
�����������	
������

����������������
���������
������
����������������
��
�����
�������
������
��������
�
�����
�����������������������
	���	��������� !���������!�����������
	�"���
���!�����#��$������

	�"���
������������%���������	
����������&�������'�������
��������������������
����
���������������
�������
��(������(��������#��$�������
	�"���
���'

�������������	
�����
���
���
����������

TECHNICAL RESEARCH REPORT

A Model for Access Negotiations in Dynamic Coalitions

by Himanshu Khurana, Virgil D. Gligor

CSHCN TR 2003-16
(ISR TR 2003-29)

1

A Model for Access Negotiations in Dynamic Coalitions

Himanshu Khurana and Virgil D. Gligor
University of Maryland, College Park MD

{hkhurana, gligor}@eng.umd.edu

Abstract
The process of negotiating common access states in dynamic coalitions that comprise tens of

autonomous domains sharing hundreds of resources is time-consuming and error-prone if performed
without the benefit of automated tools. This process is also repetitive since, during the lifetime of a
dynamic coalition, member domains must undertake the task of negotiating common access states
multiple times as domains leave and new ones join the coalition. To define and verify the correctness of
tools for automated negotiation, we develop a formal state-transition model of the process of negotiating
a common access state. We extend an existing Role Based Access Control (RBAC) language to illustrate a
wide variety of negotiation constraints and present a resolution procedure for verifying the satisfaction of
such constraints in the state-transition model.

Keywords: dynamic coalitions, access negotiation, state transition model, constraint language
Technical Area: system security, security models

1. Introduction
In various collaborative environments such as alliances for research and development, health care,

airline route management, public emergency response, and military joint task forces, autonomous
domains form coalitions to achieve common objectives. These coalitions can be dynamic in that member
domains may leave or new domains may join after coalition establishment. Collaborative computing
undertaken by dynamic coalitions requires a variety of resource-access agreements ranging from those for
peer-to-peer sharing of applications and services to those for joint administration of access policies among
the autonomous domains.

In dynamic coalitions, resource-access agreements ensure that all domains can have a common view
of coalition operations and can execute shared applications and access shared objects. The result of such
agreements is a common access state, which consists of the access permissions granted to the coalition
users for executing shared applications/services, and to shared applications/services for accessing objects
required by coalition operations. Reaching agreements among the domains of a coalition requires a
negotiation process that is time-consuming and error-prone even for small-sized coalitions (i.e., coalitions
consisting of five to ten autonomous domains), if performed without the benefit of automated tools.

Negotiation is time-consuming because the number of objects whose accessibility is being negotiated
and the number of negotiation rounds may be large even if the number of applications is relatively small.
For example, a route-sharing application among several airlines may include tens of route types, such as
US-Asia, US-Europe and US-South America, and each route type may include tens of specific flights.
Negotiating the access to each individual flight for hundreds of flights among five to ten airlines would
require multiple rounds of flight-sharing proposals and proposal evaluations on the part of each airline,
since each may have different goals for the negotiation outcome. It is possible that a negotiation round
may not reach agreement, in which case a new round may have to be commenced for reaching the same
goals. It is also possible that multiple common-access states may satisfy all the goals of the negotiating
parties, in which case a common choice must be made.

The negotiation process is error-prone if performed without the benefit of automated tools,
particularly when it is conducted under time constraints and when the size of a coalition increases to tens
of domains sharing hundreds of resources (e.g., an international coalition of civilian and military
organizations responding to international crises [22]). Furthermore, automated tools for common-access
state negotiations in dynamic coalitions are required since the negotiation process is repetitive. That is,

2

during the lifetime of a coalition, member domains must undertake the task of negotiating common access
states multiple times as domains leave and new ones join the coalition. Re-negotiation becomes necessary
to add resources of joining domains, exclude departing domains from joint administration of coalition
resources, and exclude resources withdrawn by departing domains.

To define and verify the correctness of automated tools for negotiating common access states in
dynamic coalitions, we need to define the notion of access negotiation precisely. To this end, we develop
a state-transition model of the process of negotiating a common access state, extend an existing Role
Based Access Control (RBAC) language to illustrate a wide variety of negotiation constraints1, and
present a resolution procedure for verifying the satisfaction of such constraints.

This paper is organized as follows. In Section 2 we classify negotiation constraints with examples
and we motivate the notion of negotiating a common access state with an example. In Section 3 we
motivate the need for a formal model of the negotiation process in the presence of coalition dynamics
(i.e., domain join and leave events). In Section 4 we present the state-transition model for the process of
negotiating common access states and a negotiation language for specifying constraints. In Section 5 we
show that the state transition model supports the necessary security formulations. In Section 6 we discuss
related work and we conclude in Section 7. In Appendix A we present elements and functions of our
negotiation language. In Appendix B we present the semantics of the negotiation language. In Appendix
C we provide proofs of theorems stated in Section 5 and in Appendix D we illustrate coalition resource
negotiations in the state-transition model.

2. Negotiation of Common Access States: An Example
To achieve a common objective, the autonomous domains of a coalition negotiate the sharing of a set

of resources (e.g., objects, applications, and services) and access permissions to those resources; i.e., they
negotiate a common access state in which the coalition begins its operations. Negotiating a common
access state means obtaining the agreement of each domain to share both privately owned and newly
created resources, and to either privately or jointly administer [19] access to these resources. The
negotiation result is not merely a union of the contributed resources necessary to achieve a coalition
objective. Instead, the set of resources and their privileges contributed to the coalition by member
domains must satisfy both resource and permission constraints. Examples of different types and sub-
types of constraints are given in Table 1 below. Typically, these constraints arise from coalition
objectives, access policies that are either jointly or privately enforced by autonomous domains, and
resource-access requirements of coalition applications [10]. Further, these constraints can be either
global, in which case they are known by all member domains, or local, in which case some constraints
may remain private to some member domains. In either case, the specification of negotiation constraints
is an important part of any access-policy specification and drives the negotiation process; e.g., it
determines the number of negotiation rounds and the convergence to and commitment of common access
states. Hence, it must be defined in a precise manner. For this reason, we define a negotiation language to
specify constraints and present a resolution procedure for verifying the satisfaction of these constraints
(viz., Section 4).

An Example: To illustrate the process of negotiating a common access state, assume that three
domains representing three airlines that wish to share six types of routes form a coalition to expand their
market coverage. Here, each route type corresponds to a certain set of departure and destination pairs
(airline routes) in a given region, for instance, in U.S. - Europe, U.S. – Middle East, U.S. – North Africa,
U.S. – Southern Africa, U.S. – Asia, and U.S. – South America. Sharing an individual route of a certain
type implies that the airline domain that owns the route grants access permissions required to execute the
route applications (e.g., reservations, billing, advertising) for that route to users of a foreign airline
domain. Furthermore, airline domains negotiate and impose a set of pricing policies on all shared routes;
e.g., policies on travel packages comprising multiple airline routes, vacation packages, and frequent flyer
miles. Airline domains agree to enforce these policies on their privately owned routes that are shared with

1 In this paper we assume that all domains have a common interpretation of the RBAC policy model [9].

3

the coalition members. To ensure that all member domains adhere to these pricing policies, member
domains may decide to jointly setup and administer an auditing application that has access to shared
airline routes in each domain. Such applications are vital to the coalition (as per the contractual agreement
in this case) and the domains would like to jointly own and administer them to ensure that they remain
with the coalition even after the departure of a member domain and that there is consensus on their access
policy specification/modification [19]. (Note that privately owned resources that are shared with coalition
members, such as airline routes, can be withdrawn from the coalition by the owner domain and their
access policies are unilaterally specified). In general, coalition applications will require auditing of
sensitive operations and the auditing applications are likely to be jointly administered.

Resource-based Constraints Permission-based Constraints
Sub-type Example Sub-type Example

Least Privilege
(Least privilege
principle of resource
sharing)

From a set of common
applications, choose one
that requires access to
least number of objects

Obligation
(A requirement for the
presence – “must”, or
absence – “must not”
of permissions)

At least one user in every
domain must be able to
perform audit operations
on every jointly
administered application

Cost-based
(Profit of sharing
foreign resources
minus cost of sharing
local resources)

A domain requires access
to specific foreign
resource in order to share
any of its own resources

Separation-of-duty/
Prohibition [1, 11]
(Limits distribution of
access permissions)

No role can have
permissions for all the
applications of any jointly
administered resource

Obligation
(A requirement for the
presence – “must”, or
absence – “must not”
of resources)

If a domain controls a
unique route application,
it must be shared

Cardinality
(Numerical limitation)

No role that has
permissions for jointly
administered applications
can have more than n
members (users)

Table 1: Examples of Negotiation Constraints

In Figure 1 below, we denote the route types controlled by each of the three airline domains before
negotiation as circles within the perimeter of each domain. The number of routes of each type is indicated
in a parenthesis within each circle that each application controls. The arrow from a domain to a route type
denotes that the domain desires that route type as an outcome of the negotiation. Observe that some route
types and routes may already be common to multiple domains; e.g., route types 1, 2, 4, and 5. In this
example, the objective of the negotiation is to obtain a common access state consisting of six shared route
types (1 … 6) among the three airline domains D1, D2, and D3 and to jointly administer an auditing
application that has access to all the shared routes.

Let us assume that the following two global negotiation constraints have been agreed upon to satisfy
coalition objectives:
- Domains that control unique route types must share them with other domain (i.e., an obligation

constraint). As a consequence, Domain 1 must share route type 6 and Domain 2 must share route type
3.

- Sharing of route types must minimize the number of routes shared (least privilege constraint); i.e., if
two or more domains are capable of sharing the same route type, then the one that comprises the
lowest number of routes will be used.

On inspection of Figure 1, we observe that there are two ways for domains to share their airline routes
both of which satisfy the negotiation constraints; i.e., Domains D1, D2 and D3 could share either route
types {1,6}, {3} and {2,4,5} or route types {6}, {1,3} and {2,4,5}. In general, there can be multiple
common access states that satisfy the negotiated constraints and a common choice must be made. The
negotiation proceeds as follows. The domains join the coalition and specify the negotiation constraints.

4

They then contribute resources that they are willing to share, namely, those in Figure 1. One of the
domains makes a proposal for resource sharing that includes either one of the two common access states
and the auditing application. The other domains vote on the proposal based on their own local negotiation
constraints, if any2. If a proposal receives unanimous votes, it is accepted; else, a new round of
negotiation follows with other proposals. Once the common set of shared route types is agreed upon, the
three airline domains specify the users and user permissions for the resources (e.g., via role-membership
in an RBAC system), thereby completing the definition of the desired common access state. (In general,
the negotiation proposals may include <resource, access permission> pairs, not just resources as
illustrated in this example.) The common access state is then committed. Note that if the negotiation does
not converge to a desired common access state after an agreed upon number of rounds, negotiations will
cease. This would signify the need to re-define the coalition objectives.

