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Abstract 
The web is becoming the preferred medium for communicating and storing information 
pertaining to almost any human activity. However it is an ephemeral medium whose 
contents are constantly changing, resulting in a permanent loss of part of our cultural 
and scientific heritage on a regular basis. Archiving important web contents is a very 
challenging technical problem due to its tremendous scale and complex structure, 
extremely dynamic nature, and its rich heterogeneous and deep contents. In this paper, 
we consider the problem of archiving a linked set of web objects into web containers in 
such a way as to minimize the number of containers accessed during a typical browsing 
session. We develop a method that makes use of the notion of PageRank and optimized 
graph partitioning to enable faster browsing of archived web contents. We include 
simulation results that illustrate the performance of our scheme and compare it to the 
common scheme currently used to organize web objects into web containers. 

1. Introduction 

An unprecedented amount of information encompassing almost every facet of human activity 
across the world is currently available on the web and is growing at an extremely fast pace. In 
many cases, the web is the only medium where such information is recorded. However, the web 
is an ephemeral medium whose contents are constantly changing and new information is rapidly 
replacing old information, resulting in the disappearance of a large number of web pages every 
day and in a permanent loss of part of our cultural and scientific heritage on a regular basis. A 
number of efforts, currently underway, are trying to develop methodologies and tools for 
capturing and archiving some of the web’s contents that are deemed critical. However there are 
major technical, social, and political challenges that are confronting these efforts. Major technical 
challenges include automatic tools to identify, find, and collect web contents to be archived, 
automatic extraction of metadata and context for such contents including linking structures that 
are inherent to the web, the organization and indexing of the data and the metadata, and the 
development of preservation and access mechanisms for current and future users, all at 
unprecedented scale and complexity. 

Leaving aside dynamic and deep contents, web contents involve a wide variety of objects such as 
html pages, documents, multimedia files, scripts, etc., as well as, linking structures involving 
these objects. While the size of most Web pages is small, the total number of web pages on a 
single web site can range from one to several millions. For example, as of Oct 30, 2006, 
Wikipedia.org alone claims to have about 1.4 million articles [7], each making up a distinct Web 
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page. A critical piece of web archiving is to capture the linking structures and organize the 
archived pages in such a way that future generations of users will be able to access and navigate 
through the archived web information in the same way as in the original linked structure. Note 
that by that time, the archived web contents may have migrated through several generations of 
hardware and software upgrades, including migration through different types of media, different 
file systems, and different formats. 

In this paper, we address the problem of how to organize the web objects so that we will be able 
to navigate through the linking structure of the web objects as effectively as possible.  Since the 
majority of web pages tend to be small, they are typically aggregated into relatively large 
containers as the objects are accessed during the crawling process. An emerging standard for such 
containers is the WARC format [4], which evolved from the ARC container format developed by 
the Internet Archive, currently the world’s largest internet archive. Moreover, many Web 
crawlers and access tools, such as Heritrix [29], NutchWAX [3], Wayback [2], WAXToolbar [5] 
and Wera [6], assume this format.  

Given a set of WARC containers that hold an archived linked set of web objects, a future 
browsing process of the archived objects starts with a web object defined by a seed link, followed 
by navigation through the linked structure until the desired web object is found. Our goal is to 
organize the web objects into containers so as to minimize the number of containers needed to 
complete a typical browsing process. We develop an algorithm that assigns web objects to 
containers by performing an initial link analysis on the given linked structure, followed by a 
partitioning process that leads to an efficient solution to this problem. We show that our method 
enables effective navigation through the archived linked structure and compare its performance to 
the dominant scheme in use today. 

We start in Section 2 by describing the previous work related to our problem, followed by 
developing and justifying our method in Section 3.  We apply our method to two web site 
examples and examine the performance gains achieved by our method in Section 4.  We conclude 
in Section 5.  

2. Related Work 

We review in this section the possible storage formats for archiving web contents and a couple of 
techniques in link analysis and graph partitioning which will form the core of our method. 

