Evolving a Set of Techniques for OO Inspections

Forrest Shull ¥ Guilherme H. Travassos *' Jeffrey Carver ' Victor R. Basili ™

fshull@fc-md.umd.edu travassos@cs.umd.edu carver@cs.umd.edu basili@cs.umd.edu
"Experimental Software Engineering Group *Fraunhofer Center - Maryland
Department of Computer Science 3115 Ag/Life Sciences Surge Bldg. (#296)
University of Maryland at College Park University of Maryland
A.V. Williams Building College Park, MD 20742
College Park, MD 20742 USA
USA
Abstract

Inspecting OO designs is an important way of ensuring the quality of software under
development. When high-level design activities are finished, the design documents can be
inspected to verify whether they are consistent among themselves and whether the software
requirements were correctly and completely captured. This paper discusses some issues
regarding the definition and application of reading techniques (i.e. procedural guidelines that
can be given to inspectors) to inspect high-level OO design documents. An initial set of OO
Reading Techniques and their experimental evaluation is described. A method for evaluating
the reading techniques in more detail, i.e. Observational Techniques, is then presented, and
experiences with its use are discussed. Through these discussions, we show how the
reading techniques have evolved in response to empirical evidence (both qualitative and
guantitative) regarding their use in practice. The complete and current set of techniques can
be found in the appendices.

l. Introduction to Reading Techniques for OO Inspectios

Problem Statement

Throughout the software lifecycle many artifacts are produstbe@r than the final
application, such as requirements, design, source code, and test pleinof the artifacts must
undergo some type of examination at different steps in the lieeggcorder to accomplish
important software engineering tasks, such as verification dithtran, maintenance, evolution,
and reuse. Thus software reading, i.e. the process of understarstiftgzare document in order
to accomplish a particular task, is an important activity in softwdevelopment. However,
software reading is often done in ad hocor unstructured way; developers are taught how to
write intermediate artifacts but rarely how to read andyaeathem effectively. This is a
problem because reading expertise is built up only slowly, througlomed experience that may
not be helpful or easy to communicate from one reader to the next.

Overview of our Solution

Recent research inoftware reading techniquesms to improve software reading. A
Reading Technique can be defined as a series of steps for theluatlighalysis of a textual
software product to achieve the understanding needed for a partasia This definition has 3

! On leave from the Federal University of Rio de Janeiro — COPPE/Computer Science and System Engineering
Department partially supported by CAPES — Brazil.
This work was partially supported by UMIACS and by NSF grant CCR9706151.

main parts. First, theeries of stepgives the reader guidance on how to achieve the goal for the
technique. By defining a concrete set of steps, we give alereaa common process to work
from which we can later improve based on experience. In an ad thaostuctured, reading
process, the reader is not given direction on how to read, and readetiseir own processes.
Without a standardized process, improvement of the process is muckliffioudt. Secondly, a
Reading Technique is fandividual analysis meaning that the aim of the technique is to support

Reading
Technology
PROBLEM _ .
SP?ACE Construction Analysis General Goal
Defect il Specific Goal
Reuse Maintenance Detegtion Usa\blllty P
Design Code Test PlaiRequirements Design Requirements Code User Document
Interface (artifact)

Project White Box CodeUse-CasesQ0 DiagramsSCR English ~ Screen Shot Notation
Sodrce Framework,?ﬂgﬁqlé\?vgﬁkubrary g Form

Code _ _ | T S S U
Scope-based Traceability — Defect-based Perspective-based Usability-basedmily
SPACE \SAystem Task Horizontal Vertical 0mlSS|0nIncon5|stentn00rrect ExpertNoviceError Technique
de Oriented Ambiguity DevelopefTester User

Figure 1 — Families of Reading Techniques

the understanding process within an individual reader. Finallyetimigues strive to give the
reader the understanding that they need foairéicular task meaning that the reading techniques
have a particular goal and they try to produce a certain ¢éwaiderstanding related to that goal
[Shull9g].

Families of Reading Techniques

These techniques consist of a concpetecedure given to a reader on what information
in the document to look for. Another important component of the techniquéseareestions
that explicitly ask the reader to think about the information jusbwered in order to find
defects. In previous work, we have developed families of readeighigues [Basili96]. The
taxonomy of reading technique families is shown in Figure 1. The upper partticfel{ever the
horizontal dashed line) models the problems that can be addresseadnyy. Each level
represents a further specialization of a particular softveneelopment task according to
classification attributes that are shown in the rightmost coluntheofigure. The lower part of
the tree (below the horizontal dashed line) models the spegifitans we have provided to date
for the particular problems represented by each path down theBaed. family of techniques is
associated with a particular goal, artifact, and notation.

