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New constraints on isotope fractionation factors in inorganic aqueous sulfur systems 

based on theoretical and experimental techniques relevant to studies of the sulfur 

cycle in modern environments and the geologic rock record are presented in this 

dissertation.  These include theoretical estimations of equilibrium isotope 

fractionation factors utilizing quantum mechanical software and a water cluster model 

approach for aqueous sulfur compounds that span the entire range of oxidation state 

for sulfur.  These theoretical calculations generally reproduce the available 

experimental determinations from the literature and provide new constraints where no 

others are available. These theoretical calculations illustrate in detail the relationship 

between sulfur bonding environment and the mass dependence associated with 

equilibrium isotope exchange reactions involving all four isotopes of sulfur. I 

additionally highlight the effect of isomers of protonated compounds (compounds 

with the same chemical formula but different structure, where protons are bound to 



  

either sulfur or oxygen atoms) on isotope partitioning in the sulfite (S4+) and 

sulfoxylate (S2+) systems, both of which are key intermediates in oxidation-reduction 

processes in the sulfur cycle.  I demonstrate that isomers containing the highest 

degree of coordination around sulfur (where protonation occurs on the sulfur atom) 

have a strong influence on isotopic fractionation factors, and argue that isomerization 

phenomenon should be considered in models of the sulfur cycle. Additionally, 

experimental results of the reaction rates and isotope fractionations associated with 

the chemical oxidation of aqueous sulfide are presented.  Sulfide oxidation is a major 

process in the global sulfur cycle due largely to the sulfide-producing activity of 

anaerobic microorganisms in organic-rich marine sediments.  These experiments 

reveal relationships between isotope fractionations and reaction rate as a function of 

both temperature and trace metal (ferrous iron) catalysis that I interpret in the context 

of the complex mechanism of sulfide oxidation.  I also demonstrate that sulfide 

oxidation is a process associated with a mass dependence that can be described as not 

conforming to the mass dependence typically associated with equilibrium isotope 

exchange.  This observation has implications for the inclusion of oxidative processes 

in environmental- and global-scale models of the sulfur cycle based on the mass 

balance of all four isotopes of sulfur.  The contents of this dissertation provide key 

reference information on isotopic fractionation factors in aqueous sulfur systems that 

will have far-reaching applicability to studies of the sulfur cycle in a wide variety of 

natural settings. 
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Foreword 

The contents of Chapter 2 comprise a manuscript that has been submitted to 

Geochimica et Cosmochimica Acta: 

 

Eldridge D.L., Guo W., and Farquhar J., Theoretical estimates of equilibrium sulfur 

isotope effects in aqueous sulfur systems: Highlighting the role of isomers in the 

sulfite and sulfoxylate systems. Geochimica et Cosmochimica Acta (submitted). 

 

I constructed all molecular clusters utilizing Gaussian 09 software (Frisch et al., 

2010) installed on the desktop computer in the J. Farquhar laboratory with substantial 

early input from J. Farquhar on cluster building methodology. I additionally ran most 

of the optimization and frequency calculations on this same system.  Some of the 

calculations (those in the sulfite system, S4+) were run for optimization and frequency 

calculations on the high performance Scylla computer cluster at WHOI with 

assistance from W. Guo to expedite data acquisition.  I performed all data processing, 

prepared and analyzed results, prepared plots, and made all comparisons (and related 

calculations) of my theoretical calculations to experimental datasets.  I wrote the 

manuscript with input to drafts from both W. Guo and J. Farquhar.  The manuscript is 

“under review” at the time of the submission of this dissertation. 
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Chapter 1: Introduction and Motivation  

1.0 Broad Overview 

The chemical elements are typically what we think of as the “stuff” that 

makes up the universe.  They can combine to form numerous molecular, crystalline, 

and other substances that comprise not only our own bodies, but also the countless 

celestial bodies that make the day and nighttime sky shine. Chemical elements in their 

atomic form are comprised of a nucleus and some electrons. The nucleus is made up 

of a mash-up of protons and neutrons, and the number of protons in the nucleus 

defines the chemical element.  For example, the chemical element containing 6 

protons in its nucleus is known as “carbon”, the chemical element containing 16 

protons is known as “sulfur”, the chemical element containing 26 protons is known as 

“iron”, and so on.  Elements in their atomic and neutral form have as many electrons 

as protons. The number of electrons an element has comprises its electronic structure, 

and controls the reactivity and bond-forming capability of the chemical element. Due 

to the systematic and periodic ways in which electrons comprise the electronic 

structure of elements, elements follow patterns of chemical reactivity that forms the 

basis of the organization of the modern periodic table. 

Isotopes are different atomic versions of the same chemical element that differ 

only in the mass of their nucleus.  As you can probably guess, the mass difference 

arises from the number of neutrons in the nucleus.  Of the 92 naturally occurring 

chemical elements, only 22 are known to exist as a single nuclidic version, and so 

isotopes are a very common feature of the chemical elements. Isotopes can be 
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regarded as either “stable” or “not stable” (or “radioactive”), and the difference 

between the two is mostly operative.  Practically speaking, radioactive isotopes are 

those that undergo decay to other isotopes of elements due to fundamental 

instabilities in the nucleus over timescales that are practical to measure.  The 

abundances and distributions of radioactive isotopes and the products of their decay 

(called radiogenic isotopes) vary in nature due to this radioactive decay. These 

variations are a function of the age of the substance that contains the 

radioactive/radiogenic isotopes, and the age of the substance can be quantified by the 

relative abundances of these isotopes in the substance as we find them today.  Stable 

isotopes, on the other hand, do not undergo any appreciable radioactive decay over 

geologic timescales and their distribution among substances in nature can vary due to 

physical, chemical, and biological processes. The difference in isotope composition 

that accompanies such a process is generally referred to as an isotope fractionation. 

Stable isotopes, while not being very useful for determining the age of stuff, are very 

useful for investigative purposes to understand how things formed.  If we can 

understand how the physical, chemical, and biological processes that operate in 

nature affect the distribution of stable isotopes among naturally occurring substances, 

we may have a tool-kit in place with which we can understand the past by studying 

material in the present.  

Geochemists typically study the elemental and isotopic composition of the 

Earth and its components in order to try to understand what it’s made of, how it 

formed, what it formed from, and the nature of the transformations it has undergone 

since its formation. Some geochemists may be interested in the chemical elemental 
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budget of the Earth’s metallic core, while others may be interested in the composition 

of the Earth’s rocky mantle.  Others are interested in the chemical composition of the 

Earth’s crust, since it is where we find most of the elements that make up the stuff we 

enjoy (like the computer I used to type this sentence!).  Others may be interested in 

how the Earth came to have these primary layers in the first place, and the precise 

details of when and the dynamics of how all of that business happened.  The study 

and application of isotopes can aid each of these investigations. Since the Earth is not 

isolated in space and is a component of the larger Solar System, these studies extend 

beyond Earth and to the study of extraterrestrial materials that come to us largely in 

the form of meteorites, and can form an important baseline for comparison to the 

Earth.  Fueled by my undergraduate thesis studies (Templeton et al., 2009), I became 

interested in the history of life on Earth and the myriad ways in which the 

development and flourishment of life has shaped the Earth’s surface throughout 

geologic time.  After all, isn’t that the story we’re all interested in, the story of “us”? 

The major players in the history of life on Earth are largely understood to be 

microbial. As much as we would like to think that we (Homo sapiens sapiens) are 

running the show, we are very much latecomers in the play of life on Earth.  Life may 

have first evolved on Earth somewhere in the ballpark of 3.5-4.0 billion years ago, 

and modern humans have barely been around on the order of hundreds of thousands 

of years.  If life began at the Golden Gate Bridge in San Francisco and has made it as 

far as the Washington Monument in Washington, D.C. to date, humans evolved as 

part of the journey somewhere in the vicinity of the National WWII Memorial (for 

those that are unfamiliar with the National Mall, these two monuments are across the 
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street from one another!).  In this analogy, hard bodied animals that can form 

appreciable fossils did not appear in the record of the journey until somewhere in the 

vicinity of Cleveland, OH (assuming life took I-80 East most of the way!). 

Microorganisms are the ones that have both made the entire journey and in many 

ways have made various aspects of the journey possible.  They fall into two of the 

three conventionally considered domains of life: bacteria and archaea. 

The notebook that the Earth has used to record much of its surface history is 

what geologists and geochemists generally refer to as the “sedimentary rock record”.  

Most of the sedimentary rocks that comprise this notebook formed in aqueous 

environments where life may proliferate.  The scribes of this history are the processes 

that shaped this rock record, including its mineralogical, chemical, and isotopic 

composition.  Microbial authors have been major contributors to this notebook, and at 

least one of the many languages they’ve written in has been isotopic.  The chemical 

elements that encode this isotopic information are of course those that are essential 

for life in one way or another. 

The major elements required for life as we know it are sometimes colloquially 

referred to as the “SPONCH” elements, a wonky acronym comprised of chemical 

symbols.  The “S” in “SPONCH” of course refers to the element sulfur (I’ll let the 

reader guess the rest!), and is the major focus of this dissertation.  Sulfur is comprised 

of 4 stable isotopes (32S, 34S, 33S, 36S, in order of decreasing relative abundance in our 

Solar System) and has 8 available oxidation states that range from S2- to S6+.  

Oxidation state is defined as the formal charge of the atom (computed by simply 

taking the difference between the number of electrons and protons in the element), 
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and further controls the bond-forming capability and reactivity of the element. In 

simple terms, the more oxidation states that are available to an element, the more 

diverse and complex the nature of its reactivity towards other elements and 

compounds. The diversity of oxidation states and isotopes that make up sulfur, in 

addition to its biological importance, make it one of the most interesting and exciting 

elements to study in Earth’s surface environment. 

The components of the modern Earth’s surface sulfur cycle that may have the 

greatest influence on the isotopic aspects of the rock record—and, thus, our 

understanding of important aspects of the history of life on Earth—are highlighted in 

Figure 1.1.  Among the major features of the sulfur cycle featured in Figure 1.1 is 

microbial sulfate reduction (or MSR for short).  MSR is a metabolism carried out by 

numerous bacteria and archaea that couples the overall oxidation of organic matter to 

the reduction of sulfate (SO4
2-), producing sulfide (e.g., H2S) as a waste product.  

Since sulfate is used as the terminal electron acceptor rather than molecular oxygen 

(O2), we call this an anaerobic respiration process.  Respiration processes in general 

can be thought of as the complimentary set of processes to those associated with 

primary production that are responsible for the generation of organic carbon (the 

make-up of organisms) from inorganic carbon. The balance of these two general sets 

of processes (primary production and respiration) is critically important to the 

habitability of the Earth’s surface for many organisms. For example, the fundamental 

imbalance between the two is what allows molecular oxygen (O2; a byproduct of 

oxygenic photosynthesis, a major aspect of primary production) to linger in the 

surface environment for us to breathe.  



 

 6 
 

 

Aerobic respiration processes seem to dominate much of the present 

respiration budget, but the anaerobic process of microbial sulfate reduction is second 

in line due to the high abundance of sulfate in the oceans. In terms of dissolved 

anions, sulfate is second in abundance only to chloride in seawater and is by far much 

more concentrated in the oceans than molecular oxygen.  Recent models based on 

sulfate concentrations profiles in a large collection of globally distributed seafloor 

drill cores indicate that microbial sulfate reduction accounts for 12-29% of the 

respiration of the organic muck that rains out of the water column to the seafloor per 

year (Bowles et al., 2014). MSR is therefore not only a major feature of the global 

sulfur cycle, it’s also a major geochemical process that is intimately tied to the global 

carbon cycle.  Since the product of microbial sulfate reduction is hydrogen sulfide, it 

	

Figure 1.1: Schematic diagram illustrating some of the major features of the modern marine sulfur 
cycle, which is microbially dominated.  Oxidation processes may be either chemical or biological. 
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is straightforward to realize that microbial sulfide production is also a global 

geochemical process.  The generation and fate of this microbially produced sulfide is 

ultimately what makes the global sulfur cycle so complex, and allows us to examine 

the sulfur cycle as it operated in the past via its entrapment in minerals that can 

survive in sedimentary rocks throughout the ages. 

From studies of modern coastal marine sediments, it appears that most of the 

sulfide produced by microbial sulfate reduction is ultimately oxidized back to sulfate 

(~80-95%; Jørgensen, 1977; Jørgensen, 1982; Jørgensen et al., 1990; Canfield and 

Teske, 1996; Jørgensen and Nelson, 2004), with very little of the sulfide being tied up 

(or left behind) in mineral form (~5-20%).  This further straightforwardly indicates 

that sulfide oxidation processes may be just as major of a geochemical process as 

MSR itself.  The primary sulfur mineral that may be left behind from the complex 

sulfur cycle in sediments is pyrite, which when formed in situ is termed “authigenic” 

pyrite (this qualifier distinguishes pyrite generated this way from pyrite that may have 

formed in a magma chamber as a rock crystallized, which would have no biological 

influence).  The isotopic information encoded in authigenic pyrite reflects the myriad 

of sulfur cycling processes that are shown in Figure 1.1, including the biological and 

chemical aspects of this cycle.  Understanding the details of what controls isotopic 

fractionation during these processes is critical in deciphering the isotopic pyrite 

record, and sulfur cycling processes in general. 

The research that is presented in this dissertation provides fundamental 

calibrations of isotope effects that may be used to decipher the complexities of 

isotope fractionations among naturally occurring sulfur compounds in aqueous 
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environments.  To illustrate this further, I show in Figure 1.2 cartoon diagrams of two 

examples of the two major features of the sulfur cycle that I’ve discussed above: the 

reductive sulfur cycle (represented as a sulfur-centric cellular schematic of a sulfate 

reducer) and the oxidative sulfur cycle (represented as a schematic chemical 

mechanism of sulfide oxidation by molecular oxygen).  Highlighted in color shapes 

are the various isotopic fractionations among aqueous sulfur compounds that I’ve 

attempted to constrain in this dissertation. These constraints provide critical 

information that will inform models of the sulfur cycle from the cellular level up to 

the global level.  More detailed and specific descriptions of these determinations and 

their motivation are provided in the remaining sections of this introductory chapter. 

	

Figure 1.2: Schematic representations of processes that comprise two of the major features of the 
modern sulfur cycle: microbial sulfate reduction (e.g., after Wing and Halevy, 2014; dashed rounded 
box indicates the cellular membrane) and sulfide oxidation (the polar mechanism, drawn after Zhang 
and Millero, 1993).  The green boxes and arrows represent equilibrium fractionation factors that have 
been estimated in this dissertation (Chapter 2).  The dashed red ellipse represents the study of sulfide 
oxidation presented in Chapter 3.  The fractionation factors presented in this dissertation will aid in the 
study of major features of the sulfur cycle past and present using sulfur isotopes. 
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2.0 Dissertation Overview 

This dissertation contains new constraints on sulfur isotopic fractionation 

factors in aqueous sulfur systems for numerous applications, ranging from high 

temperature hydrothermal systems to the low temperature intracellular conditions of 

sulfur-metabolizing microorganisms.  I utilized both theoretical calculations and 

experimental approaches to constrain isotope effects. 

In Chapter 2, I present theoretical calculations rooted in the principles of 

quantum mechanics (Gaussian 09; Frisch et al., 2010) that allow the prediction of 

equilibrium isotope effects among aqueous sulfur compounds spanning the entire 

range of oxidation states available to sulfur.  These calculations appear to be the first 

comprehensive study of the isotope partitioning behavior of a wide variety of aqueous 

sulfur compounds utilizing an explicit solvation model, where aqueous solutes are 

modeled in clusters of water molecules.  Explicit solvation models have been 

demonstrated in recent theoretical studies to be essential to the modeling of aqueous 

compounds for the computation of theoretical equilibrium fractionation factors (e.g., 

Rustad et al., 2008; Li et al., 2009; Zeebe, 2009; Rustad et al., 2010; Li and Liu, 

2011).  Chapter 2 not only functions as a source of new constraints for fractionation 

factors, but also provides a review of previous experimental determinations.  My 

theoretical calculations compare well to the available experimental constraints within 

a reasonable estimation of uncertainties, and highlights where future experimental 

research may be needed.  My calculations also provide valuable constraints on minor 

isotope fractionations and their relationship to major isotope fractionations, and 
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broadly define the mass dependence of equilibrium isotope exchange in aqueous 

systems.  

The calculations in Chapter 2 additionally provide new insights, particularly 

in the poorly documented sulfite (SO3
2-

T) and sulfoxylate (SO2
2-

T) systems where I 

highlight the role of isomers of protonated compounds in influencing isotope 

fractionations.  I point out that such isomerization phenomenon may have a role to 

play in the overall isotope fractionations expressed during the highly influential 

dissimilatory sulfate reduction metabolism, where inorganic (i.e., non-chelated or 

non-enzymatically-bound) sulfite compounds are pivotal intracellular intermediates 

(cf. Figure 1.2).  It is additionally likely that isomerization phenomenon will have 

influence on the isotope fractionations expressed in other redox processes involving 

sulfite compounds (e.g., bisulfite oxidation in atmospheric water droplets) that will 

need to be considered in the interpretation of future studies. 

In Chapter 3, I present experimental determinations of reaction rates and 

sulfur isotope fractionations associated with the homogeneous oxidation of sulfide by 

molecular oxygen in aqueous solution, following up on the classic study of Brian Fry 

and colleagues (Fry et al., 1988).  A major motivation for this study was to explore 

the mass-dependence of isotope fractionations associated with sulfide oxidation via 

the analysis of all three stable isotope ratios of sulfur.  The need for such constraints 

has become apparent in recent years in the evaluation of multiple sulfur isotope 

systematics in many natural systems where sulfur compounds are oxidatively cycled, 

for example: the global oceans (e.g., Zerkle et al., 2009; Johnston, 2011), the 

chemoclines of sulfidic and redox stratified waters (e.g., Zerkle et al., 2010), organic-
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rich sediments undergoing early diagenesis (e.g., Pellerin et al., 2015), the 

hydrothermal waters of hot springs (e.g., Yellowstone National Park; Kamyshny et 

al., 2014), and even most recently in the genetic relationships between inorganic 

sulfur compounds of mixed valence in solar system materials that have complex 

histories (e.g., CM chondrites; Labidi et al., submitted).  In each of these settings, the 

isotope effects associated with oxidative processes may have influenced the isotopic 

compositions of sulfur phases that result from sulfur cycling. 

For the experimental study described in Chapter 3, an attempt was 

additionally made to ground my sulfide oxidation experiments in the extensive sulfide 

oxidation kinetics literature by designing my experiments to constrain reaction rates 

in addition to isotopic fractionations. Poor reproducibility of sulfide oxidation rates 

between laboratories over the last several decades indicate that the kinetics of sulfide 

oxidation is not a trivial pursuit, and issues of variability likely stem from varying 

degrees of trace catalyst contaminations in experimental approaches (cf. Millero, 

1986; Luther et al., 2011).  Isotope fractionations and rates are both intimate 

expressions of the reaction mechanism and are likely to co-vary, and the meaning of 

measured isotopic fractionations may be ambiguous or difficult to interpret without 

tying the fractionations to rates (specifically, overall rate constants). I show that the 

rate constants and activation energy for the autoxidation of sulfide derived from my 

experiments are highly consistent with the extensive kinetic studies of the Frank J. 

Millero group (Millero et al., 1987; Zhang and Millero, 1993), and provide new 

rate/fractionation factor relationships for sulfide oxidation. 



 

 12 
 

3.0 Context for Research Presented in this Dissertation 

The analysis and consideration of all three isotope ratios of sulfur (33S/32S, 

34S/32S, 36S/32S) has revolutionized the utility of sulfur isotopes in (bio)geochemical 

studies (Johnston, 2011).  This revolution was gradually spurred on by the efforts of 

workers in the group of Mark Thiemens at UCSD in the 1990’s in their examination 

of the multiple sulfur isotope compositions of various meteorite groups (e.g., Gao and 

Thiemens, 1993; Cooper et al., 1997; Farquhar et al., 2000a) and the anomalous 

isotope effects associated with photochemical reactions of gaseous sulfur compounds 

(e.g., Colman et al., 1996; Zmolek et al., 1999; Farquhar et al., 2001).   Following this 

trajectory, a major discovery was made via the multiple sulfur isotope analysis of 

pyrite in Archean and younger sedimentary rocks (Farquhar et al., 2000b) that 

revealed so-called anomalous or “mass-independently fractionated” (or “MIF”) sulfur 

isotope compositions uniquely associated with Archean rocks. These signals are 

highly likely to be the result of atmospheric photochemistry involving SO2 and 

perhaps other gaseous sulfur compounds that require low atmospheric oxygen 

fugacity for their generation and preservation (e.g., Farquhar et al., 2001; Pavlov and 

Kasting, 2002).  The analyses presented in Farquhar et al. (2000b) provided key 

constraints on the anoxic nature of the Archean atmosphere and the first glimpse of 

the “smoking gun” isotope signal for when the Earth’s atmosphere began to 

accumulate molecular oxygen above an operationally defined threshold value (cf. 

Pavlov and Kasting, 2002; Farquhar and Wing, 2003; Johnston, 2011).  These studies 

further inspired the analysis of multiple sulfur isotopes in other low temperature 

systems to see what other information can be provided. 
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Apart from the numerous follow-up studies documenting and bolstering the 

so-called sulfur “MIF record” to constrain the history of atmospheric oxygen (e.g., 

Johnston, 2011), much of the effort in the sulfur isotope community of the past 10-15 

years has been concentrated on the multiple sulfur isotope fractionations associated 

with microbial metabolisms, particularly sulfate reducing organisms (Farquhar et al., 

2003; Johnston et al., 2005; Johnston et al., 2007; Farquhar et al., 2007; Sim et al., 

2011a,b; Leavitt et al., 2013; Wing and Halevy, 2014; Leavitt et al., 2015; Bradley et 

al., 2016).  Microbial sulfate reduction is a major geochemical process responsible for 

ca. 12-29% of the respiration of the organic carbon flux to the seafloor per year in the 

modern oceans (Bowles et al., 2014) and has strongly impacted the isotopic 

composition of the authigenic pyrite rock record throughout geologic time (e.g., 

Canfield, 2001; Canfield, 2004). Additionally, microbial sulfate reduction may be 

among the earliest forms of metabolism for which we have putative isotopic evidence 

in the rock record (e.g., Shen et al., 2001; Shen and Buick, 2003; Ueno et al., 2008; 

Shen et al., 2009; Wacey et al., 2010; Wacey et al., 2011; see also Johnston, 2011).  

Recent efforts have been directed at understanding the sulfur isotope fractionations 

associated with the metabolism in more detail via all three isotope ratios of sulfur to 

further enhance and inform interpretations of the rock record.  

One of the key initial insights from the early investigations (Farquhar et al., 

2003) was the observation that small but resolvable ∆33S and ∆36S fractionations 

accompany microbial sulfate reduction.  Values of ∆33S and ∆36S are defined as an 

exponential relationship between a measured major isotope ratio of sulfur (34R = 

34S/32S) and minor isotope ratio of sulfur (e.g., 33R = 33S/32S), i.e.: 
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∆33SA-B =  33RA/33RB - (34RA/34RB)0.515  (1) 

∆36SA-B =  36RA/36RB - (34RA/34RB)1.9   (2) 

A and B refer to substance “A” and substance “B” and the exponents of 0.515 and 1.9 

are the reference exponents approximating the expected relationship associated with 

low-temperature equilibrium isotope exchange.  These effects have since been 

documented for other sulfur metabolizing microorganisms, including sulfur 

disproportionating bacteria (Johnston et al., 2005) and anaerobic phototrophic sulfide 

oxidizing bacteria (Zerkle et al., 2009), and have largely been explained utilizing 

isotope fractionation network models as being the result of mixing and un-mixing of 

fractionated sulfur pools within the metabolism (e.g., Farquhar et al., 2003; Johnston 

et al., 2007).  These efforts led to the intriguing observation that the multiple sulfur 

isotope fractionations imparted to sulfate and sulfide may be unique for these three 

metabolisms (considered generically), forming the basis for the possibility of 

metabolic-specific biosignatures based on sulfur isotopes (Johnston, 2011). Of these 

three major sulfur metabolisms, it is only sulfide oxidation that has a significant 

abiological counterpart that operates under temperature regimes that overlap with 

biological processes.  It became clear from this context that constraints were needed 

for the multiple sulfur isotope effects associated with abiological sulfide oxidation 

that has led to the study presented in Chapter 3 of this dissertation.  The data in 

Chapter 3 may further refine multiple sulfur isotope oxidative biosignatures and 

further constrain the isotope effects associated with the oxidative sulfur cycle. 

Throughout the course of the experimental research presented in Chapter 3, it 

became apparent that the reference exponents (represented as lambda values: 33/34λref 
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= 0.515, 36/34λref = 1.9) may require further examination in order to properly interpret 

the mass dependence associated with sulfide oxidation. Even my earliest preliminary 

experiments appeared to reveal that the exponents associated with sulfide oxidation 

did not correspond to the reference exponents within uncertainty (i.e., 33/34λ ≠ 0.515, 

∆33S ≠ 0).  This observation was not exactly anticipated, and in addition to repeating 

the observation I sought to further understand the quantitative meaning of the 

reference exponents.   The reference exponents have been chosen by the community 

to approximate equilibrium isotope exchange at low temperature (i.e., well below the 

high temperature limit as T à ∞), and the questions arose: how much variability in 

the exponent can we expect from equilibrium isotope exchange and what are its major 

controls?  Variability in the equilibrium isotope exchange exponents relating mass 

dependence was understood early on to be a function of bonding environment at low 

temperatures (e.g., Matsuhisa et al., 1978) but had not been elaborated upon in the 

sulfur system.  Farquhar et al. (2003) estimated that variability in the 33/34λ exponent 

associated with equilibrium isotope exchange to be on the order of 0.514 – 0.516 

based on theoretical calculations of equilibrium isotope fractionation factors among 

H2S/SO3
2-/SO4

2- using experimental vibrational spectra and force field models.  The 

data provided in the theoretical study of Otake et al. (2008) for gas phase reactions is 

additionally consistent with this range.  The theoretical study in Chapter 2 expands 

upon the analysis of Farquhar et al. (2003) and includes many more aqueous sulfur 

compounds utilizing vibrational spectra derived from quantum mechanical 

calculations.  The expected variability defined in Farquhar et al. (2003) is largely 

unchanged by the calculations presented in Chapter 2, but my calculations provide 
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much more detail on the first order controls on this variability.  The theoretical 

calculations in Chapter 2 are used as a reference frame for examining the mass 

dependence associated with sulfide oxidation in Chapter 3. 

In addition to further constraining the mass dependence of equilibrium isotope 

exchange, the theoretical calculations may have applicability to microbial 

metabolisms.  The expression of sulfur isotope fractionations for multiple sulfur 

isotopes associated with microbial metabolism have largely been evaluated in the 

context of network models, all the way from the earliest evaluations (for 34S/32S: 

Rees, 1973; for 33S/32S and 34S/32S: Farquhar et al., 2003) to the most recent (Wing 

and Halevy, 2014).  These models describe the overall isotope fractionations 

associated with a process based on: (1) the network of steps that comprise the 

process, (2) the isotope fractionations associated with each of those steps, and (3) the 

relative fluxes of mass between these steps.  The earliest network models to consider 

multiple sulfur isotopes (Farquhar et al., 2003) were based on metabolic steps for 

sulfate reduction proposed by early studies (Harrison and Thode, 1958; Rees, 1973) 

and used constraints for fractionations associated with steps using estimates of 

equilibrium fractionation factors among major reactant/intermediate/product pairs 

(i.e., H2S/SO3
2-/SO4

2-).  As this work developed, constraints from the biochemical 

literature were incorporated to expand the network of steps to include more complex 

pathways (Brünner and Bernasconi, 2005) and were subsequently adopted for 

multiple sulfur isotopes (e.g., Farquhar et al., 2007; Johnston et al., 2007).  Later 

models (Bradley et al., 2011) further expanded and refined the considered network 

based on insights gained from sulfite interactions with enzymes via the crystal 
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structure studies of dissimilatory sulfite reductase (Oliviera et al., 2008; Parey et al., 

2010), the key enzyme that is responsible for the step-wise reduction of the 

intermediate sulfite to terminal product sulfide (e.g., Figure 1.2).  The overall aim of 

these studies was to constrain the appropriate network of intracellular steps occurring 

in the metabolism to adequately model the system to explain the broad range of 

fractionations that had been directly measured for the metabolism both in terms of 

34S/32S and 33/34λ (or ∆33S), and in many cases relied on equilibrium fractionations 

among key inorganic sulfur compounds as end-member constraints.   

The following experimental and model studies aimed to pinpoint the key 

variables that contribute to the widespread variability in isotope fractionations 

associated with microbial sulfate reduction (Sim et al., 2011a,b; Leavitt et al., 2013; 

Wing and Halevy, 2014; Bradley et al., 2016).  Among the most recent experimental 

efforts are those that have been concentrated on constraining sulfur isotope 

fractionations as a function of cell-specific sulfate reduction rate (csSRR) using 

experiments performed in continuous flow bioreactors with pure cultures (Sim et al., 

2011a, b; Leavitt et al., 2013).  These studies have importantly elucidated how cell 

specific sulfate reduction rate is a primary driver in controlling the expression of 

fractionations in the metabolism. For example, the maximum 34S/32S fractionations 

associated with MSR are associated with the lowest csSRR and may approach the 

magnitude of the equilibrium isotope fractionation factor between sulfate and sulfide 

in terms of both 34S/32S and 33/34λ (Sim et al., 2011a), and decrease with increasing 

rate until reaching a plateau where 34S/32S fractionations and 33/34λ are much lower 

(Sim et al., 2011a, b; Leavitt et al., 2013). Wing and Halevy (2014) built a network 
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model to explain these broad observations and was the first of its kind to tie the flux 

terms in the network model directly to enzyme kinetics and thermodynamics, where 

flux terms had previously been treated as free variables.  Although still preliminary in 

its widespread application due to a paucity of key constraints, the model approach of 

Wing and Halevy (2014) allows for the exploration of the thermodynamic and kinetic 

controls on the expression of isotope fractionations (some of them strain-specific) in 

the experimental studies of Sim et al. (2011a,b) and Leavitt et al. (2013) as a function 

of the respiration rate per cell.  In this sense, the field has experienced a shift from 

batch experiments and bulk isotope fractionation models to experiments and models 

that control for the overall rates of the process, and have yielded considerable insight 

along the way into some of the key variables that control the net isotope 

fractionations produced by the metabolism.   

The overall arc of multiple sulfur isotope research as applied to microbial 

metabolism (sulfate reduction) appears to be bending towards elucidating the 

numerous intracellular mechanisms for isotope exchange, especially as the 

biochemical mechanisms for the enzymatic transformations of sulfur within sulfate 

reduction become increasingly more detailed (e.g., Santos et al., 2015) and their 

potential physiological controls undergo further investigation (e.g., Bradley et al., 

2016).  For example, Leavitt et al. (2015) provide information regarding the isotope 

fractionations associated with the reduction of bulk sulfite via dissimilatory sulfite 

reductase in vitro, and it appears ongoing studies may be aimed at isolating 

intermediate sulfur compounds from within cells grown under controlled conditions 

for their isotopic analysis.  These studies seek to provide specific fractionation factors 
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associated with each step in the metabolism that will further elucidate controls on the 

expression of isotope fractionations in conjunction with network models such as 

Wing and Halevy (2014).  In addition to the broader efforts to constrain the chemical 

and isotope exchange mechanisms and their influence on the expression of overall 

isotope fractionations within the metabolism more generically, the physiological 

controls on isotopic fractionations resulting from an organism’s response to 

environmental factors (e.g., sulfate concentrations) that arise from strain-specific 

factors are beginning to be explored as well (Bradley et al., 2016).   

The work presented in this dissertation (Chapter 2) will provide critical 

information that may be used in future studies to further probe the mechanism of 

sulfite reduction via dissimilatory sulfite reductase.  I point out in Chapter 2 that an 

often-ignored feature of inorganic sulfite chemistry is the isomerization of bisulfite 

(HSO3
-), where protons can be bound to either oxygen atoms or sulfur atoms.  The 

implication of this isomerization is that there are three major sulfite species present in 

aqueous solutions at ambient temperature and circumneutral pH (depending on ionic 

strength) as opposed to the typically assumed singular sulfite sensu stricto in network 

models and other experimental approaches related to the sulfate reduction 

metabolism.  The equilibrium quotients for bisulfite isomerization have been 

documented (Horner and Connick, 1986; Littlejohn et al., 1992; Risberg et al., 2007) 

but have been largely unrecognized by the sulfur isotope community, and perhaps as 

a result have not yet been constrained as a function of a wide range of solution 

conditions.  I show that the relative abundances of the bisulfite isomers have 

consequences for isotope fractionations between bulk bisulfite and sulfite in solution, 
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due to the vastly different isotope partitioning behavior of the isomer that is in minor 

abundance at low temperature. I additionally hypothesize that the minor isomer may 

be sterically hindered in its reaction towards the siroheme active site in dissimilatory 

sulfite reductase, potentially leading to its discrimination during enzymatic sulfite 

reduction that may have consequences for the expression of isotope fractionations 

involving this enzyme.  In this sense, although Chapter 2 is not a biochemical study, it 

may provide key constraints for the further elucidation of isotopic fractionations 

associated with the enzyme mediated redox reactions associated with microbial 

metabolism. 

In the context of existing isotope fractionation network models that are 

applied to microbial sulfate reduction, the equilibrium isotope fractionations among 

sulfide species, sulfite species, and sulfate provided in Chapter 2 are likely to inform 

future network models constructed similarly to Wing and Halevy (2014) and those 

that came before.  Wing and Halevy (2014) used estimates for equilibrium isotope 

fractionations cited from the theoretical study of Otake et al. (2008) to constrain 

isotope fractionations in the equilibrium limit that is postulated to prevail under 

certain conditions (i.e., exceedingly low cell-specific sulfate reduction rates; Wing 

and Halevy, 2014).  These critically include equilibrium fractionations factors 

between SO4
2-/SO3

2- (approximating steps between intracellular sulfate and sulfite, 

bridged by the activated sulfate complex adenosine phosphosulfate, or APS) and 

SO3
2-/H2S (approximating the dissimilatory sulfite reductase step)1 (see Figure 1.2). 

                                                
1 Note: Wing and Halevy (2014) appear to have incorrectly cited the study of Otake et al. (2008) as 
providing constraints for fractionations involving SO3

2-, and they appear to have used the Otake et al. 
(2008) calculations of SO3 (the trigonal planar gas phase sulfur trioxide) in its place.  The isotope 
partitioning behavior of SO3 and SO3

2- are not expected to be similar due to differences in their 
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These are conceptually the same types of constraints used in the earliest multiple 

sulfur isotope network models of Farquhar et al. (2003) that utilized theoretical 

calculations based on experimental vibrational spectra.  In this framework, the 

theoretical calculations in Chapter 2 allow for the consideration of much more 

complete aqueous speciation: SO4
2-/(SO3

2-
T = SO2(aq) + (HO)SO2

- + (HS)O3
- + SO3

2-) 

and similarly (SO3
2-

T = SO2(aq) + (HO)SO2
- + (HS)O3

- + SO3
2-)/(H2ST = H2S + HS-), 

and indicate that the estimations for these fractionations will depend on speciation 

and therefore intra- and extra-cellular solution conditions (temperature, ionic strength, 

pH, and so on).  The study of Chapter 2 therefore serves as a set of internally 

consistent constraints that can be readily applied to models of microbial metabolism, 

and provide a useful summary of the literature on equilibrium isotope fractionation 

factors among aqueous sulfur compounds.   

 
 

                                                                                                                                      
oxidation state and molecular structure (see Chapter 2), and so it would appear that a quantitative re-
evaluation of their model results might be warranted in light of this observation. This, however, does 
not undermine their contribution and merely represents a direction for further exploration. 
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Chapter 2: Theoretical estimates of equilibrium sulfur 

isotope effects in aqueous systems: Highlighting the role of 

isomers in the sulfite and sulfoxylate systems 

Abstract 

I present theoretical calculations of reduced partition function ratios (RPFR) 

for all three isotope ratios of sulfur (33S/32S, 34S/32S, 36S/32S) at the B3LYP/6-

31+G(d,p) level of theory for aqueous sulfur compounds modeled in 30-40 H2O 

clusters spanning the range of sulfur oxidation state (Sn, n = -2 to +6).  Major isotope 

RPFRs (34S/32S; denoted 34β) scale to a first order with sulfur oxidation state and 

coordination, where higher oxidation states have higher 34β and 34β generally increase 

with increasing coordination of the sulfur atom.  

Exponents defining mass dependent relationships based on RPFRs (n/34λβ = 

ln(xβ)/ln(34β), x = 33 or 36) conform to tight ranges over a wide range of temperature 

for all aqueous compounds (33/34λβ ≈ 0.5148-0.5159, 36/34λβ ≈ 1.89-1.90 from T ≥ 

0˚C). The exponents converge near a singular value for all compounds at the high 

temperature limit (33/34λβ, Tà∞ = 0.51587 ± 0.00003 and 36/34λβ, Tà∞ = 1.8905 ± 0.0002; 

1 s.d. of all computed compounds) and typically follow trends based on oxidation 

state and coordination similar to those seen in 34β values below the high temperature 

limit.  