2.1. Archival Storage 
In order to organize and store Web objects in an archive, several methods have been proposed 
and are currently in use. A straightforward method (such as the one described in [1]) is based on 
using the local file system where the target Web material is copied object by object to the local 
file system, maintaining the relative structure among the objects. For future access, the html tag 
‘file’ can replace the ‘http’ tag in the original object.  We can then use the local file system for 
navigation through the archived Web material. For example,‘http://www.example.org/index.html’ 
can be rewritten as ‘file:///archive/2007.08.01/www.example.org/index.html’. It is relatively easy 
to set up and run this type of web archiving and the retrieval process is carried out using local file 
access mechanisms. However, there are several problems in using this method for web archiving 
including its limited scalability to what the local file system can handle, and the difficulty to 
preserve the contents over time as they are tightly coupled to the specific file system. Moreover, 
this strategy requires modifications to the original contents, and thus the strict faithfulness to the 
original contents cannot be maintained in most cases [26].  
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The second approach extracts documents from the hypertext context and reorganizes them in a 
different format while setting up different access mechanisms. For example, a small set of Web 
pages can be converted into a single PDF document.  However, this strategy makes sense mainly 
for specific objects that were originally created independently of the Web. Although it is possible 
to maintain the hypertext structure within the converted documents, for the broader range 
archiving, this approach loses the hypertext structure between multiple such documents [26]. 

The most popular method currently in use by most Web archives, including the Internet Archive, 
stores Web objects in WARC [4] container files. A WARC file holds a set of harvested Web files, 
each with its own auxiliary metadata. The size of a WARC file can vary up to hundreds of 
megabytes (usually 100~500MB). Typically, an external indexing server is maintained to provide 
the mapping between hyperlinks inside a WARC file and the location of the archived object that 
the hyperlinks point to. For example, if, inside a WARC file, there is a Web page archived on 
September 24, 2007 which has an outgoing hyper link with a tag <a 
href=”http://www.example.org/images/welcome.jpg>, the indexing server could return in 
response to the tag and date something like ‘20070924082031-00007.warc’ and ‘1463539’ which 
are the WARC file name and the offset in the WARC file, respectively. In this paper, we will also 
assume that web files are placed in such containers such that a certain upper bound on the size of 
the container is assumed. 

2.2. Graph Partitioning Techniques 
Web material can be considered as a graph (web graph) where each constituting Web page is 
represented by a vertex, and each incoming/outgoing link corresponds to a directed edge. Once 
represented as a graph, the web graph can be partitioned into multiple subgraphs using one of 
existing graph partitioning techniques. The basic goal of a minimum edge-cut partitioning is to 
minimize some defined cost on the edges connecting the partitions. There are many ways to 
define the external cost of graph partitioning but the two notions most widely used are the 
maximum weight of the edges between vertices which lie on different partitions, and the total 
weight of all the edges connecting distinct partitions. Although the graph partitioning problem is 
known to be NP-complete, many heuristic algorithms have been developed that find very good 
partitions in practice [10, 11, 16-19, 21, 24, 27, 28, 32]. However, for our application, we will 
require additional constraints, which cannot necessarily be handled by many of the well-known 
graph partitioning algorithms. We review here some of the algorithms that can be used to solve 
our graph partitioning problem that will be defined formally in Section 3. 

Perhaps the best known graph partitioning algorithm is the Kerninghan-Lin algorithm [24], where 
the partitioning process starts with an arbitrary partition, and then proceeds to decrease the 
external cost by a series of interchanges of subsets of the partitions repeatedly until no further 
improvement is possible. To avoid local optimality, the algorithm is applied repeatedly to obtain a 
number of locally optimum partitions among which the best partition is chosen. Although 
Fiduccia and Mattheyses [12] later improved the performance of the Kerninghan-Lin algorithm, 
their algorithm is considered computationally expensive especially if the graph is large, which is 
clearly the case for our application.  

In order to cope with large graphs, researchers devised multilevel graph partitioning schemes [10, 
11, 17, 21, 32] where the algorithms reduce the size of the graph (or “coarsen” the graph) by 
collapsing vertices and edges, partition the resulting smaller graph, and then “uncoarsen” it to 
construct a partition for the original graph. While the multilevel scheme was mainly developed 
and used to improve the partitioning performance of a large graph at the expense of worse 
partition quality [32], more recent multilevel algorithms, such as in [10, 11, 17, 21], further refine 
the partition during the uncoarsening phase, thus obtaining a partition quality that is comparable 
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or even better than other existing techniques [19]. The Kerninghan-Lin algorithm is often used as 
the refinement algorithm. 

