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ABSTRACT

In this paper, we will propose a super-resolution scheme for the parameter estimation
of multi-dimensional (M-D) NMR spectroscopy. M-D NMR signals can be modeled as the
summation of M-D damped sinusoids. The frequencies and the damping factors of M-D
damped sinusoids play tmportant roles in protein structure determination using M-D NMR
spectroscopy. We will develop a super-resolution frequency and damping factor estimation
algorithm~damped MUSIC (DMUSIC) algorithm. Since the DMUSIC algorithm makes full
use of the rank-deficiency and the Hankel property of the data matriz composed of the M-D
NMR data, compared with other NMR data analysis algorithms, it can resolve the spectrum
using very few data points. The performance of the DMUSIC algorithm is demonstrated by
computer simulations.

1The work was supported in part by the NIH grant 1R01GM49707 and the NSF grants MIP9309506 and
MIP9457397.






INTRODUCTION

The spectral analysis of the NMR spectroscopy is very important in protein structure
determination. At early stages of NMR spectroscopy analysis, the application of discrete
Fourier transform (DFT) has made a great progress in this field. However, the frequency
resolution of the DFT-based algorithms is limited by the short acquisition time of the NMR
spectroscopy and measurement noise. Since NMR signals can be modeled as the summa-
tion of damped sinusoids, the model-based algorithms have been used in the parameter
estimation of one-dimensional (1-D) and two-dimensional (2-D) NMR spectroscopy toim-
prove the frequency resolution (3-19). Among them, the auto-regressive (AR) algorithm is
one of the most commonly used algorithms in the analysis of 1-D NMR spectroscopy (8).
The approach (15) based on the linear prediction (LP) can obtain better estimation of 2-D
NMR data spectrum than the standard DFT algorithm can. Unfortunately, the existing
model-based parameter estimation algorithms for 2-D NMR spectroscopy analysis are still
sensitive to measurement noise, which limits their resolutions.

The super-resolution or the subspace methods (20,21) in signal processing can be applied
to spectral analysis of NMR spectroscopy to alleviate the resolution problem. Multiple
signal classification (MUSIC) algorithm (20) is one of the most effective and commonly used
algorithms for 1-D stationary signals. The MUSIC algorithm can achieve the Cramér-Rao
lower bound under some mild conditions. However, the NMR signal is nonstationary and
usually multi-dimensional. Therefore, the traditional MUSIC algorithm is not applicable.
The MUSIC analysis in (22) ignores the damping factors of signal, which is inappropriate
for NMR spectroscopy. In this paper, we will develop a super-resolution algorithm for M-D
NMR spectroscopy, which is called the M-D DMUSIC algorithm because of its similarity to
the MUSIC algorithm.

MATHEMATICAL MODEL OF NMR SPECTROSCOPY

Before developing the DMUSIC algorithm for multi-dimensional NMR spectroscopy, we
will briefly describe the mathematical model of M-D NMR spectroscopy here. Since multi-
dimensional NMR spectroscopy is an extension of two-dimensional NMR spectroscopy and

one-dimensional NMR spectroscopy is a special case of two-dimensional NMR spectroscopy,



we first briefly introduce the mathematical model of two-dimensional (2-D) NMR spec-
troscopy. The detailed description of 2-D NMR spectroscopy is given by (23,24).
A 2-D NMR signal in physical system can be expressed as a continuous hypercomplex

form Xj(¢1,t2) as following

Xn(tta) = K, ar{cos(@Mt: + 6(”) cos(@Pt, + 62
+1 sin(chl)tl + 0,(51)) cos(Q,(f)tz + 09)
+J cos(Qg)tl + 0,9) sin(Qg)tz + 0£2))

+13 sin(chl)tl + 0,(51)) sin(ﬂg) to + 0£2))}e-t1/T;§1) —t2/Tl£2),

where K is the model order, Qg) and QE) denote the angular frequencies of the magneti-
zation corresponding to t; and ¢, respectively, and T( ) and T,gz) are the decay constants of
the magnetization.

