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Abstract

The Grid environment facilitates coll aborative work and
allowsmany usersto query and process data over geograph-
ically dispersed data repositories. Over the past several
years, there has been a growing interest in developing ap-
plications that interactively analyze datasets, potentially in
a collaborative setting. e describe an Active Proxy-G ser-
vice that is able to cache query results, use those results for
answering new incoming queries, generate subqueries for
the parts of a query that cannot be produced fromthe cache,
and submit the subqueriesfor final processing at application
servers that store the raw datasets. We present an experi-
mental evaluation to illustrate the effects of various design
tradeoffs. We also show the benefits that two real applica-
tions gain from using the middleware.

1 Introduction
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composition have played important roles. For instance, the
Telescience for Advanced Tomography Applications project
(http:/Awww.npaci .edu/Al pha/tel escience.html) is dedicated

to merging technologies for remote control, grid comput-
ing and federated digital libraries. The objective is to-con
nect scientists’ desktops to remote instruments, digiitbu
databases, and to data and image analysis programs. The
GriPhyN project fittp:/mww.griphyn.org) targets storage,
cataloging and retrieval of large, measured datasets from
large scale physical experiments. The goal is to delivex dat
products generated from these datasets to physicistssacros
a wide-area network. The objective of the Earth Systems
Grid (ESG) project fttp: //mwmw.earthsystemgrid.org) is to
provide Grid technologies for storage, publication, ana-an
ysis of large scale datasets arising from climate modeling a
plications.

In multi-client environments, we expect data reuse across
queries. Multiple users are likely to want to explore the
same portion of a dataset (some portions of datasets tend to
be of particular interest). There may also be commonalities
in a sequence of queries thatlook at the same physical region

The Grid is an ideal environment for running appli- ; R : >
cations that need extensive computational and storage re@t differentpointsin time. When a rapid response is needed,

sources. Most research in high-end and grid computing hag€rformance can be improved by reusing previously cached
focused on the development of methods for solving chal- resu_lts for_a new query. Eff|C|e_nt_sch_eduI|ng of queries fr<_)m
lenging compute or data intensive applications in SCience’mgltlple clients is another optimization that can be amplie
engineering, and medicine. A salient feature of the Grid [0 Improve system performance. In the context of Web ser-
is that it fosters collaborative research and facilitates r  ViCeS, data caching and Web proxies have been shown to
mote access to shared resources by multiple client appli-SPe€d up servicing web requests by caching popular pages,
cations. There has also been an emerging set of applica®y Performing remote transactions when requests cannot
tions that involve interactive analyses of large datagejea € Satisfied from the cache [8, 17].

ographically dispersed locations. There is a variety of re- A grid-based cluster environment, which consists of a

cent grid computing projects where interactivity and pesce ~ collection of compute, memory, and storage systems (i.e.,
shared- and distributed-memory parallel machines, high-
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end I/O systems, and active disk-based storage systems), of
fers a powerful and flexible environment for developing and
deploying applications that analyze large datasets. How-



Application Server ing the execution of queries in a Grid environment. Many
of these aspects have been studied before, but the novelty
o | w2 | w3 | pa p of our approach is a common framework for a class of data
analysis applications (see Section 3).
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Rodriguez-Martinez and Roussopoulos [26] proposed a
database middleware (MOCHA) designed to interconnect
distributed data sources. MOCHA also handles queries with
user-defined operators. The system handéta reduction
operators byode-shipping, which moves the code required
to process the query to the location where the data resides,
anddata inflation operators bylata-shipping, which moves
the input data to the client. This differs from our approach
in that we specifically target multiple query optimization
and use caching to avoid network bottlenecks, and also uti-
lize the processing power of proxies, distributing the com-
putation transparently across available resources bataee
proxy and the application servers. This allows efficientexe

. . _ cution of queries for which neither code-shipping nor data-
ever, such an environment requires distributed accessitoan_, . - : : I

) ; . ship is the best solution alone. Several highly distributed

processing of data in a heterogeneous setting. Component: " .

. = applications have employed proxy servers to great bene-

based frameworks and services have been gaining accea—
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Figure 1. An application server may use many
different parallel configurations depending
on what is most efficient for an application.
(@) shared memory, (b) distributed shared
memory, or (c) distributed memory.

. o it. Beynon et al [13] proposed a proxy-based infrastructure
tance as a viable approach for application development an . . : o
S . or handling data intensive applications. The authors have
execution in distributed environments [1, 4,9, 11, 12, 16, 1 shown that their approach can both reduce the utilization
20, 23, 25]. Such models facilitate the implementations of PP

o . of wide-area network connections, reduce query response
applications and services that can accomodate the heterogeﬁme and improve system scalability. Squid [29] is a widely
neous and dynamic nature of the Grid. I

| . K 16 h developed a f K used web proxy that is primarily responsible for caching
f nﬁ_pr_ewt?us wor t'[ I Wi_ Iave ceve Olﬁ ‘3 :came\évotr web pages and thus avoid the latency and server overhead
or efliciently executing muttip'e query workioadsfromeat - ¢, g jn retrieving pages that were recently visitede Th
analysis applications on SMP machines and distributed-

. . o objectives of our framework are similar to these works.
memory parallel machines. In this work, building on that

: However, we argue that in addition to being more generic,
framework, we are developing a component-based frame-

K desianed ite of ) Thi i ot ((,)vur framework is potentially more powerful performance-
work designed as a Sulle of SEIVICes. ThIS SUE CONSISIS 0 ;56 pecause it employs a semantic cache that allows an ac-
an active proxy service, an application query processing se

