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Chapter 1: Introduction

1.1 Motivation: Self Organization and Free Boundary Problems

Self-organization is the phenomena by which some form of order or coordi-

nation arises out of the local interactions of an initially disordered system. Self-

organizing systems are adaptive and robust. They can reconfigure themselves and

thus keep on functioning even if they are perturbed. Self-organization can be ob-

served in nature and social interaction; e.g. swarming of animals, arrangements of

molecules in materials, pattern formation in traffic, etcetera.

My research has taken me to analyze two different types of attractive-repulsive

models, that exhibit self-organization behavior. When dealing with a discrete num-

ber of particles, attractive-repulsive models hypothesize that particles are attracted

towards each other, but at the same time there is a mechanism that prevents over-

crowding. This framework is very general and could be modeling atoms, penguins

or humans in a crowd; even the Cahn-Hilliard equation, modeling phase separation

of a binary fluid, lies under this spectrum (see Section 3.1.1).

These type of models are often equipped with an energy functional that is

dissipated by the dynamics. Self-Organization can be understood mathematically

in these models as the minimizer(s) of the energy being attractor(s) for the dynam-
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ics. Therefore, starting from any random initial configuration, the outcome of the

evolution can, in some ways, be predicted.

In many interesting cases, the evolution is described by a gradient flow of

this energy functional, namely the solutions flow in the direction of the steepest

decent of the energy. This led me to study deeply the theory of gradient flows. The

main reference for this is ”Gradient flows on metric spaces” by Ambrosio, Gigli and

Savare [1] that proves that the notion of gradient flow in metric spaces is well-posed

for lambda-convex (a generalization of convex) functionals (see Section 1.2.2). Of

course, the interesting energies are rarely convex, in any metric, since the hypoth-

esized rules of attraction-repulsion clash with each other, making these problems

interesting.

The two particular models of self organization studied in this dissertation can

be thought as gradient flows of Energies that can be viewed as the difference of

two Sobolev norms. In Chapter 2, we consider the Interaction Energy, which in the

simplest case is of the form

E[µ] = ||µ||2H−s1 (RN ) − ||µ||
2
H−s2 (RN ),

with 0 < s1 < s2 <
N
2

. Whereas in Chapter 3, we consider the Modica-Mortola

functional, which is a regularization of Energies of the form

F [ρ] = ||ρ||p1Lp1 (T) − ||ρ||
p2
Lp2 (T),

with 0 < p2 < p1 <∞. The regularization

F ε[ρ] = F [ρ] +
ε

2
|ρ|2H1(T),
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is needed as the Sobolev semi-norms involved in the definition of F are of the same

order which creates uncontrolled oscillations and make the gradient flow ill-posed.

Chapter 2 is mostly devoted to proving and exploiting the somewhat surprising

relationship between minimizers of the interaction energy and solutions to obstacle

problems. This relationship yields the best known results on the regularity of min-

imizers. Chapter 2 also addresses some particular cases of the big open problem

which is the uniqueness of minimizers.

Chapter 3 frames the Cahn-Hilliard equation with degenerate mobility as a

gradient flow in the L2-Wasserstein metric in one space dimension and proves its

convergence to a degenerate parabolic equation under the framework recently de-

veloped by Sandier-Serfaty (see [2]) for the convergence of gradient flows.

1.2 Math Preliminaries

1.2.1 Mass transportation

Given a complete separable metric space X, we consider the set P(X) the

Borel probability measures on X. In this work, we will consider the case X = RN

the N -dimensional Euclidean space and the case X = T the 1-dimensional Torus. In

this section, we define the family of Lp-Wasserstein distances, dp, with 1 ≤ p ≤ ∞

on P(X). To be more precise, dp is a family of pseudo-distances as they can take the

value of plus infinity. The case of p = 2 is interesting due to its differential structure,

that allows to consider P(X) as an infinite dimensional Riemmanian manifold. We

give a short introduction to this interpretation in Section 1.2.2.2. The case p =∞ is
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interesting as it induces the coarsest of the topologies and its salient feature is that

it controls the Haussdorf distance of the supports considered as sets; this makes it

interesting as novel modelling tool. We start with a couple of auxiliary definitions.

Definition 1.2.1. Given µ, ν ∈ P(X), we call π ∈ P(X ×X) a transference plan

if

π(A×X) = µ(A) and π(X × A) = ν(A),

for every Borel set A ⊂ X.

We denote the set of transference plans from µ to ν as Π(µ, ν).

Heuristically, a transference plan π ∈ Π(µ, ν) encodes a way of re-arranging

the mass from µ to ν. In particular, π(A × B) can be interpreted as the amount

of mass that is transported from A to B. Moreover, Π(µ, ν) is never an empty set,

as µ× ν ∈ Π(µ, ν). In terms of our interpretation, µ× ν represents spreading mass

evenly.

We also recall the definition of support; the smallest closed set that has full

measure.

Definition 1.2.2. The support of a measure µ ∈ P(X) is the closed set defined by

supp(µ) := {x ∈ X : µ(Bε(x)) > 0 for all ε > 0} ,

where Bε(x) is the ball of radius ε around x.

With the concept of transference plans, we can define the distances dp:

Definition 1.2.3. Given µ, ν ∈ P(X), we define their Lp-Wasserstein distance as

dp(µ, ν) =

(
inf

π∈Π(µ,ν)

{∫
X×X

dist(x1, x2)p dπ(x1, x2)

}) 1
p

.
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Moreover, for p =∞ we get the distinguished distance d∞

Definition 1.2.4. Given µ, ν ∈ P(X), we define their L∞-Wasserstein distance as

d∞(µ, ν) = inf
π∈Π(µ,ν)

sup
(x1,x2)∈supp(π)

dist(x1, x2).

Remark 1.2.5. We have the inequality

dH(supp(µ), supp(ν)) ≤ d∞(µ, ν),

where dH : is the Haussdorff distance of sets given by

dH(A,B) = max{ sup
x1∈A

inf
x2∈B

dist(x1, x2), sup
x2∈B

inf
x1∈A

dist(x1, x2)}

for any A, B ⊂ X.

Remark 1.2.6. By an application of Hölder’s inequality, we know that dp distances

are ordered. Given π ∈ Π(µ, ν)

(∫
X×X dist(x1, x2)p dπ(x1, x2)

) 1
p ≤

(∫
X×X dπ(x1, x2)

)1− p
q
(∫

X×X dist(x1, x2)q dπ(x1, x2)
) 1
q

=
(∫

X×X dist(x1, x2)q dπ(x1, x2)
) 1
q
,

for any q > p. So,

dp(µ, ν) ≤ dq(µ, ν) for any q > p.

By this monotonicity, we have an alternative definition of d∞:

lim
p→∞

dp(µ, ν) = d∞(µ, ν).

The distances dp can take infinite values in general, but they are obviously

finite for measures with bounded support. Moreover, these distances dp induce
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complete metric structure restricted to the set of probability measure with finite p

moment

Pp(X) =

{
µ ∈ P(X) : for any x0 ∈ X

∫
X

dist(x, x0)p dµ(x) <∞
}
.

In particular, d∞ induces a complete metric structure on

P∞(X) =
⋂

1≤p<∞

Pp(X)

as proven in [3].

1.2.2 Gradient Flows

In the spirit of being self-contained, we briefly review some important Def-

initions and Theorems of ”Gradient flows: in metric spaces and in the space of

probability measures” by Ambrosio, Gigli and Savare [1]. We try to outline all of

the tools and terminology used in this work, but it is in no way complete and the

interested reader should definitely take the time to read [1].

1.2.2.1 General Metric Spaces

We start with some notions defined for a general complete metric space (X, d),

which we later analyze in the W2(T) = (P(T), d2) case. We begin with the notion

of an absolutely continuous curve:

Definition 1.2.7. Let v : (0, 1)→ X be a curve, we say that v ∈ ACp(a, b;X) with

p ∈ [1,∞), if there exists m ∈ Lp(a, b) such that

d(v(s), v(t)) ≤
∫ t

s

m(r) dr ∀a < s < t < b. (2.1)
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If p = 1, we suppress the superscript and just denote it by AC.

Absolutely continuity is enough to define the size of a derivative at almost

every point, this is the subject of the next theorem.

Theorem 1.2.8. Let v ∈ ACp(a, b;X), then the limit

|v′(t)| := lim
h→0

d(v(t+ h)− v(t))

h

exists a.e. in (a, b) and |v′| ∈ Lp(a, b). Moreover, it is minimal in the sense that it

holds (2.1), and if

d(v(s), v(t)) ≤
∫ t

s

m(r) dr ∀a < s < t < b,

then |v′(t)| ≤ m(t) a.e. in (a, b).

Now that we have the concept of the size of the derivative of a curve, we can

give a notion the size of gradients for functionals defined in X. From now on, φ is

a lower semi-continuous real-valued function on X.

Definition 1.2.9. A function g : X → [0,+∞] is a strong upper gradient for φ if

for any v ∈ AC(a, b;X), the function g ◦ v is borel and

|φ(v(t))− φ(v(s))| ≤
∫ t

s

g ◦ v(r)|v′(r)| dr ∀a < s < t < b.

In particular, if g ◦ v(r)|v′(r)| ∈ L1(a, b), then φ ◦ v is absolutely continuous and

|(φ ◦ v)′(t)| ≤ g ◦ v(r)|v′(r)| a.e. in (a,b).

The most natural candidate to satisfy the definition above is the slope of φ.
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Definition 1.2.10. The slope at φ at v is defined by

|∂φ(v)| := lim sup
w→v

(φ(w)− φ(v))+

d(w, v)
.

To be able to relate the two definitions we need to consider a more restrictive

set of functionals, for instance λ-convex functionals.

Definition 1.2.11. Given λ ∈ R, we say that φ is λ-convex with respect to the

geodesics, if for every γt : [0, 1]→ X constant speed geodesic, we have that

φ(γt) ≤ (1− t)φ(γ0) + tφ(γ1)− 1

2
λt(1− t)(d(γ0, γ1))2.

With this definition we can write the following Theorem.

Theorem 1.2.12. Suppose that φ is λ convex with respect to the geodesics, then

|∂φ| is a strong upper gradient.

Proof. See Corollary 2.4.10 in [1].

Now, we are ready to define the curves of maximal slope for λ-convex func-

tionals:

Definition 1.2.13. We say that the locally absolutely continuous map u : (a, b)→ X

is a curve of maximal slope of φ with respect to its upper gradient |∂φ| if

φ(u(t))− φ(u(s)) ≥
∫ t

s

|u′(r)|2

2
+
|∂φ(u(r))|2

2
dr. (2.2)

Remark 1.2.14. If (X, d) is a Hilbert space, and φ is λ-convex, then |∂φ(v)| is

actually the norm of the minimal selection in the sub-differential at v. Moreover,

u(·) is a curve of maximal slope, if and only if, u(·) is a gradient flow. This follows

from an application of the Cauchy-Schwartz and Young’s inequality.
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1.2.2.2 Differential Structure of the L2-Wasserstein metric

The distance d2 has been extensively studied in the literature and we recom-

mend [4], which also contains a pedagogical introduction to the gradient flow theory.

In this work, we are mostly interested on its differential structure.

Theorem 1.2.15. Let the curve µt : I → P(T) be absolutely continuous with respect

to d2 and let |µ′| ∈ L1(I) be its metric derivative, then there exists a Borel vector

field v such that

||v(·, t)||L2
µt
≤ |µ′(t)| a.e. t ∈ I

and the continuity equation

∂tµt +∇ · (v(·, t)µt) = 0 (2.3)

is solved in the sense of distributions.

Conversely, if µt : I → P(T) is continuous with respect to d2 and satisfies the

continuity equation (2.3) for some Borel velocity field v with ||v(·, t)||L2
µt
∈ L1(I),

then µt is absolutely continuous and |µ′(t)| ≤ ||v(·, t)||L2
µt

a.e. t ∈ I.

Proof. See Theorem 8.3.1. [1].

Heuristically with Theorem 1.2.15, we can try to comprehend P(T) with d2 as

an infinite dimensional Riemmanian manifold.

One could consider the vector space L2(T, dµ) as the tangent space at µ ∈

P(T), though we would be missing an extra condition to uniquely determine the

vector field v. We can always perturb by a field w such that ∇ · (wµt) = 0, without

9



changing the continuity equation (2.3). In fact, up to making the quotient over the

divergence free fields, we can uniquely determine a tangent direction. By Hodge’s

decomposition of L2(T, dµ), this tangent space can be represented as:

Definition 1.2.16. Let µ ∈ P(T), we define

TanµP(T) = cl({∇φ : φ ∈ C∞(T)}),

where cl denotes the closure with respect to the L2
µ topology.

Moreover, the metric in the tangent space is the one induced by the L2(T, dµ)

inner product.

This heuristic discussion is justified in the following Theorem:

Theorem 1.2.17. Let µt : I → P(T) be an absolutely continuous curve and let v be

such that the continuity equation (2.3) is satisfied. Then, |µ′(t)| = ||v(·, t)||L2
µt

a.e.

t ∈ I, if and only if, v ∈ TanµtP(T) a.e. t ∈ I.

Moreover, the vector field v is a.e. uniquely determined by these conditions.

Proof. See Theorem 8.3.1. [1].

Exploiting the inner product structure in L2
µ, we are able to define the subd-

ifferential of a λ-convex functional

Definition 1.2.18. We say that ζ ∈ L2
µ(T) is a strong subdifferential of φ at µ,

denoted by ∂φ(µ), if

φ(H#µ)− φ(µ) ≤
∫
T
< ζ(x), H(x)− x > dµ(x) + o(||H − I||L2

µ(T)),

where H is a Borel vector field and the push-forward H#µ is defined by the condition

H#µ(A) = µ(H−1(A)) for every Borel set A.
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As a next step, we characterize the strong subdifferentials of functionals that

are classical to the literature of Calculus of Variations.

F [µ] =


∫
T F (x, ρ(x),∇ρ(x))dx if µ = ρ dL and ρ ∈ C1(T)

+∞ otherwise,

where dL is the Lebesgue measure in T. We denote (x, z, p) ∈ T×R×R the variables

of F. To simplify, we ask that F ∈ C2 and that F (x, 0, p) = 0 for every x and p.

Lemma 1.2.19. If µ = ρ dL ∈ P(T ), with ρ ∈ C1, satisfies F [µ] < ∞, then any

strong subdifferential of F at µ is µ-a.e. equal to

∇δF
δρ

= ∇(Fz(x, ρ(x),∇ρ(x))−∇ · Fp(x, ρ(x),∇ρ(x)). (2.4)

Proof. See Lemma 10.4.1. in [1].

Remark 1.2.20. Unfortunately, currently there is a lack of a complete understand-

ing of the curves of maximal slope of these type of functionals that involve deriva-

tives under the d2 metric. One should remark that the easy cases of the classical

calculus of variation, namely linearly convex functionals lie outside of the current

well-posedness theory for gradient flows in the L2-Wasserstein metric. This is an

exciting limitation to try to overcome in the future, perhaps by somehow marrying

the concepts of linear convexity with displacement convexity.

Now we can define the notion of gradient flow for a functional φ.

Definition 1.2.21. We say that a map µt ∈ AC2((0,∞),P(T)) is a solution to the

gradient flow equation, if the vector field v from Theorem 1.2.17 satisfies

v(·, t) ∈ ∂φ(µt) ∀t > 0.
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In the λ-convex case, we can make the connection between gradient flows and

curves of maximal slope.

Theorem 1.2.22. If φ is λ-convex, then µt is a curve of maximal slope with respect

to |∂φ|, if and only if, µt is a gradient flow and φ(µt) is equal a.e. to a function of

bounded variation.

Moreover, given two gradient flows µ1
t and µ2

t , such that µ1
t → µ1 and µ2

t → µ2

as t→ 0, then

d2(µ1
t , µ

2
t ) ≤ e−λtd2(µ1, µ2).

In particular, there is a unique gradient flow µt with initial condition µ0 and it

satisfies the maximal slope condition (2.2) with equality.

Proof. See Theorem 11.1.3 and Theorem 11.1.4 in [1].
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Chapter 2: Regularity of local minimizers of the interaction energy

via obstacle problems

2.1 Overview

Given a pointwise defined function W : RN → (−∞,+∞], we define the

interaction energy of a probability measure µ ∈ P(RN) by

E[µ] :=
1

2

∫
RN

∫
RN
W (x− y)dµ(x)dµ(y). (1.1)

Here, P(RN) denotes the space of Borel probability measures, and throughout the

paper, we will always assume that the interaction potential W is a non-negative

lower semi-continuous function in L1
loc(RN).

Under this assumption, the energy E[µ] is well defined for all µ ∈ P(RN), with

E[µ] ∈ [0,+∞]. Local integrability of the potential avoids too singular potentials

for which the interaction energy is infinite for many smooth densities. These very

singular potentials lead to very interesting questions in crystallization [5], whose

study is outside the scope of this work. Also, under these assumptions, the potential

function ψ associated to a given measure µ:

ψ(x) := W ∗ µ(x) =

∫
RN
W (x− y)dµ(y)
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can be defined pointwise in RN , and a simple application of Fatou’s lemma implies

that ψ is a lower semi-continuous function, see [6, Lemma 2].

The goal of this work is to investigate the regularity properties of the local

minimizers of the interaction energy (1.1). For this, the keystone of this paper will

be to show that the potential function ψ(x) associated to a local minimizer solves an

obstacle problem. This fact comes out naturally of the Euler-Lagrange conditions

derived in [6], here we prove the continuity of the potential function, to make this

relationship rigorous.

Note that in order to define precisely the notion of local minimizers, we need

to specify a topology on the set of probability measure. We use here the framework

developed in [6], where the authors consider local minimizers of the energy (1.1)

with respect to the optimal transport distance d∞.

Lots of numerical results [6–14] show the rich structure and variety of lo-

cal/global minimizers of the interaction energy by using different numerical ap-

proaches such as particle approximations, DG schemes for the gradient flow equation

associated to the energy (1.1), direct resolution of the associated steady equations,

radial coordinates, and so on. The interaction potentials used in most of these nu-

merical experiments are repulsive near the origin and attractive at large distances.

