than 

forced by convention) that the intercepts are homogeneous in the populations.

The results of the present study also point to the potential utility of expanding 

mixture modeling research of the cross-class heterogeneity of factor loadings.  With only 

12 cells incorporated into the pilot study of models with heterogeneous factor loadings, it 

was not reasonable to draw many meaningful conclusions about the effects of design 

characteristics on convergence and/or bias in such models.  Additional methodological 

research of mixture models with heterogeneous factor loadings could be conducted by 

using the design of the primary portion of the present study as a template and making 

some adjustments.  Two such adjustments would, of course, be crossing the 

heterogeneous loading combination with more of the design characteristics and the 

inclusion of more levels of factor heterogeneity.  A third and very important adjustment 

would be to control for the potential effect of the percentage of loadings that vary across 

classes.



58

Appendix A: Code for Simulation Programs

SAS code
options nodate nonumber linesize=90;
proc iml;
goseed1=1000085; goseed2=1000091;
reps=20000;
p=4;
mix={0.5 0.5};
deltakap=2.5;
mixload={0.0 1.0};
load={0.8 0.4};
trnsint1={2 0 4 5};
trnsint2={3 0 4 5};
error={0.36 0.84};
phi={1 1};
n={200,500,1000};
fitstuff=repeat(0,3,12);
classone=repeat(0,3,34);
classtwo=repeat(0,3,34);
keepthis=repeat(0,1500,39);
wk={0,0,0};
do sampsize=1 to 3;
  w=0; needed=0;
  seed1=goseed1+2*(sampsize-1);
  seed2=goseed2+2*(sampsize-1);
  print seed1;
  print seed2;
  holdthis=repeat(0,500,39);
  mormmnts=repeat(0,500,39);
do i=1 to reps;
varcheck=repeat(0,p*2+2,1);
pass=1;
lambda1=repeat(0,p,1);
lambda2=repeat(0,p,1);
thetdel1=repeat(0,p,p);
thetdel2=repeat(0,p,p);
sds1=repeat(0,p,p);
sds2=repeat(0,p,p);
n1=mix[1,1]*n[sampsize,1];
n2=mix[1,2]*n[sampsize,1];
makn1byp=repeat(1,n1,1);
makn2byp=repeat(1,n2,1);
int1=makn1byp*trnsint1;
int2=makn2byp*trnsint2;

if mixload[1,1]>0 then do;
  do jg=1 to (mixload[1,1]*p);
    lambda1[jg,1]=load[1,1];
    lambda2[jg,1]=load[1,1];
    thetdel1[jg,jg]=error[1,1];
    thetdel2[jg,jg]=error[1,1];
  end;
end;
if mixload[1,2]>0 then do;
  do rw=(mixload[1,1]*p+1) to p;
    lambda1[rw,1]=load[1,2];
    lambda2[rw,1]=load[1,2];
    thetdel1[rw,rw]=error[1,2];
    thetdel2[rw,rw]=error[1,2];
  end;
end;

sigma1=lambda1*phi[1,1]*lambda1`+thetdel1;
sigma2=lambda2*phi[1,2]*lambda2`+thetdel2;
sigma3=mix[1,1]*sigma1+mix[1,2]*sigma2;
do h=1 to p;
  sds1[h,h]=root(lambda1[h,1]*lambda1[h,1]*phi[1,1]+thetdel1[h,h]);
  sds2[h,h]=root(lambda2[h,1]*lambda2[h,1]*phi[1,2]+thetdel2[h,h]);
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end;
z1=normal(repeat(seed1,n1,p));
R1=inv(sds1)*sigma1*inv(sds1);
g=root(R1);
D=int1+z1*g*sds1;
z2=normal(repeat(seed2,n2,p));
R2=inv(sds2)*sigma2*inv(sds2);
h=root(R2);
E=int2+(makn2byp*deltakap*lambda2`)+(z2*h*sds2);

file 'C:\mixed.dat';
  do r=1 to n1;
    do c=1 to p;
      put (D[r,c]) +1 @;

end;
    put;
  end;
  do r=1 to n2;
    do c=1 to p;
      put (E[r,c]) +1 @;

end;
    put;
  end;
closefile 'C:\mixed.dat';
start system(command);
  call push(" x '",command,"'; resume;");
  pause;
finish;
run system('C:\dissertation\programs\makeitgo');

infile 'C:\dissertation\programs\Mgo_p04.out';
input / / / / / / / / / / / / / / / / / / / / / / / /