: S . . tive proxy to perform computations to allow re-using cached
vice (application server), a_nd a perS|sten_t data caching se results to satisfy request even when a data transformation
vice (Cache_ server)_(see Flgure_2). In th'S_ paper, we focusfunction must be applied. Additionally, it employs an exten
on the design and implementation of tAetive Proxy-G

: ) X ) sible query server engine which permits the implementation
(APG) service. Employ|r_1g_ APG requires adding three types of multiple applications with different query types.
of functionality to the original application structure toe ) ) )
ploy the proxy. First, the application must attempt to ser- Many types of environments for executing Grid-aware
vice the request solely from cached resullts. Ifthat faitaco ~ @Pplications can be found in the literature. Wolski et 0][3
pletely, then the request must be sent to the appropriate apdescribe th&verywaretoolkit that can be used to enable ap-
plication server that has access to the raw data required tdPlications to draw computational power transparently from
answer the request. Finally, if the request can be partially the Grid. Unlike ourwork, they targatmber crunching ap-
answered from the cache, the application must retrieve thePlications. More along the lines of APG is the Distributed
cached results and generate requests (subqueries) taprodu Parallel Storage Server (DPSS) [21, 28]. The most impor-
the remaining results to the application server. All three f@nt aspect of their approach is to use parallel operation of

types of functionality are supported as Active Proxy-G core distributed servers to supply data streams fast enough to en
services. able various multi-user, real time applications in an Inétr

environment. Bethel et al. [10] show how DPSS is used for
building Visapult, a prototype and framework for remote vi-
2 Related Work sualization of large datasets. Allcock et al. [3] points out
that the data grid infrastructure will need to service thou-
In designing APG, several research aspects were takersands of users efficiently, and also highlight the pointtitat
into consideration to make it a suitable platform for opmi  management of data and replicas is also an important aspect
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Figure 2. The suite of services, which consists of Active Pro xy-G, application query servers, and
persistent cache servers, for optimizing the execution of m ultiple query workloads in a Grid-based
cluster environment.
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of grid-aware applications. In some sense, our approach iswvorks [5, 6, 7], in which we extensively discuss the related
complementary to these works because it also enables an apesearch and compare it to our own approach.

plication to explore the parallel capabilities of many aqgp!

tion servers, butit also goes a step beyond since it allows th 3 Query Processing and Data Reuse in Data
proxies to help with the computation by leveraging cached Analysis Applications

aggregates, and automatically generating subqueries-tran

parently. . L . .
Although many data analysis applications seemingly dif-

Recent efforts in the Grid research community [22, 24] fer greatly in terms of their input datasets and resulting da
are investigating and proposing the mechanisms for exe-products, processing of queries for these application®sha
cuting adaptive grid programs — Grid Application Develop- common characteristics. Figure 3 shows a pseudo-code rep-
ment Software (GrADS) — and the support mechanism for resentation of the query processing structure, which is-com
storing metainformation needed to control that execution —monly referred to as generalized reduction operation.

Grid Information System (GIS). Several research projects  |n the figure, the functiomelect identifies the set of data
have investigated the design, implementation, and applica jtems in a dataset that intersect the query predigétdor

tion of component-based frameworks for application devel- 3 queryg;. In many scientific data analysis applications,
opment and deployment|[1, 9, 11, 12, 20, 23, 25]. The Com- hoth input and output datasets can be represented in a multi-
mon Component Architecture project by Bramley etal. [15] dimensional space, ard; describes a range query. Thatis,
leads a standardization effort for building distribute@so  only the data items whose coordinates fall inside the range
ware component systems for scientific and engineering ap-hounds are retrieved. The data items retrieved from the stor
pliCationS. The Open Grid Services Architectures effort by age System are mapped to the Corresponding Output (Or ac-
Foster et al. [18] draws from concepts and technologies thatcumulator) items (line 6). Application-specific aggregati
evolved in the Grid and web world to generalize an archi- gperations are executed on all the input items that map to the
tecture viable for deploying largely distributed commalci ggme output item (lines 7 and'8)Accumulator is a user-
and scientific applications. These initiatives are exasiple defined data structure to maintain intermediate results. Th
of how our SyStem will have to evolve in order to be inte- aggregation Operations emp|oyed in this |Oop(mmmuta.
grated to amuch larger infrastructure, by being compliantt tjve andassociative. That is, the output values do not de-
the models that are eventually become standards, protocolgend on the order input elements are aggregated. To com-
and best practices. plete the processing, the intermediate results in the accu-

l_:in_ally_, for the whole bulk of work in the multiple query 1This phase is called threduction phase because the output dataset is
optimization problem, we refer the reader to our previous usually (but not necessarily) much smaller than the inptasi.




I — Input Dataset

O — Output

A — Accumulator

1. [S1] < Intersect(I, M;)
(* Initialization *)

2. foreach a. in A do

3. a. < Initialize()
(* Reduction *)

4, foreach i, in Sy do

5 read 7,

6. Sa— Map(i.)

7 foreach a. in S4 do

8 a, — Aggregate(i.,a.)
(* Finalization *)

9. foreach a. in A do

10. o, — Output(a.)

Figure 3. The query processing loop.

guery because they may not exactly match a later request,
but require that a data transformation foojection) be ap-
plied.

