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Abstract
The process of negotiating common access states in dynamic coalitions that comprise tens of 

autonomous domains sharing hundreds of resources is time-consuming and error-prone if performed 
without the benefit of automated tools. This process is also repetitive since, during the lifetime of a 
dynamic coalition, member domains must undertake the task of negotiating common access states 
multiple times as domains leave and new ones join the coalition. To define and verify the correctness of 
tools for automated negotiation, we develop a formal state-transition model of the process of negotiating 
a common access state. We extend an existing Role Based Access Control (RBAC) language to illustrate a 
wide variety of negotiation constraints and present a resolution procedure for verifying the satisfaction of 
such constraints in the state-transition model. 

Keywords: dynamic coalitions, access negotiation, state transition model, constraint language 
Technical Area: system security, security models

1. Introduction  
In various collaborative environments such as alliances for research and development, health care, 

airline route management, public emergency response, and military joint task forces, autonomous 
domains form coalitions to achieve common objectives. These coalitions can be dynamic in that member 
domains may leave or new domains may join after coalition establishment. Collaborative computing 
undertaken by dynamic coalitions requires a variety of resource-access agreements ranging from those for 
peer-to-peer sharing of applications and services to those for joint administration of access policies among 
the autonomous domains.  

In dynamic coalitions, resource-access agreements ensure that all domains can have a common view 
of coalition operations and can execute shared applications and access shared objects.  The result of such 
agreements is a common access state, which consists of the access permissions granted to the coalition 
users for executing shared applications/services, and to shared applications/services for accessing objects 
required by coalition operations.  Reaching agreements among the domains of a coalition requires a 
negotiation process that is time-consuming and error-prone even for small-sized coalitions (i.e., coalitions 
consisting of five to ten autonomous domains), if performed without the benefit of automated tools.  

Negotiation is time-consuming because the number of objects whose accessibility is being negotiated 
and the number of negotiation rounds may be large even if the number of applications is relatively small. 
For example, a route-sharing application among several airlines may include tens of route types, such as 
US-Asia, US-Europe and US-South America, and each route type may include tens of specific flights. 
Negotiating the access to each individual flight for hundreds of flights among five to ten airlines would 
require multiple rounds of flight-sharing proposals and proposal evaluations on the part of each airline, 
since each may have different goals for the negotiation outcome. It is possible that a negotiation round 
may not reach agreement, in which case a new round may have to be commenced for reaching the same 
goals. It is also possible that multiple common-access states may satisfy all the goals of the negotiating 
parties, in which case a common choice must be made.  

The negotiation process is error-prone if performed without the benefit of automated tools, 
particularly when it is conducted under time constraints and when the size of a coalition increases to tens 
of domains sharing hundreds of resources (e.g., an international coalition of civilian and military 
organizations responding to international crises [22]). Furthermore, automated tools for common-access 
state negotiations in dynamic coalitions are required since the negotiation process is repetitive. That is, 
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during the lifetime of a coalition, member domains must undertake the task of negotiating common access 
states multiple times as domains leave and new ones join the coalition. Re-negotiation becomes necessary 
to add resources of joining domains, exclude departing domains from joint administration of coalition 
resources, and exclude resources withdrawn by departing domains.  

To define and verify the correctness of automated tools for negotiating common access states in 
dynamic coalitions, we need to define the notion of access negotiation precisely. To this end, we develop 
a state-transition model of the process of negotiating a common access state, extend an existing Role 
Based Access Control (RBAC) language to illustrate a wide variety of negotiation constraints1, and 
present a resolution procedure for verifying the satisfaction of such constraints. 

This paper is organized as follows. In Section 2 we classify negotiation constraints with examples 
and we motivate the notion of negotiating a common access state with an example. In Section 3 we 
motivate the need for a formal model of the negotiation process in the presence of coalition dynamics 
(i.e., domain join and leave events). In Section 4 we present the state-transition model for the process of 
negotiating common access states and a negotiation language for specifying constraints. In Section 5 we 
show that the state transition model supports the necessary security formulations. In Section 6 we discuss 
related work and we conclude in Section 7. In Appendix A we present elements and functions of our 
negotiation language. In Appendix B we present the semantics of the negotiation language. In Appendix 
C we provide proofs of theorems stated in Section 5 and in Appendix D we illustrate coalition resource 
negotiations in the state-transition model.  

2. Negotiation of Common Access States: An Example 
To achieve a common objective, the autonomous domains of a coalition negotiate the sharing of a set 

of resources (e.g., objects, applications, and services) and access permissions to those resources; i.e., they 
negotiate a common access state in which the coalition begins its operations. Negotiating a common 
access state means obtaining the agreement of each domain to share both privately owned and newly 
created resources, and to either privately or jointly administer [19] access to these resources. The 
negotiation result is not merely a union of the contributed resources necessary to achieve a coalition 
objective. Instead, the set of resources and their privileges contributed to the coalition by member 
domains must satisfy both resource and permission constraints. Examples of different types and sub-
types of constraints are given in Table 1 below. Typically, these constraints arise from coalition 
objectives, access policies that are either jointly or privately enforced by autonomous domains, and 
resource-access requirements of coalition applications [10]. Further, these constraints can be either 
global, in which case they are known by all member domains, or local, in which case some constraints 
may remain private to some member domains. In either case, the specification of negotiation constraints 
is an important part of any access-policy specification and drives the negotiation process; e.g., it 
determines the number of negotiation rounds and the convergence to and commitment of common access 
states. Hence, it must be defined in a precise manner. For this reason, we define a negotiation language to 
specify constraints and present a resolution procedure for verifying the satisfaction of these constraints 
(viz., Section 4). 

An Example: To illustrate the process of negotiating a common access state, assume that three 
domains representing three airlines that wish to share six types of routes form a coalition to expand their 
market coverage. Here, each route type corresponds to a certain set of departure and destination pairs 
(airline routes) in a given region, for instance, in U.S. - Europe, U.S. – Middle East, U.S. – North Africa, 
U.S. – Southern Africa, U.S. – Asia, and U.S. – South America. Sharing an individual route of a certain 
type implies that the airline domain that owns the route grants access permissions required to execute the 
route applications (e.g., reservations, billing, advertising) for that route to users of a foreign airline 
domain. Furthermore, airline domains negotiate and impose a set of pricing policies on all shared routes; 
e.g., policies on travel packages comprising multiple airline routes, vacation packages, and frequent flyer 
miles. Airline domains agree to enforce these policies on their privately owned routes that are shared with 
                                                     

1 In this paper we assume that all domains have a common interpretation of the RBAC policy model [9]. 
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the coalition members. To ensure that all member domains adhere to these pricing policies, member 
domains may decide to jointly setup and administer an auditing application that has access to shared 
airline routes in each domain. Such applications are vital to the coalition (as per the contractual agreement 
in this case) and the domains would like to jointly own and administer them to ensure that they remain 
with the coalition even after the departure of a member domain and that there is consensus on their access 
policy specification/modification [19]. (Note that privately owned resources that are shared with coalition 
members, such as airline routes, can be withdrawn from the coalition by the owner domain and their 
access policies are unilaterally specified). In general, coalition applications will require auditing of 
sensitive operations and the auditing applications are likely to be jointly administered.  

Resource-based Constraints Permission-based Constraints 
Sub-type Example Sub-type Example 

Least Privilege 
(Least privilege 
principle of resource 
sharing) 

From a set of common 
applications, choose one 
that requires access to 
least number of objects 

Obligation 
(A requirement for the 
presence – “must”, or 
absence – “must not” 
of permissions) 

At least one user in every 
domain must be able to 
perform audit operations 
on every jointly 
administered application 

Cost-based 
(Profit of sharing 
foreign resources 
minus cost of sharing 
local resources) 

A domain requires access 
to specific foreign 
resource in order to share 
any of its own resources 

Separation-of-duty/ 
Prohibition [1, 11]
(Limits distribution of 
access permissions) 

No role can have 
permissions for all the 
applications of any jointly 
administered resource 

Obligation 
(A requirement for the 
presence – “must”, or 
absence – “must not” 
of resources) 

If a domain controls a 
unique route application, 
it must be shared 

Cardinality 
(Numerical limitation) 

No role that has 
permissions for jointly 
administered applications 
can have more than n
members (users) 

Table 1: Examples of Negotiation Constraints 

In Figure 1 below, we denote the route types controlled by each of the three airline domains before 
negotiation as circles within the perimeter of each domain. The number of routes of each type is indicated 
in a parenthesis within each circle that each application controls. The arrow from a domain to a route type 
denotes that the domain desires that route type as an outcome of the negotiation. Observe that some route 
types and routes may already be common to multiple domains; e.g., route types 1, 2, 4, and 5.  In this 
example, the objective of the negotiation is to obtain a common access state consisting of six shared route 
types (1 … 6) among the three airline domains D1, D2, and D3 and to jointly administer an auditing 
application that has access to all the shared routes. 

Let us assume that the following two global negotiation constraints have been agreed upon to satisfy 
coalition objectives: 
- Domains that control unique route types must share them with other domain (i.e., an obligation 

constraint). As a consequence, Domain 1 must share route type 6 and Domain 2 must share route type 
3.

- Sharing of route types must minimize the number of routes shared (least privilege constraint); i.e., if 
two or more domains are capable of sharing the same route type, then the one that comprises the 
lowest number of routes will be used. 

On inspection of Figure 1, we observe that there are two ways for domains to share their airline routes 
both of which satisfy the negotiation constraints; i.e., Domains D1, D2 and D3 could share either route 
types {1,6}, {3} and {2,4,5} or route types {6}, {1,3} and {2,4,5}. In general, there can be multiple 
common access states that satisfy the negotiated constraints and a common choice must be made. The 
negotiation proceeds as follows. The domains join the coalition and specify the negotiation constraints. 
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They then contribute resources that they are willing to share, namely, those in Figure 1. One of the 
domains makes a proposal for resource sharing that includes either one of the two common access states 
and the auditing application. The other domains vote on the proposal based on their own local negotiation 
constraints, if any2. If a proposal receives unanimous votes, it is accepted; else, a new round of 
negotiation follows with other proposals. Once the common set of shared route types is agreed upon, the 
three airline domains specify the users and user permissions for the resources (e.g., via role-membership 
in an RBAC system), thereby completing the definition of the desired common access state. (In general, 
the negotiation proposals may include <resource, access permission> pairs, not just resources as 
illustrated in this example.)  The common access state is then committed. Note that if the negotiation does 
not converge to a desired common access state after an agreed upon number of rounds, negotiations will 
cease. This would signify the need to re-define the coalition objectives. 