In our discussion, we employ the commonly used complex representation X, c(t1,12), that

can be obtained by letting + = j and 13 = —1 in [1]:

K
_L1 (1) 2 (2)
Xc(t1,t2) = ) cpel™T HUDIU+ (=1 + )tz,. 2
k=1

where ¢ = ake’(ol(el)*'al(cz)), and 'y,(cl) =1 /T,Sl), @) _ 1/T, T® which are called the decay rate.
If the continuous complex 2-D NMR signal is measured at uniform intervals, A; for #;

and A; for 3, a two-dimensional time-series data {z(n;,n3)} will be obtained as

z(ny,n2) Z%esﬁn"‘“(z) (3]
where sg) = (l) + Jw( ) , and w,(cl) = Qg)Al, ag) = 'y,(cl)Al for Il = 1, 2 with a(l) being

called the damping factor. Without loss of generality, we suppose that s; = (sg), sfcz) ) for

k=1, 2,---, K be distinct. If measurement error or noise w(n;,ny) is considered, the



measured NMR data can be expressed as

y(n1,n2) = z(n1,n2) + w(ny, ns), (4]
forn; =0, 1,---, N; —1 for i =1, 2. In the above expression N;’s are acquisition time of
each time domain. We will assume N; = N; = N in our discussion.

If N; = 1 and in [3] and [4], the mathematical model of 2-D NMR signals is degenerated

into that of one-dimensional (1-D) NMR spectroscopy, which can be rewritten as
y(n) = z(n) + w(n), [5]

where w(n) denotes the measurement noise and z(n) is as following

K
z(n) = Z cpe’*", [6]
k=1

forn=0,1,---,N—1.
The mathematical model of 2-D NMR spectroscopy can be easily extended to that of

L-dimensional NMR spectroscopy as following

y(n) = z(n) + w(n) (7]
and
K T
z(n) =Y cpe®™ . 8]
k=1
forn e {0, 1,---,N —1}~£. In the above expression, n = [n;,---,ny] is a time index-vector
and s = [sfcl), e ,.s,(CL) ] is a complex fréquency vector. Similar to the two-dimensional case,

w(.) represents measurement noise and K denotes the model order.
To determine the protein structure by means of NMR spectroscopy, the complex fre-
quencies s have to be estimated from the measured NMR data. Normally, we have to make

sure N > 2K in order to estimate the parameters of NMR spectroscopy.



1-D DMUSIC ALGORITHM

We first present the DMUSIC algorithm for one-dimensional NMR spectroscopy (1-D
DMUSIC) for it has clear physical meaning.
To derive 1-D DMUSIC algorithm, we will set up an (N — J) x J prediction matriz:

(mm y(1) ~-yU—1)W

y(1) y(2) e y(J)
A= ’ [9]

\ YN -J-1) y(N-J) - MN—D)

where J has to be in between K and N — K. The prediction matrix to DMUSIC algorithm
is as the correlation matrix to MUSIC algorithm (21). From equation [5] and [6], A can be

written as

K
A= Z ceri(sg)r? (sx) + W = S;CST + W. [10]
k=1

In [10], r,(s) and S, are the right signal vector and the right signal matriz, respectively,

that are defined as

rr(sk) and S; = [r/(s1),rr(s2), -, rr(sK)], [11]

ke(-’—l)sk }

respectively. The left signal vector ri(s) and the left signal matriz S, are similarly defined.

C is a K x K diagonal matrix with diag(C) = (¢, ¢2,'-,ck). The noise matriz W is




given by

( w(0) w(l) w(J —1) )
w(l) w(2) ceew(J)
W = . [12]
\w(N—J—l) w(N-J) --- w(N—l)}
If si’s are distinct, then r.(si) for k =1, 2,--., K are linear independent, hence S, is

of full column rank, and so is S;. Since the rank of C is K, the rank of A is equal to K if
there is no measurement noise. Now, assume that there is no noise. By means of singular
value decomposition, A can be decomposed into the product of three matrices

A =UDVH, [13)
where U and V are unitary matrices, and D is a diagonal matrix with

diag(D)=(01, 02, " OK, Oa"'ao)a 012022"'201(- [14]

According to [13],

AV = UD 18]
Denote v; the i-th column of V. span{vy,---, vk} is called signal subspace for
span{vy,--+, Vg } = span{r.(s1),---, rr(sg)}, [16]

where span{} is referred to as the subspace that is defined by the set of all linear combina-

tions of the vectors.