The middleware we describe targets optimized execu-
tion of this processing loop via reuse of computed results
by in-core and persistent data caching, efficient schegulin
of queries for evaluation, and efficient query executia (i.
Map and Aggregate functions) in a distributed Grid envi-
ronment.

4 Active Proxy-G

The current design of Active Proxy-G (APG) implements
a multi-threaded runtime environment in order to simulta-
neously handle queries submitted by a large community of
users, and also to manage multiple connections with appli-
cation servers. APG also performs dynamic workload distri-
bution across multiple application servers, using a sdhedu
ing model that employs metrics that depend on the current
and past workload of an application server.

To enable an application to use the APG design, it must

mulator are post-processed to generate final output valué$yg sirctured around an abstraeeery class, and its related

(lines 9 and 10). In many data analysis applications, the

guery meta-information clasQueryMI. Customization of

most computationally expensive part of the loop is the re- Apg for application-specific queries is achieved by sub-

duction phase (lines 4-8).

classing the provided base classes and implementing a set of

The characteristics of this generalized reduction loop virtual methods. The following virtual methods are reqdire

make it possible to develop common programming and run-
time support for a wide range of applications and to imple-
ment optimizations for processing of both single and multi-
ple queries. As we noted above, the aggregation operations
applied on the input data are commutative and associative.
As a result, the input data can be partitioned into data sub-

sets, an intermediate result can be computed from each data

subset, and the intermediate results can thesolbined to
create the output data. This property of the query procgssin
loop has two implications for optimizing the execution of
queries. First, for a given single query, by partitioningun
datainto subsets, lines 4 — 8 of the query processing loop can
be executed in a parallel or distributed environment. The
partitioning of the input data can be done by declustering
and storing the input dataset across the machines (or applic
tion servers) in the system. Second, the intermediatetsesul
(and potentially the output data) can be cached and reused to
decrease query execution time, when multiple query work-
loads are presented to the system. A quemyay share in-
put elements. (line 5), accumulator elements (line 8),
and output elements. (line 10) with a query;. For the
portions of queryy; that cannot be answered from cached
results, the corresponding data subset can be extractad fro
the input dataset and an intermediate result can be computed
This intermediate result can then t@mbined with cached
intermediate or output results. However, ando, gener-
ated by a query usually cannot be directly reused by another

for customization:

fi ndOverl aps: This method queries the cache for in-

proj ect:

termediate results that may be used completely or par-
tially to satisfy the query being evaluated. It is cus-
tomized to allow application-specific ways of reusing
an intermediate result through one or more data trans-
formation operationfindOverlaps returns a list of in-
termediate results for reuse, which are tagged with se-
mantic information that is later used for applying the
correct data transformation operation (i.e. the project
method described next). Each returned result also con-
tains an overlap index that tells how much of the cached
result can be used. The overlap index serves the pur-
pose of giving the runtime system the opportunity to ei-
ther reuse the cached intermediate result or recompute
it from the input data, in the case the projection opera-
tion is more expensive than using the input data.

Given a cached intermediate resubtoject

transforms the intermediate result into the output ob-
ject required by the query being executed. The pro-
jection operation may be as simple as a copy opera-
tion (when a 100% match has been found), making the
guery output structure point to the cached intermedi-
ate result, or much more computationally intensive, as
in projecting an intermediate result represented on one



_________ If a query cannot be fully satisfied from cache (i.e. it
clentt || Clent2 Cllent k needs access to the input dataset(s)), the APG ships the

query (or parts of it, as subqueries) to an application serve
%ﬁve Proxy-G

as is shown in The algorithm 2. The algorithm executes the
following steps: a) the Light Directory Service (described
later in this section) is consulted to find the appropriate ap
Query Server plication server(s) to send the query to (line 1), b) the gquer
metainformation is cloned and a remote subquery is gener-
ated (lines 2 and 3), c¢) the query is shipped to the applieatio
Workioad | | Peeent servers for remote execution (line 4) and, d) the results are

Directory Monitor Data

semee | | senice || goore retrieved from the application servers and projected to an-
swer the current query (line 6).

sery workload

a

““““““

Algorithm 1 void Query::runAndShipResults()
= 1: if gmi.isOk() then
Pver stat = findOverlaps(ovlps_list)
" if stat # COMPLETE then
allocOutput M emory(ovlps_list)

3
4
Figure 4. The APG functional components. Z if;Z?ci%%]\i\(}ﬁ?%(ﬁfviﬁ‘;}lm)
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The directory service maintains information

) ject(ovlps_list
about the location and access methods for project(ovips-list)

licati d datasets. Th K if stat == PARTIALLY COMPLETE then
application Servers and gatasets. € work- subg_list = generate SubQueries(ovlps_list)

load monitor collects metrics on server and . :
work perf dth stent dat 10: ret = processSubQueries(subq_list)

network periormance, and the persistent data 11  dseif stat == NO_M ATCH then

store maintains cached results along with

. . . 12: t= teR tel
their associated semantic tags. re ewecuteRemotely()

13: else
14: ret = METAINFO_EFRROR
15: sendResults(ret)

multi-dimensional grid to a different grid, which re-
quires performing an expensive computation.

gener at eSubQueri es: Given the metainformation Algorithm 2 int Quew::executeRemotely()
describing which parts of the query were answered 1 5= LDS'g?tser“erFOr(qml'getD“taName())
using the cached results after the project operation, 2 {4t = gmi.clone()

generate a list of subqueries to compute the remaining lg = Cre?teQuery(tqmi)
parts of the query. 4: tq.submit(s) .
5. ret = tq.get Results(buf list)
The proxy runtime system uses the first two methods dur- Gf if ret ?:tclgU_(;'Rt then
ing its query processing phase, as shown in Algorithm 1. ; retll);%]ei( uf list)
. re