Domain 1

Domain 2 Domain 3

1
(5)

4
(8)

5
(4)

6
(7)

1
(5)

2
(6)

4
(9)

3
(2)

2
(4)

1
(7)

5
(3)

4
(6)

Legend

a
(b)

a – Route type
b – No. of Routes

in route type

a
(b)

D omain
X

X  wants route type a

Figure 1: Routes controlled and desired before negotiation 

3.  Negotiations in the Presence of Coalition Dynamics 
Dynamic coalitions have two characteristics that help motivate the key aspects of common access 

state negotiations, namely, membership that (1) comprises domains with overlapping but not identical 
interests that are managed under diverse access policies reflecting different sharing requirements, and (2) 
varies dynamically, thereby ruling out off-line, one-time negotiation of common access states. In dynamic 
coalitions, both domain departures and joins occur after coalition formation and require re-negotiation of 
the common access state. We consider the following three dynamic events and argue that each event leads 
to repeated negotiation of common access states. 
(a) Domain-join event: At any point in time after the coalition has been formed, member domains may 

agree to add a new domain to the coalition. This would be motivated by the coalition members’ desire 
to share the joining domain’s resources and willingness to share existing coalition resources with the 
joining domain to satisfy the joining domain’s objectives. The sharing of new resources and changes 
in the sharing of existing resources requires re-negotiation of the common access state. For example, 

                                                     
2 Examples of negotiations with local constraints are provided by Gligor et al. [12] 
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in the coalition of airline domains illustrated in Section 2, if a new airline domain joins the coalition, 
then the common access state would be re-negotiated among the four domains to include both the 
joining domain’s airline routes and permissions and the joining domain’s users and their access 
permissions to existing (shared) airline routes. Observe that all domain joins are entirely voluntary 
events in that both the joining domain and the existing coalition domains must agree to enable the join 
event to take place. 

(b) Voluntary domain-departure event: At any time after coalition formation, a domain can choose to 
leave the coalition and withdraw its (privately-owned) resources. However, the departing domain 
would not be able withdraw any jointly owned and administered resources, if it was agreed prior to 
coalition formation that these resources were vital to the coalition’s existence. In this case, the jointly 
owned resources would remain with the coalition after a domain departure. (This policy agreement can 
be enforced by shared public-key mechanisms, which inherently prohibit any single domain from 
withdrawing jointly owned resources [19]). Nonetheless, withdrawal of privately owned resources 
from the coalition can cause the remaining coalition domains to re-negotiate the common access state 
for the following two reasons. 
- Continued joint administration of resources: After the departure of a domain, the remaining 

coalition domains must continue to perform join administration of resources. This requires that they 
re-negotiate the policies of joint administration to exclude the departing domain and revoke any 
permissions previously distributed to the departing domain’s users. This would cause re-negotiation 
of the common access state. For example, in the coalition of airline domains illustrated in Section 2, 
if one of the domains leaves, then the remaining domains would have to re-negotiate the access 
policies of the jointly owned auditing application to exclude the departing domain and to access 
only the shared routes of the domains remaining in the coalition. 

- Withdrawal of resources essential to the coalition mission: Even if the departing domain cannot 
withdraw jointly owned resources that are vital to the coalition’s existence, the privately owned 
resources it withdraws may be essential to the coalition objectives. For example, in the coalition of 
airline domains, the departure of a domain may result in withdrawal of a route type that was 
essential to the coalition mission (e.g., route type 3, which is a unique route type owned by Domain 
2). In this case, the remaining coalition domains would have to redefine the coalition objectives and 
re-negotiate the common access state to include resources that satisfy the redefined objectives. 
Furthermore, the withdrawal of essential resources may also result in the violation of negotiation 
constraints that were defined to ensure satisfaction of the coalition objectives (though they were 
satisfied prior to domain departure). For example, in the coalition of airline domains in the example 
presented in Section 2, if a negotiation constraint stated that there must be at least two unique route 
types in the common access state, then this constraint would be violated by the departure of Domain 
2. Consequently, the common access state must be re-negotiated such that it either satisfies the 
existing constraints or re-defines them based on the redefined coalition objectives. 

(c) Involuntary domain-departure event: At any time after coalition formulation, it is possible that a 
majority of domains wish to exclude a domain from the coalition hereby causing the involuntary 
departure of that domain. Since we are primarily interested in cooperative coalitions, such an event can 
be viewed as a formation of a new coalition that excludes the departing domain. That is, the remaining 
domains would establish a new common access state rather than re-negotiating an existing one. 
However, domains may impose administrative policies on jointly owned resources that require re-
negotiating the common access state after an involuntary departure-event. For example, such a policy 
might state that any domain that must leave involuntarily can withdraw the resources it contributed to 
the coalition and this policy may be part of the contractual agreement established by all member 
domains. Therefore, to satisfy such a contractual agreement, the remaining member domains must re-
negotiate the common access state, which excludes the jointly owned resources contributed by the 
departing domain.  
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4. The State Transition Model and the Negotiation Language 
In this section we present our state transition model for negotiating a common access state and a 

negotiation language, NL, for expressing constraints of the negotiation. We present the model elements, 
the state variables, and the state transition functions. The model supports the following policy of resource-
negotiation systems: 

Resource-Negotiation Policy: A set of domains that comprise a coalition may share a set of privately 
owned resources and jointly own and administer resources specified in a common access state, only if (1) 
the domains contribute towards the common access state either their own resources or resources for joint 
ownership that are supported by well-defined access policies (i.e., permissions and role-to-permissions 
relations for the resources), (2) the domains unanimously agree on the common access state, (3) the 
common access state satisfies a specified set of local and global negotiation constraints, and (4) the 
common access state satisfies each domain’s specified local access constraints (e.g., separation-of-duty 
constraints).
Assumptions for the state-transition model 

¶ We assume that all domains have a common interpretation of the RBAC policy model. 
¶ In our model, we focus on cooperative coalitions and assume that domains do not lie about the 

resources they own or about the resource access policies they administer. 

Domain 1 Domain 2 Domain k…

Coalition Authority

Objects, 
Applications
Operations

Roles,
Permissions

Users

Objects, 
Applications
Operations

Roles,
Permissions

Users

Objects, 
Applications
Operations

Roles,
Permissions

Users

Jointly Owned
Objects & Apps,

Operations

Roles,
Permissions

Joint Administration

Foreign
User
Enrollment

Foreign User Enrollment

Figure 2: Model Elements 

The resource-negotiation policy of the state-transition model specifies how the negotiation should 
proceed to allow coalition domains to share resources by satisfying negotiation constraints and ensuring 
that the access constraints of any member domain3 are not violated. We define a secure state in the state-
transition model in terms of a security invariant, which is a formal instantiation of the resource-
negotiation policy. We present the model elements in Section 4.1, the negotiation language NL in Section 
4.2, the state variables in Section 4.3, the security invariant and state transition rules in Section 4.4, and 
satisfaction of constraints in Section 4.5. 
                                                     

3 Our goal is to model the process of negotiating a common access state. We do not present solutions for 
composing proposals for common access states that are likely to be accepted by all domains. Game theory or 
heuristics can provide such solutions; an introduction to game theoretic solutions is provided in [12]. 
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4.1.  The Model Elements 
The elements of the model are illustrated in Figure 2 above. Each domain has sets of users, roles, 

user-to-role assignment relations, objects, applications, operations, permissions (allowed operations on 
specific objects or applications), permission-to-role assignments relations and local access constraints. 
The access constraints are defined in the negotiation language NL and include permission-based 
constraints applied to the domain’s users. We define an application a set of permissions; i.e., a set of 
operations allowed on a set of objects. (It may be useful to define a sequence of execution of permissions 
on objects for each application as discussed by Gligor and Gavrila [10] but we ignore this execution plan
for simplicity). We also do not support role hierarchies in our model for simplicity. For jointly owned 
resources we have elements similar to those for each domain’s local resources. For negotiating resources, 
the elements include sets of domain proposals, votes on domain proposals, roles for access to negotiated 
resources, users that will access negotiated resources, and local and global negotiation constraints defined 
in NL. The list of elements is given below in Table 2.  

4.2. The Negotiation Language NL 
The negotiation language NL is designed to specify (1) negotiation constraints (both local and 

global) and (2) domain access constraints. NL is an extension of RCL2000 [1]. We extend RCL2000 to 
include elements for domains comprising a coalition, jointly owned resources, assignment of foreign 
domain users to roles, functions on coalition-wide elements, and mathematical sets and functions useful 
for defining negotiation constraints. We discuss the syntax of NL here and the semantics in Appendix B. 

¶ Domain user set DnU: The set of all users in a domain Dn is denoted by DnU = {user1, user2, …, userz}
¶ Domain role set DnR: The set of all roles in a domain Dn is denoted by DnR = {role1, role2, …, rolew}
¶ Domain user-to-role assignment relation DnUA Ì DnU X DnR is a many-to-many user-to-role assignment 

relation for domain Dn.
¶ Domain foreign user-to-role assignment relation DnFUA Ì {D1U, D2U, …, Dn-1U, Dn+1U, …, DkU} X DnR

is a many-to-many user-to-role assignment relation for users from all domains 1..k except domain Dn and roles 
in domain Dn.