Domain 1

Domain 2 Domain 3

1
(5)

4
(8)

5
(4)

6
(7)

1
(5)

2
(6)

4
(9)

3
(2)

2
(4)

1
(7)

5
(3)

4
(6)

Legend

a
(b)

a – Route type
b – No. of Routes

in route type

a
(b)

D omain
X

X wants route type a

Figure 1: Routes controlled and desired before negotiation

3. Negotiations in the Presence of Coalition Dynamics
Dynamic coalitions have two characteristics that help motivate the key aspects of common access

state negotiations, namely, membership that (1) comprises domains with overlapping but not identical
interests that are managed under diverse access policies reflecting different sharing requirements, and (2)
varies dynamically, thereby ruling out off-line, one-time negotiation of common access states. In dynamic
coalitions, both domain departures and joins occur after coalition formation and require re-negotiation of
the common access state. We consider the following three dynamic events and argue that each event leads
to repeated negotiation of common access states.
(a) Domain-join event: At any point in time after the coalition has been formed, member domains may

agree to add a new domain to the coalition. This would be motivated by the coalition members’ desire
to share the joining domain’s resources and willingness to share existing coalition resources with the
joining domain to satisfy the joining domain’s objectives. The sharing of new resources and changes
in the sharing of existing resources requires re-negotiation of the common access state. For example,

2 Examples of negotiations with local constraints are provided by Gligor et al. [12]

5

in the coalition of airline domains illustrated in Section 2, if a new airline domain joins the coalition,
then the common access state would be re-negotiated among the four domains to include both the
joining domain’s airline routes and permissions and the joining domain’s users and their access
permissions to existing (shared) airline routes. Observe that all domain joins are entirely voluntary
events in that both the joining domain and the existing coalition domains must agree to enable the join
event to take place.

(b) Voluntary domain-departure event: At any time after coalition formation, a domain can choose to
leave the coalition and withdraw its (privately-owned) resources. However, the departing domain
would not be able withdraw any jointly owned and administered resources, if it was agreed prior to
coalition formation that these resources were vital to the coalition’s existence. In this case, the jointly
owned resources would remain with the coalition after a domain departure. (This policy agreement can
be enforced by shared public-key mechanisms, which inherently prohibit any single domain from
withdrawing jointly owned resources [19]). Nonetheless, withdrawal of privately owned resources
from the coalition can cause the remaining coalition domains to re-negotiate the common access state
for the following two reasons.
- Continued joint administration of resources: After the departure of a domain, the remaining

coalition domains must continue to perform join administration of resources. This requires that they
re-negotiate the policies of joint administration to exclude the departing domain and revoke any
permissions previously distributed to the departing domain’s users. This would cause re-negotiation
of the common access state. For example, in the coalition of airline domains illustrated in Section 2,
if one of the domains leaves, then the remaining domains would have to re-negotiate the access
policies of the jointly owned auditing application to exclude the departing domain and to access
only the shared routes of the domains remaining in the coalition.

- Withdrawal of resources essential to the coalition mission: Even if the departing domain cannot
withdraw jointly owned resources that are vital to the coalition’s existence, the privately owned
resources it withdraws may be essential to the coalition objectives. For example, in the coalition of
airline domains, the departure of a domain may result in withdrawal of a route type that was
essential to the coalition mission (e.g., route type 3, which is a unique route type owned by Domain
2). In this case, the remaining coalition domains would have to redefine the coalition objectives and
re-negotiate the common access state to include resources that satisfy the redefined objectives.
Furthermore, the withdrawal of essential resources may also result in the violation of negotiation
constraints that were defined to ensure satisfaction of the coalition objectives (though they were
satisfied prior to domain departure). For example, in the coalition of airline domains in the example
presented in Section 2, if a negotiation constraint stated that there must be at least two unique route
types in the common access state, then this constraint would be violated by the departure of Domain
2. Consequently, the common access state must be re-negotiated such that it either satisfies the
existing constraints or re-defines them based on the redefined coalition objectives.

(c) Involuntary domain-departure event: At any time after coalition formulation, it is possible that a
majority of domains wish to exclude a domain from the coalition hereby causing the involuntary
departure of that domain. Since we are primarily interested in cooperative coalitions, such an event can
be viewed as a formation of a new coalition that excludes the departing domain. That is, the remaining
domains would establish a new common access state rather than re-negotiating an existing one.
However, domains may impose administrative policies on jointly owned resources that require re-
negotiating the common access state after an involuntary departure-event. For example, such a policy
might state that any domain that must leave involuntarily can withdraw the resources it contributed to
the coalition and this policy may be part of the contractual agreement established by all member
domains. Therefore, to satisfy such a contractual agreement, the remaining member domains must re-
negotiate the common access state, which excludes the jointly owned resources contributed by the
departing domain.

6

4. The State Transition Model and the Negotiation Language
In this section we present our state transition model for negotiating a common access state and a

negotiation language, NL, for expressing constraints of the negotiation. We present the model elements,
the state variables, and the state transition functions. The model supports the following policy of resource-
negotiation systems:

Resource-Negotiation Policy: A set of domains that comprise a coalition may share a set of privately
owned resources and jointly own and administer resources specified in a common access state, only if (1)
the domains contribute towards the common access state either their own resources or resources for joint
ownership that are supported by well-defined access policies (i.e., permissions and role-to-permissions
relations for the resources), (2) the domains unanimously agree on the common access state, (3) the
common access state satisfies a specified set of local and global negotiation constraints, and (4) the
common access state satisfies each domain’s specified local access constraints (e.g., separation-of-duty
constraints).
Assumptions for the state-transition model

¶ We assume that all domains have a common interpretation of the RBAC policy model.
¶ In our model, we focus on cooperative coalitions and assume that domains do not lie about the

resources they own or about the resource access policies they administer.

Domain 1 Domain 2 Domain k…

Coalition Authority

Objects,
Applications
Operations

Roles,
Permissions

Users

Objects,
Applications
Operations

Roles,
Permissions

Users

Objects,
Applications
Operations

Roles,
Permissions

Users

Jointly Owned
Objects & Apps,

Operations

Roles,
Permissions

Joint Administration

Foreign
User
Enrollment

Foreign User Enrollment

Figure 2: Model Elements

The resource-negotiation policy of the state-transition model specifies how the negotiation should
proceed to allow coalition domains to share resources by satisfying negotiation constraints and ensuring
that the access constraints of any member domain3 are not violated. We define a secure state in the state-
transition model in terms of a security invariant, which is a formal instantiation of the resource-
negotiation policy. We present the model elements in Section 4.1, the negotiation language NL in Section
4.2, the state variables in Section 4.3, the security invariant and state transition rules in Section 4.4, and
satisfaction of constraints in Section 4.5.

3 Our goal is to model the process of negotiating a common access state. We do not present solutions for
composing proposals for common access states that are likely to be accepted by all domains. Game theory or
heuristics can provide such solutions; an introduction to game theoretic solutions is provided in [12].

7

4.1. The Model Elements
The elements of the model are illustrated in Figure 2 above. Each domain has sets of users, roles,

user-to-role assignment relations, objects, applications, operations, permissions (allowed operations on
specific objects or applications), permission-to-role assignments relations and local access constraints.
The access constraints are defined in the negotiation language NL and include permission-based
constraints applied to the domain’s users. We define an application a set of permissions; i.e., a set of
operations allowed on a set of objects. (It may be useful to define a sequence of execution of permissions
on objects for each application as discussed by Gligor and Gavrila [10] but we ignore this execution plan
for simplicity). We also do not support role hierarchies in our model for simplicity. For jointly owned
resources we have elements similar to those for each domain’s local resources. For negotiating resources,
the elements include sets of domain proposals, votes on domain proposals, roles for access to negotiated
resources, users that will access negotiated resources, and local and global negotiation constraints defined
in NL. The list of elements is given below in Table 2.

4.2. The Negotiation Language NL
The negotiation language NL is designed to specify (1) negotiation constraints (both local and

global) and (2) domain access constraints. NL is an extension of RCL2000 [1]. We extend RCL2000 to
include elements for domains comprising a coalition, jointly owned resources, assignment of foreign
domain users to roles, functions on coalition-wide elements, and mathematical sets and functions useful
for defining negotiation constraints. We discuss the syntax of NL here and the semantics in Appendix B.

¶ Domain user set DnU: The set of all users in a domain Dn is denoted by DnU = {user1, user2, …, userz}
¶ Domain role set DnR: The set of all roles in a domain Dn is denoted by DnR = {role1, role2, …, rolew}
¶ Domain user-to-role assignment relation DnUA Ì DnU X DnR is a many-to-many user-to-role assignment

relation for domain Dn.
¶ Domain foreign user-to-role assignment relation DnFUA Ì {D1U, D2U, …, Dn-1U, Dn+1U, …, DkU} X DnR

is a many-to-many user-to-role assignment relation for users from all domains 1..k except domain Dn and roles
in domain Dn.

¶ Domain object set DnOBJ: The set of all objects in a domain Dn is denoted by DnOBJ = {obj1, obj2, …, objm}
¶ Domain operation set DnOP: The set of all operations allowed in a domain Dn is denoted by DnOP = {op1, op2,

…, opq}
¶ Domain permission set DnP: The set of all permissions in a domain Dn is denote by DnP = DnOP X DnOBJ
¶ Domain permission-to-role assignment relation DnPA Ì DnP X DnR is a many-to-many permission-to-role

assignment relation for domain Dn.
¶ Domain application set DnApp: The set of all applications in a domain DnApp is denoted by DnApp = {app1,

app2, …, appr} where appi is a set of permissions P Ì DnP.
¶ Domain local access constraint set DnAC: The set of all local domain access constraints on local domain

objects is denoted by DnAC = {const1, const2, …, constc} where each constraint is defined in the NL.
¶ Joint Resources role set JR: The set of roles for jointly owned resources is denoted by JR = {role1, …, roles}
¶ Joint Resource user-to-role assignment relation JUA Ì {D1U Ç D2U Ç … Ç DkU} X JR is a many-to-

many user-to-role assignment relation for users of all domains D1 … Dk.
¶ Jointly owned object set JOBJ: The set of all jointly owned objects is denoted by JOBJ = {obj1, obj2, …, objl}
¶ Joint resources operation set JOP: The set of all operations allowed for joint owned resources is denoted by

JOP = {op1, op2, …, opt}
¶ Jointly owned resource permission set JP = JOP X JOBJ
¶ Joint resource permission-to-role assignment relation JPA Ì JP X JR is a many-to-many permission-to-

role assignment relation for jointly owned resources.
¶ Jointly owned application set JApp: The set of all jointly owned applications is denoted by JApp = {app1,

app2, …, appu} where appi is a set of permissions P Ì JP.
¶ Domain local negotiation constraint set DnC: The set of all local domain constraints on all coalition resources

is denoted by DnC = {const1, const2, …, constd} where each constraint consti is defined in NL.
¶ Global negotiation constraint set GC: The set of all global constraints that apply to all coalition resources is

8

denoted by GC = {gconst1, gconst2, …, gconste} where each constraint gconsti is defined in NL.
¶ Domain Proposal set DnProp: The set of all coalition resources that a domain wishes to be included in the

common access state is denoted by DnProp = {D1O’’, D1App’’, D2O’’, D2App’’, …, DnO’’, DnApp’’, JO’’,
JApp’’} where DiO’’ and DiApp’’ are the sets of objects and applications in domain Di and JO’’ and JApp’’ are
the sets of jointly owned objects and applications that domain Dn wishes to be part of the coalition.