Typical choices are radial potentials with a unique minimum L for r > 0, decreas-

ing (repulsive) before and increasing (attractive) after. In particular, for a system

of two identical particles, the discrete energy would then be minimized when they

are located at distance L from each other. Particular relevant examples are Morse

potentials [15–17] and power-laws [8, 10,18].
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These repulsive/attractive interaction potentials emanated from applications

in self-similar solutions for granular media models [19–21], collective behavior of

animals (swarming) [8, 9, 15–17, 22, 23], and self-assembly of nanoparticles [24–26].

Let us mention that local minimizers of the interaction energy can be seen as steady

states of the aggregation equation that have been studied thoroughly for fully attrac-

tive potentials [27,28] and repulsive/attractive potentials [6,8–11,29–33], analysing

qualitative properties of the evolution in different cases: finite time blow-up, stabi-

lization towards equilibria, confinement of solutions and so on.

The natural result shown in [6], corroborated by the cited numerical studies,

is that the support of local minimizers of the interaction energy increases as the

repulsion at the origin gets stronger. In other words, concentration of particles is

not allowed on small dimensional sets when the repulsion is large enough. Geometric

measure theory techniques [34] were crucial to get the estimate on the dimension of

the support based on the Euler-Lagrange conditions for local minimizers in transport

distances. In this work, we give an alternative proof, to the result of dimensionality

of [6]. This result follows naturally from the regularity of solutions to the obstacle

problem.

To be able to prove the continuity of the potential function, we restrict our-

selves to potentials that behave like power laws around the origin

W (x) ∼ 1

|x|N−2s
, as x→ 0, for some s ∈ (0, N

2
) and N ≥ 2 , (1.2)

and are smooth enough outside the origin. We also consider the particular case

W (x) ∼ − log |x| if s = 1 and N = 2. More precise hypothesis are given below and
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in Section 2.2. For the cases s > N/2, W is already continuous, so the continuity

of the potential function is trivially true.

In the literature, the case s = 1 in (1.2) is of particular interest. It corresponds

to Newtonian repulsion and it has received considerable attention due to its various

applications. A repetitively rediscovered result in this classical case is that the global

minimizer of the interaction energy for the potential

W (x) =
1

|x|N−2
+
|x|2

2
,

is the characteristic function of an euclidean ball. This classical result, using poten-

tial theory and capacities, was proved by Frostman [35] (but in a bounded domain

instead of confinement by quadratic potentials), and it has connections with the

eigenvalue distribution of random matrices [36,37]. This precise result can be found

for instance in [38, Proposition 2.13]. In [39], the authors show that the uniform

distribution in a ball is the asymptotic behavior of the corresponding gradient flow

evolution. The uniqueness of the global minimizer for more singular than Newtonian

repulsion, i.e.,

W (x) =
1

|x|N−2s
+
|x|2

2
,

with 0 < s < 1, was obtained by Caffarelli and Vázquez via the connection to a

classical obstacle problem in [40], and this strategy was also used in [41] to treat

again the case s = 1 for the evolution problem as in [39].

One should note that the case when the attractive potentials is |x|2 is atypical.

An observation, that partially explains this claim, is that when

W (x) =
1

|x|N−2s
+
|x|2

2
,
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with s ∈ (0, N
2

), the Energy (1.1) associated to W can be re-written as

E(µ) = ||µ||H−s + 2

(∫
RN
|x|2 dµ(x)−

(∫
RN
x dµ(x)

)2
)
.

So, it becomes clear that E is linearly convex when restricted to probability measures

with a fixed center of mass, which implies that E has, up to translation, a unique

critical point on the set of probability measures. Similar considerations apply for the

attractive potential |x|4. The attractive potentials |x|2n with n ∈ N , have a similar

decomposition, but the Energy is not linearly convex when restricted to probability

measures with a fixed center of mass.

It is also worth mentioning, the case of the potential

W (x) =
1

|x|N−2
+
|x|a

a
,

with a > 2 or 2−d < a < 2 that has been analysed in [8,9] showing the existence and

uniqueness of compactly supported radial critical points of the interaction energy.

Moreover, they show that these critical points are monotone, bounded, and smooth

functions inside their support. The monotonicity of the critical points is rather

remarkable and hints to the possibility of using rearrangement techniques to prove

uniqueness of absolute minimizers. Boundedness and smoothness inside the support

of radial compactly supported minimizers was also proved for the so-called Quasi-

Morse potentials in [13]. These Quasi-Morse potentials behave at the origin as

Newtonian potentials while they exhibit similar properties to Morse potentials in

terms of existence of compactly supported radial minimizers. This particular case

allow for explicit computations leading to analytic expressions for these minimizers.
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The main result of this chapter is that for kernels satisfying (1.2), with s ∈

(0, 1], and under mild assumptions on Wa(x) = W (x)−|x|2s−N , local minimizers µ of

the interaction energy (1.1) are absolutely continuous with respect to the Lebesgue

measure, and their density function lies in L∞loc(RN) when s = 1 and in Cα
loc(RN)

when s ∈ (0, 1). Furthermore, we show that for s = 1 the density function is in

BVloc(RN) and that the support of these local minimizers is a set with locally finite

perimeter. In particular, our results will apply to potentials of the form

W (x) =
1

|x|N−2s
+
|x|q

q
, for q > N − 2s.

These results will be obtained by exploiting the connection between the Euler-

Lagrange conditions for local minimizers and classical obstacle problems [42].

In fact, we show that the potential functions of local minimizers are locally

solutions of some obstacle problems. It is by using the regularity theory for the

solutions of such obstacle problems [43, 44] that we will derive our main results on

the regularity of local minimizers. Note that Newtonian repulsion (s = 1) will lead

to the classical obstacle problem with the Laplace operator, while stronger repulsion

(s ∈ (0, 1)) will lead to fractional obstacle problems (with fractional power of the

Laplace operator) which have been more recently studied, in particular in [45,46] (we

will also use some results of [40,47] where these obstacle problems arise in the study

of fractional-diffusion versions of the porous medium equation). For potentials that

are less repulsive than Newtonian (s > 1), we also show that the potential function

solves an obstacle problem. However, these involve elliptic operators of higher order.

A prototypical example is the case where W (x) ∼ −|x| in dimension N = 3, which
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leads to a biharmonic obstacle problem. The regularity theory for these higher

order obstacle problems is different, and far less developed. In these cases, our only

regularity result, which matches with the dimensionality result of [6], is µ ∈ H−s+1.

Let us finally comment that some of our results require some additional unifor-

mity assumptions on the potential Wa at infinity if the support of the local minimizer

is not compact. In fact, the existence of compactly supported global miminizers for

the interaction energy is a very interesting question by itself connected to statistical

mechanics [48]. This property has recently been shown [49,50] under natural condi-

tions on the interaction potential W related to non H-stability as defined in [15,48].

The plan of this chapter is as follows. Section 2 is devoted to describing the

notion of local minimizers used in this paper and gives the precise statements of

the main results of this chapter. Section 3 has the proofs of the continuity of the

potential function. Section 4 has the proofs of the regularity of minimizers.

2.2 Main results and strategy

2.2.1 Hypothesis

(H1) W is a non-negative lower semi-continuous function in L1
loc(RN) and W ∈

C(RN \ {0}).

(H2) There exists s ∈ (0, N
2

) and α > 0, such that, up to re-normalizing W we have:

lim sup
|x|→0

VN,s(x)W (x) = 1 and lim inf
|x|→0

VN,s(x)W (x) = α, (2.1)
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where

VN,s(x) =
CN,s
|x|N−2s

is the fundamental solutions of (−∆)s. Namely,

(−∆)sVN,s = δ.

If N = 2, all the results also include the case s = 1, V2,1(x) = −C log(|x|).

Remark 2.2.1. For the cases s > N
2

, the potential VN,s is continuous.

We define Wa = W (x) − VN,s, by (H1) Wa ∈ C(Rd \ 0). For Wa, we consider

that either one of the following holds:

(H3a) The support of µ, supp(µ), is compact in RN and (−∆)sWa ∈ L1
loc(Rd).

or

(H3b) Given δ > 0, Wa is uniformly continuous in Rd\Bδ(0) and (−∆)sWa ∈ L1(Rd).

The motivation behind (H3a) or (H3b) is that, up to cutting off Wa around zero,

Wa ∗ µ is continuous. We note that (H3b) holds typically for potential that do not

grow too much at ∞, while it is expected that for potentials that grow fast enough

at ∞, local minimizers of the energy have compact support, i.e. (H3a) should

hold (this last fact remains to be proved though). So conditions (H3a) and (H3b)

should be seen as complementary. We recall also that the existence of compactly

supported global minimizers of the interaction energy E has recently been proved

in [49, 50] under natural conditions on the interaction potential related to non H-

stability as defined in [15, 48]. Thus, relevant minimizers, in applications such as

swarming [6, 8–10,13,15,16], are typically compactly supported.
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When (H3a) holds, we use the following trick: Because supp(µ) is compact,

we find R > 0 such that supp(µ) ⊂ BR(0). Then, we can cut-off the kernel W in a

smooth way outside the ball B4R(0). The density µ will still be an ε-minimizer of

the energy E and its potential ψ will be unchanged in the ball B2R(0). So whenever

assuming (H3a), it is possible to assume (H3b) as well.

The need for (−∆)sWa ∈ L1(RN) is to assure that (−∆)sWa ∗ µ ∈ H−s(RN).

This follows from Young’s inequality for the convolution and the fact that µ ∈

H−s(RN), which follows from the continuity of ψ.

Finally, to be able to derive interesting regularity results we need that Wa has

slightly better regularity.

(H4) There exists δ > 0, such that (−∆)s+δWa ∈ L1(RN).

Remark 2.2.2. It is worth noticing that the hypothesis (H1)-(H4) are satisfied for

Power-Law potentials of the form

W = −|x|
a

a
+
|x|b

b

if a ∈ (−N, 0) and a < b <∞, and compactly supported minimizers.

2.2.2 Euler-Lagrange condition in d2 and d∞

We consider the following concept of local minimizers in d∞ and d2:

Definition 2.2.3. We say that µ is an ε-local minimizer (or simply ε-minimizer)

for the energy E with respect to d∞ (d2), if E[µ] <∞ and

E[µ] ≤ E[ν]
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for all ν ∈ P(RN) such that d∞(µ, ν) < ε (d2(µ, ν) < ε).

Let’s try to describe the idea behind the Euler-Lagrange condition. Heuristi-

cally, by visualizing

E[µ] =

∫
RN
ψ dµ,

with ψ = W ∗ µ, one expects that if µ is a minimizer, then the support of µ is

contained in the set of local minima of the associated potential ψ. Indeed, if the

support is not contained in the local minima of ψ, one can prove that transferring

mass to the set where ψ is smaller decreases the energy. In particular, for local

d2 minimizers the Euler-Lagrange conditions were derived in [6]. The d2 Euler-

Lagrange condition reads: 
ψ(x) = 2E[µ] µ-a.e.

ψ(x) ≥ 2E[µ] a.e.

(2.2)

Also in [6], a partial d∞ Euler-Lagrange condition was derived and it is a local

version of the second point of (2.2):

Proposition 2.2.4 ( [6, Proposition 1]). Assume that W satisfies (H1) and let µ be

an ε-minimizer of the energy E[µ] in the sense of Definition 2.2.3. Then any point

x0 ∈ supp(µ) is a local minimum of ψ = W ∗ µ in the sense that

ψ(x0) ≤ ψ(x) for a.e. x ∈ Bε(x0). (2.3)

Remark 2.2.5. An attentive reading of the proof of [6, Proposition 1] leads to the

important observation that the ε appearing in (2.4) is the same as the ε appearing

in Definition 2.2.3. In particular, it is independent of the point x0. Moreover, only
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local integrability of the interaction potential is needed for that proof, i.e., there is

no need of uniform local integrability of W in the proof of [6, Proposition 1].

Using a similar method of proof employed in this last Proposition 2.2.4, we

can refine the result. We actually obtain a local version of the first condition in

(2.2).

Proposition 2.2.6. Assume that W satisfies (H1) and let µ be a ε-minimizer of

the energy E[µ] in the sense of Definition 2.2.3. Then any point x0 ∈ supp(µ) is a

local minimimum µ-a.e. of ψ = W ∗ µ in the sense that

ψ(x0) ≤ ψ(x) x ∈ Bε(x0) µ− a.e.. (2.4)

The proof can be found in Section 2.3.

2.2.3 Continuity of the potential function ψ and the obstacle problem

As mentioned earlier, the keystone of this chapter is the observation that the

potential function ψ solves (locally) an obstacle problem. In order to make this

fact rigorous, we first prove that ψ is a continuous function. Heuristically, when

we assume that the potential is well behaved away from zero the continuity should

follow from continuity in supp(µ). In fact, assuming (H2), and (H3a) or (H3b), we

can borrow arguments from potential theory (see [51]) to first prove continuity in

supp(µ) and then continuity in RN .

The continuity of the potential function in supp(µ) follows from the Euler-

Lagrange conditions and the following Lemma.
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Lemma 2.2.7. Given s ∈ (0, N
2

), assume that W satisfies (H1), (H2), and either

(H3a) or (H3b). Let µ be a ε-minimizer of the energy E[µ] in the sense of Definition

2.2.3. Then, for any x ∈ RN , we have

ψ(x) = lim
r→0

1

|Br|

∫
Br(x)

ψ(y) dy.

The Lemma is proved in Section 2.3. With Lemma 2.2.7, proving the conti-

nuity in the support becomes an immediate consequence of the the Euler-Lagrange

condition.

Corollary 2.2.8. Given s ∈ (0, N
2

), assume that W satisfies (H1), (H2), and either

(H3a) or (H3b) hold. Let µ be a ε-minimizer of the energy E[µ] in the sense of

Definition 2.2.3. Then, ψ = W ∗ µ is continuous in supp(µ).

Proof of Corollary 2.2.8. Given z0 ∈ supp(µ), we know, by Proposition 2.2.6, that

ψ(x) ≥ ψ(z0) a.e. in Bε(z0).

Then, by Lemma 2.2.7, we know that for any z1 ∈ supp(µ) ∩ Bε(z0), we have

ψ(z1) ≥ ψ(z0). Reversing the roles of z0 and z1, we obtain ψ(z0) = ψ(z1).

With the previous Corollary we can emulate the continuity result from poten-

tial theory.

Proposition 2.2.9 (Continuity of the potential function). Let µ be an ε-minimizer

of E in the sense of Definition 2.2.3, and assume that given s ∈ (0, N
2

), (H1), (H2)

and either (H3a) or (H3b) hold. Then the potential function ψ(x) := W ∗ µ(x)

associated to µ is a continuous function in RN .
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This proposition will be proved in Section 2.3. As an incidental result we have

the first regularity result for µ.

Corollary 2.2.10. Let µ be an ε-minimizer of E in the sense of Definition 2.2.3,

and assume that given s ∈ (0, N
2

) (H1), (H2) and either (H3a) or (H3b) hold. Then,

µ ∈ H−s(RN) and moreover (−∆)sWa ∗ µ ∈ H−s(RN). If (H3a) holds, then we also

know that Wa ∗ µ is continuous.

Moreover, we can now strengthen the Euler-Lagrange conditions:

Corollary 2.2.11. Let µ be an ε-minimizer of E in the sense of Definition 2.2.3,

and assume that given s ∈ (0, N
2

) (H1), (H2) and either (H3a) or (H3b) hold. Then,

given x0 ∈ supp(µ), ψ satisfies
ψ(x) = ψ(x0) on Bε(x0) ∩ supp(µ)

ψ(x) ≥ ψ(x0) on Bε(x0).

(2.5)

With the continuity Proposition 2.2.9, we can make the fact that ψ satisfies

an obstacle problem rigorous. First, we observe that (H3) implies

(−∆)sψ = µ+ (−∆)sWa ∗ µ in D′(RN).

In particular, since µ is a non-negative measure, we deduce

(−∆)sψ ≥ (−∆Wa)
s ∗ µ in Bε(x0).

Second, if x ∈ Bε(x0) is such that ψ(x) > ψ(x0), (2.5) implies that x /∈ supp(µ),

and so (by definition of supp(µ)), µ(Br(x)) = 0 for some small r > 0. We deduce

(−∆)sψ = (−∆Wa)
s ∗ µ in D′(Bε(x0) ∩ {ψ > ψ(x0))} .
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Combining Corollary 2.2.11 with the previous discussion, we have the following

proposition:

Proposition 2.2.12. Let µ be an ε-minimizer of E in the sense of Definition 2.2.3,

and assume that given s ∈ (0, N
2

) (H1), (H2) and either (H3a) or (H3b) hold. Then,

for any x0 ∈ supp(µ), the potential function ψ is equal, in Bε(x0), to the unique

solution of the obstacle problem

ϕ ≥ C0, in Bε(x0)

(−∆)sϕ ≥ −F (x), in Bε(x0)

(−∆)sϕ = −F (x), in Bε(x0) ∩ {ϕ > C0}

ϕ = ψ, on Bc
ε(x0),

(2.6)

where C0 = ψ(x0) and F = (−∆)sWa ∗ µ ∈ H−s(RN). Furthermore, the measure µ

is given by

µ = (−∆)sψ + F. (2.7)

Proof. The only point that is not immediate from the previous discussion is unique-

ness. In fact, any solution to (2.6) is a linear critical point of the energy

J(ϕ) = |ϕ|Hs+ < F,ϕ >, (2.8)

in the set K = {ϕ ∈ Hs(Rd) s.t. ϕ = ψ in Bε(x0) and ϕ = ψ in Bε(x0)c}. Unique-

ness follows from the fact that J is strictly convex in the convex set K.

Since F depends on µ itself, it seems difficult to exploit (2.6) to identify local

minimizers or to prove global properties such as uniqueness or radial symmetry.