¶ Domain object set DnOBJ: The set of all objects in a domain Dn is denoted by DnOBJ = {obj1, obj2, …, objm}
¶ Domain operation set DnOP: The set of all operations allowed in a domain Dn is denoted by DnOP = {op1, op2,

…, opq}
¶ Domain permission set DnP: The set of all permissions in a domain Dn is denote by DnP =  DnOP X DnOBJ
¶ Domain permission-to-role assignment relation DnPA Ì DnP X DnR is a many-to-many permission-to-role 

assignment relation for domain Dn.
¶ Domain application set DnApp: The set of all applications in a domain DnApp is denoted by DnApp = {app1,

app2, …, appr} where appi is a set of permissions P Ì DnP.
¶ Domain local access constraint set DnAC: The set of all local domain access constraints on local domain 

objects is denoted by DnAC = {const1, const2, …, constc} where each constraint is defined in the NL. 
¶ Joint Resources role set JR: The set of roles for jointly owned resources is denoted by JR = {role1, …, roles}
¶ Joint Resource user-to-role assignment relation JUA Ì {D1U Ç D2U Ç … Ç DkU}  X JR is a many-to-

many user-to-role assignment relation for users of all domains D1 … Dk.
¶ Jointly owned object set JOBJ: The set of all jointly owned objects is denoted by JOBJ = {obj1, obj2, …, objl}
¶ Joint resources operation set JOP: The set of all operations allowed for joint owned resources is denoted by 

JOP = {op1, op2, …, opt}
¶ Jointly owned resource permission set JP = JOP X JOBJ 
¶ Joint resource permission-to-role assignment relation JPA Ì JP X JR is a many-to-many permission-to-

role assignment relation for jointly owned resources. 
¶ Jointly owned application set JApp: The set of all jointly owned applications is denoted by JApp = {app1,

app2, …, appu} where appi is a set of permissions P Ì JP.
¶ Domain local negotiation constraint set DnC: The set of all local domain constraints on all coalition resources 

is denoted by DnC = {const1, const2, …, constd} where each constraint consti is defined in NL. 
¶ Global negotiation constraint set GC: The set of all global constraints that apply to all coalition resources is 
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denoted by GC = {gconst1, gconst2, …, gconste} where each constraint gconsti is defined in NL. 
¶ Domain Proposal set DnProp: The set of all coalition resources that a domain wishes to be included in the 

common access state is denoted by DnProp = {D1O’’, D1App’’, D2O’’, D2App’’, …, DnO’’, DnApp’’,  JO’’, 
JApp’’} where DiO’’ and DiApp’’ are the sets of objects and applications in domain Di and JO’’ and JApp’’ are 
the sets of jointly owned objects and applications that domain Dn wishes to be part of the coalition. 

¶ Domain Proposal Vote set DnPVote: The set of all votes for a particular domain proposal DnProp is denoted 
by DnPVote = {D1_vote, D2_vote, …, Dk_vote}where Di_vote is a Boolean with values (yes, no) signifying 
domain Di’s vote on the proposal DnProp.

¶ Domain Role addition set Dn_add_R: The set of all roles that have permissions for all negotiated resources of 
domain Dn to be provided by domain Dn. Dn_add_R = {role1, role2, …, rolem} where rolei Í DnR.

¶ Joint resource Role addition set J_add_R: The set of all coalition roles that have permissions for negotiated 
jointly owned coalition resources. J_add_R = {role1, role2, …, rolew} where rolei Í JR. 

¶ Domain User-to-role addition relation Dn_add_UA: A many-to-many user-to-role assignment relation for 
users of domain Dn and for all roles Í {D1_add_R, D2_add_R, …, Dk_add_R, J_add_R}.

Table 2: Elements of the State Transition Mode 

4.2.1. Elements and Functions of NL 

NL has the following five basic elements defined for privately and jointly owned coalition resources: 
(1) users, (2) roles, (3) objects and applications, (4) operations, and (5) permissions. These elements were 
defined in the previous section. We do not include the notion of a session that is typically supported for 
most RBAC systems [1, 11]. This is because the negotiation constraints identified in Section 2 do not 
need the concept of a session and, furthermore, it is not clear how any constraint, such as dynamic 
separation of duty, can be defined or enforced on elements active in multiple sessions across multiple 
domains. It is, however, possible to define session-based constraints for a single domain; we do not 
support that for simplicity and instead refer to the work of Ahn and Sandhu [1] and Gligor et al. [11] for 
such constraints.

The basic functions supported by NL are as follows. The function users gives the members of a 
particular role, roles gives the set of roles associated with a set of users and a set of permissions, 
permissions gives a set of permissions associated with a particular role, operations gives the set of 
operations of a set of roles for a given set of resources, objects gives the set of objects for a particular 
permission, and applications gives the set of applications for a set of permissions. These functions are 
defined on individual domain sets as well as on the coalition sets. NL has two non-deterministic 
functions, oneelement (OE) and allother (AO). The function OE(X) allows us to get one element xi, from 
a given set X. The function AO(X) allows us to get a set by taking out one element from the set X. These 
two functions are related as for any set P, {OE(P) Ç AO(P)} = P, though neither is a deterministic 
function. These functions were introduced by Chen and Sandhu [5] and allow the expression of various 
constraints without the use of logic quantifiers. 

Additional elements of NL include conflicting role sets, conflicting permission sets and conflicting 
user sets. These sets allow us to define access constraints and negotiation constraints without the use of 
explicit negation.  For example, a set of conflicting roles comprises roles whose users and/or permissions 
are required to be mutually disjoint based on organizational policies, a set of conflicting permissions is a 
set that a particular user must not have irrespective of his role membership, and so on. 

Additional functions supported by NL include mathematical functions useful for defining negotiation 
constraints. These functions can be defined on a set of natural numbers N and a set of lists L in addition to 
the basic elements. We define some useful functions in Appendix A, which are similar to functions that 
can be implemented in Prolog [27]. Tools for resource negotiations may implement other useful 
mathematical functions. 
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4.2.2. Syntax of Statements in NL 

op ::= Í| Æ | Ç (math) op::= + | - | * | exp | mod
size ::= f | 1 | … | N comp ::= ¢ | ² | ¸ | < | > | =
set ::= DnU | DnR | DnOP| DnOBJ | DnP | DnApp| JR | JOP| JOBJ| JApp| JP |

DnCR| DnCP| DnCU| CCR| CCP| CCU
(math) set ::= N | L 
function (fn.) ::= user | roles | permissions | operation | object | application | OE |  AO
(math) function :: = successor | minimum | maximum | List_min | List_max | 

member | length | sumlist

Statement = (Expression Ý Expression) Ø Statement

Expression = Token comp (Token, size, set1 | set2 | … | setn )

Token = Term1 | Term2 | … | Termm

Term = Clause op Clause op … Clause, fn.(fn….(Clause), 
fn.(fn. …(Clause) op fn.(fn. …(Clause) op … fn.(fn. …(Clause)

Clause = OE/AO(OE/AO … (set)

Figure 3: Syntax of NL Statements 

In Figure 3 above we present the syntax of NL statements, which are formed from clauses of OE and 
AO functions defined on sets of NL. In Appendix B we show that in a manner similar to that for 
RCL2000 statements all NL statements have equivalent Restricted First Order Predicate Logic (RFOPL) 
statements. The syntax of RFOPL statements is similar to that of NL statements and is as follows. 

- Every RFOPL statement has a (possibly empty) sequence of variables, all of which are universally 
quantified over sets in a left prefix to the statement 

- The rest of the statement structure is similar to that in Figure 3 except for the structure of a clause, 
which is as follows: Clause = variable, set – variable

4.3. State Model Variables 
In the state-transition model, negotiations for resource sharing begin in a state where domain users 

have access to only their own local domain resources (i.e., the coalition does not exist). As the 
negotiations proceed, domains join the coalition, add resources to the coalition, propose common resource 
sharing, vote on proposals, and commit negotiated proposals. The state variables of the model record the 
state of the system at any given point in time in the form of information regarding the domain resources, 
proposals and commitments encountered in a coalition resource negotiation. These state variables are 
defined as follows in Table 3 below. 

¶ Coalition Domain set CD: At any given point in time, this set records all domains that are members of the 
coalition. The format of CD is: CD = {D1, D2, …Dk} where Di is a domain name 

¶ Coalition Negotiation Constraint set CC: At any given point in time, this set records all negotiation 
constraints (global and local) that are applied to coalition resources. The format of CC is: CC = {GC, D1C,
D2C, …, DkC }where entry GC is the set of all global constraints and entry (DiC) is a set of domain Di’s
local negotiation constraints.  

¶ Coalition Access Matrix CAM: At any given point in time, this set records all (committed) users, roles, 
objects, applications, permissions, user-role mappings, permissions-role mappings, and local domain access 
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constraints in all domains of the coalition including those for jointly owned resources. The format of CAM 
is: CAM = {(D1U, D1R, D1OBJ, D1App, D1UA, D1FUA, D1OP, D1P, D1PA, D1AC), (D2U, D2R, D2OBJ,
D2App, D2UA, D2FUA, D2OP, D2P, D2PA, D2AC), …(DkU, DkR, DkOBJ, DkApp, DkUA, DkFUA, DkOP,
DkP, DkPA, DkAC), (JR, JOBJ, JApp, JOP, JP, JUA, JPA)} where entry (DiU, DiR, DiOBJ, DiApp, DiUA,
DiFUA, DiOP, DiP, DiPA) is the domain access matrix, DiAC is the domain access constraints of domain Di,
and (JR, JOBJ, JApp, JOP, JP, JUA, JPA) is the access matrix for jointly owned resources. 

¶ Coalition Resource set CRes: At any given point in time, this set records all objects and applications that 
coalition domains are willing to share with other = domains. The format of CRes is: CRes = {D1O’, D1App’,
D1Params, D2O’, D2App’, D2Params, …, DkO’, DkApp’, DkParams} where entry DiO’ Ì DiOBJ, DiApp’ Ì
DApp are the sets of all objects and applications that domain Di is willing to share with other coalition 
domains and DiParams are elements of NL used for verifying satisfaction of negotiation constraints. 

¶ Joint Resource set JRes: At any given point in time, this set records all objects and applications that 
coalition domains would like to jointly own and administer with other coalition domains. The format of 
JRes is: JRes = {JOBJ, JApp, JR, JP, JOP, JPA, JParams} where JR, JOP, JP and JPA are the roles, 
operations, permissions, and role-permissions necessary to access jointly owned objects and applications in 
JOBJ and JApp, and JParams are elements of NL used for verifying satisfaction of negotiation constraints. 

