A Reference Manual
to the Linearization Engine
oxyGen
version 1.6

Nizar Habash
University of Maryland
Institute for Advanced Computer Studies

September 13, 2001

Contents

1 oxyGen 2
1.1 Imtroduction 2
1.2 Linearization 3
1.3 oxyGen: A Hybrid System 4

2 oxyL 6
2.1 Abstract Meaning Representation 6

2.1.1 OxyL Basic Tokens 8
2.2 oxyLFile 9
2.3 oxyLRules 10

3 Sample oxyLL Grammar for English 13
3.1 TheoxyL File. 13
3.2 Inmput and Output 15

4 oxyGen Reference 17
4.1 oxyGen Package oo oL 17

4.1.1 oxyGen Installation 17
41.2 oxyCompile 18
413 oxyRun oo 18
414 oxyLino 19
4.15 oxyDebug oo 19
4.2 Declarations 20
4.3 Built-in Functions 22
44 Built-in Recastso 23
4.5 Reserved Tokens 25
45.1 Reserved Variables 25
452 Reserved Roles 25
4.5.3 Reserved Functions 25
4.5.4 Reserved Strings oL 26

Chapter 1

oxyGen

1.1 Introduction

This i1s a manual for the language independent linearization engine, oxyGen.
This system has been developed as part of the Machine Translation (MT) ef-
fort at the University of Maryland College Park [1, 8]. oxyGen has been used
as an integral part of the Natural Language Generation (NLG) component of
an interlingual Chinese-English MT project and a Spanish-English MT project.
It has also been used to generate simple Spanish and Chinese sentences on a
large scale of coverage [3]. Natural Language Generation is interested in taking
non-linguistic representations as input and converting them into natural lan-
guage output. NLG can be divided into two major distinct operations: Lexical
Selection and Linearization. The former is concerned with selecting the correct
natural language lexical item such as eat versus devour or car versus vehicle.
The later is concerned with the relative positioning of lexical items on the sur-
face such man hit dog versus dog hit man or man dog hit. oxyGen 1s an engine
for developing programs to do the later operation: Linearization. The input
to such programs is a labeled Feature Graph (FG) representation of a natural
language sentence. The particular form of FGs used here is a modified version of
Nitrogen’s Abstract Meaning Representation (AMR) [5, 6]. AMRs are labeled
directed feature graphs written using the syntax of the Penman Sentence Plan
Language [4]. The output of the linearization programs developed using oxyGen
is a word lattice, a compressed representation of the various possible generated
sequences. See Figure 1.1.

| oxyGen | [Word
Linearizer Lattice

Figure 1.1: oxyGen Linearizer

1.2 Linearization

To exemplify the use of oxyGen and linearization in general, take the following
input AMR:

(1) (1 / Ilikel
:POS Verb
:Subject (2 / |man| :P0OS Noun)
:0bject (3 / |car| :POS Noun))

This AMR can be read as there is a verb, like, and it has a subject, man,
which is @ noun and an object, car, which is also a noun. In English, a proper
word order would be man like car (or more fluently the man likes the car, but
let’s not worry about fluency for now). To specify that an SVO (subject verb
object) order is desired in English (versus VSO or SOV), we need a linearization
rule such as the following:

2) (77 (&eq @pos Verb) -> (@subject @/ Qobject)
-> (@/))

This rule is written using oxyL (oxyGen Language), a flexible and powerful
language that has the power of a programming language but focuses on natural
language realization. This rule can be read as if the part of speech (POS) of
the current AMR s Verb, then linearize the subject AMR followed by the word
wnstance followed by the object AMR; otherwise linearize the word instance by
itself. This is a very simple grammar that needs more extensions to handle real
input with different phrase structures and parts of speech. But a real AMR
is also complex on a different dimension: Ambiguity. Let’s assume the input
AMR is a result of a lexical selection process for the same sentence in (1) from
a language that doesn’t specify number (singular versus plural) and its word for
like 1s ambiguous in that it covers the concepts of desire and love. This AMR
could look as follows:

3 (0 :0R (1 / (*or* |like| |likesl|)
() :POS Verb
:Subject (2 / (*or* |man| |men|) :P0S Noun)
:0bject (3 / (*or* |car| |cars|) :P0S Noun))
:0R (4 / (*or* |desire| |desires]|)
:POS Verb
:Subject (5 / (*or* |man| |men|) :P0S Noun)
:0bject (6 / (*or* |car| |cars|) :P0S Noun))
:0R (7 / (*or* |love| |loves]|)
:POS Verb
:Subject (8 / (*or* |man| |men|) :P0S Noun)
:0bject (9 / (*or#* |car| |cars|) :P0S Noun)))

Since such ambiguity can occur anywhere in an AMR, it presents a challenge
to writing simple linearization rules whose application is conditional upon spe-
cific AMR role combinations at different depths. However, the beauty of oxyGen
is that it allows hiding the ambiguity of the input from the grammar description
so that both AMRs (1 and 3) can be linearized using the same grammar rule in
(2). Of course, the ambiguity of (3) will lead to a large set of sequences:

4 man like car man desire car man love car

() man like cars man desire cars man love cars
man likes car man desires car man loves car
man likes cars man desires cars man loves cars
men like car men desire car men love car
men like cars men desire cars men love cars
men likes car men desires car men loves car
men likes cars men desires cars men loves cars

A statistical extraction module can be used to rank the different sequences
using uni and bigram statistics or other language models. The statistical ex-
traction component of Nitrogen [5, 6] is one such module.

In addition to hiding ambiguity from the grammars, oxyGen provides, through
oxyL, a great power to the grammar writers by providing complex tools designed
with natural language linearization in mind. oxyGen can also be extended and
modified easily via second and third-party code.