The algorithm tries to use the maximum number of cached
intermediate results to process the query completely from
the cache. Query processing goes through the following We now describe the four major components of the APG:
phases: a) error checking (line 1), b) cache lookups andQuery Server. This component is responsible for receiv-
memory allocation (lines 2-6), c) projection of the cached ing queries from clients or other APGs. A priority queue
results into the query output buffer (line 7), d) generation is used for storing queries to be scheduled for execution.
and processing of subqueries (line 9), and e) remote ex-Queries selected for execution are instantiated by inpkin
ecution of the query at an application server (line 12), if ther unAndShi pResul t s method in Algorithm 1. The

the query cannot reuse any cached results. The algorithrflexibility of this component comes from its ability to easil

r unAndShi pResul t s is executed foall queries, includ-  incorporate new types of queries. Once an application de-
ing the subqueries generated from a given query. In thatveloper provides the customized methods discussed in this
way, subqueries can also benefit from the use of cached agsection, the query server can handle processing for a new
gregates in a recursive fashion. query type.




Light Directory Service (LDS). Once the runtime sys- storage can be persistent across APG invocations. PDSS is
tem determines that a query must be computed from inputtherefore implemented as a large secondary-storage based
data, the system must select the application server(skto usData Store. Itis a two tier hierarchy, using both a portion of
for remotely executing the query. There may be only a sin- main memory plus a large chunk of secondary storage. The
gle application server that has both the processing capabil replacement policies used insure that more useful inteirmed
ties (i.e., it implements the processing functions reqlimg ate results are maintained in memory, while other interme-
the query) and the input dataset. Alternatively, there meay b diate results may get swapped out to the secondary storage
several application servers that can answer the query. LDScache. Intermediate results are only purged from the per-
stores information about the location of input datasets andsistent cache when secondary storage space becomes inade-
the availability of query processing capabilities for diff quate to hold new computed intermediate results.

ent types of queries. This service provides interfaces for

adding new application servers and new input datasets, as; Applications

well as for registering new types of queries. LDS also has a
get Ser ver For method that provides information about
the best application server to use for a given a query. The
best application server is defined in terms of policies imple
mented by the workload monitor service that we describe
next.

We now briefly describe the two applications used as case
studies for this paper. A more detailed description of these
applications can be found in [5].

_ _ _ 5.1 Analysisof Microscopy Data:
Workload Monitor Service (WMS). There are two im-

portant aspects to be taken into consideration when many The virtual Microscope (VM) [2] is an application de-
application servers are available: load balancing and faul signed to support interactive viewing and processing of dig
tolerance. We would like to fairly assign the workload to ap- jiized images of tissue specimens. The raw data for such a
plication servers without overloading any server. Fauit o gystem can be captured by digitally scanning collections of
erance, isimportant because, in a highly distributed envir ¢, microscope slides at high resolution. A VM query de-
ment, application servers may become unavailable and lategripes a 2-dimensional region in a slide, and the output is
become again available frequently, and the runtime system, potentially lower resolution image generated by applying

must take into account such environmental changes to betteg, | ser-defined aggregation operation on high-resolutien im
assign queries to servers. To provide these features, WMSage chunks.

continually monitors _its registered application servard a We have implemented two functions to process high res-
collects several metrics related to their query servemtiire |tion input chunks to produce lower resolution images in
utilization and disk 1/O activity. These metrics are used y;\ [7]. Each function results in a different version of VM

for defining policies to implement thget Ser ver For with very different computational requirements, but simi-
method for LDS. APG can be interfaced with more power- |5, |10 patterns. The first function employs a simple sub-

ful monitoring services such as the Network Weather Ser- g4 mpling operation, and the second implements an averag-
vice (NWS) [31], to provide more sophisticated information g gperation over a window. For a magnification level of
_that canbe usgd to better determl_ne which appllcat!on BEIVe N given in a query, the subsampling function returns ev-
is thebeﬂ_ candidate server for_aglve_n query. Such informa- ery N'*" pixel from the region of the input image that inter-
tion can_lncl_ude overall r_n_achlne ut|I|z_at|on (as opposed 10 ggcts the query window, in both dimensions. The averaging
the appllcatl_on server utilization that is already used}; n function, on the other hand, computes the value of an out-
work bandwidth, and network latency. put pixel by averaging the values af x N pixels in the
Persistent Data Store Service (PDSS). APG effi- input image. Theveraging function can be viewed as an
ciency relies heavily on being able to identify reuse opport  image processing algorithm in the sense that it has to aggre-
nities from cached intermediate results. Using a single APG gate several input pixels in order to compute an output pixel
to serve as a proxy for alarge community of clients increasesSeveral types of data reuse may occur for queries in the VM
the probability of obtaining matches, but the APG must also application. A new query with a query window that over-
deal with sets of client requests in which there is little or n  laps the bounding box of a previously computed result can
temporal locality. Additionally, when many clients for dif ~ reuse the result directly, after clipping it to the new query
ferent applications are interacting with an APG, the overal boundary (if the zoom factors of both queries are the same).
working set in the APG may be quite large, because usersSimilarly, a lower resolution image needed for a new query
may be interested in differehbt spots over the entire col-  can be computed from a higher resolution image generated
lection of datasets. Although main memory is becoming in- for a previous query, if the queries cover the same region. In
creasingly cheap, it is still orders of magnitude more ex- order to detect such reuse opportunities, an overlap fumcti
pensive than secondary storage. Furthermore, secondarwhich is called ifindOverlapsmethod, was implemented to



intersect two regions and return an overlap index, which is Semantically, a query builds a set of volumetric representa

computed as tions of objects that fall inside the 3-dimensional box — one
per frame — using a subset of the set of cameras for a given
I I i i
overlap index = -2 x =5 1) dataset. For each frame, the volumetric representation of a

