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Abstract

The Grid environment facilitates collaborative work and
allows many users to query and process data over geograph-
ically dispersed data repositories. Over the past several
years, there has been a growing interest in developing ap-
plications that interactively analyze datasets, potentially in
a collaborative setting. We describe an Active Proxy-G ser-
vice that is able to cache query results, use those results for
answering new incoming queries, generate subqueries for
the parts of a query that cannot be produced from the cache,
and submit the subqueries for final processing at application
servers that store the raw datasets. We present an experi-
mental evaluation to illustrate the effects of various design
tradeoffs. We also show the benefits that two real applica-
tions gain from using the middleware.

1 Introduction

The Grid is an ideal environment for running appli-
cations that need extensive computational and storage re-
sources. Most research in high-end and grid computing has
focused on the development of methods for solving chal-
lenging compute or data intensive applications in science,
engineering, and medicine. A salient feature of the Grid
is that it fosters collaborative research and facilitates re-
mote access to shared resources by multiple client appli-
cations. There has also been an emerging set of applica-
tions that involve interactive analyses of large datasets at ge-
ographically dispersed locations. There is a variety of re-
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composition have played important roles. For instance, the
Telescience for Advanced Tomography Applications project
(http://www.npaci.edu/Alpha/telescience.html) is dedicated
to merging technologies for remote control, grid comput-
ing and federated digital libraries. The objective is to con-
nect scientists’ desktops to remote instruments, distributed
databases, and to data and image analysis programs. The
GriPhyN project (http://www.griphyn.org) targets storage,
cataloging and retrieval of large, measured datasets from
large scale physical experiments. The goal is to deliver data
products generated from these datasets to physicists across
a wide-area network. The objective of the Earth Systems
Grid (ESG) project (http://www.earthsystemgrid.org) is to
provide Grid technologies for storage, publication, and anal-
ysis of large scale datasets arising from climate modeling ap-
plications.

In multi-client environments, we expect data reuse across
queries. Multiple users are likely to want to explore the
same portion of a dataset (some portions of datasets tend to
be of particular interest). There may also be commonalities
in a sequence of queries that look at the same physical region
at different points in time. When a rapid response is needed,
performance can be improved by reusing previously cached
results for a new query. Efficient scheduling of queries from
multiple clients is another optimization that can be applied
to improve system performance. In the context of Web ser-
vices, data caching and Web proxies have been shown to
speed up servicing web requests by caching popular pages,
only performing remote transactions when requests cannot
be satisfied from the cache [8, 17].

A grid-based cluster environment, which consists of a
collection of compute, memory, and storage systems (i.e.,
shared- and distributed-memory parallel machines, high-
end I/O systems, and active disk-based storage systems), of-
fers a powerful and flexible environment for developing and
deploying applications that analyze large datasets. How-
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Figure 1. An application server may use many
different parallel configurations depending
on what is most efficient for an application.
(a) shared memory, (b) distributed shared
memory, or (c) distributed memory.

ever, such an environment requires distributed access to and
processing of data in a heterogeneous setting. Component-
based frameworks and services have been gaining accep-
tance as a viable approach for application development and
execution in distributed environments [1, 4, 9, 11, 12, 16, 19,
20, 23, 25]. Such models facilitate the implementations of
applications and services that can accomodate the heteroge-
neous and dynamic nature of the Grid.

In previous work [6], we have developed a framework
for efficiently executing multiple query workloads from data
analysis applications on SMP machines and distributed-
memory parallel machines. In this work, building on that
framework, we are developing a component-based frame-
work designed as a suite of services. This suite consists of
an active proxy service, an application query processing ser-
vice (application server), and a persistent data caching ser-
vice (cache server) (see Figure 2). In this paper, we focus
on the design and implementation of theActive Proxy-G
(APG) service. Employing APG requires adding three types
of functionality to the original application structure to em-
ploy the proxy. First, the application must attempt to ser-
vice the request solely from cached results. If that fails com-
pletely, then the request must be sent to the appropriate ap-
plication server that has access to the raw data required to
answer the request. Finally, if the request can be partially
answered from the cache, the application must retrieve the
cached results and generate requests (subqueries) to produce
the remaining results to the application server. All three
types of functionality are supported as Active Proxy-G core
services.

2 Related Work

In designing APG, several research aspects were taken
into consideration to make it a suitable platform for optimiz-

ing the execution of queries in a Grid environment. Many
of these aspects have been studied before, but the novelty
of our approach is a common framework for a class of data
analysis applications (see Section 3).