¶ Coalition Proposal set CP: At any given point in time, this set records the set of current domain proposals 
and all the votes on this domain proposal. The format of CP is: CP = {(D1Prop, D1PVvote), (D2Prop,
D2PVote), …, (DkProp, DkPVote)} where DiProp is a proposal by domain Di and DiPVote is the set of all 
votes on that proposal. 

¶ Negotiated Resource set NCR: At any given point in time, this set records the current negotiated set of 
coalition resources. The format of NCR is: NCR = DiProp Í CP for some domain Di.

¶ Coalition commit set CCOM: At any given point in time, this set records all user-role memberships that 
coalition domains wish to add to the existing CAM. The format of CCOM is: CCOM = {D1_add_R, 
D1_add_UA, D2_add_R, D2_addUA, …, Dk_add_R, Dk_add_UA, J_add_R}. 

¶ History set HIS: At any given point in time, this set records the history of all state transitions on the state 
variables CD, CC, CAM, CRes, JRes, CP, NCR, and CCOM through multiple negotiations beginning with 
the formation of the coalition. The format of HIS is HIS = {history_CD, history_CC, history_CAM, 
history_CRes, history_JRes, history_CP, history_NCR, history_CCOM} where history_CRes is a set of 
CRes elements through multiple negotiations, history_JRes is a set of JRes elements through multiple 
negotiations, and so on. 

Table 3: State Model Variables 

4.4. The Secure State and the State Transition Rules 
State (CD, CC, CAM, CRes, JRes, CP, NCR, CCOM, HIS): At any point in time, the state is defined 

as (CD, CC, CAM, CRes, JRes, CP, NCR, CCOM, HIS) where CD, CC, CAM, CRes, JRes, CP, NCR, 
CCOM and HIS are the state variables defined in Section 4.3. 

We now define the secure state in the form of an invariant and the state transition rules supported by 
the model. The invariant is based on the resource-negotiation policy discussed at the beginning of Section 
4. A state in the model includes the access policies and constraints of all coalition domains. It is likely 
that domains wish to keep their local policies and constraints private. Tools based on the state transition 
model can easily satisfy the privacy requirements of member domains by maintaining a distributed state 
across all domains with information regarding state transitions being communicated between the domains 
to maintain a secure state. In this work we assume that all elements of a state can be accessed at any given 
point in time and consequently the adherence to state transition rules can easily be verified. 

Secure State: The definition of the secure state is a formulation of the negotiation in the form of a 
State Invariant SI, provided in Table 4 below, where a state (CD, CC, CAM, CRes, JRes, CP, NCR, 
CCOM, HIS) is said to be secure if: 
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I1: "X = (DiU, DiR, DiOBJ, DiApp, DiUA, DiFUA,
DiOP, DiP, DiPA, DiAC) Í CAM: 

i) Di Í CD 
ii) DiU x DiR x DiOBJ x DiApp x DiUA x 

DiFUA x DiOP x DiP x DiPA  |= DiAC
This invariant states that all domains in the coalition 
must satisfy their local access constraints. 

I2:  For X = CC  = {GC, D1C, D2C, …, DkC}
"W = (gconst) Í GC and "Y = (DiC); W, Y Í X,

i) W is in NL and 
ii) DiÍ CD and  
iii) Y is in NL and 
iv) "Z = (DiU, DiR, DiOBJ, DiApp, DiUA,

DiFUA, DiOP, DiP, DiPA) Í CAM:Z |= W Ø Z |= Y 
This invariant states that all domain access matrices 
must satisfy all negotiation constraints. 

I3:  For X = CRes = {D1O’, D1App’, D1Params, …, 
DkO’, DkApp’, DkParams}

"W = (DiO’) Í X and "Y = (DiApp’) Í X 
i) Di Í CD and 
ii) W Ì DiO Í CAM and 
iii) Y Ì DiAppÍ CAM 
iv) DiParams Í X are in NL 

This invariant states that all contributed coalition 
resources must be part of the domain access 
matrices. 

I4:  For X = JRes = {JOBJ, JApp, JR, JP, JOP, JPA, 
JParams}
"W = (obj) Í JOBJ and "Y = (app) Í Japp 

i) $ role Í JR: permissions(role) Ì JP Ø
objects(permissions(role)) É W and 

ii) $ role Í JR: permissions(role) Ì JP Ø
     applications(permissions(role)) É Y and 
iii) JParams Í X are in NL 

This invariant states that all jointly owned resources 
must have necessary roles and permissions 
associated with them. 

I5:  For X = CP = {(D1Prop, D1PVvote), (D2Prop,
D2PVote), …, (DkProp, DkPVote)} 

i) "Z = (DjO’’, DjApp’’) Í X: Z Ì CRes
ii) "W = (JO’’, JApp’’) Í X: W Ì Jres 
iii) "(DiProp, DjPvvote) in X: DiProp |= DiC

Ç GC where DiC Í CC, GC Í CC

This invariant states that each domain’s proposal 
must include resources only from CRes and JRes 
and must satisfy the local domain negotiation 
constraints and the global negotiation constraints. 

I6:  For X = CP = {(D1Prop, D1PVvote), (D2Prop,
D2PVote), …, (DkProp, DkPVote)} 
"W = DiPvote, "U = (Djvote)  Í W:  |U| ¢ 1 Ø U = 

yes or no
This invariant states that each domain’s proposal must 
be voted on by each of the coalition domains at most 
once with a “yes” or a “no” vote. 

I7: For X = (DiProp, DiPVote) Í NCR 
i) DiProp Í CP and  
ii) |DiPVote| = |CD| Ù Majority and 
iii) "Z = (Dvvote) Í DiPvote: Z = yes 
This invariant states that the negotiated set of 
resources (NCR) is a proposal in CP that receives 
either unanimous votes from all coalition domains, 
or a pre-defined majority votes. 

I8:  For X = CCOM = {D1_add_R, D1_add_UA, …, 
Dk_add_R, Dk_add_UA, J_add_R} 
"W = (Di_add_R), Y = (J_add_R); W, Y Í CCOM,
i) objects(permissions(W)) É DiO’’ Ø

applications(permissions(W) É DiApp’’; DiO’’ Í
NCR, DiApp” Í NCR 

ii) objects(permissions(Y)) É JO’’ Ø
applications(permissions(Y) É JApp’’; JO’’ Í
NCR, JApp” Í NCR 
This invariant states that each domain must provide 
roles with permissions for all of its resources in 
NCR and that the coalition authority must do the 
same for all jointly owned resources. 

I9:  For X = CCOM = {D1_add_R, D1_add_UA, …, 
Dk_add_R, Dk_add_UA, J_add_R} 
"W = (Di_add_R), Y = (J_add_R) , "Z = 

(Di_add_UA) ; W, Y, Z  Í CCOM,
i) " (u, v) Í Z: u Í DiU; DiU Í CAM and v 

Í {W, Y} 
This invariant states that all users that get access to 
the resources in NCR must be valid domain users 
and must get membership to only those roles 
specified in CCOM

Table 4: State Invariant 

State transitions occur when elements are added to the state variables as a result of resource 
negotiation taking place. Under the formulation of state as (CD, CC, CAM, CRes, JRes, CP, NCR, 
CCOM, HIS), resource negotiations can be completely represented as a sequence of state transition rules 
described below. We use the notation that the application of a state transition rule on a state S = (CD, CC, 
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CAM, CRes, JRes, CP, NCR, CCOM, HIS) results in a new state denoted by S’ = (CD’, CC’, CAM’, 
CRes’, JRes’, CP’, NCR’, CCOM’, HIS’). The state transition rules are provided in Table 5 and Table 6 
below and examples of common access state negotiation using these rules are provided in Appendix D. 

4.5. Satisfying Constraints Specified in NL 
In the state-transition model we specify state transition rules that require the satisfaction of a set of 

constraints. That is, given a set of statements (facts) the rule requires verification of the satisfaction of a 
given set of constraints against these facts. Since these constraints and facts in the coalition domains’ 
RBAC models are specified in NL, we need a resolution procedure for NL that can be used for such 
verifications. As mentioned in Section 4.2, all statements in NL can be converted to RFOPL statements. 
All RFOPL statements are universally closed formulas with no negation and can therefore be represented 
as Horn Clauses, which are a subset of the syntax supported by Prolog [20, 27]. The process of verifying 
satisfaction of constraints required in our model is similar to that for verifying satisfaction of integrity 
constraints in deductive databases. Lloyd [20] defines a query process for verification of integrity 
constraints in deductive databases using the Prolog engine as a resolution procedure for the verification. 
Furthermore, Lloyd also shows that the Prolog engine is a sound resolution procedure and that the query 
process of verifying constraints is sound as well. Therefore, Prolog can also be used as a sound resolution 
procedure for verifying the satisfaction of constraints in our state-transition model (a subset of RCL2000 
has been implemented in Prolog [23]). For development of languages for constraint programming we 
refer to Barth [3] and Comon et al. [6]. 

5. Security Formulations for the State Transition Model 
In Section 4 we presented the state transition model for negotiating access to resources. We define 

the notion of a secure state in terms of security invariant SI and presented the state transition rules. We 
now present the security formulations for the model and show that the model supports these formulations.  

Initial State: The initial state is defined to be ({}, {}, {}, {}, {}. {}. {}. {}, {}) and trivially satisfies 
the state invariant SI stated in Section 4.4. 

The following two theorems show that the formulations of security based on the state invariant SI 
and the state transition rules are identical [21]. The proofs for these theorems are provided in Appendix C. 

Theorem 1: If state Sn is the new state after application of a sequence of n state transition rules on 
state So and if So satisfies the invariant SI, then Sn also satisfies the invariant SI. 

Theorem 2: If S0 = (CD0, CC0, CAM0, CRes0, JRes0, CP0, NCR0, CCOM0, HIS0) and Sn = (CDn, CCn,
CAMn, CResn, JResn, CPn, NCRn, CCOMn, HISn) are two states that satisfy SI and CDn Ç HISn É CD0,
CCnÇ HISn É CC0, CAMnÇ HISn É CAM0, CResnÇ HISn É CRes0, JResnÇ HISn É JRes0, CPnÇ HISn

É CP0, NCRnÇ HISn É NCR0, and CCOMnÇ HISn É CCOM0, then there exists a sequence of rules that 
transforms S0 to Sn and is secure. 