1.3 oxyGen: A Hybrid System

oxyGen compiles target language grammars written in oxyL into compilable
Lisp programs that take AMRs as inputs and generate word lattices that can
be passed along to be ranked by some language model. This approach to lin-
earization implementation is a hybrid between the declarative and procedural
paradigms. oxyGen uses a linearization grammar description language (oxyL)
to write declarative grammar rules which are then compiled into a program-
ming language (Lisp) for efficient performance. This hybrid approach allows
oxyGen to maximize the advantages and minimize the disadvantages of a pure
procedural implementation (in Lisp or C) or a pure declarative implementation
(in Nitrogen grammar). oxyGen contains three main elements: a linearization
grammar description language (oxyL), an oxyL to Lisp compiler (oxyCompile)
and a run-time support library (oxyRun). Target language linearization gram-
mars written in oxyl are compiled off-line into oxyGen linearizers using oxy-
Compile (Figure 1.2).

oxy(Gen linearizers are Lisp programs that require the oxyRun library of
basic functions in order to execute (Figure 1.3). They take AMRs as input and
create word lattices as output.

In addition to the oxyCompile and oxyRun components, there are currently
two additional components oxyLin, a simple converter from word lattices to

Linearization : oxyGen
[Grammar } oxyCompile |~ | inearizer

oxyL Lisp Lisp

Figure 1.2: oxyGen Compilation Step

oxyRun

]
.| oxyGen | [word
Linearizer Lattice

Figure 1.3: oxyGen Runtime Step

surface sequences, and oxyDebug, a support code for debugging the compiled
linearization grammars. The specifications of all these components are in Chap-
ter 4.

A more detailed discussion of the motivation and advantages of oxyGen is
presented in [2]. There is also an evaluation of oxyGen based on speed of per-
formance, size of grammar, expressiveness of the grammar description language,
reusability and readability /writability. The evaluation context is provided by
comparing an Oxygen linearization grammar for English to two other imple-
mentations, one procedural (using Lisp) and one declarative (using Nitrogen
linearization module). The three comparable linearization grammars were used
to calculate speed and size. Overall, Oxygen had the highest number of advan-
tages and its only disadvantage, speed, ranked second to the Lisp implementa-
tion (see Table 1.1). The version of oxyGen described in this manual is a more
efficient implementation of Oxygen than the one evaluated in [2]. A second
evaluation for a larger English grammar in oxyGen and Lisp showed Lisp is still
faster than oxyGen. However the gap in speed between the Lisp and Oxygen
implementations shrunk from Oxygen being 24 times slower than Lisp in [2] to
only 1.5 times.

Procedural Hybrid | Declarative

(Lisp) (Oxygen) | (Nitrogen)
Speed + 0 -
Size 0 + -
Expressiveness + + -
Reusability - + +
Readability/ - + -

Writability

Table 1.1: Oxygen Evaluation

Chapter 2
oxyL

oxyL (oxyGen Language) is the language used by oxyGen to write linearization
grammars. It is a flexible and powerful language that has the power of a pro-
gramming language but focuses on natural language realization. As a prelude
to describing the syntax of oxyL, we will describe the form of the structures
oxyL commands are applied to, Abstract Meaning Representations. Then, we
will discuss oxyL’s basic tokens followed by the syntax of an oxyL file and oxyL
rules and functions.

2.1 Abstract Meaning Representation

Abstract Meaning Representations (AMR) are labeled directed feature graphs
written using the syntax of the Penman Sentence Plan Language [4]:

() <AMR> ::= <terminal> || (<label> {<role> <va1ue>}+)
<value> ::= <AMR> || <terminal>
<terminal> ::= <word> || <wordlist>

Every node in an AMR has a label and one or more role-value pairs. Roles,
1.e. features, are marked by a colon prefix except for the default role, :inst
(instance), which can be represented as a forward slash /. Values may be
meaning bearing terminal tokens or AMR nodes. These terminal tokens can be
semantic concepts such as |chinal or [lovel, syntactic categories such as N or
V, plain surface text strings such as "China", or a list of any of them headed
by the special token *or* such as (*or* man men). Except for a small number
of reserved tokens used by oxyGen, most of the AMR tokens are user and
application-defined. The only requirement is consistency between the AMRs
and the oxyLl: grammars to linearize them. The roles and concepts of an AMR
can be a mix of syntactic and semantic significance: thematic roles such as
:Agent and :Theme and syntactic categories such as :Subject and ADV. The
following is an example of a basic AMR for the sentence The United States

unilaterally reduced the China texztile export quota :

6 (1 / lreducel
() :CAT V
:Subject (2 / |united states| :CAT N)
:0bject (3 / |quotal
:CAT N
:MOD (4 / Ichinal| :CAT I)
:MOD (5 / |textilel| :CAT Adj)
:MOD (6 / lexport| :CAT Adj))
:Manner (8 / |unilaterally| :CAT ADV))

In thisexample, (a2 / |united states| :CAT N) isthe subject of the con-
cept |reduce|. And similarly, N is the category of the concept |united states]|.
The basic role :inst or / is always present in a basic AMR.

However there are two other types of AMRs, that are instance-less: OR-
AMR and AND-AMR. The first is a disjunction of basic AMRs, whereas the
second 1s a conjunction of basic AMRs. Both are constructed using multiple
copies of the same special role (:OR or :AND). An OR-AMR express lexical
ambiguity, i.e., which structure to chose among many. For example, a variant of
the above AMR, in which the root concept is three way ambiguous would look
as follows at the top node:

(7) (# :0R (# / lreducel . . .)
:OR (# / lcut] . . .)
:0R (# / l|decreasel . . .))

An AND-AMR, on the other hand, expresses linearization ambiguity, i.e.,
how to order the AMRs on the surface. The AMR in (6) expresses that ambi-
guity in the AMR for quota, which contains three identical roles (:MOD). That
same AMR can be written using :ANDs as follows:

8 (1 / lreducel
() :CAT V
:Subject (2 / |united states| :CAT N)
:0bject (3 / |quotal
:CAT N
:MOD (O :AND (4 / lchinal :CAT N)
:AND (5 / |textilel| :CAT Adj)
:AND (6 / lexport| :CAT Adj))
:Manner (8 / |unilaterally| :CAT ADV))

Handling :ANDs and :0Rs is done automatically and is hidden from the user-
defined grammar. The ambiguity of an OR-AMR is passed on to the word
lattice, while AMRs under : ANDs are permuted to produce all possible lineariza-
tions.