Theoretical fractionation factors are compared to experimental constraints for 

HSO3
-
T(aq)/SO2(g, aq), SO2(aq)/SO2(g), H2S(aq)/ H2S(g), H2S(aq)/HS-

(aq), SO4
2-

(aq)/H2ST(aq), 

S2O3
2-

(aq) (intramolecular), and S2O3
2-

(aq)/H2ST(aq), and generally agree within a 
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reasonable estimation of uncertainties.  We make predictions for fractionation factors 

where other constraints are unavailable.  Isotope partitioning of the isomers of 

protonated compounds in the sulfite and sulfoxylate systems depend strongly on 

whether protons are bound to either sulfur or oxygen atoms. The magnitude of the 

HSO3
-
T/SO3

2- major isotope (34S/32S) fractionation factor is predicted to increase with 

temperature from 0-70˚C due to the combined effects of the large magnitude (HS)O3
-

/SO3
2- fractionation factor  (1000ln34α(HS)bisulfite-sulfite = 19.9 ‰, 25˚C) relative to the 

(HO)SO2
-/SO3

2- fractionation factor (1000ln34α(HO)bisulfite-sulfite = -2.2 ‰, 25˚C) and the 

increased stability of the (HS)O3
- isomer with increasing temperature. I additionally 

hypothesize that the complex speciation of sulfite in intracellular media could have an 

impact on the isotope fractionations expressed during the reduction of bulk sulfite by 

the enzyme dissimilatory sulfite reductase in sulfate reducing microorganisms. 

1.0 Introduction 

1.1 Overview 

Quantum mechanical electronic structure calculations of aqueous clusters 

complement experimental investigations of isotope effects in aqueous systems (e.g., 

Rustad et al., 2008; Rustad et al., 2010; Zeebe, 2009) and have been instrumental for 

predicting isotope effects when experimental determinations are unavailable (e.g., Li 

et al., 2009; Li and Liu, 2011).  Theoretical approaches are especially useful for 

compounds like those of the sulfite and sulfoxylate systems that contain isomers and 

dimers that are difficult to experimentally isolate.  The aim of the present study is to: 

(1) provide an internally consistent set of constraints for equilibrium isotope 

fractionations among aqueous sulfur compounds relevant to both low and high 
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temperature conditions, emphasizing the poorly documented sulfite and sulfoxylate 

systems; (2) provide new constraints on the exponents of mass-dependence associated 

with equilibrium isotope fractionation in aqueous systems and their relationships to 

sulfur oxidation state and bonding environment; (3) compare our theoretical 

constraints to the available experimental datasets and make predictions where 

estimates are currently unavailable, assessing where future experimental work may be 

needed; and (4) illustrate the effects of isomerization on isotope partitioning in the 

sulfite system where isomerization leads to relatively large and apparently unusual 

effects in observable isotope fractionation behavior (e.g., influencing magnitudes, 

directions, and the temperature dependence of bulk fractionation factors). 

1.2 Sulfite and sulfoxylate in the sulfur cycle 

 
The sulfite (denoted SO3

2-
T) and sulfoxylate systems (denoted SO2

2-
T) are the 

series of inorganic compounds and oxyanions that contain sulfur in the +4 and +2 

oxidation states, respectively.  These oxidation states are intermediate between the 

most common end member sulfur oxidation states of -2 as the most reduced (e.g., 

H2S/HS-/S2-) and +6 as the most oxidized (e.g., SO4
2-).  Sulfite is a well-documented 

intermediate in a variety of settings where sulfur is cycled, and sulfoxylate species, 

while very rarely observed, are inferred to be a ‘missing-link’ oxidation state in sulfur 

redox processes between zero-valent sulfur compounds (e.g., generically as S0) and 

those of the sulfite system.  Both sulfite and sulfoxylate exhibit complex speciation in 

solution—including numerous isomers and dimers of protonated species—that is 
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often ignored in (bio)geochemical applications where these compounds are key 

intermediates.  Here I provide a brief review of their roles in the sulfur cycle. 

Sulfite in the sulfur cycle 

Sulfite sensu lato in natural environments is typically transient and does not 

comprise a significant fraction of the bulk sulfur in Earth’s surface environment but 

nevertheless plays essential roles in the environmental cycling of sulfur and related 

elements.  The hydrolysis and subsequent oxidation of sulfur dioxide in atmospheric 

water droplets is a major pathway of acid-rain formation (e.g., Brandt and van Eldik, 

1995).  Sulfite is a major intermediate in both the oxidative and reductive portions of 

the sulfur cycle, including the microbial production and subsequent oxidation of 

sulfide (HS-/H2S; Zhang and Millero, 1993; Zopfi et al., 2004).  In marine sediments 

containing relatively high amounts of organic matter, sulfide is generated as a 

byproduct of anaerobic respiration (dissimilatory sulfate reduction) and ca. 80-95% of 

the sulfide produced is eventually re-oxidized through intermediates like sulfite back 

to sulfate (Jørgensen, 1977; Jørgensen, 1982; Jørgensen et al., 1990; Canfield and 

Teske, 1996; Jørgensen and Nelson, 2004).  Depending on the conditions and biota 

present, the sulfite thus produced can support or supplement a variety of metabolisms 

carried out by microorganisms that oxidize, reduce, and disproportionate sulfite and 

other intermediate sulfur compounds for overall energy conservation and metabolic 

function.   

At the intracellular level, sulfite (sensu lato) is a pivotal intermediate during 

dissimilatory sulfate reduction, which in general is responsible for the oxidation of 

much of the organic matter contained in modern marine sediments (e.g., Bowels et 
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al., 2014).  Intracellular sulfite within a dissimilatory sulfate reducer sits between two 

reversible transformations: (1) its production via the reduction of activated sulfate 

(adenosine-5’-phosphosulfate; cleaving an S-O bond) and (2) its reaction with the 

siroheme active site of dissimilatory sulfite reductase (dSiR) where it is reduced to 

eventually form the end waste product sulfide via other enzymatically-bound 

intermediates like sulfoxylate (S2+) and zero-valent sulfur (S0) (Parey et al., 2010).   

The sulfide thus produced and its subsequent cycling in the environment places 

primary controls on the isotopic composition of authigenic pyrite, which in 

sedimentary rocks serves as a primary archive of the sulfur cycle through geologic 

time.  Isotope network models that attempt to place constraints on the sulfur isotope 

fractionations that occur during the step-wise reduction of sulfate within MSR have 

all, thus far, greatly simplified the intracellular inorganic speciation of sulfite 

(assuming sulfite sensu stricto only) and have yet to take into consideration the 

potentially complex effects of sulfite speciation. 

Despite the recognized importance of sulfite in the overall cycling of sulfur, 

the determination of the equilibrium isotope fractionations among various sulfite 

species has received very little attention. To my knowledge, only one set of 

experimental constraints has been reported (Eriksen, 1972a; Eriksen, 1972b; Eriksen, 

1972c), suggesting a fractionation factor between bulk bisulfite in solution and 

gaseous SO2  (1000ln34αbisulfite-SO2(g)) of 10.9 ± 1.4 ‰ (1 s.d., 10 experiments) at 25˚C 

(Eriksen, 1972a).  No resolvable change in this fractionation factor was observed over 

the investigated temperature range of 25-45˚C.  Fractionations among aqueous sulfite 

species (e.g., the bisulfite compounds and sulfite) are completely unconstrained.  
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Given that these are the dominant species under most natural conditions as well as 

within sulfate reducing organisms, these fractionations are key to a detailed 

understanding of sulfite isotope systematics in natural systems.  

Sulfoxylate in the sulfur cycle 

Sulfoxylate species are difficult to detect and analyze and their role in the 

(bio)geochemical cycling of sulfur is not well understood.  Hoffmann and Lim (1979) 

were among the first to suggest sulfoxylate as a reaction intermediate of the sulfide 

oxidation mechanism in a scheme of hypothetical reactions known as the polar 

mechanism (cf. Zhang and Millero, 1993).  In this scheme, sulfoxylate is postulated to 

be among the initial products of oxidation and a key intermediate in the formation of 

sulfite species (via its oxidation and/or decomposition) and thiosulfate (via a series of 

reactions with residual sulfide; Zhang and Millero, 1993).  

Vairavamurthy and Zhou (1995) confirmed the presence of an S2+ oxyanion 

during sulfide oxidation via sulfur k-edge X-Ray Absorbance Near Edge Structure (S-

XANES) spectroscopy and attributed it to the sulfoxylate (SO2
2-) structure based on 

Fourier Transformed Infrared (FT-IR) spectroscopic analysis. Tossel (1997) later 

compared the spectral observations of Vairavamurthy and Zhou (1995) and their pH 

dependence with calculated vibrational frequencies of sulfoxylate compounds, and 

argued that the species identified by Vairavamurthy and Zhou (1995) is more likely a 

bisulfoxylate species where the proton is bound to an oxygen (denoted here as 

(HO)SO-).  The latter argument is consistent with the predicted speciation of 

sulfoxylate under their experimental conditions (pH = 11.5-12) according to the 

dissociation quotients of Makarov et al. (2010).  
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 Sulfur in the +2 oxidation state has also been a hypothesized (but mostly 

undocumented) intermediate during dissimilatory sulfate reduction.  In recent 

biochemically-informed models (Oliveira et al., 2008; Parey et al., 2010; Bradley et 

al., 2011; Wing and Halevy, 2014; Santos et al., 2015), the reduction of sulfite at the 

siroheme-[4Fe-4S] catalytic site in dissimilatory sulfite reductase occurs stepwise, 

first producing a bound S2+ intermediate, then a bound S0-intermediate before 

eventually forming sulfide facilitated via a complex mechanism involving a Dsr-

related protein known as DsrC (Oliveira et al., 2008; Santos et al., 2015).  Reactions 

of these enzymatically-bound intermediate moieties (S2+, S0) via nucleophilic attack 

by residual non-enzymatically bound sulfite species have been hypothesized 

pathways for the generation of polythionates (principally trithionate, S3O6
2-) and 

thiosulfate (S2O3
2-) that have been observed in some MSR culture experiments (Parey 

et al., 2010).  If the hypothesized S2+ intermediates detach from the catalytic site and 

form free aqueous species, they are likely to be included within the sulfoxylate 

system and their inorganic speciation and isotope partitioning behavior could play 

additional roles in the distribution of sulfur (and oxygen) isotopes within the MSR 

framework.  In principle, the hydrolytic decomposition/disproportionation of 

sulfoxylate species and other reaction products (e.g., S2O2-) could play additional 

roles in distributing isotopes among different intracellular sulfur pools. 

2.0 Background: Aqueous sulfur speciation 

A major motivation for this study is to explore the effects of complex 

speciation on isotope partitioning in the sulfite and sulfoxylate systems (particularly 
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with respect to isomers and dimers, where applicable).  Here, I provide a brief review 

of aqueous sulfur speciation with emphasis on sulfite and sulfoxylate. 

2.1 Sulfite system chemistry 

The most common species in the sulfite system (S4+) include: gaseous and 

aqueous sulfur dioxide (SO2(g) and SO2(aq)), bisulfite isomers ((HO)SO2
- and (HS)O3

-; 

collectively HSO3
-
T), dimers of bisulfite (such as pyrosulfite: S2O5

2-), and sulfite 

sensu stricto (SO3
2-). The hypothetical sulfurous acid (two generic groups of isomers: 

SO(OH)2 and (HS)O2OH; collectively H2SO3) may be intermediary in the hydrolysis 

of SO2 to form bisulfite anions, but has never been detected in solution (Gerding and 

Nijveld, 1936; Falk and Giguere, 1958; Zhang and Ewing, 2002; Voegele et al., 

2004). Sulfurous acid (and related isomers) is therefore unlikely to be a significant 

component of the mass balance. 

Sulfite species are distributed in solution as a continuum that depends on pH, 

temperature, ionic strength (µ), and total S(IV) concentration (see Figure 2.1).  A 

summary of select dissociation, isomerization, and dimerization quotients is included 

in Table 2.1.  At µ ~ 0 m and 25˚C, dissolved SO2 dominates sulfite solutions under 

extremely acidic conditions (pH < 1.9), bisulfite compounds dominate at 1.9 < pH < 

7.2, and sulfite sensu stricto at pH > 7.2 (Martell and Smith, 1982; Beyad et al., 

2014).   

Bisulfite exists in two isomeric forms: one tetrahedral form where the proton 

is bound to the sulfur—denoted herein as (HS)O3
-—and another that is pyramidal 

where the proton is bound to one of the oxygen atoms—denoted herein as (HO)SO2
- 

(Golding, 1960 and references therein; Connick et al., 1982; Horner and Connick,  
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1986; Littlejohn et al., 1992; Risberg et al., 2007).  The relative proportions of the 

bisulfite isomers in solution is given by the isomerization quotient (Qi), defined as: 

(HS)O3
- ⇌ (HO)SO2

- Qi = [(HO)SO2
-]/[(HS)O3

-], (1) 

where brackets “[ ]” denote concentrations.  Studies utilizing 17O-NMR, IR-Raman, 

and sulfur k-edge XANES spectroscopy have shown that the OH-bonded pyramidal 

isomer of bisulfite is the dominant form in solution at low temperature, comprising 

~72-84% of bisulfite at 25˚C depending on ionic strength (see Figure 2.1; Horner and 

Connick, 1986; Littlejohn et al., 1992; Risberg et al., 2007).   

The relative proportion of the bisulfite isomers is temperature-dependent and 

the proportion of the HS-bonded isomer increases with increasing temperature  

	

Figure 2.1: Mole fraction of sulfite species (χS(IV)) as a function of pH at 25˚C, highlighting the 
isomers of bisulfite (not including bisulfite dimers for simplicity; [S4+]T < ~0.1 M).  The solid black 
curves are computed using dissociation and isomerization quotients determined at an ionic strength of 
zero (Damian Risberg et al., 2007; Beyad et al., 2014; Martell and Smith, 1982) and the gray curves at 
an ionic strength of 1 m (Horner and Connick, 1986; Millero et al., 1989). 



 

 31 
 

(Horner and Connick, 1986; Littlejohn et al., 1992; Risberg et al., 2007). Horner and 

Connick (1986) and Littlejohn et al. (1992) determined the quotient in a medium of 

relatively high ionic strength (µ = 1 m) over a total temperature range of 2-67˚C, from 

which the following temperature dependence is obtained (see Figure 2.2): 

lnQi = 1413(±119)/T -3.1(±0.4) (T = 275-340 K; µ = 1 m)  (2) 

	

Figure 2.2:  Experimental constraints on the bisulfite isomerization quotient as a function of 
temperature, defined as Qi = [(HO)SO2

-]/[(HS)O3
-].  The µ = 1 m constraints are from Horner and 

Connick (1986) (black circles) and Littlejohn et al. (1992) (white circles) and the µ = 0 m constraint is 
from Risberg et al. (2007) (white square).  The least-squares linear regression of the 1 m constraints 
yields: lnQi = 1413(±119)/T – 3.1(±0.4) (valid over ≈ 0-67˚C). 
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The isomerization quotient may also vary significantly as a function of ionic 

strength as indicated by the lower Qi more recently determined in a low-ionic strength 

medium at 25˚C (Risberg, 2007; see Table 2.1 and Figures 2.1 and 2.2).  This 

suggests that application of the quotients of Horner and Connick (1986) and 

Littlejohn et al. (1992) to solutions of lower ionic strength may significantly 

underestimate the amount of (HS)O3
- present in solution.  However, the exact effect 

of ionic strength on the isomerization quotient is yet to be quantified over a wide 

range of temperatures relevant to many natural systems. 

Bisulfite can also form dimers in solution (cf. Golding, 1960).  The principle 

dimer of bisulfite is S2O5
2- known as pyrosulfite or disulfite, whose structure can be 

schematically illustrated as: (O2S-SO3)2- (note, however, that an aqueous form with a 

bridging oxygen—(O2S-O-SO2)2-—remains to be ruled out in solution; Williamson 

and Rimstidt, 1992).   The extent of dimerization varies as a function of the total 

bisulfite concentration and is quantified as the dimerization quotient (Qd): 

2HSO3
-
T ⇌ S2O5

2-+ H2O Qd = [S2O5
2-]/[HSO3

-
T]2 ; (M-1) (3) 

Studies directed at quantifying the dimerization quotient have produced varied 

results (see Table 2.1).  Some of the discrepancies may have arisen from a variety of 

experimental errors in the earliest determinations (see discussion in Connick et al., 

1982). The existing experimental datasets indicate that total bisulfite has to reach 

concentrations on the order of  ≥ 0.1 M in order for significant conversion to the 

dimer to occur.  For example, the dimer comprises ≤1% of total bisulfite at [HSO3
-]T 

≤ 0.12 M at µ=1 m and ≤ 1% of total bisulfite at [HSO3
-]T ≤ ~0.29 M at µ = 0 (using 

the quotients of Connick et al., 1982). Recently, Beyad et al. (2014) found evidence 
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for a protonated dimer (HS2O5
-) via UV-spectrophotometric titrations and quantified 

its dissociation quotient (Table 2.1). 

2.2 Sulfoxylate system chemistry 

The sulfoxylate system comprises aqueous sulfur compounds and oxyanions 

in the 2+ oxidation state (S2+): the sulfoxylate ion (SO2
2-), bisulfoxylate ((HS)O2

- 

and/or (HO)SO-), and species of the general composition H2SO2 (mostly including 

sulfoxylic and sulfinic acid).  Electronic structure calculations have shown that the 

lowest energy configurations of H2SO2 in vacuum (i.e., predicted to be most stable in 

gas phase) are rotamers of sulfoxylic acid, where the protons are bound to each of the 

oxygen atoms and differ structurally in the relative orientation of the O-H bonds 

(Steiger and Steudel, 1992; Tossell, 1997; Napolion et al., 2008; Crabtree et al., 

2013). Other isomers of H2SO2 of potential significance are those termed sulfinic 

acid, where one proton is bound to the sulfur atom and the other to one of the oxygen 

atoms. The relative stabilities of these isomers in solution are not constrained, nor are 

the isomers of the first acid dissociation products (“bisulfoxylate”): (HS)O2
- and 

(HO)SO-.  Sulfur monoxide (SO) would be the hypothetical unhydrolyzed component 

of the system (analogous to SO2 in the sulfite system) but it is extremely unstable and 

not known to undergo hydrolysis to form H2SO2 (Lyons and Nickless, 1968 and 

references therein).  Sulfur monoxide will therefore not be considered here as a 

component of this system.   

The distribution of sulfoxylate species as a function of solution conditions is 

not well constrained.  Makarov et al. (2010) is among the few studies to report the 

acid dissociation quotients of sulfoxylic acid, and their values are reproduced in Table 
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2.2.  In general, it appears that sulfoxylic acid and bisulfoxylate are the primary 

species under most environmentally-relevant conditions, where sulfoxylic (or 

sulfinic) acid dominates at pH < 7.97, bisulfoxylate species from 7.97 < pH < 13.55, 

and the unprotonated sulfoxylate divalent anion at pH > 13.55 (T= 25˚C, µ = 0.1 m; 

Makarov et al., 2010). 

2.3 Aqueous sulfide, thiosulfate, and sulfate 

Aqueous sulfide compounds (H2S, HS-, and S2-) and sulfate (SO4
2-) represent 

the lowest and highest oxidation states of sulfur (-2 and +6, respectively), and are the 

most abundant forms of sulfur in natural systems, either in aqueous or mineral form.  

Thiosulfate (S2O3
2-) is also a relatively common mixed-valence intermediate in sulfur 

cycling processes (e.g., Jørgensen, 1990; Jørgensen and Nelson, 2004; Zopfi et al., 

2004).   

The first acid dissociation quotient (pQd1) of H2S is very close to neutral pH at 

25˚C and µ = 0 m (H2S ⇌ HS- + H+, pQd1 = 6.98; Hershey et al., 1988).  In the range 

of ca. 100-350˚C, pQd1 increases with increasing temperature (e.g., at 300˚C, pQd1 ≈ 

8.2; Ellis and Giggenbach, 1971; Ohmoto and Lasaga, 1982).  The second acid 

dissociation quotient (HS- ⇌ S2- + H+, pQd2) is not as well constrained, but likely to 

be on the order of pQd2 ≈ 17-18 at 25˚C (Ellis and Giggenbach, 1971; Schoonen and 

Barnes, 1988; Migdisov et al., 2002). Thus, S2- may only comprise an appreciable 

component of aqueous sulfide speciation in highly alkaline solutions possibly at high 

temperature (Ellis and Giggenbach, 1971).  Under the conditions of most natural 

systems, aqueous sulfide is therefore predominately in the form of H2S or HS- (and 

any ion pairs, e.g., NaSH(aq), FeS(aq)). 
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Sulfuric acid (H2SO4) is a very strong acid and the doubly protonated form 

generally does not form an appreciable component of the mass balance of sulfate 

solutions at low temperature, but it may become a significant species in low pH 

solutions at high temperature (Ohmoto and Lasaga, 1982 and references therein).  The 

second acid dissociation quotient for sulfuric acid (HSO4
- ⇌ SO4

2- + H+) is pQd2 = 

1.99 ± 0.01 at 25˚C and µ = 0 m (Martell and Smith, 1982) but has values as high as 

6.4 at 350˚C (cf. Ohmoto and Lasaga, 1982 and references therein). 

 Thiosulfate (S2O3
2-, schematically: S-SO3

2-) contains two sulfur atoms: one 

outer (“sulfanyl”) sulfur in a -1 oxidation state and another inner (“sulfonate”) sulfur 

in a +5 oxidation state that is four-fold coordinated with the sulfanyl sulfur and three 

oxygen atoms (Vairavamurthy et al., 1993).  There are many hypothetical forms of 

protonated thiosulfate: isomeric forms of HS2O3
- (e.g., (HS)SO3

-, S2O2OH-) and 

isomeric forms of H2S2O3 (e.g., (HS)SO2(OH) and S2O(OH)2) (Steudel and Steudel, 

2009).  Anhydrous forms of H2S2O3 have been reported in syntheses as well as solid 

forms of HS2O3
- ([NH4][HS2O3]) (Steudel and Prenzel, 1989 and references therein), 

but protonated forms in the aqueous phase are unstable (e.g., decomposing readily to 

elemental sulfur, sulfur dioxide, and water) and have never been directly detected in 

solution via spectroscopic techniques (e.g., Steudel and Prenzel, 1989; Steudel and 

Steudel, 2009).  Acid dissociation quotients for H2S2O3 have been reported: pQd1 ≈ 

0.6 and pQd2 = 1.6 ± 0.1 at 25˚C and µ = 0 m (Martell and Smith, 1982) and these pQd 

values may increase with increasing temperature over hydrothermal ranges (Ohmoto 

and Lasaga, 1982 and references therein). 
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3.0 Methods 

3.1 Overview: The Bigeleisen and Mayer equation 

Theoretical calculations of equilibrium fractionation factors use the principles 

of quantum mechanics to calculate the ground-state vibrational frequencies of 

molecules for use in the Bigeleisen and Mayer equation (BM-equation; Bigeleisen 

and Mayer, 1947; Urey, 1947).  These techniques have been widely applied since the 

derivation of the BM-equation and many extensive reviews cover this approach in 

detail (e.g., Urey, 1947; Chacko et al., 2001; Wolfsberg et al., 2010; Liu et al., 2010).   

To begin, consider the isotope exchange reaction: 

AX + B*X ⇌ A*X + BX,     (4) 

where A, B and X are generic elements and the superscript “*” denotes the heavy 

isotope of element X.  The equilibrium constant for this exchange reaction can be 

written in terms of isotope ratios: 

K = (A*X)(BX)/(AX)(B*X) = (*X/X)AX/(*X/X)BX  (5) 

Using the basic principles of statistical mechanics, the isotope ratios *X/X can be 

recast in terms of partition function ratios *Q/Q of isotopomer pairs: 

K = (*Qtotal/Qtotal)AX/(*Qtotal/Qtotal)BX    (6) 

where, 

*Qtotal
Qtotal 

=  *Qtranslational *Qrotational *Qvibrational *Qelectronic *Qnuclear…
QtranslationalQrotationalQvibrationalQelectronicQnuclear…

             (7) 

Writing the total partition function for a molecule as a product of the partition 

functions of different energy terms is equivalent to stating that the total energy of a 

molecule is given by the sum of its constituent types of energy (translational, 

rotational, vibrational, etc.).  Though widely applied, this formulation is not exact and 
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introduces approximations including the “Rigid-Rotator-Harmonic-Oscillator” 

approximation that neglects any coupling between rotational and vibrational modes 

(e.g., McQuarry, 2000).  This necessitates harmonic vibrational frequencies be used 

in the Qvibrational terms (cf. Liu et al., 2010). 

For typical isotope exchange reactions of low-mass elements like sulfur, only 

the translational, rotational, and vibrational partition functions are considered at the 

typical desired levels of precision in the fractionation factor (order of tenths of a 

permil or lower). In other words, the *Q/Q terms for electronic, nuclear, etc. can be 

considered unity to a good approximation for isotope equilibria involving low-mass 

elements.  The partition functions for translational, rotational, and vibrational 

energies are typically given by: 

Qtranslational = V 2πMkT
h2

3/2
     (8) 

Qrotational = π
1/2(8π2kT)3/2(IAIBIC)1/2

sh3
              (9) 

Qvibrational =
 e!!!"!/2kT

 !!e!!!"!/!"
!!!!
!     (10) 

Where V is the molecular volume, M is the molecular mass, k is the 

Boltzmann constant, T is temperature, h is the Planck constant, I# is the moment of 

inertia around axis # (A, B, and C represent the principle axes of rotation for a 

polyatomic molecule), s is the symmetry number, c is the speed of light, ωi is the 

wave number for harmonic vibrational mode i (note vibrational frequency vi = cωi), 

and the product in Qvibrational is over all harmonic vibrational modes (number of modes 

equal to 3n – 6 for a non-linear molecule and 3n – 5 for a linear molecule, where n is 

the number of atoms in the molecule).  Qtranslational and Qrotational are classical 
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formulations (often considered adequate) and Qvibrational is the quantum mechanical 

formulation in the harmonic vibrational ground state (i.e., zero-point energy state).   

When considered as *Qtotal/Qtotal, many of the terms in the above formulations 

cancel leaving the *Qtotal/Qtotal partition function ratio as a function of the isotopomer-

specific quantities: symmetry number, molecular mass, moments of inertia, and 

harmonic vibrational frequencies (cf. Urey, 1947).  A further formalism is applied 

(the Teller-Redlich spectroscopic theorem, additionally dropping a term that always 

cancels in fractionation factors), the overall result being the so-called Reduced 

Partition Function Ratio (RPFR), or Bigeleisen and Mayer equation (or Urey model), 

that puts *Qtotal/Qtotal in terms of the isotopomer-specific quantities of symmetry 

numbers and vibrational frequencies only: 

RPFR = !
!∗

!!* e!!!*/2(!!e!!!)
!! e!!!/2(!!e!!!*)

!!!!
!     (11) 

Where ui=hcωi/kT.  In many cases, isotopic substitution does not change the 

symmetry of the isotopomer and the quantity s/s* is unity, leaving the RPFR in terms 

of harmonic vibrational frequencies.  In all cases, symmetry numbers do not influence 

isotope partitioning and merely represent the relative probabilities of forming 

asymmetric vs. symmetric molecules (Bigeleisen and Mayer, 1947).  For this reason, 

the s/s* term is often factored out to the left-hand side of the equation. 

RPFRs are commonly represented as β-values, where β = [RPFR]1/n and n 

equals the number of substituted isotopes in equivalent elemental sites (Richet et al., 

1977; Chacko et al., 2001). Defined this way, β-values represent RPFRs of singly-

substituted isotopomers. Fractionation factors (denoted α) between two compounds 

are easily computed by taking the ratio of their respective β-values: e.g., αA-B = βA/βB. 
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In this formulation (single isotope exchange), the fractionation factor (α) is equivalent 

to the equilibrium isotope exchange constant (K). 

3.2 Mass dependence of isotope effects and reduced partition function ratios 

The mass dependence of an isotope effect relating a minor isotope 

fractionation factor and the major isotope fractionation factor is given by an 

exponential relationship (Craig, 1957; Matsuhisa et al., 1978; Clayton and Mayeda, 

1996; Miller, 2002), which yields the following for the sulfur isotope system: 

33α = (34α)33/34λ      (12) 

36α = (34α)36/34λ      (13) 

Such exponential forms were postulated early in stable isotope investigations to 

explain mass dependence (e.g., Craig, 1957; Swain, et al., 1958) and were recognized 

in the early stages of sulfur isotope geochemistry as the most accurate means to 

describe the generalized mass dependence among multiple sulfur isotope 

measurements of natural samples as the slopes of regressions of isotope data in 

ln(nR/nRref) vs. ln(34R/34Rref) space (n = 33 or 36; Hulston and Thode, 1965; note: 

some adopt the delta prime notation as an equivalent expression, i.e., 

δ’nS=1000ln(nR/nRref)).  The capital delta values commonly employed in multiple 

sulfur isotope studies (Δ33S and Δ36S) are defined from such exponential relationships 

as deviations from a reference exponent (Δ33S = 33α - (34α)0.515 and Δ36S = 36α - 

(34α)1.9), where the reference exponents are intended to represent the approximate 

relationship of mass dependence for typical equilibrium isotope exchange reactions at 

lower temperatures (i.e., well below the high temperature limit).  Similar exponential 

relationships can be applied to a RPFR ratio computed for single major and minor 
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isotope substitution relationship, e.g., 33β = (34β)33/34λ (Matsuhisa et al., 1978).  We 

will refer to the mass dependence exponent computed from RPFRs (represented as β 

values) as n/34λβ (n = 33 or 36). 

3.3 Quantum mechanical software: Gaussian 09 

Harmonic vibrational frequencies can be readily obtained via quantum 

mechanical software for use in the BM-equation.  These methods rely either on 

approximate solutions to the Schrödinger equation (e.g., the Hartree-Fock and 

Møller-Plesset approaches; HF, MP2, MP3, etc.) or solutions to approximations of 

the Schrödinger equation (e.g., density functional theory and related hybrid methods 

like B3LYP and others) with varying levels of basis sets applied to model the 

Hamiltonian operator and wave function (or approximations to the wave function; 

i.e., electron density for DFT methods) to obtain solutions containing terms related to 

the energy of a molecular system (e.g., Simons, 1991; Cramer, 2002).  We use 

Gaussian 09 software (Frisch et al., 2010) at the B3LYP/6-31+G(d,p) level of theory 

and basis set in this study.  The B3LYP method is a hybrid HF/B-LYP theoretical 

approach (employing the Becke and Lee, Yang, & Parr 3-parameter gradient-

corrected correlational functional; Lee et al., 1988; Becke, 1993; Foresman and 

Frisch, 1996) that includes electron correlation.  The basis set is the double-zeta Pople 

basis set (6-31) with diffuse functions added (+) to the non-hydrogen atoms (often 

required for modeling anions) and polarization functions (p functions for all atoms, d 

functions for all non-hydrogen atoms) for additional flexibility in the computation of 

molecular orbitals.  Overall, it is a low/moderate approach used for computational 

practicality for the relatively large molecular clusters computed here.  
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3.4 Explicit solvation model 

Optimization and frequency calculations were carried out with the sulfur 

molecules of interest explicitly coordinated with water molecules in clusters 

containing up to 30-40 H2O.   Optimizations of molecular clusters were carefully 

performed step-wise.  First, the sulfur molecules of interest were coordinated with ca. 

24-27 water molecules and optimized at relatively low levels of theory and basis set 

(i.e., B3LYP/6-31G(d)), after which more water molecules added until clusters 

reached the maximum size of 30-40 depending on the molecule and the required 

solvation coverage.  In the building of clusters, care was taken to ensure the proper 

orientation of water molecules with respect to themselves and solute anions for 

efficient optimizations and to avoid solute migration to the edge of the cluster.  The 

majority of the final optimization and frequency calculations were performed at the 

B3LYP/6-31+G(d,p) level on a desktop computer at the University of Maryland.  For 

some of the sulfite calculations, coordinates from lower-level B3LYP/6-31G(d) 

optimizations (computed at the University of Maryland) were run at the B3LYP/6-

31+G(d,p) level on the high performance computation cluster (Scylla) at the Woods 

Hole Oceanographic Institution.   

3.5 Sources of uncertainty 

Uncertainties in our theoretically estimated fractionation factors can derive 

from three main sources: (1) errors arising from the harmonic and other 

approximations in the derivation of the Bigeleisen and Mayer equation (requiring 

higher-order corrections, e.g., for anharmonicity), (2) inadequacies in the theoretical 

method, and (3) variability arising from the water cluster geometry. All RPFRs and 



 

 42 
 

fractionation factors in this study are reported in the harmonic approximation due to 

the inability to apply appropriate anharmonic corrections to our cluster calculations at 

this time.  We compute the anharmonic corrections to the ZPE (AnZPE) for a handful 

of gaseous sulfur molecules (H2S, S(OH)2, (HS)O2H, SO2, SO3) at the B3LYP/6-

31+G(d,p) level to gain insight into the magnitude of these corrections for more 

complex systems (section 5.1).  We have additionally chosen not to apply any scaling 

factors (harmonic or otherwise) to our harmonic frequencies due to the potential 

issues associated with this practice (section 5.1), but we do discuss the effects of 

harmonic scaling derived from high level gas phase calculations (CCSD/aug-cc-

pVTZ) on fractionation factors for individual systems (following the approach of Li 

and Liu, 2011) (section 5.4).  Unless otherwise noted, all plotted and tabulated RPFRs 

and fractionation factors utilize un-scaled harmonic frequencies at the B3LYP/6-

31+G(d,p) level. To evaluate variability associated with cluster geometry, we 

performed a series of at least duplicate constructions and optimizations for a select set 

of 30-40H2O clusters in the sulfite system: SO3
2-, (HS)O3

-, (HO)SO2
-, and the 

bisulfite dimer pyrosulfite, S2O5
2.  Uncertainties derived from the above sources are 

discussed in more detail in section 5.1. 

4.0 Results 

Optimized geometries of the 30H2O molecular clusters of compounds in the 

sulfite, sulfoxylate, and other systems (sulfide, thiosulfate, sulfate) are presented in 

Figure 2.3, Figure 2.4, and Figure 2.5, respectively. 
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Figure 2.3: Optimized geometries of sulfite species in 30H2O-34H2O clusters. (A) Sulfur dioxide 
(SO2(aq)•30H2O), (B) sulfite sensu stricto (SO3

2-•30H2O), (C) OH isomer of bisulfite ((HO)SO2
-

•34H2O), (D) HS isomer of bisulfite ((HS)O3
-•30H2O), and (E) the bisulfite dimer, disulfite (S2O5

2-

•30H2O) containing the shortest computed S-S bond length.   
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Figure 2.4: Optimized geometries of sulfoxylate species in 30H2O clusters.  (A) Sulfoxylic acid 
(S(OH)2), (B) sulfinic acid ((HS)O2H), (C) OH isomer of bisulfoxylate ((HO)SO-), (D) SH isomer of 
bisulfoxylate ((HS)O2

-), and (E) sulfoxylate (SO2
2-). 
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Figure 2.5: Optimized geometries of sulfide species, sulfate, and thiosulfate in 30H2O clusters.  (A) 
Hydrogen sulfide (H2S), (B) bisulfide (HS-), (C) sulfide anion (S2-), (D) sulfate (SO4

2-), and (E) 
thiosulfate (S2O3

2-). 
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4.1 Reduced partition function ratios 

The major isotope RPFRs (34β) calculated at the B3LYP/6-31+G(d,p) level are 

presented in Figure 2.6 as functions of inverse absolute temperature (1000/T; 273-373 

K) for all aqueous cluster calculations, including the sulfite system, sulfoxylate 

system, sulfide system, sulfate, and thiosulfate (inner ‘sulfonate’ sulfur, and the outer 

‘sulfanyl’ sulfur).  A tabulation of coefficients to polynomial fits to the RPFRs over 

0-2000˚C based on all three isotope ratios of sulfur is given in Table 2.3 in the form 

of A/T4 + B/T3 + C/T2 + D/T + E (T in Kelvin).   

Our calculated 34β values generally scale with the oxidation state of sulfur, 

where higher oxidation states generally have higher RPFRs than lower oxidation 

states, with the exception of the two sulfur atoms in thiosulfate (-1 and +5; 

Vairavamurthy et al., 1993).   For a given temperature and oxidation state of sulfur, 

our calculations predict that the magnitude of the 34β increases with increasing 

coordination of the sulfur atom.  The species with the highest coordination of sulfur 

in each system—e.g., the 4-fold coordinated (HS)O3
- isomer of bisulfite and the  3-

fold coordinated sulfinic acid and (HS)O2
- isomer of bisulfoxylate—have the highest 

34β of their respective systems, and species of lower coordination have lower 34β.  For 

example, in the sulfite system, which contains the greatest diversity in bonding 

arrangements around sulfur of any system in this study—triatomic bent, pyramidal, 

and tetrahedral—the RPFRs scale directly with coordination where: 34β = (HS)O3
- > 

SO3
2- ≈ (HO)SO2

- > SO2(aq).   Species where protonation occurs only on the oxygen 

atoms (i.e., (HO)SO2
-, (HO)SO-, and S(OH)2) typically exhibit very similar RPFRs to 

their un-protonated counterparts.   
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The isotope partitioning behavior of the bisulfite dimer, pyrosulfite (S2O5
2-), 

warrants its own separate description due to its unusual structure; it has been omitted 

from Figure 2.6 for simplicity of presentation and due to difficulties in constraining 

its structure. Disulfite contains two sulfur atoms that are coordinated differently in the 

molecule, where one sulfur atom (denoted “A”) is 3-fold coordinated (one S and two 

O) and the other sulfur atom (denoted “B”) is 4-fold coordinated (one S and three O). 