Oa Og objectis constructed using the set of images from each of the
cameras irC;. The reconstructed volume is represented by
an octree, which is computed to depth Deeper octrees
represent a higher resolution for the output 3-dimensional
X _ - object representation. Each individual image taken by a
diate result, and)s is the zoom factor specified by the cur- -5 mera is stored on disk as a data chunk. A 3-dimensional
rent query.O_S should _be a multiple of s SO thatthe query oume for a single time step is constructed by aggregating
can use the intermediate result. Otherwise, the value of the, o contributions of each image in the same frame for all the

Here,I 4 is the area of intersection between the intermediate
result and the query regioy 4 is the area of the query re-
gion, Is is the zoom factor used for generating the interme-

overlap index i9). cameras irC; into the output octree. The aggregation oper-
ations are commutative and associative.

52 Volumetric Recongruction for  Multi- Our implementation of the volume reconstruction algo-

per spective Vision: rithm employs parts of an earlier implementation [14] as

a black-box, and that implementation returns an octree for

The availability of commodity hardware and recent ad- each frame in a sequence of frames. Therefore, the octrees
vances in vision-based interfaces, virtual reality system for each frame requested by a query are cached along with
and more specialized interests in 3D tracking and 3D shapethe associated meta-information. One potential reuse op-
analysis have given rise to multi-perspective vision syste  portunity is the generation of a lower resolution octreerfro
These are systems with multiple cameras usually spreac® higher resolution octree that was computed for an earlier
throughout the perimeter of a room [14, 27]. The camerasquery. In order to detect such possible reuse cases, we im-
shoot a scene over a period of time (a sequendeantes) plemented the function in Algorithm 3, which is provides a
from multiple perspectives and post-processing algosthm customization ofindOverlaps method.
are used to develop volumetric representations that can be
used for various purposes, including 1) to allow an applica- Algorithm 3 float overlap(i4;, ;)
tion to render the volume from an arbitrary viewpointatany ;. if p; # D; then

pointin time, 2) to enable users to analyze 3D shapes by re- 5. return O:
guesting region-varying resolutl_on in t_he reconstructi®n 3: Vgulp — Comm‘ilezizgv(fzﬂj)
to create highly accurate three dimensional models of shape |FinFj| !
and reflectance properties of three dimensional objects, an 4 _f‘”’p = IR
4) to obtain combined shape and action models of complex it i D Cj tgen
non-rigid objects. 6. Coutp < ||C;|
A guery into a multi-perspective image dataset specifies 7: else
a 3D region in the volume, a frame range, the cameras to 8 couip < 0
use, and the resolution for the reconstruction. The query re 9 doyip < 1 — 0.1 x (d; — d;)

sult is a reconstruction of the foreground object region ly- 10: retUMuayp X fovip X Covtp X dovip
ing within the query region (a background model is used to
remove stationary background objects, but that will not be
further discussed in this paper). A quegyis described by

a query meta-information 5-tuple;:

The transformation of the cached results into results for
incoming queries requires the utilizationmbject functions
that transform the aggregate appropriately. Algorithm 3
hints at several projection operations: (1) for tjuery box —
multiple volumes can be composed to form a new volume, or
alarger volume can be cropped to produce a smaller one; (2)
for entireframes — use the cached frames as necessary; (3)
3. asetof frames;: [foiart, fond, step), for cameras — if the new query requires more cameras than

were used for a cached octree, generate a new octree from

4. the depth of the octree (number of edges from the rootthe images for the new cameras, and merge the two octrees;

to the leaf nodes), which specifies the resolution of the (4) depth — use a deeper octree to generate a shallower one.

1. a dataset nam®;,

2. a 3-dimensional boB;: [, i, zt, 21, Yn, 25,

reconstructiond;, and For the experiments in this paper, we have implemented the
frames project function. We will explore the usefulness of
5. asetof cameras;: [cy, ¢, ..., ). the other projection operations in future work.
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Many factors affect the performance of the Active Proxy-
G. One basic question concerns the portion of the query
workload that can be serviced from cached results stored at
the APG. Therefore the first set of experiments show results
for various sizes of the APG cache, as well as for various
levels of multithreading in the APG service.