There is one more special role, :X-role. It is used to express role ambiguity,
i.e., a role can be of two or more role names. For example, The two AMR in
(9) express the ambiguous sentence John gave Paul a gift and John gave a gift
to Paul.

(9) # / lgivel
:subj |john|
:obj lgiftl
:X-role (# / X
:i0bj |paull
:PP (& / ltol

:obj Ipaull)))

(0 :0R (# / lgivel

:subj |johnl|
:obj lgiftl
:i0bj Ipaull)

:0R (& / lgivel

:subj |john|
:obj lgiftl
:PP (# / ltol

:obj |paull)))

These AMRs are different in that the first AMR expresses the ambiguity lo-
cally as an ambiguous role (indirect object versus prepositional phrase), whereas
the second AMR expresses the ambiguity at the top level as two different AMRs
altogether. Handling :X-roles is done automatically and is hidden from the

users. They are expanded to full fledged OR-AMRs.

2.1.1 OxyL Basic Tokens

The function of different tokens in oxyL is marked through their form using a
prefix symbol: variables are prefixed with a dollar sign (e.g. $form, $tense),
role-names are prefixed with a colon (e.g. :agent, :cat) and functions are
prefixed with an ampersand (e.g. &eq, &ProperNameHash).

In addition to general functions (built-in or user-defined), oxyL has a spe-
cial class of functions called referential functions. These functions, which are
prefixed with an @ sign (e.g. @goal, @this), are used to access values corre-
sponding to specific roles of the current AMR. For example, @goal returns the
value corresponding to the role :goal. If the current AMR is (6) in section
2, @subject returns (a2 / |united states| :cat n). The value of the in-
stance role, /, is returned using the special referential functions @/ or @inst. A
referential function can specify the path from the current AMR’s root to any
value under it by concatenating the references along such path. For instance, if

the current AMR is (6), @subject.cat returns N. If the current AMR contains
multiple instances of the same role as in :MOD in 6, the values are returned in an
AND-AMR. For example, if the current AMR is (6), @object .mod. inst returns
(# :AND |chinal| :AND |textile| :AND |export|). Access to the full cur-
rent AMR, is provided through the self-referential function @this. For example,
O@this.subject is equal to @subject.

The last oxyL basic token type is Macros, which are prefixed with a circum-
flex (e.g. "NP-NOM). Macros are treated like variables except that while variables
appear as is in the compiled grammar, macros are substituted in the compiler.
The use of macros makes the grammar description more concise. For example, if
a set of role-value pairs is very commonly used such as (:Form NP :Case NOM),
they can be referred to using a single macro, “"NP-NOM.

2.2 oxyL File

An oxyL file contains a set of declarations (see Table 2.2). Some provide meta-
level informationsuch as :Langauge and : Comment, while others allow importing
Lisp code such as :Include and :Code. The declarations :Class, :Gloabl and
:Macro define variables for use by oxyCompile or oxyRun. The declaration
:Morph allows the user to link the internal morphology handler to a specific
user-define morphology function. And the declaration:Debug allows the user to
turn on and off the debugging utility provided by oxyDebug. The declaration
:Recast allows the user to define functions for modifying AMRs using a special
class of oxyL functions called recasts. the declaration :Rule allows the user
to define specific modules to handle different phenomena such as the different
types of phrases. The most important and the only obligatory declaration is
MainRule which defines the core of the grammar'. The next section will describe
the structure of an oxyL rule. The details of the use of all other declarations is
left to Chapter 4.

1In [2], a single declaration was available for the whole grammar :RULES. This has been
since replaced with the declarations :Recast, :Rule and :MainRule which provide a higher level
of modularity and efficiency.

Declaration | Function Example

:Comment Adds a Comment :Comment "Hello World!"

:Language Name of generated grammar | :Language "English"

:Include Lisp file to load at runtime :Include "EnglMorph.lisp"

:Code User-defined Lisp functions | :Code (<lisp-code>)

:Class Defines a class of roles :Class :THETA (:AG :TH :GOAL)

:Global Declares a global variable :Global $MODE HTML

:Macro Declares a macro :Macro 3pS (:per 3 :num sing)

:Debug Controls debugging mode :Debug nil

:Morph Defines the morphological | :Morph (&morph @word
generation function Omorphemes)

:Recast Defines a recast :Recast &PL (@this ++ (:num

PL))
:Rule Defines a rule :Rule %S (-> (@S @V @0))
:MainRule Defines the Main Function :MainRule ((-> (do %XP)))

Table 2.1: oxyL Declarations

2.3 oxyL Rules

(10) <RULE> = ([== <ASSIGN>]
?7 <COND>
-> <RESULT>*
[-> <RESULT>])
<ASSIGN> ::= ((<variable> <value>)+)
<COND> ::= <Boolean Expression>
<RESULT> ::= <RULE> || <SEQUENCE> |
(DO <RULE-NAME> [<AMR>])
<SEQUENCE>: := ({<AMR>||<RECAST>}+) ||
(OR <SEQUENCE> <SEQUENCE>+) |
(LISP <lisp-code>) || (CODE <lisp-code>)
<RECAST> ::= (<AMR> <RECAST-0P> <RECAST-0P-ARGS>+)

The above BNF describes the syntax of an oxyL rule. A rule has an optional
assignment section, introduced with ==, in which local variables are defined.
The second part of a rule is an optional condition and result pair that can be
repeated multiple times. Conditions are introduced with ?? and results are in-
troduced with =>. And finally an optional result is allowed as the default when
all conditions fail. A result can be a rule in itself with all of the portions de-
scribed above or it can be a sequence of AMRs or AMR-returning tokens such
as variables or functions. It also can be a call to a user-defined rule using the
special operator DO, which takes as an argument an optional AMR that defaults