	

Figure 2.6: Reduced partition function ratios (noting 34β = (RPFR)1/n, n = # of equivalent substituted 
sites)  corresponding to the major isotope ratio of sulfur (34S/32S) for calculations in 30-34 H2O clusters 
at the B3LYP/6-31+G(d,p) level of theory over T = 0-100˚C. 
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We optimized four independently constructed S2O5
2-•nH2O clusters (two n =30, one n 

= 31, and one n=40) and found slight variability in the 4-fold coordinated site 

(34RPFR = 1.0609-1.0633; 25˚C) that appears to correlate with the computed 

structure’s S-S bond length, where higher 34RPFR for this site corresponded to shorter 

S-S bond lengths (see Figure A.1). In contrast, the 3-fold coordinated site’s RPFR 

was found to be much more consistent between conformers (34RPFR = 1.0438 ± 

0.0003; 25˚C; 1 s.e., all four computed conformers) and lower than any other species 

in the sulfite system. In all cases, the calculated S-S bond lengths for the aqueous 

clusters—ranging between 2.46-2.54 Å—are significantly longer than available 

experimental determinations in crystalline solids (~2.2 Å; Zachariasen, 1932).  For 

most discussions in this paper, we will be using the conformer with the shortest S-S 

bond length and caution that the overall RPFR for disulfite may be poorly constrained 

by our calculations due to a poorly constrained structure.  

4.2 Mass dependence of reduced partition function ratios 

In Figure 2.7, we plot the computed 33/34λβ = ln(33β)/ln(34β) and 36/34λβ = 

ln(36β)/ln(34β) as a function of temperature for the explicitly solvated molecular water 

clusters and the related gaseous species, which here only includes SO2(g) and H2S(g).  

The exponents converge on or near a singular value for all compounds at the high 

temperature limit: i.e., 33/34λβ, Tà∞ = 0.51587 ± 0.00003 and 36/34λβ, Tà∞ = 1.8905 ± 

0.0002 (1 s.e. from averaging the intercepts of the polynomial fits; Table 2.3). These 

calculated values are in generally good agreement with the high temperature limits 

that have been derived based on the atomic masses of the four sulfur isotopes (cf. 

Matsuhisa et al., 1978; Young et al., 2002): 
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33/34λTà∞ = (1/m32 – 1/m33)/(1/m32-1/m34) = 0.51588  (14) 

36/34λTà∞ = (1/m32 – 1/m36)/(1/m32-1/m34) = 1.8904  (15) 

The variability (or noise) in our computed exponents as the high temperature 

limit is approached (cf. Figure 2.7) is likely the result of error introduced by the 

cluster model and may relate specifically to the multiple vibrational modes associated 

with the coordinated water molecules that contribute to the overall RPFRs.  Such 

error may be most exemplified in the calculation of the atomic sulfide ion (S2-

•30H2O)—a sulfur species that has no vibrational modes of its own—that displays the 

most unusual behavior in 33/34λβ and 36/34λβ as the high temperature limit is 

approached.   

At temperatures well-below the high temperature limit, 33/34λβ and 36/34λβ 

values follow trends based on coordination and oxidation state similar to those seen in 

34β values as a function of temperature (Figure 2.6), where the end-member oxidation 

states (sulfide species and sulfate) generally represent end-member values and 

intermediate oxidation states plot successively in between. Higher oxidation states 

tend to have lower 33/34λβ and higher 36/34λβ than lower oxidation states.  For a given 

oxidation state, the more highly coordinated sulfur bonding sites generally have lower 

33/34λβ and higher 36/34λβ following similar relationships to those observed in the 

magnitude of their RPFRs, but with some exceptions.  Overall, the exponents of mass 

dependence for sulfur compounds spanning the entire range of available oxidation 

states define a narrow range that falls within 33/34λβ =0.5148-0.5159 and 36/34λβ = 

1.890-1.898 over a wide range of temperature (T ≥ 0˚C).   
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Figure 2.7: Exponents of mass dependence based on RPFRs computed from 0-2000˚C: (a; top) 33/34λβ 
≡ ln(33β)/ln(34β) and (b; bottom) 36/34λβ ≡ ln(36β)/ln(34β)).  The horizontal red lines indicate the high 
temperature limits (as Tà ∞) based on the atomic mass of the sulfur isotopes (Matsuhisa et al., 1978).  
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4.3 Fractionations in the sulfite system 

Triple sulfur isotope fractionations (33α vs. 34α) for aqueous species in the 

sulfite system (SO2(aq), (HO)SO2
-, two conformers of (HS)O3

-, S2O5
2-, and two 

conformers of SO3
2-) at 25˚C are summarized in Figure 2.8.  For purposes of 

illustration, fractionations are plotted relative to SO2(aq). Fractionations among the 

major sulfite species in solution (SO2(aq), (HO)SO2
-, and SO3

2-) are relatively small 

(1000ln34α < 6 ‰).  The fractionation between (HO)SO2
- and SO3

2- at 25˚C is 

computed to be on the order of -2.2 ‰.  Fractionations between the (HS)O3
- isomer 

and these species are much larger, where 1000ln34α relative to SO2 (aq) is on the order 

of 25 ‰ and between (HS)O3
- and SO3

2- is 20 ‰ at 25˚C.  The influence of the minor 

(HS)O3
- isomer on overall isotope partitioning in this system will be a major focus of 

the discussion (Section 5.4). Regression of the fractionation factors yields a mass 

dependent exponent 33/34λ = 0.5147 ± 0.0001 (1 s.e.) with an R2 = 1 and similar 

regressions of ln(36α) vs. ln(34α) (not shown) yield a mass dependent exponent 36/34λ = 

1.8983 ± 0.0005 (1 s.e.) with an R2 = 1. 

Fractionations of the bisulfite dimer disulfite (S2O5
2-) are also presented in 

Figure 2.8. The data points are colored grey to emphasize the potential preliminary 

nature of these determinations due to uncertainty in the S-S bond length (see section 

4.1).  The 3-fold coordinated site (with the most reproducible RPFR between 

conformers) has a slightly lower preference for heavier isotopes than SO2(aq), contrary 

to what would be expected from simple coordination relationships.  The 4-fold 

coordinated site has a RPFR that is intermediary between the pyramidal and 

tetrahedral sulfite species.  When site-averaged, the isotopic composition of disulfite 
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is only slightly elevated from sulfite according to the conformer plotted in Figure 2.8.  

Given the inverse correlation that we have observed between RPFR (namely that of 

the 4-fold coordinated site) and S-S bond length, we expect this value to represent a 

minimum site-averaged fractionation factor for the pyrosulfite dimer if our 

calculations overestimate the S-S bond length. 

	

Figure 2.8: Triple isotope plot of theoretical fractionation factors for aqueous sulfite species relative to 
aqueous sulfur dioxide at 25˚C. The A and B subscripts for disulfite to the 3-fold and 4-fold 
coordinated sites within the dimer, respectively (gray squares).  The S2O5

2-
T refers to the site-averaged 

fractionation factor for the dimer (black square). The exponent of mass dependence (33/34λ  = 
ln(33α)/ln(34α)) is determined from the least squares linear regression of the fractionation factors. 
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4.4 Fractionations in the sulfoxylate system 

Triple sulfur isotope fractionations (33α vs. 34α) for aqueous species in the 

sulfoxylate system (two isomers of H2SO2, (HS)O2
-, OS(OH)-, and SO2

2-) at 25˚C are 

summarized in Figure 2.9.  For purposes of illustration, fractionations are plotted 

relative to sulfoxylic acid, S(OH)2. Similar to the sulfite system, sulfoxylate species 

with similar coordination around the sulfur atom (S(OH)2, (HO)SO-, SO2
2-) are 

minimally fractionated with respect to one another (1000ln34α < 3 ‰ at 25˚C) and 

species where protonation occurs on the sulfur atom—thus, increasing coordination 

around sulfur—are significantly fractionated from the other species. The 1000ln34α 

between the three-fold coordinated (HS)O2
- the two-fold coordinated species is ca. 

13.5-15 ‰ at 25˚C. Regression of the fractionation factors yields a mass dependent 

exponent 33/34λ  = 0.51530 ± 0.00004 (1 s.e.) with an R2 = 1, and similar regressions 

of ln(36α) vs. ln(34α) (not shown) yield a mass dependent exponent 36/34λ  = 1.8948 ± 

0.0001 with an R2 = 1.   

4.5 Fractionations in the sulfide system 

Triple sulfur isotope fractionations (33α vs. 34α) for aqueous species in the 

sulfide system (H2S, HS-, and S2-) at 25˚C are summarized in Figure 2.10.  For 

purposes of illustration, fractionations are plotted relative to the divalent sulfide 

anion, S2-. Similar to the sulfite and sulfoxylate systems, the magnitude of 

fractionation between sulfide species increases with coordination.  In all cases, 

fractionations are predicted to be relatively small in the sulfide system: 1000ln34α 

between H2S and HS- is estimated to be on the order of 3.3 ‰ and the 1000ln34α 

between HS- and S2- is on the order of 1.7 ‰ at 25˚C.  Regression of the fractionation 
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factors yields a mass dependent exponent 33/34λ  = 0.51565 ± 0.00003 (1 s.e.) with an 

R2 = 1 and similar regressions of ln(36α) vs. ln(34α) (not shown) yield a mass 

dependent exponent 36/34λ  = 1.8910 ± 0.0006 with an R2 = 1.   

 

 
 
 
 
 

	

Figure 2.9: Triple isotope plot of theoretical fractionation factors for aqueous sulfoxylate species 
relative to sulfoxylic acid, S(OH)2, at 25˚C. The exponent of mass dependence (33/34λ  = ln(33α)/ln(34α)) 
is determined from the least squares linear regression of the fractionation factors. 
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4.6 Fractionations between sulfate and sulfide species 

Fractionations between the two end-member oxidation states of sulfur (S2- and 

S6+) yield the largest equilibrium isotope effects in the aqueous sulfur system.  The 

fractionation factor between SO4
2- and H2S(aq) is (34αsulfate-H2S) is predicted to be 

1.0655 with corresponding 33/34λ  = 0.51475 and 36/34λ  = 1.8981 at 25˚C.  The 

fractionation factor between SO4
2- and HS- is (34αsulfate-HS-) is predicted to be 1.0690 

with corresponding 33/34λ  = 0.51480 and 36/34λ  = 1.8978 at 25˚C.  Similarly, the 

	
Figure 2.10: Triple isotope plot of theoretical fractionation factors for aqueous sulfide species relative 
to the atomic sulfide ion, S2-, at 25˚C. The exponent of mass dependence (33/34λ  = ln(33α)/ln(34α)) is 
determined from the least squares linear regression of the fractionation factors. 
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fractionation factor between sulfate and the atomic sulfide dianion, S2-, (34αsulfate-sulfide) 

is predicted to be 1.0708 with corresponding 33/34λ  = 0.51482 and 36/34λ  = 1.8976 at 

25˚C. 

4.7 Fractionations involving thiosulfate and the major sulfide species 

The intramolecular fractionation factor between the outer (“sulfanyl”) and 

inner (“sulfonate”) sulfur atoms in thiosulfate (S2O3
2-) (1000ln34αouter-inner) is predicted 

to be on the order of -53.8 ‰ at 25˚C, with corresponding 33/34λ  = 0.51489 and 36/34λ  

= 1.8972.  The fractionation factor between the outer (“sulfanyl”) sulfur atom in 

thiosulfate and H2S (1000ln34αouter-H2S) is predicted to be small and on the order of – 

1.0 ‰ at 25˚C, where the magnitude of the major isotope fractionation factor 

increases with temperature (inverse temperature dependence) over the approximate 

temperature range of ≈ -15 to 180˚C to a maximum approaching 1000ln34αouter-H2S ≈ – 

2 ‰ at ≈ 180˚C.  This inverse temperature dependence is the consequence of a 

crossover in the direction of the 34αouter-H2S fractionation factor at sub-0˚C temperature 

(T34/32-crossover≈ -15˚C).  The fractionation factor between the outer sulfur (“sulfanyl”) 

atom in thiosulfate and the HS- ion (1000ln34αouter-HS-) is predicted to be 2.3 ‰ at 

25˚C (opposite in direction to the similar H2S-based fractionation factor at 25˚C) and 

also exhibits a crossover in proximity to ≈ 270˚C.  The exponents of mass 

dependence (33/34λ and 36/34λ) associated with both αouter-H2S and αouter-HS- exhibit 

characteristic asymptotic behavior at their respective crossover temperatures (cf. 

Deines, 2003; Otake et al., 2008) (not shown) that lead to unusual exponents in 

proximity to the crossover temperature.  For example, at 0˚C the 33/34λ and 36/34λ 

associated with αouter-H2S are computed to be 0.5197 and 1.857, respectively.  Despite 
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the unusual exponents associated with these crossovers, the capital delta values 

associated with these fractionation factors are very near zero at all relevant 

temperatures: e.g., at T ≥ 0˚C, Δ33S outer-H2S ≤ - 0.002 ‰ and Δ36S outer-H2S ≤ - 0.02 ‰, 

and  Δ33S outer-HS- ≈ 0.000 ‰ and Δ36S outer-HS- ≤ 0.01 ‰. 

5.0 Discussion 

5.1 Uncertainties in estimated fractionation factors 

Uncertainties in our theoretically estimated fractionation factors can derive 

from three main sources: (1) errors arising from the harmonic and other 

approximations in the derivation of the Bigeleisen and Mayer equation (requiring 

higher-order corrections, e.g., for anharmonicity), (2) inadequacies in the theoretical 

method, and (3) variability arising from the water cluster geometry.  To quantitatively 

evaluate these uncertainties, we adopt a similar approach to Li and Liu (2011), where 

a similar water cluster model was used to calculate the equilibrium isotope 

fractionations among aqueous selenium compounds and anions. 

Harmonic approximation 

The BM-equation requires that harmonic frequencies be used to justify the 

various approximations used in its derivation (cf. Rustad and Bylaska, 2007; Rustad 

et al., 2010; Liu et al., 2010). We therefore use the calculated harmonic frequencies to 

calculate RPFRs and isotope fractionation factors. An appropriate comparison of 

theoretically computed vibrational frequencies to those derived from experiments is 

not possible at this time, because the conversion of our computed harmonic 

frequencies to fundamental frequencies requires computation of anharmonic constants 

(cf. Liu et al., 2010).  The computation of anharmonic constants for large molecular 
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clusters is computationally laborious and is beyond our computational resources. We 

therefore considered these computations beyond the scope of this study. Instead, we 

focus on calculations of anharmonic corrections to the BM-equation (RPFR) for 

simple gaseous molecules to gain insight into the magnitude of these corrections for 

more complex systems.   

Liu et al. (2010) reviewed and applied a variety of anharmonic and higher-

order corrections to the BM-equation for simple gaseous molecules at the MP2/aug-

cc-pVTZ level.  They show that many of these corrections are only significant when 

dealing with hydrogen-deuterium exchange reactions. For example, the total 34S/32S-

based corrected partition function ratios (CPFR) for H2S(g) and SO2(g)  are shifted by 

0.3 and 0.6 ‰ at 300 K from their uncorrected RPFR counterparts, respectively, 

where the entirety of the correction for both compounds arises from the anharmonic 

contribution to the zero point energy (AnZPE; all other corrections have negligible 

effect; Liu et al., 2010).  We have computed the anharmonic corrections to the ZPE 

(AnZPE) for a handful of gaseous sulfur molecules (H2S, S(OH)2, (HS)O2H, SO2, 

SO3) at the B3LYP/6-31+G(d,p) level and find that they are of a similar magnitude 

(H2S, S(OH)2, (HS)O2H, SO2: ~ -0.5 ‰, SO3: ~ -0.9 ‰; 25˚C) (Figure A.2). Due to 

the low magnitude of these corrections and the inability to apply appropriate 

anharmonic corrections to our cluster calculations at this time, all RPFRs and 

fractionation factors in this study are reported in the harmonic approximation. 

Theoretical Level 

The theoretical method employed can lead to significant error in the computed 

RPFRs and fractionation factors (cf. Rustad et al., 2008; Rustad et al., 2010). We 
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evaluated the potential error introduced by any inadequacies in our theoretical method 

via harmonic frequency scaling using high-level computations of simple neutral 

molecules modeled in the gas phase (cf. Li and Liu, 2011).  Note that this is not the 

same practice as scaling theoretical harmonic frequencies to fit experimental 

fundamental frequencies that introduce anharmonic contributions to the theoretical 

frequencies.   

We computed harmonic frequencies for H2S, S2, SO2, and SO at the 

CCSD/aug-cc-pVTZ level and derived a first-order harmonic scaling factor for the 

B3LYP/6-31+G(d,p) level employed for our water clusters on the order of 1.01-1.02 

(i.e., a uniform 1-2% positive shift in the harmonic frequencies; Figure A.3).  The 

influence of this scaling factor on the RPFRs and the computed fractionation factors 

varies depending on the compound(s) and temperature considered, but is generally 

magnified at lower temperatures. The effect of harmonic scaling is often negligible 

but can be on the permil level for some computed fractionation factors that involve 

compounds with higher magnitude RPFRs.  For example, for the SO4
2-

(30H2O)/H2S(30H2O) equilibrium fractionation factor (among the largest in the sulfur 

system at any given temperature), applying a harmonic frequency scaling factor of 

1.02 yields a ~2 ‰ increase in the 34α fractionation factor at 25˚C from 1.0655 to 

1.0677 but smaller shifts at higher temperatures (e.g. 1.1 and 0.6 ‰ positive shift at 

200˚C and 400˚C, respectively).  In some cases (but not all), the small shifts arising 

from harmonic frequency scaling places our theoretical fractionations factors in 

slightly better agreement with experimental constraints (see Section 5.4).  



 

 60 
 

The practice of harmonic frequency scaling may not be ideal because different 

vibrational modes appear to scale slightly differently between computational methods 

(cf. Li and Liu, 2011).  Furthermore, simple gaseous molecules may not capture the 

full range of error introduced by the level of theory employed, especially for the 

anions of more complex geometric and electronic structure computed in our study.  

From our own calculations, it appears that SO2 may have a systematically higher 

scaling factor than the other compounds investigated that may be on the order of 

1.065, which is why when SO2 is included in the regression the net scaling factor 

increases from ~1.01 to ~1.02 (we show later that application of this higher SO2-

specific scaling factor places estimates of the SO2(aq)/SO2(g) fractionation factor in 

slightly better agreement with experimental constraints, although overall the effect of 

the scaling is still only on the ~0.2 ‰ magnitude at 25˚C in the estimated 

fractionation factor). Due to these potential issues, we have chosen to not apply a 

harmonic scaling factor in the computations of our reported RPFRs, but we do discuss 

the effects of harmonic scaling on fractionation factors for individual systems (section 

5.4). 

Cluster Geometry 

Variability in the water cluster geometry surrounding the solute of interest is 

another potential source of error/uncertainty in computed RPFRs and fractionation 

factors. From previous studies, it is generally understood that error/uncertainty arising 

from conformer geometries is much lower than those associated with the theoretical 

method (e.g., Rustad et al., 2010). Most theoretical studies of compounds in water 

clusters where the centrally coordinated element in the solute is undergoing isotope 
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substitution have found that the variability in computed RPFRs is generally at the 0.1 

- 1 ‰ level (1 s.e.) from one cluster geometry to another for multiple element systems 

(e.g., oxy-anions and compounds of C, Se, Ge, B; Rustad et al., 2008; Rustad et al., 

2010; Li et al., 2009; Li and Liu, 2011).  We performed a series of at least duplicate 

constructions and optimizations for a select set of 30-40H2O clusters in the sulfite 

system: SO3
2-, (HS)O3

-, (HO)SO2
-, and the bisulfite dimer pyrosulfite, S2O5

2.  

Duplicate constructions and optimizations of SO3
2-•30H2O, (HS)O3

-•30H2O, and 

(HO)SO2
-•34H2O reveal that variability due to cluster geometry may indeed be 

similarly small, i.e., (HS)O3
-•30H2O: 34β = 1.0721±0.0001, SO3

2-•30H2O: 34β = 

1.0510±0.0003, (HO)SO2
-•34H2O: 34β = 1.0487±0.0003 (all at 25˚C and 1 s.e.).  The 

two sulfur atoms in the bisulfite dimer, labeled here as ‘A’ and ‘B’: (O2-AS-BS-O3)2-, 

have similar reproducibility in their RPFRs between four separate conformers ranging 

from 30-40 H2O clusters:  AS: 34β = 1.0438 ± 0.0003 and BS: 34β = 1.0622 ± 0.0011 

(25˚C, 1 s.e.), where the RPFR of the latter, higher-coordination site seems to vary 

systematically with the computed S-S bond-length (contributing to the slightly higher 

variability) and may be a special case (section 4.1). 

Considering all of the uncertainties derived from the above sources, we 

estimate the overall uncertainties associated with our theoretically computed 

fractionation factors for aqueous sulfur systems to be on the order of ~0.1 to 1-2 ‰, 

depending on temperature and the compounds/system considered. The major source 

of uncertainty is believed to be from the potential inadequacy of our theoretical 

method (cf. Rustad et al., 2008; Rustad et al., 2010) and could potentially be better 

constrained with more sophisticated computational methods.  A major aim of the 
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present study is to explain the available experimental constraints for equilibrium 

fractionations in the sulfite system in the context of the complex speciation of sulfite.  

Much of the uncertainty in this analysis is dominated by uncertainties in experimental 

determinations of equilibrium quotients (e.g. bisulfite isomerization) and 

experimental fractionation factors (e.g. approaching a few permil in magnitude).  

Much of the uncertainties in the theoretically calculated fractionation factors 

discussed above are either comparable to, or within this range.  Therefore, we do not 

think the uncertainties in the calculations will affect the main conclusions of the 

present study. 

5.2 General trends in the calculated 34S/32S RPFRs 

The general relationships in the computed RPFRs for the hydrated sulfur 

species can be explained by the general principles of stable isotope fractionation. The 

two primary factors influencing the magnitude of RPFRs (Figure 2.6) are: (1) the 

oxidation state of sulfur, and (2) the coordination of sulfur, i.e., the number of bonds 

formed with other atoms.  Both of these exert first order controls on the bonding 

environment around sulfur, particularly on the bond stiffness/strength, and are the 

primary factors in influencing the relative magnitudes of RPFRs that we have 

computed.   

The oxidation state of the sulfur atom will affect the electron distribution 

throughout the molecule and therefore the strength and nature of the bonds with the 

other atoms.  The force constants that describe the potential wells associated with the 

bonds (derived from the computation of the multidimensional electronic potential 

energy surface) will generally be higher for bonds associated with sulfur in higher 
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oxidation states, meaning simply that the bonds will be more stiff. Thus, species with 

higher oxidation state will generally have higher RPFRs than those with lower 

oxidation state in similarly coordinated structures.  For example, this is reflected in 

the significantly lower RPFR of the sulfoxylate ion (SO2
2-; S2+) as compared to sulfur 

dioxide (SO2; S4+), which have similar bent triatomic structures and two-fold 

coordination of the sulfur atom with bonds to oxygen atoms. 

For a given oxidation state, the coordination of the sulfur exerts another first 

order control on RPFRs.  The BM-equation describes the relationship between 

isotope partitioning among molecules, zero point energies (ZPE), and molecular 

vibrations.  The ZPE portion of the RPFR reflects the contribution from all 

vibrational modes and scales with the sum of the frequency shifts.  Unless the bonds 

are weakened so much with increasing coordination that the adjusted sum of the 

frequency shifts decreases, the RPFR may increase with coordination.  From a simple 

vibrational analysis of our solutes in vacuum, isotope substitution of the central sulfur 

atom in a bent (or linear tri-atomic), pyramidal, or tetrahedral molecular structure 

generally affects the asymmetric stretching and bending modes of the ground state 

vibrations the most and, therefore, contribute the most to the overall magnitude of the 

RPFR of the molecule. The number of these stretching and bending modes increases 

with increasing coordination of the central atom, and so all else being equal, the 

RPFR (and therefore, preference for the heavy isotope) may increase with increasing 

coordination. For example, the 2-fold coordinated SO2(aq) has a lower RPFR than the 

3-fold coordinated SO3
2- and (HO)SO2

- molecules, which have lower RPFR than the 

4-fold coordinated (HS)O3
- isomer of bisulfite (all S4+).  Variations from these 
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relationships may be expected, depending on the elemental composition of the 

bonded atoms and, in turn, the atoms or groups they are bonded to further afield that 

may affect bonding environment and the manner in which frequency shifts are scaled. 

Protonation of oxygen atoms has a smaller secondary effect on the sulfur 

isotope RPFR with respect to the centrally coordinated sulfur. These small secondary 

effects are due to how protonation of the oxygen atom affects its electron distribution 

and its bond to the sulfur atom.  For example, the RPFR of the (HO)SO2
- isomer of 

bisulfite differs by only ~ -2 ‰ from that of the non-protonated sulfite (SO3
2-) at 

25˚C.  The slightly higher RPFR for sulfite is likely due to the slight weakening of the 

S-O bond corresponding to the protonated oxygen.  This is consistent with the slightly 

longer S-O bond length for the protonated oxygen atom (Figure 2.3). Similarly, in the 

sulfoxylate system, the RPFRs for (HO)SO- and S(OH)2  are both lower than that for  

SO2
2- and the corresponding S-OH bond lengths are longer than S-O bond lengths 

(Figure 2.4).  The RPFRs for (HO)SO- and S(OH)2  are nearly identical to one 

another (at 25˚C: 34β = 1.0240 and 34β = 1.0243, respectfully) and are likely within 

the uncertainties of the calculations.  Multiple rotamers of these types yielding 

different orientations of the protons and OH-bonds with respect to the rest of the 

molecule are possible that will depend in large part on the water cluster geometry 

(direct coordination with water molecules) in the case of these computed structures.  

Such variability in structure would be expected to have small second order effects on 

the magnitude of sulfur RPFRs.  For example, our two 34H2O conformers of 

(HO)SO2
- do not have exactly the same structure (slightly different orientations of the 
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O-H bond relative to the rest of the molecule, i.e., O-S-O-H dihedral ~49-71˚) and 

yield highly reproducible RPFRs (34β = 1.0487±0.0003 at 25˚C, 1 s.d.). 

5.3 Mass dependence of RPFRs and equilibrium fractionation factors 

Using the exponential definition to describe the mass dependence of computed 

RPFRs and fractionation factors between the aqueous compounds investigated herein 

(cf. Craig, 1957; Hulston and Thode, 1965; Matsuhisa et al., 1978; Clayton and 

Mayeda, 1996; Young et al., 2002; Miller, 2002), we compute exponents of mass 

dependence for RPFRs (33/34λβ and 36/34λβ) over a wide range of temperature that 

conform to narrow ranges (0.5148-0.5159 and 1.89-1.90, respectively; Figure 2.7).  

The 33/34λβ for a given species is on a lower end of this range at low temperature and 

approaches the high range at high temperature, and vice-versa for 36/34λβ.  The 

relationships in 33/34λβ and 36/34λβ we compute as a function of temperature for the 

diversity of aqueous sulfur compounds investigated herein are straightforward 

consequences of ZPE differences among isotopomers varying as a function of the 

sulfur bonding environment (redox state, coordination, etc.).   

From the comparison of the exponents of mass dependence obtained from the 

regressions of fractionation factors at 25˚C in the sulfide (S2-), sulfoxylate (S2+), and 

sulfite (S4+) systems (Figures 2.8-2.10), the exponents systematically vary as a 

function of oxidation state in a similar manner as illustrated from their 33/34λβ and 

36/34λβ in Figure 2.7: 

Sulfite (S4+) 33/34λ = 0.5147 ± 0.0001 36/34λ = 1.8983 ± 0.0005 
Sulfoxylate (S2+) 33/34λ  = 0.51530 ± 0.00004 36/34λ  = 1.8948 ± 0.0001 
Sulfide (S2-) 33/34λ  = 0.51565 ± 0.00003 36/34λ  = 1.8910 ± 0.0006 
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Exponents based on RPFRs (33/34λβ and 36/34λβ) and those associated with 

fractionation factors (33/34λ  and 36/34λ) may be shifted from one another depending on 

the relationships between the RPFRs of the compounds considered for the 

fractionation factor (cf. Matsuhisa et al., 1978).  The exponent of mass dependence 

computed for a fractionation factor between two compounds (e.g., A and B; 33/34λA-B) 

generally follows: 

n/34λA-B = [n/34λβ(A)ln(34βA) - n/34λβ(B)ln(34βB)]/[ ln(34βA) - ln(34βB)], (16) 

where n = 33 or 36 (we will focus on 33).  Only when 33/34λβ(A) = 33/34λβ(B) will 33/34λA-B 

be identical.   When 33/34λβ(A) ≠ 33/34λβ(B), the magnitude of 33/34λA-B will be slightly 

shifted to either higher or lower values than either 33/34λβ(A) or 33/34λβ(B) depending on 

the relationships among the reduced partition function ratios (cf. Matsuhisa et al., 

1978).  In the latter case, there are two primary examples to consider: (1) When 34βA 

> 34βB and the 33/34λβ(A) < 33/34λβ(B), the computed 33/34λA-B will generally be slightly 

lower than either 33/34λβ(A)  or 33/34λβ(B); and (2) when 34βA > 34βB and the 33/34λβ(A) > 

33/34λβ(B), the computed 33/34λA-B will generally be slightly higher than either 33/34λβ(A)  

or 33/34λβ(B).  The magnitudes of the shifts between 33/34λβ values and the 33/34λ 

corresponding to a fractionation factor are magnified at lower temperature where 

differences in the magnitudes of reduced partition function ratios are largest (in the 

general case).  The shifts are additionally magnified under hypothetical conditions 

where the differences between 33/34λβ(A) and 33/34λβ(B) are relatively large and 

differences between 34βA and 34βB are relatively small. For most fractionation factors 

computed among compounds of different oxidation state at low/ambient temperature, 

our calculations generally follow case (1).  For example, at 0˚C the fractionation 
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factor between sulfate (SO4
2-; 34β = 1.0910, 33/34λβ = 0.5148) and sulfide (H2S; 34β = 

1.0142, 33/34λβ = 0.5157) yields 33/34λ = 0.5146, slightly lower than either compound’s 

respective 33/34λβ values. Due to the narrow range in 33/34λβ and 36/34λβ that we compute 

over a relatively large range in 34β for various aqueous sulfur compounds, it may be 

generally concluded (with some exceptions) that our calculations would not predict 

exponents of mass dependence associated with equilibrium isotope exchange 

significantly outside of the range of 33/34λ ≈ 0.514-0.516 and 36/34λ ≈ 1.89 – 1.90 over 

a wide range of temperature (0˚C à∞). 

The major exception to this generality is for equilibrium isotope exchange 

reactions that are predicted to have crossovers, i.e., a shift in the direction of an 

isotope effect where preference for heavy isotopes undergoes inversion from one 

compound (or bonding environment) to the other at a particular temperature.  Our 

calculations predict crossovers in the isotope exchange reactions between the outer 

(“sulfanyl”) sulfur atom in thiosulfate and the two principle sulfide species (H2S, HS-

).  Crossovers and their effects on the exponents of mass dependence have been 

described previously in gas phase reactions for the sulfur isotope system (Deines, 

2003; Otake et al., 2008). Briefly, these effects relate to crossover temperatures being 

slightly different for exchange reactions involving isotopes of different mass, i.e., 

T33/32-crossover ≠ T34/32-crossover ≠ T36/32-crossover.  As a crossover temperature is approached, 

the exponents of mass dependence show asymptotic relationships where the exponent 

can take any value between +∞ and -∞ (Deines, 2003; Otake et al., 2008).  

Crossovers have been predicted in isotope exchange reactions involving H2S and 

other reduced sulfur compounds containing S-S bonds  (S2/H2S, S8/H2S; Deines, 
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2003; Otake et al., 2008) and presumably arise fundamentally from the competition 

between contributions from low frequency vibrational modes (like those associated 

with S-S bonds) and high frequency modes in H2S (and HS-) to the overall RPFRs as 

a function of temperature.  Due to the small magnitude of the isotope effects in the 

asymptotic crossover range, these effects are not substantially expressed (i.e., Δ33S ≈ 

0, Δ36S ≈ 0, as we have computed) without subsequent amplification via non-

equilibrium isotope exchange processes (e.g., a Rayleigh distillation process; Deines, 

2003; Otake et al., 2008). 

In a previous study, Otake et al. (2008) emphasized computations utilizing a 

non-exponential formulation based on the approximation 33/34λ  ≈ (33α – 1)/(34α – 1) to 

argue that their theoretical calculations of select sulfur compounds (modeled as either 

gas phase or in PCM solvation models) predict a range of 33/34λ  = 0.505-0.516 

(sometimes > 0.516 at low temperature) for the equilibrium fractionation factors they 

computed (including SO4
2--H2S), where the reference exponent of 0.515 is 

approached only at high temperature.  Computations of the mass dependence as 33/34λ  

= ln(33α)/ln(34α) calculated from the same fractionation factors yields a much 

narrower range of 33/34λ within 0.514-0.516 over the same temperature range (where 

~0.5159 is approached at the high temperature limit, as expected), consistent with the 

calculations herein and the general definition of mass dependence typically employed 

in multiple sulfur isotope studies (and all other isotope systems involving more than 

two stable isotopes). In other words, the so-called ‘band of mass dependence’ that 

Otake et al. (2008) argued for as 33/34λ ≈ 0.505-0.516 for simple equilibrium isotope 

exchange reactions reduces to the narrow 0.514-0.516 range when the exponential 
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definition of mass dependence is used.  Note also that the computation of the mass 

dependence as (33α – 1)/(34α – 1) is valid to characterize effects associated with a 

Rayleigh distillation process and not the condition of equilibrium isotope exchange. 

5.4 Comparisons between theory and experiment (and predictions) 

The validity of the theoretical fractionation factors can be assessed by 

comparison with available experimental constraints, with particular focus on the 

sulfite system. Very little is known about the behavior of sulfoxylate species in 

aqueous solutions (particularly the isomerization quotients for the protonated species) 

and so we are only able to discuss the estimated ranges of fractionations possible in 

this system. Calculations of the other sulfur compounds (sulfide, sulfate, and 

thiosulfate) can also be compared to the available experimental datasets, including: 

fractionations among sulfide species, fractionations between sulfate and sulfide 

species, the intramolecular fractionation factor for thiosulfate, and fractionations 

between the sulfide species and thiosulfate.  We highlight potential experimental 

issues and include recommendations for future experimental determinations. 

5.4.1 Sulfite system 
 

Experimental constraints for the equilibrium sulfur isotope partitioning in the 

aqueous sulfite system are provided by Eriksen (1972a), Eriksen (1972b), and Eriksen 

(1972c). Eriksen (1972a) determined fractionations between bulk bisulfite and 

gaseous SO2 (HSO3
-
TOTAL/SO2(g)) at pH =4.5 where bisulfite dominates, Eriksen 

(1972b) determined the fractionation between gaseous SO2 and aqueous SO2 

(SO2(aq)/SO2(g)) in acidic solutions (pH < 0.3), and Eriksen (1972c) determined 

fractionations between bulk bisulfite and gaseous SO2 as a function of the ratio of 
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total bisulfite: SO2(aq) (up to 10 M [HSO3
-]; pH = <0.3 or 4.5), which was an attempt 

to study the effect of dimerization on isotope fractionations.  With additional 

interpretation, the experiments presented in Eriksen (1972c) yield constraints on both 

the SO2(aq)/SO2(g) and HSO3
-
TOTAL/SO2(g) fractionation factors.  Additional 

experimental constraints on the SO2(aq)/SO2(g) fractionation factor are found in 

Chmielewski et al. (2001).   