From [14] and [15], we have the following orthogonality relations

AV, =0, or Avp=0 fork=K+1,---,L. [17]




Table 1: Damped MUSIC algorithm

Step 1 | Forming data matrix A using [9]
Step 2 | Finding Vy, by making SVD to A
Step 8 | Estimating s; by find the peaks of [19]

where Vy, = [Vk 41, -+, vL]. From [10], we have
S,CSTvy =0 fork=K+1,---,L. (18]

Since both S, S, and C are of full rank, STvy =0for k=K +1,---,L, i.e. r,T(sn)vk =0
fork=K+1,---,Landn=1, 2,--- K. Hence, Vo r,(s) = 0 only when s = s,---,5k.
Therefore, s; can be obtained by finding s which makes || VnTr.(s) ||= 0.

When noise exists, the orthogonality relations [17] no longer hold. In this case, we can
search for signal vectors that are most closely orthogonal to the noise subspaces. Hence, s

can be obtained by finding the peak of the following MUSIC spectrum

1

P = , 19
O = S vV ®) 19
wher
- Fp= T [20]
= Te ]

The algorithm is summerized in Table 1.

The algorithm discussed above is called the damped MUSIC (DMUSIC) algorithm for it
looks like the MUSIC algorithm. But, there are several crucial differences between DMUSIC
algorithm and MUSIC algorithm in that DMUSIC algorithm is for parameter estimation
of damped sinusoidal signals which are nonstationary. Since the correlation matrix is not
available for nonstationary signals, the prediction matrix is used in DMUSIC algorithm.

DMUSIC algorithm searchs on (o, w) so that these two parameters can be estimated si-

multaneously.




M-D DMUSIC ALGORITHM

The DMUSIC algorithm for one-dimensional NMR spectroscopy developed in the pre-
vious section can be extended to the DMUSIC algorithm for multi-dimensional NMR spec-
troscopy (M-D DMUSIC).

To obtain a 2-D MUSIC algorithm for the two-dimensional NMR signals modeled in [3]
and [4], we first generate an (N — J + 1) x J matrix,

/ y(n, 0) y(n,l) o yn,J—1) \ \
Aln) = y(n,1) y(n,2) O | "
\y(n,N-—J) y(n,N-J+1) --- y(n,N-1) }

forn=1, 2,---, N—1. Using A(n), an (N — J + 1) x J? matrix is formed,

( A(0) A1) o A(J=1) )
A1) A(2) o A(J)
A= , [22]
\ AN-J-1) AN-J) --- AN-1) )

where J must satisfy K < J < N — K. It is usually chosen to be [N/2] to obtain the best
performance.

Similar to the derivation of 1-D DMUSIC algorithm, we can prove that s; can be ob-
tained by finding the peaks of the following 2-D DMUSIC spectrum

1
P(s) = - 2 — [23]
£H(s)(Tizk+1 ViVE)EA(s)
where vy for k = K + 1,---,J? are the right sigular vectors of A corresponding to the



J? — K smallest sigularvalues and

rr(sg) =

g
5@

ek

e(J —l)sfcz)
1)
st

€

63£1)+3;¢2)

es;cl)+(.]—1)s£2)

e(J—l)s;cl)

e(J—l)s£1)+s£2)

e(J—l)s£1)+(J—1)s£2)

and F, =

/

Ty
| = ||

[24]

In general, for multi-dimensional NMR spectroscopy, (N — J + 1)L x J¥ data matriz A

is defined as

)

A(J -1)
A(J)
AN-1) }



where

A(nla"',nl) =

forl=1, 2,---,L —2, and

(

A(nl, eee ’nL—l) —

A(nl, [P ,nl,o)

A(nl,' cey Ny, 1)

\ A(ﬂl,"',ﬂ[,N—J—l)

y(nh ter ,nL-l,O)

y(ny,- -+ ,np_1,1)

| v, mp N =)