Rodrı́guez-Martı́nez and Roussopoulos [26] proposed a
database middleware (MOCHA) designed to interconnect
distributed data sources. MOCHA also handles queries with
user-defined operators. The system handlesdata reduction
operators bycode-shipping, which moves the code required
to process the query to the location where the data resides,
anddata inflation operators bydata-shipping, which moves
the input data to the client. This differs from our approach
in that we specifically target multiple query optimization
and use caching to avoid network bottlenecks, and also uti-
lize the processing power of proxies, distributing the com-
putation transparently across available resources between a
proxy and the application servers. This allows efficient exe-
cution of queries for which neither code-shipping nor data-
ship is the best solution alone. Several highly distributed
applications have employed proxy servers to great bene-
fit. Beynon et al [13] proposed a proxy-based infrastructure
for handling data intensive applications. The authors have
shown that their approach can both reduce the utilization
of wide-area network connections, reduce query response
time, and improve system scalability. Squid [29] is a widely
used web proxy that is primarily responsible for caching
web pages and thus avoid the latency and server overhead
incurred in retrieving pages that were recently visited. The
objectives of our framework are similar to these works.
However, we argue that in addition to being more generic,
our framework is potentially more powerful performance-
wise because it employs a semantic cache that allows an ac-
tive proxy to perform computations to allow re-using cached
results to satisfy request even when a data transformation
function must be applied. Additionally, it employs an exten-
sible query server engine which permits the implementation
of multiple applications with different query types.

Many types of environments for executing Grid-aware
applications can be found in the literature. Wolski et al. [30]
describe theEveryware toolkit that can be used to enable ap-
plications to draw computational power transparently from
the Grid. Unlike our work, they targetnumber crunching ap-
plications. More along the lines of APG is the Distributed
Parallel Storage Server (DPSS) [21, 28]. The most impor-
tant aspect of their approach is to use parallel operation of
distributed servers to supply data streams fast enough to en-
able various multi-user, real time applications in an Internet
environment. Bethel et al. [10] show how DPSS is used for
building Visapult, a prototype and framework for remote vi-
sualization of large datasets. Allcock et al. [3] points out
that the data grid infrastructure will need to service thou-
sands of users efficiently, and also highlight the point thatthe
management of data and replicas is also an important aspect
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Figure 2. The suite of services, which consists of Active Pro xy-G, application query servers, and
persistent cache servers, for optimizing the execution of m ultiple query workloads in a Grid-based
cluster environment.

of grid-aware applications. In some sense, our approach is
complementary to these works because it also enables an ap-
plication to explore the parallel capabilities of many applica-
tion servers, but it also goes a step beyond since it allows the
proxies to help with the computation by leveraging cached
aggregates, and automatically generating subqueries trans-
parently.

Recent efforts in the Grid research community [22, 24]
are investigating and proposing the mechanisms for exe-
cuting adaptive grid programs – Grid Application Develop-
ment Software (GrADS) – and the support mechanism for
storing metainformation needed to control that execution –
Grid Information System (GIS). Several research projects
have investigated the design, implementation, and applica-
tion of component-based frameworks for application devel-
opment and deployment [1, 9, 11, 12, 20, 23, 25]. The Com-
mon Component Architecture project by Bramley et al. [15]
leads a standardization effort for building distributed soft-
ware component systems for scientific and engineering ap-
plications. The Open Grid Services Architectures effort by
Foster et al. [18] draws from concepts and technologies that
evolved in the Grid and web world to generalize an archi-
tecture viable for deploying largely distributed commercial
and scientific applications. These initiatives are examples
of how our system will have to evolve in order to be inte-
grated to a much larger infrastructure, by being compliant to
the models that are eventually become standards, protocols
and best practices.

Finally, for the whole bulk of work in the multiple query
optimization problem, we refer the reader to our previous

works [5, 6, 7], in which we extensively discuss the related
research and compare it to our own approach.

3 Query Processing and Data Reuse in Data
Analysis Applications

Although many data analysis applications seemingly dif-
fer greatly in terms of their input datasets and resulting data
products, processing of queries for these applications shares
common characteristics. Figure 3 shows a pseudo-code rep-
resentation of the query processing structure, which is com-
monly referred to as ageneralized reduction operation.

In the figure, the functionselect identifies the set of data
items in a dataset that intersect the query predicateMi for
a queryqi. In many scientific data analysis applications,
both input and output datasets can be represented in a multi-
dimensional space, andMi describes a range query. That is,
only the data items whose coordinates fall inside the range
bounds are retrieved. The data items retrieved from the stor-
age system are mapped to the corresponding output (or ac-
cumulator) items (line 6). Application-specific aggregation
operations are executed on all the input items that map to the
same output item (lines 7 and 8)1. Accumulator is a user-
defined data structure to maintain intermediate results. The
aggregation operations employed in this loop arecommuta-
tive andassociative. That is, the output values do not de-
pend on the order input elements are aggregated. To com-
plete the processing, the intermediate results in the accu-

1This phase is called thereduction phase because the output dataset is
usually (but not necessarily) much smaller than the input dataset.
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I  Input DatasetO  OutputA Accumulator
1. [SI ] Intersect(I;Mi)

(* Initialization *)
2. foreach ae in A do
3. ae  Initialize()

(* Reduction *)
4. foreach ie in SI do
5. read ie
6. SA  Map(ie)
7. foreach ae in SA do
8. ae  Aggregate(ie; ae)

(* Finalization *)
9. foreach ae in A do
10. oe  Output(ae)

Figure 3. The query processing loop.

mulator are post-processed to generate final output values
(lines 9 and 10). In many data analysis applications, the
most computationally expensive part of the loop is the re-
duction phase (lines 4–8).