¶ Domain Proposal Vote set DnPVote: The set of all votes for a particular domain proposal DnProp is denoted
by DnPVote = {D1_vote, D2_vote, …, Dk_vote}where Di_vote is a Boolean with values (yes, no) signifying
domain Di’s vote on the proposal DnProp.

¶ Domain Role addition set Dn_add_R: The set of all roles that have permissions for all negotiated resources of
domain Dn to be provided by domain Dn. Dn_add_R = {role1, role2, …, rolem} where rolei Í DnR.

¶ Joint resource Role addition set J_add_R: The set of all coalition roles that have permissions for negotiated
jointly owned coalition resources. J_add_R = {role1, role2, …, rolew} where rolei Í JR.

¶ Domain User-to-role addition relation Dn_add_UA: A many-to-many user-to-role assignment relation for
users of domain Dn and for all roles Í {D1_add_R, D2_add_R, …, Dk_add_R, J_add_R}.

Table 2: Elements of the State Transition Mode

4.2.1. Elements and Functions of NL

NL has the following five basic elements defined for privately and jointly owned coalition resources:
(1) users, (2) roles, (3) objects and applications, (4) operations, and (5) permissions. These elements were
defined in the previous section. We do not include the notion of a session that is typically supported for
most RBAC systems [1, 11]. This is because the negotiation constraints identified in Section 2 do not
need the concept of a session and, furthermore, it is not clear how any constraint, such as dynamic
separation of duty, can be defined or enforced on elements active in multiple sessions across multiple
domains. It is, however, possible to define session-based constraints for a single domain; we do not
support that for simplicity and instead refer to the work of Ahn and Sandhu [1] and Gligor et al. [11] for
such constraints.

The basic functions supported by NL are as follows. The function users gives the members of a
particular role, roles gives the set of roles associated with a set of users and a set of permissions,
permissions gives a set of permissions associated with a particular role, operations gives the set of
operations of a set of roles for a given set of resources, objects gives the set of objects for a particular
permission, and applications gives the set of applications for a set of permissions. These functions are
defined on individual domain sets as well as on the coalition sets. NL has two non-deterministic
functions, oneelement (OE) and allother (AO). The function OE(X) allows us to get one element xi, from
a given set X. The function AO(X) allows us to get a set by taking out one element from the set X. These
two functions are related as for any set P, {OE(P) Ç AO(P)} = P, though neither is a deterministic
function. These functions were introduced by Chen and Sandhu [5] and allow the expression of various
constraints without the use of logic quantifiers.

Additional elements of NL include conflicting role sets, conflicting permission sets and conflicting
user sets. These sets allow us to define access constraints and negotiation constraints without the use of
explicit negation. For example, a set of conflicting roles comprises roles whose users and/or permissions
are required to be mutually disjoint based on organizational policies, a set of conflicting permissions is a
set that a particular user must not have irrespective of his role membership, and so on.

Additional functions supported by NL include mathematical functions useful for defining negotiation
constraints. These functions can be defined on a set of natural numbers N and a set of lists L in addition to
the basic elements. We define some useful functions in Appendix A, which are similar to functions that
can be implemented in Prolog [27]. Tools for resource negotiations may implement other useful
mathematical functions.

9

4.2.2. Syntax of Statements in NL

op ::= Í| Æ | Ç (math) op::= + | - | * | exp | mod
size ::= f | 1 | … | N comp ::= ¢ | ² | ¸ | < | > | =
set ::= DnU | DnR | DnOP| DnOBJ | DnP | DnApp| JR | JOP| JOBJ| JApp| JP |

DnCR| DnCP| DnCU| CCR| CCP| CCU
(math) set ::= N | L
function (fn.) ::= user | roles | permissions | operation | object | application | OE | AO
(math) function :: = successor | minimum | maximum | List_min | List_max |

member | length | sumlist

Statement = (Expression Ý Expression) Ø Statement

Expression = Token comp (Token, size, set1 | set2 | … | setn)

Token = Term1 | Term2 | … | Termm

Term = Clause op Clause op … Clause, fn.(fn….(Clause),
fn.(fn. …(Clause) op fn.(fn. …(Clause) op … fn.(fn. …(Clause)

Clause = OE/AO(OE/AO … (set)

Figure 3: Syntax of NL Statements

In Figure 3 above we present the syntax of NL statements, which are formed from clauses of OE and
AO functions defined on sets of NL. In Appendix B we show that in a manner similar to that for
RCL2000 statements all NL statements have equivalent Restricted First Order Predicate Logic (RFOPL)
statements. The syntax of RFOPL statements is similar to that of NL statements and is as follows.

- Every RFOPL statement has a (possibly empty) sequence of variables, all of which are universally
quantified over sets in a left prefix to the statement

- The rest of the statement structure is similar to that in Figure 3 except for the structure of a clause,
which is as follows: Clause = variable, set – variable

4.3. State Model Variables
In the state-transition model, negotiations for resource sharing begin in a state where domain users

have access to only their own local domain resources (i.e., the coalition does not exist). As the
negotiations proceed, domains join the coalition, add resources to the coalition, propose common resource
sharing, vote on proposals, and commit negotiated proposals. The state variables of the model record the
state of the system at any given point in time in the form of information regarding the domain resources,
proposals and commitments encountered in a coalition resource negotiation. These state variables are
defined as follows in Table 3 below.

¶ Coalition Domain set CD: At any given point in time, this set records all domains that are members of the
coalition. The format of CD is: CD = {D1, D2, …Dk} where Di is a domain name

¶ Coalition Negotiation Constraint set CC: At any given point in time, this set records all negotiation
constraints (global and local) that are applied to coalition resources. The format of CC is: CC = {GC, D1C,
D2C, …, DkC }where entry GC is the set of all global constraints and entry (DiC) is a set of domain Di’s
local negotiation constraints.

¶ Coalition Access Matrix CAM: At any given point in time, this set records all (committed) users, roles,
objects, applications, permissions, user-role mappings, permissions-role mappings, and local domain access

10

constraints in all domains of the coalition including those for jointly owned resources. The format of CAM
is: CAM = {(D1U, D1R, D1OBJ, D1App, D1UA, D1FUA, D1OP, D1P, D1PA, D1AC), (D2U, D2R, D2OBJ,
D2App, D2UA, D2FUA, D2OP, D2P, D2PA, D2AC), …(DkU, DkR, DkOBJ, DkApp, DkUA, DkFUA, DkOP,
DkP, DkPA, DkAC), (JR, JOBJ, JApp, JOP, JP, JUA, JPA)} where entry (DiU, DiR, DiOBJ, DiApp, DiUA,
DiFUA, DiOP, DiP, DiPA) is the domain access matrix, DiAC is the domain access constraints of domain Di,
and (JR, JOBJ, JApp, JOP, JP, JUA, JPA) is the access matrix for jointly owned resources.

¶ Coalition Resource set CRes: At any given point in time, this set records all objects and applications that
coalition domains are willing to share with other = domains. The format of CRes is: CRes = {D1O’, D1App’,
D1Params, D2O’, D2App’, D2Params, …, DkO’, DkApp’, DkParams} where entry DiO’ Ì DiOBJ, DiApp’ Ì
DApp are the sets of all objects and applications that domain Di is willing to share with other coalition
domains and DiParams are elements of NL used for verifying satisfaction of negotiation constraints.

¶ Joint Resource set JRes: At any given point in time, this set records all objects and applications that
coalition domains would like to jointly own and administer with other coalition domains. The format of
JRes is: JRes = {JOBJ, JApp, JR, JP, JOP, JPA, JParams} where JR, JOP, JP and JPA are the roles,
operations, permissions, and role-permissions necessary to access jointly owned objects and applications in
JOBJ and JApp, and JParams are elements of NL used for verifying satisfaction of negotiation constraints.

¶ Coalition Proposal set CP: At any given point in time, this set records the set of current domain proposals
and all the votes on this domain proposal. The format of CP is: CP = {(D1Prop, D1PVvote), (D2Prop,
D2PVote), …, (DkProp, DkPVote)} where DiProp is a proposal by domain Di and DiPVote is the set of all
votes on that proposal.

¶ Negotiated Resource set NCR: At any given point in time, this set records the current negotiated set of
coalition resources. The format of NCR is: NCR = DiProp Í CP for some domain Di.

¶ Coalition commit set CCOM: At any given point in time, this set records all user-role memberships that
coalition domains wish to add to the existing CAM. The format of CCOM is: CCOM = {D1_add_R,
D1_add_UA, D2_add_R, D2_addUA, …, Dk_add_R, Dk_add_UA, J_add_R}.

¶ History set HIS: At any given point in time, this set records the history of all state transitions on the state
variables CD, CC, CAM, CRes, JRes, CP, NCR, and CCOM through multiple negotiations beginning with
the formation of the coalition. The format of HIS is HIS = {history_CD, history_CC, history_CAM,
history_CRes, history_JRes, history_CP, history_NCR, history_CCOM} where history_CRes is a set of
CRes elements through multiple negotiations, history_JRes is a set of JRes elements through multiple
negotiations, and so on.

Table 3: State Model Variables

4.4. The Secure State and the State Transition Rules
State (CD, CC, CAM, CRes, JRes, CP, NCR, CCOM, HIS): At any point in time, the state is defined

as (CD, CC, CAM, CRes, JRes, CP, NCR, CCOM, HIS) where CD, CC, CAM, CRes, JRes, CP, NCR,
CCOM and HIS are the state variables defined in Section 4.3.