A(nl,-..,n”J_l) \

A(n]."",n[,J)

A(ny,---,n, N 1) /

\

y(ni,+-,np_1,J — 1)

y(nl) N1, J)

y(n17"' ,TLL_l,N— 1) )

The right signal vector corresponding to the data matrix A is defined as

r(s) =

where

v (S) =

ri-1(s)

(1)
e’r 'rr_1(s)

(1)

\e(-]—l)sk rz-1(s) }

( rl(s) \
esiL-’H)l‘z_l(s)
\ e(J—1)s§cL—'+1)rl_1(s) )

. [26]

(27]

[28]

29]



forl=2,3,---, L—1,and
(1)

@
e’k

ri(s) = . . (30]

\ e(J-—l)aff') )

From the definition, J* x 1 vector r(sg) for k = 1, 2,--- K are independent if J > K.
Therefore, similar to 1-D DMUSIC algorithm, the frequency vector s can be estimated by
finding the peaks of M-D DMUSIC spectrum

1 r
P(s) = and f, = —— [31]
£H (8)(Ti<k+1VivE)Er(5) e I’
where vectors Vi.41,--+, vy are JE — K right singular vectors of A corresponding to the

JE — K smallest sigular values.

SIMPLIFIED PEAKING SEARCH ALGORITHMS

To estimate the parameters of L-D NMR signals, we have to find the peak of L-D
DMUSIC spectrum, which is a function of 2L variables: o), ..., o&), w® ...  wE) To
find the peak of the L-D DMUSIC spectrum, we have to calculate it in a fine lattice, which
is a 2L-dimensional search.

Since the damping factors of NMR signals are normally very small (usually less than 0.3),
the following simplified peak searching algorithm can be used to reduce the computation of
the 2-D DMUSIC spectrum. For the convenience of our discussion, we rewrite P(s(!), s(2))
into P(a)), o?; w(), @), If the damping factors of signals are small, then the maxima
of P(aV, o®; ) w®) will be near w(V—w? palne. Because P(alV), o?; w@), w(2)
is convex around its maxima, P(0, 0; w®, w(z)) is also convex around maxima. Hence,
P(0, 0; w1, w®?) has maximum points (ZD,(CI), &‘J,(cz)) for k=1, 2,---, K, which are near
the peaks of P(o(1), o(®; w(), w(®). For each maximum (&‘),(Cl), (T),(cz)) of P(0, 0; w(V, w®),

(&g), af)) can be found to maximize P(a(!), af?); tD,(cl), &‘J,(cz)) since P(alV), a(®; [D,(cl), ZD,(CZ))

10



Table 2: 2-D Peak searching algorithm

Step 1| Find (@), @) for k = 1, 2,--, K maximizing P(0, 0; w(®), w®)

Step 2 | Find (81", @) maximizing P(a(®), a®@; &{", &%)

Step 8 | Find (5&1), 5&2)) around (@, ®?) and maximizing P(3{", a®, v, w®)
Step 4 | Repeat Step 2, 3 until the estimation of sgl) = —agl) + _7«%H

s8 = —a? + 3u!? attains certain precision

Step 5 | Repeat Step 2,3 and 4 for k=2, 3,---, K

is convex. Then, we can find (&’:)21), 553)) around (&),(cl), 6},(3) ) and maximizing P(&;cl), 61(52),

w®, w?). Repeating the above procedures, the paeks of P(a(), of?); w() w®) can
be searched. The above searching procedures can be summerized in Table 2. The above
simplified peak-searching algorithm reduces the peak-search of four-variable function to that
of two-variable function. Hence, the computation is significantly reduced.