The characteristics of this generalized reduction loop
make it possible to develop common programming and run-
time support for a wide range of applications and to imple-
ment optimizations for processing of both single and multi-
ple queries. As we noted above, the aggregation operations
applied on the input data are commutative and associative.
As a result, the input data can be partitioned into data sub-
sets, an intermediate result can be computed from each data
subset, and the intermediate results can then becombined to
create the output data. This property of the query processing
loop has two implications for optimizing the execution of
queries. First, for a given single query, by partitioning input
data into subsets, lines 4 – 8 of the query processing loop can
be executed in a parallel or distributed environment. The
partitioning of the input data can be done by declustering
and storing the input dataset across the machines (or applica-
tion servers) in the system. Second, the intermediate results
(and potentially the output data) can be cached and reused to
decrease query execution time, when multiple query work-
loads are presented to the system. A queryqi may share in-
put elementsie (line 5), accumulator elementsae (line 8),
and output elementsoe (line 10) with a queryqj. For the
portions of queryqi that cannot be answered from cached
results, the corresponding data subset can be extracted from
the input dataset and an intermediate result can be computed.
This intermediate result can then becombined with cached
intermediate or output results. However,ae andoe gener-
ated by a query usually cannot be directly reused by another

query because they may not exactly match a later request,
but require that a data transformation (orprojection) be ap-
plied.

The middleware we describe targets optimized execu-
tion of this processing loop via reuse of computed results
by in-core and persistent data caching, efficient scheduling
of queries for evaluation, and efficient query execution (i.e.,Map andAggregate functions) in a distributed Grid envi-
ronment.

4 Active Proxy-G

The current design of Active Proxy-G (APG) implements
a multi-threaded runtime environment in order to simulta-
neously handle queries submitted by a large community of
users, and also to manage multiple connections with appli-
cation servers. APG also performs dynamic workload distri-
bution across multiple application servers, using a schedul-
ing model that employs metrics that depend on the current
and past workload of an application server.

To enable an application to use the APG design, it must
be structured around an abstractQuery class, and its related
query meta-information class,QueryMI. Customization of
APG for application-specific queries is achieved by sub-
classing the provided base classes and implementing a set of
virtual methods. The following virtual methods are required
for customization:

findOverlaps: This method queries the cache for in-
termediate results that may be used completely or par-
tially to satisfy the query being evaluated. It is cus-
tomized to allow application-specific ways of reusing
an intermediate result through one or more data trans-
formation operation.findOverlaps returns a list of in-
termediate results for reuse, which are tagged with se-
mantic information that is later used for applying the
correct data transformation operation (i.e. the project
method described next). Each returned result also con-
tains an overlap index that tells how much of the cached
result can be used. The overlap index serves the pur-
pose of giving the runtime system the opportunity to ei-
ther reuse the cached intermediate result or recompute
it from the input data, in the case the projection opera-
tion is more expensive than using the input data.

project: Given a cached intermediate result,project
transforms the intermediate result into the output ob-
ject required by the query being executed. The pro-
jection operation may be as simple as a copy opera-
tion (when a 100% match has been found), making the
query output structure point to the cached intermedi-
ate result, or much more computationally intensive, as
in projecting an intermediate result represented on one
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Figure 4. The APG functional components.
The directory service maintains information
about the location and access methods for
application servers and datasets. The work-
load monitor collects metrics on server and
network performance, and the persistent data
store maintains cached results along with
their associated semantic tags.

multi-dimensional grid to a different grid, which re-
quires performing an expensive computation.

generateSubQueries: Given the metainformation
describing which parts of the query were answered
using the cached results after the project operation,
generate a list of subqueries to compute the remaining
parts of the query.

The proxy runtime system uses the first two methods dur-
ing its query processing phase, as shown in Algorithm 1.
The algorithm tries to use the maximum number of cached
intermediate results to process the query completely from
the cache. Query processing goes through the following
phases: a) error checking (line 1), b) cache lookups and
memory allocation (lines 2-6), c) projection of the cached
results into the query output buffer (line 7), d) generation
and processing of subqueries (line 9), and e) remote ex-
ecution of the query at an application server (line 12), if
the query cannot reuse any cached results. The algorithm
runAndShipResults is executed forall queries, includ-
ing the subqueries generated from a given query. In that
way, subqueries can also benefit from the use of cached ag-
gregates in a recursive fashion.

If a query cannot be fully satisfied from cache (i.e. it
needs access to the input dataset(s)), the APG ships the
query (or parts of it, as subqueries) to an application server,
as is shown in The algorithm 2. The algorithm executes the
following steps: a) the Light Directory Service (described
later in this section) is consulted to find the appropriate ap-
plication server(s) to send the query to (line 1), b) the query
metainformation is cloned and a remote subquery is gener-
ated (lines 2 and 3), c) the query is shipped to the application
servers for remote execution (line 4) and, d) the results are
retrieved from the application servers and projected to an-
swer the current query (line 6).