However, because F is more regular than µ we are able to use (2.6) in the cases
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s ∈ (0, 1] to derive sharp regularity results of these local minimizers. For the cases

s > 1, we obtain some regularity results that are probably not sharp. The difficulty

of the cases s > 1, stems directly from the lack of a maximum principle for higher

order elliptic operators.

We also insist here on the fact that in general the constant C0 might depend

on the choice of x0 ∈ supp(µ). On the other hand, for global minimizers, as well as

for local d2 minimizers (see (2.2)), the constant can fixed to be 2E[µ].

Equation (2.7) suggests that there is a relation between the support of µ and

the coincidence set ψ = ψ(x0). In fact, it is easy to check that µ = 0 in the open

set {ψ > ψ(x0)} ∩ Bε(x0) in the sense that µ({ψ > ψ(x0)} ∩ Bε(x0)) = 0. We thus

deduce using the continuity of ψ that

supp(µ) ∩Bε(x0) ⊂ {ψ = ψ(x0)} ∩Bε(x0).

But it is not obvious that these two sets should be equal. Nevertheless, in the case

s = 1 we shall later see that, under a non-degeneracy condition on F , they are equal

up to a set of measure zero.

2.2.4 Regularity of ψ and µ

In this Section, we state the regularity results for ψ and µ. All of them follow

from regularity results for the obstacle problem (2.6).
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2.2.4.1 Cases s > 1

For the cases s > 1 the obstacle problem is not fully understood. One of the

few regularity results available, is due to Frehse (see [52] and [53]). In the framework

of (2.6), it can be paraphrased as follows: if s ∈ N, and F ∈ H−s+1(RN), then ϕ ∈

Hs+1
loc (Bε), which implies µ ∈ H−s+1

loc (Bε). Here we also prove that µ ∈ H−s+1
loc (Rd),

by generalizing Frehse’s result to any s ∈ (1,∞) and F ∈ H−s+l for any l ∈ (0, 1].

Theorem 2.2.13. Let µ be an ε-minimizer of E in the sense of Definition 2.2.3, and

assume that given s ∈ (1, N
2

) (H1), (H2), (H3a) and (H4) hold. Then µ ∈ H−s+1.

Using this regularity result, we can now recover the results on the dimension-

ality of minimizers found in [6] with different hypothesis:

Corollary 2.2.14. Let µ be an ε-minimizer of E in the sense of Definition 2.2.3,

and assume that given s ∈ (1, N
2

) (H1), (H2), (H3a) and (H4) hold. Then, given

a Borel set A ⊂ Rd such that HaussN−2(s−1)(A) < ∞, we have µ(A) = 0. Where

HaussN−2(s−1) is the Haussdorf measure of dimension N − 2(s− 1).

Proof. Follows from the same reference used in [6], [34, Theorem 4.13].

Theorem 2.2.13 follows from a bootstrap argument and the following Propo-

sition, which generalizes Frehse’s result.

Proposition 2.2.15. Let ϕ be a solution to (2.6) with s > 1 and the external

condition ψ bounded in RN . Then, given l ∈ [0, 1], if F ∈ H−s+l(Rd), then ϕ ∈

Hs+l
loc (Bε).
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The proof of Proposition 2.2.15 and Theorem 2.2.13 can be found in Sec-

tion 2.4.1

2.2.4.2 Case s = 1

Th case s = 1 corresponds to the Harmonic Obstacle problem, which is by far

the best understood. We use classical regularity results for the harmonic obstacle

problem to study the properties of ε-minimizers of E. Our first result is the following:

Theorem 2.2.16 (L∞ regularity of µ). Assume W satisfies (H1), (H2), (H3a) and

(H4), with s = 1. Let µ be a compactly supported ε-minimizer in the sense of

Definition 2.2.3

Then, the potential function ψ is in C1,1(RN). In particular, the measure µ

is absolutely continuous with respect to the Lebesgue measure and there exists a

function ρ ∈ L∞(RN) such that µ = ρ(x)dLN . Finally, we have ρ = ∆Wa ∗ ρ in the

interior of supp(µ).

The proof of this proposition will be given in Section 2.4.

Remark 2.2.17. Under the conditions of Theorem 2.2.16, we can show that local

minimizers are actually stationary states of the Wasserstein gradient flow associated

to (1.1). Indeed, since ∇ψ ∈ C0,1(RN) and ρ ∈ L∞(RN) we have ρ∇ψ ∈ L∞(RN).

Moreover, since ∇ψ = 0 in the interior of supp(ρ), then ρ∇ψ = 0 a.e. in RN , and

thus ρ satisfies

|∂W 2E(ρ)|2 =

∫
RN
|∇ψ(x)|2ρ(x) dx = 0.
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In general, we cannot expect better regularity for ρ in RN . For instance if

∆Wa > 0, then ∆Wa ∗ ρ > 0 on ∂(supp(µ)) and so we expect ρ to be discontinuous

in RN . Obviously, if Wa is smooth in RN , then ρ will be smooth in the interior of

supp(µ). But it is not very difficult to prove (using a bootstrapping argument) that

if Wa is a power like interaction potential, then ρ will be smooth in the interior of

supp(µ).

Finally, under the assumptions of Theorem 2.2.16, we note that since ψ ∈

W 2,∞, we have

∆ψ = −ρ+ ∆Wa ∗ ρ = 0 a.e. in {ψ = ψ(x0)}.

Again, if we assume that ∆Wa ∗ ρ > 0 in Bε(x0), then we have ρ(x) > 0 a.e. in

{ψ = ψ(x0)} and thus

meas ({ψ = ψ(x0)} ∩Bε(x0) \ supp(µ)) = 0 , (2.9)

in other words, the support of µ and the coincidence set {ψ = ψ(x0)} are the same

up to a set of measure zero.

As noted above, ρ is expected to be a discontinuous function and so does not

belong, in general, to W 1,1
loc . However, under appropriate regularity assumption on

∆Wa, we can prove that ρ is in BVloc(RN):

Theorem 2.2.18 (Regularity of supp(µ)). Under the assumptions of Theorem

2.2.16, assume further that

∆Wa ∈ W 1,1
loc (RN).
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Then the density ρ lies in BVloc(RN). Furthermore, if ∆Wa∗ρ > 0 in a neighborhood

of ∂(supp(µ)), then supp(µ) is a set with locally finite perimeter.

Note that the condition that ∆Wa ∗ ρ > 0 in a neighborhood of ∂(supp(µ)) is

in particular satisfied if ∆Wa(x) is non-negative for all x and not identically zero

(which is the case when Wa(x) = |x|q/q with q > 2−N). This condition implies that

ρ has a nonzero continuous extension on ∂(supp(µ)) from the interior of supp(µ).

In particular, ρ has a jump discontinuity at the boundary of its support, and the

BV regularity is thus optimal in that sense.

Finally, let us point out that there are numerous results in the literature con-

cerning further regularity of the free boundary ∂(supp(µ)) for the obstacle problem,

always under the same non-degeneracy requirement that ∆Wa ∗ µ > 0 in a neigh-

borhood of the free boundary, see [43, 54]. Clearly many of these results could be

used here, but we will not pursue this direction, as we are mainly interested in the

regularity of the measure µ itself.

2.2.4.3 Cases s ∈ (0, 1)

The obstacle problem (2.6) for s ∈ (0, 1) has been studied by numerous authors

in recent years, in particular by Silvestre [45]. However, some aspects of the theory

for this fractional obstacle problem are different, or not as developed yet, as that of

the regular obstacle problem. The only regularity result we prove is that the density

µ is Hölder continuous:

Theorem 2.2.19. Assume that W satisfies (H1), (H2), (H3a)(supp(µ) is compact)
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and (H4) with a fixed s ∈ (0, 1), and let µ be an ε-minimizer in the sense of Definition

2.2.3.

Then the potential function ψ is in C1,γ(RN) for any γ < s. Furthermore, the

measure µ is absolutely continuous with respect to the Lebesgue measure and there

exists a function ρ ∈ Cα(RN) for all α < 1− s, such that µ = ρ(x)dLN .

Remark 2.2.20. The optimal regularity for the potential function in the fractional

obstacle problem is C1,s(RN), see [46], but it requires Wa ∗ µ ∈ C2,1(RN).

Remark 2.2.21. Again, as in the case s = 1, we can claim that if µ is an ε-

minimizer in the sense of Definition 2.2.3, it is also classical steady state for the

Wasserstein-2 gradient flow associated to (1.1).

With regards to the regularity of the free boundary, there is an analogous result

to 2.2.18. In [55], the authors prove for the fractional obstacle problem that under

a non-degeneracy condition the free boundary has locally finite N − 1 Hausdorff

measure.

Theorem 2.2.22 (Regularity of supp(µ)). Under the assumptions of Theorem

2.2.19, assume further that for some γ > 0

Wa ∗ ρ ∈ C3,γ

and ∆Wa ∗ ρ > 0 in a neighborhood of ∂(supp(µ)), then supp(µ) is a set with locally

finite perimeter.

Proof. See [55, Theorem 1.2]
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2.2.5 A uniqueness result

We end this section with some uniqueness results for d2-local minimizers and

d∞ local minimizers for the very particular cases of quadratic confinement Wa(x) =

K|x|2 or quartic confinement Wa(x) = K|x|4. Both of these cases are particular,

because if we restrict ourselves to

P0(RN) =

{
µ ∈ P(RN) s.t.

∫
Rd
y dµ(y) = 0

}

we can re-write the attractive part of the energy as

∫
RN
∫
RN |x− y|

4 dµ(x)dµ(y) = 2
∫
RN |y|

4 dµ(y) + 2
(∫

RN |y|
2 dµ(y)

)2

+4
∑N

i,j=1

(∫
RN yiyj dµ(y)

)2
.

and ∫
RN

∫
RN
|x− y|2 dµ(x)dµ(y) = 2

∫
RN
|y|2 dµ(y),

which are linearly convex. The case of Wa = |x|4 is linearly convex as it can be

viewed as a sum of a linear part and the square of a linear functional, which is

convex. The observation for the case Wa = |x|2 was first made in [18]. The cases

Wa = |x|2n with n ∈ N also have a similar decomposition of the energy, but one has

to restrict the space even further for the energy to be convex.

After making these observations, we also note that local d2 minimizers are also

linear critical points. Given µ ∈ P(RN) with finite energy and ν ∈ P(RN), then

dE((1− t)µ+ tν)

dt

∣∣∣∣
t=0

=


∫
RN ψ(x)dν(x)− E(µ) if E(ν) <∞

+∞ if E(ν) =∞
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Therefore, if µ is d2 local minimizer, if we assume that its associated potential

function ψ is continuous then by the Euler-Lagrange condition (see Corollary 2.2.11)

we know that dE((1−t)µ+tν)
dt

∣∣∣
t=0
≥ 0 for any ν ∈ P(RN). So, if we also know that E

is strictly linearly convex in P0(RN) and µ is a d2 local minimizer with mean zero

we obtain

E(ν) > E(µ) +
dE((1− t)µ+ tν)

dt

∣∣∣∣
t=0

≥ E(µ) for any ν ∈ P0(RN) and ν 6= µ.

Therefore, µ is equal to the unique minimizer of E in P0(RN).

Let us remark that the results in [49] show the existence of global minimizers

for W (x) = 1
|x|n−2s +K|x|2 or W (x) = 1

|x|n−2s +K|x|4 for s ∈ (0, N
2

), see [49, Section

3]. Moreover, all global minimizers must be compactly supported and an attentive

reading of Lemmas 2.6 and 2.7 in [49] yields that any d2-local minimizer is compactly

supported in this particular case, since W (x) → ∞ as |x| → ∞. Parsing together

this observations we have the following result:

Theorem 2.2.23 (Uniqueness of d2 minimizer). Assume that W (x) = 1
|x|N−2s +

Wa(x) for some s ∈ (0, N
2

) and either Wa(x) = K|x|2 or Wa = K|x|4, where K is

a constant. Then there exists a unique (up to translation) d2-local minimizer µ0 ∈

P2(RN), which is also the unique global minimizer of E in P2(RN). Furthermore,

µ0 is compactly supported and radial symmetric.

Proof. Given µ0 a d2 local minimizer in P0(RN), we know from [49, Section 3] that µ0

has compact support. Therefore, by Proposition 2.2.9 we know that the associated

potential function ψ is continuous, then the previous discussion applies, because

E[µ] = ||µ||2H−s(RN ) +

∫
RN

∫
RN
Wa(x− y) dµ(x)dµ(y),
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which is strictly linearly convex in P0(RN). Therefore, µ0 is the unique minimizer

of E in P0(RN).

The case of d∞ local minimizers is a little bit more subtle. To be able to

relate d∞ local minimizers to linear critical points, we would need to prove that the

support is connected. Although a result like this sounds really intuitive, it is not

yet available in the literature. Here we give the only known result of uniqueness of

d∞ local minimizers, by combining the regularity that we have proven with a result

by Caffarelli and Vazquez on the fractional Porous medium equation.

Theorem 2.2.24. [47, Section 6] Let W = 1
|x|N−2s + K|x|2 with s ∈ (0, 1) and

µ ∈ C(RN) ∩ P0(RN) be a critical point of the energy in the sense that

|∂W2E(µ)|2 =

∫
RN
|∇ψ|2 dµ = 0.

Then, µ is unique and is the solution to the associated obstacle problem in the whole

space.

Remark 2.2.25. In fact, Theorem 2.2.24 still applies in the case s = 1.

Remark 2.2.26. Unfortunately, the proof of Theorem 2.2.24 relies on the maximum

principle, therefore it can not be extended to the cases s > 1.

Using the previous result, the conclusion that d∞ local minimizers with Wa =

K|x|2 are unique follows from the regularity we have proven in the cases s ∈ (0, 1].

Theorem 2.2.27 (Uniqueness of d∞ minimizer). Assume that W (x) = 1
|x|N−2s +

K|x|2 for some s ∈ (0, 1], where K is a constant. Then there exists a unique (up
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to translation) d∞-local minimizer µ0 ∈ P2(RN), which is also the unique global

minimizer of E in P2(RN). Furthermore, µ0 is radially symmetric.

Proof. We only need to combine Remark 2.2.17 and Remark 2.2.21 with the previous

Theorem 2.2.24.

We should note that we dropped the assumption of µ0 being compactly sup-

ported used throughout 2.2.4. This is because Wa ∗ µ0 is a polynomial, which

automatically smooth.

2.3 Proof of the Continuity of the potential function ψ

We start with the proof of Proposition 2.2.6:

Proof of Proposition 2.2.6. We prove the proposition by contradiction. So, we as-

sume there exists x0 ∈ supp(µ), A ⊂ Bε(x0) and γ > 0, such that

ψ(x0) > ψ(y) + γ for all y ∈ A. (3.1)

By the lower-semicontinuity of ψ, we know there pick a small enough ε0 > 0, such

that ε < ε0 and

ψ(x) > ψ(x0)− γ

2
for all x ∈ Bε0(x0). (3.2)

Combining both inequalities we get

inf
x∈Bε0 (x0)

ψ(x) > sup
y∈A

ψ(y) +
γ

2
. (3.3)

Using only this information we are going to construct µt0 , such that d∞(µ, µt0) <

ε and contradicts the optimality of µ. With this in mind, we define probability mea-

sures µε0 and µA, by appropriately rescaling the restriction onto the sets Bε0 and A,
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respectively. For instance, µε0 is defined by

µε0(B) =
µ(B ∩Bε0)

µ(Bε0)
.

We can think of µ as being the convex combination between µε0 and another prob-

ability measure µ1:

µ = (1− µ(Bε0))µ1 + µ(Bε0)µε0 .

Using this decomposition we consider a curve of probabilities parametrized by t,

given by

µt = (1− µ(Bε0))µ1 + (µ(Bε0)− t)µε0 + tµA.

Because, both A and Bε0 are subsets of Bε, we know that d∞(µ, µt) < ε for any t.

Now, we are going to check that there exists t0 small enough, such that

E(µt0) < E(µ).

A direct computation shows that

E(µt) = E(µ) + 2t(B[µA, µ]−B[µε0 , µ]) + t2(E(µε0) + E(µA)− 2B[µA, µ]), (3.4)

where B[·, ·] is a symmetric bi-linear form given by

B[ν1, ν2] =

∫
Rd

∫
Rd
W (x− y) dµ1(x)dµ2(y).

One can check that all the terms in (3.4) are finite, as they can be bound by a

multiple of E[µ].

Finally, we realize that using (3.3) we can conclude

dE(µt)

dt

∣∣∣∣
t=0

= B[µA, µ]−B[µε0 , µ] ≤ sup
y∈A

ψ(y)− inf
x∈Bε0 (x0)

ψ(x) < −γ
2
,

Therefore, taking t0 small enough, we get the desired contradiction E(µt0) < E(µ).

37



Having the continuity of ψ µ-a.e. we are ready to prove the full continuity of

ψ in supp(µ).

Proof of Lemma 2.2.7. As in (H3), up to constants, we can decompose W (x) =

1
|x|N−2s +Wa(x). By (H2), we know that there exists δ0 such that

(α
2
− 1
) 1

|x|N−2s
≤ Wa(x) ≤ 1

2|x|N−2s
for all x ∈ Bδ0 .

Therefore, setting γ = max
(

1
2
, 1− α

2

)
we get

|Wa(x)| ≤ γ
1

|x|N−2s
for all x ∈ Bδ0 , (3.5)

with 0 < γ < 1.

We consider a smooth cutoff function η : R+ → [0, 1] which is decreasing and

η(t) = 1 for t ∈ [0, 1/2) and supp(η) ⊂ [0, 1). We define

Wr(x) =
1

|x|N−2s
+ η

(
|x|
δ0

)
Wa(x);

by (3.5) we know that 1−γ
|x|N−2s ≤ Wr(x) ≤ 1+γ

|x|N−2s .