10

to @this. The ability to embed rules within rules and declare local variable
with deep scope allows users to limit the size of the grammar and increase the
speed of its application logarithmically. The linear order of AMRs in the result
specifies the linear order of the surface forms corresponding to these AMRs. The
grammar is run recursively over each one of the different AMRs. This process
continues until terminal values, i.e. surface forms, are reached. Consider the
following oversimplified rule:

(11) (== (($form @form))
7?7 (&eq $form S)
=> (77 (&eq Q@voice Passive)
-> (@object (&passivize Q@inst) "by" @subject)
-> (@subject Q@inst @object)))

Initially, this rule takes the value of the role :form in the current AMR and
assigns 1t to the variable $form. In the case the value of $form equals S, a
second check on the voice of the current AMR is done. If the voice is passive,
the passive word order is realized. Otherwise, the active voice word order is
realized. The grammar is then called recursively over the AMRs of @subject,
Q@object and @inst. The function &passivize takes the AMR of @inst as
input and can return either a passive verb AMR that gets processed by the
grammar or a terminal word sequence. In addition to AMRs, a linearization
sequence can contain AMR recast operations. A recast operation is made out
of an AMR followed by one or more pairs of recast operator and recast operator
arguments. Recast operations modify AMRs before they are recursively run
through the grammar. The recast mechanism is very useful in restructuring the
current AMR or any of its components. For example, the ++ recast operator
adds role-value pairs to an AMR. This is useful in cases such as adding case
marking roles on the subject and object AMRs. The rule described above, (11)
could be modified to specify case as follows:

(12) (== (($form @form))
7?7 (&eq $form S)
=> (77 (&eq Q@voice Passive)
-> ((@object ++ (:case nom)) (&passivize Qinst)
"by" (@subject ++ (:case gen)))
-> ((@subject ++ (:case nom)) Q@inst
(@object ++ (:case acc)))))

Table 2.3 provides a list of some oxyL: recast operators with their usage
formalism and functionality. Note that the use of / in recast operations is
different from its role as a shorthand for :inst.

Multiple recast operators can be listed one after another in the same recast.
A recast can also be embedded in another recast. For example, the recast
(@this && (:a (@a ++ (:b @b))) -- (:b)) moves the role :b and its value
under :b’s sister :a using three different recast operations. Recasts can also

11

Name Op | Usage

Add ++ (<AMR> ++ (<role> <value>+))
Add all <role>;-<value>; pairs to AMR
Delete - (KAMR> -- (<role>+))

Remove all <role>;-<value>; pairs
Replace && (AMR && (<role> <value>+))
Replace all values of <role>;

Simple << (AMR << (<new-role> / (<role>+)))

Recast Rename all existing <role>; as <new-role>

Hierarchy | <! (<AMR> <! ((<new-role>+) / (<role>+)))

Recast Hierarchically rename available <role>; as <new-role>;

Table 2.2: oxyL. Recast Operators

be accessed outside of results using the general recast function (& <recast>).
This allows recasting an AMR any where before passing it to another function or
Rule. For example, (do %V (& @this ++ (:punct "."))) adds a punctuation
mark before passing the current AMR to the rule %V.

A result can also introduce alternative sequences using the special operator
OR or make direct calls to Lisp functions using the special operator LISP (or
CODE). The following example contains both OR and LISP operators:

13 (== (($name @name))
() -> (OR (LISP (FORMAT nil ""a loves me" $name))
(LISP (FORMAT nil ""a hates me'" $name))))

Note that calls to Lisp functions should return AMRs (including strings) for
proper operation.

The special main rule declared with :MainRule consists of a list of regular
rules. For example, the following main rule does one of two things every time
it is accessed: terminate generation by realizing nothing if the instance of the
current AMR is nil or *empty*, or pass the current AMR to the X-bar rule
%XP.

:MainRule (

;3 Nothing to generate

(77 (&in Q@inst (|nill |*empty*|))
-> 0)

(14)

; ;Basic rule, go to XP
(> (do %XP)))

12

Chapter 3

Sample oxyL Grammar for
English

This chapter presents a simple oxyL. grammar that is used to linearize English
syntactic dependency trees. The tokens used here are derived from the cate-
gories and relation in Dekang Lin’s Minipar parser [7]. Sample input AMRs
and outputs using oxyLin and Nitrogen’s statistical extraction module are also
presented.

3.1 The oxyL File

:Language "Simple Inflected English Dependency"

:Comment "This is an oxyGen grammar for English Generation"

:Comment "version 1.0 / September 2001"

:Include "nitrolin.lisp"

:Debug nil

:Global $V (V VBE V_I V_N V_P V_N_A V_N_C V_N_I V_N_N V_C_N V_N_N_A
VNN CVNNPVNPCVNNPAVNNPCVNNPN
V_N_N_N XSAID SAID SAIDX)

:Global $N (N NN NUM N_A N_C N_P)

:Macro “no-punct (:punct (a / |nill))

:Class :sub (:S :SUBJ)

:Class :as (:AS-ARG :AS-HEAD :AS1)

:Class :REST (:ABBREV :AGE :C :CN :DEST :FC :HEAD :I :INSIDE :LEX-DEP
:LOCATION :P0SS :SC :SPELLOUT :TITLE)

13

:Recast &whX (@this << (:wh / (:wha :whn :whp)))

:Recast &invX
(@this << (:inv / (:INV-AUX :INV-BE :INV-HAVE)))

:Recast &AuxH
(@this <! ((:auxl :aux2 :aux3 :aux4) / (:aux :have :be :being)))

:Rule %DET (-> (@pre Q@rest Q@inst @post))