We now define the secure state in the form of an invariant and the state transition rules supported by
the model. The invariant is based on the resource-negotiation policy discussed at the beginning of Section
4. A state in the model includes the access policies and constraints of all coalition domains. It is likely
that domains wish to keep their local policies and constraints private. Tools based on the state transition
model can easily satisfy the privacy requirements of member domains by maintaining a distributed state
across all domains with information regarding state transitions being communicated between the domains
to maintain a secure state. In this work we assume that all elements of a state can be accessed at any given
point in time and consequently the adherence to state transition rules can easily be verified.

Secure State: The definition of the secure state is a formulation of the negotiation in the form of a
State Invariant SI, provided in Table 4 below, where a state (CD, CC, CAM, CRes, JRes, CP, NCR,
CCOM, HIS) is said to be secure if:

11

I1: "X = (DiU, DiR, DiOBJ, DiApp, DiUA, DiFUA,
DiOP, DiP, DiPA, DiAC) Í CAM:

i) Di Í CD
ii) DiU x DiR x DiOBJ x DiApp x DiUA x

DiFUA x DiOP x DiP x DiPA |= DiAC
This invariant states that all domains in the coalition
must satisfy their local access constraints.

I2: For X = CC = {GC, D1C, D2C, …, DkC}
"W = (gconst) Í GC and "Y = (DiC); W, Y Í X,

i) W is in NL and
ii) DiÍ CD and
iii) Y is in NL and
iv) "Z = (DiU, DiR, DiOBJ, DiApp, DiUA,

DiFUA, DiOP, DiP, DiPA) Í CAM:Z |= W Ø Z |= Y
This invariant states that all domain access matrices
must satisfy all negotiation constraints.

I3: For X = CRes = {D1O’, D1App’, D1Params, …,
DkO’, DkApp’, DkParams}

"W = (DiO’) Í X and "Y = (DiApp’) Í X
i) Di Í CD and
ii) W Ì DiO Í CAM and
iii) Y Ì DiAppÍ CAM
iv) DiParams Í X are in NL

This invariant states that all contributed coalition
resources must be part of the domain access
matrices.

I4: For X = JRes = {JOBJ, JApp, JR, JP, JOP, JPA,
JParams}
"W = (obj) Í JOBJ and "Y = (app) Í Japp

i) $ role Í JR: permissions(role) Ì JP Ø
objects(permissions(role)) É W and

ii) $ role Í JR: permissions(role) Ì JP Ø
 applications(permissions(role)) É Y and
iii) JParams Í X are in NL

This invariant states that all jointly owned resources
must have necessary roles and permissions
associated with them.

I5: For X = CP = {(D1Prop, D1PVvote), (D2Prop,
D2PVote), …, (DkProp, DkPVote)}

i) "Z = (DjO’’, DjApp’’) Í X: Z Ì CRes
ii) "W = (JO’’, JApp’’) Í X: W Ì Jres
iii) "(DiProp, DjPvvote) in X: DiProp |= DiC

Ç GC where DiC Í CC, GC Í CC

This invariant states that each domain’s proposal
must include resources only from CRes and JRes
and must satisfy the local domain negotiation
constraints and the global negotiation constraints.

I6: For X = CP = {(D1Prop, D1PVvote), (D2Prop,
D2PVote), …, (DkProp, DkPVote)}
"W = DiPvote, "U = (Djvote) Í W: |U| ¢ 1 Ø U =

yes or no
This invariant states that each domain’s proposal must
be voted on by each of the coalition domains at most
once with a “yes” or a “no” vote.

I7: For X = (DiProp, DiPVote) Í NCR
i) DiProp Í CP and
ii) |DiPVote| = |CD| Ù Majority and
iii) "Z = (Dvvote) Í DiPvote: Z = yes
This invariant states that the negotiated set of
resources (NCR) is a proposal in CP that receives
either unanimous votes from all coalition domains,
or a pre-defined majority votes.

I8: For X = CCOM = {D1_add_R, D1_add_UA, …,
Dk_add_R, Dk_add_UA, J_add_R}
"W = (Di_add_R), Y = (J_add_R); W, Y Í CCOM,
i) objects(permissions(W)) É DiO’’ Ø

applications(permissions(W) É DiApp’’; DiO’’ Í
NCR, DiApp” Í NCR

ii) objects(permissions(Y)) É JO’’ Ø
applications(permissions(Y) É JApp’’; JO’’ Í
NCR, JApp” Í NCR
This invariant states that each domain must provide
roles with permissions for all of its resources in
NCR and that the coalition authority must do the
same for all jointly owned resources.

I9: For X = CCOM = {D1_add_R, D1_add_UA, …,
Dk_add_R, Dk_add_UA, J_add_R}
"W = (Di_add_R), Y = (J_add_R) , "Z =

(Di_add_UA) ; W, Y, Z Í CCOM,
i) " (u, v) Í Z: u Í DiU; DiU Í CAM and v

Í {W, Y}
This invariant states that all users that get access to
the resources in NCR must be valid domain users
and must get membership to only those roles
specified in CCOM

Table 4: State Invariant

State transitions occur when elements are added to the state variables as a result of resource
negotiation taking place. Under the formulation of state as (CD, CC, CAM, CRes, JRes, CP, NCR,
CCOM, HIS), resource negotiations can be completely represented as a sequence of state transition rules
described below. We use the notation that the application of a state transition rule on a state S = (CD, CC,

12

CAM, CRes, JRes, CP, NCR, CCOM, HIS) results in a new state denoted by S’ = (CD’, CC’, CAM’,
CRes’, JRes’, CP’, NCR’, CCOM’, HIS’). The state transition rules are provided in Table 5 and Table 6
below and examples of common access state negotiation using these rules are provided in Appendix D.

4.5. Satisfying Constraints Specified in NL
In the state-transition model we specify state transition rules that require the satisfaction of a set of

constraints. That is, given a set of statements (facts) the rule requires verification of the satisfaction of a
given set of constraints against these facts. Since these constraints and facts in the coalition domains’
RBAC models are specified in NL, we need a resolution procedure for NL that can be used for such
verifications. As mentioned in Section 4.2, all statements in NL can be converted to RFOPL statements.
All RFOPL statements are universally closed formulas with no negation and can therefore be represented
as Horn Clauses, which are a subset of the syntax supported by Prolog [20, 27]. The process of verifying
satisfaction of constraints required in our model is similar to that for verifying satisfaction of integrity
constraints in deductive databases. Lloyd [20] defines a query process for verification of integrity
constraints in deductive databases using the Prolog engine as a resolution procedure for the verification.
Furthermore, Lloyd also shows that the Prolog engine is a sound resolution procedure and that the query
process of verifying constraints is sound as well. Therefore, Prolog can also be used as a sound resolution
procedure for verifying the satisfaction of constraints in our state-transition model (a subset of RCL2000
has been implemented in Prolog [23]). For development of languages for constraint programming we
refer to Barth [3] and Comon et al. [6].

5. Security Formulations for the State Transition Model
In Section 4 we presented the state transition model for negotiating access to resources. We define

the notion of a secure state in terms of security invariant SI and presented the state transition rules. We
now present the security formulations for the model and show that the model supports these formulations.

Initial State: The initial state is defined to be ({}, {}, {}, {}, {}. {}. {}. {}, {}) and trivially satisfies
the state invariant SI stated in Section 4.4.

The following two theorems show that the formulations of security based on the state invariant SI
and the state transition rules are identical [21]. The proofs for these theorems are provided in Appendix C.

Theorem 1: If state Sn is the new state after application of a sequence of n state transition rules on
state So and if So satisfies the invariant SI, then Sn also satisfies the invariant SI.

Theorem 2: If S0 = (CD0, CC0, CAM0, CRes0, JRes0, CP0, NCR0, CCOM0, HIS0) and Sn = (CDn, CCn,
CAMn, CResn, JResn, CPn, NCRn, CCOMn, HISn) are two states that satisfy SI and CDn Ç HISn É CD0,
CCnÇ HISn É CC0, CAMnÇ HISn É CAM0, CResnÇ HISn É CRes0, JResnÇ HISn É JRes0, CPnÇ HISn

É CP0, NCRnÇ HISn É NCR0, and CCOMnÇ HISn É CCOM0, then there exists a sequence of rules that
transforms S0 to Sn and is secure.

6. Related Work
Negotiating Access to Coalition Resources. Previous work in this area illustrates some of the

important aspects of resource negotiations in specific settings. For example, Shands et al. [25] and
Herzberg et al. [14] addressed the problem of unambiguously specifying a common access state,
communicating this common state to all member domains, and committing this common access state.
However, this work assumes that common access states were agreed upon by extra-technological (e.g.,
off-line) means and that all member domains have the same interpretation of the common policy model
(i.e., a common interpretation of a role-based access control model). Other work addresses specific
aspects of bilateral authorization-check negotiation, for instance those that enable clients and servers to
agree on common authorization properties; i.e., matching client credentials with server access checks
discussed by Seamons et al. [24] and Winsborough et al. [28]. Although this work on authorization-check
negotiations introduces the important notion of client-server trust negotiation, it does not address the
notion of common state negotiation in multiparty settings, such as those of dynamic coalitions.

13

State Transition Rules
1) Rule 1: Join_coalition (CD, CAM, Di, {DiU, DiR,

DiOBJ, DiApp, DiUA, DiFUA, DiOP, DiP, DiPA})
Semantics: When a domain joins the coalition, the
domain’s access matrix and access constraints are
included in the coalition access matrix on the condition
that the joining domain’s access constraints are satisfied.
Domains cannot join the coalition while a negotiation is
in progress.

The rule:
if {DiU x DiR x DiOBJ x DiApp x DiUA x DiFUA
x DiOP x DiP x DiPA} |= DiAC and

CRes = JRes = CP = CCOM = f
then CD’ = CD Ç Di

CAM’ = CAM Ç {DiU, DiR, DiOBJ, DiApp,
DiUA, DiFUA, DiOP, DiP, DiPA, DiAC}
all other state variables remain unchanged

else all state variables remain unchanged

2) Rule 2 : Define set of constraints (GC, {D1C,
D2C, …, DkC})

Semantics: The coalition members accept the set of
constraints if the constraints can be satisfied by the
CAM prior to resource negotiations. Constraints can be
defined only at the beginning of a resource negotiation
process.

The rule:
if CAM |= GC Ç {D1C, D2C, …, DkC} and

 CRes = JRes = CP = CCOM = f
then CC’ = GC Ç {D1C, D2C, …, DkC}

 all other state variable remain unchanged
else all state variables remain unchanged

3) Rule 3 : Add domain resources for negotiation
(CRes, DnOBJ’, DnApp’)

Semantics: A domain may be willing to share a subset of
its resources (objects and applications) based on its local
preference and/or extra-technological agreements
between coalition members.