6. Related Work 
Negotiating Access to Coalition Resources. Previous work in this area illustrates some of the 

important aspects of resource negotiations in specific settings. For example, Shands et al. [25] and 
Herzberg et al. [14] addressed the problem of unambiguously specifying a common access state, 
communicating this common state to all member domains, and committing this common access state. 
However, this work assumes that common access states were agreed upon by extra-technological (e.g., 
off-line) means and that all member domains have the same interpretation of the common policy model 
(i.e., a common interpretation of a role-based access control model). Other work addresses specific 
aspects of bilateral authorization-check negotiation, for instance those that enable clients and servers to 
agree on common authorization properties; i.e., matching client credentials with server access checks 
discussed by Seamons et al. [24] and Winsborough et al. [28]. Although this work on authorization-check 
negotiations introduces the important notion of client-server trust negotiation, it does not address the 
notion of common state negotiation in multiparty settings, such as those of dynamic coalitions. 
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State Transition Rules 
1) Rule 1: Join_coalition (CD, CAM, Di, {DiU, DiR,

DiOBJ, DiApp, DiUA, DiFUA, DiOP, DiP, DiPA})
Semantics: When a domain joins the coalition, the 
domain’s access matrix and access constraints are 
included in the coalition access matrix on the condition 
that the joining domain’s access constraints are satisfied. 
Domains cannot join the coalition while a negotiation is 
in progress. 

The rule:
if  {DiU x DiR x DiOBJ x DiApp x DiUA x DiFUA
x DiOP x DiP x DiPA} |= DiAC and

CRes = JRes = CP = CCOM = f
then CD’ = CD Ç Di

CAM’ = CAM Ç {DiU, DiR, DiOBJ, DiApp,
DiUA, DiFUA, DiOP, DiP, DiPA, DiAC}
all other state variables remain unchanged 

else all state variables remain unchanged 

2) Rule 2 : Define set of constraints (GC, {D1C,
D2C, …, DkC})

Semantics: The coalition members accept the set of 
constraints if the constraints can be satisfied by the 
CAM prior to resource negotiations. Constraints can be 
defined only at the beginning of a resource negotiation 
process.

The rule:
if  CAM  |= GC Ç {D1C, D2C, …, DkC} and

 CRes = JRes = CP = CCOM = f
then  CC’ =  GC Ç {D1C, D2C, …, DkC}

 all other state variable remain unchanged 
else all state variables remain unchanged 

3) Rule 3 : Add domain resources for negotiation 
(CRes, DnOBJ’, DnApp’)

Semantics: A domain may be willing to share a subset of 
its resources (objects and applications) based on its local 
preference and/or extra-technological agreements 
between coalition members. 

The rule:
if  NCR = f and

"X = (obj) Í DnOBJ’: X Ì DnOBJ Í CAM 
and "Y = (app) Í DnApp’: Y Ì DnAppÍ CAM 
then   CRes’ = CRes Ç (DnOBJ’, DnApp’)

all other state variables remain unchanged 
else all state variables remain unchanged 

4) Rule 4 : Add resource for joint ownership (JRes, 
{JOBJ, JApp, JR, JOP, JP, JPA}) 

Semantics: A domain may wish to jointly own some 
resources. A domain may add these resources as long as 
it provides roles and permission relations to access the 
resources.

The rule:
if  NCR = f and

"X = (obj) Í JOBJ: $ role Í JR: 
permissions(role) Ì JP Ø objects(permissions(role)) É X 
and "Y = (app) Í JApp: $ {role1, role2, …, roler} Í
JR: permissions(role) Ì JP Ø
applications(permissions(role)) É Y
then  JRes’  =   JRes Ç {JOBJ, JApp, JR, JOP, JP, 
JPA}

all other state variables remain unchanged 
else all state variables remain unchanged 

5) Rule 5 : Propose common shared resources (CP, 
{D1O’’, D1App’’, D2O’’, D2App’’, …, DkO’’,
DkApp’’, JO’’, JApp’’}) 

Semantics: A domain Dp may propose any set of 
common shared resource that (1) consists of objects and 
applications from CRes and JRes and (2) satisfies 
domain Dp’s local negotiation constraints as well as the 
coalition global negotiation constraints. 

The rule:
if  NCR = f and

  (D1O’’ Ç D1App’’ Ç D2O’’ Ç D2App’’ Ç … Ç
       DkO’’ Ç DkApp’’) Ì CRes and
  JO’’ Ç JApp’’ Ì JRes and
  {D1O’’ Ç D1App’’ Ç … Ç DkO’’ Ç DkApp’’
Ç JO’’ Ç JApp’’} |= {DpC Ç GC} 

then  DpProp = (D1O’’, D1App’’, …, DkO’’,
               DkApp’’, JO’’, JApp’’) 

CP’ = CP Ç DpProp
all other state variables remain unchanged 

else   all state variables remain unchanged 

6) Rule 6 : Vote for proposal (CP, DiProp,
DiPVote, Dvvote)

Semantics: A domain Dv may vote (yes, no) for any 
DiProp Í CP. A domain will vote “no” if its local 
constraints are not satisfied by the proposal.  

The rule:
if  NCR = f and

DiProp Í CP and
 Dvvote Î DiPVote and
 (DiProp |= DvC Ç GC and Dvvote = yes);  
                         DvC Í CC,  GC Í CC 

or  (Dvvote = no) 
then  DiPVote’ = DiPVote Ç Dvvote  

CP’ =  CP Ç DiPVote’
all other state variables remain unchanged 

else all state variables remain unchanged 

Table 5: State Transition Rules 1 – 6 
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7) Rule 7 : Declare negotiated set of shared 
resources (NCR) 

Semantics: The first proposal that receives either 
unanimous votes or a pre-defined majority votes is 
declared the negotiated common state 

The rule:
if $Y = DiPVote Í CP: |Y| = |CD| Ù Majority and

"x = Dvvote Í Y, x = yes 
then NCR’ =  DiProp Í CP 

 all other state variables remain unchanged 
else all state variables remain unchanged  
/* Note: negotiations may not end */ 

8) Rule 8 : Add roles for committing NCR 
(CCOM, Di_add_R)

Semantics: Each domain Di must provide a set of roles 
that have permissions for all its resources in NCR. 

The rule:
if  Di_add_R Ì DiR Í CAM and

 objects(permissions(Di_add_R)) É  DiO’ Í
      NCR and
 applications(permissions(Di_add_R)) É
      DiApp’ Í NCR 

then  CCOM’ = CCOM Ç Di_add_R 
 all other state variables remain unchanged 

else all state variables remain unchanged 
9) Rule 9 : Add users for committing NCR 

(CCOM, Di_add_UA)
Semantics: Each domain provides a set of users and a 
user-to-role relation mapping these users to roles in 
CCOM. The relation must satisfy the domain’s local 
neg. and access constraints and global neg. constraints. 

The rule:
if "(x,y) Í (Di_add_UA): x Í DiU and y Í
{D1_add_R, …, Dk_add_R, J_add_R} 

 where DiU Í CAM, {D1_add_R, …, 
Dk_add_R, J_add_R} Í CCOM and

  Di_add_UA |= DiAC, DiC Ç GC; DiAC Í
CAM, DiC, GC Í CC 
then CCOM’ = CCOM Ç Di_add_UA

 all other state variables remain unchanged 
else all state variables remain unchanged 

10) Rule 10: Leave coalition (CAM, CC, Dj, DjAM,
HIS)

Semantics: Any coalition domain may choose to leave 
the coalition at any time except when a negotiation is in 
progress. When a domain leaves, it withdraws its 
privately-owned resources. As a consequence any 
negotiation constraint (of the remaining coalition 
domains) that is no longer satisfied, is invalidated. 

The rule:
if   CRes = JRes = CP = NCR = CCOM = f
then " (x,y) ÍDjFUA: x Í DiU for some Di Í CD,
                   y Í DjR

          CAM’ = CAM’ - (x, y) 
CC’ = CC – DjC
"const Í CC’: CAM’ö¸ const 
 CC’ = CC’ – const 
CD’ = CD - Dj

HIS’ = HIS Ç CD Ç CC Ç CAM Ç CRes Ç
JRes Ç CP Ç NCR Ç CCOM 

all other state variables remain the same 
else  all state variables remain unchanged 
11) Rule 11: Commit negotiated common state 

(CAM, HIS) 
Semantics: The negotiated NCR along with the roles, 
users, and user-to-role mappings in CCOM may be 
committed if they satisfy each domain’s local access 
policy constraints and all negotiation constraints. All 
user-to-role mappings that were negotiated in previous 
negotiations but are not part of the current common 
access state must be revoked. 

The rule:
if  NCR Ç CCOM |= CC Í CAM and

  NCR Ç CCOM |= {D1AC Ç D2 AC Ç … Ç
DkAC} Í CAM 
then  JResource = {JOBJ, JApp, JR, JOP, JP, JPA} 

 {where JOBJ Í NCR, JApp Í NCR, JR = 
J_add_R Í CCOM, JP = permissions(JR), JOP = 
operations(JR, JOBJ, JApp)} 
                CAM’ = CAM Ç JResource
         /* add jointly owned resources to CAM’ */ 
"(x,y)ÍCCOM: xÍDiU, yÍ{DjR} for some Dj Í

CD Ø (x,y) Î CAM’ 
     Dj_FUA’ = Dj_FUA Ç (x, y) 

             CAM’ = CAM’ Ç Dj_FUA’
       /* add foreign user-to-role relations */ 
" (x,y) Í CCOM:  x Í DiU, y Í JR and (x,y) Î CAM’ 

             JUA’ = JUA Ç (x, y) 
CAM’ = CAM’ Ç JUA’

/* add joint admin. user-to- role relations to CAM’*/ 
"DiÍ CD,"(x,y)Í DiFUA Í CAM’ and (x,y) Î CCOM 

CAM’ = CAM’ – (x,y) \ 
    /* revoke prior user-to-role relations */ 

" (x,y) Í JUA Í CAM’ and (x,y) Î CCOM 
CAM’ = CAM’ – (x,y)

    /* revoke prior user-to-role relations */ 
HIS’ = HIS Ç CD Ç CC Ç CAM Ç CRes Ç

JRes Ç CP Ç NCR Ç CCOM 
CRes’ = JRes’ = CP’ = NCR’ = CCOM’ = f
all other state variables remain unchanged 

else       all state variables remain unchanged

Table 6: State Transition Rules 7 – 11 
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In contrast, our work explores the automation of the process of negotiating a common access state in 
a generic dynamic coalition multiparty setting where all the domains of a coalition share the same 
interpretation of a common policy model. We cast this negotiation problem as one of satisfying (1) 
diverse coalition-member objectives, (2) a specified set of negotiation constraints, and (3) the existing 
access constraints of the coalition members.  