:Rule %N

(-> (@conj-word @det @num Omod @lex-mod @gen ONN
Qinst
Opnmod @person @appo-mod Q@appo @mod-post @compl @comp2
QP Q@subcat (Q@vrel &% “no-punct) (Q@rel &% “no-punct)
(@conj ++ (:conj-word "and"))))

:Rule %A
(-> (Q@conj-word @rest Onum Omod Qlex-mod @amod QNN
Qinst
Omod-post QP @subcat (@conj ++ (:conj-word "and"))))

:Rule %P
(-> (@inst @rest OP-SPEC Q@Pcomp-N @PCOMP-C @subcat @punct))

:Rule %V
(== (($to (0 / |tol| :cond (&eq @tense inf))))
7?7 (&ex :inv)
-> (Q@conj-word @wh Q@inv Oneg O@sub Q@auxl Q@aux2 Qaux3 $to
Qinst
@lex-mod Q@obj @obj2 @desc @pred @AS Q@AS2 @P @BY-SUBJ
Qguest Orest (OMOD &% “no-punct) @subcat @punct
(@conj ++ (:conj-word "and")))

-> (Q@conj-word @wh Q@sub Q@auxl Oneg Q@aux2 Q@aux3 Qaux4 $to
Qinst
@lex-mod Q@obj @obj2 @desc @pred @AS Q@AS2 @P @BY-SUBJ
Qguest Orest (OMOD &% “no-punct) @subcat @punct
(@conj ++ (:conj-word "and"))))

:Rule %V-punct

(77 (&ex :punct)
-> (do %V)
7?7 (&ex :WH)
=> (do %V (& @this ++ (:punct "7")))
7?7 (&eq @aspect IMPERATIVE)
=> (do %V (& @this ++ (:punct "!'")))
-> (do %V (& @this ++ (:punct "."))))

14

:Rule %XP
== (($pos @pos))
7?7 (&in $pos $V) -> (do %V-punct (&auxH (&invX (&whx @this))))
7?7 (&in $pos $N) -> (do %N)
7?7 (&%eq $pos DET) -> (do %DET)
7?7 (&eq $pos prep) -> (do %P)
77 (&eq $pos A) -> (do %A)
-> (@inst))

:MainRule (
;3 Nothing to generate
(7?7 (&in @inst (|nill |*tracex]|))

-> 0

;; Conditional generation technique
(7?7 (&and (&ex :cond) (&null @cond))
-> 0)

;;Basic rule, go to XP
(-> (do %XP)))

3.2 Input and Output

The follwing are four AMRs that were input to the linearization grammar de-
scribed above. Each AMR is followed by oxyLin’s output. the sentences in
parentheses are Nitrogen’s top choice.

(5 / lorganized|
:POS V
:S (3 / |contest]|
:POS N
:DET (1 / |thel| :P0OS DET)
:NN (2 / lwriting| :POS N))
:BE (4 / lwasl|)
:BY-SUBJ (6 / |byl
:POS PREP
:PCOMP-N (8 / |officel
:POS N
:DET (7 / |the| :P0OS DET)
:MOD-POST (9 / lofl
:POS PREP
:PCOMP-N (12 / |commissioner|
:POS N
:DET (10 / |the| :P0OS DET)
:MOD (11 / lofficiall :POS N))))))

(the writing contest was organized by the office of the official commissioner .)

15

(2 / lisl|

:POS VBE

:WHA (1 / |how| :POS A)

:PRED (6 / |system]
:POS N
:DET (3 / |the| :P0OS DET)
:MOD (4 / lcanadian]| :P0OS A)
:MOD (5 / |legall :POS A)
:VREL (7 / |constituted| :P0S V_N_N)))

how is the legal canadian system constituted 7
(how is the canadian legal system constituted 7)

(5 / lcourses]|
:POS N
:DET (1 / |thel :POS DET)
:MOD (2 / |following| :POS A)
:MOD (3 / |generall| :POS &)
:NN (4 / |education| :POS N))

the general following education courses
(the following general education courses)

(3 / Imindl|
:POS N
:LEX-MOD (1 / |peacel| :POS *)
:LEX-MOD (2 / lof| :POS *)
:MOD-POST (4 / lofl
:POS PREP
:PCOMP-N (7 / |operationl
:POS N
:MOD (5 / lcontinuous| :P0OS A)
:NN (6 / |system| :POS N))))

of peace mind of continuous system operation
(peace of mind of continuous system operation)

16

Chapter 4

oxy(Gen Reference

4.1 oxyGen Package

4.1.1 oxyGen Installation
The oxyGen package contains the following files:

oxycompile.lisp
oxyrun.lisp
oxylin.lisp
oxydebug.lisp
oxyload.lisp
The code files for the different oxyGen files. oxyload.lisp loads the files

up.

make-oxygen-core.sh
A shell command for creating a dump of the oxygen system. The created
dump file is called oxygen.core

oxycompile
A shell command for compiling oxyL files from the prompt. oxycompile
needs oxygen.core to run properly.
Usage: oxycompile <oxyl-filename> <out>
The result of running oxyCompile 1s the creation of a <out>.core file and
a shell command with the name <out>. The usage of the created shell
command is:
<out> <AMR-filename> <out-filename> <mode>
where the optional argument <mode> is a keyword for the word lattice to
surface module: ozylin or nitrolin. The default is oxylin.

17

oxypamr
A shell command for printing pretty AMRs. oxypamr needs oxygen.core
to run properly.
Usage: oxypamr <amr-filename> <pretty-amr-filename>

nitrolin.lisp
Provides an interface between oxyGen and Nitrogen. This file needs to
be included in an oxyL grammar if it is to be used. Activating nitroLin
can be done by setting the <mode> argument to \verbnitrolin— in the
appropriate functions.

4.1.2 oxyCompile

oxyCompile provides the functions necessary for compiling an oxyl. grammar
into a Lisp file. oxyCompile can be accessed directly from the shell using the
shell command oxycompile described earlier.