The rule:
if NCR = f and

"X = (obj) Í DnOBJ’: X Ì DnOBJ Í CAM
and "Y = (app) Í DnApp’: Y Ì DnAppÍ CAM
then CRes’ = CRes Ç (DnOBJ’, DnApp’)

all other state variables remain unchanged
else all state variables remain unchanged

4) Rule 4 : Add resource for joint ownership (JRes,
{JOBJ, JApp, JR, JOP, JP, JPA})

Semantics: A domain may wish to jointly own some
resources. A domain may add these resources as long as
it provides roles and permission relations to access the
resources.

The rule:
if NCR = f and

"X = (obj) Í JOBJ: $ role Í JR:
permissions(role) Ì JP Ø objects(permissions(role)) É X
and "Y = (app) Í JApp: $ {role1, role2, …, roler} Í
JR: permissions(role) Ì JP Ø
applications(permissions(role)) É Y
then JRes’ = JRes Ç {JOBJ, JApp, JR, JOP, JP,
JPA}

all other state variables remain unchanged
else all state variables remain unchanged

5) Rule 5 : Propose common shared resources (CP,
{D1O’’, D1App’’, D2O’’, D2App’’, …, DkO’’,
DkApp’’, JO’’, JApp’’})

Semantics: A domain Dp may propose any set of
common shared resource that (1) consists of objects and
applications from CRes and JRes and (2) satisfies
domain Dp’s local negotiation constraints as well as the
coalition global negotiation constraints.

The rule:
if NCR = f and

 (D1O’’ Ç D1App’’ Ç D2O’’ Ç D2App’’ Ç … Ç
 DkO’’ Ç DkApp’’) Ì CRes and
 JO’’ Ç JApp’’ Ì JRes and
 {D1O’’ Ç D1App’’ Ç … Ç DkO’’ Ç DkApp’’
Ç JO’’ Ç JApp’’} |= {DpC Ç GC}

then DpProp = (D1O’’, D1App’’, …, DkO’’,
 DkApp’’, JO’’, JApp’’)

CP’ = CP Ç DpProp
all other state variables remain unchanged

else all state variables remain unchanged

6) Rule 6 : Vote for proposal (CP, DiProp,
DiPVote, Dvvote)

Semantics: A domain Dv may vote (yes, no) for any
DiProp Í CP. A domain will vote “no” if its local
constraints are not satisfied by the proposal.

The rule:
if NCR = f and

DiProp Í CP and
 Dvvote Î DiPVote and
 (DiProp |= DvC Ç GC and Dvvote = yes);
 DvC Í CC, GC Í CC

or (Dvvote = no)
then DiPVote’ = DiPVote Ç Dvvote

CP’ = CP Ç DiPVote’
all other state variables remain unchanged

else all state variables remain unchanged

Table 5: State Transition Rules 1 – 6

14

7) Rule 7 : Declare negotiated set of shared
resources (NCR)

Semantics: The first proposal that receives either
unanimous votes or a pre-defined majority votes is
declared the negotiated common state

The rule:
if $Y = DiPVote Í CP: |Y| = |CD| Ù Majority and

"x = Dvvote Í Y, x = yes
then NCR’ = DiProp Í CP

 all other state variables remain unchanged
else all state variables remain unchanged
/* Note: negotiations may not end */

8) Rule 8 : Add roles for committing NCR
(CCOM, Di_add_R)

Semantics: Each domain Di must provide a set of roles
that have permissions for all its resources in NCR.

The rule:
if Di_add_R Ì DiR Í CAM and

 objects(permissions(Di_add_R)) É DiO’ Í
 NCR and
 applications(permissions(Di_add_R)) É
 DiApp’ Í NCR

then CCOM’ = CCOM Ç Di_add_R
 all other state variables remain unchanged

else all state variables remain unchanged
9) Rule 9 : Add users for committing NCR

(CCOM, Di_add_UA)
Semantics: Each domain provides a set of users and a
user-to-role relation mapping these users to roles in
CCOM. The relation must satisfy the domain’s local
neg. and access constraints and global neg. constraints.

The rule:
if "(x,y) Í (Di_add_UA): x Í DiU and y Í
{D1_add_R, …, Dk_add_R, J_add_R}

 where DiU Í CAM, {D1_add_R, …,
Dk_add_R, J_add_R} Í CCOM and

 Di_add_UA |= DiAC, DiC Ç GC; DiAC Í
CAM, DiC, GC Í CC
then CCOM’ = CCOM Ç Di_add_UA

 all other state variables remain unchanged
else all state variables remain unchanged

10) Rule 10: Leave coalition (CAM, CC, Dj, DjAM,
HIS)

Semantics: Any coalition domain may choose to leave
the coalition at any time except when a negotiation is in
progress. When a domain leaves, it withdraws its
privately-owned resources. As a consequence any
negotiation constraint (of the remaining coalition
domains) that is no longer satisfied, is invalidated.

The rule:
if CRes = JRes = CP = NCR = CCOM = f
then " (x,y) ÍDjFUA: x Í DiU for some Di Í CD,
 y Í DjR

 CAM’ = CAM’ - (x, y)
CC’ = CC – DjC
"const Í CC’: CAM’ö¸ const
 CC’ = CC’ – const
CD’ = CD - Dj

HIS’ = HIS Ç CD Ç CC Ç CAM Ç CRes Ç
JRes Ç CP Ç NCR Ç CCOM

all other state variables remain the same
else all state variables remain unchanged
11) Rule 11: Commit negotiated common state

(CAM, HIS)
Semantics: The negotiated NCR along with the roles,
users, and user-to-role mappings in CCOM may be
committed if they satisfy each domain’s local access
policy constraints and all negotiation constraints. All
user-to-role mappings that were negotiated in previous
negotiations but are not part of the current common
access state must be revoked.

The rule:
if NCR Ç CCOM |= CC Í CAM and

 NCR Ç CCOM |= {D1AC Ç D2 AC Ç … Ç
DkAC} Í CAM
then JResource = {JOBJ, JApp, JR, JOP, JP, JPA}

 {where JOBJ Í NCR, JApp Í NCR, JR =
J_add_R Í CCOM, JP = permissions(JR), JOP =
operations(JR, JOBJ, JApp)}
 CAM’ = CAM Ç JResource
 /* add jointly owned resources to CAM’ */
"(x,y)ÍCCOM: xÍDiU, yÍ{DjR} for some Dj Í

CD Ø (x,y) Î CAM’
 Dj_FUA’ = Dj_FUA Ç (x, y)

 CAM’ = CAM’ Ç Dj_FUA’
 /* add foreign user-to-role relations */
" (x,y) Í CCOM: x Í DiU, y Í JR and (x,y) Î CAM’

 JUA’ = JUA Ç (x, y)
CAM’ = CAM’ Ç JUA’

/* add joint admin. user-to- role relations to CAM’*/
"DiÍ CD,"(x,y)Í DiFUA Í CAM’ and (x,y) Î CCOM

CAM’ = CAM’ – (x,y) \
 /* revoke prior user-to-role relations */

" (x,y) Í JUA Í CAM’ and (x,y) Î CCOM
CAM’ = CAM’ – (x,y)

 /* revoke prior user-to-role relations */
HIS’ = HIS Ç CD Ç CC Ç CAM Ç CRes Ç

JRes Ç CP Ç NCR Ç CCOM
CRes’ = JRes’ = CP’ = NCR’ = CCOM’ = f
all other state variables remain unchanged

else all state variables remain unchanged

Table 6: State Transition Rules 7 – 11

15

In contrast, our work explores the automation of the process of negotiating a common access state in
a generic dynamic coalition multiparty setting where all the domains of a coalition share the same
interpretation of a common policy model. We cast this negotiation problem as one of satisfying (1)
diverse coalition-member objectives, (2) a specified set of negotiation constraints, and (3) the existing
access constraints of the coalition members.

A Language for Specifying Negotiation Constraints. For negotiation a common access state, we
require a language that is expressive in that it can be used to express a variety of negotiation constraints,
and easy to use in that using the language should not require knowledge of underlying logic structures and
rules. This is because we envision the language to be used by coalition administrators and not by security
access policy designers. Furthermore, we require the language to be supported by a resolution procedure
for verifying the satisfaction of negotiation constraints.

Tower [15] is an expressive language that is designed for object-oriented systems. It is easy to use
for systems designers who understand object-oriented systems. However, the language allows for the
definition of only a limited variety of constraints and there is no resolution procedure currently defined or
implemented. The Ponder [7] policy specification language provides a common means for specifying
security policies that map onto various access control implementation mechanisms. The language is
targeted for management of large-scale object oriented systems and consequently the use of the language
requires familiarity with these systems. A deployment model for object-oriented systems is discussed in
[8], however, the language can express only a limited set of constraints. ASL [16, 17] and the
authorization constraint language proposed by Bonatti et al. [4] are expressive languages for RBAC
systems defined with well-formed logic structure and rules. The languages are supported by resolution
procedures, which are shown to be implementable. Furthermore, the languages allows for the expression
of conflicting authorizations that can be resolved by user-defined resolution mechanisms (functions).
However, both the languages are difficult to use, as their use requires knowledge of underlying logic
structures and rules. OASIS [13] is an RBAC architecture for interoperation of services in distributed
environments. It uses the notion of role activation based on rules that are dependant on credentials, which
are transferred via role membership certificates. OASIS defines an RBAC language that can be used with
some background knowledge of logic structures and rules. However, the language is not very expressive
for constraint definition. RCL2000 [1] is an expressive RBAC language targeted for flexible RBAC
constraint specification. It is easy to use and logic structures are hidden from the language user. The
language has been modeled in UML [26] and OCL [2] for constraint specification, and a subset of the
language has been implemented in Prolog [23]. We have extended RCL2000 with additional elements and
functions and shown that Prolog can be used as a resolution procedure for the language.

7. Conclusions
We have shown that negotiating a common access state means obtaining the agreement of each

domain to share privately owned resources and to either privately or jointly administer access to the
resources. We have also shown that in the presence of coalition dynamics, member domains must re-
negotiate the common access state multiple times. We developed a state transition model of the
negotiation process and a negotiation language for the specification of a wide variety of negotiation
constraints, and we illustrated negotiations of common access states.