2.3. Link Analysis Technique – PageRank 
PageRank [30] is a link analysis algorithm that assigns a numerical weight to each element of a 
hyperlinked set of documents, such as web material. Intuitively, a web page with a higher 
PageRank should have a higher probability of being visited. The intuition behind PageRank is 
that if page u has a link to page v, then page u is implicitly conferring some importance to page v. 
In other words, page u can be thought as voting for page v. The more votes a page receives, the 
more important it is considered. However, not every vote counts equally: votes cast by pages that 
are themselves “important” weigh more heavily and help other pages become more “important”. 

In the ideal model, the PageRank value, PR(u), for page u can be expressed as: 

∑
∈

=
uIv

vu vPRpuPR )()( , where uI is the set of pages with links to page u, and vup is the 

probability that a random surfer visiting page v jumps to page u. Since it is not possible to 
know the exact value of vup , vup is usually set to 1/out_degree(v), that is, all outgoing 
links from v are assumed to be equally likely. 

However, the ideal model has two problems. The first problem is the presence of dangling pages 
that shut the surfer when visited. A solution to the problem is to patch dangling pages by 
artificially placing outgoing links from each dangling page to all the other pages. Each artificial 

link can be given either equal probability of 
N
1

 (N: total number of pages), or personalized 

probability which records a generic surfer’s preference for each page. The second problem with 
the ideal model is that the surfer can get trapped by a cyclic path in the Web Graph. Brin and 
Page [9] suggest enforcing irreducibility by adding a new set of artificial transitions that, with low 
probability, jump to all nodes. Mathematically, this corresponds to the following equation: 

∑
∈

+
−

=
uIv

vu vPRpd
N

duPR )(1)( , where N   is the total number of pages, and )1( d−  is 

the probability the random surfer jumps to a random page without a link. 

We note that this equation is slightly different from the original PageRank equation as proposed 
by Brin and Page [9]. The original equation, ∑

∈

+−=
uIv

vu vPRpdduPR )(1)( , has brought up 

some confusion since, unlike the inventors’ claim, the sum of all PageRanks is not one, but N. 
The above scaled version, however, leads to ∑ =1)(vPR , and each PageRank can be thought as 
a probability. In the above equation, the parameter d is called the damping factor which can be set 
somewhere between 0 and 1. As suggested in [30] and [9], we use d = 0.85 in our work which 
will be further described in the next section. 
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If we let G = (V, E) be a web graph, and A the modified adjacency matrix of G defined by: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

∈+
−

=

otherwise ,1

),( if ,1

N
d

Eij
O
d

N
d

A j
ij , where jO is the number of out-links from page j. 

and let P  be an N-dimensional column vector of PageRank values, then P  can be expressed by 
the following matrix equation: APP =  

This is the characteristic equation of the eigensystem whose solution is the eigenvector 
corresponding to the eigenvalue of one. Furthermore, A can be considered as a stochastic matrix 
that is also irreducible and aperiodic, due to the modifications we performed earlier to avoid 
dangling nodes and cyclic paths. Therefore, by the Ergodic theorem of Markov chains [31], a 
finite Markov chain defined by the stochastic transition matrix A has a unique stationary 
probability distribution. This implies that, starting with any initial value of P , we can iterate the 
application of the matrix A to P, and P  will converge to a steady-state probability vector, which 
in turn is the eigenvector of A  corresponding to the eigenvalue of one. In practice, a well known 
mathematical technique called power iteration [15] can be used to efficiently determine P . 

As will be discussed further in the next section, our link analysis technique is based on the 
PageRank algorithm. However, unlike the PageRank algorithm that assigns a weight to each page, 
we assign a weight to each link, which will then be used to partition the graph. 