A key aspect of our framework lies in the capability of
projecting an aggregate into another by performing a data
transformation operation. We experimentally show what
this capability is able to improve performance-wise in the Evaluation of scalability and the size of the PDSS.

second set of experiments. Two of the most important aspects as far as performance
Once the APG detects that a query cannot be serviceds concerned in theomponentized architecture we propose
solely from cached results, it is necessary to generate andare the level of multithreading and amount of caching space
forward subqueries to one or more application servers. Mul- available for storing reusable aggregates. In order, tb eva
tiple application servers may be able to service the query, b uate the impact of these two variables, we assembled an ex-
cause the datasets and computational capabilities (irsterm perimental setup of clients, application servers, and an in
of executing queries of a given type) may be replicated at stance of the Active Proxy-G which is depicted in Figure 5.
multiple distinct sites. The equitable distribution of ges We have instantiated 5 application servers on 5 nodes in our
that are shipped off to the application server is important t experimental clusteeathstar is an 8-processor 550MHz
achieve good load balancing across all candidate applicaPentium Ill Linux SMP machine hosting 8 datasets (two for
tion servers. A third set of experiments will compare vari- Volumetric Reconstruction and six for the Virtual Micro-
ations of load based scheduling strategies against a roundscope)yogue38 . .. rogue4l are single-processor 650 MHz
robin baseline case. Pentium Il machines hosting the same six VM datasets as
Finally, we investigate and compare several approachesicathstar. Deathstar had a single application server serv-
for executing subqueries: 1) they can be sequentially sub-ing both VM and VR queries, with up to 4 simultaneous
mitted and executed, 2) they can be submitted as a groumueries under execution. Thegue nodes are uniproces-
of concurrent asynchronous subqueries to the applicationsor machines, hence a single query can be serviced at any
servers, or 3) we can employ arpriori partitioning of a given time. The APG was hosted o#w, which is a 24 Ul-
query into multiple subqueries. The last two approachestraSparc Il Solaris SMP machine. We employed 12 clients
may yield performance benefits, especially in situations in total. Four of them generated 16 queries each for vol-
where the APG and/or some of the application servers areume reconstruction, and the other 8 generated 32 pixel av-
not heavily loaded. The APG and application server are eraging VM queries each. The VM clients used a work-
multithreaded servers, so under a light workload, a subsetioad model which emulates the behavior of real users as
of its thread pool may be idle, and therefore the generationdescribed in [13]. Each VR client submitted queries con-
of multiple subqueries should be able to employ more of structed according to a synthetic workload model (since we
the available computational power that would otherwise be do not have real user traces for the application at this time)
wasted. The last set of experiments evaluates these querin which “hot frames” were pre-selected, and the length of
execution strategies. a “hot interval” was characterized by a mean and a standard
deviation. Each VM dataset isla000 x 10000 3-byte pixel

Figure 7. Batch execution time as reported
by the APG. We varied the number of simul-
taneous executed queries by increasing the
Query Server thread pool and the amount of
cache space available to the Persistent Data
Store Service.
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image, totaling around 1.8GB for the six images. Each VR

dataset is a 5200 frame collection (13 cameras, 400 frames), Batch Execution Time
totaling approximately 780MB for the 2 collections. In Fig- 700
ure 6, we see the level of locality present in the experimenta Zzz
workload. This figure gives an idea of the size of the work- o5
ing set, which is essentially the metric that will drive hofw e Z 500
fective PDSS will be in improving the system performance _§4so
for the incoming queries. 400
In Figure 7 we see that the amount of space allocated 350
to the persistent data store can greatly influence the time 07
for executing the batch of 296 queries submitted to the sys- =0 ga 10-2 11 12-0
tem. In terms of multithreading level, we see a drop of no Clients Assigned To APG - Clients Assigned to an App Server
less than 40% in execution time, when we increase PDSS W RoundRobin  TPU M NDRR Ml TPU+NDRR

size by 192MB. In varying the multithreading level, we see

speedups ranging from 1.50 up to 1.67. The APGwas also ) o
instrumented to collect thaverage overlap ratio which is Figure 9. Impact of different application
the average fraction of a query that is answered from cached Server assignment policy for various work-
aggregates (which is completely computed without the help  /0ads and configurations. Under each bar
of any of the application servers). We observed that it in- 1S the workload configuration in terms of
creases from approximately 0.60 up to approximately 0.80 how many clients are using the Active Proxy
as the PDSS size increases regardless of the multithread- (first number) and how many are interacting
ing level. Nonetheless, the average overlap ratio for an  directly with an application server (second
equivalent configuration in terms of PDSS size, but differ- ~ humber).

ent multithreading level is higher for lower multithreadin
level, which suggests that more queries being executed si- . . . .
multaneously Vaﬁ compete for mgmory, as ex?)ected. This basic caching which shows the improvements made by our
competition causes the ejection of potentially useful aggr approa<_:h. L .

gates. This particular result shows that when a higher multi Evaluation of the application server assignment

threaded levelis enabled, an equivalent increase in tleeespa policy. , N , _
e As previously seen in Figure 2, queries can be shipped

available to the PDSS is necessary to keep the same avera . L .
overlap ratio y P g1’or execution at the application servers either from the APG
Evaluation 0]; the caching strategies or directly from the clients. Moreover, variances in perfor
A novel aspect in our framewo.rk is concerned with mance and load for each of the application servers, as well
. b . . as, network bandwidth and latencies may be responsible for
reusing cached aggregates by applying transformation funcWildly varying query response times. The Workload Moni-

tions. Intuitively it is a potentially profitable approaah i tor Service impl ; imolified facility that hele th
situations where the transformation is less expensive than or Service implements a simplified factiity that can helg

recomputing the aggregate from input data. The results in'A.‘PG to better assign queries to appllcatlpn SEIVers |n-5|tu_a
Fi . . , . tions where multiple candidates are available. Although in
igure 8 compare @asic cache implementation, with no

. o . its current form the WMS does not collect metrics for net-
caching and therojection-aware caching we employ us-

ing the same workload as in the previous experiment. It \{vork behavior, it is able to gather metrics of thread poal uti

can be seen that using the basic caching is responsible folJZ_atlon and disk '°‘?‘d at the application SEIVErS. It accom-
a decrease of around 10% in the batch execution time compIISheS that by polling (currently at a per|qd|c_ r_ate of once

pared to not caching at all, however enlarging the ppssevery 15 seconds) each of them. Severa_ll |nd|V|d_uaI metrics
does not achieve much. As a matter of fact, the overlap rg.are collected, but for the purposes of this experiment only