Several problems of coalition resource negotiation related to our work remain to be solved. Though
we identify useful types of negotiation constraints, we do not identify all possible types. The task of
formal characterization of negotiation constraints still remains to be undertaken. We assume that all
domains have a common interpretation of the RBAC policy model. Future work on formal modeling of
the negotiation process can relax this restriction and allow the negotiation of common access states that
can be committed on multiple access policy models (e.g., by negotiating directly on permissions of the
resources as opposed to negotiating membership to roles that have permissions for the resources). A
problem closely related to our work is that of composing proposals for resource sharing that are likely to
be accepted by all coalition domains. Game theory or heuristics may provide solutions to this problem.

16

References
1. G-J. Ahn and R. Sandhu, "Role-based Authorization Constraints Specification", ACM Transactions

on Information and System Security, pages 207-226, Vol. 3, No. 4, ACM, November 2000.
2. G-J. Ahn and M. E. Shin, "Role-based Authorization Constraints Specification Using Object

Constraint Language”, In Proceedings of 6th IEEE International Workshop on Enterprise Security
(WETICE 2001), MIT, MA, June 20-22, 2001.

3. P. Barth, “Logic-Based 0-1 Constraint Programming”, Kluwer Academic Publishers, Massachusetts
1996.

4. P. Bonatti, S. De Capitani di Vimercati, P. Samarati, “An Algebra for Composing Access Control
Policies”, in ACM Transactions on Information and System Security (TISSEC), vol. 5, n. 1, February
2002, pp. 1-35.

5. F. Chen and R. Sandhu, “Constraints for Role Based Access Control”, Proceedings of the first ACM
Workshop on Role Based Access Control, MD, December 1995, pp.39-46.

6. H. Comon, C. Marché, R. Treinen (Eds.), “Constraints in Computational Logics: Theory and
Applications”, International Summer School, CCL'99 Gif-sur-Yvette, France, September 5-8, 1999,
Revised Lectures, Lecture Notes in Computer Science Springer 2002.

7. N. Damianou, N. Dulay, E. Lupu, M Sloman, “The Ponder Specification Language”,
International Workshop on Policies for Distributed Systems and Networks (Policy2001), HP Labs
Bristol, Jan 2001.

8. N. Dulay, E. Lupu, M Sloman, N. Damianou, “A Policy Deployment Model for the Ponder
Language”, Proceedings of the IEEE/IFIP International Symposium on Integrated Network
Management, Seattle, May 2001.

9. D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-based access control: Features and motivations”,
Proceedings of the Annual Computer Security Applications Conference, 1995.

10. V.D. Gligor and S.I. Gavrila, Application-Oriented Security Policies and their Composition,
Proceedings of Security Protocols 6th International Workshop. Cambridge, UK, April 1998.

11. V.D. Gligor, S.I. Gavrila, and D. Ferraiolo, “On the Formal Definition of Separation-of-Duty Policies
and their Composition”, Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
California, May 1998.

12. V. D. Gligor, H. Khurana, R. Koleva, V. Bharadwaj, and J. Baras, “On the Negotiation of Access
Control Policies”, To appear in the 9th Security Protocols Workshop, Cambridge, UK, Springer-
Verlag, 2001.

13. R. Hayton, J. Bacon, K. Moody, “OASIS: Access Control in an Open, Distributed Environment”,
Proceedings of the IEEE Symposium on Security and Privacy, Oakland CA, pp3-14, May 1998.

14. A. Herzberg, Y. Mass, J. Michaeli, D. Naor and Y. Ravid, “Access Control Meets Public Key
Infrastructure, Or: Assigning Roles to Strangers”, Proceeding of the IEEE Symposium on Security
and Privacy, Oakland, California, May 2000.

15. M. Hitchens, V. Varadharajan, “Tower: A Language for Role Based Access Control”, International
Workshop on Policies for Distributed Systems and Networks, POLICY 2001 Bristol, UK, January,
2001, Springer-Verlag LNCS1995, pp. 88-106, 2001.

16. S. Jajodia, P. Samarati, V. S. Subrahmanian, “A logical language for expressing authorizations”,
Proceedings of IEEE Symposium on Security and Privacy, Oakland, CA, May 1997, pages 31-42.

17. S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian, “Flexible Support for Multiple Access
Control Policies”, ACM Transactions on Database Systems, pp. 214-260, June 2001.

18. H.Khurana, “Negotiation and Management of Coalition Resources”, PhD Dissertation, University of
Maryland, College Park, MD, June 2002.

19. H.Khurana, V.D. Gligor, and J. Linn, “Reasoning About Joint Administration of Access Policies for
Coalition Resources”, IEEE International Conference on Distributed Computing Systems, Vienna,
July 2002 (full length manuscript available at http://glue.umd.edu/~gligor).

20. J.W. Lloyd, “Foundations of Logic Programming”, Second Edition, Springer-Verlag New York 1987.

17

21. J. McLean, “Reasoning about Security Models”, Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, pp. 123-131, April 1987.

22. C. E. Phillips, T. C. Ting, S. A. Demurjian, “Information sharing and security in dynamic coalitions”
Proceedings of the ACM Symposium on Access Control Models and Technologies (SACMAT),
Moenterey, CA June 2002.

23. A. Schaad, “Detecting Conflicts in a Role-based Delegation Model”, Proceedings of the 17th Annual
Computer Security Applications Conference (ACSAC), New Orleans, Louisiana, December 2001.

24. K. E. Seamons, M. Winslett, and T. Yu, “Limiting the Disclosure of Access Control Policies during
Automated Trust Negotiation”, Proceedings of the Internet Society's Symposium on Network and
Distributed System Security, San Diego, CA, February 2001.

25. D. Shands, R. Yee, J. Jacobs, “Secure Virtual Enclaves: Supporting Coalition Use of Distributed
Application Technologies”, Proceedings of the Network and Distributed Systems Security
Symposium, San Diego, February 2000.

26. M. E. Shin and G-J. Ahn, “UML-based Representation of Role-based Access Control”, Proceedings
of 5th IEEE International Workshop on Enterprise Security (WETICE 2000), NIST, MD, June 14-16,
2000.

27. L. Sterling, E. Shapiro, “The Art of Prolog”, Second Edition, The MIT Press, Massachusetts, 1994.
28. W. H. Winsborough, K. E. Seamons, and V. E. Jones, “Automated Trust Negotiation”, DARPA

Information Survivability Conference and Exposition, Hilton Head, January 2000.

Appendix A: Elements and Functions of Negotiation Language NL
Basic Elements and functions

- Model Elements, namely, DiU, DiR, DiOBJ, DiApp, DiUA, DiFUA, DiOP, DiP, DiPA, DiAC, JR, JOBJ,
JApp, JOP, JP, JUA, JP

- users : DnR ­ 2U, a function mapping each domain Dn role ri to a set of users
- roles: DnU Ç DnP­ 2R, a function mapping the set DnU and DnP to a set of roles R
- permissions: DnR­ 2P, a function mapping each domain Dn role ri to a set of permissions
- operations: DnR X (DnOBJ, DnApp) ­ 2OP, a function mapping each domain Dn role ri, and

object/application obj1/appl, to a set of operations
o operations (ri, objl) = {op Í DnOP | (op, objl, ri) Í DnPA}

- objects: DnP­ 2OBJ, a function mapping each domain Dn permission pi to a set of objects
- applications: DnP ­ 2App, a function mapping a set of domain Dn permissions to a set of domain Dn

applications
- coalition users: {D1R, …, DnR, JR} ­ 2U, a function mapping each coalition role ri to a set of coalition users
- coalition roles: {D1U, …, DnU} Ç {D1P, …, DnP, JP} ­ 2R, a function mapping the set of coalition users

and coalition permissions to a set of coalition roles
- coalition permissions: {D1R, …, DnR, JR} ­ 2P, a function mapping each coalition role ri to a set of

permissions
- coalition operations: {D1R, …, DnR, JR} X {D1OBJ, D1App,…, DnOBJ, DnApp, JOBJ} ­ 2OP, a function

mapping each coalition role ri, and coalition object/application objl, to a set of operations
o coalition operations (ri, objl) = {op Í {D1OP, …, DnOP, JOP} | (op, objl, ri) Í {D1PA, …,

DnPA, JPA}}
- coalition objects: {D1P, …, DnP, JP} ­ 2OBJ, a function mapping each coalition permission pi to a set of

objects
- coalition applications: { D1P, …, DnP, JP} ­ 2App, a function mapping a set of coalition permissions to a set

of applications
- DnCR = a collection of domain conflicting role sets, {cr1, …, crs}, where cri = {r1, …, rt} Ì DnR
- DnCP = a collection of domain conflicting permission sets, {cp1, …, cpu}, where cpi = {p1, …, pv} Ì DnP
- DnCU = a collection of domain conflicting user sets, {cu1, …, cuw}, where cui = {u1, …, ux} Ì DnU

18

- DnCOBJ = a collection of domain conflicting object sets, {cobj1, …, cobjw}, where cobji = {obj1, …, objx} Ì
DnOBJ

- DnCApp = a collection of domain conflicting application sets, {capp1, …, cappw}, where cappi = {app1, …,
appx} Ì DnApp

- CCR = a collection of coalition conflicting role sets, {cr1, …, crs}, where cri = {r1, …, rt} Ì {D1R Ç D2R Ç
… Ç DkR Ç JR}

- CCP = a collection of coalition conflicting permission sets, {cp1, …, cpu}, where cpi = {p1, …, pv} Ì {D1P Ç
D2P Ç … Ç DkP Ç JP}

- CCU = a collection of coalition conflicting user sets, {cu1, …, cuw}, where cui = {u1, …, ux} Ì {D1U Ç D2U
Ç … Ç DkU}

- CCOBJ = a collection of coalition conflicting object sets, {cobj1, …, cobjw}, where cobji = {obj1, …, objx} Ì
{D1OBJ Ç D2OBJ Ç … Ç DkOBJ Ç JOBJ }

- CCApp = a collection of coalition conflicting application sets, {capp1, …, cappw}, where cappi = {app1, …,
appx} Ì {D1App Ç D2App Ç … Ç DkApp Ç JApp }

- oneelement(X) = xi, where xi Í X
- allother(X) = X – {OE(X)}

Additional Elements and Functions of NL

- N: the set of natural numbers
- L: a set of lists where each list l = []. if empty, or l = [X|Y] with X = head of l and Y is another list and the

tail of l where X can be a basic element of NL or a natural number
- Successor: N ­ N, a function mapping a natural number to its successor, that is, Successor(n) = n +1 where

n Í N
- Minimum: N X N ­ N, a function mapping two natural numbers to the one that is the minimum, that is,

Minimum (n, m, n) « n ¢ m, where “«” denotes implication
- Maximum: N X N ­ N, a function mapping two natural numbers to the one that is the maximum, that is,

Maximum (n, m, n) « n ² m
- Sumlist: L ­ N, a function mapping a list of natural numbers to the number that is the sum of all the

elements of the list, recursively defined as follows:
o Sumlist([], 0) /* the sum of an empty list is 0 */
o Sumlist([X|Xs], Sum) « Sumlist(Xs, Issum) /* Sum is X + Issum */

- List_min: L ­ N, a function mapping a list of natural numbers to a natural number which is the minimum in
the list, defined as follows:

o List_min([X|Xs], M) « List_min(Xs, X, M)
o List_min([X|Xs], Y, M) « Minimum(X, Y, Y1), List_min(Xs, Y1, M)

- List_max: L ­ N, a function mapping a list of natural numbers to a natural number which is the maximum in
the list, that is, Listmax(Xs, N) defined similar to List_min.