3. Our Method 

As discussed earlier, the most popular storage method for Web archiving is to use containers 
where each container holds a number of Web pages. Typically, web material is archived using 
many containers. The primary goal of our work is to develop techniques to allocate web pages to 
containers such that each container has as closely related web pages as possible, thereby 
minimizing the chances of accessing many different containers when a user browses through the 
archived web material. When web contents are archived in the form of multiple containers, we 
can view these containers as a coarsened web graph (or container graph) where the original nodes 
within the same container are collapsed together to form a super node, and only edges between 
different containers survive with assigned weights as will be explained next.  

In the container graph, Gc=(Vc,Ec), we define the cost of the edge-cut, EC, as follows: 

∑
∈

=
cEe

ewEC , where ew is the weight of edge e . 

In order to accomplish our goal, we analyze the link structure within the web material to be 
archived to find, for each edge, a good estimate of the probability that the edge will be taken. 
Using this estimate as the edge weight, we partition the web graph in such a way as to minimize 
EC. The following two subsections discuss our link analysis and the partitioning technique used 
to minimize EC.  

3.1. Edge Weights 
Edge weights should represent the relative likelihood of an edge being taken during a browsing 
session. We will follow a line of attack similar to the one used for computing PageRanks. We 
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start with some simple observations. If a vertex has only one outgoing edge, this edge will be 
more likely taken than an edge from another vertex with many out-links, and thus should be 
weighed more heavily. A possible simple solution is to assign edge weights depending on the 
number of out-links of the source vertex. For instance, if the source vertex of edge e has k 

outgoing edges, the weight of 
k
1

 is given to edge e.  

When a personalized vector is not in use, the PageRank algorithm also uses the same method in 
assigning edge weights. In this case, the only deciding factor to the edge weight is the number of 
the outgoing edges from the source vertex, and thus the edge weight only represents the local 
probability of the edge being taken, once the source vertex is visited. In other words, the edge 
weight is only locally meaningful, and thus it is not possible to say that an edge is more likely to 
be taken than the other if they belong to different vertices. 

For our method, the probability of each vertex being visited is computed first using the PageRank 
algorithm. The PageRank value (or steady-state probability) of each vertex is then divided by the 
number of outgoing edges from the vertex. We call this quotient EdgeRank (ER) and assign the 
same EdgeRank value as the weight to every edge coming out from the same vertex. 

)outdegree(
)()(

v
vPReER = , where vertex v is the source vertex of edge e. 

Note that, since ∑ =1)(vPR , ∑ =1)(eER  too. 

Now that we have an edge-weighted graph representing our web contents, the allocation of web 
pages to containers is performed using a graph partitioning algorithm. 

3.2. Graph Partitioning 
As discussed in Section 2, there are a number of existing min-cut graph partitioning heuristics 
that seem to work well in practice. Although their primary partitioning criterion is to minimize 
the cost of the edge-cut, they differ from one another in input, output, and partitioning parameters. 
For example, some algorithms support size-constrained partitioning while others do not. Also, not 
all algorithms support weighted vertices and edges. Before proceeding let’s define our graph 
partitioning problem more formally.  

Web Graph Partitioning Problem: Given a directed web graph },{: EVG  with weighted nodes 
(weight of a node is the size of the corresponding page) and weighted edges, determine a partition 

nPPPPV ∪∪∪∪= ...321  such that, 

1. The sum of the weights of the edges that connect any two different partitions is minimized. 

2. For all i’s,  KPi ≤ for some fixed K, where || iP  is the sum of the weights of the vertices in 
the partition and K is an upper bound on the size of a container. 

The first condition is shared by almost all partitioning algorithms (some require non-weighted 
edges), while the second condition, which is the size constraint imposed to every partition, is 
supported only by a few partitioning algorithms (such as [19, 21, 24]), sometimes with a slight 
modification. 

In this work, we adopt the multilevel graph partitioning algorithm to solve our problem. The 
primary reason is that it supports the constraints on the partition size; moreover, the method is 
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fast, which is important in our case considering the typically large sizes of web graphs. In 
particular, we adapt a partitioning technique suggested by Karypis and Kumar [21] as follows.  