Algorithm 1 void Query::runAndShipResults()
1: if qmi:isOk() then
2: stat = findOverlaps(ovlps list)
3: if stat 6= COMPLETE then
4: allocOutputMemory(ovlps list)
5: allocTmpMemory(ovlps list)
6: if stat 6= NO MATCH then
7: project(ovlps list)
8: if stat == PARTIALLY COMPLETE then
9: subq list = generateSubQueries(ovlps list)

10: ret = processSubQueries(subq list)
11: else if stat == NO MATCH then
12: ret = executeRemotely()
13: else
14: ret = METAINFO ERROR
15: sendResults(ret)
Algorithm 2 int Query::executeRemotely()

1: s = LDS:getServerFor(qmi:getDataName())
2: tqmi = qmi:clone()
3: tq = createQuery(tqmi)
4: tq:submit(s)
5: ret = tq:getResults(buf list)
6: if ret == QU OK then
7: project(buf list)
8: returnret

We now describe the four major components of the APG:
Query Server. This component is responsible for receiv-
ing queries from clients or other APGs. A priority queue
is used for storing queries to be scheduled for execution.
Queries selected for execution are instantiated by invoking
therunAndShipResults method in Algorithm 1. The
flexibility of this component comes from its ability to easily
incorporate new types of queries. Once an application de-
veloper provides the customized methods discussed in this
section, the query server can handle processing for a new
query type.
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Light Directory Service (LDS). Once the runtime sys-
tem determines that a query must be computed from input
data, the system must select the application server(s) to use
for remotely executing the query. There may be only a sin-
gle application server that has both the processing capabili-
ties (i.e., it implements the processing functions required by
the query) and the input dataset. Alternatively, there may be
several application servers that can answer the query. LDS
stores information about the location of input datasets and
the availability of query processing capabilities for differ-
ent types of queries. This service provides interfaces for
adding new application servers and new input datasets, as
well as for registering new types of queries. LDS also has a
getServerFor method that provides information about
the best application server to use for a given a query. The
best application server is defined in terms of policies imple-
mented by the workload monitor service that we describe
next.

Workload Monitor Service (WMS). There are two im-
portant aspects to be taken into consideration when many
application servers are available: load balancing and fault
tolerance. We would like to fairly assign the workload to ap-
plication servers without overloading any server. Fault tol-
erance, is important because, in a highly distributed environ-
ment, application servers may become unavailable and later
become again available frequently, and the runtime system
must take into account such environmental changes to better
assign queries to servers. To provide these features, WMS
continually monitors its registered application servers and
collects several metrics related to their query server thread
utilization and disk I/O activity. These metrics are used
for defining policies to implement thegetServerFor
method for LDS. APG can be interfaced with more power-
ful monitoring services such as the Network Weather Ser-
vice (NWS) [31], to provide more sophisticated information
that can be used to better determine which application server
is thebest candidate server for a given query. Such informa-
tion can include overall machine utilization (as opposed to
the application server utilization that is already used), net-
work bandwidth, and network latency.

Persistent Data Store Service (PDSS). APG effi-
ciency relies heavily on being able to identify reuse opportu-
nities from cached intermediate results. Using a single APG
to serve as a proxy for a large community of clients increases
the probability of obtaining matches, but the APG must also
deal with sets of client requests in which there is little or no
temporal locality. Additionally, when many clients for dif-
ferent applications are interacting with an APG, the overall
working set in the APG may be quite large, because users
may be interested in differenthot spots over the entire col-
lection of datasets. Although main memory is becoming in-
creasingly cheap, it is still orders of magnitude more ex-
pensive than secondary storage. Furthermore, secondary

storage can be persistent across APG invocations. PDSS is
therefore implemented as a large secondary-storage based
Data Store. It is a two tier hierarchy, using both a portion of
main memory plus a large chunk of secondary storage. The
replacement policies used insure that more useful intermedi-
ate results are maintained in memory, while other interme-
diate results may get swapped out to the secondary storage
cache. Intermediate results are only purged from the per-
sistent cache when secondary storage space becomes inade-
quate to hold new computed intermediate results.

5 Applications

We now briefly describe the two applications used as case
studies for this paper. A more detailed description of these
applications can be found in [5].

5.1 Analysis of Microscopy Data:

The Virtual Microscope (VM) [2] is an application de-
signed to support interactive viewing and processing of dig-
itized images of tissue specimens. The raw data for such a
system can be captured by digitally scanning collections of
full microscope slides at high resolution. A VM query de-
scribes a 2-dimensional region in a slide, and the output is
a potentially lower resolution image generated by applying
a user-defined aggregation operation on high-resolution im-
age chunks.

We have implemented two functions to process high res-
olution input chunks to produce lower resolution images in
VM [7]. Each function results in a different version of VM
with very different computational requirements, but simi-
lar I/O patterns. The first function employs a simple sub-
sampling operation, and the second implements an averag-
ing operation over a window. For a magnification level ofN given in a query, the subsampling function returns ev-
eryN th pixel from the region of the input image that inter-
sects the query window, in both dimensions. The averaging
function, on the other hand, computes the value of an out-
put pixel by averaging the values ofN � N pixels in the
input image. Theaveraging function can be viewed as an
image processing algorithm in the sense that it has to aggre-
gate several input pixels in order to compute an output pixel.
Several types of data reuse may occur for queries in the VM
application. A new query with a query window that over-
laps the bounding box of a previously computed result can
reuse the result directly, after clipping it to the new query
boundary (if the zoom factors of both queries are the same).
Similarly, a lower resolution image needed for a new query
can be computed from a higher resolution image generated
for a previous query, if the queries cover the same region. In
order to detect such reuse opportunities, an overlap function,
which is called infindOverlaps method, was implemented to
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intersect two regions and return an overlap index, which is
computed asoverlap index = IAOA � ISOS (1)

Here,IA is the area of intersection between the intermediate
result and the query region,OA is the area of the query re-
gion,IS is the zoom factor used for generating the interme-
diate result, andOS is the zoom factor specified by the cur-
rent query.OS should be a multiple ofIS so that the query
can use the intermediate result. Otherwise, the value of the
overlap index is0.