A Language for Specifying Negotiation Constraints. For negotiation a common access state, we 
require a language that is expressive in that it can be used to express a variety of negotiation constraints, 
and easy to use in that using the language should not require knowledge of underlying logic structures and 
rules. This is because we envision the language to be used by coalition administrators and not by security 
access policy designers. Furthermore, we require the language to be supported by a resolution procedure
for verifying the satisfaction of negotiation constraints.  

Tower [15] is an expressive language that is designed for object-oriented systems. It is easy to use 
for systems designers who understand object-oriented systems. However, the language allows for the 
definition of only a limited variety of constraints and there is no resolution procedure currently defined or 
implemented. The Ponder [7] policy specification language provides a common means for specifying 
security policies that map onto various access control implementation mechanisms. The language is 
targeted for management of large-scale object oriented systems and consequently the use of the language 
requires familiarity with these systems. A deployment model for object-oriented systems is discussed in 
[8], however, the language can express only a limited set of constraints. ASL [16, 17] and the 
authorization constraint language proposed by Bonatti et al. [4] are expressive languages for RBAC 
systems defined with well-formed logic structure and rules. The languages are supported by resolution 
procedures, which are shown to be implementable. Furthermore, the languages allows for the expression 
of conflicting authorizations that can be resolved by user-defined resolution mechanisms (functions). 
However, both the languages are difficult to use, as their use requires knowledge of underlying logic 
structures and rules. OASIS [13] is an RBAC architecture for interoperation of services in distributed 
environments. It uses the notion of role activation based on rules that are dependant on credentials, which 
are transferred via role membership certificates. OASIS defines an RBAC language that can be used with 
some background knowledge of logic structures and rules. However, the language is not very expressive 
for constraint definition. RCL2000 [1] is an expressive RBAC language targeted for flexible RBAC 
constraint specification.  It is easy to use and logic structures are hidden from the language user. The 
language has been modeled in UML [26] and OCL [2] for constraint specification, and a subset of the 
language has been implemented in Prolog [23]. We have extended RCL2000 with additional elements and 
functions and shown that Prolog can be used as a resolution procedure for the language. 

7. Conclusions 
We have shown that negotiating a common access state means obtaining the agreement of each 

domain to share privately owned resources and to either privately or jointly administer access to the 
resources. We have also shown that in the presence of coalition dynamics, member domains must re-
negotiate the common access state multiple times. We developed a state transition model of the 
negotiation process and a negotiation language for the specification of a wide variety of negotiation 
constraints, and we illustrated negotiations of common access states. 

Several problems of coalition resource negotiation related to our work remain to be solved. Though 
we identify useful types of negotiation constraints, we do not identify all possible types. The task of 
formal characterization of negotiation constraints still remains to be undertaken. We assume that all 
domains have a common interpretation of the RBAC policy model. Future work on formal modeling of 
the negotiation process can relax this restriction and allow the negotiation of common access states that 
can be committed on multiple access policy models (e.g., by negotiating directly on permissions of the 
resources as opposed to negotiating membership to roles that have permissions for the resources). A 
problem closely related to our work is that of composing proposals for resource sharing that are likely to 
be accepted by all coalition domains. Game theory or heuristics may provide solutions to this problem. 
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Appendix A: Elements and Functions of Negotiation Language NL 
Basic Elements and functions

- Model Elements, namely, DiU, DiR, DiOBJ, DiApp, DiUA, DiFUA, DiOP, DiP, DiPA, DiAC, JR, JOBJ, 
JApp, JOP, JP, JUA, JP 

- users : DnR ­ 2U, a function mapping each domain Dn role ri to a set of users 
- roles: DnU Ç DnP­ 2R, a function mapping the set DnU and DnP to a set of roles R 
- permissions: DnR­ 2P, a function mapping each domain Dn role ri to a set of permissions 
- operations: DnR X (DnOBJ, DnApp) ­ 2OP, a function mapping each domain Dn role ri, and 

object/application obj1/appl, to a set of operations 
o operations (ri, objl) = {op Í DnOP | (op, objl, ri) Í DnPA}

- objects: DnP­ 2OBJ, a function mapping each domain Dn permission pi to a set of objects 
- applications: DnP ­ 2App, a function mapping a set of domain Dn permissions to a set of domain Dn

applications 
- coalition users: {D1R, …, DnR, JR} ­ 2U, a function mapping each coalition role ri to a set of coalition users 
- coalition roles: {D1U, …, DnU} Ç {D1P, …, DnP, JP} ­ 2R, a function mapping the set of coalition users 

and coalition permissions to a set of coalition roles  
- coalition permissions: {D1R, …, DnR, JR} ­ 2P, a function mapping each coalition role ri to a set of 

permissions 
- coalition operations: {D1R, …, DnR, JR} X {D1OBJ, D1App,…, DnOBJ, DnApp, JOBJ} ­ 2OP, a function 

mapping each coalition role ri, and coalition object/application objl, to a set of operations 
o coalition operations (ri, objl) = {op Í {D1OP, …, DnOP, JOP} | (op, objl, ri) Í {D1PA, …, 

DnPA, JPA}} 
- coalition objects: {D1P, …, DnP, JP} ­ 2OBJ, a function mapping each coalition permission pi to a set of 

objects 
- coalition applications: { D1P, …, DnP, JP} ­ 2App, a function mapping a set of  coalition permissions to a set 

of applications 
- DnCR = a collection of domain conflicting role sets, {cr1, …, crs}, where cri = {r1, …, rt} Ì DnR
- DnCP = a collection of domain conflicting permission sets, {cp1, …, cpu}, where cpi = {p1, …, pv} Ì DnP
- DnCU = a collection of domain conflicting user sets, {cu1, …, cuw}, where cui = {u1, …, ux} Ì DnU
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- DnCOBJ = a collection of domain conflicting object sets, {cobj1, …, cobjw}, where cobji = {obj1, …, objx} Ì
DnOBJ

- DnCApp = a collection of domain conflicting application sets, {capp1, …, cappw}, where cappi = {app1, …, 
appx} Ì DnApp

- CCR = a collection of coalition conflicting role sets, {cr1, …, crs}, where cri = {r1, …, rt} Ì {D1R Ç D2R Ç
… Ç DkR Ç JR} 

- CCP = a collection of coalition conflicting permission sets, {cp1, …, cpu}, where cpi = {p1, …, pv} Ì {D1P Ç
D2P Ç … Ç DkP Ç JP} 

- CCU = a collection of coalition conflicting user sets, {cu1, …, cuw}, where cui = {u1, …, ux} Ì {D1U Ç D2U
Ç … Ç DkU}

- CCOBJ = a collection of coalition conflicting object sets, {cobj1, …, cobjw}, where cobji = {obj1, …, objx} Ì
{D1OBJ Ç D2OBJ Ç … Ç DkOBJ Ç JOBJ } 

- CCApp = a collection of coalition conflicting application sets, {capp1, …, cappw}, where cappi = {app1, …, 
appx} Ì {D1App Ç D2App Ç … Ç DkApp Ç JApp } 

- oneelement(X) = xi, where xi Í X 
- allother(X) = X – {OE(X)}

Additional Elements and Functions of NL

- N: the set of natural numbers 
- L: a set of lists where each list l = []. if empty, or l = [X|Y] with X = head of l and Y is another list and the 

tail of l where X can be a basic element of NL or a natural number 
- Successor: N ­ N, a function mapping a natural number to its successor, that is, Successor(n) = n +1 where 

n Í N 
- Minimum: N X N  ­ N, a function mapping two natural numbers to the one that is the minimum, that is, 

Minimum (n, m, n) « n ¢ m, where “«” denotes implication 
- Maximum: N X N ­ N, a function mapping two natural numbers to the one that is the maximum, that is, 

Maximum (n, m, n) « n ² m 
- Sumlist: L ­ N, a function mapping a list of natural numbers to the number that is the sum of all the 

elements of the list, recursively defined as follows:  
o Sumlist([], 0)  /* the sum of an empty list is 0 */ 
o Sumlist([X|Xs], Sum) « Sumlist(Xs, Issum) /* Sum is X + Issum */ 

- List_min: L ­ N, a function mapping a list of natural numbers to a natural number which is the minimum in 
the list, defined as follows: 

o List_min([X|Xs], M) « List_min(Xs, X, M) 
o List_min([X|Xs], Y, M) « Minimum(X, Y, Y1), List_min(Xs, Y1, M) 

- List_max: L ­ N, a function mapping a list of natural numbers to a natural number which is the maximum in 
the list, that is, Listmax(Xs, N) defined similar to List_min. 

- Member: L X L  ­ T/F, a function mapping a list l (l = [X|Y]) and an element of a list x to a Boolean value 
(true/false) as follows: 

o Member(X, [X|Xs]) 
o Member(X, [Y|Ys]) « Member(X, Ys) 

- Length: L ­ N, a function mapping a list l (l = [X|Y])to natural number n identifying the number of elements 
of the list and is defined as follows: 

o Length([], 0)  /* length of an empty list is 0 */ 
o Length([X|Xs], N) « Length(Xs, N1)  /* N is N+1 */ 

Appendix B: Semantics of Negotiation Language NL 
We present a reduction algorithm to convert any statement in the negotiation language NL to a statement in a 

restricted first order predicate logic (RFOPL) language and a construction algorithm to convert an RFOPL statement 
to a NL statement. These algorithms are similar to those given for the conversions between RCL2000 statements and 
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RFOPL statements [1]. We show that the relationship between the statements in NL and RFOPL is sound and 
complete where the proof for completeness is simpler than the one presented in [1]. 