The parameter estimation of higher-dimensional NMR signals can be decomposed into
the parameter estimation of lower-dimensional NMR signals to reduce the computation.
Taking 3-D NMR signal y(n;,n2,n3) as an example, it is a 2-D NMR signal if n3 is fixed.
Hence, the frequency pairs corresponding to time index n; and ny can estimated by 2-D
MUSIC algorithm. Similarly, the frequencies corresponding to n3 can be estimated using
1-D DMUSIC algorithm. The three-dimensional complex frequency vector can be found by
searching the peak of the 3-D DMUSIC spectrum near all the combinations of the frequency
pairs corresponding to index n; and mny and the frequencies corresponding to index n3. In
this way, the parameter estimation of 3-D NMR signals is simplified into the parameter
estimation of 2-D NMR signals and 1-D NMR signals. In fa;:t, the parameter estimation
of higher-dimensional NMR spectroscopy can always be decomposed into the parameter

estimation of 2-D NMR spectroscopy and 1-D NMR spectroscopy in this way.
COMPUTER SIMULATION EXAMPLES

To illustrate the theoretical consistency, the 1-D, 2-D and 3-D DMUSIC algorithm are

tested by four examples. In our simulation examples, the measurement noise w(.) is complex

11




white Gaussian noise with variance 02. The SNR is the peak signal noise ratio defined as
SNR =10l L [32]
= 10log5—;.

Ezample 1:

The synthetic one-dimensional NMR spectroscopy are generated by
y(n) = e®*" + e*?" 4+ w(n), [33]

where 57 = —0.2 + 327(0.42), s; = —0.1 + 527(0.42 + A). The data length is N = 24,
therefore we pick J = 12.

When SNR = 40dB, A = 0.1. the 1-D DMUSIC spectrum is shown in Figure 1 (a) and
the contour in Figure 1 (b). From the figures, the damping factors and frequencies of the
signal can be easily estimated simultaneously by finding the peak on the spectrum. But if
SNR = 40dB, A = 0, i.e. two exponentially damped signals with the same frequency, the
spectrum has just one peak (see Figure 1 (c) and (d)). Hence, the damping factors of the
signals can not be correctly estimated under this condition. However, if SNR is increased to
60dB, both the damping factors and the frequencies of the signals can be estimated again
as demonstrated by Figure 1 (e) and (f).

Ezample 2:

In this example, a synthetic two-dimensional NMR signal is first generated using Equa-
tion [3] and [4]. The model order K = 5 and the frequency pairs are shown in Table 3. The
data length is N = 24 and J is chosen to be 12 to obtain best performance.

When SNR = 30dB, the 2-D DMUSIC spectrum P(s) and its contour using 2-D peak
searching algorithm are shown in Figures 2 and 3. From the figures, we can see that P(s)
only has four peaks on w; — w plane with o) = o(?) = 0, but five peaks are found by
the simplified peak searching algorithm and the parameters can be estimated successfully
as illustrated by Table 3.

When SNR = 20dB, the estimated parameters are in Table 3. From the table, we can
see that the forth and fifth frequency pairs can not be successfully estimated because they

are so close that our algorithm can not resolve them under 20dB noise.
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Table 3: Estimated parameters of a synthetic 2-D NMR signal

I [ k] o) | o |a®r | o |

1{-0.20 | 0.107 | -0.10 | 0.107

True 2 | -0.00 | 0.30x | -0.00 { 0.10m

values 3 ([ -0.05 [ 0.207 | -0.02 | 0.257

4 | -0.02 | 0.057 | -0.02 | 0.30m

5| -0.10 | 0.06= | -0.02 | 0.31~

1 -0.21{0.10x | -0.11 | 0.107

Estimated || 2 {| -0.00 | 0.30x | -0.00 | 0.10x
values 3 || -0.05 | 0.207 | -0.02 | 0.257 .

SNR=30dB || 4 || -0.11 | 0.05= | -0.04 | 0.31~

5| -0.09 | 0.07x | -0.01 | 0.31~

1] -0.19 | 0.10wx { -0.10 | 0.107

Estimated | 2 (| -0.00 | 0.307 | -0.00 | 0.107

values 3 | -0.05 | 0.20m | -0.02 | 0.257

SNR=20dB | 4 || -1.00 | 0.647 | -0.00 | 0.317

5 || -0.07 | 0.067 | -0.01 | 0.31~x

Ezample 3:

This example demonstrates the application of 2-D DMUSIC algorithm in the parameter
estimation of a real 2-D NMR signal. The measured 24 x 24 2-D NMR spectroscopy is
obtained from the National Institution for Health. The DFT of the 24 x 24 NMR data
that are zero padded to 512 x 512 points is shown in Figure 4. From Figure 4, we can not
estimate the parameters of this NMR signal using DFT. The 2-D spectrum P(0, 0;w), w(?)
and its contour are shown in Figure 5. From the figure, P(0,0;w),w(®) have five peaks.
The 2-D spectrum P(c), a!?; 0.107, —0.127) and its contour are shown in Figure 6. Only
repeating Step 2 and 3 in Table 2 twice, we can clearly estimate the frequencies and the
damping factors of the signal which are listed in Table 4.