5.2 Volumetric Reconstruction for Multi-
perspective Vision:

The availability of commodity hardware and recent ad-
vances in vision-based interfaces, virtual reality systems,
and more specialized interests in 3D tracking and 3D shape
analysis have given rise to multi-perspective vision systems.
These are systems with multiple cameras usually spread
throughout the perimeter of a room [14, 27]. The cameras
shoot a scene over a period of time (a sequence offrames)
from multiple perspectives and post-processing algorithms
are used to develop volumetric representations that can be
used for various purposes, including 1) to allow an applica-
tion to render the volume from an arbitrary viewpoint at any
point in time, 2) to enable users to analyze 3D shapes by re-
questing region-varying resolution in the reconstruction, 3)
to create highly accurate three dimensional models of shapes
and reflectance properties of three dimensional objects, and
4) to obtain combined shape and action models of complex
non-rigid objects.

A query into a multi-perspective image dataset specifies
a 3D region in the volume, a frame range, the cameras to
use, and the resolution for the reconstruction. The query re-
sult is a reconstruction of the foreground object region ly-
ing within the query region (a background model is used to
remove stationary background objects, but that will not be
further discussed in this paper). A queryqi is described by
a query meta-information 5-tupleMi:

1. a dataset nameDi,
2. a 3-dimensional boxBi: [xl; yl; zl; xh; yh; zh],
3. a set of framesFi: [fstart; fend; step],
4. the depth of the octree (number of edges from the root

to the leaf nodes), which specifies the resolution of the
reconstruction:di, and

5. a set of camerasCi: [c1; c2; : : : ; cn].

Semantically, a query builds a set of volumetric representa-
tions of objects that fall inside the 3-dimensional box – one
per frame – using a subset of the set of cameras for a given
dataset. For each frame, the volumetric representation of an
object is constructed using the set of images from each of the
cameras inCi. The reconstructed volume is represented by
an octree, which is computed to depthdi. Deeper octrees
represent a higher resolution for the output 3-dimensional
object representation. Each individual image taken by a
camera is stored on disk as a data chunk. A 3-dimensional
volume for a single time step is constructed by aggregating
the contributions of each image in the same frame for all the
cameras inCi into the output octree. The aggregation oper-
ations are commutative and associative.

Our implementation of the volume reconstruction algo-
rithm employs parts of an earlier implementation [14] as
a black-box, and that implementation returns an octree for
each frame in a sequence of frames. Therefore, the octrees
for each frame requested by a query are cached along with
the associated meta-information. One potential reuse op-
portunity is the generation of a lower resolution octree from
a higher resolution octree that was computed for an earlier
query. In order to detect such possible reuse cases, we im-
plemented the function in Algorithm 3, which is provides a
customization offindOverlaps method.

Algorithm 3 float overlap(Mi,Mj)
1: if Di 6= Dj then
2: return 0;
3: vovlp  CommonV olume(Bi;Bj)V olume(Bj)
4: fovlp  jFi\FjjjFj j
5: if Ci � Cj then
6: covlp  jCijjCj j
7: else
8: covlp  0
9: dovlp  1� 0:1� (di � dj)

10: returnvovlp � fovlp � covlp � dovlp
The transformation of the cached results into results for

incoming queries requires the utilization ofproject functions
that transform the aggregate appropriately. Algorithm 3
hints at several projection operations: (1) for thequery box –
multiple volumes can be composed to form a new volume, or
a larger volume can be cropped to produce a smaller one; (2)
for entireframes – use the cached frames as necessary; (3)
for cameras – if the new query requires more cameras than
were used for a cached octree, generate a new octree from
the images for the new cameras, and merge the two octrees;
(4) depth – use a deeper octree to generate a shallower one.
For the experiments in this paper, we have implemented the
frames project function. We will explore the usefulness of
the other projection operations in future work.
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Figure 5. Experimental setup.

6 Experimental Evaluation

Many factors affect the performance of the Active Proxy-
G. One basic question concerns the portion of the query
workload that can be serviced from cached results stored at
the APG. Therefore the first set of experiments show results
for various sizes of the APG cache, as well as for various
levels of multithreading in the APG service.

A key aspect of our framework lies in the capability of
projecting an aggregate into another by performing a data
transformation operation. We experimentally show what
this capability is able to improve performance-wise in the
second set of experiments.

Once the APG detects that a query cannot be serviced
solely from cached results, it is necessary to generate and
forward subqueries to one or more application servers. Mul-
tiple application servers may be able to service the query, be-
cause the datasets and computational capabilities (in terms
of executing queries of a given type) may be replicated at
multiple distinct sites. The equitable distribution of queries
that are shipped off to the application server is important to
achieve good load balancing across all candidate applica-
tion servers. A third set of experiments will compare vari-
ations of load based scheduling strategies against a round-
robin baseline case.