Their scheme first computes a maximal matching using a randomized algorithm, and coarsens the 
graph by collapsing the matched vertices together. This coarsening step is repeated until a desired 
size of the coarsened graph is achieved. Once the graph is coarsened, the minimum edge-cut 
bisection is computed using some of existing algorithms such as spectral bisection [8, 33], 
geometric bisection [28] or combinatorial methods [13, 14, 24]. The partitioned graph is then 
refined and uncoarsened. The improved Kerninghan-Lin algorithm that was developed by 
Karypis and Kumar is applied to this uncoarsening-with-refinement phase.  

In particular, we use Metis [22], a partitioning tool that implements the Karypis-Kumar scheme. 
Although Metis does not explicitly support the partition size constraints – our second condition, it 
does support vertex-weight-based size balancing among partitions, making the size of all 
partitions similar. Therefore, based on the sum of all the vertex weights of the web graph, we pre-
compute the necessary number of partitions before running the partitioning tool, so that the 
resulting partitions will meet the second condition. 

4. Experimental Evaluation of our Scheme 

In order to examine the performance of our algorithm in terms of the number of containers 
accessed during a typical browsing session, we consider two datasets. The first is the web graph 
of the University of Maryland Institute for Advanced Computer Studies (UMIACS) web site, 
located at http://umiacs.umd.edu domain, which we call the UMIACS web graph. We crawled 
every Web page within five-hop distance (or depth) under this domain, and constructed the web 
graph corresponding to this crawling. The second dataset is the Stanford web graph which was 
generated from a crawl of the stanford.edu domain created in September 2002 by the Stanford 
WebBase project [20], and is widely used by the web graph analysis community. Unlike the first 
dataset, the Stanford web graph has neither the size information of vertices, nor the actual URLs 
with which we might have been able to obtain estimates of the web pages (which undoubtedly 
have changed since then). Consequently, we randomly assign vertex sizes using two Gaussian 
distributions – one for html files, the other for non-html files. Their parameters are based on the 
findings from a Web statistics study [25]. In particular, we assumed there are about 18% html 
objects by total file size, and the average html file size is 605 KB. This size modeling is not 
intended to mimic the actual Web object sizes in the Stanford web page. Rather, we intend to 
assign some reasonable sizes to run our experiments. Note that the quality of our method does not 
depend on the accuracy of the vertex sizes.  

Table 1 describes these two datasets. 

Table 1. The Two Datasets Used for Evaluating our Method 

Datasets # Vertices # Edges Total Vertex 
Weight 

UMIACS Web Graph 4579 9732 2.49GB 

Stanford Web Graph 281903 2312497 215.82GB 
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In our experiments, we allocate pages to containers (or WARC files) in three different ways. 

1. CONV: Pages are allocated to containers as they are fetched during the crawling process. 
Once a container is full, we use a new container (Figure 1). 

2. GP: The graph partitioning technique is applied so as to minimize the number of edges 
connecting any two partitions. All the pages belonging to a partition are allocated to a 
single container (Line 3 in Figure 2 is omitted). 

3. ER+GP: The EdgeRank technique is used to assign weights to edges (Line 3 in Figure 2), 
and the graph is partitioned using a minimum-weight partitioning algorithm Again, 
containers are constructed based on the resulting partitions. In each case, the damping 
factor, d = 0.85, is used in EdgeRank. 

 

 Input 
 Seed URLs : {url1, url2, … } 
 MAX_CONTAINER_SIZE 
  
 Procedure 

1: Enqueue(Q, Seed URLs) 
2: i 1 
3: visited[]  FALSE 
4: Ci  new Container() 
5: while (Q is non-empty) 
6:  u  Dequeue(Q) 
7:  Fetch(u); 
8:  visited[u] TRUE 
9:  if (Size(Ci) + Size(u) > MAX_CONTAINER_SIZE) 

10:   i = i + 1 
11:   Ci = new Container() 
12:  Ci = Ci   u 
13:  for each v  Adj[u] 
14:   if (visited[u] = FALSE) 
15:    Enqueue(Q, v) 