Bulk Bisulfite in Solution vs. SO2(g): Highlighting the role of bisulfite isomers 

 In Figure 2.11, we plot our calculated fractionations of bisulfite species vs 

SO2(g) and those from the experiments of Eriksen (1972a) and Eriksen(1972c) as a 

function of temperature.  Eriksen (1972a) chose experimental conditions to minimize 

the presence of dimers and other sulfite species (pH = 4.5), so the experimentally 

determined fractionations should mostly reflect those of the two bisulfite isomers and 

gaseous sulfur dioxide.  The 34αbisulfite(bulk)-SO2(g) of Eriksen (1972a) appear to show a 

weak temperature dependence over the temperature range of 25-45˚C (the values are 

indistinguishable within the uncertainty).  The constraints from Eriksen (1972c) were 

regressed from multiple experiments performed over a range of χHSO3T:χSO2(aq) and 

seem to indicate a slight normal temperature dependence (see Section 5.4.1.2).  
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Using our theoretical calculations, we suggest that the experimental data can 

be explained in terms of the isomerization of bisulfite.  Using the experimental 

constraints for the isomerization quotient for bisulfite as a function of temperature at 

	
Figure 2.11: Comparison of theoretical fractionation factors to experimental constraints in the 
bisulfite-SO2(g) system as a function of temperature, highlighting the influence of bisulfite 
isomerization on fractionation behavior.  Black data points (circles and diamonds) are from the 
experimental studies of Eriksen (1972a) and Eriksen (1972c).  The open (white) square is our 
theoretical estimate for the bulk fractionation factor using the isomerization quotient at 0 m ionic 
strength from Risberg et al. (2007) following equation (17) in the text.  The thick dashed curve 
represents our theoretical estimate (equation (17) in the text) using the isomerization quotients as a 
function of temperature at 1 m ionic strength (Horner and Connick, 1986; Littlejohn et al., 1992; 
Figure 2.2).  The lighter dashed lines represent the uncertainty envelope derived solely from the 
propagation of the uncertainty of the isomerization quotient as a function of temperature that is based 
on the least squares linear regression in Figure 2.2.   
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1 m ionic strength (Horner and Connick, 1986; Littlejohn et al., 1992), we predict the 

34αbisulfite(bulk)-SO2(g) as the dashed curve in the figure via the following relationship: 

34αbisulfite(bulk)-SO2(g) = [Qi/(1+Qi)34β(HO)bisulfite + 1/(1+Qi)34β(HS)bisulfite]/34βSO2(g)    (17) 

Where Qi as a function of temperature is computed via the relationship: lnQi = 

1413(±119)/T -3.1(±0.4) (valid over ~2-67˚C, 1 m ionic strength; regressed from the 

combined datasets of Horner and Connick, 1986; Littlejohn et al., 1992).  The 

corresponding uncertainty envelope plotted in Figure 2.11 includes only the 

propagated uncertainty of the temperature dependence of the isomerization quotient.  

The predicted 34αbisulfite(bulk)-SO2(g) at µ = 1 m has a temperature dependence that 

becomes more shallow with increasing temperature, reflecting the higher proportion 

of the HS-isomer with increasing temperature. This relationship is roughly consistent 

with the weak (to non-resolvable) temperature dependence of Eriksen (1972a) and 

Eriksen (1972c). When we apply an isomerization quotient to our calculated 

fractionations performed in a low ionic strength medium (µ = 0 m, T = 25˚C; Risberg 

et al., 2007), we obtain a fractionation factor that is ~2.4 ‰ higher than that obtained 

from application of the µ = 1 m isomerization quotient (open square data point in 

Figure 2.11) and is indistinguishable from the experimental constraint of Eriksen 

(1972a) at this temperature.   

The experimental data fall within the range of our calculated theoretical 

estimates that utilize the available experimental constraints of the relative mole 

fractions of bisulfite isomers present in solution in media of 0 and 1 m ionic strength.  

The experiments of Eriksen (1972a, c) were based on a distillation technique that 

required the solution to be constantly flushed at an unspecified “slow” rate with N2 
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gas to strip SO2 out of solution while simultaneously adding HCl to keep pH constant.  

Such changes in ionic strength throughout experimental runs are a plausible source of 

at least some of the variability in the experimental fractionations.  The constant 

stripping of SO2 from solution also requires that the rates of isotope exchange among 

the aqueous sulfite species be sufficiently rapid at all times, which may or may not be 

the case, and disequilibria among species and the SO2 stripped from solution may be 

another source of the relatively poor reproducibility. The complete effect of ionic 

strength on isomerization and isotope fractionations in this system cannot be 

evaluated in full until the isomerization quotient is determined as a function of ionic 

strength over a wide range of temperatures and higher precision isotope experiments 

are performed (taking care in controlling ionic strength). 

Despite the large uncertainties, it is clear from Figure 2.11 that (1) we are able 

to reproduce the general fractionation behavior in this system that has been 

determined experimentally, and (2) fractionation in this system is strongly influenced 

by the isomerization of bisulfite.  Furthermore, fractionations in the sulfite system 

involving bisulfite may be especially dependent on ionic strength due to 

isomerization. 

Bisulfite Dimer: Bulk Bisulfite in Solution vs. SO2(g) as a function of pH and [HSO3
-]T 

Eriksen (1972c) measured the fractionation between gaseous SO2 and bulk 

bisulfite as a function of the molar ratio of aqueous SO2 and total bisulfite by varying 

[HSO3
-]T (1.5-10 M) and pH (0.3 or 4.5).  One of the primary aims of these 

experiments was to determine the effect of dimer formation on the observable 

fractionations.  Assuming full isotopic equilibration throughout experimental runs, 
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the experiments of Eriksen (1972c) should follow the simple mass balance 

relationship: 

34αS(IV)TOTAL(aq)–SO2(g) = 34αSO2(aq)/SO2(g)χSO2(aq) + 34αHSO3-(T)/SO2(g)χHSO3-(T) + 

34αdimer/SO2(g)χdimer (18) 

Where χ and 34α refer to the mole fraction and fractionation factor (based on 34S/32S) 

of or between the denoted species, respectively, and HSO3
-
(T) = (HO)SO2

- + (HS)O3
-. 

In the absence of a dimer (or significant influence thereof), measured fractionation 

factors between total S(IV) species in solution and SO2(g) plotted against the mole 

fraction of total bisulfite species present should form a linear array, i.e.: 

34αS(IV)TOTAL(aq)–SO2(g) = 34αSO2(aq)/SO2(g)χSO2(aq) + 34αHSO3-(T)/SO2(g)(1 - χSO2(aq)) (19) 

Where χHSO3(T) = 1 - χSO2(aq) due to the negligible presence of SO3
2- at a pH of < 4.5.  

As Eriksen (1972c) originally noted, this relationship can deviate from linear due to 

the power of two dependence on [HSO3
-
(T)] in the dimerization quotient if the system 

is driven to large conversion to the dimer (i.e., high [HSO3
-
(T)]) and if the 

fractionation between the dimer and bisulfite (total of both isomers) is relatively 

large.   

Using the pyrosulfite conformer computed to have the lowest S-S bond length, 

we compute a theoretical fractionation factor at 25˚C between the site-averaged dimer 

and bulk bisulfite (considering both isomers) of 1000ln34αdimer/HSO3-(T) = - 1.6 ‰ (µ = 

0 m; Qi = 2.57 ± 0.5; Risberg et al., 2007) and 1000ln34αdimer/HSO3-(T) = 0.9 ‰ (µ = 1 

m; Qi = 4.9 ± 0.1; Horner and Connick, 1986).    This indicates that the fractionation 

between the dimer and bulk bisulfite may be relatively small (perhaps within the 

uncertainty of the theoretical calculations), and the directionality of this overall 
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fractionation may depend on the effects of ionic strength on the relative distribution 

of bisulfite isomers.   

We illustrate worked examples of the relationship between the 34αS(IV)(aq)/SO2(g) 

and χSO2(aq) using our theoretical RPFRs and equilibrium quotients from the literature 

(µ = 0 m and 1 m) and compare them with the experimental data of Eriksen (1972c) in 

Figure 2.12 under comparable conditions.  The smooth curves are based on our 

theoretical calculations where solid curves are the linear arrays ignoring the dimer 

and the dashed curves are estimates with the dimer included.  For the calculations 

including the dimer (dashed), we assumed a pH range of 0-4.5 and we additionally 

assumed a [S(IV)]T  = 10 M (the highest of the Eriksen range) to examine the 

maximum possible influence of the dimer.  The thinnest dashed curves represent the 

same calculations as the thicker dashed curves (pH = 0-4.5, [S(IV)]T  = 10 M) except 

with an artificially increased site-averaged RPFR of the dimer (equivalent to 5 ‰) for 

illustrative purposes due to the possibility that our theoretical calculations are 

underestimating this value.  Ionic strength was not held constant in the experiments of 

Eriksen (1972c) and so the 0 m and 1 m are shown for comparison, as these are the 

only conditions for which all equilibrium quotients (dissociation, isomerization, 

dimerization) have been experimentally determined for computing mole fractions.   
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The calculated fractionation trends in Figure 2.12 are generally consistent 

with the experimental data of Eriksen (1972c), where the experimental data at 

relatively low χSO2(aq) appear to plot in between our estimates using equilibrium 

quotients performed at 0 and 1 m ionic strength. The presence of the dimer under 

conditions of [S(IV)]T  = 10 M (thick dashed curves) affects the overall fractionations 

	

Figure 2.12: Fractionations at 25˚C in the sulfite system from Eriksen (1972c) (white circles) and a 
modeled system based on our theoretical fractionation factors and mass balance calculations (solid or 
dashed curves).  Solid curves ignore the bisulfite dimer and the thick dashed curves include the dimer 
assuming a total bisulfite concentration of 10 M (highest in the Eriksen experimental range) and a pH 
range of 0.5-4.5.  The lightest dashed curves are identical to the thick dashed curves but include an 
artificially increased RPFR for the site-averaged dimer equivalent to 5 ‰ for illustration purposes. 
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between bulk bisulfite in solution and gaseous SO2 at the sub-permil level, which is 

well within the uncertainty of the experimental determinations. Eriksen (1972c) 

originally noted that the effect of the dimer is either non-resolvable or insignificant 

given the linearity of the experimental dataset.  Eriksen concluded that the 

fractionation factor between disulfite and bisulfite might not be significantly higher 

than non-dimer bisulfite, which is generally consistent with our theoretical 

calculations that take into consideration both isomers and the dimer.   

Our theoretical calculations highlight the sensitivity of the fractionation trends 

in Figure 2.12 to the relative distributions of the bisulfite isomers. Depending on the 

ratio of the two isomers in solution as a function of ionic strength, the dimer is 

computed to either dampen or enhance fractionations between bulk aqueous S(IV) 

and SO2(g).  It is important to reiterate, however, that the computed site-averaged 

RPFR of pyrosulfite depends on the computed S-S bond length and our shortest 

calculated bond length in the 30H2O cluster at the B3LYP/6-31+G(d,p) level (used in 

this analysis) is longer (2.46 Å) than the experimentally determined value in 

crystalline solids (~2.2 Å; Zachariasen, 1932).  Solvation could in principle affect the 

bond length but we are unable to find any experimental constraints in the aqueous 

phase.  We additionally note that the precise structure of the aqueous dimer is perhaps 

contentious and forms with an S-O-S linkage have yet to be ruled out (cf. Williamson 

and Rimstidt, 1992).  From the standpoint of our calculations, shortening the dimer S-

S bond may increase the site-averaged RPFR for disulfite and change these calculated 

relationships depending on the magnitude of the 34α between the dimer and the pooled 

isomers.  Our calculations based on an artificial increase in the site-averaged RPFR of 
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the dimer (equivalent to 5 ‰) illustrate how computed fractionation relationships 

may be influenced due to a potential underestimation.  In this case, the fractionation 

factor 34αdimer/HSO3-(T) is > 1 for both ionic strength conditions and the overall influence 

of the dimer is to enhance fractionations between aqueous S(IV) and gaseous SO2.   

Based on the seeming linearity of his dataset, Eriksen (1972c) reasoned that 

the dimer could be ignored and he regressed his data presented in Figure 2.12 to 

obtain constraints for the 34αSO2(aq)-SO2(g) and 34αHSO3(T)-SO2(g) fractionation factors from 

the end member cases of χSO2(aq) = 0 and χSO2(aq)=1. This yields 1000ln34αSO2(aq)-SO2(g) = 

0.9 ± 0.4 ‰ and  1000ln 34αHSO3(T)-SO2(g) = 9.9 ± 1 ‰ (1 s.e., note: the latter 

fractionation determined this way at 25, 35, and 45˚C are plotted in Figure 2.11), 

where the latter is slightly lower in magnitude (but unresolvable) from the 

experiments reported in Eriksen (1972a).  These are highly comparable to our 

theoretical fractionation factors of 1000ln34αSO2(aq)-SO2(g) = 1.8 ‰ and 

1000ln34αHSO3(T)-SO2(g) of 11.2 and 8.8 ‰ ( ± 1 ‰, 1 s.e.) using isomerization 

quotients determined at ionic strength of 0 and 1 m, respectively.  Although the 

estimates of Eriksen (1972c) are within the uncertainty of the determinations from 

Eriksen (1972a), the slightly lower magnitudes may reflect the slight influence of the 

dimer on the bulk fractionation behavior of the system, which remains to be 

experimentally investigated in more detail. 

Solvated vs. Gaseous Sulfur Dioxide: SO2(aq)/SO2(g) 

Eriksen (1972b), Eriksen (1972c), and Chmielewski et al. (2001) provide 

estimates of the 34α fractionation factor between gaseous and solvated sulfur dioxide. 

These determinations are plotted in Figure 2.13 with our computed 34α fractionation 
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factor based on the SO2(30H2O) and SO2(vacuum) calculations. The experiments of Eriksen 

(1972b) overlap with our calculated fractionation factors within experimental 

uncertainty but it is clear that the uncertainties in the experimental fractionation 

factors (reflecting experimental reproducibility) may be as large or larger than the 

magnitude of the fractionation factor itself and so make the comparison difficult. 

Estimates from the Eriksen (1972c) experiments are reported to be more precise and 

seem to record an inverse fractionation relationship with temperature, which is neither 

predicted from the theoretical calculations nor is observed in the more recent and 

detailed experiments of Chmielewski et al. (2001).  Our calculations appear to agree 

with the experiments of Chmielewski et al. (2001) in terms of both temperature 

dependence and magnitude, where the experiments are within ca. ≤ 0.5 ‰ of the 

calculations.  The ca. ≤ 0.5 ‰ offset between the Chmielewski et al. (2001) 

experiments and our calculations is systematic and could be within the 

uncertainties/error of both determinations. Application of the CCSD/aug-cc-pVTZ-

derived harmonic scaling factor of 1.02 does not decrease the offset with the 

experiments substantially (~0.1 ‰ at 25˚C). Using only the SO2 calculations in the 

gas phase at the CCSD/aug-cc-pVTZ and B3LYP/6-31+G(d,p) level, we can derive a 

scaling factor on the order of 1.065 for SO2 alone that may be more appropriate to use 

in this case.  When applied to our harmonic frequencies, the estimated SO2(aq)/SO2(g) 

fractionation factor shifts to better agreement with the Chmielewski et al. (2001) 

experiments: 1000ln(34αSO2•30H2O/SO2(vacuum)) = 2.1 ‰ at 25˚C.  

An additional consideration is the pH of the experiments of Chmielewski et 

al., (2001) (not reported) and whether or not any bisulfite may have been present in 
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the experimental solutions that may have biased the fractionation between aqueous 

S(IV) and gaseous SO2 towards higher values. Even between a pH of 0.5 and 1 

(Figure 2.1), bisulfite (sum of both isomers) comprises between ca. 4 and 12% of the 

total S(IV) in solution at low ionic strength (µ = 0 m; Beyad et al., 2014). With ca. 4 

% of bisulfite present in solution (corresponding to a pH ~ 0.5 at low ionic strength) 

and the remaining being SO2(aq), we calculate a fractionation factor between S(IV) in 

solution and gaseous SO2 of ~2.2 ‰ at 25˚C based on our calculated RPFRs and 

assuming the isomerization quotient at low ionic strength (Qi = 2.57± 0.5; Risberg et 

al., 2007), which is ~0.4 ‰ higher than our computed SO2(aq)/SO2(g) fractionation 

factor and can account for much of the apparent offset between theory and 

experiment.  We cannot uniquely attribute the offset between theory and experiment 

in this case to either pH/speciation or error in the theoretical calculations but our 

analysis nevertheless further highlights the strong role of speciation in influencing 

fractionation behavior in aqueous S(IV) systems.  
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Predicted Fractionations: [HSO3
-]T/[SO3

2-] 

The isomerization of bisulfite appears to exert a strong influence on the 

observable fractionations between bulk bisulfite and sulfur dioxide in the gas phase, 

and there are similar consequences for fractionation behavior between bulk bisulfite 

and sulfite in solution.  Presently, there do not appear to be any experimental 

	

Figure 2.13: The major isotope fractionation factor between aqueous and gaseous sulfur dioxide.  The 
curves represent our theoretical values and the data points represent experimental values from Eriksen 
(1972b) (black circles), Eriksen (1972c) (black diamonds), and Chmielewski et al. (2001) (white 
squares). 



 

 82 
 

constraints for fractionations among sulfite species in solution and, thus, our 

theoretical estimates appear to represent the first constraints. In Figure 2.14, we plot 

the calculated fractionation factors between bisulfite species and sulfite as a function 

of temperature.  Due to the very similar bonding environments around sulfur between 

(HO)SO2
- and SO3

2- (3-fold coordination to oxygen atoms in a pyramidal structure), 

the 34S/32S partitioning between (HO)SO2
- and SO3

2- is small, calculated to be ca. -2.2 

‰ at 25˚C.  A slight preference for heavier isotopes in SO3
2- is predicted, which is 

due to the slight weakening of the S-O bond on the protonated oxygen in (HO)SO2
-. 

Since (HS)O3
- is four-fold coordinated (3 oxygen atoms, 1 proton) in a tetrahedral 

structure, it is predicted to have a much higher preference for the heavy isotopes of 

sulfur and is calculated to be ca. 21-16 ‰ enriched in 34S/32S relative to SO3
2-.   
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Using the isomerization quotients as a function of temperature at µ = 1 m 

(Horner and Connick, 1986; Littlejohn et al., 1992), we predict the HSO3
-
T-SO3

2- 

fractionation factor following a similar relationship to that of equation 10 (Section 

5.4.11):  

	

Figure 2.14: Theoretical estimates/predictions of the major isotope fractionation factors among the 
anions in the sulfite system: sulfite sensu stricto (SO3

2-) and the two isomers of bisulfite.  The open 
(white) square and the thick dashed curve are the predicted bulk fractionation factors (experimentally 
observable) between bulk bisulfite (both isomers) and sulfite using the isomerization quotients at ionic 
strengths of 0 m (Risberg et al., 2007) and 1 m (Horner and Connick, 1986; Littlejohn et al., 1992), 
respectively, following equation (20) in the text. 
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34αbisulfite(bulk)-sulfite = [Qi/(1+Qi) 34β(HO)bisulfite + 1/(1+Qi) 34β(HS)bisulfite]/34βsulfite (20) 

With the similarly derived uncertainty envelope estimated only from the uncertainty 

of the temperature dependence of the isomerization quotient.  This prediction yields 

an apparent increase in the bulk bisulfite-sulfite fractionation with increasing 

temperature.  This apparent inverse-fractionation with increasing temperature 

relationship is due to the combined effects of the small magnitude of the (HO)SO2
--

SO3
2- fractionation factor relative to that of (HS)O3

--SO3
2-, and the increasing 

proportion of the (HS)O3
- isomer with increasing temperature.  In this case, the 

presence of the minor (HS)O3
- isomer is controlling: (1) the magnitude and 

potentially the direction of the HSO3
-
T-SO3

2- fractionation factor, and (2) the apparent 

inverse-fractionation-temperature relationship.  It is expected that similar 

relationships would be observed under low-ionic strength conditions, where the 

absolute magnitude of the fractionation may be slightly higher at any given 

temperature due to an increase in the proportion of the (HS)O3
- isomer at low ionic 

strength (see open square data point in Figure 2.14; Risberg et al., 2007).  Table 2.4 

contains a summary of computed theoretical fractionations vs. the experiments of 

Eriksen (1972c) and Chmielewski et al., (2001) at 25˚C. 

5.4.2 Sulfoxylate system 
 

As in the sulfite system, isotope partitioning in the sulfoxylate system will 

depend on the isomerization of sulfoxylic acid and the bisulfoxylate species 

(Makarov et al., 2010), which is presently not constrained in aqueous solutions.  The 

3-fold coordinated HS-bonded isomers in the sulfoxylate system are computed to be 

highly fractionated (~14-15 ‰ at 25˚C) relative to their respective two-fold 
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coordinated HO-bonded isomers (Figure 2.9).  Depending on the relative stabilities of 

these isomers, equilibrium isotope partitioning in the sulfoxylate system could be as 

equally (or more) complex as the sulfite system.  Similar effects relating to the 

relative stabilities of the isomers changing as a function of temperature and ionic 

strength could come into play, potentially leading to complex temperature-

dependence of observable fractionations.  Research directed at determining the 

distribution of these isomers in solution over a wide range of environmental 

conditions is needed before any detailed assessment of isotope partitioning in this 

system can be made.  The further detection and quantification of unbound sulfoxylate 

species associated with chemical and enzymatic transformations (e.g., dissimilatory 

sulfite reductase) would also allow an assessment of the importance of these aqueous 

species in widespread sulfur cycling processes like dissimilatory sulfate reduction. 

5.4.3 Sulfide system 
 

The major isotope fractionation factor (34α) between aqueous and gaseous H2S 

(H2S(aq)-H2S(g)) at low temperature (ca. 0-100˚C) has been previously determined 

experimentally (Fry et al., 1986; Geßler and von Gehlen, 1986; Szaran, 1996) and 

estimated theoretically by Czarnacki and Halas (2012). A summary of these 

determinations and our own estimate from the H2S30H2O-H2Svacuum calculations is 

presented in Figure 2.15.  Our calculated H2S(aq)-H2S(g) fractionation factor based on 

our H2S30H2O-H2Svacuum calculations at the B3LYP/6-31+G(d,p) level of theory is 

indistinguishable from the previous theoretical constraints based on the H2S5H2O- 

H2Svacuum calculations of Czarnacki and Halas (2012) at both the B3LYP/6-

311++G(d,p) and MP2/6-311++G(d,p)  levels of theory, which represent the highest 
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levels of basis set and explicit solvation (5 H2O) applied in their study.  Their 

calculations utilized a higher basis set (and theoretical method in the case of the MP2 

calculations)—implementing the triple zeta basis set, rather than double zeta, with 

diffuse functions added to the hydrogen atoms—but much smaller H2O clusters than 

what we have computed.  Their H2O computations coordinated the H2S molecule in 

ring structures ranging from 2-5 H2O molecules that did not approximate a complete 

solvation shell.  Their theoretical estimates are effectively identical to our own and, 

taken together, broadly agree with the available experimental constraints, although 

the experimental constraints exhibit considerable variability from study to study.   

The most detailed experimental constraints as a function of temperature come 

from Geßler and von Gehlen (1986) and display a very similar temperature 

dependence to the theoretical constraints and quantitatively agree with the theoretical 

estimates within about ~0.3 ‰ at all determined temperatures.  The slight ~0.3 ‰ 

offset is systematic and may be reasonably assumed to be within the uncertainties of 

the respective experimental and theoretical approaches.  The determinations of Szaran 

(1996) are typically higher in magnitude and appear to display a steeper temperature 

dependence than either the theoretical estimates or Geßler and von Gehlen (1986); 

because of this disagreement (especially with respect to the temperature dependence), 

it may be reasonably assumed that the experiments of Szaran (1996) do not represent 

true equilibrium values. The singular determination of Fry et al. (1986) at 22˚C is 

slightly lower than the Geßler and von Gehlen (1986), but is still within the 

uncertainty of their data.   



 

 87 
 

 

Fry et al. (1986) and Geßler and von Gehlen (1986) also provided constraints 

on the H2S(aq)-HS-
(aq) fractionation factor by measuring the isotopic fractionation 

between gaseous H2S and dissolved sulfide in solution as a function of pH at ca. room 

temperature (22˚C and 20˚C, respectively).  Their determinations are plotted with our 

theoretical estimate from our H2S30H2O-HS-
30H2O calculations in Figure 2.16.  In either 

experimental case, the fractionation factor was estimated by coupling the 

	

Figure 2.15: The major isotope fractionation factor between aqueous and gaseous hydrogen sulfide 
(H2S).  The curves represent our theoretical values and those of Czarnacki and Halas (2012) and the 
data points represent experimental values from the literature.  
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determinations of the fractionation factor H2S(aq)-H2S(g) at low pH, then measuring the 

same fractionation in solutions of higher pH where both H2S(aq) and HS-
(aq) are present 

in solution, utilizing information about the dissociation quotient (H2S(aq) ⇌ HS-
(aq) + 

H+, estimated as logQd1 ~ 7 in either case) to back out an estimate for the H2S(aq)-HS-

(aq) fractionation factor by either simple mass balance calculations (Fry et al., 1986), 

or graphically in the case of Geßler and von Gehlen (1986). These two experimental 

investigations yield slightly different estimates: Fry et al. (1986) obtain a 34α for 

H2S(aq)-HS-
(aq) of 1.0026 ± 0.0002 (1 s.d., two experiments) at 22˚C and Geßler and 

von Gehlen (1986) estimate a value of ~1.0046 at 20˚C.  Our theoretical value falls in 

between these estimates (1.0033 at 20˚C).  

A primary difference between the experimental approaches of Fry et al. 

(1986) and Geßler and von Gehlen (1986) is in how pH was adjusted and the 

resulting changes in ionic strength that ensued.  We hypothesize that changes in ionic 

strength (and the dissociation quotient) could have lead to an overestimation of the 

H2S(aq)-HS-
(aq) fractionation factor by Geßler and von Gehlen (1986) and may also 

have influenced the determination in Fry et al. (1986).  These authors computed their 

H2S(aq)-HS-
(aq) fractionation factor using a dissociation quotient for low ionic strength 

media (logQd1 = 7.04; consistent with the thermodynamic value of 7.02 at 22˚C and µ 

= 0 m; Hershey et al., 1988). From the description of the Fry et al. (1986) 

experiments, it is difficult to assess how ionic strength may have influenced their 

results, but because much more detail is provided in the Geßler and von Gehlen 

(1986) study, we can make quantitative reinterpretations of their data.  
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Geßler and von Gehlen (1986) measured fractionations between H2S(g) and 

H2S(aq)T  (H2S(aq)T  = H2S(aq) + HS-
(aq)) at 20˚C as a function of pH utilizing different 

concentrations of NaOH (up to 2 M NaOH for the highest pH measurements), 

significantly changing ionic strength from experiment to experiment. At 20˚C, the 

first dissociation quotient of H2S(aq) (Qd1) varies as a function of ionic strength from 

pQd1 = 7.05 at µ = 0 m to 6.72 at µ = 1 m (Hershey et al., 1988; NaCl media) and it 

	

Figure 2.16: The major isotope fractionation factor between the two predominate aqueous sulfide 
species, H2S(aq) and HS-

(aq), where curves represent our theoretical values and the data points are 
experimental constraints. The dashed white square is the estimate from Geßler and von Gehlen (1986) 
and the solid white square is our own re-estimate using their data and the dissociation quotients as a 
function of ionic strength from Hershey et al. (1988) (see section 5.4.3 for further explanation). 
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appears Geßler and von Gehlen (1986) assumed a constant logQd1 ~ 7 for their 

graphical estimation of the fractionation between H2S(g) and H2S(aq)T as the mole 

fraction of HS-
(aq) approaches 1.   We re-estimate the H2S(ag)/HS-

(aq) fractionation 

factor at 20˚C from their data using the following simple mass balance relationship 

(solving for 34αHS-/H2S(aq)):  

34αTOTAL(aq)/H2S(g) = 34αH2S(aq)/H2S(g)[χH2S(aq) + 34αHS-/H2S(aq)(χHS-(aq))] (21) 

Where χH2S(aq)  and χHS-(aq)  are the mole fractions of H2S and HS-  in solution, 

which we estimate here by utilizing the Qd1 as function of ionic strength from 

Hershey et al. (1988) and estimating the ionic strength from the reported NaOH 

concentration and the reported pH.  The 34αTOTAL(aq)–H2S(g) is the measured 

fractionation between total aqueous sulfide and H2S(g) at a given pH and [NaOH] and 

34αH2S(aq)-H2S(g)= 1.0008 (approximately invariant over the ionic strength range ~0-2 

M; Geßler and von Gehlen, 1986).  These data are not tabulated in the original 

publication and, thus, the 34αTOTAL(aq)–H2S(g), pH, and [NaOH] were estimated from the 

published figures. This procedure yields a re-estimated 34α between H2S(aq)/HS-
(aq) of 

about 1.0040 ± 0.0003 (1 s.d. of 6 experiments), slightly lower than their estimated 

value of 1.0046, and consistent with our interpretation that their usage of a constant 

Qd1 over an ionic strength range of ~0-2 M lead to an overestimation of the 

fractionation factor.  This re-estimated fractionation factor is plotted Figure 2.16 in 

addition to their original estimate.  Our theoretical estimation based on the HS-
30H2O 

and H2S30H2O calculations plots directly in between the Fry et al. (1986) determination 

and our re-estimated value from Geßler and von Gehlen (1986) and is within ~0.7 ‰ 

of each (smaller when experimental uncertainties are taken into consideration). 
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5.4.4 Equilibrium isotope effect between sulfate and sulfide 
 

Our calculations of the RPFRs of sulfide species (principally H2S30H2O and 

HS-
30H2O) and the sulfate anion (SO4

2-
30H2O) can be used to provide new constraints on 

the equilibrium isotope effect between the two end-member oxidation states of sulfur 

for use in both high-temperature and low-temperature applications.  In Figure 2.17, 

we plot the computed 33α and 34α for SO4
2-

30H2O-H2S30H2O and SO4
2-

30H2O-HS-
30H2O 

along with the empirical relation derived from experimental data compiled in Ohmoto 

and Lasaga (1982) and the recent experiments of Syverson et al. (2015), which were 

the first to measure 33α fractionations in this system.  (Calculations of the S2- ion are 

not included due to its likely negligible abundance over a wide range of pH and T 

conditions; Ellis and Giggenbach, 1971; Schoonen and Barnes, 1988; Migdisov et al., 

2002). Due to the extremely low rates of isotope exchange between sulfide species 

and sulfate at low temperature (Ohmoto and Lasaga, 1982), the experimental 

constraints all fall within the 200-400˚C temperature range.   Ohmoto and Lasaga 

(1982) reported an experiment performed at 100˚C, but it did not come close to 

equilibrium conditions; the measured fractionation after 240 hours of reaction only 

approached ~4 ‰.  The reported fractionation factor for 100˚C in their paper (34α 

sulfate-sulfide ~ 1.048) is simply the value calculated from their extrapolated empirical 

temperature dependence over the 200-400˚C range, from with they estimated a rate 

for isotopic exchange. 
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The estimate from our SO4
2-

30H2O-H2S30H2O calculations is consistent with the 

empirical relationship of Ohmoto and Lasaga (1982) over the 200-400˚C temperature 

range, where the maximum displacement of the two curves approaches ~1 ‰ at the 

lowest temperature in this range (200˚C).  Additionally, the Ohmoto and Lasaga 

(1982) curve plots in between the computed fractionation factors for SO4
2-

30H2O-

	

Figure 2.17: Comparison of our theoretical estimations of fractionations between sulfate and sulfide 
(gray curves; solid and dashed indicate H2S and HS-, respectively) and the available experimental 
constraints at high temperature (200-400˚C, range indicated by dashed vertical lines).  The black curve 
is derived from the compilation of experimental data of Ohmoto and Lasaga (1982).  The data points 
(circles) are the recent experimental values derived from the FeS2pyrite-H2S-SO4

2- system (Syverson et 
al., 2015), where black circles indicate demonstrably equilibrated experiments via mass dependent 
relationships (see section 5.4.4 for further explanation). 
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H2S30H2O and SO4
2-

30H2O-HS-
30H2O.  As inferred from their tabulated data, the 

experiments from which Ohmoto and Lasaga (1982) derived this empirical relation 

were mostly performed at low in situ pH conditions (where H2S is dominant), but 

some of the experiments were performed at higher pH where the HS- ion may have 

been present in appreciable quantities; the SO4
2-

30H2O-HS-
30H2O curves are presented 

mostly for reference and to illustrate the effects of simple speciation.  The 

experiments from which this relation is derived may also have exhibited more 

complex in situ speciation than we have calculated (e.g., ion pairs of HS- and SO4
2- 

with Na+ and protonated forms of sulfate, principally HSO4
-).  We would expect the 

differences in the SO4
2--H2S and the HSO4

--H2S fractionation factor to be minimal 

(especially over 200-400˚C) because protonation is on one of the oxygen atoms in 

sulfate, and perhaps similarly small for ion pairs forming with sulfate for similar 

reasons.  The formation of ion pairs that involve direct interactions with sulfur, such 

as NaSH0, may have greater effects. Complications due to our relatively simplified 

treatment of speciation may account for some of the small displacement between the 

theoretical and empirical curves.  Errors in the empirically derived relationship may 

also be present (biased high due to quenching effects, disequilibrium, etc.)—noting 

that Ohmoto and Lasaga (1982) had only the major isotope ratio, 34S/32S, with which 

to judge equilibrium. 

The small, apparent divergence of the Ohmoto and Lasaga (1982)-derived 

sulfate/sulfide fractionation factor and our own based on the SO4
2-

30H2O-H2S30H2O 

calculations at the low temperature end (~200˚C) may also be within the uncertainty 

of the theoretical calculations.  The combination of effects related to anharmonicity, 
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inadequacies in the theoretical method, and cluster geometry variability may 

contribute permil level error/uncertainty in computed fractionation factors.  To 

explore this more quantitatively, we focus on errors arising from inadequacies in the 

theoretical method that may represent the major source of error in the calculations. 

When we apply our CCSD/aug-cc-pVTZ-derived harmonic scaling factor of 1.01-

1.02 to the harmonic frequencies for the SO4
2- and H2S 30H2O clusters, the resulting 

fractionation factors appear to come into more quantitative agreement with the 

Ohmoto and Lasaga (1982) curve over the entire experimental temperature range 

(Figure A.4), which suggests that much of the discrepancy may arise from 

inadequacies in the theoretical method employed in the present study.  Since the 

discrepancy is small (sub-permil), we cannot rule out contributions from the other 

factors discussed above.    

For comparison, we also plot in Figure A.4 other theoretical estimates based 

on our own calculations of H2S(vacuum) and SO4
2-

(vacuum) using the IEF-PCM solvation 

model and previous theoretical calculations utilizing experimentally-derived 

fundamental frequencies and frequency shifts for the minor isotopes (Ono et al., 

2007), both of which are several permil displaced from the experimental constraints 

and our 30H2O cluster calculations.  Comparison to our IEF-PCM calculations further 

emphasizes the need for explicit solvation models in placing theoretical fractionation 

factors more quantitatively in-line with experimental fractionation factors in aqueous 

systems. 

Our theoretical predictions also appear to be in reasonably good agreement 

with the recent experimental constraints of Syverson et al. (2015) who investigated 
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equilibrium isotope fractionations (33α and 34α) in the H2S-SO4
2--FeS2 (pyrite) system 

at 300˚C and 350˚C.  Their constraints at 350˚C are perhaps more quantitatively 

robust as these experiments were pursued at longer run times than the lower 

temperature experiments, and also in greater numbers.  The starting solutions were 

comprised of sodium thiosulfate in acidic ferrous solutions.  Upon ramping up the 

temperature to experimental conditions, thiosulfate undergoes quantitative hydrolytic 

disproportionation to sulfate and sulfide in 1:1 molar ratios (2/3 of the sulfide 

subsequently precipitated to form pyrite under their experimental conditions).  Since 

the sulfate and sulfide produced tended to have resolvable Δ33S values as judged from 

the shortest experimental runs (a mass-conservation disequilibrium effect), this 

approach allowed for the direct monitoring of equilibrium.  Figure 2.17 shows all of 

their reported fractionations between sulfate and sulfide, which represent a wide 

range of experimental run times (ranging from < 1hr up to 4,297 hours as the longest 

experimental run).  The lowest fractionations measured were typically those run for 

the shortest times and had not achieved isotopic equilibrium.  The data points plotted 

as black circles are from end-run experimental analyses that indicated isotopic 

equilibrium between sulfate and sulfide by way of identical Δ33S values between 

sulfate and sulfide within analytical uncertainty.  When taken as an average for the 

350˚C determination, the demonstrably equilibrated experiments yield fractionation 

factors of 33αsulfate-sulfide =  1.0091 ± 0.0003 and 34 αsulfate-sulfide = 1.0176 ± 0.0006 (1 

s.d.), which agree well with our estimated 33αsulfate-sulfide =  1.0087 and 34αsulfate-sulfide = 

1.0170 from the SO4
2-

30H2O-H2S30H2O calculations.  We note that application of the 

CCSD/aug-cc-pVTZ-derived 1.01-1.02 harmonic scaling factors puts the theoretical 
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fractionation factors at 33αsulfate-sulfide =  1.0089-1.0091 and 34αsulfate-sulfide = 1.0173-

1.0177 from the SO4
2-

30H2O-H2S30H2O calculations at 350˚C. 

The apparent agreement with high temperature experiments suggest that our 

calculations may yield reasonable estimations of these fractionations at low-

temperature conditions as well (cf. Schauble, 2004), although it is important to note 

that any systematic errors in the calculations will scale inversely with temperature. 