(oxycompile <oxyl-grammar> <output-file>
Compiles <oxyl-grammar>into a Lisp program and outputs it to <output-file>.
The optional <output-file> defaults to "oxyout.lisp".

(oxycompile-file <oxyl-file> <output-file>
Compiles the oxyl. grammar in <oxyl-file> into a Lisp program and
outputs it to <output-file>. The optional <output-file> defaults to
"oxyout.lisp".

4.1.3 oxyRun

oxyRun provides functions necessary for proper operation of a compiled oxyL
grammar.

(oxygen <AMR>)
Runs the oxyGen linearization grammar on an <AMR> and returns a word
lattice.

(oxygen-file <AMR-file> <out-file> <mode>)
Runs the <AMR>s in <AMR-file> through the loaded oxyGen linearizer fol-
lowed by the word lattice to surface module specified by the optional ar-
gument <mode> (ozylin or nitrolin). The output sentences are printed to
<out-file>.

(&amrType <AMR>)

Returns the type of an AMR: word, wordlist, basicAmr, orAmr, andAmr,
unknown

18

4.1.4 oxyLin

oxyLin provides functions for realizing a word lattice into strings. It is an al-
ternative to using Nitrogen’s Statistical Extraction module which realizes word
lattices and assigns them uni/bigram scores.

(oxylin <word-lattice> <stream>)
Realizes <word-lattice> into strings and prints them to a file <stream>.
<stream> is optional and is standard output by default.

(check-size <word-lattice>)
Returns the number of independent sequences in <word-lattice> without
realizing it.

4.1.5 oxyDebug

oxyDebug provides functions for debugging a compiled oxyL. grammar. It pro-
vides an output best comparable to Lisp’s trace. Besides helping to figure out
specific problems, the output of oxyDebug can be used to compare different
grammars in terms of efficiency by comparing the number of calls they make
to different functions. To use oxyDebug, an oxyl. grammar should have the
declaration :Debug &true. This forces oxyCompile to add calls to oxyDebug in
the compiled grammar. Deactivating the debugging can be done by assigning
the global variable *oxydebug# to nil.

(oxydb-open <file>)
Opens the file <file> and links it to the reserved output stream *oxydb-streams.
<file> is an optional argument that defaults to "oxydb.out".

(oxydb-close)
Closes the reserved output stream *oxydb-stream*.

(&oxydb <format> <var>)
Allows users to send messages to *oxydb-stream#* from inside an oxyL
grammar. <format> is a string that can include Lisp’s format instruc-
tions. <var> is an optional variable.

(oxy-pamr <AMR> <stream>)
Pretty prints <AMR> to the optional output stream <stream>. <stream>

defaults to standard output.

(oxy-pamr-file <in-file> <out-file>)
Reads AMRs from <in-file> and pretty prints them to <out-file>.

19

4.2 Declarations

:COMMENT <string>
Includes the comment <string> in the compiled file. This declaration pro-
duces no action. A Lisp comment ”;” can also be used in oxyL files.
Example
:COMMENT "This is a comment"

:LANGUAGE <string>
Specifies the name of the generated grammar. This declaration currently
acts like : COMMENT.
Example
:LANGUAGE "English"

:GLOBAL <variable> <value>
Declares a global variable <variable> and sets its value to <value>.
Example
:Global $mode HTML
:Global $articles ("a" "an'" "the" "")

:CLASS :<class> (<role>+)
Declares a class role :<class> to represent all the roles in (<role>+).
A variable $<class> is created automatically for :<class>. The refer-
ential function @<class> returns a basicAMR if only one of the roles in
(<role>+) exists; otherwise an andAMR of all existing roles is returned.
In both cases, the matching role is remembered in the returned value as a
value to the reserved role :role.
Example
:CLASS :THETA (:AGENT :THEME :SRC :GOAL :INSTRUMENT)
$THETA returns (: AGENT :THEME :SRC :GOAL :INSTRUMENT) and if can be
used in recasts such as (@this -— $THETA) or (@this << (:new / $THETA))
QTHETA of (0 / x :AGENT ag :x x :y y)
returns (0 / ag :ROLE :AGENT)
QTHETA of (O / x :AGENT ag :THEME th :x x :y y)
returns (O :AND (O / ag :ROLE :AGENT) :AND (0 / th :ROLE :THEME))

:MACRO "“<macro-name> <macro-body>
Declares a macro “<macro-name> with the value <macro-body>. A macro
acts like a global variable except that it 1s substituted by its value at com-
pile time not run time. The use of macros makes the grammar description
more concise.
Example
:MACRO “NP-acc (:form NP :case acc)
(@this ++ "“NP-acc) is compiled as (@this ++ (:form NP :case acc))

20

:CODE (<lisp-code>+)

Adds Lisp code to the oxyL file. :CODE can be used to declare functions
and variables. All user-defined functions must have the prefix & to run
correctly. Similarly, all non-local variables must have the prefix $.
Example
:CODE ((setf $myvariable ’(me me me))

(defun &even (x) (evenp x))

(defun &odd (x) (oddp x))

(defun &concat (stringl string2)

(format nil "“a"a"stringl string2))

:INCLUDE <file-name>
Loads the Lisp file named <file-name>. All user-defined functions and
variables must have the appropriate prefixes run correctly. Example
:INCLUDE "wordnet-data.lisp"
:INCLUDE "brown-corpus-stats.fasl"

:MORPH (<function> @word @morphemes)
Defines the morphology handling function for the system to access. <function>
is linked by oxyCompile to the internal morphology handler |(oxymorph
@word @morphemes)—. oxymorph is fired by the morphology recast +-.
:MORPH links the arguments @word and @morphemes to the input arguments
of function.
Example
:MORPH (&english-morph @word @morphemes)