Using the definition of Wr together with (H3a) or (H3b), we realize that ψ −

Wr ∗ µ = ((1 − η)W ) ∗ µ is continuous everywhere. Therefore, the conclusion

of the Lemma follows, if and only if, we can prove it for Wr ∗ µ. This follows

from [51, Theorem 1.11].

For any given positive measure ν, there exists a finite number A such that

1

|Br|

∫
Br(x)

Wr ∗ ν(y) dy ≤
(

1 + γ

1− γ
A

)
Wr ∗ ν(x). (3.6)

This follows directly from the fact that we can bound uniformly in r

1

|Br|

∫
Br(x)

|x− y|N−2s

|z − y|N−2s
dz ≤ A.
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By Proposition 2.2.6, we know that Wr ∗ µ is finite for any x ∈ supp(µ).

Therefore, for a fixed x ∈ supp(µ), we have that for any ε > 0 there exists δ > 0,

such that

Wr ∗ ν ≤ ε

where ν is the restriction of µ to Bδ(x).

Fixing x ∈ supp(µ) and ε > 0, we use the associated ν from above. We observe

that Wr ∗ (µ− ν) is continuous at x, therefore

Wr∗µ(x) = Wr∗(µ−ν)(x)+Wr(ν)(x) = lim
r→0

1

|Br|

∫
Br(x)

Wr∗(µ−ν)(y) dy+Wr∗ν(x)

≤ lim inf
r→0

1

|Br|

∫
Br(x)

Wr ∗ µ(y) dy + ε.

To have the other inequality we observe

lim sup
r→0

1

|Br|

∫
Br(x)

Wr ∗µ(y) dy ≤ lim sup
r→0

1

|Br|

∫
Br(x)

Wr ∗(µ−ν)(y) dy+AγWr ∗ν(x)

= Wr ∗ µ(x) + (Aγ + 1)Wr ∗ ν(x) ≤ Wr ∗ µ(x) + (Aγ + 1)ε.

As ε > 0 is arbitrary, we have prove the desired convergence for any x ∈

supp(µ). For x /∈ supp(µ), the Lemma follows from the continuity of Wr ∗µ around

x.

Proof of Proposition 2.2.9. The ideas of this proof come from potential theory, see

[51, Theorem 1.7]. We follow the decomposition and notation from the Proof of

Lemma 2.2.7.

Using the definition of Wr together with (H3a) or (H3b), we realize that ψ −

Wr ∗ µ = ((1 − η)W ) ∗ µ is continuous everywhere. Therefore, ψ is continuous, if

and only if, Wr is continuous.

39



To prove the desired continuity for Wr, we start by mimicking the maximum

principle from potential theory [51, Theorem 1.5] for Wr:

CLAIM: Given any positive measure ν that satisfies Wr ∗ ν ≤M ν-a.e., then

we obtain Wr ∗ ν ≤ 1+γ
1−γ2N−2sM in Rd.

Proof of the CLAIM: We first observe that because Wr ∗ ν is lower semi-

continuous, from the hypothesis Wr∗ν ≤M ν-a.e. we can conclude that Wr∗ν ≤M

everywhere in supp(ν).

Consider x ∈ Rd \ supp(ν), and x′ is the point at supp(ν) closest to x. For

every y ∈ supp(ν) we have

|y − x′| ≤ |y − x|+ |x− x′| ≤ 2|y − x|.

We note that by (3.5)

Wr(y − x′) ≥
1− γ

|y − x′|N−2s
≥ 1− γ

(2|y − x|)N−2s
≥ 1− γ

1 + γ
22s−NWr(x− y);

here we are using the inequalities

(1− γ)
1

|z|N−2s
≤ Wr(z) =

1

|z|N−2s
+Wa(z) ≤ (1 + γ)

1

|z|N−2s
.

Therefore, by the first observation we have

M ≥ Wr ∗ ν(x′) ≥ 1− γ
1 + γ

22s−NWr ∗ ν(x).

This finishes the proof of the CLAIM.

Now we turn back to prove the continuity of Wr ∗ µ. As Wr is uniformly

continuous in any set bounded away from zero, we know that for any z /∈ supp(µ),

Wr ∗ µ is continuous at z.
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Therefore, we are only missing to prove that if z ∈ supp(µ), then Wr ∗ µ is

continuous at z. We want to prove that for every ω > 0, there exists λ, such that if

|x− z| < λ, then |Wr ∗ µ(x)−Wr ∗ µ(z)| ≤ Cω, where C is fixed constant.

Given θ > 0, to be chosen, we decompose our measure into

µ = µ|Bθ + µ|Bcθ = µθ + µcθ.

Using this decomposition, we have the bound

|Wr ∗ µ(x)−Wr ∗ µ(z)| ≤ Wr ∗ µθ(x) +Wr ∗ µθ(z) + |Wr ∗ µcθ(x)−Wr ∗ µcθ(z)|.

The idea is to pick θ in such a way that the first two terms are small, inde-

pendently of x and z. Because Wr ∗ µ is finite at z, there exists θ1, such that

Wr ∗ µθ1(z) ≤ ω,

Using that Wr ∗ µ is continuous in supp(µ), there exists θ0, such that

Wr ∗ µθ1(y) ≤ 2ω in supp(µ) ∩Bθ0 .

We fix θ2 = min(θ1, θ0).

Because Wr is positive, we know that Wr ∗ µθ is decreasing in θ, therefore

Wr ∗ µθ2(y) ≤ 2ω in supp(µ) ∩Bθ2 .

By the CLAIM we can assure that

Wr ∗ µθ2(x) ≤ 2Cγ,sω ∀x ∈ Rd.

Coming back to proving the continuity, we have the bound

|Wr ∗ µ(x)−Wr ∗ µ(z)| ≤ Wr ∗ µθ2(x) +Wr ∗ µθ2(z) + |Wr ∗ µcθ2(x)−Wr ∗ µcθ2(z)|
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≤ 2Cγ,sω + |Wr ∗ µcθ2(x)−Wr ∗ µcθ2(z)|.

We know that Wr ∗ µcθ2 is continuous around z, because z /∈ supp(µcθ2), therefore

there exists a λ > 0, such that |x− z| < λ implies

|Wr ∗ µcθ2(x)−Wr ∗ µcθ2(z)| ≤ ω

Therefore, if |x− z| < λ, then

|Wr ∗ µ(x)−Wr ∗ µ(z)| ≤ Cω,

which proves the desired continuity.

Now we can prove Corollary 2.2.10.

Proof of Corollary 2.2.10. Because we are assuming that W > 0 and by definition

Wa = W − VN,s, then Wa ≥ − C
δN−2s on Bc

δ
2

. Therefore, using the cutoff η and Wr

from the proof of Proposition 2.2.9, we know that

c||µ||H−s = c
∫
RN
∫
RN

1
|x−y|N−2s dµ(x)dµ(y) ≤

∫
RN
∫
RN Wr(x− y) dµ(x)dµ(y)

≤
∫
RN
∫
RN W (x− y)− (1− η(x− y))Wa(x− y) dµ(x)dµ(y) <∞.

If (H3b) holds, then (−∆)sWa ∗ µ ∈ H−s(RN), as (−∆)sWa ∈ L1(RN).

If (H3a), holds we are in the case that µ has compact support, we can always

cut off the potential Wa to be compactly supported, then by (H2) we can claim that

|Wa| ≤ C
|x|N−2s . From the arguments in the proof of Proposition 2.2.9 we know that

1
|x|N−2s ∗ µ is bounded, therefore Wa ∗ µ is also bounded, which implies ψ = W ∗ µ is

bounded. Now, we observe that

(−∆)sψ = µ+ (−∆)sWa ∗ µ,
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using this identity we can re-write

Wa ∗ µ = Wa ∗ (−∆)sψ − (−∆)sWa ∗ [Wa ∗ µ] = (−∆)sWa ∗ [ψ −Wa ∗ µ].

Therefore, Wa ∗ µ is continuous because it is convolution of a function in L1 and a

bounded function.

2.4 Proofs of the regularity of µ

In this section, we prove the regularity results for ψ and µ stated in Sec-

tion 2.2.4. For that, we are going back and forth between the regularity of the

solution of the obstacle problem (2.6) and the regularity of F = ∆Wa ∗ µ.

2.4.1 Proof of Proposition 2.2.15 and Theorem 2.2.13

To prove Proposition 2.2.15, we need a fine version of the mean value formula

for the fractional Laplacian.

Lemma 2.4.1. Given l ∈ (0, 1], there exists a bounded function γl that is positive

with integral one, which is continuous if l < 1, and a bounded function gl that

is positive, compactly supported and also with integral one. Such that given any

f ∈ L1
loc(RN), that satisfies ∫

RN

f(x)

1 + |x|N+2l
dx <∞,

we can write

(−∆)lf = lim
λ→0

f − γlλ ∗ f
λ2l

= lim
λ→0

glλ ∗ (−∆)lf, (4.1)

where γlλ = 1
λN
γl
(
x
λ

)
and glλ = 1

λN
gl
(
x
λ

)
.
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Proof. The construction of γl and gl can be found in [45, Section 2]. For l = 1, γ1

is just the normalized indicator of the ball of radius 1.

Proof of Proposition 2.2.15. By (2.6), we know that ϕ has a minimum in the Bε for

any x0 ∈ supp(µ), where µ = (−∆)sϕ − F . Therefore, we can construct a smooth

bounded ηε, which depends on ε and ||ϕ||∞, such that

ϕ(x) + ηε(x) has a global minimum at any x0 ∈ supp(µ) ∩B ε
2
. (4.2)

Taking γl from Lemma 2.4.1, we can combine the fact that γl is positive with

integral one with (4.2) to derive

ψ(x0) + ηε(x0)− (γlλ ∗ (ϕ+ ηε))(x0)

λ2l
≤ 0 for any x0 ∈ supp(µ) ∩B ε

2
.

We define µε to be the restriction of µ to the ball of radius ε
2
. By the previous

inequality, we know

∫
RN

ϕ(x) + ηε(x)− (γlλ ∗ (ψ + ηε))(x)

λ2l
dµε(x) ≤ 0.

Using Lemma 2.4.1 and that ηε is smooth, we can re-write this as

∫
RN
glλ ∗ (−∆)lϕ(x) dµε(x) ≤ Cε.

Using that µ = (−∆)sϕ− F and integrating by parts, we obtain

∫
RN

(glλ ∗ (µ− F ))(x)(−∆)−s+lµε(x) dx ≤ Cε

Now, using the hypothesis F ∈ H−s+l(RN) and Young’s inequality we obtain

∫
RN

(glλ∗µ)(x)(−∆)−s+lµε(x)−1

2
||glλ∗F ||2H−s+l(RN )−

1

2
||(−∆)−s+lµε||2Hs−l(RN ) dx ≤ Cε
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By taking λ→ 0, using that glλ ∈ L1 and using Fatou’s Lemma we obtain

1
2
||µε||H−s+l(RN ) = 1

2

∫
RN (−∆)−s+lµε(x) dµε(x)

≤
∫
RN (−∆)−s+lµ(x) dµε(x)− 1

2
||µε||H−s+l(RN )

≤ 1
2
||F ||2

H−s+l(RN )
+ Cε.

(4.3)

Finally, using that (−∆)sϕ = µ + F ∈ H−s+l(B ε
2
), we obtain that ϕ ∈

Hs+l(B ε
2
).

By using (H3a), we can always truncate Wa, so that we can assume that

ψ(x)→ 0 as x→∞. Then, if we assume (H4) we can apply the previous Proposi-

tion 2.2.15 iteratively to obtain regularity for µ.

Proof of Theorem 2.2.13. By (H4), F = (−∆)sWa ∗µ ∈ H−s+δ which means we can

apply to Proposition 2.2.15. Therefore, for any x0 ∈ supp(µ), µε, the restriction of

µ to the ball of radius ε
2

around x0, has its H−s+δ(RN) norm bounded by a universal

constant depending on ||ψ||∞ and ε. In fact, by (4.3) we know that

∫
RN

µ(x) dµε(x)

|x− y|n−2(s−l) < C(ε, ||ψ||∞). (4.4)

As we are assuming that the support of µ is compact, we can cover its support by

finitely many balls of radius ε
2
. Therefore, by summing (4.4) a finite number of times,

we obtain that µ ∈ H−s+δ(RN), which implies F = (−∆)sWa ∗ µ ∈ H−s+2δ(RN).

Applying Proposition 2.2.15 and (4.3) again, we obtain µ ∈ H−s+2δ(RN). This

procedure can be bootstrapped all the way up to µ ∈ H−s+1(RN).
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2.4.2 Proof of Theorem 2.2.16

Since we are assuming that supp(µ) ⊂ BR(0), and we are only interested in

the properties of ψ and µ in a neighborhood of supp(µ), it is possible to modify the

values of Wa outside a ball B2R(0) without changing the values of µ and ψ in BR

as discussed in Section 3. We can thus assume that ∆Wa has compact support and

that

(−∆)1+δWa ∈ L1(RN) for some δ > 0.

We will then use the following lemma (with K = ∆Wa):

Lemma 2.4.2. Given K ∈ L1(RN) with (−∆)δK ∈ L1(RN), we have the following

(a) If ϕ ∈ L∞(RN), then K ∗ ϕ ∈ Cβ(RN) for any β < 2δ.

(b) If ϕ ∈ L∞(RN) ∩ Cα(RN), then K ∗ ϕ ∈ C2δ+α(RN).

Proof of Lemma 2.4.2. We note that K ∗ ϕ ∈ L∞ and

(−∆)δ(K ∗ ϕ) = [(−∆)δK] ∗ ϕ ∈ L∞(RN),

for case (a). In case (b), we also have that (−∆)δ(K ∗ ϕ) ∈ Cα. By standard regu-

larity results for fractional elliptic equation (see [45, Proposition 2.8 & Proposition

2.9]) we know that K∗ϕ ∈ Cβ(RN) for any β < 2δ in case (a) and K∗ϕ ∈ C2δ+α(RN)

in case (b).

We then rely on the following important result for the regularity of the solution

of the obstacle problem in [43]:
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Proposition 2.4.3. Let ψ be the solution of the obstacle problem (2.6). Then up

to C1,1(RN) the function ψ is as regular as Wa ∗ µ. More precisely, we have

• If Wa ∗ µ has a modulus of continuity σ(r), then ψ has a modulus of continuity

Cσ(2r).

• If ∇Wa∗µ has a modulus of continuity of σ(r), then ∇ψ has a modulus of continuity

Cσ(2r).

Using a bootstrap argument and Lemma 2.4.2, we can now prove Theorem

2.2.16:

Proof of Theorem 2.2.16. Up to chopping Wa, we know can use the continuity of ψ

and Corollary 2.2.10 to claim that both ψ and Wa ∗ µ are continuous and bounded.

Since µ = −∆ψ + ∆Wa ∗ µ, we can write

Wa ∗ µ = −Wa ∗∆ψ +Wa ∗ (∆Wa ∗ µ) = −∆Wa ∗ (ψ +Wa ∗ µ).

By (H4) (−∆)δ[(−∆)Wa] ∈ L1(RN), we can use Lemma 2.4.2 to show that

Wa ∗ µ ∈ Cβ(RN), for all β < 2δ.

Then, by Proposition 2.4.3, we that ψ ∈ Cβ for all β < 2δ.

Then using the same arguments as above and applying Lemma 2.4.2 again we

obtain that both Wa ∗ µ and ψ belong to Cβ + 2δ for all β < 2δ.

A simple bootstrap argument yields that Wa ∗ µ and ψ are both in C1,1(RN),

and thus that µ has density ρ ∈ L∞(RN).
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2.4.3 Proof of Theorem 2.2.18

We now prove Theorem 2.2.18. We note that under the assumption of The-

orem 2.2.18, we have F ∈ W 1,1
loc (RN) and, for the second part of the statement, we

get F (x) 6= 0 in a bounded open neighborhood of supp(µ).

Under these assumptions, the regularity in BVloc(RN) of ∆ψ, where ψ solves

the obstacle problem (2.6) is a classical result, which implies Theorem 2.2.18. We

will sketch the proof of this result for the reader’s sake. The proof that we give

below was first proposed by Brezis and Kinderlehrer in [56].

Proof of Theorem 2.2.18. First, we recall that the solution of the obstacle problem

(2.6) can be approximated by the solutions ψδ of the nonlinear equation

−∆ψδ + βδ(ψδ − C0) = −F in Ω

ψδ = ψ on ∂Ω

(4.5)

where Ω = Bε(x0) with x0 ∈ supp(µ) and βδ is an increasing function satisfying

sβδ(s) ≥ 0 for all s and such that

βδ(s) −→


0 when s > 0

−∞ when s < 0

as δ → 0.

Here, Ω = Bε(x0) for any point x0 ∈ supp(µ). It is a classical result, see [56] for

instance, that ψδ converges to ψ locally uniformly in C1,γ(Ω) provided F is in L∞(Ω)

(which we proved in Theorem 2.2.16).

Let now ∂
∂ξ

denote any directional derivative, we are going to show that for

any compact set K ⊂⊂ Ω, we have∫
K

∣∣∣∣ ∂∂xi∆ψδ
∣∣∣∣ ≤ C. (4.6)
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where C does not depend on δ. Taking the limit δ → 0 and using the l.s.c. of the

total variation, we deduce that ∆ψ ∈ BVloc(Ω), which gives the result.

In order to prove (4.6), we differentiate (4.5):

−∆∂ξψδ + β′δ(ψδ − C0)∂ξψδ = −∂ξF (4.7)

Let now χ be a test function in D(Ω) such that χ ≥ 0 in Ω and χ = 1 in K. We

multiply (4.7) by χsign(∂ξψδ) and integrate over Ω to deduce

−
∫

Ω

χsign(∂ξψδ)∆∂ξψδ dx+

∫
Ω

β′δ(ψδ − C0)|∂ξψδ|χdx = −
∫

Ω

∂ξFχsign(∂ξψδ) dx .

