User's Guide for JAKEFSQP Version 1.0

by P.D. Mathur and A.L. Tits

TECHNICAL
RESEARCH
REPORT

Institute for
Systems
Research

The Institute for Systems
Research is supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 93-37



User’s Guide for JAKEFSQP Version 1.0
P. D. Mathur and A. L. Tits

Electrical Engineering Department
and

Institute for Systems Research
University of Maryland, College Park, MD 20742

1 Introduction

JAKEFSQP is. a utility program that allows a user of the FSQP constrained optimization
routines [1] to invoke the automatic differentiation preprocessor JAKEF [2] with minimal
burden. (FSQP can be obtained from André Tits by sending him email at andre@src.umd.edu.
JAKEF 1s availlable from netlib (e.g., email to netlib@ornl.gov with the subject line: send
index from jakef).)

During its operation, FSQP requires the evaluation, at a sequence of points, of the various
objectives and constraints and of their gradients. In the absence of the JAKEFSQP utility,
the user may either supply subroutines that perform gradient computation or request that
gradients be computed by finite differences. Manually coding the gradient subroutines is
often tedious and prone to mistakes. Finite difference computation is inaccurate and CPU
demanding (one function evaluation for each component of the gradient). The ever more
popular technique of automatic differentiation (see, e.g., [3]) improves on both counts as
it is painless, as accurate as analytical differentiation, and (in its latest implementations)
very fast. Automatic Differentiation (AD) packages typically take the form of preprocessors
that accept as input (appropriately edited) function evaluation subroutines and produce
as output subroutines that compute the corresponding gradients. While the recent past
has seen dramatic improvement in the effectiveness of available AD packages, for reasons
irrelevant to this discussion, we decided as a first step to make use of JAKEF, a FORTRAN
AD preprocessor developed over ten years ago.

Obviously, FSQP users can invoke JAKEF even if JAKEFSQP is not available. Yet, to
do this, they have to make arrangements to pass working array definitions to the gradient
evaluation subroutines, and appropriately modify the function evaluation subroutines to
identify (in JAKEF’s format) the independent and dependent variables. The purpose of
JAKEFSQP is thus to spare the user such painstaking tasks (and likely associated mistakes)
and to entirely automate the procedure. The remainder of this document contains (i) an
installation guide, (ii) examples of JAKEFSQP usage, and (iii) a more detailed description of



User’s Guide for JAKEFSQP 2

JAKEFSQP’s operation.

2 Installing JAKEFSQP

The JAKEF distribution includes two FORTRAN files: jakef.f and support.f. The user
should store a copy of support.f with its main program (sample) removed in, e.g., supp.f.
Files £sqpd.f and qld.f (as well as the sample problem files) are included in the FSQP
distribution. Besides the IATRX file for this user’s manual, the JAKEFSQP distribution consists
of 5 files: jakefsqp.h, jakefsqp.c, calljkf.f mainl.f and subsi.f.

JAKEFSQP calls JAKEF to perform automatic differentiation on the objective and con-
straint subroutines. This call might be system dependent. Two methods of calling JAKEF
are provided in the source code. The user can select which method is used by editing the
subroutine call_jakef () in the file jakefsqp.c.

Method A (preferred): This method can be used when jakef.f can be compiled with
jakefsgp.c. Some users may not be able to link FORTRAN and C object files together using
their linker program; these users should use method B. Running JAKEFSQP using method
A involves only one executable file, while when using method B, two executables are used.
Therefore, method A is faster, less memory demanding and easier to port across directories.
To use this method,

e uncomment METHOD A and comment out METHOD B in file jakefsqp.c (this is

already done in the distribution version of jakefsqgp.c).
o compile jakef.f and calljkf.f to object files (say, jakef.o and calljkf.o) using a
FORTRAN compiler, e.g.,

f77 -c jakef.f calljkf.f

e compile jakefsqp.c to an object file (say jakefsqp.o) using a C compiler, e.g.,
cc -c jakefsqgp.c

e finally, link these three object files together using a linker or a compiler and name the
resulting executable file jakefsqp, e.g.,

£77 jakefsqp.o calljkf.o jakef.o -o jakefsqp

Method B: This method can be used when JAKEF has been compiled and its executable
file is available. JAKEFSQP can then call JAKEF through a system() call in C. To support
this call, the operating system must support input/output redirection (most do). Note that
the file calljkf.f is not used. To use this method,



User’s Guide for JAKEFSQP 3

compile jakef . f and support.f (in fact, only the main program, sample, is used from
support.f) to create the executable JAKEF program, e.g.,

£77 jakef.f support.f -o bin/Jakef

uncomment METHOD B and comment out METHOD A in file jakefsqp.c.

in jakefsqp.c, change the path name of the executable JAKEF program in the
sprintf () statement so that it points to the JAKEF executable program, e.g.,
sprintf (ln,"bin/Jakef < %s > %s'",JAKEIN, JAKEOUT) ;

(path name)

compile jakefsqp.c to create the jakefsqp executable program, e.g.,

cc jakefsqp.c -o jakefsqp

JAKEFSQP uses two temporary files, JAKEIN.f and JAKEOUT.f. JAKEFSQP formats, and

writes into JAKEIN.f, a subroutine that has to be processed. This file serves as the input to
JAKEF. The output from JAKEF is collected in JAKEOUT.f. This cycle is repeated for all the
subroutines that have to be processed.