Finally, we investigate and compare several approaches
for executing subqueries: 1) they can be sequentially sub-
mitted and executed, 2) they can be submitted as a group
of concurrent asynchronous subqueries to the application
servers, or 3) we can employ ana priori partitioning of a
query into multiple subqueries. The last two approaches
may yield performance benefits, especially in situations
where the APG and/or some of the application servers are
not heavily loaded. The APG and application server are
multithreaded servers, so under a light workload, a subset
of its thread pool may be idle, and therefore the generation
of multiple subqueries should be able to employ more of
the available computational power that would otherwise be
wasted. The last set of experiments evaluates these query
execution strategies.
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Figure 7. Batch execution time as reported
by the APG. We varied the number of simul-
taneous executed queries by increasing the
Query Server thread pool and the amount of
cache space available to the Persistent Data
Store Service.

Evaluation of scalability and the size of the PDSS.

Two of the most important aspects as far as performance
is concerned in thecomponentized architecture we propose
are the level of multithreading and amount of caching space
available for storing reusable aggregates. In order, to eval-
uate the impact of these two variables, we assembled an ex-
perimental setup of clients, application servers, and an in-
stance of the Active Proxy-G which is depicted in Figure 5.
We have instantiated 5 application servers on 5 nodes in our
experimental cluster:deathstar is an 8-processor 550MHz
Pentium III Linux SMP machine hosting 8 datasets (two for
Volumetric Reconstruction and six for the Virtual Micro-
scope),rogue38 : : : rogue41 are single-processor 650 MHz
Pentium III machines hosting the same six VM datasets asdeathstar. Deathstar had a single application server serv-
ing both VM and VR queries, with up to 4 simultaneous
queries under execution. Therogue nodes are uniproces-
sor machines, hence a single query can be serviced at any
given time. The APG was hosted ontau, which is a 24 Ul-
traSparc III Solaris SMP machine. We employed 12 clients
in total. Four of them generated 16 queries each for vol-
ume reconstruction, and the other 8 generated 32 pixel av-
eraging VM queries each. The VM clients used a work-
load model which emulates the behavior of real users as
described in [13]. Each VR client submitted queries con-
structed according to a synthetic workload model (since we
do not have real user traces for the application at this time),
in which “hot frames” were pre-selected, and the length of
a “hot interval” was characterized by a mean and a standard
deviation. Each VM dataset is a10000�10000 3-byte pixel
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image, totaling around 1.8GB for the six images. Each VR
dataset is a 5200 frame collection (13 cameras, 400 frames),
totaling approximately 780MB for the 2 collections. In Fig-
ure 6, we see the level of locality present in the experimental
workload. This figure gives an idea of the size of the work-
ing set, which is essentially the metric that will drive how ef-
fective PDSS will be in improving the system performance
for the incoming queries.

In Figure 7 we see that the amount of space allocated
to the persistent data store can greatly influence the time
for executing the batch of 296 queries submitted to the sys-
tem. In terms of multithreading level, we see a drop of no
less than 40% in execution time, when we increase PDSS
size by 192MB2. In varying the multithreading level, we see
speedups ranging from 1.50 up to 1.67. The APG was also
instrumented to collect theaverage overlap ratio which is
the average fraction of a query that is answered from cached
aggregates (which is completely computed without the help
of any of the application servers). We observed that it in-
creases from approximately 0.60 up to approximately 0.80
as the PDSS size increases regardless of the multithread-
ing level. Nonetheless, the average overlap ratio for an
equivalent configuration in terms of PDSS size, but differ-
ent multithreading level is higher for lower multithreading
level, which suggests that more queries being executed si-
multaneously will compete for memory, as expected. This
competition causes the ejection of potentially useful aggre-
gates. This particular result shows that when a higher multi-
threaded level is enabled, an equivalent increase in the space
available to the PDSS is necessary to keep the same average
overlap ratio.
Evaluation of the caching strategies.

A novel aspect in our framework is concerned with
reusing cached aggregates by applying transformation func-
tions. Intuitively it is a potentially profitable approach in
situations where the transformation is less expensive than
recomputing the aggregate from input data. The results in
Figure 8 compare abasic cache implementation, with no
caching and theprojection-aware caching we employ us-
ing the same workload as in the previous experiment. It
can be seen that using the basic caching is responsible for
a decrease of around 10% in the batch execution time com-
pared to not caching at all, however enlarging the PDSS
does not achieve much. As a matter of fact, the overlap ra-
tio stays constant at 0.27 which means that the whole work-
ing set is kept in the cache even at 128MB. The projection-
aware caching benefits represents a decrease from 56% up
to 75% in terms of batch execution when compared to the

2PDSS uses an incore and an out-of-core area. The incore area was
fixed at 128MB, and the out-of-core portion varied from 0 to 192MB. In
order to avoid the effects of the operating system buffer cache we used the
directio primitive to hint the OS for performing direct I/O disk opera-
tions. We also use synchronous read/write disk operations,by opening the
file descriptors withO SYNC, O DSYNC, andO RSYNC.
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Figure 9. Impact of different application
server assignment policy for various work-
loads and configurations. Under each bar
is the workload configuration in terms of
how many clients are using the Active Proxy
(first number) and how many are interacting
directly with an application server (second
number).

basic caching which shows the improvements made by our
approach.
Evaluation of the application server assignment
policy.