Integrating by parts the left hand side yields

∫
Ω

χsign′(∂ξψδ)|∇
∂

∂ξ
ψδ|2 dx+

∫
Ω

β′δ(ψδ − C0)|∂ξψδ|χdx

= −
∫

Ω

∇χ∇∂ξψδsign(∂ξψδ) dx−
∫

Ω

∂ξFχsign(∂ξψδ) dx .

Using the fact that sign′(s) ≥ 0 for all s, we deduce

∫
Ω

β′δ(ψδ − C0)|∂ξψδ|χdx ≤ −
∫

Ω

∇χ∇|∂ξψδ| dx−
∫

Ω

∂ξFχsign(∂ξψδ) dx

≤
∫

Ω

∆χ|∂ξψδ| dx+

∫
Ω

|∂ξF |χdx .

Furthermore, multiplying (4.5) by (ψδ − C0)χ, it is easy to show that

∫
K

|∂ξψδ|2 dx ≤ C(K)

for some constant depending on K but not on δ (using the regularity of F and the

fact that ψδ converges locally uniformly to ψ). We conclude that

∫
K

β′δ(ψδ − C0)|∂ξψδ| dx ≤ C
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with C independent of δ. Finally, going back to (4.7), we get∫
K

|∆∂ξψδ| dx ≤
∫
K

β′δ(ψδ − C0)|∂ξψδ| dx+

∫
K

|∂ξF | dx ≤ C

and the result follows.

To prove the second part of the Theorem, we note that the function

−∆ψ + F

F
=
ρ

F

is almost everywhere equal to the indicator function of the set {ψ = ψ(x0)}∩Bε(x0).

If F is never zero, we deduce that this function is in BVloc, thus proving that

{ψ = ψ(x0)} ∩ Bε(x0) and supp(µ) ∩ Bε(x0) have finite perimeter. Here, we use

(2.9) and, more generally, the fact that if E is a subset of G and |G \ E| = 0, then

E and G have the same perimeter.

2.4.4 Proof of Theorem 2.2.19

In order to apply known regularity results for the fractional obstacle problem

(as found, for instance, in [45]), we need to show that ψ solves a fractional obstacle

problem in the whole of RN .

It is possible to do this as follows: The set supp(µ) + Bε/4 = {x + y ; x ∈

supp(µ), y ∈ Bε/4(0)} is an open set in BR+1(0). In particular, it is the countable

union of its connected components Ai. Furthermore, since supp(µ) is compact, there

are only finitely many Ai.

For all i, any two points x1, x2 in supp(µ) ∩ Ai will satisfy ψ(x1) = ψ(x2),

by the minimality of the connected component and Corollary 2.2.11. We define
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Di = supp(µ) ∩Ai, we denote Ci = ψ|Di and we consider a smooth function f such

that

f ≤ Ci in Ai

f = Ci on Di +B ε
16

f = inf W outside ∪i Di +Bε/8.

We can find such smooth function, because Di are at least separated ε/4 from each

other, and if they are closer than ε then the constant Ci has to match because

of Corollary 2.2.11. The potential function ψ then solves the following obstacle

problem in RN : 
ψ ≥ f, (−∆)sψ ≥ −F (x) in RN

−(∆)sψ = −F (x), in {ϕ > f}
(4.8)

where F = −(−∆)sWa ∗ µ.

Using this obstacle problem formulation, we can use the following proposition

which is the fractional analog of Proposition 2.4.3 (See L. Silvestre [45]):

Proposition 2.4.4. Let ψ be the solution of the obstacle problem (4.8). If f ∈

C2(RN) and Wa ∗ µ is in Cβ(RN) with β > 0. Then ψ ∈ Cα(RN) for every α <

min(β, 1 + s) (with the notation Cα = C1,α−1 if α > 1).

Proof of Theorem 2.2.19. We can now prove our main result by proceeding as in

the proof of Theorem 2.2.16:

Up to chopping Wa, we know can use the continuity of ψ and Corollary 2.2.10

to claim that both ψ and Wa ∗ µ are continuous and bounded.
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Since µ = (−∆)sψ − (−∆)sWa ∗ µ, we can write

Wa ∗ µ = −Wa ∗ (−∆)sψ −Wa ∗ ((−∆)sWa ∗ µ) = (−∆)sWa ∗ (ψ −Wa ∗ µ).

By (H4) (−∆)δ[(−∆)Wa] ∈ L1(RN), we can use Lemma 2.4.2 to show that

Wa ∗ µ ∈ Cβ(RN), for all β < 2δ.

Then, by Proposition 2.4.3, we that ψ ∈ Cβ for all β < 2δ.

Then using the same arguments as above and applying Lemma 2.4.2 again we

obtain that both Wa ∗ µ and ψ belong to Cβ + 2δ for all β < 2δ.

A simple bootstrap argument yields that Wa ∗ µ and ψ are both in C1,α(RN),

for any γ < s and thus that µ has density ρ ∈ Cα(RN) for all α < 1− s.
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Chapter 3: Cahn-Hilliard Equation

3.1 Overview

Given a smooth non-convex potential F : R+ → R, we are interested in the

properties of solutions νε to
∂tν = (ν(F ′(ν)− ε2νxx)x)x in (0,∞)× T

ν(0) = νεi on {0} × T.
(1.1)

and more specifically, in their behavior as ε → 0+, where T denotes the one-

dimension flat torus R/Z.

Equation (1.1) is known in the literature as the Cahn-Hilliard equation ( [57],

[58], [59]). The function νε models the concentration of one of two phases in a system

undergoing phase separation. Mathematically, this equation could be considered as a

fourth order regularization of a forward-backward parabolic equation, by the fourth

order term −ε2(ννxxx)x. In the case where F vanishes identically, we are left with a

fourth order parabolic equation

∂tν = (m(ν)νxxx)x

known as the Thin-film equation, with mobility m(ν) = ν, which is interesting on its

own (see for instance [60], [61], [62]). Note that, the Dirichlet Energy is a Lyapunov
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functional and that when m(ν) = ν, the equation is formally the gradient flow of this

Energy under the W2(T) metric. This observation was made in the seminal paper

by Otto [63] and has been exploited for some generalizations in [64], [65] and [59].

The main result of this chapter is the fact that, under some assumptions (see

Theorem 3.3.1), νε converges, as ε → 0, to the unique solution ν0 of the following

well-posed degenerate parabolic equation
∂tν = (ν(F ∗∗′(ν))x)x

ν(0) = νi,

(1.2)

where F ∗∗ denotes the convex envelope of F .

The mathematical intuition behind this convergence comes from the fact that,

formally at least, we know that νε is the gradient flow of

F ε[µ] =

∫
T

ε2

2
|µx|2 + F (µ) dx, (1.3)

while ν0 is the gradient flow of

F∗∗[µ] =

∫
T
F ∗∗(µ) dx,

with respect toW2(T), and it is somewhat classical that the energy F ε Γ-converges

to F∗∗ in W2(T). Unfortunately, it is well known that the Γ-convergence of the

energy is not enough to prove the convergence of the gradient flows.

Indeed, to be able to prove the convergence of the gradient flows we need an

additional condition on the gradient of the energy. A sufficient condition for Hilbert

spaces was given in the paper by Sandier and Serfaty [66], which was later extended

to metric spaces by Serfaty in [2]. This additional condition is usually written as
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follows:

Γ− lim inf
ε→0+

|∇F ε| ≥ |∇F∗∗| (see Section 3.2 for definitions), (1.4)

and proving this inequality is always the hard part of the Sandier-Serfaty approach.

However, in our case |∇F ε| is not well understood, so we need to introduce a different

quantity for which we prove a condition similar to (1.4) (see Theorem 3.3.2).

The framework of Sandier-Serfaty has been applied to an array of diverse prob-

lems. To name a few we have: Allen-Cahn [67], Cahn-Hilliard [68], [69], non-local

interactions energies [70], TV flow [71] and Fokker Plank [72]. The most relevant

reference for this paper was written by Belletini, Bertini, Mariani and Novaga [69],

where they consider the convergence of the one dimensional Cahn-Hilliard equation

on the Torus with mobility equal to one:

∂tν = (F ′(ν)− ε2νxx)xx. (1.5)

We actually borrow some of the notations and the ideas on how to track the os-

cillations of the solution. The main difference between [69] and our work is that

(1.5) is a gradient flow of (1.3) in the Hilbert space H−1(T), instead of the metric

space W2(T). Besides bringing some non-trivial technical issues, working with a

degenerate mobility coefficient also means that the estimates degenerate when the

solution is near zero; this actually turns out to be a major issue that keeps showing

up in the Thin Film equation literature as well.

A word of caution is that the framework developed by Ambrosio, Gigli and

Savare in [1] can not be applied to the functional F ε, as it is neither λ-convex in the

sense given at [1] (or the relaxed notion [73]), nor regular (see Remark 1.2.20). In
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fact, the subdifferential of F ε is not really well understood; no matter how regular

the measure is, if it vanishes at some point, it has not been proven that the natural

candidate is indeed a subdifferential.

We deal with this setback by considering Otto’s approach in [63], which con-

structs solutions to the equation as the limit of Minimizing Movements, an idea that

was originated by De Giorgi. In the case of F ε, this has been made rigorous in [59],

where the authors are even able to prove a uniform L2
t (H

2
x) estimate for the constant

interpolant of the discrete approximations, by using a discrete version of the entropy

dissipation inequality (for the continuum case see [62]). In this paper we go a bit

further and we obtain an Energy inequality (see (2.25)), by defining a non-standard

functional Gε (see Section 3.2), which we prove to be lower semicontinuous in H2

(see Lemma 3.8.1) and which agrees with the size of the subdifferential, when we

know F ε to be strongly subdifferentiable and µ to be regular enough. To our knowl-

edge, this is a completely novel result in the literature and gives a starting point

to understand the W2(T) gradient flows of energies involving derivatives. Shedding

some light onto this topic will be part of the author’s upcoming work.

Once we are able to prove the existence of an appropriate solution to our

equation, the main obstacle we encounter, when we try to prove the convergence, is

oscillatory behavior, known as the wrinkling phenomenon. Numerical simulations

show that the functions νε tend to oscillate quickly in the whole of the unstable set

Σ = cl({F > F ∗∗}).

However, in this paper we only prove that the wrinkling phenomenon occurs in a
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subset of Σ and we do not explore further if it can be proven analytically that when

oscillations occur, they actually encompass the whole of Σ.

We prove that oscillations only occur inside of Σ by proving that d(νε,Σ) is

uniformly lower-semicontinuous in ε (see Corollary 3.4.4), which allows us to derive

a uniform H1
loc estimate away from the unstable set (see Proposition 3.5.2). The

degenerate diffusion at {νε = 0} makes the control near zero very subtle. Only a

careful study of the behavior of the solution near zero can rule out uncontrolled

jumps (see proof of Theorem 3.4.3).

It is the intention of this chapter that the proofs make a clear connection

between where the oscillations can occur and the tangent lines of the graph of F . In

short, in the regions where the tangent lines do not cross the graph of F , the function

cannot have large oscillations (see (4.39)). In this way, the function F ∗∗ appears

naturally and does not seem to be only a mathematical artifact of Γ-convergence.

As usual with the framework of [66], [2], we have to make an assumption on

the initial data being well prepared with respect to the energy, meaning that

lim
ε→0+

F ε[νεi ] = F∗∗[νi].

In our case, the well preparedness can be interpreted as the fact that the approx-

imations νεi stays away from Σ, so the convergence we prove only tells us that

asymptotically the dynamic keeps it that way. With this assumption, we are miss-

ing how the wrinkling phenomenon is actually affecting the dynamic in the limit,

which is a really interesting question on its own, but needs to be analyzed more

carefully with other types of techniques.
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The chapter is organized as follows: The rest of this Section deals with moti-

vation. Section 3.2 provides the definitions and hypothesis of the objects we work

with, and introduces a suitable notion of solution to (1.1). Section 3.3 contains

the statements of the main result of the convergence (see Theorem 3.3.1) and the

main auxiliary result of the lower semicontinuity of the size of the gradients (see

Theorem 3.3.2). Section 3.4 presents and proves the result on where can oscillations

occur (see Theorem 3.4.3). Section 3.5 proves that away from Σ the functions are

in H1 (see Proposition 3.5.2). Section 3.6 proves Theorem 3.3.2. Section 3.7 proves

Theorem 3.3.1. Appendix 1.2.2 gives the necessary background of gradient flows in

W2(T). Section 3.8 finishes the proof of the existence of an appropriate solution to

(1.1) and proves the lower semicontinuity of Gε (see Lemma 3.8.1).

3.1.1 Motivation

Our original motivation for studying (1.1) came from a model for biological

aggregation introduced in [74] which we describe now:

We consider ν(x, t) a population density that moves with velocity v(x, t), where

x, v ∈ Rn, t ≥ 0. Then, ν satisfies the standard conservation equation, with initial

population ν0 
∂tν +∇ · (vν) = 0

ν(x, 0) = ν0.

(1.6)

The model assumes that the velocity depends only on properties of ν at the

current time and can be written as the sum of an aggregation and a dispersal term:

v = va + vd. (1.7)
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For aggregation, a sensing mechanism that degrades over distance, is hypoth-

esized on the organisms. In the simplest case, the sensing function associated with

an individual at position x is given by

s(x) =

∫
Rn
K(x− y)ν(y) dy = K ∗ ν(x),

where the kernel K is typically radially symmetric, compactly supported and of unit

mass. Individuals aggregate by climbing gradients of the sensing function, so that

the attractive velocity is given by:

va = ∇K ∗ ν(x). (1.8)

Dispersal is assumed to arise as an anti-crowding mechanism and operates over

a much shorter length scale. It is considered to be local, go in the opposite direction

of population gradients and increase with density. For example we can take the

dispersive velocity given by:

vd = −ν∇ν (1.9)

(more generally vd = −f(ν)∇ν).

Combining (1.6), (1.7), (1.8) and (1.9), we obtain the equation
∂tν +∇ · (ν(∇K ∗ ν − ν∇ν)) = 0

ν(x, 0) = ν0.

(1.10)

Now, by re-scaling, we want to consider what happens to a large population

as we zoom out, over a large period of time. We thus set

∫
Rn
ν0 dx = ε−n,
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for some ε� 1 and we re-scale time and space as follows:

νε(x, t) = ν

(
x

ε
,
t

ε2

)
, (1.11)

the scaling in x is chosen such that
∫
νε0 = 1. Using (1.10), we obtain the following

equation for νε: 
∂tν

ε +∇ · (νε(∇Kε ∗ νε − νε∇νε)) = 0

νε(x, 0) = νε0,

(1.12)

where Kε = 1
εn
K(x

ε
) is an approximation of the δ measure.

Adding and subtracting ∇ · (νε∇νε), we can rewrite (1.12) as

∂tν
ε +∇ · (νε(∇νε − νε∇νε + (∇Kε ∗ νε −∇νε))) = 0. (1.13)

Assuming νε to be smooth, and taking a Taylor expansion of νε, we get that

Kε ∗ νε(x)− νε(x) = ε2k0∆νε(x) +O(ε4), (1.14)

where

k0 =

∫
|x|2K(x) dx.

Replacing (1.14) in (1.13), disregarding the O(ε4) term, we finally obtain (1.1):
∂tν

ε +∇ · (νε(−∇F ′(νε) + ε2k0∇∆νε)) = 0

νε(x, 0) = νε0,

where F ′(x) = x2

2
− x.

The Cahn-Hilliard equation we are studying in this chapter is thus an approx-

imation of the non-local equation (1.12). Unfortunately, the techniques used in this
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chapter to control the oscillations of solutions to (1.1) could not be generalized to

deal with solutions of (1.12). The main issue being that the non-locality does not

allow us to integrate exactly against the derivative of the solution. We are thus

unable, at the present time, to fully describe the behavior of the solutions of (1.12)

as ε → 0. The only result that carries through is a uniform in ε, L∞ estimate for

the solutions of (1.13), which follows almost exactly as Lemma 3.4.1.

Remark 3.1.1. It is worth noticing that (1.13) is the gradient flow of

F ε[ν] =

∫
ν3(x)

6
− 1

2
Kε ∗ ν(x)ν(x) dx,

with respect to the metric induced by the W2 distance. By adding and subtracting

ν2(x)
2

, in the expression, we obtain, after some calculations,

F ε[ν] =

∫
F (ν) dx+

1

4

∫ ∫
Kε(x− y)(ν(x)− ν(y))2 dxdy, (1.15)

with F (x) = x3

6
− x2

2
.

The semi-norm

1

4

∫ ∫
Kε(x− y)(ν(x)− ν(y))2 dxdy,

is, up to a constant, a smooth non-local approximation of

ε2

2

∫
|∇ν|2,

therefore (1.15) can be considered as a smooth non-local approximation of (1.3).

Remark 3.1.2. Different scalings of time in (1.11) can be considered. The case of

t
ε

is related, in the limit ε→ 0, to motion by mean curvature (see [68]).

Remark 3.1.3. A similar heuristic relationship between (1.1) and the non-local

model in [74] has been drawn independently in [75].
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3.2 Notation and Assumptions

Throughout the chapter, we always consider measures µ ∈ P(T) that are

absolutely continuous with respect to the Lebesgue measure, we do not make any

distinction between the measure and its density.

Also, we use the term sequence loosely: it may denote family of measures

labeled by the continuous parameter ε.

3.2.1 Assumptions on F

We assume that F is in C2([0,∞), [0,∞)); we denote by F ∗∗ its convex enve-

lope. We define the auxiliary function Q, which is usually referred in the literature

as pressure, such that

Q′(y) = yF ′(y)− F (y), (2.16)

we use the notation with a prime, because its derivative is related with the second

derivative of F , namely

Q′′(y) = yF ′′(y). (2.17)

Moreover, we assume that F has the following properties:

• (H1) There exists a constant C > 0 such that for every y ∈ R

|Q′(y)| ≤ C(1 + F (y)). (2.18)

and

|F ′(y)| ≤ C(1 + F (y)). (2.19)
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• (H2) limy→+∞Q
′(y) = +∞

• (H3) The unstable set Σ = cl({F > F ∗∗} ∪ {0}) = ∪pi=1Σi, where p ∈ N and

Σi = [ai, bi], with ai+1 > bi.