Due to the extremely low rates of isotope exchange between sulfate and sulfide at low 

temperature, the only other low temperature constraints have relied either on BM 

calculations utilizing experimental vibrational spectra (fundamental frequencies) and 

frequency shifts for the minor isotopes via force field models (e.g., Sakai, 1968; 

Farquhar et al., 2003; Ono et al., 2007), or extrapolating the empirical temperature 

dependence of high-temperature constraints to low temperatures (Ohmoto and 

Lasaga, 1982).  Neither approach is strictly valid—for example, computing RPFRs 

from experimental fundamental frequencies via the BM-equation violates the 

harmonic oscillator approximations used in its derivation (cf. Liu et al., 2010)—and 

so our calculations may provide some of the most reliable estimates to date at low-

temperature within the harmonic approximation.  The low temperature fractionations 

computed via our calculations will likely have the most applicability to network 

models of isotope partitioning for sulfate reducing organisms (cf. Wing and Halevy, 

2014), as well as the estimation of sulfate-sulfide equilibration rates from non-

equilibrated low-temperature experiments (cf. approach of Ohmoto and Lasaga, 

1982).  
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Figure 2.18 presents the data of Figure 2.17 with an expanded temperature 

range (down to the equivalent of 0˚C) and includes data from recent experiments 

from sulfate reducing organisms that have produced the largest reported 

fractionations (Canfield et al., 2010; Sim et al., 2011a).  In recent years, it has been 

postulated that the maximum isotope fractionations possible in a sulfate reducing 

	

Figure 2.18: Comparison of our theoretical estimations of fractionations between sulfate and sulfide 
(gray curves; solid and dashed indicate H2S and HS-, respectively) and the available experimental 
constraints plotted from ambient to high temperature (0-2000˚C).  Labeling is same as in Figure 2.17. 
Also included for reference are the largest fractionations reported in microbial sulfate reduction 
experiments at ambient T: (1) Pure culture experiments: white squares (Leavitt et al., 2013) and white 
diamonds (Sim et al., 2011a) and (2) experiments with natural populations (Canfield et al., 2010): 
water incubations = black squares and sediment incubations = black diamonds. 
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organism approach the equilibrium fractionation factor between sulfate and sulfide 

species at the given growth temperature (cf., Sim et al., 2011a; Wing and Halevy, 

2014), which is an assertion based on the consistency between some of the largest 

fractionations observed in certain cultures of sulfate reducers and the available 

constraints on equilibrium fractionations.  Using the Sim et al. (2011a) and Sim et al. 

(2011b) pure culture (Desulfovibrio sp., DMSS-1) datasets (also, see Leavitt et al., 

2013 and Wing and Halevy, 2014), as cell specific sulfate reduction rates approach 

extremely low values (ca. < 1 fmol H2S/day/cell), the magnitude of both the 34αsulfate-

sulfide fractionation and the exponent of mass dependence 33/34λsulfate-sulfide appear to 

approach their expected equilibrium values (see Figure A.5).  It is hypothesized that 

at these conditions the organisms are essentially facilitating near-equilibrium isotope 

exchange between internal reservoirs of sulfate and sulfide via their biochemical and 

enzymatic machinery and barely growing as a result. The largest fractionation 

reported between sulfate and sulfide from the Sim et al. dataset is 34αsulfate-sulfide 

~1.0656 ± 0.0003 and corresponding 33/34λsulfate-sulfide of 0.5142 ± 0.0002 (~20˚C; Sim 

et al., 2011a).  From this perspective, at 20˚C our calculations would predict a 

34αsulfate-sulfide for SO4
2-

30H2O-H2S30H2O of 1.0674 and a SO4
2-

30H2O-HS-
30H2O 1.0709, 

with corresponding 33/34λsulfate-sulfide of 0.5147 and 0.5148, respectively.  We note that 

applying our harmonic scaling factors of 1.01-1.02 will increase the 34S/32S-based 

fractionation factor estimates slightly: for SO4
2-

30H2O-H2S30H2O = 1.0685-1.0696 and 

SO4
2-

30H2O-HS-
30H2O = 1.0720-1.0732 at 20˚C, which may be appropriate in this case 

due to the enhanced agreement with Ohmoto and Lasaga (1982) at high temperature.  

Also plotted in Figure 2.18 are the largest fractionations reported in experiments done 
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with natural populations isolated from sulfidic water column and sediments of the 

euxinic alpine Lago Cadagno (Canfield et al., 2010; both sediment and water column 

incubations at 5˚C). Based on the high sulfide concentrations present in the sampled 

portions of the system, these experiments were reasoned to largely reflect the 

processes of sulfate reduction with minor (perhaps negligible) influence of an 

oxidative/disproportionation cycle (see also Figure A.5).  Our calculations do not 

confirm or sufficiently test any hypotheses regarding the controls on fractionation 

magnitudes in sulfate reducing organisms, but may provide end-member constraints 

for isotope fractionation network models that use equilibrium fractionation factors to 

approximate more complex, multi-step enzymatic redox fractionations (e.g., Wing 

and Halevy, 2014). 

5.4.5 Fractionations involving thiosulfate and sulfide species 
 

The isotope fractionations associated with isotope exchange between the 

“outer” (S-SO3
2-; “sulfane”) and “inner” (S-SO3

2-; “sulfonate”) sulfur atoms in 

thiosulfate (S2O3
2-), as well as those between these two sites and aqueous sulfide (i.e., 

H2S(aq)/HS-
(aq)) have been studied experimentally (Uyama et al., 1985), and 

reinterpreted in terms of exchange rates and slightly revised equilibrium fractionation 

factors in follow up studies (Chu and Ohmoto, 1991; Chu et al., 2004).  Figure 2.19 

plots the experimentally derived fractionation factors (34α) for S-SO3
2-/S-SO3

2-, S-

SO3
2-/H2S, and S-SO3

2-/H2S (100-170˚C, as compiled/evaluated in Chu et al., 2004) 

along with the same fractionation factors computed from our S2O3
2-

(30H2O) and 

H2S(30H2O) cluster calculations.  In terms of fractionation magnitude, the fractionation 

between the intramolecular sites of thiosulfate appear to be in the most agreement 
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between the experimental dataset and our own calculations, where a slightly steeper 

temperature dependence is predicted from our calculations than appears to be 

represented in the experimental dataset.   

  

The fractionations predicted from our calculations and the experiments 

between the two sulfur sites in thiosulfate and H2S appear to be systematically shifted 

	

Figure 2.19: The major isotope fractionation factor for the intramolecular isotope fractionation in 
thiosulfate (experimental: white circles, our theoretical: dashed black curve), fractionations between 
the outer (“sulfanyl”) sulfur in thiosulfate and H2S(aq) (experimental: gray circles, our theoretical: gray 
curve), and the inner (“sulfonate”) sulfur in thiosulfate and H2S(aq) (experimental: black circles, our 
theoretical: black curve). Experimental data are derived by Chu et al. (2004) from the experiments of 
Uyama et al. (1985). 
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by a few permil, but generally agree in their temperature dependence.   The 

experimental dataset of Uyama et al. (1985) seems to indicate that the S-SO3
2-/H2S 

fractionation factor increases in magnitude with increasing temperature over the 100-

170˚C range, which the calculations also predict, and we find to be related to a 

crossover at sub-0˚C temperature. These offsets in the magnitude of the fractionation 

factors between theory and experiment appear to be the largest we have observed in 

our overall study and may be on the high end of the estimated uncertainties in the 

calculations. 

The relatively large offset between theory and experiment in the 

thiosulfate/sulfide system may reflect speciation.  The experiments were done under 

in situ pH conditions that were circumneutral (ca. 5.4-7.2) where HS- may be present 

at appreciable levels at the experimental temperatures (cf. Ellis and Giggenbach, 

1971; Hershey et al., 1988).  However, the computed fractionations between the two 

sulfur sites in thiosulfate and HS- do not bring the calculated fractionation factors in 

better agreement with the experiments.  Due to the HS- ion having a lower RPFR than 

H2S, predicted fractionations between S-SO3
2-/HS-, and S-SO3

2-/HS- are shifted 

upward relative to the H2S counterparts in Figure 2.19.  The formation of NaSH0 ion 

pairs could, in principle, explain some of the offset due to having a two-fold 

coordination around the sulfur atom.  Although we have not computed this species, it 

would be predicted to have a higher RPFR than HS-, perhaps comparable to H2S.  In 

order for the NaSH0 ion pair to account for the several permil offset alone, it would 

need to be a major species under the experimental conditions and/or have an even 

higher RPFR than H2S.   
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Applying the harmonic frequency scaling factor of 1.01-1.02 to the 

frequencies of the sulfide and thiosulfate 30H2O clusters also shifts the predicted 

fractionation factors in the opposite direction of the experimental constraints on the 

order of 1-2 ‰ for the S-SO3
2-/H2S and S-SO3

2-/S-SO3
2- fractionation factors, and has 

negligible effect on the smaller S-SO3
2-/H2S fractionation factor.  Based on our 

simple treatment, error arising from the employed theoretical method alone may not 

be able to explain the systematic offset between theory and experiment.  Based on the 

present constraints, we cannot rule out contributions from experimental error, 

complex speciation effects, and other errors arising from the calculations in 

describing the apparent offset between our theory and experiment.  The offset is 

somewhat puzzling given the relatively good agreement between our theoretical 

calculations and the experiments of the intramolecular fractionation factor for 

thiosulfate, as well as the H2S/HS- fractionation factor, and may warrant further 

experimental investigation. 

5.5 Implications of Isomerization: Reactivity of (HO)SO2
- and (HS)O3

- 

On the molecular and mechanistic level, the two isomers of bisulfite have 

been hypothesized to have different reactivity towards oxidants due to the absence of 

the lone pair of electrons on sulfur in the tetrahedral (HS)O3
- form, where the 

pyramidal (HO)SO2
- containing the lone electron pair on the sulfur atom might be 

expected to be more reactive (e.g., Yiin et al., 1987; Brandt and van Eldik, 1995).  In 

other words, the (HS)O3
- isomer is hypothesized to be sterically hindered in terms of 

reactions requiring access to the sulfur atom, which could be relevant for many redox 

reactions involving sulfite and bisulfite species. This hypothesis could be extended to 
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the relative reactivity of the isomers towards the active binding sites of intracellular 

enzymes in biological redox processes (e.g., the heme sites in reductases like 

dissimilatory sulfite reductase and MccA where binding occurs directly to the sulfur 

atom; Parey et al., 2010; Hermann et al., 2015) as the lone pair of electrons would be 

necessary for bond formation to the Fe in the heme groups.   

To our knowledge, this hypothesis has yet to be tested rigorously and would 

be expected to depend on the energetics and rates of tautomerization (i.e., the 

intramolecular transfer of the proton from the sulfur atom to the oxygen atom):  

(HS)O3
- à (HO)SO2

- ktautomerization   (22) 

Where ktautomerization represents the rate constant in the direction as indicated.  If 

tautomerization occurs readily (i.e., had a low activation energy), perhaps the (HS)O3
- 

isomer could tautomerize prior to (or during) a bimolecular (or similar) reaction to 

expose the sulfur atom and its lone pair of electrons for binding or electron transfer in 

a way that led to minimal discrimination between (HS)O3
- and (HO)SO2

- during 

chemical reactions.  Alternatively, if tautomerization was inhibited (i.e., had a high 

activation energy), the rates of tautomerization might be sufficiently slow to inhibit 

reactions involving (HS)O3
-, and lead to a overall discrimination between (HS)O3

- 

and (HO)SO2
-.    

There are several consequences of the hypothesis that relatively slow 

tautomerization could lead to a discrimination between the bisulfite isomers during 

chemical reactions and, in particular, a more sluggish reactivity for the (HS)O3
- 

isomer.  From the standpoint of isotope mass balance, assuming that the bisulfite pool 

is at isotopic equilibrium prior to reaction, a preference for the (HO)SO2
- isomer (or 
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SO3
2-) upon reaction would mean that the chemical reaction preferentially samples a 

fractionated portion of the total sulfite pool, which our calculations predict to be due 

almost exclusively to the presence of the (HS)O3
- isomer that has a high RPFR and 

shifts the other sulfite species towards isotopically lighter values relative to the total 

S4+ composition.  If the isotope effect associated with the chemical reaction is a so-

called normal kinetic isotope effect (i.e., the typical case in which the light 

isotopomers react more readily than heavy isotopomers due to the predominating 

influence of weakly bound transition state(s)), sluggish tautomerization could lead to 

an apparent boost in the magnitude of the instantaneous fractionation between the 

bulk bisulfite pool and the pooled product.   However, should the reaction be 

associated with a so-called inverse isotope effect (i.e., the atypical case of the heavy 

isotopomer reacting more readily than the light isotopomer), the effect of sluggish 

tautomerization would be less-straightforward: it could either lead to a dampening of 

magnitude of the apparent fractionation, or could possibly even lead to an apparent 

reversal in the direction of the fractionation (from inverse to normal) depending on 

the relative magnitudes of the fractionation associated with the kinetic isotope effect 

vs. that associated with the equilibrium isotope effects among the sulfite species.  The 

complex speciation of sulfite species in solution may contribute to considerable 

ambiguity in the meaning of measured isotope effects associated with unidirectional 

reactions involving sulfite under solution conditions of mixed-species, potentially 

obscuring any observation of primary kinetic isotope effects. 

We consider a simple qualitative example to illustrate hypothetical effects 

associated with bisulfite isomerization within the basic framework of sulfate 
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reduction. We first assume that equilibration rates between the sulfite and bisulfite 

isomers are sufficiently fast that they are in chemical and isotopic equilibrium at all 

times over all respiration rates and residence times of sulfite species within the cell.   

We consider a pool of sulfite species being generated via the reduction of APS.  Upon 

the cleavage of the S-O bonds, the sulfite species would enter solution as inorganic 

anions and immediately undergo hydrolysis reactions to form the different bisulfite 

isomers, the relative equilibrium distribution of which would depend on the pH, 

temperature, and ionic strength conditions of the intracellular aqueous environment.  

Once equilibrated chemically and isotopically, this pool would be characterized by an 

isotopically depleted pool of sulfite sensu stricto and (HO)SO2
- and a relatively 

isotopically enriched pool of (HS)O3
-.  The magnitude of the bulk fractionation would 

depend on the relative distribution of these species and therefore depend on the 

temperature, ionic strength, and pH of the intracellular environment.  If the active 

siroheme site of dSiR discriminated between the aqueous sulfite species and showed a 

preference for sulfite sensu stricto and/or (HO)SO2
-, the unidirectional reduction of 

this sulfite could introduce an apparent amplification in the instantaneous 

fractionation that eventually forms sulfide, which considering mass balance could 

amount to an amplification on the level of several permil depending on conditions.  In 

this simple case of hypothetical species discrimination, the (HS)O3
- isomer would 

effectively be acting as a relative dynamic ‘sink’ for heavy isotopes within the 

metabolism.  An effect of this kind would be amplified with increasing temperature 

due to the increasing proportion of the (HS)O3
- isomer with increasing temperature, 

which would be significant for sulfate reducers that grow at higher temperatures. 
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Even given little to no species discrimination with respect to enzymatic redox 

transformations involving the sulfite species, the presence of the (HS)O3
- isomer 

would be predicted to cause shifts in the isotopic mass balance between the bulk 

intracellular sulfite pool and other downstream and upstream pools in the metabolism 

depending on relative reversibility.  In this case, the magnitudes of these effects 

would likely depend on the rates of isotopic equilibrium among the sulfite species, 

especially in how these rates compare to the residence time of total sulfite in the cell.  

Since the residence time of sulfite species will vary as a function of cell specific 

reduction rate (which, in turn, is controlled by a wide variety of extra- and intra-

cellular environmental and metabolic conditions; cf. Wing and Halevy, 2014), the 

magnitudes of any of the hypothetical effects associated with the (HS)O3
- isomer 

could vary considerably over wide ranges of growth conditions. 

6.0 Conclusion 

The calculations presented here provide detailed constraints on sulfur isotope 

partitioning in the sulfite system, and provide new constraints on fractionation factors 

involving many of the major aqueous sulfur compounds relevant to hydrothermal and 

(bio)geochemical cycles.  From the analysis of the general consistency between our 

calculations and the experimental datasets (Eriksen, 1972a; Eriksen, 1972b; Eriksen, 

1972c), the calculations reveal that the isomerization of bisulfite is a major control on 

isotope partitioning in the sulfite system.  However, much uncertainty still exists in 

the isomerization quotient as a function of temperature over a wide range of ionic 

strength.  Future research should be directed at constraining this quotient over a wide 

range of environmental conditions (temperature and ionic strength) to more precisely 
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determine its potential influence in the sulfur cycle.  The experimental constraints on 

isotope partitioning among sulfite species also warrants further investigation and, 

subsequently, higher level calculations as needed as the precision of empirical 

constraints improves.  Due to the complexity of sulfite solutions, precise and species-

specific determinations of isotope partitioning in the sulfite system will be reliant 

upon the combination of experimental and theoretical techniques. 

The pH and ionic strength dependency of sulfur isotope partitioning in the 

sulfite system is significant due to the complex speciation of sulfite.  Treating the 

sulfite system in isotope partitioning models strictly as the pyramidal sulfite anion 

(SO3
2-) (e.g., network models of sulfate reducing metabolisms) is clearly invalid for 

most conditions relevant to natural systems, particularly intracellular conditions 

where pH is typically circum-neutral.  Future treatment and applications should 

include all relevant species.  Assumptions about similarity in structure between sulfite 

species and their isotope partitioning behavior are demonstrably invalid and should be 

avoided in any future experimental approaches.  It remains to be shown whether or 

not the two structural isomers of bisulfite behave differently during chemical 

reactions, but if they do, there could be consequences in isotope fractionations 

associated with chemical reactions in sulfite media where both isomers are present. 

 Calculations of the isotope partitioning behavior of the sulfoxylate species 

have been included here in the hopes of igniting research towards their further 

characterization in aqueous solutions.  As in the sulfite system, isotope partitioning 

among sulfoxylate species will strongly depend on the isomerization of the 

protonated species, principally H2SO2 and bisulfoxylate species.  Techniques exist for 
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producing these compounds via the decomposition of organic precursors (e.g., 

thiourea dioxide; Svarovsky et al., 2000; Makarov et al., 2002; Makarov et al., 2010) 

and so their characterization in aqueous solutions should be possible.  If such species 

do exist within the microbial sulfate reduction framework, their characterization 

could allow for an even more elaborate understanding of sulfate reduction 

metabolisms.  The role these compounds play in other redox processes (e.g., sulfide 

oxidation) could further be illuminated through these studies, and allow for detailed 

understandings of their mechanisms as well.    
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Table 2.1: Select sulfite system equilibrium quotients as reported in the literature. 
Temperature (˚C) µ (M or m) Q Reference 

SO2 Dissolution (Henry’s Law): SO2 (g) ⇌ SO2 (aq); QH = [SO2]aq/pSO2 (m/atm) 
25 0 1.23 ± 0.05 1 
25 0.01 m 1.13 ± 0.05 2 
25 1 m 1.04 ± 0.05 2 

Overall Acid Dissociation 1: SO2(aq) + H2O ⇌ HSO3
-
T + H+; Q1 = [HSO3

-
T][H+]/[SO2(aq)] (M or m) 

25 0 10-1.91 (±0.02) 3 
25 0 10-1.88 (±0.06) 4 
25 0.01 m 10-1.88 (±0.02) 2 
25 1 m 10-1.63 (±0.02) 2 
25 1 m 10-1.37 3, 5 

Acid Dissociation 2: HSO3
-
T ⇌ SO3

2- + H+; Q2 = [SO3
2-][H+]/[HSO3

-
T] 

25 0 10-7.18 (±0.03) 3 
25 0.1 m 10-6.90 (±0.05) 2 
25 1 m 10-6.40 (±0.05) 2 
25 1 m 10-6.34 3, 5 

Bisulfite Isomerization: (HS)O3
- ⇌ SO2(OH)-; Qi = [SO2(OH)-]/[(HS)O3

-] 
25 1.0 m 4.9 (± 0.1) 6 
25 1.0 m ~4.8 7 
25 ~0 2.6 (± 0.5) 8 

Bisulfite Dimerization: 2HSO3
-
T ⇌ S2O5

2- + H2O;  Qd = [S2O5
2-]/[HSO3

-
T]2 

20 — 0.07 9 
25 — 0.07 10 
25 0 M 0.076 11 

 2 M 0.34  
25 0 m 0.033 12 

 1 m 0.088  
20 1 m 0.062 7 

 5 m 0.25  
25 0 0.045 13 
25 0 0.045 (±0.008) 4 

Acid Dissociation of the Dimer: HS2O5
- ⇌ S2O5

2- + H+;  QdH = [S2O5
2-][H+]/[HS2O5

-] 
25 0 10-2.9 (±0.2) 4 

1 Goldberg and Parker (1985); 2Millero et al. (1989); 3Martell and Smith (1982); 4Beyad et al. (2014); 

5Horner and Connick (2003);  6Horner and Connick (1986); 7Littlejohn et al. (1992); 8Risberg et al. 
(2007); 9Golding (1960); 10Eriksen and Lind (1972);11Bourne et al. (1974) 12Connick et al. (1982); 
13Ermatchkov et al. (2005) 

Table 2.2: Sulfoxylate system equilibrium quotients as reported in the literature. 
Temperature (˚C) µ Q Reference 

Acid Dissociation 1: H2SO2(aq) ⇌ HSO2
-
T + H+; Q1 = [HSO2

-
T][H+]/[H2SO2(aq)] 

25 0.1 m 10-7.97 Makarov et al. (2010) 
Acid Dissociation 2: HSO2

-
T ⇌ SO2

2- + H+; Q2 = [SO2
2-][H+]/[HSO2

-
T] 

25 0.1 m 10-13.55 Makarov et al. (2010) 
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Table 2.4: Summary of 34S/32S based fractionation factors in the sulfite system from experiments and 
theoretical calculations at 25˚C.   

1000ln34α Experiment (‰) Theoretical* (‰) 
SO2(aq)-SO2(g) 0.9 ± 0.4 a 

~2.2 b 
1.8 

HSO3
-
T-SO2(aq) 9 ± 1 a 9.4 ± 0.9 (µ = 0 m) 

6.9 ± 0.1 (µ = 1 m) 
HSO3

-
T-SO3

2- N/A 4.0 ± 0.9 (µ = 0 m) 
1.5 ± 0.1 (µ = 1 m) 

aEriksen (1972c); bChmielewski et al. (2001); *Computed at the B3LYP/6-31+G(d,p) level in aqueous 30-
34H2O clusters.  The calculated values involving bisulfite were computed using isomer proportions from 
quotients determined at  ionic strength of 0 m (Risberg et al., 2007) and 1 m ionic strength (Horner and 
Connick, 1986). Uncertainties on the calculated values solely represent the propagated uncertainties on the 
isomerization quotients reported at 25˚C in the references. 
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Chapter 3: Rates and multiple sulfur isotope fractionations 

associated with the oxidation of sulfide by oxygen in aqueous 

solution 

Abstract 

We present experimental determinations of the reaction rates and sulfur 

isotope fractionations associated with the oxidation of aqueous sulfide (principally 

HS-) via molecular oxygen in high pH, low ionic strength carbonate/bicarbonate 

buffered solutions as a function of temperature (5-45˚C) and trace metal catalysis 

(ferrous iron, Fe2+, ~50-150 nM). Rates and fractionation factors are quantified via 

the analysis of sulfide as a function of reaction progress.  We find that the oxidation 

of sulfide at pH = 9.8 and 25˚C without any catalyst added is associated with a 

computed second order rate constant (k) of lnk = 3.49 ± 0.19 (k in M-1hr-1; 1 s.d., 

quadruple experiments) and the fractionation factors: 34εP-R = -5.85 ± 0.15 ‰ and 

33/34λ = 0.5094 ± 0.0016 that translates to a ∆33Sproducts-sulfide = 0.033 ± 0.009 ‰ (1 s.d., 

duplicate experiments), indicating a mass dependence that appears to be resolvable 

from the expectations of typical equilibrium isotope exchange (33/34λequilibrium ≈ 0.514 

– 0.516). Fractionation factor magnitudes (34εP-R) appear to increase slightly with rate 

due to increasing temperature over 5-45˚C from -5.00±0.14 ‰ to -6.34±0.24 ‰, 

indicating inverse fractionation temperature dependence, and may decrease slightly in 

magnitude with increasing rate due to ferrous iron catalysis at 25˚C (-4.90±0.11 ‰, 

[Fe2+]added ≈ 150 nM, lnk = 4.22 ± 0.04). We do not appear to resolve any 

relationships between rate and 33/34λ due to either temperature or ferrous iron 



 

 113 
 

catalysis. We review our experiments in the context of previous studies and find that 

kinetic parameters derived from our experiments compare well to the extensive 

experiments of the Frank J. Millero group, but indicate that much variability is found 

in the kinetics literature that may be indicative of varying degrees of unintended trace 

catalysts present in experimental media or approaches. We interpret our results in the 

context of the two hypothetical mechanisms that have been proposed for sulfide 

oxidation, and suggest that the isotope fractionation relationships we observe may be 

indicative of reversible isotope exchange between sulfur intermediates and residual 

sulfide occurring as part of the mechanism, although more primary effects cannot be 

ruled out at present. A comparison of our fractionations to the available biological 

constraints (anoxygenic phototrophic bacteria) do not indicate a robust biosignature 

for oxidative processes based on 34ε/∆33S relationships, however, the two general 

processes may cause residual sulfide undergoing oxidation to evolve along different 

trajectories in δ34S/∆33S composition space under certain circumstances.  Overall, the 

observation that the autoxidation of aqueous sulfide in high pH media is associated 

with a non-zero ∆33Sproducts-sulfide will influence how oxidation processes are treated in 

environmental and global scale models of the sulfur cycle based on multiple sulfur 

isotopes.  

1.0 Introduction 

1.1 General overview: Motivation and natural settings 

The oxidation of sulfide compounds is the complement of the major 

geochemical process of microbial sulfate reduction (MSR; or dissimilatory sulfate 

reduction) that intimately ties the global sulfur and carbon cycles.  In coastal marine 
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and shelf environments, high organic carbon fluxes to the seafloor combined with 

high porewater sulfate and low oxygen concentrations drive the anaerobic respiration 

process of MSR.  MSR accounts for ~12-29% of the total respiration of the organic 

carbon flux to the seafloor per year (Bowles et al., 2014) and can account for upwards 

of 50% of the total organic matter respired in localized shelf sediments (e.g., 

Jørgensen, 1982).  MSR additionally has the potential to impart some of the largest 

isotope fractionations (δ34S) that can be expressed in natural environments between 

sulfate and the metabolic waste product sulfide (H2S/HS-) (e.g., Canfield et al., 2010; 

Sim et al., 2011a; Sim et al., 2011b; Leavitt et al., 2013; Wing and Halevy, 2014).  

The aqueous sulfide (H2S/HS-) generated by MSR may subsequently undergo a 

complex sulfur cycle that includes oxidation (chemical and microbial) and mineral 

formation (e.g., authigenic pyrite, FeS2(authigenic); Rickard and Morse, 2005).   From 

studies of modern coastal marine sediments, it has been estimated that ca. 80-95% of 

MSR-produced sulfide is re-oxidized back to sulfate with the small remainder 

existing in mineral phases (Jørgensen, 1977; Jørgensen, 1982; Jørgensen et al., 1990; 

Canfield and Teske, 1996; Jørgensen and Nelson, 2004), indicating that sulfide 

oxidation processes are major features of the global geochemical cycle. 

The environmental pathways of chemical and biological oxidation of sulfide 

generate sulfur compounds of intermediate oxidation state such as polysulfides, 

elemental sulfur, thiosulfate, polythionates, sulfite, and others that can stimulate 

complex cycling including microbial disproportionation (e.g., Canfield and 

Thamdrup, 1994; Canfield, 2001; Jørgensen and Nelson, 2004; Zopfi et al., 2004; 

Johnston, 2011).  The microbial processes of sulfate reduction, sulfide oxidation, and 
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intermediate compound disproportionation can individually impart their own unique 

isotope signatures to coexisting sulfate and sulfide phases when δ34S/∆33S 

relationships are considered (e.g., Johnston, 2011).  When multiple transformations 

such as these operate together, large additive δ34S fractionations between coexisting 

sulfate and sulfide phases in natural systems can be generated that can surpass the 

magnitude of any one single process (Canfield and Thamdrup, 1994; Canfield, 2001), 

and δ34S/∆33S relationships can allow at least some disentangling of such 

compounded effects (Johnston, 2011; Pellerin et al., 2015).  Despite the relatively 

small isotope effects (δ34S/∆33S) that have been documented for bacterial sulfide 

oxidation (anaerobic phototrophs; Zerkle et al., 2009), these effects combined with 

substantial oxidative cycling can dampen the larger  ∆33S effects associated with 

MSR and disproportionation at the environmental scale, potentially masking any 

isotopic signatures that may allow the two metabolisms to be distinguished (Zerkle et 

al., 2009).  Sulfide oxidation processes therefore may be influential in (or detrimental 

to) the preservation of certain isotopic signals in natural systems. 

The environments and conditions of sulfide oxidation are diverse and extend 

well-beyond early diagenetic processes in marine sediments.  In most surface 

environments, sulfide is sourced biologically or from hydrothermal vents and other 

volcanic sources. Other environments where the oxidation of sulfide compounds 

occurs include (but are not limited to): the chemocline in redox-stratified euxinic 

basins (e.g., Jørgensen et al., 1991; Millero, 1991a; Millero, 1991b; Millero, 1991c; 

Zerkle et al., 2009), the atmosphere (e.g., volcanogenic sulfur gases), terrestrial 

sulfide deposits (e.g., Schippers, 2004), sulfidic hot springs (e.g., Yellowstone NP, 
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Wyoming, USA; Xu et al., 1998; Xu et al., 2000), seafloor hydrothermal vent 

environments (e.g., Edwards, 2004), sulfidic caves (e.g., Frasassi cave system, Italy; 

Macalady et al., 2006), arctic sulfur springs (Borup Fjord Pass; Gleeson et al., 2012), 

and during seafloor basalt weathering, potentially playing a role in sustaining a 

chemolithotrophic “deep biosphere” (e.g., Bach and Edwards, 2003; Orcutt et al., 

2011).  

Despite the ubiquity of oxidative sulfur cycling in natural environments, the 

isotope effects associated with sulfide oxidation processes have received relatively 

little attention. Constraints on multiple sulfur isotope fractionations (δ34S/∆33S/∆36S) 

accompanying sulfide oxidation are presently limited to the effects associated with 

the anaerobic phototrophic bacterium, Chlorobium tepidum (Zerkle et al., 2009). The 

existing calibrations of chemical sulfide (H2S/HS-) oxidation via molecular oxygen 

(Fry et al., 1988) pre-date the more recent emphasis on the analysis of minor sulfur 

isotopes and require a re-examination for future environmental applications. 

Substantial oxidation of sulfide occurs via abiotic chemical pathways in natural 

environments that are the result of mechanisms that are entirely different than 

intracellular metabolic pathways that can lead to different isotope fractionations.    

The calibration of isotope fractionations associated with chemical oxidation is 

therefore required for a more complete treatment of oxidation pathways in the study 

of sulfur isotopes in natural systems.  Additionally, the development of oxidative 

biosignatures may be possible via the elucidation of oxidation mechanisms aided by 

multiple sulfur isotope analysis, potentially allowing for the relative proportions of 
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these oxidative pathways to be quantified under some circumstances in natural 

environments. 

1.2 The present study 

We present experimental determinations of the reaction rates and sulfur 

isotope fractionations associated with the chemical oxidation of aqueous sulfide 

(principally HS-) via molecular oxygen in high pH, low ionic strength 

carbonate/bicarbonate buffered solutions as a function of temperature (5-45˚C) and 

trace metal catalysis (ferrous iron, Fe2+, ~50-150 nM). Ferrous iron is chosen to 

explore catalytic effects because it is one of the most sensitive, impactful, and 

environmentally relevant catalysts for aqueous sulfide oxidation in relatively high pH 

solutions (Vazquez et al., 1989: Millero, 1991a; Millero, 1991b; Millero, 1991c; 

Zhang and Millero, 1993).   We analyze isotopic fractionations associated with all 

three stable isotope ratios of sulfur (33S/32S, 34S/32S, 36S/32S) to explore mass 

dependent relationships. The approach of measuring reaction rates in addition to 

isotopic fractionations allows us to place our experiments in the context of the 

extensive experimental kinetics literature (e.g., Ostlund and Alexander, 1963; 

Avrahami and Golding, 1968; Cline and Richards, 1969; Chen and Morris, 1972a; 

Chen and Morris, 1972b; Almgren and Hagstrom, 1974; O’Brien and Birkner, 1977; 

Millero et al., 1987a; Zhang and Millero, 1993; Luther et al., 2011), in addition to 

allowing us to explore rate/fractionation relationships.    

The rates and isotope effects accompanying a predominately unidirectional 

process like the oxidation of sulfide are intimately linked expressions of the reaction 

mechanism. The isotope fractionations associated with sulfide oxidation are 
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putatively the expression of kinetic isotope effects, where multiple reaction pathways 

are possible due to a complex mechanism. By combining the analysis of both reaction 

rates and isotope fractionations, we may yield new insights into the understanding of 

the complex mechanism of sulfide oxidation as well as provide critical constraints for 

environmental and global mass balance models of the sulfur cycle based on all four 

sulfur isotopes that require consideration of oxidative pathways.  

1.3 Additional background: Kinetic experiments of HS- oxidation via O2 

The isotope fractionations associated with sulfide oxidation via molecular 

oxygen are expressions of the reaction mechanism and are likely to co-vary with 

reaction rate. Numerous experimental studies have investigated the rates of chemical 

sulfide (H2S/HS-) oxidation via molecular oxygen (O2) in relatively low-ionic 

strength experimental buffer solutions (Avrahami and Golding, 1968; Chen and 

Morris, 1972a; Luther et al., 2011; Millero et al., 1987a; O’Brien and Birkner, 1977) 

and seawater (Almgren and Hagstrom, 1974; Cline and Richards, 1969; Millero et al., 

1987a; Ostlund and Alexander, 1963; Zhang and Millero, 1993). The reaction has 

also been studied as a function of various catalysts including trace metals (e.g., Chen 

and Morris, 1972b; Hoffman and Lim, 1979; Vazquez et al., 1989; Zhang and 

Millero, 1993) and organic compounds (Chen and Morris, 1972b).   

The rate of sulfide oxidation is understood to follow a general rate law: 

-d[(H2S)T]/dt = k[(H2S)T]a[O2]b (1) 

Where (H2S)T refers to the sum of all aqueous sulfide species (H2S, HS-, S2-), brackets 

denote concentrations, k is the overall rate constant, and a and b denote the reaction 

order with respect to sulfide and oxygen, respectively.  The overall rate constant is a 
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function of temperature, pH, and ionic strength (Millero et al., 1987a).  The reaction 

orders with respect to sulfide and oxygen are interpreted in terms of the stoichiometry 

of the rate determining step(s) in the reaction and are quantified experimentally.   

Rate law parameters (k, a, and b) are often determined by monitoring sulfide 

concentrations with time during oxidation under controlled conditions, which has 

been done mostly using spectrophotometric and colorimetric techniques (Avrahami 

and Golding, 1968; Cline and Richards, 1969; Chen and Morris, 1972a,b; Luther et 

al., 2011; Millero et al., 1987a; O’Brien and Birkner, 1977; Zhang and Millero, 1993) 

or electromotive force (emf) techniques (Ostlund and Alexander, 1963; Almgren and 

Hagstrom, 1974). Experimental studies often yield inconsistent results when 

compared between laboratories (cf. reviews in Millero, 1986; Millero et al., 1987a; 

Zhang and Millero, 1993). We compile in Table 3.1 the kinetic parameters calculated 

from experiments performed under pH conditions where HS- dominates the 

speciation. Millero et al. (1987a) provide evidence that the rates of oxidation are 

uniform (within reasonable experimental uncertainty) over pH ranges where a 

singular sulfide species (i.e., HS- or H2S) is present, thus, differences in rate law 

parameters above a pH of ~8 may not be expected to be major.  Most studies have 

found the reaction to be first order with respect to sulfide (a = 1) and likely also first 

order with respect to oxygen (b = 1) (cf. Zhang and Millero, 1993), although some 

investigations yield non-integer values (e.g., Chen and Morris, 1972a,b). Computed 

second order rate constants derived from the experiments presented in Table 3.1 vary 

considerably.  Millero et al. (1987a) demonstrated that the emf approach utilized by 

some workers (Ostlund and Alexander, 1963; Almgren and Hagstrom, 1974) yields 
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erroneously high rates that are artifacts of the detection method. For experiments 

performed under comparable conditions using comparably reliable chemical assays 

for sulfide, the disagreement persists in rate constants and in some cases reaction 

orders.   