As previously seen in Figure 2, queries can be shipped
for execution at the application servers either from the APG
or directly from the clients. Moreover, variances in perfor-
mance and load for each of the application servers, as well
as, network bandwidth and latencies may be responsible for
wildly varying query response times. The Workload Moni-
tor Service implements a simplified facility that can help the
APG to better assign queries to application servers in situa-
tions where multiple candidates are available. Although in
its current form the WMS does not collect metrics for net-
work behavior, it is able to gather metrics of thread pool uti-
lization and disk load at the application servers. It accom-
plishes that by polling (currently at a periodic rate of once
every 15 seconds) each of them. Several individual metrics
are collected, but for the purposes of this experiment only
two of them are relevant –thread pool utilization referred asTPu andnormalized disk read rate referred asNDRR. The
former shows the percentage of threads in the query server
thread pool that is busy at the time of polling. And the latter
shows what the disk read rate has been since the last polling
period. It is normalized by assuming anideal 30MB/s sus-
tained transfer rate, which happens to be the nominal trans-
fer rate for the disks in our machines. The experiments in
Figure 9 show the results for a round robin assignment, and
for variations of load based strategies. The combined load
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l for a given application server is actually computed by the
equationl = TPu + NDRR. The decision for server as-
signment is achieved by finding the server with the smallest
load amongst thecapable servers as informed by the LDS.
In case of ties, round robin is used to pick one from the
tied servers. This is a simplified model, which is biased to
queries that have similar I/O and computation requirements.
However, it is reasonably effective as the results show.

The workload we used to gather the results in Figure 9 are
exactly the same as for the first experimental setup. How-
ever, some of the clients interacted directly with an applica-
tion server, and some with the APG. From the original 12
clients in the first setup (first cluster of bars in Figure 9), 8
submitted queries to the APG, and 4 to 4 of the application
servers directly (hosted atrogue38, rogue39, rogue40, androgue41). In the second, 10 submitted queries to the APG,
and 2 to 2 other application servers (located atrogue40 androgue41), and so on. The results in the chart are the ones re-
ported by the APG. Because the number of queries submit-
ted to it varied due to the varying numbers of clients submit-
ting queries to the APG, the clusters of bars are not directly
comparable. Nevertheless, the trend is clear, the more dis-
torted the assignment is, the more effective the load-based
strategies become, since it better assigns queries to relatively
unloaded application servers. Indeed, for the 8-4 configura-
tion, the decrease in the batch execution time can be as large
as 59%. For the 12-0 assignment, the load-based variations
are slightly more expensive than round robin. The explana-
tion is twofold. First, the system is under a very high work-
load and any policy that distributes the work in an equitable
mode is going to perform comparably. Second, the load-
based strategies are slightly more expensive to compute than
round robin. An important observation, is that for higher
distortion levels (i.e. 8-4),NDRR alone will not provide
accurate information about to where a given query should
be routed for execution. In fact, we measured the execution
of a single typical VR and VM queries (assuming no reuse),
and a VR query spends 52.5% of its execution time on com-
putation and 47.5% on I/O, and a VM query spends 84.3%
on computation and 15.7% on I/O. These metrics show whyNDRR alone does not provide good information about the
load of an application server. Since our queries are more
computation intensive rather than I/O intensive,TPu alone
did not behave as badly, however for I/O intensive queries
it certainly would. Hence, the linear combination of the two
variables seems to be a nice compromise towards the av-
erage case. Of course, if knowledge about the workload is
available more precise strategies can be designed, an a self-
tuning policy can be devised.

Evaluation of query execution strategies.
An important aspect in the design of a query processing

engine is given by the expected load it is supposed to handle.
In a highly distributed environment as the one we envision
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Figure 10. The right diagram shows the auto-
matically generated subqueries which can be
potentially concurrently executed by the sys-
tem. The left diagram shows a query being a
priori partitioned, and the subqueries gener-
ated.

for our infrastructure, the load can vary from very light to
wildly intense. All the experimental results seen so far were
obtained under severe stress, since we had from 8 up to 12
clients sequentially submitting queries to the APG. In fact,
because in the experimental configurations there are 5 appli-
cation servers, and potentially up to 8 queries being serviced
at a given moment (4rogue nodes in addition to 4 simulta-
neous queries ondeathstar), the application server utiliza-
tion is almost constantly 100% when the APG is configured
for handling 8 simultaneous queries.