  / / / / / / / / / / / / / / / / / / / / / / / /
      / / / / / / / / / / / / / / / / / / / / / / / /
      / / / / / / / / / @33 test $char8.;
if test={"NORMALLY"} then do;
  input / / / / / / / @41 likelih;
  input / / / @49 freeparm / @41 AIC / @41 BIC / @41 BICadj / / @46 entropy;
  input / / / / / / / / / / @23 L1c1 @33 se_L1c1 @51 cheknine 7.3;
  if cheknine=999.000 then e1c1=0;
  else if cheknine<999.000 then do;
    input @23 L2c1 @33 se_L2c1 / @23 L3c1 @33 se_L3c1 / @23 L4c1 @33 se_L4c1;
    input / / @23 e1c1 @33 se_e1c1 / / / / @23 e2c1 @33 se_e2c1
          / @23 e3c1 @33 se_e3c1 / @23 e4c1 @33 se_e4c1;
    input / / @23 vf1c1 @33 se_vf1c1 / / / @23 mf1c1 @33 se_mf1c1;
    input / / @23 i1c1 @33 se_i1c1 / @23 i2c1 @33 se_i2c1 / @23 i3c1 @33 se_i3c1
          / @23 i4c1 @33 se_i4c1;
    input / / / / @23 L1c2 @33 se_L1c2 / @23 L2c2 @33 se_L2c2
          / @23 L3c2 @33 se_L3c2 / @23 L4c2 @33 se_L4c2;
    input / / @23 e1c2 @33 se_e1c2 / @23 e2c2 @33 se_e2c2
          / @23 e3c2 @33 se_e3c2 / @23 e4c2 @33 se_e4c2;
    input / / @23 vf1c2 @33 se_vf1c2 / / / @23 mf1c2 @33 se_mf1c2;
    input / / @23 i1c2 @33 se_i1c2 / @23 i2c2 @33 se_i2c2 / @23 i3c2 @33 se_i3c2
          / @23 i4c2 @33 se_i4c2;
    input / / / / / / / / / @37 mixp1 / @37 mixp2;
    varcheck[1,1]=e1c1; varcheck[2,1]=e2c1; varcheck[3,1]=e3c1;
    varcheck[4,1]=e4c1; varcheck[5,1]=vf1c1;
    varcheck[6,1]=e1c2; varcheck[7,1]=e2c2; varcheck[8,1]=e3c2;
    varcheck[9,1]=e4c2; varcheck[10,1]=vf1c2;
  end;
end;
closefile 'C:\dissertation\programs\Mgo_p04.out';
do v=1 to (p*2+2);
  if varcheck[v,1]<=0 then pass=0;
end;
if (test={"NORMALLY"} & pass=1) then do;
  w=w+1;
  needed=needed+1;
  holdthis[w,1]=likelih; holdthis[w,2]=AIC; holdthis[w,3]=BIC;
  holdthis[w,4]=BICadj; holdthis[w,5]=entropy;
  holdthis[w,6]=L1c1; holdthis[w,7]=se_L1c1; holdthis[w,8]=L4c1; holdthis[w,9]=se_L4c1;
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  holdthis[w,10]=e1c1; holdthis[w,11]=se_e1c1; holdthis[w,12]=e4c1; 
holdthis[w,13]=se_e4c1;
  holdthis[w,14]=i1c1; holdthis[w,15]=se_i1c1; holdthis[w,16]=i4c1; 
holdthis[w,17]=se_i4c1;
  holdthis[w,18]=vf1c1; holdthis[w,19]=se_vf1c1; holdthis[w,20]=mf1c1; 
holdthis[w,21]=se_mf1c1; 
  holdthis[w,22]=mixp1;
  holdthis[w,23]=L1c2; holdthis[w,24]=se_L1c2; holdthis[w,25]=L4c2; 
holdthis[w,26]=se_L4c2;
  holdthis[w,27]=e1c2; holdthis[w,28]=se_e1c2; holdthis[w,29]=e4c2; 
holdthis[w,30]=se_e4c2;
  holdthis[w,31]=i1c2; holdthis[w,32]=se_i1c2; holdthis[w,33]=i4c2; 
holdthis[w,34]=se_i4c2;
  holdthis[w,35]=vf1c2; holdthis[w,36]=se_vf1c2; holdthis[w,37]=mf1c2; 
holdthis[w,38]=se_mf1c2; 
 holdthis[w,39]=mixp2;
end;
else needed=needed+1;
tm=mod(i,25);
if tm=0 then do;
  file 'C:\dissertation\tmi';
    put sampsize +1 @;
    put i +1 @;
    put w;
  closefile 'C:\dissertation\tmi';
end;
wk[sampsize,1]=w;
if w=500 then i=reps;
testbail=w/i;
if testbail < .0087 then do;
  if (i=2000 & w<=11) then i=reps;
  else if (i=4000 & w<=28) then i=reps;
  else if (i=6000 & w<=45) then i=reps;
  else if (i=8000 & w<=63) then i=reps;
  else if (i=10000 & w<=81) then i=reps;
  else if (i=12000 & w<=99) then i=reps;
  else if (i=14000 & w<=117) then i=reps;
  else if (i=16000 & w<=136) then i=reps;
  else if (i=18000 & w<=154) then i=reps;
end;
end; /* Replications */