The first interval could be degenerate in the sense of a1 = b1 = 0. As the

dynamics near zero will be special, we will distinguish a value

m0 =


b1 + 1 if p = 1

b1+a2
2

if p ≥ 2.

(2.20)

• (H4) Given K ⊂ Σc compact, infA∈K F
′′(A) > 0. Equivalently, F ′′(p) > 0 for

any p ∈ Σc.

Remark 3.2.1. Equation (1.1) and (1.2) are not affected by adding an affine func-

tion to F , so without loss of generality we will consider the case F (0) = 0 and

F ′(0) = 0.

3.2.2 Functionals F ε, F∗∗, Gε, |∇F∗∗|

For any ε > 0, we define

F ε : P(T)→ [0,+∞]

the functional

F ε[ν] =


∫
T
ε2

2
|νx|2 + F (ν) dx if ν ∈ H1(T)

+∞ elsewhere.

Formally, the subdifferential of F ε at µ, with respect to W2 is given by

∂W2F ε[µ] = ∇(F ′(µ)− ε2∆µ).
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and we have

|∂W2F ε|(µ) =

∫
T
µ|∇(F ′(µ)− ε2∆µ)|2 dx.

However, to our knowledge, unless µ is assumed to be strictly positive, nobody has

proven that F ε are actually sub-differentiable at µ, no matter how regular µ is.

For this reason, we introduce a functional

Gε(·) : P(T)→ [0,+∞],

which will play the role of |∂F ε|; we define it, using an auxiliary map Gε and an

auxiliary set T ε. For µ ∈ H1(T), we define

Gε(µ) = µF ′(µ)− F (µ) +
3ε2

2
|µx|2 − ε2(µµx)x (2.21)

(formally at least, we have Gε(µ)x = µ(F ′(µ)− ε2µxx)x) and

T ε(µ) = {g ∈ L2(T) : Gε(µ)x =
√
µg}

(possibly empty). We then set

Gε(µ) =


infg∈T ε(µ) ||g||2 if T ε(µ) 6= ∅,

+∞ otherwise.

(2.22)

Remark 3.2.2. We always have the inequality

Gε(µ) ≤
∫
T
µ|(F ′(µ)− ε2µxx)x|2 dx.

Indeed, if the right hand side is infinite, there is nothing to prove, and if the right

hand side is finite, then
√
µ(F ′(µ)−ε2µxx)x ∈ T ε(µ) and the inequality clearly holds.
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Remark 3.2.3. The idea, behind this cumbersome definition, is that

||Gε(µ)x||1 ≤ Gε(µ)

and when µ is regular in {µ > 0}, then

∫
µ>0

µ|(F ′(µ)− ε2µxx)x|2 dx ≤ G(µ).

The fact that the integral is only on the set {µ > 0} is a standard inconvenience in

the thin film equation literature and is the source of many difficulties in proving the

existence of curves of maximal slope of F ε.

We also define

F∗∗ : P(T)→ [0,+∞]

the functional

F∗∗[ν] =


∫
T F

∗∗(ν) dx if ν ∈ L1(T)

+∞ elsewhere.

F∗∗ is convex (see [76]) and its subdifferential is given by

∂W2F∗∗[µ] = ∇F ∗∗′(µ).

Therefore, we define the functional

|∇F∗∗| : P(T)→ [0,+∞] (2.23)

by

|∇F∗∗(µ)| =


(∫

T µ|(F
∗∗′(µ))x|2 dx

) 1
2 if (Q∗∗′(µ)) ∈ W 1,1(T)

+∞ elswhere,

where Q∗∗′(z) = zF ∗∗′(z)− F ∗∗(z). For more details, see Section 10.4.3 in [1].
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Remark 3.2.4. The subtlety of the doubling condition on F ∗∗ is omitted, because

we deal with measures that are bounded.

Remark 3.2.5. Because F∗∗ is convex, we have that |∇F∗∗| is a strong upper

gradient. (See Definition 1.2.11 and Definition 1.2.9)

3.2.3 Existence of νε and ν0

Given ε > 0 and an initial condition νεi , such that

F ε[νεi ] < +∞,

we consider νε(x, t) solution of equation (1.1) given by the following proposition:

Proposition 3.2.6. Given νεi ∈ P2(T), such that F ε[νεi ] < ∞, then there exists

νε ∈ L∞((0,∞);H1(T)) ∩ L2
loc((0,∞);H2(T)) ∩ C1,4

loc ({νε > 0}) such that

∫ ∞
0

∫
T
νεφt dxdt−

∫ ∞
0

∫
T
(ε2νεxx − F ′(νε))(νεφx)x dxdt = 0, (2.24)

for every φ ∈ C∞c ((0,∞)× T).

Moreover,

F ε[νε(t)] +
1

2

∫ t

0

G(νε)2 ds+
1

2

∫ t

0

|νε′|2 ds ≤ F ε[νεi ] ∀t > 0, (2.25)

where |νε′| is the size of the metric derivative of νε with respect to W2(T) (See

Definition 1.2.8).

Remark 3.2.7. We cannot claim that νε is a curve of maximal slope, as defined

in [1], since we do not prove that Gε is an upper gradient of F ε (See Definition 1.2.9).
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Remark 3.2.8. From the inclusion H2 ⊂ C1, 1
2 , we get that for almost every t,

νε(t) ∈ C1, 1
2 .

Proof. The existence of νε ∈ L∞((0,∞);H1(T))∩L2
loc((0,∞);H2(T)), that satisfies

(2.24) is a particular case of Theorem 1 in [59]. More precisely, νε is constructed

as any accumulation point of the discrete interpolation of the solutions of the ap-

propriate JKO scheme. The fact that νε ∈ C1,4
loc ({νε > 0}) follows from Schauder

estimates (see [77]).

The proof of (2.25) which plays a central role in the proof of our main result

is somewhat more technical, and is detailed in Section 3.8.

As the functional F∗∗ is convex then, using Theorem 1.2.22, we denote by ν0

the unique gradient flow of F∗∗ emanating from νi. Moreover, ν0 is also the unique

distributional solution to 
∂tν = ((F ∗∗′(ν))xν)x

ν(0) = νi.

(2.26)

It can be characterized by either the Energy inequality, also known as the maximal

slope condition

F∗∗[ν(t)] +
1

2

∫ t

0

|∇F∗∗(ν)|2 ds+
1

2

∫ t

0

|ν ′|2 ds ≤ F∗∗[νi] ∀t > 0, (2.27)

or the Energy equality

F∗∗[ν(t)] +
1

2

∫ t

0

|∇F∗∗(ν)|2 ds+
1

2

∫ t

0

|ν ′|2 ds = F∗∗[νi] ∀t > 0. (2.28)

3.3 Statement of the Result

The main result of this paper is the following:
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Theorem 3.3.1. Let {νεi }ε, νi ∈ P(T) be such that

F ε[νεi ] < +∞ and F∗∗[νi] < +∞.

Suppose that,

lim
ε→0+

νεi = νi in W2(T) (3.29)

and

lim
ε→0+

F ε[νεi ] = F∗∗[νi]. (3.30)

Then, for any T > 0,

lim
ε→0+

νε = ν0 in C0([0, T ];W2(T)),

lim
ε→0+

∫ T

0

(Gε(νε(t))− |∇F∗∗(ν0(t))|)2 dt = 0

and

lim
ε→0+

F ε[νε(t)] = F∗∗[ν0(t)] ∀t ≥ 0,

where νε is the solution of (1.1) given by Proposition 3.2.6 with initial condition νεi

and ν0 is the unique Gradient flow of F∗∗ (solution of (2.26)) with initial condition

νi, with respect to the metric W2(T).

As in [67], [68], [69], [70], [71] and [72] the key step in the proof of Theo-

rem 3.3.1 is to prove the lower-semicontinuity in the convergence of Gε to |∇F∗∗|,

more specifically we need to prove:

Theorem 3.3.2. Let {ρε}ε>0 be a sequence of functions in P(T) such that ρε ∈

C1(T) ∩ C4
loc{ρε > 0}, ρε → ρ0 in W2(T) and supεF ε(ρε) <∞, then

lim inf
ε→0+

Gε(ρε) ≥ |∇F∗∗|(ρ0). (3.31)
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The next two section is devoted to some preliminary compactness results,

which are used in the proof of Theorem 3.3.2 that can be found in Section 3.6. The

proof of Theorem 3.3.1 can be found in Section 3.7.

3.4 Preliminary to the proof of Theorem 3.3.2

3.4.1 Uniform L∞ estimate

The first step is to prove a uniform L∞ estimate.

Proposition 3.4.1. Let {ρε}ε>0 be a sequence of functions in P(T) such that

supεF ε[ρε] + Gε(ρε) ≤ C, then

sup
ε
||ρε||∞ ≤M <∞.

Moreover, up to a subsequence,

ρε ⇀ ρ0 weak-∗ L∞.

Proof. Consider Gε(ρε) as in (2.21):

Gε(ρε) = −ε2ρερεxx +
ε2

2
(ρεx)

2 +Q′(ρε),

with Q′ defined by (2.16). By Remark 3.2.3, we know that

||Gε(ρε)x||1 ≤ Gε(ρε) ≤ C.

Moreover,

∫
T
Gε(ρε) dx =

∫
T

3

2
ε2(ρεx)

2 +Q′(ρε) dx ≤ 3F ε[ρε] +D

∫
T
(F (ρε) + 1) dx,
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by (H1). Therefore, Gε(ρε) is uniformly in W 1,1(T), which implies

sup
ε
||Gε(ρε)||∞ <∞.

Now, let’s prove that ρε is uniformly in L∞: take x0, such that ρε(x0) = ||ρε||∞,

then ρx(x0) = 0 and ρxx(x0) ≤ 0. We should note that, because Gε(ρε) ≤ C, then

ρε ∈ C2, 1
2

loc ({ρε > 0}) and ρxx(x0) has a well defined value.

Now, we have the bound

||Gε(ρε)||∞ ≥ Gε(ρε)(x0) ≥ Q′(ρε(x0)),

which, by assumption (H2), gives a bound for

sup
ε
||ρε||∞.

Corollary 3.4.2. Under the assumptions of Proposition 3.4.1, Gε(ρε) is bounded

in H1(T) uniformly in ε. More precisely, we have the bound

||Gε(ρε)x||L2 ≤ ||ρε||∞Gε(ρε) ≤ C.

Therefore, Gε(ρε) ∈ C 1
2 (T) uniformly in ε.

3.4.2 Control of the oscillations in the good set

The key in the proof of Theorem 3.3.2 is to control the size of the oscillations

of ρε in the good sets. This will be given by the following Theorem:

Theorem 3.4.3. Let {ρε}ε>0 be a sequence of functions in P(T) such that supεF ε[ρε]+

Gε(ρε) ≤ C, then, for any L ≥ 0 there exists δ(η, C) > 0, independent of ε, such

that for any ε < ε0(η, C, L) and any pair of sequences xε, yε satisfying:
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• 0 < yε − xε < δ,

• |ρεx(xε)| < L and |ρεx(yε)| < L,

we have either

d(ρε(z),Σ) < η ∀z ∈ [xε, yε]

or

|ρε(xε)− ρε(yε)| < η.

Theorem 3.4.3 is similar to Lemma 5.5 in the paper by Belletini et al. [69].

The main difference in the proof is that in [69] they have control of the H1 norm of

eε(ρε) = F ′(ρε)− ε2ρεxx, (4.32)

while we only have control on

∫
T
|eε(ρε)x|2ρε dx, (4.33)

which is degenerate near {ρε = 0}.

Theorem 3.4.3 can be interpreted as a uniform lower semi-continuity for d(ρε,Σ):

Corollary 3.4.4. Let {ρε}ε>0 be a sequence of functions in P(T) such that supεF ε[ρε]+

Gε(ρε) ≤ C and that ρε → ρ0 in W2(T), then for x, any Lebesgue point of ρ0, there

exists εx and δ′ = δ′(d(ρ0(x),Σ)) such that for every ε < εx and y ∈ (x− δ′, x+ δ′),

we have

d(ρ0(y),Σ) >
d(ρ0(x),Σ)

2
.

Moreover, Ω := {ρ0 /∈ Σ} has an open representative.
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Proof of Corollary 3.4.4. We start with the following claim:

Claim: For any β > 0, we define δ(β) = δ(β,C)
4

and ε(β) = ε(C, β, 4M
δ

)

(Given by Theorem 3.4.3). If for some ε ∈ (0, εβ), we have that d(ρε(x),Σ) > 2β,

then d(ρε(y),Σ) > β for all y ∈ (x− δβ, x+ δβ).

Proof of the Claim: We take δ = δ(η, C) given by Theorem 3.4.3. Because

we know that supε |ρε| ≤ M , we have osc(x+ δ
4
,x+ δ

2
)ρ
ε ≤ M . Therefore, there exists

x1 ∈ (x+ δ
4
, x+ δ

2
) such that

|ρεx(x1)| ≤ 4M

δ
.

Similarly, there exists x2 ∈ (x− δ
2
, x δ

4
) such that |ρεx(x2)| ≤ 4M

δ
.

If ε < ε(C, η, 4M
δ

) given by Theorem 3.4.3, then we can estimate the difference

between the maximum and the minimum in [x2, x1] (they are either a critical point

or a boundary point). Therefore, we know that

osc(x2,x1)ρ
ε < η,

by taking η = β the Claim follows.

Because x is a Lebesgue point, for all r small enough, we know that∣∣∣∣ 1

2r

∫ x+r

x−r
ρ0(y)dy − ρ0(x)

∣∣∣∣ < d(ρ0(x),Σ)

6
(4.34)

We will fix rx <
1
2
δ
(
d(ρ0(x),Σ)

3

)
such that (4.34) holds.

By Proposition 3.4.1, we know that ρε → ρ0 weak-∗ L∞; therefore, there exists

εx such that for all ε < εx∣∣∣∣ 1

2rx

∫ x+rx

x−rx
ρε(y)dy − 1

2rx

∫ x+rx

x−rx
ρ0(y)dy

∣∣∣∣ < d(ρ0(x),Σ)

6
.
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So, if ε < εx, there exists xε ∈ (x− rx, x+ rx), such that

|ρε(xε)− ρ0(x)| < d(ρ0(x),Σ)

3
,

hence

d(ρε(xε),Σ) >
2

3
d(ρ0(x),Σ).

By the Claim, if ε is small enough, it follows that d(ρε(y),Σ) > d(ρ0(x),Σ)
3

for all

y ∈ (xε − δ
(
d(ρ0(x),Σ)

3

)
, xε + δ

(
d(ρ0(x),Σ)

3

)
). The result follows, because

(x−1

2
δ

(
d(ρ0(x),Σ)

3

)
, x+

1

2
δ

(
d(ρ0(x),Σ)

3

)
) ⊂ (xε−δ

(
d(ρ0(x),Σ)

3

)
, xε+δ

(
d(ρ0(x),Σ)

3

)
).

To prove Theorem 3.4.3 we start by looking at the behavior of ρε on the set

{ρε > h} with h > 0. This case follows exactly as Lemma 5.5 in [69]; our main

contribution here is to give a different proof in a simple case that makes the set

Σ = cl{F > F ∗∗} appear more naturally.

Lemma 3.4.5. Let {ρε}ε>0 be a sequence of functions in P(T) such that supεF ε[ρε]+

Gε(ρε) ≤ C, then for any h > 0 and L ≥ 0 there exists δ(η, C, h) > 0, independent

of ε, such that for any ε < ε0(η, C, h, L) and any pair of sequences xε, yε satisfying:

• 0 < yε − xε < δ,

• |ρεx(xε)| < L and |ρεx(yε)| < L,

• ρε(z) > h ∀z ∈ [xε, yε]

then we have either

d(ρε(z),Σ) < η ∀z ∈ [xε, yε]
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or

|ρε(xε)− ρε(yε)| < η.

Proof. We only give a sketch of the proof, which shows why the set Σ appears

naturally. For a complete proof see Lemma 5.5 in [69].

Since ρε(z) > h for every z ∈ (xε, yε) and ε, then

(eε(ρε))x = (F ′(ρε)− ε2ρεxx)x

is bounded in L2(xε, yε) uniformly in ε (see (4.32), (4.33) and Remark 3.2.3). More-

over, we have∫ yε

xε

eε(ρε)(z)dz =

∫ yε

xε

F ′(ρε(z))− ε2ρεxx(z)dz ≤ C + 2ε2L. (4.35)

Sobolev’s Embedding Theorem implies that eε(ρε) is also uniformly bounded in C
1
2 .

Without loss of generality, we will assume that ρε(xε) ≤ ρε(yε), and that

ρεx(xε), ρ
ε
x(yε) ≥ 0, if not we work with the closest minimum to xε and the closest

maximum to yε, inside the interval. We will also assume ρεxx(xε) ≥ 0 and ρεxx(yε) ≤ 0;

if this condition is not satisfied, we can take

x̃ε = inf{z : z ∈ (xε, yε) ∩ ρεxx(z) < 0 ∩ ρεx ≥ 0}.

Then, we obtain

|ρε(xε)− ρε(x̃ε)| ≤ Lδ.

If ρε(x̃ε)x > 0, then ρε(x̃ε)xx > 0. If ρε(x̃ε)x = 0 and ρε(x̃ε)xx < 0, then ρε(x̃ε) is a

maximum. If this happens, we consider z̃ε the closest minimum to x̃ε, so that we

get ρε(z̃ε)xx ≥ 0. We split the interval in three, (xε, x̃ε), (x̃ε, z̃ε) and (z̃ε, yε), and we

control each of the pieces separately.
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If ρεxx(yε) > 0, we can repeat the same arguments.