Idle resources under lighter workloads can be better
leveraged by making use of more sophisticated query plan-
ning and execution strategies. In Figure 11, we present the
results for exploring two new query planning and execution
strategies, namelyConcurrent subqueries andA Priori Par-
titioning. The former consists of executing the maximum
possible number of subqueries generated for the completion
of a parent query (as seen in step 9 of Algorithm 3) con-
currently as new threads3. And the latter consists of slic-
ing a query into multiple subqueries when the query is re-
ceived by the Query Server (Figure 10) and executing them
concurrently, if possible. Both strategies are aimed at using
idle threads both at the proxy and at the application servers
to parallelize the execution of a single query, assuming that
many application servers will be able to serve a given query.
In order to evaluate the improvements for these strategies,
we used an experimental setup in which we employed two
different workloadsw1 andw2. w1 employed 8 clients, 4
submitting 8 VR queries each (using 2 different datasets),
and 4 submitting 32 VM queries each (using 2 different
datasets).w2 employed 4 clients, 2 submitting 8 VR queries
each (using 2 different datasets), and 2 submitting 32 VM

3The use of this strategy does not guarantee that all the subqueries are
going to be executed as new threads. That is only the case, if the Query
Server has idle threads at the time of execution, otherwise it will fall back
to sequential execution.
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Figure 11. Query execution strategies. Underneath each bar is the workload, where w1 denotes a
workload of 8 clients, and w2 denotes a workload of 4 clients. Regular and weighted denotes a query
partitioning schema for the a priori partitioning strategy (see details in the text) (a) Batch ex ecution
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queries each (using 2 different datasets). Thea priori par-
titioning implements a heuristic for limiting how may sub-
queries to generate. An application specific metric4 as well
as the number of application servers that can potentially be
used to process a given query (as returned by the Light Di-
rectory Service) is used. The smallest number between the
two is used as the number of partitions. LDS is able to com-
pute the number of application servers for a given query us-
ing two methods. Eitherregular in which each application
server accounts for one partition, orweighted where each ap-
plication server gets as many partitions as its multithreading
level.

Figures 11 (a) and (b) show the results for the combina-
tion of workloads and partitioning strategies in terms of time
for executing the whole batch of queries and also for each
query in the average. Some observations can be made about
the results. The concurrent execution of subqueries is re-
sponsible for a decrease of 4% for workloadw1 and an in-
crease of 1% for workloadw2 in terms of batch execution
time. A decrease from 12% up to 43% is observed in the
average query execution time per query. Thea priori parti-
tioning is responsible for a further decrease both in the batch
and in the per query metric which can be as large as 14% for
batch execution and as large as 63% for an average query
when compared to sequential execution for theregular vari-
ation. Theweighted variation shows decreases as large as
33% for batch execution and as large as 70% for the aver-
age query execution time. As far as the partitioning strat-
egy is concerned, a more aggressive partitioning (weighted)
seems to yield a larger decrease in execution time for the

4For VM queries, the number of recommended partitions is computed
as so each partition will require at least 4MB of input data. For VR queries,
each frame in the set of frames in the query metainformation is used to gen-
erate a subquery by replicating the other attributes.

batch. However for the larger workloadw1 that did not hap-
pen for the average query execution time per query. This is
explained by the fact that the more subqueries are generated
due to partitioning, the better utilization of idle resources is
achieved (higher parallelism) at the expense of more com-
plicated query processing (due to an increase in bookkeep-
ing and projection operations). In this case it implies in a
higher overhead that cannot be paid off by the the higher
Query Server utilization.

7 Conclusions

The main aim of our work was to elaborate on an archi-
tecture for supporting data analysis applications in the con-
text of a highly distributed environments as the computa-
tional Grid. The design was based on services that can be
integrated in different ways in order to accommodate spe-
cific workload scenarios as well as utilization scenarios. In
particular, we have extensively evaluated an active proxy
configuration which concentrates the workload of multiple
clients in such a way that it is able to leverage its own com-
putational ability to respond partially or completely queries
based on aggregates it caches locally. This approach re-
sults in faster queries response, decreased use of network re-
sources, decreased utilization of possibly remote-located ap-
plication servers, and effectively better utilization of avail-
able resources by partitioning and concurrently executing
subqueries. Elsewhere [6] we have shown that an active
caching approach is able to increase the performance of a
single data analysis application. In the current work, we
have shown that by making it available as a service and in-
corporating it into an active proxy, a larger community of
clients using different applications and datasets can alsobe
benefited further by a more rational use of resources. In fact,
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we foresee the APGs being used as web proxies in the sense
that they are located closer to users where locality is greater,
shielding them from network latencies and outside disrup-
tions. Hierarchical networks of APGs can also be employed
to ensure better scalability.

Albeit fully functional, our framework can be expanded
in several different ways. Most importantly, it can eas-
ily leverage resources and technologies already made avail-
able by the Grid research community. Two of its important
pieces, the Light Directory Service (LDS) and the Work-
load Monitor Service (WMS), are already described under
other names in the Grid literature. In fact, the OGSA docu-
ment [18] discusses how the functionalities implemented by
the LDS are supposed to be supported by a genericdiscovery
service. One of its nice features is the notification facility
which enables clients interested in being notified of partic-
ular events to be informed of their occurrences. Such facil-
ity would enable the APG to automatically learn about new
application servers becoming available for example. As far
as the WMS goes, the OGSA describes somehigher-level
services and one of them is the class ofinstrumentation and
monitoring services which are going to be used primarily for
ensuring the integrity of the system, but can also be used for
better workload scheduling decisions. In the near future, we
plan to make our framework compliant to these still evolv-
ing architectures which will make it fully integrated in the
Grid ecosystem.
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