do r=1 to wk[sampsize,1];
  do c=1 to 39;
    keepthis[r+(500*(sampsize-1)),c]=holdthis[r,c];
  end;
end;
do l=1 to 17;
  classone[sampsize,l*2-1]=sum(holdthis[,l+5])/w;
  classtwo[sampsize,l*2-1]=sum(holdthis[,l+22])/w;
  if w < 500 then do;
    do k=1 to w;

  mormmnts[k,l+5]=(holdthis[k,l+5]-classone[sampsize,l*2-1])##2;
  mormmnts[k,l+22]=(holdthis[k,l+22]-classtwo[sampsize,l*2-1])##2;
end;

    classone[sampsize,l*2]=sum(mormmnts[,l+5])/w;
    classtwo[sampsize,l*2]=sum(mormmnts[,l+22])/w;
  end;
  else do;
    classone[sampsize,l*2]=(sum(holdthis[##,l+5])-((sum(holdthis[,l+5])##2)/500))/500;
    classtwo[sampsize,l*2]=(sum(holdthis[##,l+22])-((sum(holdthis[,l+22])##2)/500))/500;
  end;
end;
do f=1 to 5;
  fitstuff[sampsize,f*2-1]=sum(holdthis[,f])/w;
  if w < 500 then do;
    do g=1 to w;
      mormmnts[g,f]=(holdthis[g,f]-fitstuff[sampsize,f*2-1])##2;
    end;
    fitstuff[sampsize,f*2]=sum(mormmnts[,f])/w;
  end;
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  else fitstuff[sampsize,f*2]=(sum(holdthis[##,f])-((sum(holdthis[,f])##2)/500))/500;
end;
fitstuff[sampsize,11]=w; fitstuff[sampsize,12]=needed;
end; /* Sample sizes */

file 'C:\dissertation\classone.dat';
  do r=1 to 3;
    do c=1 to 34;
      put (classone[r,c]) +1 @;

end;
    put;
  end;
closefile 'C:\dissertation\classone.dat';
file 'C:\dissertation\classtwo.dat';
  do r=1 to 3;
    do c=1 to 34;
      put (classtwo[r,c]) +1 @;

end;
    put;
  end;
closefile 'C:\dissertation\classtwo.dat';
file 'C:\dissertation\fitstuff.dat';
  do r=1 to 3;
    do c=1 to 12;
      put (fitstuff[r,c]) +1 @;

end;
    put;
  end;
closefile 'C:\dissertation\fitstuff.dat';
file 'C:\dissertation\keepthis.dat';
  do samp=1 to 3;
  do r=1 to wk[samp,1];
    do c=1 to 39;
      put (keepthis[r+(500*(samp-1)),c]) +1 @;

end;
    put;
  end;
  end;
closefile 'C:\dissertation\keepthis.dat';
print wk;
quit;

Batch file makeitgo.bat
C:\mplus\mplus.exe C:\dissertation\programs\mgo_p04.mpl
copy C:\docume~1\phill\mgo_p04.out C:\dissertation\programs
exit

Mplus code

title: Mixture CFA61rom SAS generated data, p = 4
data: file=C:\mixed.dat;
variable: names are v1-v4;
          classes=c(2);
analysis: type=mixture;
          miterations=1000;

model:
  %overall%
  f1 by v1*1.5 v2@0.4 v3-v4*1.25;
  f1*;
  %c#2%
  f1*1.2;
  v1-v4*0.9;
  [v1*10.5];
!  [v1*11 v4*10.5];
output: stand;
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Appendix B: Bias and Standard Errors for Cells with Heterogeneous Intercepts

Included in this Appendix are 29 tables containing biases of parameter estimates 

and standard errors for every cell of the study that had at least one heterogeneous 

intercept but homogeneous factor loadings.  The order of presentation of the tables is the

same as the order of presentation of the parameters in Chapter 3: λ11; λp1; δ11; δp1; τ1; τp; 

Φ11; ∆κ; and φ.
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