: . two of them are relevantthread pool utilization referred as
tio stays constant at 0.27 which means that the whole Work-TP d lized disk read ratereferred asv DRE. Th
ing set is kept in the cache even at 128MB. The projection- , ~ andnormarized disxreadratereterred a - 'he

aware caching benefits represents a decrease from 56% uﬁzrmer shows the percentage of threads in the query server

to 75% in terms of batch execution when compared to the read pool that IS busy at the time of polll_ng. And the Iatte_r
shows what the disk read rate has been since the last polling

2ppSS uses an incore and an out-of-core area. The incore aea w period. It is normalized by assuming ateal 30MB/s sus-
fixed at 128MB, and the out-of-core portion varied from 0 t@W8B. In tained transfer rate, which happens to be the nominal trans-
order to avoid the effects of the operating system buffeheaee used the fer rate for the disks in our machines. The experiments in
di rect i o primitive to hint the OS for performing direct I/0O disk opera . to. p
tions. We also use synchronous read/write disk operatimnspening the Figure 9 show the results for a round robin assignment, and

file descriptors wittD.SYNC, O.DSYNC, andO.RSYNC. for variations of load based strategies. The combined load
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- icati i 7 7 Y/
[ for a_glveg application server is actually computed by t-he %/////%%%///////////\ %%m%%z
equation/l = 7P, + NDRR. The decision for server as \ \ \ \
signment is achieved by finding the server with the smallest \\ \\ \ \k\
load amongst theapable servers as informed by the LDS. N \ay §\\~§\\
In case of ties, round robin is used to pick one from the " \ \

tied servers. This is a simplified model, which is biased to ) & >\\ &

7 N 7 k 747,
gueries that have similar I/O and computation requirements 2 SN
However, it is reasonably effective as the results show.

The workload we used to gather the results in Figure 9 are
exactly the same as for the first experimental setup. How-
ever, some of the clients interacted directly with an agplic
tion server, and some with the APG. From the original 12
clients in the first setup (first cluster of bars in Figure 9), 8
submitted queries to the APG, and 4 to 4 of the application
servers directly (hosted abgue38, rogue39, rogue4(, and
rogue4l). In the second, 10 submitted queries to the APG,
and 2 to 2 other application servers (locatedagt:e40 and

roguedl), and so on. Theresults in the chartare the ones re<or our infrastructure, the load can vary from very light to
ported by the APG. Because the number of queries submityjdly intense. All the experimental results seen so faraver
ted to it varied due to the varying numbers of clients submit- 5ptained under severe stress, since we had from 8 up to 12
ting queries to the APG, the clusters of bars are not directly cjients sequentially submitting queries to the APG. In fact
comparable. Nevertheless, the trend is clear, the more dispecause in the experimental configurations there are 5-appli
torted the assignment is, the more effective the load-basedtation servers, and potentially up to 8 queries being seavic
strategies become, since it better assigns queries tve§at 4t 3 given moment (dogue nodes in addition to 4 simulta-
L_mloaded appllcatl_on servers. Indeed_, for_the 8-4 configura nggys queries otteat hstar), the application server utiliza-
tion, the decrease in the batch execution time can be as largggn is almost constantly 100% when the APG is configured
as 59%. For the 12-0 assignment, the load-based variationgg, handling 8 simultaneous queries.

are slightly more expensive than round robin. The explana- gje resources under lighter workloads can be better
tion is twofold. First, the system is under a very high work- |eyeraged by making use of more sophisticated query plan-
load ar_1d any policy that distributes the work in an equitable ning and execution strategies. In Figure 11, we present the
mode is going to perform comparably. Second, the load- reqits for exploring two new query planning and execution
based strategies are slightly more expensive to compute tha g ategies, namelgoncurrent subqueries and Priori Par-
round robin. An important observation, is that for higher yitioning. The former consists of executing the maximum
distortion levels (i.e. 8-4)NDRR alone will not provide  qssible number of subqueries generated for the completion

accurate information about to where a given query should ¢ 4 parent query (as seen in step 9 of Algorithm 3) con-
be routed for execution. In fact, we measured the executioncurrenﬂy as new threadls And the latter consists of slic-

ofasingle typical VR and VM queries (assuming noreuse), jng 4 query into multiple subqueries when the query is re-
and a_VR query spends 52.5% of its execution time on com- .aied by the Query Server (Figure 10) and executing them
putation and 47.5% on I/O, and a VM query spends 84.3% concyrrently, if possible. Both strategies are aimed atgisi
on computation and 15.7% on I/O. These metrics show why jgje threads both at the proxy and at the application servers
N DRIt alone does not provide good information about the 4 parajlelize the execution of a single query, assuming tha

load of an application server. Since our queries are moremany anplication servers will be able to serve a given query.
computation intensive rather than I/O intensi¥&, alone | grger to evaluate the improvements for these strategies,
did not behave as badly, however for I/O intensive queries \ye ysed an experimental setup in which we employed two
it certainly would. Hence, the linear combination of the tWo ifferent workloadsw1 andw?. wl employed 8 clients, 4
variables seems to be a nice compromise towards the avg pymitting 8 VR queries each (using 2 different datasets),
erage case. Of course, if knowledge about the workload isgng 4 submitting 32 VM queries each (using 2 different
available more precise strategies can be designed, an a selfjaiasets)w2 employed 4 clients, 2 submitting 8 VR queries
tuning policy can be devised. each (using 2 different datasets), and 2 submitting 32 VM

Evaluation of query execution strategies.
: : ; : 3The use of this strategy does not guarantee that all the suleglare
An important aspect in the deS|gn ofa query processing going to be executed as new threads. That is only the cades Query

engin_e is giV_en py the expe_cted load itis supposed to hf_':‘r?dleServer has idle threads at the time of execution, otherwigil ifall back
In a highly distributed environment as the one we envision to sequential execution.