:RECAST <recast-name> <recast-body>
Allows the user to define a function <recast-name> for modifying AMRs
using oxyL’s built-in recasts. Recasts are well explained in Chapter 2.
Example
:Recast &move (Qthis && (:a (Qa ++ (:b @b))) -- (:b))
moves the role :b and its value under :b’s sister :a:
(&move (0 / x :a (1 / a) :b (2 / b))
returns (0 / x :a (1 / a :b (2 / b)))

:RULE <rule—name> <rule-body>
Defines a rule <rule-name> as <rule-body>. The definition of oxyL rules
is well explained in Chapter 2. Rules can be named anything, but it is
preferred that they have the prefix %. A rule can be activated with the
special operator DO which takes an optional AMR as input. The default
input 1s otherwise @this.
Example
:Rule Yorder (-> (@c @b Qa @b @c))
(DO Y%order (0 / x :a a :b b :c c))
yieldlsc b a b ¢

21

:MAINRULE (<rule>+)
Defines the main function in an oxyL grammar. This is the only obligatory
declaration. The use of :MAINRULE is well described in Chapter 2.

:DEBUG <boolean>
Controls the inclusion of necessary code for debugging an oxyl, grammar.

4.3 Built-in Functions

@<role-sequence>
Referential Function. Returns the value associated with the role at the
end of the <role-sequence> of @this. <role-sequence> is constructed
by listing the roles separated by periods and without the colon prefix.
Example
O@this.subject.number returns the value of the role :number in the value
of the role :subject under the current AMR.

(& <recast>)
General Recast Funclion. Returns the result of executing <recast>. This
special function allows accessing oxyL built-in recasts as regular functions.
This is useful for recasting an AMR before passing it as an argument to a
rule or a function. This function cannot be used in a rule result.
Example
(do %NP (& (@Subject ++ (:case mnom))))

(&ex <token> <AMR>)
Returns true if <token> exists in <AMR>. <token> can be a role or a word.
<AMR> is optional and it defaults to @this.

(&nex <token> <AMR>)
Returns true if <token> doesn’t exist in <AMR>. <token> can be a role or
a word. <AMR> 1s optional and it defaults to @this.

(&eq {<valuel> <value2>1}+)
Returns true if all <valuel>-<value2> pairs are equal.

(&neq {<valuel> <value2>}+)
Returns true if all <varluel>-<value2> pairs are not equal.

(&in <AMR> (<token>+))
If <AMR> is a word, &in returns true if <AMR> exists in (<token>+). If <AMR>
1s a wordlist, &in returns true if eny word in <AMR> exists in (<token>+). If
<AMR>1is a basicAMR, &in returns true if <AMR>. inst exists in (<token>+).
If <AMR> is an orAMR or andAMR, &in returns true if any <AMR>.inst ex-

22

1sts 1n (<token>+).

&true
always returns T.

The following functions are implemented using their Lisp counterparts: &and
&eval &if ¬ &null &or "e

4.4 Built-in Recasts

(<AMR> ++ ({<role> <value>}+))
Add Recast. Returns a copy of <AMR> with added <role>-<value> pairs.
Adding the reserved role :inst overwrites <AMR>. inst. If <AMR> is a word
or a wordlist, a basicAMR of the form (0 / <AMR> {<role> <value>}+)
is returned.
Examples
((0/ x :aa) ++ (:bb :cc)) returns (0 / x :ta a :bb :c c)
("X" ++ (:d 4)) returns (0 / "x" :d 4)
((0/ x raa) ++ (/ y :d d)) returns (0 / y :a a :d 4)

(<AMR> -- (<role>+))
Delete Recast. Returns a copy of <AMR> with all <role>-<value> pairs
removed. Deleting the reserved role :inst causes the replacement of the
<value> of :inst with nil.
Examples
((0/ x :aa bbbl :bb2) —— (:b :2)) returns (0 / x :a a)
((0/ x :taa bbb :cc)-—- (/ :c)) returns (0 / nil :a a :b b)

(<AMR> && ({<role> <value>}+))
Replace Recast. Returns a copy of <AMR> with all values of <role> replaced
with <value>. If <role> doesn’t exist in <AMR>, it is added. If <AMR> is a
word or a wordlist, a basicAMR of the form (0 / <AMR> {<role> <value>1}+)
is returned.
Examples
((0/ x :aa :bbl :bb2) && (:b b3 :z z))
returns(0 / x :a a :b b3 :b b3)

(<AMR> << (<new-role> / (<role>+)))
Simple Recast. Returns a copy of <AMR> with all <role>s renamed as
<new-role>.
Examples
((0/ x :aa :bb) << (:c/ (:a :b))) returns (0 / x :¢c a :¢c b)

23

(<AMR> <? (<new-role> / (<role>+)) <cond>)
Conditional Recast. Returns a copy of <AMR> with all <role>s renamed as
<new-role>, if <cond> is true. The special referential role @that should
be used in <cond> to access the value of each recastable <role> one at a
time. This is important in the case that several <role>s share the same
name.
Examples
((0/ x :aa bbbl :bb2) <? (:c / (:a :b)) (&eq Othat.inst bil))
returns (0 / x :a a :c bl :b b2)
Conditionally recast :a and :b into :c if the inst value of "that” recastable
role (za or :b) equals b1.