B.1. Conversions between NL and RFOPL Statements 
The reduction of NL statements to RFOPL statements involves the elimination of OE and AO functions by 

replacing them with universal quantifiers while the construction of NL statements from RFOPL statements involves 
the elimination of quantifiers by replacing them with OE and AO functions. We present the reduction and 
construction algorithms below and note that the reduction algorithm is a modified version of the one presented in [1] 
for RCL2000 statements. This modification involves restricting the possible reductions of an NL statement to 
exactly one RFOPL statement and this modification allows us to simplify the completeness proof in Section B.2. 

Reduction Algorithm
Input: NL statement; Output: RFOPL statement 
Let Reduce-OE term be either OE(set) or OE(function(element)), where set is an element of {DiU, DiR, DiOBJ,

DiApp, DiUA, DiFUA, DiOP, DiP, DiPA, DiAC, JR, JOBJ, JApp, JOP, JP, JUA, JP} and function is an element of 
{user, roles, permissions, operations, object, application, coalition user, coalition roles, coalition permissions, 
coalition operations, coalition object, coalition application, minimum, maximum, list_min, list_max, member, 
sumlist, successor} 

1. AO elimination 
 replace all occurrences of AO(expr) with (expr – {OE(expr)});
2. OE elimination 
      While there exists Reduce-OE term in NL statement 

choose the innermost Reduce-OE term of the leftmost expression that has 
 a Reduce-OE term 

 call reduction procedure; 
End
Procedure reduction

  case (i) Reduce-OE term is OE(set)
   create new variable x;

  put "x Í set to the right of the existing quantifier(s); 
   replace all occurrences of OE(set) by x;

case (ii) Reduce-OE term is OE(function(element)) 
  create new variable x;

   put "x Í function(element) to the right of existing quantifier(s); 
   replace all occurrences of OE(function(element)) by x;

End

Construction Algorithm 
 Input: RFOPL statement; Output: NL statement 

1. Construct NL statement from RFOPL statement 
  While there exists a quantifier in RFOPL statement 
   choose the rightmost quantifier "x Í X; 
   pick values x and X from the chosen quantifier; 
   replace all occurrences of x by OE(X); 
  End 
2. Replacement of AO 
  If there is (expr – {OE(expr)}) in RFOPL statement 
  replace it with AO(expr);

B.2. Relationship between NL Statements and RFOPL Statements 
We have the following four lemmas based on the reduction (R) and construction (C) algorithms presented in 

the previous section. 
Lemma 1: Given NL statement a, R(a) always gives the same RFOPL statement b.
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Proof: The reduction algorithm always chooses the innermost OE function of the leftmost expression that has 
an OE function to reduce a NL statement to a RFOPL statement. This procedure is deterministic. Therefore, given 
NL statement a, we will always get the same RFOPL statement b.

Lemma 2: Given RFOPL statement b, C(b) always gives the same NL statement a.
Proof: The construction algorithm always chooses the rightmost quantifier to construct a NL statement from 

the RFOPL statement. This procedure is deterministic. Therefore, given RFOPL statement b, we will always get the 
same NL statement a.

Definition: Intermediate statements – The statements generated during reduction and construction are called 
intermediate statements. These statements have both quantifiers and OE terms. 

Lemma 3: If the intermediate expression d is derived from an NL statement a by the Reduction algorithm in k
iterations, then the Construction algorithm applied to d will terminate in exactly k iterations. 

Proof: Since the Reduction algorithm generates exactly one quantifier per iteration, d must have exactly k
quantifiers. Furthermore, since the Construction algorithm eliminates exactly one quantifier per iteration, it will 
terminate in exactly k iterations. 

Lemma 4: If the intermediate expression d is derived from an RFOPL statement b by the Construction 
algorithm in k iterations, then the Reduction algorithm applied to d will terminate in exactly k iterations. 

Proof: Since the Construction algorithm generates exactly one OE term per iteration, d must have exactly k OE 
terms. Furthermore, since the Reduction algorithm eliminates exactly one OE-term per iteration, it will terminate in 
exactly k iterations. 

We now prove the soundness and completeness of the relationship between NL and RFOPL statements. 
Soundness theorem: Given NL statement a, a can be translated into an RFOPL statement b. Also a can be 

reconstructed from b. That is C(R(a)) = a.
Proof: Let us define Cn as n iterations of the Construction algorithm and Rn as n iterations of the Reduction 

algorithm. We show that Cn (Rn(a)) = a by induction on the number of iterations in reduction R (or, C under the 
result of Lemma 3). 

Hypothesis: If the number of iterations n is 0, then the theorem follows trivially. 
Inductive Step: We assume that if n = k, the theorem is true. 

Consider the intermediate statement d translated by the Reduction algorithm in k + 1 iterations. If d’ is the 
intermediate statement after k iterations, then d differs from d’ by having one additional rightmost quantifier and one 
less distinct OE term. Application of the Construction algorithm to d eliminates this rightmost quantifier and brings 
back the OE term (under the result of Lemma 1). Thus, one iteration of the construction algorithm applied to d gives 
us d’.

By induction, Cn (Rn(a)) = a. This completes the proof of the theorem. 
Completeness Theorem: Given RFOPL statement b, b can be translated into NL statement a. Also b can be 

retranslated from a, that is, R(C(b)) = b.
Proof: We show that Rn (Cn(b)) = b by induction on the number of iterations in reduction C (or, R under the 

result of Lemma 4). 
Hypothesis: If the number of iterations n is 0, then the theorem follows trivially. 
Inductive Step: We assume that if n = k, the theorem is true. 
Consider the intermediate statement d translated by the Construction algorithm in k + 1 iterations. If d’ is the 

intermediate statement after k iterations, then d differs from d’ by having one additional distinct OE term and one 
less rightmost quantifier. Application of the Reduction algorithm to d eliminates this distinct OE term and brings 
back the rightmost quantifier (under the result of Lemma 2). Thus, one iteration of the Reduction algorithm applied 
to d gives us d’.

By induction, Rn (Cn(a)) = a. This completes the proof of the theorem. 

Appendix C: Security Formulations for the State Transition Model 

Initial State: The initial state is defined to be ({}, {}, {}, {}, {}. {}. {}. {}, {}) and trivially satisfies the state 
invariant SI stated in Section 4.4. 

Theorem 1: If state Sn is the new state after application of a sequence of n state transition rules on state So and if 
So satisfies the invariant SI, then Sn also satisfies the invariant SI. 
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Proof: We show a proof of the theorem by induction. 
Let the sequence of transition rules applied be {R1, R2, …, Rn} and let the resulting sequence of states be {So,

S1, … Sn} such that state Si results from an application of Ri on state Si-1.
Consider the case where state Si-1 is known to satisfy SI. We have to show that the application of transition rule 

Ri results in a state Si that also satisfies SI. 
Hypothesis: I = 0. S = So – the initial state satisfies SI as shown above. 
Induction Step: I > 0. We assume that state Si-1 = S = (CD, CC, CAM, CRes, JRes, CP, NCR, CCOM, HIS) 

satisfies the state invariant SI, that is, I1 … I9 are satisfied by CD, CC, CAM, CRes, JRes, CP, NCR, CCOM and 
HIS. We show below that Si satisfies SI for Rule R5 – Propose common shares resources. It can be similarly shown 
that other transition rules also result in Si satisfying SI. (Proofs for Rules 10 and 11 are provided in [18]). 

Application of rule R5= Propose common shared resources (CP, DpProp = {D1O’’, D1App’’, D2O’’, D2App’’,
…, DkO’’, DkApp’’, JO’’, JApp’’} 

S’ = (CD’, CC’, CAM’, CRes’, JRes’, CP’, NCR’, CCOM’, HIS’) = (CD, CC, CAM, CRes, JRes, CP Ç
DpProp, NCR, CCOM, HIS) 

(CD, CC, CAM, CRes, JRes, NCR, CCOM, HIS) satisfy I1, I2, I3, I4, I6, I7, I8 and I9. 
CP satisfies I5 and DpProp satisfies 

(i) "Z = (DjO’’, DjApp’’) Í DpProp: Z Ì CRes
(ii) "Z = (JO’’, JApp’’) Í DpProp: Z Ì JRes 
(iii) DpProp |= DiC Ç GC where DiC Í CC, GC Í CC 

Therefore, CP Ç DpProp satisfies I5. 
By hypothesis, S0 = (CD, CC, CAM, CRes, JRes, CP, NCR, CCOM, HIS) satisfies SI. Thus, by induction S1,

S2, …, Sn also satisfy SI. This completes the proof of the theorem. 

Theorem 2: If S0 = (CD0, CC0, CAM0, CRes0, JRes0, CP0, NCR0, CCOM0, HIS0) and Sn = (CDn, CCn, CAMn,
CResn, JResn, CPn, NCRn, CCOMn, HISn) are two states that satisfy SI and CDnÇ HISn É CD0, CCnÇ HISn É CC0,
CAMnÇ HISn É CAM0, CResnÇ HISn É CRes0, JResnÇ HISn É JRes0, CPnÇ HISn É CP0, NCRnÇ HISn É NCR0,
and CCOMnÇ HISn É CCOM0, then there exists a sequence of rules that transforms S0 to Sn and is secure. 

Proof: We prove the theorem by contradiction 
Let the sequence of rules {R1, R2, …, Rn} transform S0 to Sn through intermediate states S1, S2, …, Sn-1 such 

that each Si+1 adds a set of elements to CDi, CCi, CAMi, CResi, JResi, CPi, NCRi, CCOMi, or HISi.
Let us assume that the above sequence of rules contains at least one insecure transform Ri (1 < i < n) which, 

when applied to state Si-1 results in a new state Si. There are 11 possible cases for transform Ri. We consider the 
following case for transform Rule 5, namely proposing common shared resources. The arguments for the remaining 
ten cases are similar. 