Figure 1. Conventional Allocation of Pages to Containers 

 Input 
 Seed URLs : {url1, url2, … } 
 MAX_CONTAINER_SIZE 
  
 Procedure 

1: G  BuildWebGraph(Seed URLs)  /* Using BFS algorithm */ 
2: n  GetNumberOfContainers(G, MAX_CONTAINER_SIZE) 
3: G  EdgeRank(G) /* Optional */ 
4: {UL1,UL2,…,ULn}  PartitionGraph(G, n) 
5: for ( 1 ≤ i ≤ n) 
6:  Ci  new Container() 
7:   for (v  ULn) 
8:    fetch(v) 
9:    Ci = Ci  v 
Figure 2. Container Construction Based on Graph Partitioning with or without EdgeRank (Line 3) 
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Figure 1 shows a typical BFS algorithm where a visited node is stored in the current container as 
long as the size of the resulting container does not exceed the predefined value 
(MAX_CONTAINER_SIZE) (Line 9~12). A new container is created if necessary. 

In the algorithm shown in Figure 2, a web graph is first built (Line 1) using a BFS-based crawling 
algorithm similar to the one in Figure 1, followed optionally by computing EdgeRank (Line 3) in 
order to obtain edge weights in the graph. This graph is then partitioned into the pre-calculated 
(Line 2) number (n) of partitions. This number depends on the total sum of vertex weights (page 
sizes) in the graph, as well as the predefined maximum container size 
(MAX_CONTAINER_SIZE). Once partitioned, the URLs in each partition are re-visited and 
packaged in the n containers (Line 5~9). In practice, depending on the resource availability, the 
Web objects downloaded from the previous crawl (Line 1) can be stored and reused in the 
packaging process. 

In our simulation, to be discussed in Section 4.2, the UMIACS dataset was partitioned into 25 
partitions and the Stanford dataset was partitioned into 2200 partitions, resulting in the size of 
each partition being between 100MB and 200MB.  

4.1. Edge-Cut 
In order to evaluate the graph partitioning performance, we measure the edge-cut obtained from 
the graph partitioning scheme, and compare it to the conventional breadth-first-search (BFS) 
partitioning. We defined the cost of an edge-cut earlier as the sum of the weights of all the 
external edges between partitions. However, as we performed the experiments on the two 
separate datasets with different numbers of nodes, edges and partitions, we scaled down the cost 
of the edge-cut to a web graph with the total edge weight of 100, as follows: 

E
ECECscaled

100×
= , where E is the total edge weights in the web graph. 

We begin by considering the case where the web graph has no edge weight (or equal edge 
weight). We observe that the edge-cuts generated by the conventional method were about 70~80 
for both datasets while those generated by the graph partitioning scheme are 12 and 47 for the 
UMIACS and Stanford datasets respectively. Using edge weights based on the PageRank 
technique, the graph partitioning approach similarly reduces the costs of the edge-cuts relative to 
the conventional approach as illustrated in Table 2.  

Table 2. Edge-Cut Results 

scaledEC  
Unweighted Edges Weighted Edges 

CONV GP ER+CONV ER+GP 

UMIACS Web Graph 73.87 12.38 62.36 36.03 

Stanford Web Graph 80.50 47.33 63.56 32.20 

4.2. Simulation 
Although the edge-cut figures show favorable results when the partitioning technique is employed, 
we additionally ran simulations to further see how much the partitioning and the EdgeRank will 
in fact reduce the number of containers necessary for a random user to browse through the 
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archived Web material. In these simulations, we set a virtual user who randomly walks through 
links, and counted the number of containers that the user had to access.  

Table 3 shows the parameter-value pairs used in our simulations.  
Table 3. Simulation Parameters 

Parameter Value 

Number of Hops 10 

Probability of Going Back 30% 

Outdegree of Starting Vertex > 5 

Policy At Dangling Vertex Go back 

Each random walk consists of ten random hops, and at each random hop, each outgoing link is 
given an equal probability of being taken. Also, we assume that the BACK button on a browser is 
pressed with 30% probability. We base this choice on a recent browser usage research [23] which 
shows that hyperlinks are taken 41.7% of time, followed by other navigation (23.6%) and the 
back button (18.9%). Since, in our simulation, we only consider hyperlinks and the back button, 

we assume that the back button is pressed about 30% (
9.187.41

9.18
+

≈ ) of the time. Once the 

random walk reaches a vertex with no outgoing link (or a dangling), the random walk goes back 
to the previous vertex, if any, as if the user presses the BACK button. In order to avoid the 
situation where there are no more vertices left to visit soon after the start of the simulation, we 
insist that the randomly selected starting vertex has an outdegree of five or larger. 