The reaction rate of aqueous sulfide oxidation is highly sensitive to the 

presence of trace metals in solution, where the apparent second order rate constant 

may vary as a result of trace metal catalysis by several orders of magnitude under 

otherwise equivalent solution conditions (Vazquez et al., 1989; Zhang and Millero, 

1993). The results from recent experiments performed under trace metal clean 

conditions (Luther et al., 2011) indicate that varying amounts of unintended catalysis 

may have impacted most experimental studies of sulfide oxidation to date. To our 

knowledge, the experimental analysis of a full rate law for the catalyzed reaction 

constraining the role of catalysts on all kinetic parameters has yet to be performed in 

detail, and may be necessary for a coherent interpretation of the available 

experimental literature.  The issue of contaminating trace catalysts may complicate 

the calibration of rates and isotope fractionations in the laboratory.  These issues 

informed our experimental design and led to our emphasis on measuring reaction 

rates and comparing them to those of previous studies, and led to our study of the 

direct effect of an exemplary trace metal catalyst (ferrous iron) on rates and isotope 

fractionations. 
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2.0 Methods 

2.1 Reaction vessel 

The reaction vessel consists of all plastic and/or Teflon components: a 

polypropylene bottle (2 L, Nalgene) fitted with a 2-3 port Teflon-seal and gasket cap 

(Vaplock), Teflon magnetic stir bar, and 1/8“ OD PEEK tubing submerged in the 

reaction solution for aliquot time series sampling for concentration and isotopic 

analyses (Figure A.6).  Aliquot sampling is performed via peristaltic pump.  All 

components are acid-soaked (6 M HCl) for several weeks followed by a Milli-Q soak 

Table 3.1: Conditions and rate law parameters from experimental studies of sulfide oxidation via 
molecular oxygen, where -d[(H2S)T]/dt = k[(H2S)T]a[O2]b. The value of b has not been determined by 
most experimental studies and parentheses indicate the values assumed by the original authors. The 
column lnk represent the second order (a = 1, b = 1) rate constant either as reported in the reference or 
computed here (units: M-1hr-1). The half-time of sulfide disappearance (t1/2) is computed for 25˚C 
experiments assuming [O2] = 250 µM, and is reported in units of hours. Medium key: w = water (low 
ionic strength buffer solution), sw = seawater (with reported salinity, when available). 

Reference Medium T (˚C) pH a b lnk t1/2 

Avrahami and 
Golding (1968) 

w 25 12 1 n.d. 5.3 14 
w 25 14 1 n.d. 6.2 6 

Chen and Morris 
(1972a) w 25 

 
1.34 0.56 N/A N/A 

O'Brien and Birkner 
(1977) w 25 10 1 0.80 ±0.25 

(1) 4.9 21 

Millero et al. (1987a) w 25 8.0 1 n.d. (1) 4.3 ± 0.6 44 ± 30 
Zhang and Millero 

(1993) w 25 8.2 1 1 3.75 65 

Luther et al. (2011) w 25 12 1 n.d. (1) 1.94 ± 
0.05 397 

This study w 25 9.8 1 n.d. (1) 3.5 ± 0.2 86 ± 16 
Ostlund and 

Alexander (1963) sw 25 8.2 1 n.d. 9.4* 0.23* 

Almgren and 
Hagstrom (1974) sw 24 8 1 n.d. 7.4 ± 0.6* 2 ± 1* 

Millero et al. (1987a) sw 
(S=35) 25 8.0 1 n.d. (1) 5.2 ± 0.6 16 ± 9 

Zhang and Millero 
(1993) 

sw 
(S=35) 25 8.2 1 1 4.81 ± 

0.02 23 

Cline and Richards 
(1969) sw 9.8 7.5-7.8 1 1 ~6.9 N/A 

*Demonstrably erroneous due to electromotive force sulfide detection method (Millero et al., 1987a). 
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of comparable duration, and subsequently rinsed several times with Milli-Q prior to 

loading of reaction solution.  The use of plastics/Teflon and extensive acid cleaning is 

employed to minimize trace metal contamination that could affect the rates and 

observed isotopic fractionations (cf. Vazquez et al., 1989; Luther et al., 2011).  An 

extensive set of preliminary kinetic experiments performed mostly in custom-made 

glass reaction vessels revealed poor reproducibility of rates that likely stemmed in 

part from varying levels of trace metal catalysis from the glassware.  We also avoided 

submerging any probes (e.g., pH, DO) in the primary reaction solution during 

experimental runs to avoid any potential catalytic effects; pH measurements were 

made on aliquots removed from the reaction vessel. Roughly half the volume of the 

reaction vessel is air-headspace by design to enhance air-solution gas exchange.  

Temperature control is achieved by the submersion of reaction vessels in a circulated 

VWR temperature bath (Model 1186D; stable to 0.01˚C). 

2.2 Reaction solution 

Reaction solutions are comprised of 1 L Milli-Q buffered with 

NaHCO3/Na2CO3 (0.002-0.02 M) to a pH of ~ 9.8.  Buffer solutions were prepared 

using acid-cleaned volumetric flasks (Nalgene, polypropylene, 1 L) following the 

cleaning protocol for the reaction vessel (Section 2.1) and using reagent grade 

Na2CO3 and NaHCO3 (Sigma Aldrich: ≥99.5% Na2CO3 and 99.7-100.3% NaHCO3).  

Simple bicarbonate/carbonate buffers were chosen due to their relevance in buffering 

many natural systems.  Under these conditions, the speciation of sulfide is 

overwhelmingly in the singly protonated anionic form of HS- (~100% HS-; Hershey 

et al., 1988).  H2S(aq) in solution was avoided to prevent sulfide loss via degassing, 
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which could confound the rate and isotope effect determination.  Prior to sulfide 

injection, reaction solutions are allowed to thermally equilibrate in the temperature 

bath overnight.  The following morning, reaction solutions are bubbled for one hour 

with ambient air immediately prior to sulfide injection in an attempt to guarantee 

reaction solutions are saturated with respect to O2 (cf. Millero et al., 1987a). 

Stock sulfide solutions were prepared from sodium sulfide nonahydrate 

crystals (Na2S•9H2O; J.T. Baker, 101.3%) stored at -20˚C and rinsed in N2-purged 

Milli-Q and patted dry with Kimwipes prior to weighing.  Fresh stocks of sodium 

sulfide were prepared for every experiment by dissolving rinsed and dried crystals in 

small concentrated batches (~5 ml, ~0.2 M) in acid cleaned polypropylene VWR 

centrifuge tubes under an anoxic N2:H2 atmosphere (95:5) within 30 min of injection 

into experimental solutions.  Aliquots of these stock sulfide solutions (1 ml; ~0.2 M) 

were injected into experimental solutions using a graduated pipette (Neptune, natural 

polypropylene). Blanks of thiosulfate and sulfite in these stock solutions were 

typically below the detection limits at the level of dilution in reaction solutions as 

determined by HPLC (≤0.1 µM) following Zopfi et al. (2004).  For the Fe2+-catalyzed 

experiments, stock solutions of FeSO4 (~50-150 µM; Sigma Aldrich, ferrous sulfate 

heptahydrate) freshly prepared under N2:H2 (95:5) atmosphere within 10 min of the 

beginning of experiments were added (1 ml aliquot) immediately following the 

injection of sulfide (note: these procedures lead to negligible sulfate blanks in the 

final reaction solution of < 0.15 µM).  No observed precipitate was observed by eye 

upon the addition of ferrous iron to experimental sulfide solutions at these low levels. 
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2.3 Concentration analyses 

Concentration analyses of aqueous sulfide were performed via the methylene 

blue spectrophotometric technique of Cline (1969) and were performed in either 

duplicate or triplicate for each sampling (reproducibility was typically ≤ 5%, 2 s.d.).  

Oxygen concentrations were estimated under experimental conditions as a function of 

temperature and ionic strength (Benson and Krause, 1980; Benson and Krause, 1984) 

as implemented in the USGS DOTABLES online software utility 

(http://water.usgs.gov/software/DOTABLES/).   

 2.4 Kinetics 

The experiments are designed after a standard rate law for sulfide oxidation 

via molecular oxygen (Equation 1: cf. Millero et al., 1987a; Zhang and Millero, 

1993). Following the majority of previous studies and taking the reaction order with 

respect to sulfide to be unity (Table 1), we took steps to keep O2 constant for at least 

the early portions of the experiments such that the overall rate law can be simplified 

to a pseudo-first order rate law: 

d[(H2S)T]/dt = k’[(H2S)T]   (2) 

Where k’ = k[O2]b and is referred to as the pseudo-first order reaction constant and 

can be determined from monitoring sulfide concentration with time via the time-

integrated and linearized form of the pseudo-first order rate law:   

ln[(H2S)T]t = ln[(H2S)T]t=0 + k’t  (3) 

Where t is time and the subscript t=0 denotes the initial concentration of sulfide. The 

value of k’ can be determined via the least squares linear regression of sulfide 

concentration data following Equation 3.  Measured k’ can then be computed into the 
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overall rate constant k using knowledge of the oxygen concentration (and reaction 

order, b) in the experiment.   

We did not determine the reaction order with respect to oxygen in our 

experiments and therefore rely on determinations from previous experiments to 

compute overall rate constants.  In general, the value of b is not well constrained and 

poor agreement exists among the available experimental studies (Table 1): Chen and 

Morris (1972a, b) derive b = 0.56 ± 0.03, O’Brien and Birkner (1977) derive 0.80 ± 

0.25 (interpreted by the original authors to be unity), and Zhang and Millero (1993) 

derive b =1 from experiments in seawater.  In principle, the experimentally observed 

reaction orders in a complex mechanism may vary depending on solution conditions 

if the changes to conditions influence the relative pathways of the reaction that 

influence the rate determining step(s) of the reaction, but ultimately it is unclear 

where the variability in reaction orders may arise in the published experimental 

datasets.  We note that variability in apparent rate parameters may accompany the 

presence of unintended trace catalysts (e.g., trace metals) and detailed experiments 

investigating the role of catalysts on reaction orders have yet to be performed.  We 

adopt the reaction order with respect to oxygen from the experiments of Zhang and 

Millero (1993). The reaction is therefore taken to be second order overall (a + b = 1 + 

1 = 2) and k will be computed and reported in units of M-1hr-1 in our study. 

 Most experiments were performed with an initial sulfide concentration of 

around 2.2x10-4 M (220 µM) and O2 from air equilibrated with the reaction solution.  

The initial sulfide concentration was chosen as a near-optimal compromise between 

(1) having sufficient sulfide for isotopic measurement throughout experimental runs 
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(SF6 GS-IRMS requires about 10-12 µmoles of sulfur for high precision 33S/32S, 

34S/32S, and 36S/32S analysis) and (2) not being so high as to overwhelm the available 

oxygen supply and, therefore, interfere substantially with the kinetic analysis.  Some 

difficulties arose in keeping O2 constant throughout experimental runs because 

oxygen from air in equilibrium with our solutions had a concentration on par or only 

slightly in excess (~1.2-1.3x molar) of our sulfide concentrations at 25˚C and even 

lower (~ 0.8x) for experiments performed at 45˚C.  However, reliable rate 

information can be obtained from concentration data prior to obvious oxygen 

limitation. 

2.5 Isotopic analyses: SF6 GS-IRMS 

Aliquots of experimental solution were extracted throughout experimental 

runs (totally 5-6 samplings) in total volumes corresponding to ~10-12µmoles of 

sulfide (typically, 60-110 ml of experimental solution) and immediately fixed in an 

equivalent volume of 200 g/L zinc acetate trapping solution as ZnS and frozen for 

later processing. The initial processing of sequestered ZnS involves thawing and 

immediate filtration (0.2 µm, Whatman or Millipore).  The filters containing ZnS 

precipitate are then immediately added to 100 ml round bottom flasks with syringe 

side arms for routine acid volatile sulfide (AVS) extraction that allows quantitative 

re-precipitation of sulfide as Ag2S. Briefly, this involves injection of 20 ml of 5 N 

HCl into the round bottom flask containing the filter + precipitate under flow of N2 

through a condenser, water trap, and capture solution (0.02 M AgNO3, 0.2 M HNO3) 

that quantitatively sequesters the acid-liberated sulfide as Ag2S.  Samples of Ag2S 

were then allowed to settle overnight, after which time they were rinsed in a sequence 
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of Milli-Q, 1 M NH4OH, and Milli-Q (3x each, with centrifugation and vortex 

mixing) and dried for later fluorinations. Multiple blanks were run on acidified filters 

following the protocol above and no detectable Ag2S was obtained, indicating that the 

filter (and reagents) contribute no significant AVS. 

 Silver sulfide samples were weighed in small aluminum foil envelopes, added 

to nickel reaction tubes, and reacted in the presence of 100-fold molar excess F2 gas 

at ~250˚C overnight (12+ hours) to quantitatively convert to SF6 gas.  The SF6 gas is 

cryogenically separated from HF and other non-sulfur condensable fluorination 

byproducts by utilizing a chilled ethanol slurry (-115˚C) before further purification 

via Gas Chromatography.  The yields of this fluorination, extraction, and SF6 

purification were 100% (± 5%) for all experimental samples reported herein. The SF6 

gas is analyzed for isotope ratios as ion current beams of 32SF5
+, 33SF5

+, 34SF5
+, and 

36SF5
+ at 127, 128, 129, and 131 mass numbers, respectively, on a ThermoFinnigan 

MAT 253 at the University of Maryland, College Park. 

Since these experiments involve the evaluation of the small isotope effects 

and the mass dependence of sulfide oxidation utilizing samples that are minimally 

fractionated from one another (i.e., 5-6 samples per experiment spanning a 34S/32S 

range typically of ≤ 3-4 ‰), a rigorous protocol of cleaning of the fluorination line 

was enacted for many experiments to avoid any contamination from any residual 

Ag2S from previous user’s fluorinations. Prior to any loading of Ag2S samples from 

sulfide oxidation experiments, the nickel bombs were emptied of all previous residual 

aluminum foil packets, reattached and baked for 12-24 hours under vacuum (to 

remove most of the trace adsorbed H2O) and then blank fluorinated overnight 2-3 
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times.  This protocol was sufficient to ensure clean, high quality fluorinations for high 

precision analyses. 

2.6 Isotope effect determination 

The isotope effect of sulfide oxidation was determined by measuring the 

isotopic composition of the residual reactant sulfide as a function of reaction progress 

in a closed system following the Rayleigh equation: 

ln(nRR,/nRR_0) = (nαP-R - 1)lnfR  (4) 

Where nR refers to the isotopic ratio (n=33, 34, or 36), subscript R refers to residual 

reactant (0 refers to initial), αP-R is the fractionation factor (in terms of products, P, 

relative to reactants, R), fR is the fraction of reactant remaining (i.e., 

[(H2S)T]/[(H2S)T]0), and the trace abundance approximation has been applied (i.e., fR 

= (32SR + 33SR + 34SR + 36SR)/(32SR_0 + 33SR_0 + 34SR_0 + 36SR_0) ≈ 32SR/32SR_0; Mariotti et 

al., 1981). This approach has been derived and reviewed in detail elsewhere (e.g., 

Bigeleisen and Wolfsberg, 1958; Mariotti et al.,1981; Scott et al., 2004) and 

implemented in previous sulfide oxidation experiments in Fry et al. (1988).  For the 

extraction of a primary kinetic isotope effect, this approach assumes that sulfide does 

not undergo any other isotope exchange reactions throughout experimental runs other 

than its unidirectional reaction to products.  Isotope effects determined this way can 

be influenced by other isotope exchange reactions involving sulfide that may occur as 

part of, or result of, the reaction mechanism. 
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2.7 Mass dependence of sulfide oxidation 

Mass dependent relationships among fractionation factors involving three 

isotopes are defined as exponential relationships (cf. Craig, 1957; Matsuhisa et al., 

1978; Clayton and Mayeda, 1996; Miller, 2002), such as:  

33α P-R = (34α P-R)33/34λ   (5) 

36α P-R = (34α P-R)36/34λ   (6) 

Where the 33/34λ and 36/34λ values are the exponents relating mass dependence. The 

exponential definitions of the ∆33SP-R and ∆36SP-R values follow directly from these 

relationships as deviations from a reference exponent:  

∆33SP-R =  33α P-R - (34α P-R)0.515  (7) 

∆36SP-R =  36α P-R - (34α P-R)1.9  (8) 

The values of 0.515 and 1.9 are the chosen reference exponents that approximate the 

mass-dependence of most common equilibrium isotope exchange reactions at low 

temperature (i.e., well below the high temperature limit).  Exponents associated with 

sulfide oxidation in this study are computed from experimentally determined 

fractionation factors via the equivalent relations: 

33/34λ = ln(33αP-R)/ln(34αP-R)   (9) 

36/34λ = ln(36αP-R)/ln(34αP-R)  (10) 

The uncertainty of the experimentally derived exponents can be 

straightforwardly estimated solely from the isotopic data collected throughout an 

experiment via the least squares linear regression of ln(nRR,t/nRR,t=0) vs. 

ln(34RR,t/34RR,t=0) (where n = 33 or 36) that computes the mass-dependence of a 

Rayleigh process as (nαP-R - 1)/( 34αP-R – 1), where n = 33 or 36, i.e.: 



 

 130 
 

ln(nRR,t/nRR,t=0) = [(nαP-R - 1)/( 34αP-R – 1)]ln(34RR,t/34RR,t=0)  (11) 

We make the assumption that the uncertainty estimate for the value of (nαP-R - 1)/( 

34αP-R – 1) from the least squares linear regression is comparable to the uncertainty on 

the exponent that applies to the primary reaction (n/34λ). 

3.0 Results 

3.1 Concentration profiles at 25˚C 

Plotted in Figure 3.1 are representative sulfide concentration profiles of 

experiments performed at 25˚C as a function of time in terms of fraction of sulfide 

remaining (f = [HS-]/[HS-]initial, brackets denoting concentrations) for experiments 

with and without an added ferrous iron catalyst.  The data points are the measured 

concentrations and the smooth curves are modeled based on a pseudo first order rate 

law using the pseudo first order rate constant derived from the sulfide concentrations 

(Section 3.2; Table 3.2).  Each experiment appears to exhibit an induction period 

where sulfide concentrations do not change appreciably (within the uncertainty of the 

measurements) that ranges between ~8-13 hours for the experiments where no ferrous 

iron was added to a few hours for experiments where ferrous iron was added (Table 

3.2).  A pronounced induction period of 36-48 hours was also observed in the 

experiments where no ferrous iron was added performed at 5˚C (Table 3.2).  The 

precision of the duration of the induction period is limited by the chosen sampling 

interval.  For the extraction of the pseudo first order rate constants, concentrations 

during the induction period are not taken into consideration and in most cases the 

average of sulfide concentrations during the induction period is taken to be the initial 

concentration as reported in Table 3.2.  The two sets of explicitly catalyzed 



 

 131 
 

experiments where ferrous iron was added exhibit a distinct break in rate near the 30 

hour mark.  For these experiments, two individual pseudo first order rate constants 

were extracted from the experimental data: one prior to the break in rate (denoted 

“catalyzed”), and one following the break in rate (denoted “uncatalyzed) (Table 3.2).   

 

	

Figure 3.1: Representative concentration profiles plotted in terms of fraction of sulfide remaining for 
oxidation experiments performed at 25˚C (monitored continuously for ~50-55 hours), with and without 
an added ferrous iron catalyst. Uncertainties for individual concentration analyses were typically ≤ 5 % 
based on either duplicate or triplicate analyses (2 s.d.) (a uniform 5% uncertainty is plotted). 
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3.2 Rate constants 

The computed second order rate constants derived from our experiments 

(Table 3.2) are plotted in Figure 3.2 as a function of inverse temperature in a classic 

Arrhenius plot.  Rate constants from the comparable experiments of Millero et al. 

(1987a) and Luther et al. (2011) are shown for reference and discussion (Section 4.2).  

The least squares linear regression of the second order rate constants (experiments 

without added ferrous iron catalyst) yields an apparent activation energy of Ea = 60 ± 

3 kJ/mol.  The second order rate constants from the explicitly catalyzed ferrous iron 

experiments (denoted “catalyzed” in Table 3.2) are a factor of ~1.5-2 times higher 

than those where no ferrous iron was added. The second order rate constants from 

ferrous iron catalyzed experiments following the pronounced break in rate (denoted 

“uncatalyzed” in Table 3.2; not plotted) are indistinguishable from those extracted 

from experiments without added ferrous iron.  Our calculated second order rate 

constants might be viewed as minimum values due to the assumption that our 

experimental solutions were in equilibrium with ambient air at the experimental 

temperatures.  

3.3 Fractionation factors 

Table 3.3 summarizes the isotopic composition of sulfide (relative to the 

initial composition of sulfide in a given experiment) as a function of sulfide 

remaining in our oxidation experiments (fsulfide = [HS-]/[HS-]initial). For all 

experiments, the isotopic composition of sulfide increases in magnitude as a function 

of reaction progress—indicating a normal isotope effect where products are 

isotopically depleted relative to reactants—and changes by only ~2.4 – 3.7 ‰ based 
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on 34S/32S over the entirety of experimental runs for all experiments, which span a 

range of reaction completion (1-fsulfide) of ca. 33-47%.   

 

Figure 3.3 is a representative plot illustrating how fractionation factors are 

extracted by the least squares linear regressions for all three sulfur isotope ratios as a 

function of reaction progress via the Rayleigh equation (Equation 4).  Table 3.3 

	

Figure 3.2: Overall second order rate constants derived from our experimental data plotted as a 
function of inverse temperature in a classic Arrhenius plot.  The apparent activation energy (Ea) is 
derived from the slope of the relationship and is based on a least squares linear regression. Our 
experiments with ferrous iron added are shown for reference. Also plotted for reference are data from 
Millero et al. (1987a) and Luther et al. (2011) (discussion: Section 4.2). 
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contains a summary of fractionation factors derived this way from all experiments.  

Major isotope fractionation factors derived from the isotopic data are plotted in 

Figure 3.4 and appear to exhibit slight but systematic relationships between 

fractionation magnitude and rate as a function of both temperature (Figure 3.4a) and 

explicit ferrous iron catalysis (Figure 3.4b). These variations are relatively small and 

very near the precision/reproducibility of the experiments.  Fractionation factors 

appear to generally decrease in magnitude with increasing rate due to ferrous iron 

catalysis, and appear to generally increase in magnitude with increasing rate due to 

increasing temperature. 

 The exponents of mass dependence (33/34λ and 36/34λ; Table 3.3) extracted from 

the experimental data are plotted in Figure 3.5 as a function of temperature (Figure 

3.5a-b) and ferrous iron catalysis (Figure 3.5c-d).  The exponents associated with 

equilibrium isotope exchange among aqueous sulfur compounds (Eldridge et al., in 

review; Chapter 2) are also plotted for reference.  The 33/34λ appear to be resolvably 

lower in magnitude than exponents expected from equilibrium isotope exchange.  

Any relationships between 33/34λ and rate as functions of both ferrous iron catalysis 

and temperature do not appear to be resolvable.  The 36/34λ may also exhibit 

deviations from equilibrium isotope exchange exponents but are not as well resolved 

by the experimental data and, similarly, do not appear to exhibit any resolvable 

relationships with reaction rate due to explicit catalysis or temperature. 
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Figure 3.3: Example plot illustrating how fractionation factors (nεP-R = (nαP-R - 1)x1000, P = products, 
R = reactant) are derived from experimental data via the Rayleigh equation (Equation 4) in this study.  
Data are from the ferrous iron catalyzed ([Fe2+]added ≈ 146 nM) experiment at 25˚C denoted “SOX-
Fe150” (see Table 3.3).  nR = nS/32S (n = 33, 34, 36) and refer to the isotopic composition of residual 
sulfide relative to its initial composition (nR0).  Uncertainties on fractionation factors are 1 s.d. and are 
based on the least squares linear regressions. 
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Figure 3.4: Major isotope fractionation factors plotted as a function of inverse temperature (a; top) and 
ferrous iron catalysis (b; bottom), where the latter are plotted as a function of relative rate and 
correspond to the ratio of the pseudo first order rate constants (k’) derived from “catalyzed” portions of 
each experiment to the pseudo first order rate constants from experiments at 25˚C where no ferrous 
iron was added (see Table 3.2).   
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Figure 3.5 (a-b): Exponents of mass dependence derived from experimental data as a function of 
inverse temperature: (a; top) 33/34λ and (b; bottom) 36/34λ. The exponents for the equilibrium isotope 
exchange between HS- and SO4

2- from Eldridge et al. (in review) (Chapter 2) are shown for reference. 
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Figure 3.5 (c-d): Exponents of mass dependence derived from experimental data as a function of 
ferrous iron catalysis at 25˚C: (c; top) 33/34λ and (d; bottom) 36/34λ. The gray fields are the estimated 
ranges for equilibrium isotope exchange among a wide variety of aqueous sulfur compounds (T ≥ 0˚C) 
and are based on the recent calculations of Eldridge et al. (in review) (Chapter 2). 
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4.0 Discussion 

4.1 Overview of sulfide oxidation mechanisms 

Two mechanisms have been proposed for the autoxidation of aqueous sulfide 

(cf. Zhang and Millero, 1993): the polar mechanism (Hoffman and Lim, 1979) and 

the free radical chain mechanism (e.g., Chen and Morris, 1972a; Zhang and Millero, 

1993).  Schematic representations of the two mechanisms are presented in Figure 3.6 

(after Zhang and Millero, 1993).  Neither of these mechanisms has been satisfactorily 

ruled-out and the process of autoxidation could draw on aspects of each. 

The free-radical mechanism for sulfide oxidation (Figure 3.6a) includes many 

free radicals in a complex chain network that accounts for many of the major products 

observed in sulfide oxidation experiments (Chen and Morris, 1972a; Zhang and 

Millero, 1993).  The free-radical mechanism initiates via the reaction of sulfide and 

molecular oxygen to produce the sulfanyl radical (HS•) and superoxide (O2
-).  The 

sulfanyl radical may then oxidize to form S0 or step-wise via sulfoxy-radicals to 

ultimately to form sulfite.  Sulfite may further oxidize to sulfate via a complex free 

radical chain mechanism of its own (cf. Connick et al., 1995; Connick and Zhang, 

1996), and S0 may react with residual sulfide to produce polysulfides (cf. Chen and 

Morris, 1972a).  Further reactions of the sulfanyl radical with intermediate product 

sulfite may lead to disulfur sulfoxy-radicals that eventually autoxidize to form 

thiosulfate.  We are not aware of any experiments that have directly detected the 

hypothesized free radicals and so such a mechanism may be much more complex than 

postulated (cf. the complex free radical chain mechanism of bisulfite oxidation; 

Connick et al., 1995; Connick and Zhang, 1996).    
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The polar mechanism also accounts for the major products observed in sulfide 

oxidation experiments (e.g., polysulfides, elemental sulfur, sulfoxylate, sulfite, 

thiosulfate, sulfate; cf. Cline and Richards, 1969; Chen and Morris, 1972a; Zhang and 

Millero, 1993; Vairavamurthy and Zhou, 1995) without invoking many of the free-

radical sulfur compounds called for by the radical mechanism (Figure 3.6b).  

	

Figure 3.6: Schematic representations of the two major mechanisms that have been proposed for 
sulfide oxidation via molecular oxygen (drawn after Zhang and Millero, 1993).  (a) The free radical 
mechanism (Chen and Morris, 1972a), and (b) the polar mechanism (Hoffman and Lim, 1979; Zhang 
and Millero, 1993).  The boxes indicate intermediate or product compounds that have been detected in 
sulfide oxidation experiments: sulfite (SO3

2-), thiosulfate (S2O3
2-), and sulfate (SO4

2-) are commonly 
observed (e.g., Zhang and Millero, 1993); polysulfides (Sn

2-) were detected in the circum-neutral pH 
experiments of Chen and Morris (1972a); and sulfoxylate (SO2

2-) was detected via XANES 
spectroscopy by Vairavamurthy and Zhou (1995).  Mechanisms for the subsequent oxidation of most 
intermediates are omitted for simplicity.  The dashed arrow representing the oxidation of sulfite to 
sulfate via O2 represents an overall reaction (non-stoichiometric) that proceeds through a highly 
complex free radical chain mechanism of its own (Connick et al., 1995; Connick and Zhang, 1996).  
The oxygen species O2

- (superoxide) and HO2
-/O2

2- (peroxide) generated by numerous reactions in 
each mechanism are referred to as reactive oxygen species (ROS) throughout the text and may also 
serve as oxidants for sulfur compounds. 
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Reactions of sulfide with molecular oxygen are postulated to be among the initial 

steps, generating either a zero-valent sulfur atom (S0) or sulfoxylate compounds 

(SO2
2- and pH-dependent protonated varieties); the former is postulated to yield 

reactive oxygen species (ROS), such as peroxide (O2
2-), that react with sulfide more 

rapidly than dissolved molecular oxygen.  Sulfide can react with first formed zero-

valent sulfur atoms (S0) or sulfoxylate compounds to yield the polysulfides and 

thiosulfate, respectively.  The oxidation of sulfoxylate compounds ultimately may 

yield sulfite compounds, generating further ROS.  The subsequent oxidation of sulfite 

to sulfate (potentially via a highly complex free radical chain mechanism; cf. Connick 

et al., 1995; Connick and Zhang, 1996) may be the major pathway of sulfate 

formation in most sulfide oxidation experiments (cf. Chen and Morris, 1972a; Zhang 

and Millero, 1993).  In all cases, the ROS produced as part of this reaction scheme 

can also react with sulfide or other sulfur intermediates.  

The hypothesized effect of trace Fe2+ as a catalyst in sulfide oxidation in the 

presence of molecular oxygen begins with its own oxidation by O2 (Vazquez et al., 

1989; Zhang and Millero, 1993), generating ferric iron and superoxide (cf. Millero et 

al., 1987b) (note: pH-dependent speciation/complexation/hydrolysis omitted in many 

of the following reactions for simplicity): 

Fe2+ + O2 à Fe3+ + O2
-.  (12) 

Reactions of this kind are thermodynamically favorable at high pH for singlet or 

triplet O2 (Luther, 2010) and proceed rapidly at high pH (Millero et al., 1987b).  The 

produced superoxide can further react with ferrous iron to produce peroxide, which is 

also thermodynamically favorable at high pH (Luther, 2010): 
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Fe2+ + O2
- à Fe3+ + O2

2-.  (13) 

Ferrous iron can be regenerated via the reaction of ferric iron with sulfide to form the 

sulfanyl radical (Vazquez et al., 1989; Zhang and Millero, 1993), e.g.:  

HS- + Fe3+ à HS• + Fe2+.  (14) 

In this conceptual model, the Fe facilitates the transfer of electrons from sulfide to O2, 

generating the highly reactive sulfanyl radical that can readily oxidize to S0 (Luther, 

2010) and/or other sulfur intermediates by O2 or ROS in solution.   The ROS (e.g., 

O2
- and O2

2-) produced by the oxidation of ferrous iron may also serve as oxidants for 

sulfide.  The more precise mechanism of the reaction of sulfide with ferric iron is 

more complex than represented here (cf. Yao and Millero, 1996) and may involve 

ion-pair formation between iron and sulfide and surface-dependent processes if the 

ferric iron forms particulates or nano-particulates in solution.  

In our study, we quantified the rate constants and isotope effects associated 

with sulfide oxidation by tracking the concentration and isotopic composition of 

sulfide as a function of time.  Several reactions involving sulfide could hypothetically 

take place during oxidation when molecular oxygen (O2) is the ultimate oxidant due 

to the potential for ROS to form as part of the mechanism (with or without trace metal 

catalysts), each with their own unique reaction coordinates, transition states, rate 

constants (k), activation energies (Ea), and primary kinetic isotope effects (e.g., 

34k/32k), e.g.: 

HS- + O2 à Products  koxygen, Ea_oxygen, 34k/32koxygen   (15) 

HS- + O2
- à Products  ksuperoxide

 , Ea_superoxide, 34k/32ksuperoxide  (16) 

HS- + O2
2- à Products kperoxide

 , Ea_peroxide, 34k/32kperoxide  (17) 
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HS- + Mn+ à Products ktrace_metal, Ea_trace_metal, 34k/32ktrace_metal  (18) 

HS- + Sint à Products (e.g., S2O3
2-) kS-int, Ea_S-int, 34k/32kS-int  (19) 

HS- + Fe3+ à Products kferric_iron
 , Ea_ferric_iron, 34k/32kferric_iron  (20) 

The latter potentially being relevant in our Fe2+ explicitly catalyzed experiments.  

This listing is not exhaustive and other reactions involving sulfide may be possible.  

The rates and isotope fractionations that we have measured may be expressions of 

varying contributions of the reactions above, and these sets of reactions will be used 

as framework for interpreting our experimental results.  

4.2 Rate constants and Arrhenius parameters: Comparison to previous experiments 

Select second order rate constants derived from previous experiments 

performed in low ionic strength buffer solutions (Avrahami and Golding, 1968; 

O’Brien and Birkner, 1977; Millero et al., 1987a; Zhang and Millero, 1993; Luther et 

al., 2011) are plotted in Figure 3.7a as a function of pH along with our own for 

comparison.  We focus primarily on experiments performed at high pH where HS- 

dominates the speciation (the pKa for H2S = HS- + H+ at 25˚C is additionally plotted 

for µ = 0 and 0.1 m from Hershey et al., 1988).  From experiments performed at 55˚C, 

Millero et al. (1987a) found that the rates of sulfide oxidation as a function of pH 

largely reflect the speciation of sulfide, where the second order rate constant appears 

to have a near constant value under pH conditions where either HS- or H2S 

individually dominate the speciation (where kH2S < kHS-), and intermediary values 

under circumneutral pH conditions where both are present in appreciable amounts.  

Similar experiments of Zhang and Millero (1993) performed at 45˚C in similarly low 

ionic strength solutions show similar relationships with pH.  For illustrative context, 
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we plot the experiments of Millero et al. (1987a) as a function of pH originally 

performed at 55˚C corrected for temperature using their 25˚C determinations and 

roughly corrected for any pH shifts that may occur due to temperature using the 

dissociation quotients of Hershey et al. (1988). We performed a similar exercise using 

the data of Zhang and Millero (1993) as a function of pH for a handful of experiments 

performed in low ionic strength solutions at 45˚C (solution conditions: 0.02 M 

carbonate/bicarbonate buffers).  Our temperature corrections are based on the 

respective Millero group experiments performed at high pH and therefore largely 

reflect the activation energy of HS- oxidation (vs. that of H2S oxidation).  

Experiments performed at low pH are omitted from this exercise due to the 

introduction of spurious errors into any similarly T-corrected low pH rate constants 

that would require specific knowledge of the activation energy for H2S oxidation.    

Taken altogether, the experimental determinations in Figure 3.7a (including 

our own) define a range in the second order rate constant that spans well over an 

order of magnitude under pH conditions above 8, far outside the range of what might 

be expected from the broad observations of pH dependence from the Frank Millero 

group studies (Millero et al., 1987a; Zhang and Millero, 1993).  The experiments of 

Avrahami and Golding (1968) yield among the highest rate constants and increase 

with increasing pH in the pH = 12-14 region.  The rate constants at pH ~ 8 derived 

from Zhang and Millero (1993) at 25˚C are on the low end of the determinations of 

Millero et al. (1987a) and taken together span a range on the order of a factor of three.  

The experiments of O’Brien and Birkner (1977) are near the upper end of the Millero 
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group range.  Our own experiments are on the lower end of the Millero group range 

and are perhaps most consistent with Zhang and Millero (1993). 

A direct comparison to the experimental dataset of Chen and Morris (1972a) 

is more difficult due to the different rate law parameters derived from their 

experimental data than most other studies (they obtained a = 1.34 and b = 0.56 with a 

rate constant in units of M-0.9hr-1; Table 3.1).  Chen and Morris (1972a) also observed 

complex patterns in the rate of oxidation at 25˚C as a function of pH (6 – 12.5) where 

maximum rates were found at a pH of ~8 and ~11 with a local minimum at a pH of 

~9 (difference between max/min is on the order of ~3.3x), which are trends not 

reproduced by Millero et al. (1987a) at 55˚C.  To make rough comparisons to our 

experiments, we will focus on experiments from Chen and Morris (1972a) performed 

under the most comparable conditions to our own: [H2ST]initial = 200 µM under 

relatively low initial [O2]initial:[H2ST]initial ratios (i.e., [O2]initial = 160-480µM) over pH 

= 8.34-11.75.  We use their reported data to re-derive the initial rates of sulfide 

oxidation determined from their experiments and then assume a = 1 and b = 1 and the 

given initial sulfide and oxygen concentrations to compute a hypothetical second 

order rate constant to put on more comparative grounds to our own.  These are plotted 

in Figure 3.7b as a function of the [O2]initial:[H2ST]initial ratio of the experiment (along 

with other experiments performed under comparable [O2]initial:[H2ST]initial; Avrahami 

and Golding, 1968; Luther et al., 2011).  Computed this way, our rates are similar to 

the Chen and Morris (1972a) experiments, where the second order rate constants 

computed from our repeat experiments span a similar range as those computed from 

Chen and Morris (1972a) as a function of pH under otherwise similar conditions.   
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Figure 3.7: (a; top) Second order rate constants derived from experiments in low ionic strength buffer 
solutions (i.e., not seawater) as a function of pH. The first dissociation quotient for H2S (pQd1) is 
shown for reference as a function of ionic strength (µ = 0 – 0.1 m) from Hershey et al. (1988).  (b; 
bottom) Computed second order rate constants derived from the rate data of Chen and Morris (1972a) 
from experiments comparable to the present study as a function of the initial molar oxygen to sulfide 
ratio, with a handful of other experimental studies shown for reference. References: AG68 = Avrahami 
and Golding (1968), CM72 = Chen and Morris (1972a), O’BB77 = O’Brien and Birkner (1977), M87 
= Millero et al. (1987a), ZM93 = Zhang and Millero (1993), and L11 = Luther et al. (2011). 
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Luther et al. (2011) report the lowest second order rate constant observed to 

date from experiments performed under trace metal clean conditions.  Assuming that 

the broad observations regarding the pH dependence from the Millero group are valid 

at 25˚C (Millero et al., 1987a; Zhang and Millero, 1993) and the reaction remains 

second order overall (a = 1, b = 1), the data of Luther et al. (2011) suggest that much 

of the variability seen in Figure 3.7a-b at high pH is due to varying levels of 

unintended trace metal catalysts impacting the experimental determination of rates.  