Multiplying eε(ρε) by ρεx(z) and integrating between xε and yε we get the

following

∫ yε
xε
eε(ρε)ρεx dz = ε2

2
(|ρεx(yε)|2 − |ρεx(xε)|2) + F (ρε(yε))− F (ρε(xε))

≤ ε2

2
L2 + F (ρε(yε))− F (ρε(xε)).

On the other hand, integrating by parts we also find

∫ yε

xε

eε(ρε)ρεx dz = −
∫ yε

xε

eεx(ρ
ε)ρε dz + [eε(ρε)ρε]yεxε .

Because eεx is uniformly in L2 and ρε uniformly in L∞, we have∣∣∣∣∫ yε

xε

eεx(ρ
ε)ρε dz

∣∣∣∣ ≤ C(yε − xε)
1
2 ≤ Cδ

1
2 .

We decompose

[eε(ρε)ρε]yεxε = eε(ρε)(xε)[ρ
ε(yε)− ρε(xε)] + [eε(ρε)]yεxερ

ε(yε); (4.36)

using that eε is uniformly in C
1
2 , we see that

|[eε(ρε)]yεxερ
ε| ≤ C(yε − xε)

1
2 ≤ Cδ

1
2 .

Combining the five equations above, we see that given any λ > 0, we can choose ε

and δ small enough, such that

F (ρε(xε)) + eε(ρε)(xε)(ρ
ε(yε)− ρε(xε)) + λ ≥ F (ρε(yε)).

Using the assumption ρε(yε) ≥ ρε(xε), the definition of eε(ρε) and the fact that

ρεxx(xε) ≥ 0, we obtain

F (ρε(xε)) + F ′(ρε(xε))(ρ
ε(yε)− ρε(xε)) + λ ≥ F (ρε(yε)). (4.37)
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Exchanging the roles of xε and yε in (4.36) and using the fact that ρεxx(yε) ≤ 0,

we obtain similarly

F (ρε(yε))− F ′(ρε(yε))(ρε(yε)− ρε(xε)) + λ ≥ F (ρε(xε)). (4.38)

To use these conditions analytically, we define the sets

UF
λ (A) = {B ∈ R+ : F (A) + F ′(A)(B − A) + λ ≥ F (B)},

so conditions (4.37) and (4.38) can be reformulated as:

ρε(yε) ∈ UF
λ (ρε(xε)) and ρε(xε) ∈ UF

λ (ρε(yε)). (4.39)

We now finish the proof under the extra assumption that Σ∩ (h,∞) contains

only one interval:

By (H4), we know that for any fixed η > 0, F is uniformly convex in {p ∈

R+ : d(p,Σ) ≥ η}; therefore we can choose λ0 such that for all λ < λ0, we have

UF
λ (A) ⊂ (A− η,A+ η) for all A ∈ {p ∈ R+ : p > h ∩ d(p,Σ) ≥ η}. (4.40)

If d(ρε(xε),Σ) > η, then, with A = ρε(xε), (4.39) and (4.40) imply

|ρε(xε)− ρε(yε)| < η.

The same holds for d(ρε(yε),Σ) > η.

On the other hand, if d(ρε(xε),Σ) < η and d(ρε(xε),Σ) < η, we take

z = argmax
t∈[xε,yε]

d(ρε(t),Σ);

if d(ρε(z),Σ) < η, we are done. If d(ρε(z),Σ) > η, because we assume that Σ∩(h,∞)

is an interval, we know that ρεx(z) = 0. Therefore, the intervals (xε, z) and (z, yε)
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satisfy the hypothesis of the Lemma. Then, arguing as before, because d(ρε(z),Σ) >

η, we have

|ρε(xε)− ρε(z)| < η and |ρε(yε)− ρε(z)| < η.

By our definition of z, we can conclude

|ρε(xε)− ρε(yε)| < η,

which proves the Lemma with the extra assumption of Σ ∩ (h,∞) contains one

interval.

A more convoluted argument, as the one in the proof of Theorem 3.4.3 (below),

can be made for the cases when Σ ∩ (h,∞) contains more than one interval. It is

not included here, as a proof of this Lemma can already be found in [69] and the

ideas of the argument can be found in the proof below.

We now turn to the proof of Theorem 3.4.3:

Proof of Theorem 3.4.3. We prove Theorem 3.4.3 by contradiction. Due to Lemma 3.4.5,

we know that the theorem would be proven if we can prove that there is no η0 > 0,

such that there exist a sequence of εi → 0 and sequences of points {xi}, {yi}, that

satisfy for all i

• |yi − xi| < 1
i

• max(|ρεix (xi)|, |ρεix (yi)|) < L

• ρεi(xi)→ 0

• ρεi(yi) > b1 + η0 (See (H3)).
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So, let’s assume that such η0 exists and derive a contradiction.

Without loss of generality, we assume, as in the proof of Lemma 3.4.5, that

ρεix (xi) ≥ 0, ρεix (yi) ≥ 0, ρεixx(xi) ≥ 0 and ρεixx(yi) ≤ 0.

From the proof of Proposition 3.4.1 we know that the function

Gε(ρε) = −ε2ρερεxx + ε2ρε2x +Q′(ρε)

is uniformly in C
1
2 , using the fact that ρεixx(xi) ≥ 0 and ρεixx(yi) ≤ 0, we can conclude

that

Q′(ρεi(yi)) ≤ Q′(ρεi(xi)) + C
1

i
1
2

+
εi

2

2
L2.

Moreover, since ρε(xi)→ 0, for every κ > 0, there exists i0 such that

Q′(ρεi(xi)) + C
1

i
1
2

+
εi

2

2
L2 < κ,

for all i > i0. This implies that Q′(ρεi(yi)) < κ, for all i > i0.

The first observation is that Q′(b1) = b1F
′(b1) − F (b1) = 0. This is just

saying that the tangent of F at b1 intersects the origin, which is satisfied because

b1 = inft>0{F (t) = F ∗∗(t)} (for a picture see Figure 1).

The second observation is that by (H4), we have
∫ s2
s1
tF ′′(t) =

∫ s2
s1
Q′′(t) > 0

for s1, s2 ∈ (b1,m0), where m0 is defined in (2.20). We deduce that, for every

η > 0, there exists κ0, such that if A ∈ (b1,m0) and Q′(A) < κ0, then A − b1 < η.

Therefore, we get will get a contradiction, if we show that ρεi(yi) < m0.

Claim I:If i is large enough, then ρεi(yi) < m0.

Again, we will prove Claim I by contradiction; if ρε(yi) ≥ m0, then there

exists zi0 ∈ [xi, yi] such that ρi(zi0) = m0. If we assume also that ρεixx(z
i
0) ≤ 0, then
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proceeding as above, we get

0 < Q′(m0) ≤ Q′(ρεi(xi)) + C
1

i
1
2

+
εi

2

2
L2,

and taking i large enough it yields our desired contradiction. Therefore, we want to

prove that we can indeed assure that ρεixx(z
i
0) ≤ 0, for i large enough:

Claim II: Let

z0 = sup{t ∈ (xi, yi) : ρεi(t) = m0}. (4.41)

If

F (m0) + F ′(m0)(ρεi(yi)−m0) < F (ρεi(yi))− C(yi − z0)
1
2 (ρεi(yi)−m0), (4.42)

for some C independent of i, then for all i big enough

ρεixx(z0) ≤ 0.

Proof of Claim II:

Due to the assumption on z0, we know that ρεi > m0 in (z0, yi). Therefore, we

know that eεi(t) = F ′(ρεi(t)) − ε2ρεixx(t) is uniformly in H1(z0, yi) (see (4.35)). We

perform the following calculation∫ yi
z0
eεi(t)ρεix (t)dt = F (ρεi(yi))− F (ρεi(z0))− εi

2

2
|ρεix (yi)|2 + εi

2

2
|ρεix (z0)|2

≥ F (ρεi(yi))− F (m0)− ε2i
2
L2.

Using the same arguments used to derive (4.37) in the proof of Lemma 3.4.5,

we get

eεi(z0)(ρεi(yi)−ρεi(z0))+C(yi−z0)
1
2 (ρεi(yi)−ρεi(z0)) ≥ F (ρεi(yi))−F (ρεi(z0))−ε

2
i

2
L2.
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If ρεixx(z0) ≥ 0 , then F ′(ρεi(z0)) ≥ eεi(z0), and so

F (ρεi(z0))+F ′(ρεi(z0))(ρεi(yi)−ρεi(z0)) ≥ F (ρεi(yi))−C(yi−z0)
1
2 (ρεi(yi)−ρεi(z0))−ε

2
i

2
L2.

Since
ε2i
2
L2 → 0, if i is large enough this contradicts (4.42), and thus proves Claim

II.

To finish the proof of Claim I, we have to show that if z0 defined by (4.41)

exist (in particular, if ρεi(yi) ≥ m0), then (4.42) holds. First, we note that

F (m0) + F ′(m0)(t−m0) < F (t) ∀t 6= m0,

due to (H4). Therefore, there exists κ0 > 0 such that

F (m0) + F ′(m0)(t−m0) < F (t)− κ0 for every t s.t. Q′(t) < Q′(m0)
2

(the choice of Q′(m0)
2

is arbitrary).

Recalling that

lim sup
i→∞

Q′(ρεi(yi)) ≤ 0,

we can take i large enough such that

Q′(ρεi(yi)) <
Q′(m0)

2

and

C

i
1
2

(ρεi(yi)− ρεi(z0)) < κ0,

so we can conclude that (4.42) holds and Claim II yields

ρεixx(z
i
0) ≤ 0.

This completes the proof of Claim I and of the Theorem.
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3.5 H1 estimate in the good set Ω

We want to show that ρε is bounded in H1
loc(Ω) uniformly in ε, with Ω = {ρ0 /∈

Σ}, in other words, that ρε does not oscillate in the ”good” limiting set. We start

with the following proposition:

Proposition 3.5.1. Let {ρε}ε>0 be a sequence of functions in P(T) such that

supεF ε[ρε] + Gε(ρε) ≤ C and ρε → ρ0 in W2(T), given φ ∈ D(Ω), there exists

ε0 > 0 such that for every ε < ε0, we have F ′′(ρε) ≥ λφ and ρε ≥ λφ in the support

of φ, for some constant λφ > 0 independent of ε.

Proof. By assumption, if x ∈ Ω, then d(ρ0(x),Σ(F )) > 0. By Corollary 3.4.4, for

any Lebesgue point x ∈ Ω there exists εx and δx such that for every ε < εx and

every z ∈ (x− δx, x+ δx)

d(ρε(z),Σ) >
d(ρ0(x),Σ)

3
.

Now, the family of intervals {(x − δx, x + δx)}x∈Ω̂, where Ω̂ is the Lebesgue

points of Ω, is an open covering of the support of φ, therefore by compactness there

exists a finite sub-covering, which proves the proposition.

Using Proposition 3.5.1 we can now prove:

Proposition 3.5.2. Let {ρε}ε>0 be a sequence of functions in P(T) such that

supεF ε[ρε] + Gε(ρε) ≤ C and ρε → ρ0 in W2(T), for any K ⊂ Ω compact, there

exists C and εK > 0 such that∫
K

|ρεx|2 dx < C ∀ε < εK .
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Therefore, up to a subsequence, ρε converges pointwise to ρ0 a.e. in Ω.

Proof. Take φ ∈ D(Ω), with φ ≥ χK . We start with the following computation,∫
T
ρεx∂x[F

′(ρε)−ε2ρεxx]φ dx =

∫
T
F ′′(ρε)|ρεx|2φ dx+ε2

∫
T
|ρεxx|2φ dx+ε2

∫
T
ρεxρ

ε
xxφx dx,

from which we deduce∫
T F

′′(ρε)|ρεx|2φ +ε2
∫
T |ρ

ε
xx|2φ dx = −ε2

∫
T ρ

ε
xρ

ε
xxφx dx+

∫
T ρ

ε
x∂x[F

′(ρε)− ε2ρεxx]φ dx

= ε2

2

∫
T |ρ

ε
x|2φxxz dx+

∫
T ρ

ε
x∂xx[F

′(ρε)− ε2ρεxx]φ dx

≤ C(φxx)ε
2
∫
T |ρ

ε
x|2 dx+

(∫
T |ρ

ε
x|2φ dx

) 1
2
(∫

T φ|∂x[F
′(ρε)− ε2ρεxx]|2 dx

) 1
2

≤ Cε2
∫
T |ρ

ε
x|2 dx+

λφ
2

∫
T |ρ

ε
x|2φ dx+ C(λφ)

∫
T φ|∂x[F

′(ρε)− ε2ρεxx]|2 dx,

with the constant λφ given by Proposition 3.5.1. Therefore, we get:(
infx∈supp{φ} F

′′(ρε(x))− λφ
2

) ∫
T |ρ

ε
x|2φ dx ≤ Cε2

∫
T |ρ

ε
x|2 dx

+C(λφ)
∫
supp{φ} |∂x[F

′(ρε)− ε2ρεxx]|2 dx

Using Proposition 3.5.1 we can conclude that in the support of φ we have that

F ′′(ρε) > λφ and that ρε > λφ, for ε < ε0, so we deduce∫
K

|ρεx|2 dx ≤
∫
T
|ρεx|2φ dx ≤ C(φ)F ε[ρε] +

C(λφ)

λφ
Gε(ρε) ≤ C ∀ε < ε0.

Proposition 3.5.3. Let {ρε}ε>0 be a sequence of functions in P(T) such that

supεF ε[ρε] + Gε(ρε) ≤ C and ρε → ρ0 in W2(T), then

(F ′(ρε)− ε2ρεxx)xρ
ε → Q′(ρ0)x in D′(Ω).

Proof. Fix φ ∈ D(Ω), then using that ρF ′′(ρ) = Q′′(ρ) with an integration by parts,

we get∫
T
(F ′(ρε)x− ε2ρεxxx)ρ

εφ dx = −
∫
T
Q′(ρε)φx dx+ ε2

∫
T
ρεxxρ

ε
xφ dx+ ε2

∫
T
ρεxxρ

εφx dx

(5.43)
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The first term converges to what we are looking for

lim
ε→0
−
∫
T
Q′(ρε)φx dx = −

∫
T
Q′(ρ0)φx dx,

by Lebesgue Dominated convergence and Proposition 3.5.2.

It remains to show that the last two terms in (5.43) go to zero. Integrating by

parts again, we get

ε2

∫
T
ρεxxρ

ε
xφ dx+ ε2

∫
T
ρεxxρ

εφx dx = −3

2
ε2

∫
T
|ρεx|2φx dx− ε2

∫
T
ρεxρ

εφxx dx

The first term goes to zero, by applying Proposition 3.5.2. The second term can be

re-written as

1

2
ε2

∫
T
|ρε|2φxxx dx,

which goes to zero, because ρε is in L∞ uniformly.

3.6 Proof of Theorem 3.3.2

Proof. To begin with, we assume that lim inf Gε(ρε) <∞, otherwise there is nothing

to prove. Therefore, up to relabeling, we can consider ρε such that

sup
ε
F ε(ρε) + Gε(ρε) <∞.

By Proposition 3.4.1, we know that, up to subsequence, ρε ⇀ ρ0 weak-∗ L∞; we

define Ω = {ρ0 /∈ Σ}. We start with the following bound: using Proposition 3.5.1,

for any K ⊂ Ω compact, we have, for all ε small enough

Gε(ρε)2 ≥
∫
{ρε>0}

|(F ′(ρε)− ε2ρεxx|2ρε dx ≥
∫
K

|(F ′(ρε)− ε2ρεxx)x|2ρε dx.
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Furthermore, we have

∫
K

|(F ′(ρε)−ε2ρεxx)x|2ρε dx ≥ 2

∫
T
(F ′(ρε)−ε2ρεxx)xφρ

ε dx−
∫
T
φ2ρε dx for all φ ∈ D(K),

which implies

lim inf
ε→0

Gε(ρε)2 ≥ lim inf
ε→0

[
2

∫
T
(F ′(ρε)− ε2ρεxx)xφρ

ε dx−
∫
T
φ2ρε dx

]
for all φ ∈ D(K).

By Proposition 3.5.3, we deduce

lim inf
ε→0

Gε(ρε)2 ≥ sup
φ∈D(K)

−2

∫
T
Q′(ρ0)φx dx−

∫
T
φ2ρ0 dx.

By Proposition 3.5.2, and the lower semi continuity of the H1 seminorm we also

know that ρ0 is in H1
loc(Ω), so we can integrate by parts

limε Gε(ρε)2 ≥ supφ∈D(K) 2
∫
TQ

′(ρ0)xφ dx−
∫
T φ

2dρ0 dx

= supφ∈D(K) 2
∫
T F

′(ρ0)xρ0φ dx−
∫
T φ

2dρ0 dx

= ||F ′(ρ0)x||2L2
ρ0

(K).

Taking K → Ω we obtain

lim
ε
|Gε|2(ρε) ≥ ||F ′(ρ0)x||2L2

ρ0
(Ω).

The rest of the proof is devoted to proving

||F ′(ρ0)x||2L2
ρ0

(Ω) = |∇F∗∗|(ρ0).

First, to have ||F ∗∗′(ρ0)x||2L2
ρ0

(T) = |∇F∗∗|(ρ0), we need to prove that Q∗∗′ ∈

W 1,1 (see (2.22)). We prove this by proving that

Q∗∗′(ρ0)x = Q∗∗′(ρ0)x1Ω in D′(T).
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Since ρε is continuous, if ρε(x) ∈ Σi and ρε(y) ∈ Σj, there exists z ∈ (x, y)

such that d(ρε(z),Σ) ≥ infi 6=j
d(Σi,Σj)

2
. By Corollary 3.4.4, we know that d(ρε,Σ) is

uniformly lower semi continuous, therefore there exists δ0, independent of ε, such

that d(ρε(t)),Σ) > 0, for any t ∈ (z0 − δ0, z0 + δ0), then |x− y| > 2δ0. This implies

that the sets Ci = {ρ0 ∈ Σi} are at a non zero distance from each other.