In the simulations, we ran the random walk 1000 times over each dataset, and monitored both the 
number of inter-container hops and the number of distinct containers needed for each random 
walk. Inter-container hops occur whenever a different container needs to be accessed. For 
example, if a random walk switches back and forth between two containers, A and B, ten times, 
the number of inter-container hops will be ten, while the total number of distinct containers is 
only two. In a system with no caching policy or a limited memory, the inter-container hops will 
serve as a more useful metric because, even if a user requests a previously retrieved container, the 
system will always need to retrieve it from storage. However, if a system can cache enough 
containers, the total number of distinct containers will make more sense in assessing the system’s 
performance. Figures 3 and 4 show the histograms of the number of inter-container hops and 
distinct containers accessed for the UMIACS web graph, respectively, while Figures 5 and 6 
show the corresponding histograms for the Stanford web graph. 

It can be observed that when the graph partitioning scheme is used, many random walks only 
need a single container (thus, zero inter-container hops). Figure 7 depicts the average number of 
inter-container hops during the random walks over the two web graphs. From the figure, it can be 
seen that the GP and ER+GP schemes reduced the average number of inter-container hops from 
five to one for the UMIACS web graph. For the Stanford web graph, the GP scheme reduced the 
number from seven to five, while ER+GP further reduced the number down to four. The average 
number of containers needed is shown in Figure 8. Although the improvements are not as 
dramatic as the number of inter-container hops, compared to the CONV scheme, the GP scheme 
required about 28% and 11% less number of distinct containers for the UMIACS and Stanford 
web graph, respectively. The ER+GP scheme further reduced the numbers 9% and 17% less than 
those from the GP scheme. 
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Figure 3. Histogram of Number of Inter-Container Hops for UMIACS Web Graph 

Figure 4. Histogram of Number of Distinct Containers Accessed for UMIACS Web Graph 

 
Figure 5. Histogram of Number of Inter-Container Hops for Stanford Web Graph 
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Figure 6. Histogram of Number of Distinct Containers Accessed for Stanford Web Graph 

 
Figure 7. Average Number of Inter-Container Hops 

 
Figure 8. Average Number of Distinct Containers 
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5. Conclusion 

In this paper, we have shown that a graph partitioning scheme for organizing archive containers 
significantly reduces the number of containers that need to be accessed when a user browses 
through the archived Web material. Also shown was a PageRank-derived technique, called 
EdgeRank, which can improve this number even further. The overhead required by this technique 
is relatively small. For instance, on our 2Ghz Intel Core 2 Duo processor, we could fully partition 
and compute EdgeRank of a large graph (the Stanford web graph that contains about 300,000 
vertices, and 2.3 million edges) within minutes. 

6. References 

[1] HTTrack   http://www.webcitation.org/5SCSBqOXe 
[2] The Internet Archive - The Wayback Machine   

http://www.webcitation.org/5SCSL2r8e 
[3] NutchWAX   http://www.webcitation.org/5SCS7U2LE 
[4] WARC, Web ARChive file format   http://www.webcitation.org/5RPhvw0Wa 
[5] WAXToolBar   http://www.webcitation.org/5SCSFHkK3 
[6] WERA   http://www.webcitation.org/5SCSHC1w7 
[7] Wikipedia Statistics   http://www.webcitation.org/5QwnKX6Gp 
[8] S. T. Barnard and H. D. Simon, A Fast Multilevel Implementation of Recursive Spectral 

Bisection for Partitioning Unstructured Problems, Proceedings of the Sixth SIAM 
Conference on Parallel Processing for Scientific Computing, Norfolk, Virginia, USA, 1993, 
pp. 711-718. 

[9] S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine, in P. H. 
Enslow and A. Ellis, eds., Proceedings of the Seventh International Conference on World 
Wide Web 7, Elsevier Science Publishers B. V., Brisbane, Australia, 1998, pp. 107-117. 