(<AMR> <! ((<new-role>+) / (<role>+)))
Hierarchical Recast. Returns a copy of <AMR> with <role>s hierarchically
renamed as <new-role>s. Hierarchical renaming means that the first ez-
1sting <role> is renamed to the first <new-role>; and the second existing
<role> is renamed to the second <new-role>; and so on.
Examples
((0/x :dd :gg:aa)<! ((m:n)/ (ta :b :c :d :e :f :g :h)))
returns (0 / x :n d :g g m a)

(<AMR> <o <role>)
Order Recast. Returns a copy of <AMR> with its <role>s renamed as
<role>-i where i enumerates the order in which <role> appears in <AMR>.
Example
(3/x:a(@/ a) b (2/Db1) :b (4 / b2)) <o :b)
returns (3 / x :a (1 / a) :b-1 (2 / b1) :b-2 (4 / b2))

(<AMR> <on <role>)
Label Order Recast. Returns a copy of <AMR> with its <role>s renamed as
<role>-i where i 1s the node label of the value of <role>.
Example
((3/x:a(1/ a) :b(2/Db1) :b (4/ b2)) <o :b)
returns (3 / x :a (1 / a) :b-2 (2 / b1) :b-4 (4 / b2))

(<AMR> <oi <role>)
Relative Order Recast. Returns a copy of <AMR> with its <role>s renamed
as <role>-i or <role>+i where i is the absolute difference between the
node label number of the value of <role> and the node label number
of <AMR>. + is used for positive difference and - for negative difference.
Obviously, this recast expects that the node labels are positive integers.
Example
((3/ x:a(1/ a):b(2/bl) :b (4 / b2)) <oi :b)
returns (3 / x :a (1 / a) :b-1 (2 / bl) :b+1 (4 / b2))

24

(<AMR> +- <morpheme>)
Morphology Recast. Returns a string that is the result of combining <AMR>
with <morpheme>. This recast fires the internal morphology handler oxymorph
which is linked to a user-defined morphology function through the oxyL
declaration :MORPH. The form of the <AMR> (i.e. word, wordlist, basicAMR,
etc.) and the form of <morphem> (i.e. word, list of words, even an AMR)
is absolutely up to the user-defined morphology function.
Example
:MORPH (&english-morph @word @morphemes)
("walk" +- past)
returns "walked"

4.5 Reserved Tokens

Since the oxyL files are compiled into Lisp by a program written in Lisp us-
ing supporting Lisp functions, it is important that the oxyGen user shouldn’t
redefine any of the variables and functions that are necessary for the proper
operation of the system. The following is a list of all the reserved tokens in the
oxy(Gen system.

4.5.1 Reserved Variables

oxycompile-class *oxycompile-local* *oxycompile-debug*
oxydb-stream *oxydebug* $this $that

4.5.2 Reserved Roles
:INST :0R :AND :X-ROLE :ROLE (:THIS :THAT)

4.5.3 Reserved Functions
oxyL Functions

Othis Othat oxymain oxymorph Qinst @/
(Q@or @and @x-role Qrole)

oxyCompile

oxycompile—-file load-oxyl-file init-oxycompile oxycompile
print-compiled-grammar remove-oxydebug compile-grammar
compile-grammar—-1 compile-grammar-def-recast
compile-grammar-def-rule compile-grammar-main-rule
compile-grammar-rule compile-grammar—set compile-grammar-conds
compile-grammar—-conds—eq compile-grammar-conds-neq
compile-grammar-results compile-recast separate-roles amrp

25

compile-term variable-term local-term reserved-func-term
compiled-reserved-func-term role-term roleseq roleseq-1
roleseq-2 tokens

oxyRun

add-roles normalize-inst del-roles del-roles-1 replace-roles
sub-roles sub-roles-1 sub-roles-cond sub-roles-cond-1
sub-roles-hierarchy sub-roles-h-1 sub-order-role
sub-order-role-node sub-order-role-inode exval exval-1

inval inval-1 valof valof-1 prepare &amrType subamr-roles
permute permute-1 multiply-X-roles get-x-roles del-x-roles
multiply-subamr oxygen oxygen-file

oxyLin

oxylin gls-to-surface gls-to-surface-1 add-on check-size
format-surface format-surface-sentence

oxyDebug

oxydb-open oxydb-close oxydebug &oxydb oxy-pamr oxy-pamril
oxy—pamr2 oxy-pamr-file

4.5.4 Reserved Strings

"*start-sentence*'" "*end-sentence*" "*empty*"

Acknowledgements

This work has been supported by NSA Contract MDA904-96-C-1250 and
NSF PFF/PECASE Award TRI-9629108. T would like to thank members
of the CLIP lab for helpful conversations and advice and especially Bonnie
Dorr, Philip Resnik, David Traum and Amy Weinberg.

26

Bibliography

(1]

Bonnie J. Dorr, Nizar Habash, and David Traum. A Thematic Hierarchy
for Efficient Generation from Lexical-Conceptal Structure. In Proceedings
of the Third Conference of the Association for Machine Translation in the
Americas, AMTA-98, in Lecture Notes in Artificial Intelligence, 1529, pages
333-343, Langhorne, PA| October 28-31 1998.

Nizar Habash. oxyGen: A Language Independent Linearization Engine.
In Fourth Conference of the Association for Machine Translation in the
Americas, AMTA-2000, Cuernavaca, Mexico, 2000.

Nizar Habash and Bonnie Dorr. Large-Scale Language Independent Gen-
eration Using Thematic Hierarchies. In Proceedings of MT Summat VIII
Santiago de Compostella, Spain, 2001.

ISI, University of Southern California. The Penman Reference Manual De-
cember 1989.

Irene Langkilde and Kevin Knight. Generating Word Lattices from Abstract
Meaning Representation. Technical report, Information Science Institute,
University of Southern California, 1998.

Irene Langkilde and Kevin Knight. Generation that Exploits Corpus-Based
Statistical Knowledge. In ACL/COLING 98, Proceedings of the 36th Annual
Meeting of the Association for Computational Linguistics (joint with the
17th International Conference on Computational Linguistics), pages 704—
710, Montreal, Canada, 1998.

Dekang Lin. Dependency-Based Evaluation of MINIPAR. In Proceedings
of the Workshop on the Evaluation of Parsing Systems, First International
Conference on Language Resources and Fwvaluation, Granada, Spain, May

1998.

David Traum and Nizar Habash. Generation from Lexical Conceptual Struc-
tures. In Proceedings of the Workshop on Applied Interlinguas, North Amer-
ican Association of Computalional Linguistics/Applied Natural Language
Processing Conference, NAACL/ANLP-2000, pages 34-41, Seattle, WA,
2000.

27