- Member: L X L ­ T/F, a function mapping a list l (l = [X|Y]) and an element of a list x to a Boolean value
(true/false) as follows:

o Member(X, [X|Xs])
o Member(X, [Y|Ys]) « Member(X, Ys)

- Length: L ­ N, a function mapping a list l (l = [X|Y])to natural number n identifying the number of elements
of the list and is defined as follows:

o Length([], 0) /* length of an empty list is 0 */
o Length([X|Xs], N) « Length(Xs, N1) /* N is N+1 */

Appendix B: Semantics of Negotiation Language NL
We present a reduction algorithm to convert any statement in the negotiation language NL to a statement in a

restricted first order predicate logic (RFOPL) language and a construction algorithm to convert an RFOPL statement
to a NL statement. These algorithms are similar to those given for the conversions between RCL2000 statements and

19

RFOPL statements [1]. We show that the relationship between the statements in NL and RFOPL is sound and
complete where the proof for completeness is simpler than the one presented in [1].

B.1. Conversions between NL and RFOPL Statements
The reduction of NL statements to RFOPL statements involves the elimination of OE and AO functions by

replacing them with universal quantifiers while the construction of NL statements from RFOPL statements involves
the elimination of quantifiers by replacing them with OE and AO functions. We present the reduction and
construction algorithms below and note that the reduction algorithm is a modified version of the one presented in [1]
for RCL2000 statements. This modification involves restricting the possible reductions of an NL statement to
exactly one RFOPL statement and this modification allows us to simplify the completeness proof in Section B.2.

Reduction Algorithm
Input: NL statement; Output: RFOPL statement
Let Reduce-OE term be either OE(set) or OE(function(element)), where set is an element of {DiU, DiR, DiOBJ,

DiApp, DiUA, DiFUA, DiOP, DiP, DiPA, DiAC, JR, JOBJ, JApp, JOP, JP, JUA, JP} and function is an element of
{user, roles, permissions, operations, object, application, coalition user, coalition roles, coalition permissions,
coalition operations, coalition object, coalition application, minimum, maximum, list_min, list_max, member,
sumlist, successor}

1. AO elimination
 replace all occurrences of AO(expr) with (expr – {OE(expr)});
2. OE elimination
 While there exists Reduce-OE term in NL statement

choose the innermost Reduce-OE term of the leftmost expression that has
 a Reduce-OE term

 call reduction procedure;
End
Procedure reduction

 case (i) Reduce-OE term is OE(set)
 create new variable x;

 put "x Í set to the right of the existing quantifier(s);
 replace all occurrences of OE(set) by x;

case (ii) Reduce-OE term is OE(function(element))
 create new variable x;

 put "x Í function(element) to the right of existing quantifier(s);
 replace all occurrences of OE(function(element)) by x;

End

Construction Algorithm
 Input: RFOPL statement; Output: NL statement

1. Construct NL statement from RFOPL statement
 While there exists a quantifier in RFOPL statement
 choose the rightmost quantifier "x Í X;
 pick values x and X from the chosen quantifier;
 replace all occurrences of x by OE(X);
 End
2. Replacement of AO
 If there is (expr – {OE(expr)}) in RFOPL statement
 replace it with AO(expr);

B.2. Relationship between NL Statements and RFOPL Statements
We have the following four lemmas based on the reduction (R) and construction (C) algorithms presented in

the previous section.
Lemma 1: Given NL statement a, R(a) always gives the same RFOPL statement b.

20

Proof: The reduction algorithm always chooses the innermost OE function of the leftmost expression that has
an OE function to reduce a NL statement to a RFOPL statement. This procedure is deterministic. Therefore, given
NL statement a, we will always get the same RFOPL statement b.

Lemma 2: Given RFOPL statement b, C(b) always gives the same NL statement a.
Proof: The construction algorithm always chooses the rightmost quantifier to construct a NL statement from

the RFOPL statement. This procedure is deterministic. Therefore, given RFOPL statement b, we will always get the
same NL statement a.

Definition: Intermediate statements – The statements generated during reduction and construction are called
intermediate statements. These statements have both quantifiers and OE terms.

Lemma 3: If the intermediate expression d is derived from an NL statement a by the Reduction algorithm in k
iterations, then the Construction algorithm applied to d will terminate in exactly k iterations.

Proof: Since the Reduction algorithm generates exactly one quantifier per iteration, d must have exactly k
quantifiers. Furthermore, since the Construction algorithm eliminates exactly one quantifier per iteration, it will
terminate in exactly k iterations.

Lemma 4: If the intermediate expression d is derived from an RFOPL statement b by the Construction
algorithm in k iterations, then the Reduction algorithm applied to d will terminate in exactly k iterations.

Proof: Since the Construction algorithm generates exactly one OE term per iteration, d must have exactly k OE
terms. Furthermore, since the Reduction algorithm eliminates exactly one OE-term per iteration, it will terminate in
exactly k iterations.

We now prove the soundness and completeness of the relationship between NL and RFOPL statements.
Soundness theorem: Given NL statement a, a can be translated into an RFOPL statement b. Also a can be

reconstructed from b. That is C(R(a)) = a.
Proof: Let us define Cn as n iterations of the Construction algorithm and Rn as n iterations of the Reduction

algorithm. We show that Cn (Rn(a)) = a by induction on the number of iterations in reduction R (or, C under the
result of Lemma 3).

Hypothesis: If the number of iterations n is 0, then the theorem follows trivially.
Inductive Step: We assume that if n = k, the theorem is true.

Consider the intermediate statement d translated by the Reduction algorithm in k + 1 iterations. If d’ is the
intermediate statement after k iterations, then d differs from d’ by having one additional rightmost quantifier and one
less distinct OE term. Application of the Construction algorithm to d eliminates this rightmost quantifier and brings
back the OE term (under the result of Lemma 1). Thus, one iteration of the construction algorithm applied to d gives
us d’.

By induction, Cn (Rn(a)) = a. This completes the proof of the theorem.
Completeness Theorem: Given RFOPL statement b, b can be translated into NL statement a. Also b can be

retranslated from a, that is, R(C(b)) = b.
Proof: We show that Rn (Cn(b)) = b by induction on the number of iterations in reduction C (or, R under the

result of Lemma 4).
Hypothesis: If the number of iterations n is 0, then the theorem follows trivially.
Inductive Step: We assume that if n = k, the theorem is true.
Consider the intermediate statement d translated by the Construction algorithm in k + 1 iterations. If d’ is the

intermediate statement after k iterations, then d differs from d’ by having one additional distinct OE term and one
less rightmost quantifier. Application of the Reduction algorithm to d eliminates this distinct OE term and brings
back the rightmost quantifier (under the result of Lemma 2). Thus, one iteration of the Reduction algorithm applied
to d gives us d’.

By induction, Rn (Cn(a)) = a. This completes the proof of the theorem.

Appendix C: Security Formulations for the State Transition Model

Initial State: The initial state is defined to be ({}, {}, {}, {}, {}. {}. {}. {}, {}) and trivially satisfies the state
invariant SI stated in Section 4.4.

Theorem 1: If state Sn is the new state after application of a sequence of n state transition rules on state So and if
So satisfies the invariant SI, then Sn also satisfies the invariant SI.

21

Proof: We show a proof of the theorem by induction.
Let the sequence of transition rules applied be {R1, R2, …, Rn} and let the resulting sequence of states be {So,

S1, … Sn} such that state Si results from an application of Ri on state Si-1.
Consider the case where state Si-1 is known to satisfy SI. We have to show that the application of transition rule

Ri results in a state Si that also satisfies SI.
Hypothesis: I = 0. S = So – the initial state satisfies SI as shown above.
Induction Step: I > 0. We assume that state Si-1 = S = (CD, CC, CAM, CRes, JRes, CP, NCR, CCOM, HIS)

satisfies the state invariant SI, that is, I1 … I9 are satisfied by CD, CC, CAM, CRes, JRes, CP, NCR, CCOM and
HIS. We show below that Si satisfies SI for Rule R5 – Propose common shares resources. It can be similarly shown
that other transition rules also result in Si satisfying SI. (Proofs for Rules 10 and 11 are provided in [18]).

Application of rule R5= Propose common shared resources (CP, DpProp = {D1O’’, D1App’’, D2O’’, D2App’’,
…, DkO’’, DkApp’’, JO’’, JApp’’}

S’ = (CD’, CC’, CAM’, CRes’, JRes’, CP’, NCR’, CCOM’, HIS’) = (CD, CC, CAM, CRes, JRes, CP Ç
DpProp, NCR, CCOM, HIS)

(CD, CC, CAM, CRes, JRes, NCR, CCOM, HIS) satisfy I1, I2, I3, I4, I6, I7, I8 and I9.
CP satisfies I5 and DpProp satisfies

(i) "Z = (DjO’’, DjApp’’) Í DpProp: Z Ì CRes
(ii) "Z = (JO’’, JApp’’) Í DpProp: Z Ì JRes
(iii) DpProp |= DiC Ç GC where DiC Í CC, GC Í CC

Therefore, CP Ç DpProp satisfies I5.
By hypothesis, S0 = (CD, CC, CAM, CRes, JRes, CP, NCR, CCOM, HIS) satisfies SI. Thus, by induction S1,

S2, …, Sn also satisfy SI. This completes the proof of the theorem.

Theorem 2: If S0 = (CD0, CC0, CAM0, CRes0, JRes0, CP0, NCR0, CCOM0, HIS0) and Sn = (CDn, CCn, CAMn,
CResn, JResn, CPn, NCRn, CCOMn, HISn) are two states that satisfy SI and CDnÇ HISn É CD0, CCnÇ HISn É CC0,
CAMnÇ HISn É CAM0, CResnÇ HISn É CRes0, JResnÇ HISn É JRes0, CPnÇ HISn É CP0, NCRnÇ HISn É NCR0,
and CCOMnÇ HISn É CCOM0, then there exists a sequence of rules that transforms S0 to Sn and is secure.