3

Using JAKEFSQP

Supplying the user’s entire program to JAKEFSQP is preferred. However, JAKEFSQP can also

function if only the function evaluation subroutines are supplied; in this case, the user must

modify the remainder of the program manually. Two examples are presented to demonstrate

how JAKEFSQP is used in these two cases. Note that, in both cases, the gradient evaluation
subroutines included in samplil.f are discarded by JAKEFSQP.

L.

The input for the first example is sampl1. £, supplied with FSQP. Since JAKEFSQP finds
all the information that it needs to process this file, no user interaction is required.

e Type the command to process sampl1.f:
jakefsqp sampll.f sampllad.f
JAKEFSQP processes the entire file and puts the result in the file sampliad.f.

e sampliad.f can then be compiled along with the rest of the object files:
£77 sampllad.f fsqpd.o qld.o supp.o -o sampll



User’s Guide for JAKEFSQP 4

II. The input for the second example is sampll.f, but with its main program removed
and stored in mainl.f and its subroutines stored in subs1.f. Since JAKEFSQP does
not find any calls to £sqpd and thus cannot figure out the names of the objective and
constraint subroutines, it asks the user for help.

e Type the command to process subs1.f:

jakefsqp subsl.f subslad.f

e JAKEFSQP prompts the user for two subroutine names (sequentially), one for the
gradient of the objective subroutine and another for the gradient of the constraint

subroutine.

e enter gren3? for the first and grob32 (the case is not important) for the second
prompt. Before proceeding, JAKEFSQP asks for confirmation. Press RETURN to
confirm.

e JAKEFSQP processes the entire file and puts the result in the file subsiad.f. This
file can then be compiled along with the rest of the object files:

£77 subslad.f mainl.f fsqpd.o gqld.o supp.o -o mainl

Note that if names other that grob32 and gren32 had been given to JAKEFSQP, the
external statement and the call to £sqpd would have to be modified in maini.f.

In general, output from JAKEFSQP must be compiled along with the supporting files
required by JAKEF and FSQP. If the program contains references to the gradient subroutines
in places other than in calls to fsqpd, it is the user’s responsibility to ensure that these
statements now refer to the new gradient subroutines. Since JAKEFSQP tries to maintain the
gradient subroutine names the program used earlier, this problem should occur rarely.

4 How JAKEFSQP Works

Based on the portion of the program supplied to it, JAKEFSQP constructs two lists of sub-
routine names. The first list consists of all names of subroutines in the input file that could
possibly be gradient or objective/constraint subroutines. These subroutines are picked by
examining the number and types of arguments of each subroutine found in the input file.

The second list is created by examining calls to £sqpd in the input (if such calls are not
found, this list remains empty). These calls provide information about how the gradient
subroutines should be named when they are created by JAKEFSQP.

JAKEFSQP then attempts to find gradient subroutine names for each objective subroutine

name in the first list by looking in the second list. If the gradient name happens to be one



User’s Guide for JAKEFSQP 5

of FSQP’s built-in finite difference subroutines, the new gradient name for the objective
function is automatically set to the objective subroutine name prefixed by the character G
(if the length of the resulting name is greater than 6 characters, it is truncated to the length
of the objective subroutine name). If a match in the second list is not found, the user is asked
for the gradient name (entering no name implies that the subroutine under consideration is
not a function evaluation subroutine).

After the names of gradient and objective subroutines are resolved, JAKEFSQP copies the
code supplied to it to the output file. Wherever it encounters an fsqpd call, it makes the
necessary modifications to its parameters. Also, to declare all newly created subroutines,
external declarations are inserted into the output. Function evaluation subroutines are
copied to the output, as well as to a temporary file that contains, in addition to the original.
subroutine, the necessary construct statement required by JAKEF. The temporary file
is then processed by JAKEF. If JAKEF is successful in generating a gradient evaluation
subroutine, its output is appended to the output file. Also, an interface subroutine is inserted
ito the output file.

FSQP calls the interface subroutine. This subroutine contains all the required working
array declarations. The size of these arrays is arbitrarily set to 2000 + 4n where n is the
number of operators in the objective subroutine. This formula works for all test problems;
however, the user might have to change it in certain circumstances. The interface subroutine
calls the gradient code produced by JAKEF.

5 Format of Input Files

o JAKEFSQP accepts TAB characters and expands them to spaces. The output generated

does not contain any comments, extra spaces and indentation.

e The input files must comply with the restrictions placed by JAKEF. In particular,
function evaluation subroutines may only call subroutines that are in the FORTRAN
library. For details see Section 4 in the JAKEF user’s guide.

e JAKEFSQP does not perform rigorous parsing like a compiler does and thus, will fail
to detect many syntax errors. To ensure reliable operation, the input file must be
compilable using a standard FORTRAN compiler.

6 Notes

o The user may wish to modify the calljkf.f file to change working array space for
JAKEF.



User’s Guide for JAKEFSQP 6

e Some program parameters may be changed at the top of the files jakefsqp.c and
jakefsqp.h.

References

[1] J. L. Zhou & A. L. Tits, "User’s Guide for FSQP Version 3.1 — A Fortran Code for
Solving Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates
Satisfying all Inequality and Linear Constraints,” Institute for Systems Research, Uni-

versity of Maryland, SRC TR-92-107r2, College Park, MD 20742, 1992.

(2] B. Speelpenning, Compiling Fast Partial Derivative of Functions Given by Algo-
rithms, Ph.D. Dissertation, Dept. of Computer Science, University of Illinois, Urbana-
(‘hampaign, Illinois, 1980.

[3] A. Griewank & F. Corliss, eds., Automatic Differentiation of Algorithms: Theory, Imple-
mentation, and Applications, SIAM (Society for Industrial and Applied Mathematics),
Philadelphia, PA, 1991.