Figure 10. The right diagram shows the auto-
matically generated subqueries which can be
potentially concurrently executed by the sys-
tem. The left diagram shows a query being a
priori partitioned, and the subqueries gener-
ated.
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Figure 11. Query execution strategies. Underneath each bar is the workload, where w1 denotes a

workload of 8 clients, and w2 denotes a workload of 4 clients.  Regular and weighted denotes a query
partitioning schema for the  apriori partitioning strategy (see details in the text) (a) Batch ex ecution
time. (b) Average execution time per query.

gueries each (using 2 different datasets). &lpeiori par- batch. However for the larger workload that did not hap-
titioning implements a heuristic for limiting how may sub- pen for the average query execution time per query. This is
queries to generate. An application specific métais well explained by the fact that the more subqueries are generated

as the number of application servers that can potentially bedue to partitioning, the better utilization of idle rescesds
used to process a given query (as returned by the Light Di-achieved (higher parallelism) at the expense of more com-
rectory Service) is used. The smallest number between theplicated query processing (due to an increase in bookkeep-
two is used as the number of partitions. LDS is able to com-ing and projection operations). In this case it implies in a
pute the number of application servers for a given query us-higher overhead that cannot be paid off by the the higher
ing two methods. Eitheregular in which each application  Query Server utilization.

server accounts for one partition,vee ghted where each ap-

plication server gets as many partitions as its multithread 7 Conclusions

level.

_ Figures 11 (a) and (b) show the results for the combina- e main aim of our work was to elaborate on an archi-
tion of workloads and partitioning strategies intermswidi oy re for supporting data analysis applications in the co
for executing the whole batch of queries and also for each;qoy of 4 highly distributed environments as the computa-

query in the average. Some observations can be made abouf, | Grid. The design was based on services that can be
the results. The concurrent execution of subqueries is re-

sponsible for a decrease of 4% for workload and an in-
crease of 1% for workload:2 in terms of batch execution
time. A decrease from 12% up to 43% is observed in the

average query execution time per query. Biori parti-  cjients in such a way that it is able to leverage its own com-

tioni_ng is responsible for z_ifurtr_\er decrease both in thetbat putational ability to respond partially or completely giesr
and in the per query metric which can be as large as 14% for,, o on aggregates it caches locally. This approach re-
batch execution and as large as 63% for an average query,is in faster queries response, decreased use of netvork r

when compared to sequential execution fortigrlar vari- sources, decreased utilization of possibly remote-latape
ation. Theweighted variation shows decreases as large as plication servers, and effectively better utilization of#-

33% for batch exgcutl_on and as large as 700/9_for_the aV€laple resources by partitioning and concurrently executing
age query execution time. As far as the partitioning strat- subqueries. Elsewhere [6] we have shown that an active
egy is concerned, a more aggressive partitioning (weighted .5 ching approach is able to increase the performance of a
seems to yield a larger decrease in execution time for thesingle data analysis application. In the current work, we

have shown that by making it available as a service and in-
4For VM queries, the number of recommended partitions is agegh

as so each partition will require at least 4MB of input dater. ¥R queries, cqrporatlr_lg I mto an aCtIV.e p_roxy, a Iarger community of
each frame in the set of frames in the query metainformasiosed to gen- C“ent$ using different appllcat_lons and datasets canlzdso
erate a subquery by replicating the other attributes. benefited further by a more rational use of resources. In fact

integrated in different ways in order to accommodate spe-
cific workload scenarios as well as utilization scenarios. |
particular, we have extensively evaluated an active proxy
configuration which concentrates the workload of multiple

12



we foresee the APGs being used as web proxies in the sense

that they are located closer to users where locality is great
shielding them from network latencies and outside disrup-
tions. Hierarchical networks of APGs can also be employed
to ensure better scalability.

Albeit fully functional, our framework can be expanded
in several different ways. Most importantly, it can eas-
ily leverage resources and technologies already made avail
able by the Grid research community. Two of its important
pieces, the Light Directory Service (LDS) and the Work-
load Monitor Service (WMS), are already described under
other names in the Grid literature. In fact, the OGSA docu-
ment [18] discusses how the functionalities implemented by
the LDS are supposed to be supported by a gedesgovery
service. One of its nice features is the notification facility
which enables clients interested in being notified of partic
ular events to be informed of their occurrences. Such facil-
ity would enable the APG to automatically learn about new
application servers becoming available for example. As far
as the WMS goes, the OGSA describes sdnigher-level
services and one of them is the classioftrumentation and
monitoring serviceswhich are going to be used primarily for

[7]

(8]

9]

[10]

ensuring the integrity of the system, but can also be used for[11]

better workload scheduling decisions. In the near futuee, w
plan to make our framework compliant to these still evolv-
ing architectures which will make it fully integrated in the
Grid ecosystem.
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