[10] T. N. Bui and C. Jones, A heuristic for reducing fill in sparse matrix factorization, 
Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, 
Norfolk, Virginia, USA, 1993, pp. 445–452. 

[11] C.-K. Cheng and Y.-C. A. Wei, An improved two-way partitioning algorithm with stable 
performance, IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, 10 (1991), pp. 1502-1511. 

[12] C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for improving network 
partitions, Proceedings of the 19th Conference on Design Automation, IEEE Press, 1982, 
pp. 175-181. 

[13] A. George, Nested dissection of a regular finite element mesh, SIAM Journal on Numerical 
Analysis, 10 (1973), pp. 345-363. 

[14] A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite, Prentice 
Hall Professional Technical Reference, 1981. 

[15] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins University Press, 
Baltimore, MD, USA, 1996. 

[16] L. Hagen and A. Kahng, Fast spectral methods for ratid cut partitioning and clustering, 
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, Santa 
Clara, CA, USA, 1991, pp. 10-13. 

[17] L. Hagen and A. B. Kahng, A new approach to effective circuit clustering, Proceedings of 
the IEEE/ACM International Conference on Computer-Aided Design, Santa Clara, CA, 
USA, 1992, pp. 422-427. 



 

 14

[18] M. T. Heath and P. Raghavan, A Cartesian parallel nested dissection algorithm, SIAM 
Journal on Matrix Analysis and Applications, 16 (1995), pp. 235-253. 

[19] B. Hendrickson and R. Leland, An improved spectral graph partitioning algorithm for 
mapping parallel computations, SIAM Journal on Scientific Computing, 16 (1995), pp. 
452-469. 

[20] J. Hirai, S. Raghavan, H. Garcia-Molina and A. Paepcke, WebBase: A repository of Web 
pages, Computer Networks, 33 (2000), pp. 277-293. 

[21] G. Karypis and V. Kamar, Multilevel k-way partitioning scheme for irregular graphs, 
Journal of Parallel and Distributed Computing, 48 (1998), pp. 96-129. 

[22] G. Karypis and V. Kumar, METIS: A Software Package for Partitioning Unstructured 
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. 
Version 5.0pre2, Minneapolis, 2007. 

[23] M. Kellar, C. Watters and M. Shepherd, The impact of task on the usage of web browser 
navigation mechanisms, GI '06: Proceedings of Graphics Interface 2006, Canadian 
Information Processing Society, Quebec, Canada, 2006, pp. 235-242. 

[24] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, The 
Bell System Technical journal, 49 (1970), pp. 291-307. 

[25] P. Lyman and H. R. Varian, How Much Information   
http://www.webcitation.org/5SCSQh9n9 

[26] J. Masanès, Web Archiving: Issues and Methods, Web Archiving, Springer, Berlin, 2006, pp. 
1-53. 

[27] G. L. Miller, S.-H. Teng, W. Thurston and S. A. Vavasis, Automatic Mesh Partitioning, 
IMA Volumes in Mathematics and its Applications:, Springer-Verlag, New York, NY, USA, 
1993, pp. 57-84. 

[28] G. L. Miller, S.-H. Teng and S. A. Vavasis, A unified geometric approach to graph 
separators, Proceedings of the 32nd Annual Symposium on Foundations of Computer 
Science, IEEE Computer Society Press, San Juan, Puerto Rico, 1991, pp. 538-547. 

[29] G. Mohr, M. Kimpton, M. Stack and I. Ranitovic, Introduction to Heritrix, an archival 
quality web crawler, 4th International Web Archiving Workshop, Bath, UK, 2004. 

[30] L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank citation ranking: Bringing 
order to the Web, 1998. 

[31] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochasitic Processes, 
McGraw-Hill, New York, 2002. 

[32] R. Ponnusamy, N. Mansour, A. Choudhary and G. C. Fox, Graph contraction and physical 
optimization methods: a quality-cost tradeoff for mapping data on parallel computers, 
International Conference of Supercomputing, Tokyo, Japan, 1993. 

[33] A. Pothen, H. D. Simon and K.-P. Liou, Partitioning sparse matrices with eigenvectors of 
graphs, SIAM Journal on Matrix Analysis and Applications, 11 (1990), pp. 430-452. 

 