The experiments of Luther et al. (2011) performed in Mg2+-scrubbed NaOH (25˚C, 

pH ~ 12) in a class 100 clean bench utilizing triple acid-washed plastic tubes (trace 

metal clean HCl) yield an overall rate constant that is ca. 10x lower than those of 

Millero et al. (1987a) (on average) and ca. 5x lower than our experiments (Table 3.1, 

Figure 3.2, and Figure 3.7).  Trace metal catalysts are documented to cause several 

order of magnitude changes in the apparent overall second order rate constants 

associated with sulfide oxidation under otherwise equivalent conditions even at 

relatively low (nM) levels depending on the metal (Vazquez et al., 1989). Trace metal 

(or perhaps other catalytic) contaminants in the reagents (e.g., buffer salts), the 

reaction vessel and its components, and/or atmosphere in the laboratory environment 

seem to be among the likely causes. 

The activation energy that we derive from our experiments (60 ± 3 kJ/mol: 

Figure 3.2) is indistinguishable from Millero et al. (1987a)  (56 ± 3 kJ/mol) (0.02 M 

borate buffer, pH = 8.0, T = 5-65˚C) despite our computed overall rate constants 

being on the lower end of their range.  It is possible that our estimates of the second 

order rate constants are biased slightly low due to the assumption that our 
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experiments were saturated with respect to oxygen from air.  If this is the case, any 

bias must be systematic as a function of temperature in order to obtain a similar 

activation energy to Millero et al. (1987a).  We took a similar approach to Millero et 

al. (1987a) to saturate our experiments with air (bubbling buffer solutions with 

ambient air for 1 hour before and after allowing the experimental buffer to thermally 

equilibrate overnight in the temperature bath prior to the injection of sulfide).  The 

apparent offset may be reasonably assumed to be either within the error of the 

determinations (e.g., due to variations, systematic or otherwise, in the initial oxygen 

concentrations in our experiments that were not directly determined) or the result of 

slightly different impacts of trace catalysts that do not substantially affect the 

derivation of the apparent activation energy. 

In summary, the second order rate constants and apparent activation energy 

calculated from our experiments compare relatively well to the experiments of the 

Frank Millero group (Millero et al., 1987a; Zhang and Millero, 1993) and reasonably 

well to experiments performed under comparable conditions from Chen and Morris 

(1972a), although considerable variability between experimental studies is generally 

observed in the literature.  Trace metal clean experiments (Luther et al., 2011) may 

indicate that most experimental studies of sulfide oxidation are impacted by 

unintentional trace metal catalysis.   The sources and compositions of these catalysts 

are ultimately unknown and a detailed investigation is warranted, but is beyond the 

scope of the present study. 
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4.3 Induction period 

Most of our sulfide oxidation experiments exhibit a resolvable induction 

period before any obvious reaction proceeds (Table 3.2; Figure 3.1).  The duration of 

the induction period appears to be a function of temperature (e.g., decreases from 

~36-48 hours at 5˚C to ~8-12 hours at 25˚C to undetectable at 45˚C) and explicit 

ferrous iron catalysis.  The presence of an induction period suggests that the reaction 

is autocatalytic and requires the build-up of a key intermediate (or intermediates) to 

effective concentrations to catalyze the reaction (Chen and Morris, 1972a). An 

induction period may additionally imply a chain mechanism (Chen and Morris, 

1972a; Millero, 1986) whereby these autocatalytic intermediates are continuously 

generated as the reaction proceeds at sufficient levels to sustain the reaction once it 

has begun.  The autocatalytic intermediates (or chain carriers) are likely to be either 

highly reactive sulfur or oxygen species (RSS or ROS). The presence of an induction 

period also implies that the direct reaction of HS- with O2 is kinetically inhibited and 

proceeds slowly, consistent with many elementary (1 to 2 electron transfer) reactions 

between H2S/HS- and O2 being thermodynamically unfavorable (Luther, 2010; Luther 

et al., 2011).  

Induction periods have been observed in some previous sulfide oxidation 

experiments (Chen and Morris, 1972a) but do not appear to be a consistently 

observed feature of the reaction (none reported in the Millero group experiments; 

Millero et al., 1987a; Vazquez et al., 1989; Zhang and Millero, 1993; or many earlier 

experiments, including those in seawater at 10˚C; Cline and Richards, 1969).  Chen 

and Morris (1972a) report induction periods over a wide range of experimental 
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conditions (25˚C, pH = 6.0 – 11.75, [H2ST]initial = 50-200µM, [O2]initial = 160-800µM) 

between 0.2 – 6 hours that may roughly correlate inversely with the overall rate 

constant, which is generally consistent with our observations (Table 3.2).  It is 

noteworthy that experiments performed at lower temperatures in previous studies (as 

low as 5-10˚C; Cline and Richards, 1969; Millero et al., 1987a; Zhang and Millero, 

1993) were not reported to exhibit induction periods, as our experiments exhibited an 

induction period on the order of 1.5-2 days at 5˚C (Table 3.2). 

The addition of trace levels of ferrous iron appears to decrease the induction 

period in our experiments (e.g., Figure 3.1).  As noted above, the catalytic cycle of 

ferrous iron likely involves the production of ROS and ferric iron, each of which are 

likely to be more effective oxidants towards sulfide than O2 that may decrease the 

duration of an induction period. Trace metal catalysts such as ferrous iron have also 

been observed to decrease induction periods in sulfite (S4+) oxidation experiments 

(e.g., Brandt and van Eldik, 1995).  We put forth the hypothesis that induction periods 

may become undetectable upon sufficient levels of catalysis (intentional or 

unintentional) (cf. Chen and Morris, 1972b).  We propose that the lack of consistency 

in the observation of induction periods between experimental studies may be yet 

another feature of varying trace catalyst (metal or other) contaminations between 

laboratories and experimental approaches.  Other than trace metals, reactive 

intermediate sulfur compounds (such as sulfite, elemental sulfur, or others) present in 

sulfide stock solutions may also influence the detection of induction periods by 

serving at autocatalysts, either via their reaction with sulfide or their own oxidation 

that may produce reactive oxygen species or other compounds that may serve as 
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autocatylsts for sulfide oxidation.  Our approach of preparing fresh stock sulfide 

solutions under anoxic conditions immediately before each experiment may have 

inhibited the production of reactive sulfur intermediates that could serve as 

autocatalysts at a sufficient enough level to allow the detection of induction periods. 

4.4 Fe2+ addition: Explicitly catalyzed experiments 

Following a shortened induction period, our experiments where we added Fe2+ 

(~50-150 nM) to starting experimental solutions indicate that the reaction rate is 

increased (relative to our experiments where Fe2+ was not added) for a period of ca. 

20-25 hours before the reaction rate shifts to a value that is indistinguishable from our 

experiments where no Fe2+ was added (Figure 3.1; Table 3.2). These observations 

suggest that the Fe2+ catalytic effect might be relatively short-lived and the overall 

oxidation of ferrous iron to ferric iron via oxygen or ROS at the levels we studied 

may eventually go to completion or far enough to completion such that neither 

form(s) of iron influence the observed oxidation rates at a certain time-point in the 

experiments. Zhang and Millero (1993) observed similar behavior in sulfide oxidation 

experiments catalyzed by trace levels of Fe3+ (rather than Fe2+) in seawater, finding 

that apparent rates returned to “background” levels from obviously catalyzed levels 

after only 30 minutes of reaction under their experimental conditions.  They attributed 

this behavior to the formation of non-reactive colloidal forms of Fe3+ that can form 

over such short time scales.  They argue that only dissolved forms of Fe3+ at trace-

levels influence the rates of sulfide oxidation and colloidal ferric oxides may be 

ineffective as catalysts. Zhang and Millero (1991) also observed similar effects using 

both Fe2+ and Fe3+ as catalysts for sulfite (SO3
2-) oxidation.  Thus, our hypothesis is 
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the oxidation of Fe2+ in our experiments may have generated trace-levels of colloidal 

Fe3+ that built up over time such that ferric iron eventually could not effectively 

complete the catalytic cycle.  It is not clear why similar effects were not reported in 

Fe2+-catalyzed sulfide oxidation experiments of the Milllero group under high pH 

(Vazquez et al., 1989; Zhang and Millero, 1993) but this may be due to the fact that 

the Millero group experiments went to completion in a matter of hours due to the 

~10x lower initial concentrations of sulfide used, and may have finished before this 

effect could be observed.  

If this reasoning is correct, an alternative end-member case may be considered 

for the effect of ferrous iron on the enhancement of rates of sulfide oxidation.  If we 

consider a hypothetical situation where the oxidation of ferrous iron under the 

relatively high pH conditions of our experiments yields a phase of ferric iron that is 

completely unable to react with sulfide to participate in a true catalytic cycle, the 

relatively short-lived enhancement of oxidation rates with increasing ferrous iron 

added would primarily be the result of the enhanced generation of reactive oxygen 

species (ROS) via the oxidation of ferrous iron.  In this case, ferrous iron is not acting 

as a catalyst in sulfide oxidation in the classic sense but rather providing a “jump-

start” for the reaction by providing a source of ROS via a parallel oxidation reaction.  

If this were solely the case, this would imply that the oxidation of ferrous iron at trace 

levels is severely inhibited in the presence of sulfide where an estimated half-time of 

ferrous iron oxidation would be on the order of hours instead of seconds/minutes as 

has been observed in sulfide-free experiments at high pH (Millero et al., 1987b). This 

would additionally imply that the reaction rates between sulfide and ROS are 
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extremely high due to the very low concentrations of ROS produced by the oxidation 

of trace levels of ferrous iron. We cannot rule out a ferrous/ferric catalytic cycle as 

described previously under high pH conditions (Vazquez et al., 1989; Zhang and 

Millero, 1993) using our experimental data and it is probable that both ferric iron 

phases and ROS as produced via the oxidation of ferrous iron are contributing to the 

enhanced rates of sulfide oxidation in addition to reducing the duration of the 

induction period. 

4.5 Isotope fractionations: Comparison to previous studies 

Fry et al. (1988) report 34S/32S-based fractionation factors for the oxidation of 

sulfide via molecular oxygen in distilled water (pH = 11) and artificial seawater (pH 

= 8.2) at 22-25˚C that were determined by tracking the isotopic composition of 

sulfide as a function of reaction progress as undertaken in the present study (Equation 

4). Fry et al. (1988) obtain 1000ln34αproducts-sulfide = -4.8 ± 0.5 ‰ in distilled water 

(average of three experimental sets, 1 s.d.) and 1000ln34αproducts-sulfide = -5.8 ± 2.4 ‰ in 

artificial seawater (average of two experimental sets, 1 s.d.).  Any difference in the 

isotope effect as a function of pH and ionic strength over this range was not resolved 

and their recommended value of 1000ln34αproducts-sulfide = -5.2 ± 1.4 ‰ (1 s.d.) is the 

average of all 5 experimental sets. These values compare well with our own values 

derived from experiments performed at pH ≈ 9.8 and 25˚C, where we obtain 

1000ln34αproducts-sulfide = -5.85 ± 0.15‰ (duplicate experiments, 1 s.d.).   
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4.6 Major isotope discrimination as a function of explicit catalysis and temperature 

A primary kinetic isotope effect associated with a unidirectional reaction is a 

direct expression of the reaction mechanism, i.e., isotope discrimination occurring as 

reactants (one comprised of the isotopic species of interest) form a reaction 

coordinate and transition state along the saddle of the activation energy barrier and 

transmit to form products.  For an elementary bimolecular reaction, the magnitude 

and direction of the isotope effect depends on the relative vibrational and translational 

energies of the reactant isotopomers, their respective transition states formed with the 

other reactant, and transmitted products as they pass through the potential energy 

landscape defined by the electronic structure of the system, where other effects such 

as quantum tunneling through the energy barrier to reaction may play additional roles.   

In the case of a complex, multi-step mechanism, the measured isotope effect would 

presumably be the expression of the effects of multiple reaction coordinates and 

transition states being formed from multiple intermediates, where the measured 

fractionation may represent a “bulk” fractionation that might largely reflect a 

hypothetical rate-determining step (or set of rate-determining steps) in the reaction.   

In the case of complex mechanisms like sulfide oxidation, the information 

about isotope fractionation obtained from an experiment may depend on the manner 

in which the effect is measured.  For example, when multiple pathways and 

intermediates are involved, measuring the fractionation by tracking the isotopic 

composition of the reactant (i.e., sulfide) as a function of reaction progress may yield 

different information than measuring the final product isotopic composition (i.e., 

sulfate) as a function of reaction progress, as both may be influenced by different 
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reactions involving different intermediates.  Since we measured the isotopic 

composition of sulfide as a function of reaction progress, we will focus on reactions 

involving sulfide directly. 

Several reactions involving the reactant sulfide are outlined above 

(Equations15-20) that could hypothetically take place during oxidation when 

molecular oxygen (O2) is the ultimate oxidant, due to: (1) the potential for ROS to 

form as part of the mechanism (with or without added catalysts), (2) the high 

likelihood of reactions involving added (or contaminating) trace metals and other 

catalysts (e.g., organics), and (3) other reactions involving sulfur intermediates.  Each 

of these reactions has a unique reaction coordinate, transition state, rate constant, 

activation energy, and primary kinetic isotope effect.  The isotope effect measured by 

tracking the isotopic composition of sulfide with time (34k/32kmeasured) likely represents 

some composite (or “bulk”) fractionation caused by many reactions occurring in 

tandem, e.g.: 

34k/32kmeasured = foxygen(34k/32koxygen) + fsuperoxide(34k/32ksuperoxide) + fperoxide(34k/32kperoxide) + 

ftrace_metal(34k/32ktrace_metal) + fS-intermediate(34k/32kS-intermediate) + … (21) 

Where the f terms represent the relative fractional contribution of each pathway to the 

overall oxidation rate, which are not constrained by the data and are ultimately 

unknown.  This makes the interpretation of experimentally measured kinetic isotope 

effects associated with sulfide oxidation complex and perhaps ambiguous as to their 

mechanistic meaning. 

 Our explicitly Fe2+-catalyzed experiments appear to show trends of decreasing 

magnitude in the 34S/32S-based fractionation factor with increasing reaction rate and 
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catalysis (Figure 3.4b). By adding a ferrous iron catalyst, we are likely inducing a 

shift in the relative contributions of the reactions above (Equations 15-20, 21) to the 

overall rates and isotope fractionations, particularly towards a greater influence for 

those involving ROS and ferric iron.  In the classic view, catalysts increase reaction 

rates by providing an alternative pathway for the reaction that has lower activation 

energy.  The decrease in the magnitude of the fractionation factor with increasing 

rate/catalysis is consistent with the simple hypothesis that pathways of lower 

activation energy have associated with them a smaller discrimination between 

isotopomers of sulfide (i.e., smaller magnitude isotope effects).  In the simple case 

where lower Ea leads to lower 34k/32k, catalysis may always lead to lower magnitude 

isotopic fractionations.  Alternatively, it may be fortuitous that the pathways of 

oxidation that are provided by explicit ferrous iron catalysis have smaller isotope 

effects associated with them. Other forms of catalysis may have different 

consequences for the observed isotopic fractionations, since isotopic fractionations 

will ultimately depend on the mechanism involved and the properties of transition 

states.  Experiments investigating the role of other catalysts for sulfide oxidation, 

such as organic compounds or other trace metals that may have different mechanisms 

than ferrous iron, and their effects on reaction rates and isotope fractionations will 

allow these relationships to be explored in further detail.  

The major isotope fractionation factors derived from our non-explicitly 

catalyzed experiments performed as a function of temperature appear to exhibit a 

temperature dependence that is inverse to expectation: fractionation magnitudes 

appear to increase with increasing temperature and increasing rate (Figure 3.4a).  This 
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relationship between rate and isotope fractionation as a function of temperature is 

additionally contrary to the rate/fractionation relationships observed as a function of 

Fe2+-catalysis.  Single-step, elementary reactions are expected to generate normal 

temperature dependences except when there are competing contributions from high 

and low frequency modes to the partition function ratios between the reactants and 

transition state.  The key transition states involved with oxidation reactions involving 

HS- and their vibrational properties are presently unknown.  Such a hypothesis may 

be directly testable for sulfide oxidation reactions using advanced quantum 

mechanical calculations utilizing a form of transition state theory or RRKM theory 

that probe a wide range of transition states for elementary electron exchange reactions 

between HS- and O2, ROS, and other oxidants in simulated explicitly solvated 

environments.   

An inverse fractionation temperature dependence may alternatively suggest a 

mechanism with more than one “rate-determining” reactions, where more than one 

reaction pathway for sulfide oxidation exert similar magnitude contributions to the 

overall reaction rate and isotope fractionation. The inverse temperature dependence 

may thus be interpreted to be the result of a shift in the relative contributions of the 

reactions that are contributing to the bulk effect as a function of temperature, where 

reactions that have slightly larger isotope effects are being expressed more with 

increasing temperature.  The relative shift in the contribution(s) of these reactions 

would apparently be large enough over the studied temperature range to combat the 

decrease in the fractionation magnitude with increasing temperature that would be 

expected to occur for each individual contributing reaction.  Within the context of the 
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extant sulfide oxidation mechanisms, the two sets of competing reactions may be 

related to overall reactions involving sulfide and oxygen species (O2 and ROS) and 

sulfide and reactive sulfur intermediates. Both the polar and free radical mechanisms 

call for the reaction of residual sulfide with a sulfur intermediate to ultimately 

produce thiosulfate, which comprises a significant proportion of the mass balance in 

our (and previous) experiments. The apparent inverse magnitude temperature 

dependence that we observe may be providing evidence that a highly reactive sulfur 

intermediate may be undergoing reversible isotope exchange with sulfide along a 

pathway such as this, where the rates and influence of this exchange become greater 

with increasing temperature (see also Section 4.7).	

4.7 Mass dependence of sulfide oxidation 

The exponent of mass-dependence describing 32S/33S/34S fractionation 

relationships (33/34λ) associated with sulfide oxidation appears to be lower (at a 

resolvable level) than the exponents generally associated with equilibrium isotope 

exchange among aqueous sulfur compounds (Figure 3.5a-d; cf. Eldridge et al., in 

review; Chapter 2).  Such exponents lead to small positive shifts in computed Δ33SP-R 

associated with sulfide oxidation.  For example, for experiments at 25˚C and no 

ferrous iron added, our measured 33/34λ = 0.5094 ± 0.0016 associated with 34εP-R = -

5.85 ± 0.15 ‰ translates to a ∆33Sproducts-sulfide = 0.033 ± 0.009 ‰ (1 s.d., duplicate 

experiments). Similar effects may also be exhibited in 36/34λ and ∆36S, where 36/34λ 

may be higher than exponents associated equilibrium isotope exchange and may 

translate to small negative shifts in Δ36SP-R associated with sulfide oxidation.   
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Hypotheses to explain this apparent deviation from “canonical” or “typical” 

mass-dependence may be: (1) the mass-dependent fractionation law in operation here 

is akin to those associated with unidirectional processes like evaporation and 

diffusion where terms related to translations along the reaction coordinate influence 

the mass-dependence differently than vibrational energies between reactants and 

products (Young et al., 2002); or (2) the exponent is the result of so-called “mass-

conservation” effects, i.e., the reversible exchange of isotopes among fractionated 

reservoirs within a complex (multi-pool) network (cf. Farquhar et al., 2003), which 

could conceivably arise from the complex sulfide oxidation mechanism.   

 The mass dependence associated with equilibrium isotope exchange among 

solutes in aqueous systems follow relatively simple rules that are generally 

understood.  In the high temperature limit, the exponent of mass dependence for 

equilibrium isotope exchange reactions approaches a singular value for all 

compounds in a given isotope system that depends solely on the atomic masses (m) of 

the isotopes (Matsuhisa et al., 1978), e.g., for  32S/33S/34S: 

33/34λTà∞ = (1/m32 – 1/m33)/(1/m32-1/m34) = 0.51588 (22) 

At the low temperature limit, the exponent will vary depending on differences in the 

zero point energies of the isotopologues (Matsuhisa et al., 1978) and these differences 

influence the temperature dependence of the exponent and its value under the 

conditions relevant to aqueous systems.  These variations have been theoretically 

estimated using quantum mechanical calculations for a variety of aqueous sulfur 

compounds and have been shown to follow systematic relationships that depend to a 

first order on the oxidation state of sulfur and its coordination (Eldridge et al., in 
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review) (Chapter 2).  For temperatures greater than 0˚C, the 32S/33S/34S-based 

exponents derived from our theoretical reduced partition function ratios (RPFRs, or 

β) of aqueous sulfur compounds (i.e., computed as ln(33β)/ln(34β)) conform to a 

relatively tight range of ca. 0.5148-0.5159 (Eldridge et al., in review) (Chapter 2).  

Slight shifts in the exponents may accompany the transformations of RPFRs into 

fractionation factors (cf. Eldridge et al., in review; Matsuhisa et al., 1978) but do not 

exceed ~0.514-0.516 for equilibrium isotope exchange in aqueous systems except 

where there are crossovers (cf. Deines, 2003), but these effects may not translate to 

substantial ∆33S effects due to the very small isotope fractionations in proximity to 

crossover temperature. 

Young et al. (2002) argue that mass-dependent fractionation laws associated 

with equilibrium isotope exchange reactions and some simple irreversible processes 

may be different.  Utilizing considerations from both classical transition state theory 

(e.g., Bigeleisen, 1949) and Rice-Ramsperger-Kassel-Marcus (RRKM) theory (e.g., 

Marcus and Rice, 1951), Young et al. (2002) argue that certain simple unidirectional 

processes like evaporation and unimolecular dissociation reactions can be shown to 

good approximation to follow mass fractionation laws where:  

33/34λ ≈ ln(32m/33m)/ln(32m/34m)  (23) 

Where the ‘m’ can refer to atomic, molecular, or reduced masses of isotopic 

molecules depending on the process considered.  They suggest that this relationship 

can lead to exponents that are lower than those expected from equilibrium isotope 

exchange, the magnitude of which depends on the isotopologues considered and 

whether molecular/atomic or reduced masses are used.  For example, if one derives 
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an exponent from this relation using the reduced masses of isotopologues of HS-, the 

exponent is 0.51565 and well within the range of equilibrium isotope exchange, but if 

molecular masses are used (perhaps more relevant in the classical sense), the 

exponent shrinks to 0.50809 (similarly, if one uses the atomic masses, the exponent is 

0.50831). The simple form of this relation may hold true only if several 

approximations can be reasonably assumed to hold that may not be applicable to 

more complex unidirectional reactions like electron transfer redox reactions in 

aqueous media and the complex autocatalyitc chain mechanisms that might be 

associated with sulfide oxidation, but the general argument that the theory of 

unidirectional reactions (i.e., transition state theory and RRKM theory) might predict 

different mass fractionation laws is something to consider in evaluating the mass 

dependence of sulfide oxidation.  This is another hypothesis that may be directly 

testable for sulfide oxidation reactions using advanced quantum mechanical 

calculations utilizing a form of transition state theory or RRKM theory that probe a 

wide range of activated complexes for elementary electron exchange reactions 

between HS- and O2, ROS, and other oxidants in simulated explicitly solvated 

environments. 

Apart from arising from varying contributions from the terms in the partition 

function ratios that describe translational and vibrational energies (e.g., Young et al., 

2002), the other possibility for the experimentally observed sub-canonical exponent is 

that it arises from a mass-conservation effect.  Effects of this kind are well 

documented in other complex reaction networks like those associated with sulfur 

redox metabolism that are the basis for multiple sulfur isotope biosignatures (e.g., 



 

 162 
 

phototrophic sulfide oxidation: Zerkle et al., 2009; dissimilatory sulfate reduction and 

disproportionation: e.g., Farquhar et al., 2003; Johnston et al., 2005; Johnston et al., 

2007; Farquhar et al., 2007; Johnston, 2011).  A mass conservation effect requires 

reversibility in the reaction network associated with the oxidation mechanism such 

that an isotopically fractionated sulfur intermediate undergoes reversible non-

equilibrium exchange with the residual sulfide.  Both mechanisms that have been 

proposed for sulfide oxidation (polar and free radical) may allow for reversible 

isotope exchange and may occur in at least the following ways: (1) reversible 

exchange between sulfide and zero-valent sulfur species and polysulfides, (2) 

reversible exchange between sulfide and the outer, “sulfanyl” sulfur in thiosulfate (cf. 

Uyama et al., 1985; Chu et al., 2004), and (3) hydrolytic disproportionation reactions 

of other hypothetical intermediates such as S2O2- that yield sulfide as a product. 

The magnitudes of the 34S/32S fractionations associated with the plausible 

exchange reactions in the HS--Sn
2--S0  and HS--S2O3

2- systems are likely to be small 

and the effects in the apparent exponent relations among these pools may not be large 

enough to explain our measured effects.  For example, from theoretical computations 

of aqueous sulfur compounds in water clusters (Eldridge et al., in review; Chapter 2), 

the equilibrium isotope effect between the outer “sulfanyl” sulfur in thiosulfate and 

HS- at 25˚C is predicted to be on the order of 1000ln(34αsulfanyl/HS-) ≈ 2 ‰ with a 

corresponding 33/34λ = 0.5151.  Although not well constrained in the published 

literature, fractionations among sulfide compounds and the polysulfides would also 

be expected to be similarly small (cf. Amrani et al., 2006).  Additionally, polysulfides 

thus far have not been demonstrated to comprise a significant portion of the sulfur 
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balance in sulfide oxidation experiments performed at high pH (cf. Chen and Morris, 

1972a; Zhang and Millero, 1993) and may not be likely candidates.  In order for these 

exchange reactions to produce significant mass conservation effects, the non-

equilibrium 34S/32S fractionation magnitudes among these compounds would need to 

be substantially higher than their equilibrium counterparts, which from the available 

constraints seems unlikely. In the only other study to measure isotope fractionations 

associated with sulfide oxidation, Fry et al. (1988) measured the isotopic 

compositions of pooled-products (sulfate + sulfite, thiosulfate + polythionate) and 

found the fractionations between these pools and residual sulfide to be less than or 

equal to the overall ~ -5 ‰ effect.  Compound- and site-specific isotope analyses of 

key reaction intermediates may allow the further testing of such hypotheses.  

Reactions that may be able to produce a mass conservation effect in the 

sulfide oxidation mechanism beyond these simple isotope exchange reactions may 

relate to the hydrolytic disproportionation of highly-reactive intermediates, producing 

sulfide and another sulfur compound of higher valence.  One potential example of this 

kind of reaction may occur along the hypothesized pathway to thiosulfate formation.  

In the polar mechanism, one of the initial products of sulfide oxidation is a member of 

the sulfoxylate system (cf. Hoffmann and Lim, 1979; Zhang and Millero, 1993): 

HS- + O2 à HSO2
-  (24) 

Where sulfoxylate is represented here generically as a bisulfoxylate species, noting 

that sulfoxylate is a documented intermediate of sulfide oxidation (Vairavamurthy 

and Zhou, 1995; Tossel, 1997). Sulfoxylate is postulated to undergo either further 
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oxidation to form sulfite species or the following series of reactions involving 

residual sulfide to form thiosulfate (cf. Zhang and Millero, 1993): 

HSO2
- + HS- à S2O2- + H2O (25) 

S2O2- + O2 à S2O3
2-  (26) 

We note that Equation 25 is a reverse hydrolysis reaction and, if it occurs and is 

additionally reversible under experimental conditions, might lead to the transferal of 

fractionated sulfide back to the residual sulfide pool via the hydrolytic 

disproportionation of S2O2-.  Just how fractionated this returned sulfide is relative to 

the residual sulfide will depend on the magnitude of the isotope effects associated 

with the formation and disproportionation of S2O2-.  The influence of this return flow 

of sulfide on the bulk isotopic composition of the residual sulfide pool will further 

depend on the magnitude of the flux of this produced sulfide.   Although highly 

speculative, if hydrolytic disproportionation reactions of this kind involving S2O2- or 

other presently undocumented intermediates comprise a substantial pathway for 

sulfur isotope exchange within the overall sulfide oxidation mechanism, they may be 

responsible for a mass conservation effect that is recordable in residual sulfide.  Such 

reactions may additionally play roles in the major isotope fractionation (34S/32S) 

behavior that we observe as a function of temperature. 

4.8 Implications: Environmental sulfur cycle 

 Our observation that the overall oxidation of sulfide via molecular oxygen is 

accompanied by exponents of mass dependence that may be different at a resolvable 

level from ranges consistent with equilibrium isotope exchange will change how 

chemical oxidation processes are treated in future models of the sulfur cycle based on 
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multiple sulfur isotopes (such as Zerkle et al., 2009;  Zerkle et al., 2010; Pellerin et 

al., 2015).  Due to the similarity in the direction and magnitude of the ∆33Sproducts-sulfide 

effect associated with chemical oxidation (this study) to that documented for 

phototrophic oxidation (Zerkle et al., 2009), chemical sulfide oxidation may have 

similar obscuring impacts on the expression of larger ∆33S signals associated with 

other metabolic transformations such as disproportionation in the presence of a 

substantive oxidative sulfur cycle that have been illustrated previously in 

environmental-scale models (Zerkle et al., 2009).  Our new constraints on minor 

isotope fractionations do not indicate an obviously robust biosignature for oxidative 

pathways based on δ34S/∆33S/∆36S relationships. However, due to the inversion in the 

major isotope ratio (34S/32S) fractionation factor associated with sulfide oxidation 

between chemical oxidation (HS- à products, normal 34S/32S isotope effect; this 

study; Fry et al., 1988) and phototrophic oxidation (H2S/HS- à S0, inverse 34S/32S 

isotope effect; e.g., Fry et al., 1984; Zerkle et al., 2009) that was first noted by Brian 

Fry and colleagues (Fry et al., 1988), the differentiation of these two general 

pathways may still be possible under certain circumstances. For example, the isotopic 

composition of residual sulfide undergoing oxidation would be expected to evolve 

along different trajectories in δ34S/∆33S (and potentially δ34S/∆36S) space depending 

on whether chemical or phototrophic oxidation dominates in a given environment.  

These relationships may provide interpretive power in the elucidation of sulfur 

isotope systematics in chemoclines of euxinic water bodies that may vary due to 

seasonal fluctuations that could affect oxidation pathways (e.g., Lago di Cadagno; 

Canfield et al., 2010).  Additionally, future experiments investigating the isotope 
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effects and mass dependence associated with sulfide oxidation via other oxidants 

important in natural systems (e.g., heterogeneous reactions between H2S/HS- and 

solid FeOOH or MnO2 phases) are warranted and can test whether the ∆33SP-R that we 

have observed for O2-oxidation is unique or common to sulfide oxidation 

mechanisms, and furthermore, if uncommon could potentially lead to the 

development of resolvable signatures associated with chemical oxidation pathways.  

5.0 Conclusions 

We present rates and multiple sulfur isotope fractionations associated with the 

oxidation of sulfide with molecular oxygen.  Our rates and activation energy that we 

derive from our experiments compare well to the extensive experimental work of the 

Frank J. Millero group (Millero et al., 1987a; Zhang and Millero, 1993), but kinetic 

parameters derived from experiments in the literature are generally variable. Such 

variability may be the result of unintended trace metal catalysis that may have 

additionally impacted the experimental results of the present study based on the much 

lower oxidation rates obtained by Luther et al. (2011) under trace metal clean 

conditions.  Our experiments reproduce induction periods that have been observed in 

some previous studies (Chen and Morris, 1972a) that furthermore indicate that the 

reaction of HS- with O2 proceeds slowly and likely via an autocatalytic mechanism 

that is not well understood in detail.  We appear to observe that induction periods are 

shortened upon ferrous iron catalysis, and further note that inconsistencies in the 

observation of induction periods in the literature may be another impact of unintended 

trace catalysis, either via trace metals or reactive intermediate sulfur compounds (e.g., 

the latter present as blanks in sulfide stock solutions).  The effect of the ferrous iron 
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catalyst on oxidation rates at the levels in our experiments appears to be short-lived, 

where rates indistinguishable from experiments where no ferrous iron catalyst resume 

after ca. 20-25 hours of catalyzed reaction.  This behavior may reflect the formation 

of unreactive colloidal phases of ferric iron that are unable to complete a catalytic 

cycle that have been described previously (e.g., Zhang and Millero, 1993). 

 The major isotope fractionation factors (34S/32S) that we derive from our 

experiments are similar to previous experimental determinations under comparable 

conditions by Fry et al. (1988).  We observe small but resolvable relationships 

between 34S/32S fractionation factor and rate associated with ferrous iron catalysis, 

where increased catalysis appears to decrease the magnitude of the isotope 

fractionation at the levels we have studied.  This may be the result of smaller 

magnitude isotope effects associated with pathways of lower activation energy that 

are provided by the catalytic cycle associated with ferrous iron.  Additionally, we 

observe that sulfide oxidation is associated with a temperature dependence that is 

inverse to expectation, where 34S/32S-based fractionation magnitudes appear to 

increase with increasing rate due to increased temperature.  The origin of this inverse 

effect is ultimately unclear, and may either be due to the competition of low and high 

frequency modes between sulfide and any number of key transition states it may form 

with reactants as part of the mechanism (e.g., reactive oxygen species or even reactive 

sulfur intermediates) or the result of more than one “rate-determining” reaction with 

different isotope effects having a substantive influence on overall rates and isotopic 

fractionations.  This observation may also be providing evidence for reversible 
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isotope exchange between residual sulfide and a reactive sulfur intermediate (e.g., 

along the pathway to thiosulfate formation). 

 All fractionations in this study appear to exhibit a mass dependence with 

respect to 33S/32S and 34S/32S relationships that is distinguishable at a resolvable level 

from the range expected for equilibrium isotope exchange, and may also be present 

for 36S/32S and 34S/32S relationships.  We do not appear to resolve any differences in 

these relationships as a function of sulfide oxidation rate associated with either 

ferrous iron catalysis or temperature. This observation will change how chemical 

oxidation processes are treated in future models of the sulfur cycle.  Similar impacts 

to phototrophic oxidation are expected for chemical oxidation on the ∆33S of major 

phases in natural environments that have been described previously (Zerkle et al., 

2009) that have been influenced by the compounded effects of sulfate reduction, 

sulfide oxidation, and disproportionation of intermediates.  The isotope effects related 

to chemical and phototrophic sulfide oxidation may cause residual sulfide undergoing 

oxidation to follow different trajectories in δ34S/∆33S space, potentially allowing these 

two pathways to be isotopically resolved under some circumstances. 

 The extraction of a primary kinetic isotope effect associated with the 

unidirectional oxidation of sulfide to products via O2 is probably not possible due to 

the plethora of hypothetical reactions that sulfide may undergo as part of the overall 

mechanism.  Intermediate sulfur compounds that may be produced as part of the 

mechanism can undergo side reactions with residual sulfide, providing mechanisms 

for additional isotope exchange that convolute the expression of any primary isotope 

effects.  For example, the inverse magnitude 34S/32S-based fractionation behavior that 
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we observe as a function of temperature might indicate that the isotope fractionations 

we have measured are not the result of any singular primary kinetic isotope effect.  

The apparent mass dependence of sulfide oxidation that we observe and the resulting 

effect on ∆33S is additionally consistent with mass conservation principles that require 

exchange reactions occurring between sulfide and reactive sulfur intermediates. 

However, more primary mechanisms for the observed fractionation behavior cannot 

be ruled out at present. Future studies directed at the detection of hitherto unobserved 

and hypothetical reaction intermediates (e.g., free radical species) may further pin-

down the reaction mechanism.  The isolation and compound-specific isotope analysis 

of key reaction intermediates and products under kinetically controlled conditions 

may further elucidate some of the isotope exchange reactions responsible for the 

measured effects.  Finally, sophisticated quantum mechanical calculations rooted in 

the theory of unidirectional reactions (e.g., transition state theory, RRKM theory) 

probing the transition states associated with elementary electron exchange reactions 

between HS-/H2S and O2, reactive oxygen species, and relevant sulfur intermediates, 

may elucidate some of the primary kinetic isotope effects associated with oxidation 

that may provide further interpretive power of the more complex series of reactions 

occurring in oxygenated sulfide solutions that we have investigated here. 
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Table 3.2: Experimental conditions and rate parameters from sulfide oxidation experiments. The reported 
pH values are averages of measurements performed on 5-6 aliquots taken throughout experimental runs.  
Subscripts on concentration values indicate: T = total dissolved species in solution (e.g., [(CO3

2-)T] = 
[CO3

2-]+ [HCO3
-]), i = initial concentrations (italics indicate estimated values), and added = amount 

added.  I.P. is the estimated induction period (N/A = not clearly resolved). k’ is the pseudo first order rate 
constant (Equation 3) and k is the computed second order (overall) rate constant using the estimated [O2]i  
and assuming b = 1 (Zhang and Millero, 1993). The two sets of rate constants derived from the ferrous 
iron explicitly catalyzed experiments indicate values before the pronounced break in rate (“Catalyzed”) 
and after (“Uncatalyzed”) (see Figure 3.1). Uncertainties are 1 s.d. 