Consider transform Ri to be Rule 5. Si-1 = (CDi-1, CCi-1, CAMi-1, CResi-1, JResi-1, CPi-1 Ç DpProp, NCRi-1,
CCOMi-1, HISi-1)

Since Ri is not a secure transform, the if part of Rule 5 is not satisfied for the set of elements X = DpProp in 
CPi. Thus, there exists a set of elements X in CPi, which violate I5 of SI. Therefore state Si does not satisfy SI. 
Moreover, Sn = (CDn, CCn, CAMn, CResn, JResn, CPn, NCRn, CCOMn, HISn) may be reached from intermediate 
state Si = (CDi, CCi, CAMi, CResi, JResi, CPi, NCRi, CCOMi, HISi), thus CDnÇ HISn É CDi, CCnÇ HISn É CCi,
CAMnÇ HISn É CAMi, CResnÇ HISn É CResi, JResnÇ HISn É JResi, CPnÇ HISn É CPi, NCRnÇ HISn É NCRi,
and CCOMn Ç HISn É CCOMi (since in our model, all state transitions except for the commit and leave coalition
transitions only allow augmentations of sets CD, CC, CAM, CRes, JRes, CP, NCR, CCOM, HIS and any reductions 
in the commit or leave coalition transitions are maintained in the HIS set). If CPi contains the set of elements X 
which violates I5, then CPn Ç HISn also contains the same set of elements X and hence we arrive at the conclusion 
that Sn does not satisfy SI, which contradicts our hypothesis. 

Thus the sequence of rules which takes us from S0 to state Sn does not contain any insecure transform, and is, 
therefore, secure. This completes the proof of the theorem. 

Appendix D: Examples of Common Access State Negotiations 
In this section we illustrate three examples of negotiating a common access state in the state-transition model. 

Negotiation constraints are specified in NL. The first example is one of negotiating airlines routes introduced in 
Section 2. In the second example we illustrate how our model supports coalition dynamics. Additional examples are 
provided in [18]. 
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D.1. Example 1: Negotiating Routes with Least-Privilege Constraints 
This example was introduced in Section 2. We review the coalition objective, present the negotiation constraints 

in NL and describe the negotiation process using the state-transition model. 
Coalition Objective: To share six route types (1 … 6) between three domains D1, D2, and D3 and to jointly own 

and administer an auditing application with access to shared routes. 
Negotiation Constraints: The following two global negotiation constraints have been agreed upon: 

(1) Domains that have unique route types must share them (obligation constraint). As a consequence, Domain 
D1 must share route type 6 and Domain D2 must share route type 3. 

(2) Sharing of route types must minimize the number of routes shared (least privilege constraint); i.e., if two or 
more domains are capable of sharing the same route type, then the one that comprises the lowest number of 
objects will be used. 

These constraints are specified in NL as follows: 
Let DU be a list of all coalition users: DU = {D1U, D2U, D3U} 
For each route type routei, the following two lists are defined

Domi = {D1, …, D3} – list of domains that have routei
Ni = {nroutes1, …, nroutes3} – number of routes in each domain’s route type 

Constraint (1) length(Domi) = 1 Ý
routei Í coalition objects(coal. permissions(coal. roles(DU-DjU))))
where domain Dj Í Domi

Constraint (2) length(Domi) > 1 Ø  list_min(Ni, Nij)Ý
routei Í coal.objects(coal. permissions(coal. roles(DU-DjU))))
where domain Dj ÍӞDomi and Nij is the jth element of list Ni

The Negotiation Process 
In Figure 4 below, we illustrate the negotiation process in the state-transition model for the above coalition 

objective and negotiation constraints. We show the relevant state variables in the common access state as the 
negotiation proceeds with application of the state transition rules.

{D1FUA} = f, {D2FUA} = f, {D3FUA} = f

D2Prop = {D1 (1, 6), D2 (3), D3 (2, 4, 5)}, JRes

Propose shared resources

CD = {D1, D2, D3}; CAM: {D1AM, D2AM, D3AM}
Join Coalition

CC = {GC}
Define Neg. Constraints

CRes = D1: (1, 4, 5, 6), D2: (1, 2, 3, 4), D3: (1, 2, 4, 5)

Add domain Resources

D2PVote = {Yes, Yes, Yes}
Vote on Proposal

NCR = {D1 (1, 6), D2 (3), D3 (2, 4, 5)}, JRes
Declare Shared Resources

CCOM = {RD1_1, RD1_6, RD2_3, RD3_2, RD3_4, RD3_5, JR}

Add Roles

CCOM = {(UD3_user1: RD1_1, RD1_6, RD2_3)}
Add User-Role Relations

D1FUA = {RD1_1: (UD2_user1, UD3_user3)}, HIS
Commit

JRes = Audit App, JR, JP, JPA, JOP

Add Jointly Owned Resources

Figure 4: Example 1 - Negotiation Routes with Least Privilege Constraints 
Here negotiation begins in a state where the domains do not share any resources. Domains join the coalition 

and agree on the above-mentioned global negotiation constraints. Domains then add their route types to the pool of 
coalition resources that may be shared and the audit application supported by RBAC access policies that is to be 
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jointly owned. Domain D2 proposes a set of shared resources that satisfies the global negotiation constraints. All 
domains unanimously vote for this proposal, which is then declared to be the negotiated set of coalition resources. If 
any domain had voted “no”, then negotiations would have proceeded with alternate proposals. Once the negotiated 
set of resources is declared, domains provide roles and users to access these resources. Here the domains provide 
one role per route type that they share with the coalition and they provide one user to be a member of all these 
(foreign) roles. The domains then commit this common access state by enrolling foreign users in the roles that have 
permissions for shared resources (including the jointly owned auditing application) after verifying that the state does 
not violate any of the local access constraints of the three domains. The figure shows the committed state for 
Domain D1 and those for the other two domains are similar. 

D.2. Example 2: Supporting Coalition Dynamics 
In Section 3 we have discussed three possible coalition dynamic events, namely, domain join, voluntary 

domain departure, and involuntary domain departure. A domain join event is supported in the model by the joining 
of a new domain at the beginning of the process of re-negotiating a common access state. The set of coalition 
domains, including the new one, re-negotiates the common access state where member domains can retain the 
previous sharing agreements simply by including them in the proposal from the state history variables. The proposal 
will also include the joining domain’s resources. The domains then vote on this proposal and commit it after adding 
roles and users in a manner similar to the first negotiation. A voluntary domain departure is also easily supported by 
the state transition rule leave coalition where the departing domain leaves the coalition by withdrawing its privately 
owned resources, that is, by revoking permissions of foreign users to these resources. The remaining domains would 
then choose re-negotiate the common access state if (1) there are jointly owned resources in which case they would 
re-negotiate access policies for these resources, or (2) the departing domain withdraws any resources essential to the 
coalition objective in which case the domain would redefine the coalition objective and negotiate a common access 
state that satisfies this objective. 

We now illustrate how the model supports the involuntary departure of a domain with following agreement 
established prior to coalition setup: if n-1 domains decide to exclude the nth domain from the coalition, then they can 
do so as long as they allow the departing domain to withdraw any resources it had ever contributed for joint 
ownership (in addition to its privately owned resources). In Example 2, if after coalition setup, Domains 1 and 3 
decide to exclude Domain 2 from the coalition then would re-negotiate the common access state as follows. 

Coalition Objective: Exclude Domain 2 from the coalition while adhering to agreement on involuntary domain 
departure. 

Negotiation Constraints: The domains agree to the following global negotiation constraint, which captures the 
agreement on involuntary domain departure. 

- If a proposal is to be accepted with only n-1 votes for a known set of n domains, then the common access 
state cannot include any jointly owned resources that were ever contributed by the excluded domain. 

This constraint would be defined in NL as follows. 
 Let Joint_dom2 be the list of jointly owned resources that were contributed by Domain 2 in all prior 

negotiations.  
 Here Joint_dom2 = {Application 2} 

- Constraint: |JApp Æ Joint_dom2| = j, where JApp Í CAM 

The Negotiation Process 
In Figure 5 below, we illustrate the negotiation process in the model for the above coalition objective and 

negotiation constraints. We show the relevant state variables in the common access state as the negotiation proceeds 
with application of the state transition rules. For this negotiation, the majority variable for security invariant I7 and 
transition Rule 7 (Declare negotiated set of resources) is set to n-1, where n is the number of domains in the 
coalition when negotiation begins. 

Here negotiation begins in a state where the domains share resources as negotiated in the common access state 
in Example 2. Domains 1 and 3 then join the coalition and agree on the above-mentioned global negotiation 
constraint. Then domains add the applications 1 and 3 to the pool of applications that are to be jointly owned and 
administered. Domain D1 proposes the joint ownership of these resources, excluding application 2 to satisfy the 
negotiation constraints, and this proposal is accepted by Domain D3, that is, by a majority of n-1 domains. Then the 
domains declare this as the negotiated set of resources. Domains D1 and D3 then provide one user each for 
membership to the roles for jointly owned application 1 and 3. The common access state is then committed by 
enrolling these users to the roles if it satisfies the local access constraints of Domains D1 and D3. 
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D 1 F U A  =  { J R 1 :  ( U D 1 _ u s e r 1 ,  U D 3 _ u s e r 3 ) }

C C O M  =  { U D 1 _ u s e r 1 ,  U D 3 _ u s e r 3 }

N C R  =  { J R e s }

D 1 P V o t e  =  { Y e s ,  Y e s }

D 1 P r o p  =  { J R e s }

J R e s =  D 1 :  ( A p p 1 ) ,  D 3 :  ( A p p 3 ) ,  J P ,  J R ,  J P A ,  J O P

C o m m i t

A d d  U s e r s

D e c l a r e  N e g o t i a t e d  R e s o u r c e s

V o t e  o n  P r o p o s a l

P r o p o s e  S h a r e d  R e s o u r c e s

C C  =  { G C }

A d d  C o a l i t i o n  R e s o u r c e s

C D  =  { D 1 ,  D 3 } ;  C A M :  { D 1 A M ,  D 3 A M }

A d d  N e g .  C o n s t r a i n t s

J o i n  C o a l i t i o n

D 1 F U A  =  { J R 1 :  ( U D 1 _ u s e r 1 ,  U D 2 _ u s e r 2 ,  U D 3 _ u s e r 3 ) }

Figure 5: Example 4- Supporting Coalition Dynamics 