We define, as an auxiliary function, w in Σ by

w(x) = Q∗∗′(Σi) if x ∈ Ci,

and we extend it to the whole of T by linear interpolation. Since the sets Ci are

separated, the function w is Lipschitz. Moreover, Q∗∗′(ρ0) = w in Ωc, then for every

φ ∈ D(T) ∫
T
(Q∗∗′(ρ0)− w)φx dx =

∫
Ω

(Q∗∗′(ρ0)− w)φx dx.

Integrating by parts we have no boundary term, and so∫
T
(Q∗∗′(ρ0)− w)φx dx = −

∫
Ω

(Q∗∗′(ρ0)− w)xφ dx.

Because w is Lipschitz and wx = 0 in Σ, then∫
Ω

wxφ dx =

∫
T
wxφ dx = −

∫
T
wφx dx.

Therefore, we obtain that∫
T
Q∗∗′(ρ0)φx dx = −

∫
Ω

Q∗∗′(ρ0)xφ dx,

for every φ ∈ D(T).

Similarly, we can prove that F ∗∗′(ρ0)x = F ′(ρ0)x1Ω, so we obtain the desired

equality:

||F ′(ρ0)x||2L2
ρ0

(Ω) = |∇F∗∗|(ρ0) = ||F ∗∗′(ρ0)x||2L2
ρ0

(T)).
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3.7 Proof of Theorem 3.3.1

Proof. To be able to apply the framework developed by Sandier-Serfaty [66], we

have to prove the compactness of the family νε with respect to time.

Because the diameter of T is finite we know that the diameter of W2(T) is

also finite, then

νε ∈ L∞([0, T ];W2(T)).

By the energy inequality (2.25), we know that∫ T

0

|νε′(t)|2 dt

is uniformly bounded and therefore we know that

νε is uniformly bounded in H1((0, T );W2(T)).

By [78], we deduce that νε is precompact in L2([0, T ];W2(T)), so up to a subsequence

νε → µ in L2([0, T ];W2(T)).

Also, ∫ T

0

|νε′(t)|2 dt = sup
h∈(0,T )

∫ T−h

0

d2(νε(t), νε(t+ h))

h
dt

is lower-semicontinuous with respect to the convergence in L2([0, T ];W2(T)), hence

lim inf
ε→0

∫ T

0

|νε′(s)|2ds ≥
∫ T

0

|µ′(s)|2ds. (7.44)

Furthermore, by Arsela-Ascoli, we also know that up to a further subsequence,

νε → µ in C0([0, T ];W2(T)).
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In particular,

νεi → νi = µ(0).

Now, we only have to follow the proof in [66] and obtain that µ is the gradient

flow of F∗∗ with initial condition νi:

By equation (2.25), we know that

F ε[νεi ]−F ε[νε(t)] ≥
1

2

∫ t

0

Gε(νε)2 ds+
1

2

∫ t

0

|νε′|2 ds

Taking the limit ε→ 0, using Fatou’s Lemma, Theorem 3.3.2 and (7.44) we get that

lim inf
ε→0+

(F ε[νεi ]−F ε[νε(t)]) ≥
1

2

∫ t

0

|∇F∗∗(µ)|2 ds+
1

2

∫ t

0

|µ′|2 ds. (7.45)

By Young’s inequality, we know that

1

2

∫ t

0

|∇F∗∗(µ)|2 ds+
1

2

∫ t

0

|µ′|2 ds ≥
∫ t

0

|∇F∗∗(µ)||µ′| ds. (7.46)

Because F∗∗ is convex with respect to the geodesics in W2(T), we can apply Theo-

rem 1.2.12 to obtain

∫ t

0

|∇F∗∗(µ)||µ′| ds ≥ F∗∗[µ(0)]−F∗∗[µ(t)]. (7.47)

Since limεF ε[νεi ] = F∗∗[νi] = F∗∗[µ(0)] by the well preparadness assumption,

(7.45), (7.46) (7.47) imply

lim supF ε[νε(t)] ≤ F∗∗[µ(t)].

The reverse inequality comes from the Γ-convergence of F ε to F∗∗, so we have proven

that

limF ε[νε(t)] = F∗∗[µ(t)],
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and the inequalities (7.45), (7.46) (7.47) are in fact equalities. In particular (7.45)

yields

F∗∗[νi]−F∗∗[µ(t)] =
1

2

∫ t

0

|∇F∗∗(µ)|2 ds+
1

2

∫ t

0

|µ′|2 ds

for all t > 0. Finally, by Theorem 1.2.22, we deduce that ν0 = µ.

3.8 Lower semi-continuity of Gε

In this section, we complete the proof of Proposition 3.2.6

Proof of Proposition 3.2.6(continuation). To lighten the notations, we give a proof

for the case ε = 1, and drop the ε dependence.

The existence of solutions to (2.24) is proved by considering the uniform JKO

scheme starting from νi, with step τ > 0. Namely, we define inductively

µ0
τ = ν1

i , µn+1
τ = argmin

ρ∈P(T)

{d2
2(µnτ , ρ) + 2τF(ρ)}. (8.48)

Following the arguments made in Section 7.4 in [79], we know that the a part of

the Euler-Lagrange condition associated to the minimization at every step of (8.48)

is given by

τ(−∆µn+1
τ ) = ψ + C on {µn+1

τ > 0},

where ψ is the associated optimal Kantorovich potential to the dual problem of

optimal transport from µn+1
τ to µnτ . From the classical theory of optimal transport,

we know that |x|
2

2
+ ψ(x) is convex, which means ψ is Lipschitz. Therefore, µn+1

τ ∈

W 2,∞
loc ({µn+1

τ > 0})
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The existence of a solution to (2.24) follows from Theorem 1 in [59], proven

by defining ν as any accumulation point of the piecewise constant interpolation of

{µnτ }∞n=0. Note that ν may not be unique, so we fix such a ν and a corresponding

sequence of τ → 0, for which the constant interpolation of {µnτ }∞n=0 converges to ν.

Subsequently, we define the De Giorgi variational interpolation by

µτ (t) = argmin
ρ∈P(T)

{d2
2(µnτ , ρ) + 2(t− (n− 1)τ)F(ρ)} when t ∈ ((n− 1)τ, nτ).

By Lemma 3.1.3 and 3.2.2 in [1], we know that F is strongly subdifferentiable at

µτ (t) for every t > 0 (see Definition 1.2.18), that µτ (t) → ν(t) for all t ≥ 0, and

that for every n ∈ N,

F(µnτ ) +
1

2τ

n∑
k=1

d2
2(µnτ , µ

n−1
τ ) +

1

2

∫ nτ

0

|∂F(µτ (t))|2 dt ≤ F(µ0
τ ) = F(νi).

Moreover, by Proposition 4.1 in [59], we know that µτ (t) ∈ H2 for every t > 0.

Therefore, because of the strong subdifferentiability we know that by Lemma 1.2.19

and Remark 3.2.2

G(µτ (t))
2 ≤ |∂F(µτ (t))|2 =

∫
T
|(F ′(µτ (t))− µτxx(t))x|2µτ (t) dx ∀t > 0.

We deduce

F(µnτ ) +
1

2τ

n∑
k=1

d2
2(µnτ , µ

n−1
τ ) +

1

2

∫ nτ

0

G(µτ (t))
2 dt ≤ F(νi).

and the Energy inequality (2.25) follows by taking the limit τ → 0. More precisely,

the metric derivative term in the Energy inequality (2.25) follows exactly as in the

proof of Theorem 2.3.3 in [1]. The term involving G follows from Fatou’s Lemma

and from the lower semicontinuity proven in Lemma 3.8.1 below, using that µτ (t) ∈

H2(T)∩W 2,∞
loc ({µτ (t) > 0}) for every t > 0 and that µτ (t)→ ν(t) for every t ≥ 0.

89



Lemma 3.8.1. Given {µn}n∈N, such that µn ∈ H2∩W 2,∞
loc {µn > 0}, supn∈N |µn|H1 <

C and that µn → µ in W2(T), then

lim inf
n→∞

Gε(µn) ≥ Gε(µ)

Proof of Lemma 3.8.1. Without loss of generality, we will assume that the potential

F = 0 and ε = 1 and that lim infn→∞ G(µn) < ∞. We can always take µni , such

that

lim
i→∞
G(µni) = lim inf

n→∞
G(µn) and sup

i
G(µni) ≤ C for some C.

From now on, we drop the dependence on i.

Because the µn are probability measures, which are uniformly bounded in H1,

we know that

sup
n
||µn||∞ < C.

Let gn ∈ T (µn) be such that ||gn||2 = G(µn) (see (2.22)) (we can always find

such a gn, because T (µn) is closed) and by definition,∫
|G(µn)x|2 ≤ ||µn||∞||gn||22 = ||µn||∞G(µn)2 ≤ C.

Moreover, as ∫
G(µn) =

3

2
|µn|2H1 < C,

we conclude that

sup
n
||G(µn)||H1(T) < C,

in particular G(µn) is bounded in L∞ and in C
1
2 (T) uniformly in n.

Now, as µn ∈ H2(T) ⊂ C1, 1
2 (T), we know that if µnx(x0) 6= 0, then µn(x0) > 0.

So, if x0 is a max of |µnx|, then, by the hypothesis that µn ∈ W 2,∞
loc {µn > 0}, we
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have enough regularity to assure that µnxx(x0) = 0. Then, we can bound

||µnx||2∞ = |µnx(x0)|2 = 2Gλ(x0) ≤ 2||Gλ||∞ ≤ C.

Therefore,

sup
n
||µnx||∞ ≤ C,

so we can conclude that µ is a Lipschitz function and

||µ||Lip ≤ C.

Up to subsequence, we know that

G(µn)→ H in Cα for all α < 1
2
,

and

gn → g weakly in L2.

Because

G(µn)x =
√
µngn

and µn → µ uniformly, we can pass to the limit in the sense of distributions to get

Hx =
√
µg.

Moreover, we know that

||g||2 ≤ lim inf ||gn||2,

so it only remains to prove that

g ∈ T (µ),
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or, equivalently, that

H = G(µ).

The rest of the proof is devoted to proving this equality.

Because µn ∈ C3
loc({µn > 0}), we can use Remark 3.2.3 to obtain∫

µn>0

µn|µnxxx|2 dx ≤ G(µn),

then we have, up to subsequence,

µn → µ ∈ C2({µ > λ}).

Therefore,

G(µ) = H in {µ > 0}.

Of course, the set {µ = 0} requires a more delicate argument.

First, we prove that G(µ) = 0 a.e. in {µ = 0}. By rewriting

G(µn) = −
(
µ2
n

2

)
xx

+
3

2
|µnx|2, (8.49)

and using the fact that µn is uniformly Lipschitz, then we can say that

sup
n
||µ2

n||W 2,∞ < C,

therefore

µ2 ∈ W 2,∞.

Stampacchia’s lemma states that if f ∈ W 1,p, then fx = 0 a.e. in {f = 0} (See

Lemma A.4. Chapter II [60]), hence G(µ) = 0 a.e. in {µ = 0}.

Therefore, we only need to show that H = 0 a.e. in {µ = 0}. Instead, we

prove something seemingly stronger, more specifically, we prove that if x0 is such
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that |H(x0)| = δ 6= 0 and µ(x0) = 0, then there exists a non-trivial interval (a0, b0)

around x0 such that H = G(µ) in (a0, b0). The rest of the proof is devoted to proving

this last statement.

Let x0 be such that |H(x0)| = δ 6= 0 and µ0(x0) = 0, then since G(µn)

converges to H uniformly there exists n0, such that n > n0 implies

|G(µn)(x0)| ≥ δ

2
.

Given β > 0, to be chosen later, we consider the open sets

Anβ = {x : µn < β},

and

A∞β = {x : µ < β} = ∪i(aβi , b
β
i ),

written as the union of its connected components. From now on, we suppress the

dependence on β on the end points of the intervals.

Since x0 ∈ A∞β , there exists a unique i0 which we take to be 0, such that

x0 ∈ (a0, b0),

and

µ(a0) = µ(b0) = β.

As µn → µ uniformly, then for all n big enough

(a0, b0) ⊂ An2β.

and

µn(a0) >
β

2
, µn(b0) >

β

2
.
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Using the definition of G(µn), we can bound the oscillations of G(µn) in the set

osc(a0,b0)G(µn) ≤
∫ b0

a0

|G(µn)x| ≤ G(µn)
1
2

(∫ b0

a0

µn

) 1
2

≤ C
√

2β.

Then,

|G(µn)| ≥ G(µn)(x0)− C
√

2β in (a0, b0).

By taking β small enough, we deduce that

|G(µn)| ≥ κ > 0 in (a0, b0).

If µn would vanish at any point in (a0, b0), it would contradict the hypothesis

that µn ∈ H2. We prove this by contradiction, if assume that µn vanishes at

y0 ∈ (a0, b0), then, because µn ∈ C1, 1
2 , µnx(y0) = 0 and there exists ε0 such that

|µnx(x)|2 < κ for every x ∈ (y0 − ε0, y0 + ε0).

Therefore,

|µn(x)µnxx(x)| ≥ |G(µn)| − |µnx|
2

2
≥ κ

2
for every x ∈ (y0 − ε0, y0 + ε0).

Finally, using that µn is Lipschitz and µn(y0) = 0 we know that

µn(x) ≤ C(x− y0).

We deduce that

|µnxx(x)|2 ≥ C

(x− y0)2
for every x ∈ (y0 − ε0, y0 + ε0),

which is not integrable at y0 and thus contradicts the fact that µn is in H2. So, we

can conclude that

µn > 0 in (a0, b0).
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Now we apply Theorem 4.3 of Bernis’ integral inequalities [80], which proves

that

|v|W 2,3(a0,b0) ≤
∫ b0

a0

v|vxxx|2 dx

for v ∈ C3, with v > 0 in (a0, b0), such that v′(a0) = v′(b0) = 0.

Note that we cannot use this result directly because we do not know that

µ′n(a0) = µ′n(b0) = 0. So, to be able to apply the Theorem, we consider φn smooth,

such that

• φn(a0) = φn(b0) = β
4
.

• φ′n(a0) = µn(a0), φ′n(b0) = µn(b0).

• φn < max
(
0, β

2
− |µn|lip(x− a0), β

2
− |µn|lip(b0 − x)

)
< µn.

Because ||µnx||∞ is uniformly bounded, we get that φn is uniformly bounded in W 2,3

and H3. Moreover, vn = µn − φn satisfies the hypothesis of [80], then

|vn|W 2,3(a0,b0) ≤
∫ b0

a0

(µn − φn)|(µn − φn)xxx|2 dx ≤
∫ b0

a0

µn|µnxxx|2 dx+ |µn|∞|φn|H3 .

Also,

|µn|W 2,3(a0,b0) ≤ |vn|W 2,3(a0,b0) + |φn|W 2,3(a0,b0),

so we finally deduce the following uniform bound for µn in the interval (a0, b0):

sup
n
||µn||W 2,3(a0,b0) < C.

This implies, in particular, that up to subsequence, µn converges to µ uniformly

in C1,α and so

µnx → µx uniformly in (a0, b0),
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which combined with the fact that

(µ2
n)xx → (µ2)xxin D′,

yields, by passing to the limit in (8.49)

G(µn)→ G(µ) in (a0, b0).

So, in particular

H = G(µ) in (a0, b0).

96



Bibliography

[1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric
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[14] José A. Carrillo, Alina Chertock, and Yanghong Huang. A finite-volume method
for nonlinear nonlocal equations with a gradient flow structure. Communica-
tions in Computational Physics 17.01 : 233-258, 2015.

[15] M. R. D’Orsogna, Y. Chuang, A. Bertozzi, and L. Chayes. Self-propelled par-
ticles with soft-core interactions: patterns, stability and collapse. Phys. Rev.
Lett, 96:104302, 2006.

[16] A. J. Bernoff and C. M. Topaz. A primer of swarm equilibria. SIAM J. Appl.
Dyn. Syst, 10(1):212–250, 2011.

[17] T. Kolokolnikov, J. A. Carrillo, A. Bertozzi, R. Fetecau, and M. Lewis. Emer-
gent behaviour in multi-particle systems with non-local interactions. Physica
D: Nonlinear Phenomena, 260:1–4, 2013.

[18] R. Choksi, R. Fetecau, and I. Topaloglu. On minimizers of interaction func-
tionals with competing attractive and repulsive potentials. Preprint, 2013.

[19] H. Li and G. Toscani. Long–time asymptotics of kinetic models of granular
flows. Arch. Rat. Mech. Anal, 172(3):407–428, 2004.

[20] J. A. Carrillo, R. J. McCann, and C. Villani. Kinetic equilibration rates for
granular media and related equations: entropy dissipation and mass transporta-
tion estimates. Rev. Mat. Iberoamericana, 19(3):971–1018, 2003.

[21] J. A. Carrillo, R. J. McCann, and C. Villani. Contractions in the 2-wasserstein
length space and thermalization of granular media. Arch. Rat. Mech. Anal,
179:217–263, 2006.

[22] A. Mogilner and L. Edelstein-Keshet. A non-local model for a swarm. J. Math.
Bio, 38:534–570, 1999.

[23] A. Mogilner, L. Edelstein-Keshet, L. Bent, and A. Spiros. Mutual interac-
tions, potentials, and individual distance in a social aggregation. J. Math. Biol,
47(4):353–389, 2003.

[24] J. P. K. Doye, D. J. Wales, and R. S. Berry. The effect of the range of the
potential on the structures of clusters. J. Chem. Phys, 103:4234–4249, 1995.

[25] D. J. Wales. Energy landscapes of clusters bound by short-ranged potentials.
Chem. Eur. J. Chem. Phys, 11:2491–2494, 2010.

98



[26] M. F. Hagan and D. Chandler. Dynamic pathways for viral capsid assembly.
Biophysical Journal, 91:42–54, 2006.

[27] A. Bertozzi, J. A. Carrillo, and T. Laurent. Blowup in multidimensional aggre-
gation equations with mildly singular interaction kernels. Nonlinearity, 22:683–
710, 2009.

[28] J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev. Global-
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