Proof: We prove the theorem by contradiction
Let the sequence of rules {R1, R2, …, Rn} transform S0 to Sn through intermediate states S1, S2, …, Sn-1 such

that each Si+1 adds a set of elements to CDi, CCi, CAMi, CResi, JResi, CPi, NCRi, CCOMi, or HISi.
Let us assume that the above sequence of rules contains at least one insecure transform Ri (1 < i < n) which,

when applied to state Si-1 results in a new state Si. There are 11 possible cases for transform Ri. We consider the
following case for transform Rule 5, namely proposing common shared resources. The arguments for the remaining
ten cases are similar.

Consider transform Ri to be Rule 5. Si-1 = (CDi-1, CCi-1, CAMi-1, CResi-1, JResi-1, CPi-1 Ç DpProp, NCRi-1,
CCOMi-1, HISi-1)

Since Ri is not a secure transform, the if part of Rule 5 is not satisfied for the set of elements X = DpProp in
CPi. Thus, there exists a set of elements X in CPi, which violate I5 of SI. Therefore state Si does not satisfy SI.
Moreover, Sn = (CDn, CCn, CAMn, CResn, JResn, CPn, NCRn, CCOMn, HISn) may be reached from intermediate
state Si = (CDi, CCi, CAMi, CResi, JResi, CPi, NCRi, CCOMi, HISi), thus CDnÇ HISn É CDi, CCnÇ HISn É CCi,
CAMnÇ HISn É CAMi, CResnÇ HISn É CResi, JResnÇ HISn É JResi, CPnÇ HISn É CPi, NCRnÇ HISn É NCRi,
and CCOMn Ç HISn É CCOMi (since in our model, all state transitions except for the commit and leave coalition
transitions only allow augmentations of sets CD, CC, CAM, CRes, JRes, CP, NCR, CCOM, HIS and any reductions
in the commit or leave coalition transitions are maintained in the HIS set). If CPi contains the set of elements X
which violates I5, then CPn Ç HISn also contains the same set of elements X and hence we arrive at the conclusion
that Sn does not satisfy SI, which contradicts our hypothesis.

Thus the sequence of rules which takes us from S0 to state Sn does not contain any insecure transform, and is,
therefore, secure. This completes the proof of the theorem.

Appendix D: Examples of Common Access State Negotiations
In this section we illustrate three examples of negotiating a common access state in the state-transition model.

Negotiation constraints are specified in NL. The first example is one of negotiating airlines routes introduced in
Section 2. In the second example we illustrate how our model supports coalition dynamics. Additional examples are
provided in [18].

22

D.1. Example 1: Negotiating Routes with Least-Privilege Constraints
This example was introduced in Section 2. We review the coalition objective, present the negotiation constraints

in NL and describe the negotiation process using the state-transition model.
Coalition Objective: To share six route types (1 … 6) between three domains D1, D2, and D3 and to jointly own

and administer an auditing application with access to shared routes.
Negotiation Constraints: The following two global negotiation constraints have been agreed upon:

(1) Domains that have unique route types must share them (obligation constraint). As a consequence, Domain
D1 must share route type 6 and Domain D2 must share route type 3.

(2) Sharing of route types must minimize the number of routes shared (least privilege constraint); i.e., if two or
more domains are capable of sharing the same route type, then the one that comprises the lowest number of
objects will be used.

These constraints are specified in NL as follows:
Let DU be a list of all coalition users: DU = {D1U, D2U, D3U}
For each route type routei, the following two lists are defined

Domi = {D1, …, D3} – list of domains that have routei
Ni = {nroutes1, …, nroutes3} – number of routes in each domain’s route type

Constraint (1) length(Domi) = 1 Ý
routei Í coalition objects(coal. permissions(coal. roles(DU-DjU))))
where domain Dj Í Domi

Constraint (2) length(Domi) > 1 Ø list_min(Ni, Nij)Ý
routei Í coal.objects(coal. permissions(coal. roles(DU-DjU))))
where domain Dj ÍӞDomi and Nij is the jth element of list Ni

The Negotiation Process
In Figure 4 below, we illustrate the negotiation process in the state-transition model for the above coalition

objective and negotiation constraints. We show the relevant state variables in the common access state as the
negotiation proceeds with application of the state transition rules.

{D1FUA} = f, {D2FUA} = f, {D3FUA} = f

D2Prop = {D1 (1, 6), D2 (3), D3 (2, 4, 5)}, JRes

Propose shared resources

CD = {D1, D2, D3}; CAM: {D1AM, D2AM, D3AM}
Join Coalition

CC = {GC}
Define Neg. Constraints

CRes = D1: (1, 4, 5, 6), D2: (1, 2, 3, 4), D3: (1, 2, 4, 5)

Add domain Resources

D2PVote = {Yes, Yes, Yes}
Vote on Proposal

NCR = {D1 (1, 6), D2 (3), D3 (2, 4, 5)}, JRes
Declare Shared Resources

CCOM = {RD1_1, RD1_6, RD2_3, RD3_2, RD3_4, RD3_5, JR}

Add Roles

CCOM = {(UD3_user1: RD1_1, RD1_6, RD2_3)}
Add User-Role Relations

D1FUA = {RD1_1: (UD2_user1, UD3_user3)}, HIS
Commit

JRes = Audit App, JR, JP, JPA, JOP

Add Jointly Owned Resources

Figure 4: Example 1 - Negotiation Routes with Least Privilege Constraints
Here negotiation begins in a state where the domains do not share any resources. Domains join the coalition

and agree on the above-mentioned global negotiation constraints. Domains then add their route types to the pool of
coalition resources that may be shared and the audit application supported by RBAC access policies that is to be

23

jointly owned. Domain D2 proposes a set of shared resources that satisfies the global negotiation constraints. All
domains unanimously vote for this proposal, which is then declared to be the negotiated set of coalition resources. If
any domain had voted “no”, then negotiations would have proceeded with alternate proposals. Once the negotiated
set of resources is declared, domains provide roles and users to access these resources. Here the domains provide
one role per route type that they share with the coalition and they provide one user to be a member of all these
(foreign) roles. The domains then commit this common access state by enrolling foreign users in the roles that have
permissions for shared resources (including the jointly owned auditing application) after verifying that the state does
not violate any of the local access constraints of the three domains. The figure shows the committed state for
Domain D1 and those for the other two domains are similar.

D.2. Example 2: Supporting Coalition Dynamics
In Section 3 we have discussed three possible coalition dynamic events, namely, domain join, voluntary

domain departure, and involuntary domain departure. A domain join event is supported in the model by the joining
of a new domain at the beginning of the process of re-negotiating a common access state. The set of coalition
domains, including the new one, re-negotiates the common access state where member domains can retain the
previous sharing agreements simply by including them in the proposal from the state history variables. The proposal
will also include the joining domain’s resources. The domains then vote on this proposal and commit it after adding
roles and users in a manner similar to the first negotiation. A voluntary domain departure is also easily supported by
the state transition rule leave coalition where the departing domain leaves the coalition by withdrawing its privately
owned resources, that is, by revoking permissions of foreign users to these resources. The remaining domains would
then choose re-negotiate the common access state if (1) there are jointly owned resources in which case they would
re-negotiate access policies for these resources, or (2) the departing domain withdraws any resources essential to the
coalition objective in which case the domain would redefine the coalition objective and negotiate a common access
state that satisfies this objective.

We now illustrate how the model supports the involuntary departure of a domain with following agreement
established prior to coalition setup: if n-1 domains decide to exclude the nth domain from the coalition, then they can
do so as long as they allow the departing domain to withdraw any resources it had ever contributed for joint
ownership (in addition to its privately owned resources). In Example 2, if after coalition setup, Domains 1 and 3
decide to exclude Domain 2 from the coalition then would re-negotiate the common access state as follows.

Coalition Objective: Exclude Domain 2 from the coalition while adhering to agreement on involuntary domain
departure.

Negotiation Constraints: The domains agree to the following global negotiation constraint, which captures the
agreement on involuntary domain departure.

- If a proposal is to be accepted with only n-1 votes for a known set of n domains, then the common access
state cannot include any jointly owned resources that were ever contributed by the excluded domain.

This constraint would be defined in NL as follows.
 Let Joint_dom2 be the list of jointly owned resources that were contributed by Domain 2 in all prior

negotiations.
 Here Joint_dom2 = {Application 2}

- Constraint: |JApp Æ Joint_dom2| = j, where JApp Í CAM

The Negotiation Process
In Figure 5 below, we illustrate the negotiation process in the model for the above coalition objective and

negotiation constraints. We show the relevant state variables in the common access state as the negotiation proceeds
with application of the state transition rules. For this negotiation, the majority variable for security invariant I7 and
transition Rule 7 (Declare negotiated set of resources) is set to n-1, where n is the number of domains in the
coalition when negotiation begins.

Here negotiation begins in a state where the domains share resources as negotiated in the common access state
in Example 2. Domains 1 and 3 then join the coalition and agree on the above-mentioned global negotiation
constraint. Then domains add the applications 1 and 3 to the pool of applications that are to be jointly owned and
administered. Domain D1 proposes the joint ownership of these resources, excluding application 2 to satisfy the
negotiation constraints, and this proposal is accepted by Domain D3, that is, by a majority of n-1 domains. Then the
domains declare this as the negotiated set of resources. Domains D1 and D3 then provide one user each for
membership to the roles for jointly owned application 1 and 3. The common access state is then committed by
enrolling these users to the roles if it satisfies the local access constraints of Domains D1 and D3.

24

D 1 F U A = { J R 1 : (U D 1 _ u s e r 1 , U D 3 _ u s e r 3) }

C C O M = { U D 1 _ u s e r 1 , U D 3 _ u s e r 3 }

N C R = { J R e s }

D 1 P V o t e = { Y e s , Y e s }

D 1 P r o p = { J R e s }

J R e s = D 1 : (A p p 1) , D 3 : (A p p 3) , J P , J R , J P A , J O P

C o m m i t

A d d U s e r s

D e c l a r e N e g o t i a t e d R e s o u r c e s

V o t e o n P r o p o s a l

P r o p o s e S h a r e d R e s o u r c e s

C C = { G C }

A d d C o a l i t i o n R e s o u r c e s

C D = { D 1 , D 3 } ; C A M : { D 1 A M , D 3 A M }

A d d N e g . C o n s t r a i n t s

J o i n C o a l i t i o n

D 1 F U A = { J R 1 : (U D 1 _ u s e r 1 , U D 2 _ u s e r 2 , U D 3 _ u s e r 3) }

Figure 5: Example 4- Supporting Coalition Dynamics