Ezample 4:

The three-dimensional synthetic NMR signal is generated by [7] and [8]. The model
order is K = 3. The frequency vectors are shown in Table 5. The synthetic NMR signal is
corrupted by measurement noise with SNR = 15dB. First, we estimate the complex fre-
quency pairs corresponding to the first two indexes using simplified 2-D searching algorithm
and the complex frequencies corresponding to the third index. Then, we get the right 3-D

frequency vectors by finding if the 3-D DMUSIC spectrum is the maximum point at the

13



Table 4: Estimated parameters of a real 2-D NMR signal

e laf’ | o [o®] wp |
1] 0.06 | 0.04= | 0.06 | -0.027
0.07 | -0.56m | 0.08 | 0.107
0.07 | -0.427 | 0.09 | 0.40w
0.13 | 0.107w | 0.09 | -0.127
0.21 | 0.12n | 0.29 | 0.647

[SA G- RN )

all possible combinations of the complex frequency pairs and the complex frequencies. The

estimated frequency vectors are shown in Table 5.

Table 5: Estimated parameters of a synthetic 3-D NMR signal

I P P P U T Y
1

True 0.040 | -0.7407 | 0.140 | -0.8207 | 0.100 | -0.140x
values 2 || 0.010 | 0.0507 | 0.190 | -0.1907 | 0.170 | 0.3107

3 || 0.140 | 0.290x | 0.080 | -0.7207 | 0.010 | 0.1507

Estimated [ 1 || 0.040 | -0.7407 | 0.150 | -0.8157 | 0.100 | -0.140x
values 2 | 0.010 | 0.0507 | 0.190 | -0.1907 | 0.180 | 0.3107
SNR=15dB || 3 || 0.140 | 0.295= | 0.080 | -0.7207 | 0.020 | 0.1457

CONCLUSIONS

To determine protein structure using the NMR signals, the parameters of the NMR
spectroscopy have to be estimated. This paper deals with the parameter estimation of
multi-dimensional NMR signals. We propose a novel singular-value-decomposition based
parameter estimation algorithm called M-D DMUSIC algorithm for it has super-resolution
performance like MUSIC algorithm. We aslo discuss simplified peak-searching problem in
order to reduce the computation of M-D DMUSIC algorithm. The performance of the M-
D DMUSIC algorithm is tested by extensive computer simulations. The M-D DMUSIC
algorithm proposed in this paper can obtain very closely-spaced frequency and damping

factors by using only very few data points.
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Figure 1: Spectrum and contour of DMUSIC algorithm (a) and (b) when s; = —0.2 +
7270.42, s9 = —0.1 + 5270.52 and SNR = 40dB, (c) and (d) when s; = —0.2 + 7270.42,
83 = —0.1 + j270.42 and SNR = 40dB, (e) and (f) when s, = —0.2 + j270.42, s; =

—0.1 + 5270.42 and SNR = 60dB.
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Figure 2: The spectrum P(0,0; wD,w?) and its contour for a synthetic 2-D NMR signal
using 2-D peak searching method when SNR = 30dB.
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Figure 3: The spectrum P(a(!), a(?); 0.207,0.257) and its contour for a synthetic 2-D NMR
signal using 2-D peak searching method when SNR = 30dB.
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Figure 4: 2-D FFT of NMR data that are zero padded to 512 x 512, (a)Fourier spectrum
(b)its contour plot.
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Figure 5: The spectrum P(0,0; w(V,w®) and its contour for a real 2-D NMR signal.
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Figure 6: The spectrum P(a(!), o(?);
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