I.D. T 
(˚C) pH [(CO3

2-)T] 
(M) 

[(H2S)T]i 
(µM) 

[O2]i 
(µM)* 

[Fe2+]added 
(nM) 

I.P. 
(hr) k' (hr-1) k (M-1hr-1) lnk 

SOX-5 5 9.77 
±0.07 0.002 224 399 0 ~36-48 0.0021 

±0.0001 
5.15 

±0.21 
1.64 

±0.04 

SOX-25(A) 25 9.80 
±0.01 0.02 226 258 0 ~6-8 0.0109 

±0.0008 
42.4 
±3.0 

3.75 
±0.07 

SOX-25(B) 25 9.78 
±0.05 0.02 214 258 0 N/A 0.0084 

±0.0006 
32.4 
±2.5 

3.48 
±0.08 

SOX-25(C) 25 9.91 
±0.05 0.002 226 258 0 ~8-13 0.0069 

±0.0003 
26.8 
±1.0 

3.29 
±0.04 

SOX-25(D) 25 9.73 
±0.04 0.002 227 258 0 ~8-13 0.0082 

±0.0004 
31.6 
±1.6 

3.45 
±0.05 

Average 
(SOX-25)  

9.81 
±0.04      0.0086 

±0.0017 
33.3 
±6.6 

3.49 
±0.19 

SOX-45 45 9.94 
±0.02 0.002 221 186 0 N/A 0.0243 

±0.0012 
131 
±7 

4.87 
±0.05 

Experiments with ferrous iron added  “Catalyzed” 
SOX-

Fe50(A) 25 9.82 
±0.01 0.02 220 258 46 ~6-8 0.0153 

±0.0008 
59.1 
±3.2 

4.08 
±0.05 

SOX-
Fe50(B) 25 9.78 

±0.04 0.02 225 258 46 ~4-6 0.0139 
±0.0007 

53.9 
±2.8 

3.99 
±0.05 

Average 
(SOX-
Fe50)  

9.80 
±0.02      0.0146 

±0.0009 
56.5 
±3.7 

4.03 
±0.07 

SOX-Fe150 25 9.81 
±0.03 0.02 226 258 153 ~2 0.0175 

±0.0007 
67.9 
±2.5 

4.22 
±0.04 

        “Uncatalyzed” 
SOX-

Fe50(A) “ “ “ “ “ “ “ 0.0077 
±0.0008 

29.8 
±3.1 

3.39 
±0.10 

SOX-
Fe50(B) “ “ “ “ “ “ “ 0.0077 

±0.0005 
29.8 
±1.8 

3.39 
±0.06 

SOX-Fe150 “ “ “ “ “ “ “ 0.0081 
±0.0004 

31.3 
±1.4 

3.44 
±0.05 

*Estimated	under	experimental	conditions	after	Benson	and	Krause	(1980;	1984)	(http://water.usgs.gov/software/DOTABLES/).			 
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Table 3.3: Isotopic analyses of sulfide from oxidation experiments. f = [(H2S)T]/[(H2S)T]initial. δnS' = 
1000ln(nR/nRinitial), where n = 33, 34, 36 and nR = nS/32S.  Extra significant figures for δnS' are 
reported to minimize rounding errors.  Fractionation factors are computed via the Rayleigh equation 
(Equation 4) and are reported as: nεP-R = (nαP-R - 1)x1000, P = products, R = reactant. The reported 
uncertainties for fractionation factors and exponents are 1 s.d., and are based on least square linear 
regressions.  

Identifier T (˚C) [Fe2+]adde

d f δ33S' δ34S' δ36S' 33εP-R 34εP-R 36εP-R 33λ 36λ 

SOX-5 5 0 1.006 0.000 0.000 0.000 -2.54 -5.00 -9.75 0.5072 1.95 

   
0.894 0.216 0.449 0.801 ±0.08 ±0.14 ±0.34 ±0.0031 ±0.02 

   
0.712 0.864 1.725 3.362 

     
   

0.619 1.210 2.381 4.573 
     

   
0.574 1.387 2.745 5.348 

     
            SOX-25(A) 25 0 0.990 0.000 0.000 0.000 -3.00 -5.90 -11.03 0.5089 1.88 

   
0.904 0.318 0.619 1.029 ±0.09 ±0.14 ±0.50 ±0.0027 ±0.06 

   
0.795 0.635 1.265 2.094 

     
   

0.701 1.062 2.080 3.773 
     

   
0.642 1.315 2.580 4.824 

     
            SOX-25(B) 25 0 1.000 0.000 0.000 0.000 -2.96 -5.81 -11.38 0.5098 1.96 

   
0.976 0.032 0.073 0.232 ±0.14 ±0.27 ±0.49 ±0.0016 ±0.02 

   
0.826 0.610 1.209 2.389 

     
   

0.721 0.904 1.779 3.525 
     

   
0.666 1.215 2.382 4.708 

     
            SOX-45 45 0 1.000 0.000 0.000 0.000 -3.24 -6.34 -12.27 0.5103 1.94 

   
0.817 0.643 1.269 2.517 ±0.12 ±0.24 ±0.43 ±0.0016 ±0.01 

   
0.724 1.025 1.999 3.920 

     
   

0.635 1.389 2.713 5.294 
     

   
0.569 1.871 3.670 7.097 

     
            SOX- 

Fe50 (A) 25 ~50 1.000 0.000 0.000 0.000 -2.88 -5.66 -10.94 0.5081 1.94 

   
0.970 0.094 0.178 0.402 ±0.12 ±0.21 ±0.33 ±0.0028 ±0.02 

   
0.930 0.210 0.397 0.738 

     
   

0.751 0.952 1.835 3.461 
     

   
0.654 1.248 2.454 4.734 

     
   

0.574 1.564 3.068 5.971 
     

            SOX- 
Fe50 (B) 25 ~50 1.000 0.000 0.000 0.000 -2.83 -5.59 -10.77 0.5059 1.93 

   
0.958 0.044 0.115 0.365 ±0.21 ±0.41 ±0.77 ±0.0025 ±0.04 

   
0.911 0.170 0.359 1.018 

     
   

0.766 0.916 1.827 3.653 
     

   
0.653 1.174 2.319 4.675 

     
   

0.573 1.496 2.977 5.816 
     

            SOX-Fe150 25 ~150 1.000 0.000 0.000 0.000 -2.49 -4.90 -9.62 0.5074 1.97 

   
0.874 0.316 0.604 1.033 ±0.07 ±0.11 ±0.19 ±0.0032 ±0.03 

   
0.742 0.789 1.543 2.804 

     
   

0.644 1.126 2.198 4.188 
     

   
0.585 1.367 2.661 5.112 

     
   

0.527 1.561 3.084 6.027 
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Chapter 4: Conclusions and Future Directions 

This dissertation contains the results of efforts directed at the determination of 

isotope effects in inorganic aqueous sulfur systems.  The motivation for these 

determinations is largely articulated in the context of constraining isotope 

fractionations that can occur as part of the much broader sulfur cycle.  This chapter 

will review some of the primary highlights from the results of this dissertation and 

give an overview of future directions of my research into isotope partitioning among 

aqueous sulfur compounds. 

1.0 Highlights 

Chapter 2 

1) My theoretical calculations of equilibrium fractionation factors generally 

compare reasonably well to the available experimental constraints, indicating 

that explicit solvation models applied to aqueous sulfur compounds and 

computed at low/moderate levels of theory (B3LYP/6-31+G(d,p)) without any 

form of frequency scaling can reproduce experimental data within a 

reasonable estimation of uncertainty.   

2) My calculations highlight the fundamental first order controls on the isotope 

fractionation behavior of aqueous sulfur compounds in the sulfide, thiosulfate, 

sulfoxylate, sulfite, and sulfate systems, and define the broad ranges in 

fractionation factors based on the traditional 34S/32S measurements as well as 

those of the minor isotopes.  These calculations will have value especially in 
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the present implementation of network models of microbial metabolisms such 

as sulfate reduction (e.g., Wing and Halevy, 2014). 

3) My theoretical calculations further refine the exponents defining mass-

dependent relationships associated with equilibrium isotope exchange in 

aqueous systems, which are presently the basis of the widely applied reference 

exponents in sulfur isotope studies of 33λref = 0.515 and 36λref = 1.9.  My 

calculations allow for the quantification of the range of exponents associated 

with equilibrium isotope exchange, which rarely vary outside the range of ca. 

33λ ≈ 0.514-0.516 and 36λ ≈ 1.89-1.90 over temperatures relevant to most 

aqueous systems.  The exceptions to these rules appear to be in systems where 

crossovers exist (e.g., thiosulfate/sulfide), but these would be restricted to 

specific temperature conditions and would not produce any substantial Δ33S or 

Δ36S effects at any temperature, and would require subsequent amplification 

for their expression (e.g., Deines, 2003). 

4) Utilizing my calculations for aqueous sulfite compounds and the available 

isomerization quotients, I am able to reproduce the experimental 34S/32S 

fractionations determined in the SO2(g)/HSO3
-
T system by Eriksen (1972a,b,c).  

These calculations indicate that the isomerization of bisulfite exerts a primary 

control on isotope fractionations involving sulfite compounds, due to the high 

magnitude RPFR of the bisulfite isomer present in minor abundance at low 

temperature: (HS)O3
-.  I point out that the isomerization quotient defining the 

relative abundances of (HO)SO2
- and (HS)O3

- has yet to be quantified over a 

wide range of temperatures as a function of ionic strength, and indicate that 
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such constraints will be necessary for the further evaluation of the full effect 

of bisulfite isomerization on isotope partitioning in (bio)geochemical systems.  

I further speculate that bisulfite isomerization may have implications for the 

mechanism of the interactions between sulfite compounds and the active 

siroheme sites of enzymes that are responsible for the stepwise 

reduction/oxidation of sulfite/sulfide in microbial metabolism (e.g., 

dissimilatory sulfite reductase), which may have influence on the overall 

magnitudes of fractionations expressed during these transformations. 

Chapter 3 

1) The rates and activation energy that I derive from my aqueous sulfide 

oxidation experiments compare well to the extensive experimental work of the 

Frank J. Millero group (Millero et al., 1987a; Zhang and Millero, 1993), but 

kinetic parameters derived from experiments in the literature are generally 

variable. Such variability may be the result of unintended trace metal catalysis 

that may have additionally impacted the experimental results of the present 

study based on the much lower oxidation rates obtained by Luther et al. 

(2011) under trace metal clean conditions.  

2) My experiments reproduce induction periods that have been observed in some 

previous studies (Chen and Morris, 1972a) that furthermore indicate that the 

reaction of HS- with O2 proceeds slowly and likely via an autocatalytic 

mechanism that is not well understood in detail.  We appear to observe that 

induction periods are shortened upon ferrous iron catalysis, and further note 
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that inconsistencies in the observation of induction periods in the literature 

may be another impact of unintended trace catalysis. 

3) The major isotope fractionation factors (34S/32S) that I derive from my 

experiments are consistent with the previous experiments under comparable 

conditions by Fry et al. (1988).   

4) Small but resolvable relationships between 34S/32S fractionation factor and 

rate associated with ferrous iron catalysis appear to be observed, where 

increased catalysis appears to decrease the magnitude of the isotope 

fractionation factor at the levels we have studied.  This may be the result of 

smaller magnitude isotope effects associated with pathways of lower 

activation energy that are provided by the catalytic cycle associated with 

ferrous iron.   

5) The measured 34S/32S-based fractionation magnitudes appear to increase with 

increasing rate due to increased temperature, indicating apparent inverse 

fractionation temperature dependence associated with sulfide oxidation.  The 

origin of this inverse effect is ultimately unclear, and may either be due to the 

competition of low and high frequency modes between sulfide and any 

number of key transition states it may form with reactants as part of the 

mechanism (e.g., reactive oxygen species or even reactive sulfur 

intermediates) or the result of more than one “rate-determining” reaction with 

different isotope effects having a substantive influence on overall rates and 

isotopic fractionations.  This observation may also be providing evidence for 
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reversible isotope exchange between residual sulfide and reactive sulfur 

intermediates (e.g., along the pathway to thiosulfate formation). 

6) All fractionation factors derived from my experiments appear to exhibit a 

mass dependence with respect to 33S/32S and 34S/32S relationships that is 

distinguishable at a resolvable level from the range expected for equilibrium 

isotope exchange, and may also be present for 36S/32S and 34S/32S 

relationships. We do not appear to resolve any differences in these 

relationships as a function of sulfide oxidation rate associated with either 

ferrous iron catalysis or temperature. This observation will change how 

chemical oxidation processes are treated in future models of the sulfur cycle 

that are based on all three isotope ratios of sulfur.   

7) Based on a comparison to available biological constraints (Zerkle et al., 2009), 

my data do not seem to indicate a robust biosignature for sulfide oxidation 

processes based on multiple sulfur isotope relationships.  However, the 

isotope effects related to chemical and phototrophic sulfide oxidation may 

cause residual sulfide undergoing oxidation to follow different trajectories in 

δ34S/∆33S space, potentially allowing these two pathways to be isotopically 

resolved under some circumstances. 

2.0 Future directions 

High temperature fractionations between SO2/H2S: A role for S3
-? 

One obvious fractionation factor that can be computed from the theoretical 

data presented in Chapter 2 that was omitted from my analysis is that between sulfur 

dioxide and hydrogen sulfide (SO2/H2S), which may play a role in isotope 
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partitioning in high temperature magmatic and hydrothermal systems and can 

influence the isotopic composition of volcanogenic sulfur gases in certain geologic 

environments (e.g., Thode et al., 1971 and references therein).  The studies of 

Thode’s group (i.e., Grinenko and Thode, 1970; Thode et al., 1971) appear to be the 

only experimental investigations of these fractionation factors that are available.  The 

experiments of Thode et al. (1971) were performed in the temperature range of ca. 

500-1000˚C and were based on the equilibration of SO2(g) and H2S(g)  (derived from 

elemental sulfur via hydrolytic disproportionation, i.e.: 3S0 + 2H2O = 2H2S + SO2) 

and their rapid quenching via a liquid nitrogen trap, from which the two gases were 

cryogenically separated in a series of cold traps of varying temperature for their 

respective isotopic analysis. The experiments of Grinenko and Thode (1970) 

performed at lower temperature (ca. 350-500˚C) were slightly more complex, where 

pairs of SO2/S0 and H2S/S0 were isolated and isotopically analyzed from experiments 

performed at the same temperature and the fractionation factor derived by taking the 

quotient of the two.  The results from these two approaches are plotted in Figure 4.1 

and appear to form a fairly consistent array as a function of temperature over ca. 350-

1000˚C.  
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Thode et al. (1971) originally noted a disagreement between their 

experimental determinations and theoretical fractionations that they calculated using 

the vibrational spectra for SO2 and H2S available at the time. This disagreement is 

highlighted in Figure 4.1 and includes additional theoretical estimates including my 

own based on RPFRs presented in Chapter 2 and others in the literature (Thode et al., 

1971; Richet et al., 1977; Liu et al., 2010). The two general approaches indicate 

substantially different trajectories for the fractionation factor as a function of 

	

Figure 4.1: Comparison between the experimental determinations (data points) and theoretical 
estimations (curves) of the equilibrium isotope fractionation factor between SO2 and H2S.   
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temperature, where the offset ranges from 2.5 – 4 ‰ at the lowest temperature (~ 350 

˚C; Grinenko and Thode, 1970) depending on the theoretical approach.  The 

theoretical constraints all agree within about 1 ‰ over the plotted temperature range 

and the calculations based on recent quantum mechanical calculations (Chapter 2; Liu 

et al., 2010) agree with each other at the level of ≤ 0.5 ‰. The broad agreement 

among the theoretical calculations relative to the experimental constraints would 

seem to suggest that the offset arises either from issues with the experimental 

determinations or a mismatch in the consideration of the sulfur mass balance between 

the two approaches, both of which Thode et al. (1971) originally suggested.  

The presence of another sulfur compound under experimental conditions that 

is either a component of SO2 or H2S, or is rapidly converted to either SO2 or H2S 

upon the quenching of SO2 and H2S, could have influenced the experimental 

determinations.  Thode et al. (1971) intriguingly suggested that isomerization of SO2 

could be responsible for the offset between theory and experiment, citing the 

photolysis experiments of Norrish and Oldenshaw (1959) that postulated the 

existence of SO2 isomers and the early theoretical study of Hayes and Pfeiffer (1968) 

that suggested that SO2 isomerization may be the result of double minima present in 

the SO2 electronic potential energy surface (PES). Later computations of the 

electronic PES of SO2 revealed the possibility of an asymmetric form containing 

schematic bonding as SOO (Farantos et al., 1977).  The most recent computations of 

the electronic PES in the ground state SO2 system confirm that an SOO bonded form 

is a metastable local minimum in the PES for SO2, and is separated from the global 

minimum SO2  (OSO) by two transition states and another local minimum 
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corresponding to a metastable isomer in the symmetric OSO form (Rodrigues et al., 

2002).  I am not aware of any experiments that have directly detected any of these 

hypothetical isomers, and the relative proportions of these isomers in SO2 gases as a 

function of temperature do not appear to be known.  To at least partially investigate 

the possibility of SO2 isomers influencing fractionations in the SO2/H2S system, I 

have computed in Figure 4.1 the fractionation factor between the asymmetric SOO 

isomer of SO2 and H2S (B3LYP/6-31+G(d,p)/vacuum; computed to be bent triatomic 

with S-O-O bond angle of ~122˚) and interestingly find that the fractionation is 

predicted to be in the opposite direction from the common symmetrical OSO form, 

indicating that the SOO form present in any amount cannot be responsible for the 

offset.  The usage of higher levels of theory in this analysis (e.g., MP2/aug-cc-pVTZ 

or CCSD/aug-cc-pVTZ) would not affect this overall conclusion.  

Recent discoveries of the stability of the S3
- radical at elevated temperatures 

and pressures might provide clues to the offset in the SO2/H2S system that I am 

actively investigating with theoretical calculations.  Solutions containing S3
- were 

studied and known early (e.g., Giggenbach, 1970; Chivers, 1974) and S3
- has long 

been known to be responsible for the blue coloring of sodalite minerals (e.g., 

McLaughlan and Marshall, 1970; Chivers, 1974), but S3
- was only recently 

experimentally demonstrated to be a stable component in aqueous sulfur systems 

under equilibrium conditions at elevated temperatures and pressures relevant to 

geological environments (Pokrovski and Dubrovinsky, 2011; Pokrovski and Dubessy, 

2015; see also the recent review of Chivers and Elder, 2013). From the recent study 

and analysis of Pokrovski and Dubessy (2015), it is generally understood that S3
- 
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stability is enhanced by: (1) T ≥ 250˚C, (2) high sulfur contents (>5000 ppm Stotal), 

(3) acidic to neutral pH conditions, and (4) oxygen fugacity (fO2) conditions that favor 

the stability of coexisting mixed valence sulfur species.  The maximum 

concentrations of S3
- approach ~10% of sulfur compounds (~30% in terms of moles 

of the total sulfur in the system if comprised of mostly H2S/S3
-/SO4

2-) in experiments 

performed at 500˚C, P = 750-1400 bars, with starting solutions of either S2O3
2- or 

SO4
2-/H2S ([Stotal] ≈ 0.3-1 m) (Pokrovski and Dubessy, 2015). At present, much 

uncertainty still exists in the relative abundance of S3
- under conditions ≥ 500˚C 

where many of the experiments of Thode and colleagues (i.e., Thode et al., 1971) 

were performed. 

Any role that S3
- may have played in the experimental determinations of the 

SO2/H2S fractionation factor by Thode and colleagues will depend on several factors. 

First, S3
- must be a major component of the sulfur mass balance under the 

experiments of Thode and colleagues and must contribute significant sulfur to H2S 

and/or SO2 upon the cryogenic quenching of H2S and SO2 such that it modifies the 

isotopic composition of either (with respect to each other) relative to their equilibrium 

values.  The latter will largely depend on: (1) the relative proportions of H2S/SO2/S3
- 

under the experimental conditions, (2) the RPFRs of the S3
- ion relative to SO2 and 

H2S, and (3) the stoichiometry, products, and any further isotope effects associated 

with the decomposition reactions of S3
- that might occur upon cryogenic quenching.   

Preliminary calculations that I have performed of the S3
- ion in water clusters 

seem to indicate that at elevated temperatures, the RPFRs associated with all sulfur 

atoms in S3
- are lower than that for H2S.  This means that S3

- in equilibrium with SO2 
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and H2S is predicted to be isotopically depleted relative to both SO2 and H2S.  If for 

the moment we assume that the inclusion of sulfur from S3
- into SO2 or H2S upon 

cryogenic quenching does not have an associated isotope effect, the inclusion of any 

significant amounts of sulfur from S3
- into either SO2 or H2S would be predicted to 

have the effect of driving their compositions towards more isotopically depleted 

values relative to their equilibrium compositions. In order for such a process to lead 

to an apparent enhancement in the fractionation factor between SO2 and H2S, the 

mass balance would likely have to favor the inclusion of most of the sulfur from S3
- 

into H2S. 

The conversion of S3
- upon cryogenic quenching of SO2 and H2S (e.g., 

approach of Thode et al., 1971) may involve the decomposition of S3
- to H2S and 

SO2, possibly following an overall hydrolytic decomposition reaction: 

6S3
- + 10H2O + 6 H+ = 5SO2 + 13H2S  (6) 

The stoichiometry of Equation 6 roughly coincides with two moles of sulfur from S3
- 

going to H2S per mole of S3
-, and roughly one mole going to SO2.  If this is the 

dominant decomposition pathway, it could hypothetically lead to an apparent 

enhancement of the SO2/H2S fractionation factor measured by Thode et al. (1971) by 

shifting the composition of H2S to more isotopically depleted values, the magnitude 

of the shift depending on the magnitudes of the fractionations involved and the mass 

balance of the system. 

 Alternatively, the conversion of S3
- to SO2 and H2S upon quenching may 

follow an oxidation reaction considering that S3
- stability is a strong function of fO2 

(cf. Pokrovski and Dubessy, 2015), i.e.: 
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2S3
- + 5O2 + 2H+ = 5SO2 + H2S (7) 

Such a reaction would be predicted to include much more sulfur from S3
- into SO2, 

and if it were isotopically depleted as my preliminary calculations seem to suggest, 

this decomposition pathway would likely have the opposite effect to enhancing the 

apparent SO2/H2S fractionation factor.  I will be able to investigate these possibilities 

in more quantitative detail when computations are completed of the solvated S3
-

•36H2O at the B3LYP/6-31+G(d,p) level that are presently ongoing utilizing the 

computation resources of the Scylla computer cluster at WHOI in collaboration with 

Weifu Guo.  A detailed evaluation of the mass balance of the experimental systems of 

Thode’s group will also be required, which may be at least partially possible under 

some of the experimental conditions using the thermodynamic data for the S3
- ion 

presented in Pokrovski and Dubessy (2015). 

The offset may also of course be due to experimental issues that Thode and 

colleagues originally discussed (cf. Thode et al., 1971).  The source gas used for 

isotopic analysis was SO2, and numerous corrections to the raw isotopic data had to 

be applied. These importantly include corrections related to the oxygen isotope 

compositions of source gases between SO2 isolated directly from experiments and 

SO2 derived from the combustion of Ag2S that corresponded to H2S isolated from 

experimental systems; the former critically relied on estimations of the oxygen 

isotope fractionation factor between SO2 and H2O under the elevated temperatures of 

experimental conditions and the assumption had to be made that this equilibrium was 

not reset or altered upon quenching or subsequent processing.  Other corrections had 

to be applied for non-equilibrium conversion to elemental sulfur in some experiments 
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upon quenching, which was assumed to be independent of temperature.  Thode et al. 

(1971) noted potential limitations in their ability to adequately quantify these 

corrections and indicated that they may also be responsible for the offset between 

theory and experiment, in lieu of more complicated arguments involving the 

hypothetical influence of other sulfur compounds.  Updated constraints on these 

fractionation factors utilizing modern SF6 techniques may circumvent at least some of 

the issues encountered by Thode and colleagues.  However, the intriguing possibility 

that S3
- may comprise a significant proportion of the mass balance of such 

experiments (Pokrovsky and Dubessy, 2015) and may be the primary species through 

which isotope exchange occurs between SO2 and H2S (cf. Truche et al., 2014; 

Pokrovsky and Dubessy, 2015) will likely require a new and detailed experimental 

evaluation that may be aided by theoretical calculations such as my own.  
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Appendices 

 

 

	

Figure A.1: RPFRs of the two sulfur sites in pyrosulfite (S2O5
2-•30-40H2O) at the B3LYP/6-

31+G(d,p) level as a function of S-S bond length (note: there is no correlation between RPFR 
magnitudes and solvation coverage or water cluster size over this range). The black squares indicate 
the four-fold-coordinated site ‘B’ and the white circles indicate the three-fold-coordinated site ‘A’.  
The gray data points are the same calculations but in vacuum (i.e., S2O5

2-
vacuum) and are included for 

reference. 
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Figure A.2: Anharmonic correction to the zero point energy (AnZPE) (cf. Liu et al., 2010) for RPFRs 
presented as permil values (‰) over T = 0-2000˚C at the B3LYP/6-31+G(d,p) level for gaseous sulfur 
molecules spanning a range of oxidation state (Sn): H2S(g) (n = -2), S(OH)2(g) and (HS)O2H(g) (n = +2), 
SO2(g) (n = +4), and SO3(g) (n = +6). 
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Figure A.3: Harmonic frequency scaling factors (based on harmonic wave numbers, ωHarmonic) for the 
B3LYP/6-31+G(d,p) level derived from CCSD/aug-cc-pVTZ calculations of gaseous sulfur molecules 
(cf. Li and Liu, 2011) and based on least squares linear regressions. The black diamonds correspond to 
SO2(g) (individual scaling factor of ≈ 1.065) and the white diamonds correspond to H2S(g), S2(g), and 
SO(g) (scaling factor of ≈ 1.01).  The scaling factor of ≈ 1.02 is derived from consideration of all 
gaseous molecules in the figure. 
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Figure A.4: Major isotope fractionation factor in the sulfate(SO4

2-)-sulfide(H2S) system focusing on 
the effect of harmonic frequency scaling on our estimated theoretical fractionation factors. Applying 
harmonic scaling factors of 1.01-1.02 (derived from CCSD/aug-cc-pVTZ calculations in gas phase; red 
dashed curves) appears to place our theoretical constraints (unscaled: gray solid curve) in better 
agreement with the experimental constraints of Ohmoto and Lasaga (1982) (black curve) and Syverson 
et al. (2015) (black circles = demonstrably equilibrated) over the temperature range of 200-400˚C.  
Also presented for reference are our own calculations in the gas phase with the IEF-PCM implicit 
solvation model applied (dashed dots) and previous vibrational spectroscopy-based estimates (based on 
experimental fundamental frequencies with computed frequency shifts) from Ono et al. (2007).  In all 
cases, our calculations that apply the explicit solvation model appear to match the experimental data 
far better than any other approach. 
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Figure A.5: The exponent of mass dependence (33/34λ ) and major isotope ratio fractionation factor 
(34αsulfate-sulfide) reported from recent pure culture experiments (~20˚C; Leavitt et al., 2013; Sim et al., 
2011a; Sim et al., 2011b) and natural populations (5˚C; Canfield et al., 2010).  For the pure culture 
experiments, cell specific sulfate reduction rates (csSRR) generally decrease from left to right in the 
plot, where the largest 34αsulfate-sulfide correspond to the lowest csSRRs and appear to approach 
equilibrium values (our theoretical calculations from 0-20˚C shown for reference; see also Wing and 
Halevy, 2014 for model-based discussions of these relationships).  csSRRs were not measured in the 
natural population experiments of Canfield et al. (2010) but fractionations appear to follow broadly 
similar fractionation trends in this composition space to the pure culture experiments. 
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Synopsis of Lessons Learned: Experimental Design of Sulfide Oxidation  

 A schematic diagram of the apparatus used in the experiments presented in 

Chapter 3 is shown in Figure A.6.  The design that was finally chosen to carry out the 

experiments to collect the data presented in Chapter 3 ended up being the simplest, 

and also perhaps not the most optimal for a diverse range of measurements.  For 

example, the design of Chapter 3 did not allow for the determination of the isotopic 

compositions of the products and intermediates of sulfide oxidation, which would 

further constrain the isotopic mass balance of the reaction and also perhaps elucidate 

some of the strange isotope fractionation behavior observed in residual sulfide.  

Included in this appendix section will be a summary of the experimental designs that 

led up to the design in Chapter 3, and a series of brief notes to the experimenter 

wishing to improve upon the design for further exploration of the rates and isotopic 

fractionations associated with sulfide oxidation. 

	

Figure A.6: Schematic of apparatus used in sulfide oxidation experiments presented in Chapter 3.  
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The first set of experiments that I carried out that served the basis for 

generating preliminary data for grant proposals (not presented in this dissertation) 

were performed very closely to the design of Fry et al. (1988).  I used a 1 L glass 

septum bottle that I filled with a 1 L phosphate buffer solution.  This bottle was 

purged with ultra high purity molecular oxygen from a tank for about an hour before I 

transferred the bottle into an anoxic chamber under N2 atmosphere (temperature 

control ~ 25˚C). Sulfide was injected into these bottles from stock solutions prepared 

as described in Chapter 3, but in this case using a metal syringe to pierce the septum 

([HS-]initial = 0.001-0.01 M). Aliquots for concentration and isotopic analysis were 

collected using a metal syringe as the reaction took place, and ambient atmosphere 

(N2) was drawn into the vessel upon sampling to maintain pressure within the vessel. 

These experiments were the first to show small shifts in the Δ33SP-R associated with 

sulfide oxidation (consistent with the results presented in Chapter 3), although 

revealed a major isotope fractionation factor that was on the low end of the range 

measured by Fry et al. (1988) that was on the order of 34εP-R ~ -3-4‰, and lower than 

any fractionation factors that were later measured as part of the dataset in Chapter 3.  

Rate information could in principle be extracted from these experiments but was 

complicated by ambiguity in the oxygen concentration of the experiment, including 

its starting concentration and the ambiguity related to changes in its partial pressure 

as aliquot sampling commenced. Numerous elements of the design of these first 

experiments were not ideal, including the usage of glass bottles (cleaned with 

detergent), metal syringes for injection and sampling, and poor oxygen control, that 

undoubtedly contributed trace catalysts for the reaction in addition to making the 
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measurement of rates difficult.  Designs of this kind are not recommended for 

relatively clean and detailed studies of sulfide oxidation. 

 After collecting a round of preliminary data for grant proposals following this 

design, it became apparent to me that the experiments really needed to be designed 

with quantifying rates in mind.  The earliest conceptions of these experiments also 

ambitiously included the measurement of the isotopic compositions of the 

intermediates and products (e.g., sulfite, thiosulfate, sulfate), and so were conceived 

to have relatively high initial sulfide concentrations (as in the preliminary 

experiments, [HS-]initial = 0.001-0.01 M).  Because dissolved oxygen in aqueous 

solution in equilibrium with air only has a concentration on the order of 250 µM, 

oxygen was also conceived to be scaled-up in these experiments so that it would not 

become limiting and complicate the measurements of rates.  I was generally aware of 

the issue of trace metal catalysis at this point but did not appreciate the full magnitude 

of the problem, and so was still using glass apparatuses (mostly detergent cleaned) for 

reaction vessels at this time. 

These basic considerations led to a design of the experiments where the 

headspace of the reaction vessel was connected to an ultra high purity oxygen tank 

with pressure control via a series of regulators that I had scavenged from an old gas 

chromatography system (cf. Figure A.7).  The reaction vessels were still glass, and 

included custom made rubber stoppers that included glass tubes for both aliquot 

sampling and connection of the headspace to the O2 tank and regulator system.  

Numerous experiments were carried out with this design with the help of 

undergraduate student Noah Bowman for his senior thesis project.  For this series of 
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experiments, we focused only on constraining the kinetics of the reaction and did not 

collect aliquots for isotopic analysis.  We were also performing these experiments 

utilizing the temperature baths described in Chapter 3 for more refined temperature 

control. 

Generally speaking, experiments with this design did not yield very 

reproducible kinetic data. Plots of ln[HS-] vs. time did not generally yield linear 

trends conforming to pseudo first order kinetics and instead yielded trends with broad 

sinusoidal behavior in many cases.  I interpreted this behavior as likely being the 

result of poor control of oxygen partial pressure in the experimental systems via the 

regulators since the extraction of the pseudo first order rate constant is a function of 

oxygen concentration, but did not systematically test this hypothesis much further.  

Additionally, quantification of the oxygen concentrations in the experiments proved 

difficult for numerous reasons. To this end, I went as far as making a custom-made 

flow-through glass reactor designed to fit a DO probe for direct measurements of 

oxygen in the reaction solution extracted from the pressurized vessel via peristaltic 

pump, but this did not prove viable. It was also during this time that we became fully 

appreciative of the severity of the issue of trace metal catalysis via the detailed 

reading of Luther et al. (2011).  These considerations led to a complete re-design of 

the experiments, including the usage of entirely plastic components (to undergo 

extensive acid cleaning prior to loading with reaction solutions) and also a much 

simpler manner in which oxygen is supplied to the vessel that would allow its 

quantification for the estimation of overall rate constants. Hence, the design described 

in Chapter 3 that yielded the dataset that is the basis for the chapter (Figure A.6). 
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In retrospect, there are numerous elements of the experimental design that 

could be improved for follow-up experiments to those presented in Chapter 3.  Future 

experiments should be concentrated at least on measuring the isotopic compositions 

of products and intermediates as I had originally conceived, in addition to the rates 

and isotope effects based on sulfide analyses.  These will likely require a design that 

can be thought of as a combination of the approaches of Chapter 3 and the 

experiments utilizing oxygen supply and control via an O2 tank connected to the 

headspace that Noah and I had attempted prior. Below I list some simple 

considerations for such experiments: 

(1) All reaction vessel components will need to be plastic, as in Chapter 3, to 

minimize the introduction of trace catalysts.  These may either be prepared as 

described in Chapter 3, which reproduce the rates of the Frank Millero group, 

or prepared in the manner of Luther et al. (2011) to study increasingly “less 

catalyzed” systems. 

(2) Oxygen partial pressure control should be possible in principle utilizing more 

modern and precise regulators than we employed.  Additional considerations 

for these systems would be to make them relatively trace metal clean.  It is 

conceivable that particulates containing metals could be introduced into the 

reaction vessel via the tanks and regulator systems. Components on these lines 

may thus need to be equipped with filtration measures to remove particulates, 

particularly in immediate vicinity to the headspace of reaction vessels.  These 

might include a series of filters of increasingly fine mesh size. It is 
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conceivable that components of these gas delivery systems may also need to 

be acid-washed plastic, but this may be a secondary consideration. 

(3) Magnetic stir bars were implemented in our design with stir rates on the order 

of 400-600 revolutions per minute.  More vigorous stirring and mixing 

systems may improve air/solution O2 exchange.  Their implementation will 

need to involve consideration of trace metal contamination. 

(4) An additional issue that was not discussed in Chapter 3 is the catalytic effect 

of light (direct or indirect) on reaction rates.  Reactions between light and 

oxygen compounds in aqueous solution may produce the reactive oxygen 

species that might serve as autocatalysis for sulfide oxidation as part of the 

overall mechanism.  The photo-oxidation of ferrous iron, used as an explicit 

catalyst in a set of experiments in Chapter 3, could also influence results when 

such catalysts are employed. The experiments presented in Chapter 3 were 

continuously monitored over timescales of days and performed under varying 

light conditions. Light contributions were solely from fluorescent lights in the 

laboratory (no windows are present in the labs).  The plastic bottles used were 

not fully transparent to light but also not fully opaque either, and opaque 

plastic bottles may be ideal for future experimentation to avoid any potential 

effects associated with light. It should be noted that there is no systematic 

relationship between when lights were on or off and the major features of the 

kinetic behavior seen in concentration profiles (e.g., induction periods and 

breaks in rate attributed to the exhaustion of the ferrous iron catalysts), and it 
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is not expected to be a major influence on the results of Chapter 3.  This, 

however, does not preclude its consideration in future experimental designs. 

 

 

 

 

 

 

	

Figure A.7: Schematic of experimental apparatus that may allow the isotopic analysis of oxidation 
products in addition to the isotopic analysis and rates based on reactant sulfide via scaling up both 
oxygen and sulfide concentrations in the experiment. 
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