Looking back at the definition for a reading technique that washgivehe previous
section, we can discuss common features of the techniques. FRimisbesach technique is a
series of stepsit is tailorable, detailed, and specific. Secondly, because teabinique is
focused on garticular taskwe need the tree to organize the task space. Finally, becalse ea
technique is foindividual analysis certain things, such as inspection meetings, are outside the
scope of the techniques. For more information on Reading Technique families sk@qBa

Tailoring Reading Techniques

This tailorablity is an important attribute of reading techniqueswbigh we mean that
each reading technique defined is specific to a given arafattto a goal. For example, one
specific goal could be defect detection. Software reading isspecially useful method for
detecting defects since it can be performed on all documentsisgasdowith the software
process, and can be applied as soon as the documents are writtemn. th& goal, we could
imagine software reading techniques tailored to natural langegg@ements documents, since
requirements defects (omission of information, incorrect facts, irgtensies, ambiguities, and
extraneous information) can directly affect the quality of, afattefequired for, the design of a
system. For this technique, the procedure would be concerned with tanderg what
information in the requirements is important to verify (namely, thatrimétion which is required
by downstream users of the requirements document to build the Rys@uestions could be
concerned with verifying that information to find defects thay met be uncovered by a casual
or unstructured reading.

OO Reading Techniques

In this paper we will concentrate on reading techniques for Ol@jeiented design
documents. Object Oriented reading techniques are an interegiiogf research for a variety
of reasons. As OO analysis and design are increasing in popularity, it beoonmegsnportant to
tailor software development technologies to work in the Objeilen@d world. Because Object
Oriented designs are quite different from structured designs, eadifty Techniques must be
developed to address the specific issues that arise. AdditionaHtly,invthis area combined with
previous research can help illuminate high-level questions in reading techesgaech.

The tree in Figure 1, which was described earlier, shows othé&rthatrwe have done in
reading. Previous research has shown that reading softw#eetarto detect defects is
worthwhile and possible. This defect detection has been shown inatfiagef requirements
both natural language requirements [Shull98] and requirements nwiittformal notation
[Porter95] as well as reading for usability defects [Zhang®WE have also shown that software
reading is possible in the Object Oriented world, by developingnigges to read Object
Oriented code and design for reuse [Basili98]. In the work we deswieewe extend that prior
knowledge by building techniques that allow us to read Object Orientechg@sigrder to detect
defects.

An OO design is a set of diagrams concerned with the repatisenof real world
concepts as a collection of discrete objects that incorporate bathsiacture and behavior.
Normally, high-level design activities start after the saf®vproduct requirements are captured.
So, concepts must be extracted from the requirements and describgd thusi paradigm
constructs. This means that requirements and design documentdtaae different times, using
a different viewpoint and abstraction level. When high-level desiguiteeg are finished, the
documents (basically a set of well-related diagrams) candpedcted to verify whether they are
consistent among themselves and if the requirements were oaedt completely captured
[Travassos99a].

In order to do this we are interested in defining reading techsityaé can be applied to
high-level Object Oriented designs. We think that it is very it@pdrto ensure the quality of the
high-level design for a few reasons. First, by focusing tbleniques on the high-level design,
we are ensuring that developers understand the problem fullyeliefjorg to define the solution,

Requirements K
Specification Requirements Use-Cases

Descriptions
A

A

v v

High Level Class Class State Machine || Interaction
Design Dlagra|ms Descriptions || Diagrams Diagrams
¢ Vert, reading (Sequence)
—— Horz. reading

Figure 2 — Reading Techniques used in the experimen t

which will appear in the low-level design. Secondly, it is importankbcate and remove as
many defects as possible at the higher level, because theyndeunore difficult and more

expensive to fix if they are allowed to filter down into the I@wel design, or even the code
[Pressman97, Pfleeger98].

I. Evolution of the Techniques

Since we could find little work done in research or practice on effective revie®® efork
products, our investigation into this area was necessarily more exploratoryitiamatory.
That is, we have not been seeking to verify or disprove well-formulated hypotbiesesthis
area is not sufficiently well understood for us to be able to have confidence infileasseor
practicality of specific hypotheses. Instead our studies have focused on deyealopi
understanding, based on observation and analysis rather than theory, of the reatdssues a
problems involved in OO reviews. We aim to use the information gained from such ampiric
study to build up tentative but reasonable hypotheses, which can later be tested téegbod ef
more rigorous studies. This early cycle of observation, feedback, and improwaroant
understanding is necessary so that confirmatory work in this area will bgrahded in
practical considerations.

With this information as a background we have developed two main apgestihich
drive all of the Object Oriented reading techniques.

1) Do all of the design artifacts describe the same systenay@dhe individual artifacts
consistent with each other?

2) Do the design artifacts, as a whole, accurately describeatne system that the
requirements describe, i.e. are the requirements and the design consistent?

1. Defining the Initial Techniques

With the ideas discussed earlier and the two main questions in mendewveloped an
initial set of reading techniques. We chose to focus the reddaimiques on assuring the
consistency of information that could be traced between multiple dodtsmeJsing the two
guestions from the last section, we were able to define tworatitfeategories of techniques.
The first question strives to explore whether all of the atiffiom one lifecycle phase (the

High-level design) are consistent with each other. Because thamiques stay within the same
phase for comparing artifacts, we have called these techniques horieohtatjues. The second
guestion helps us to determine if the artifacts from one lifecpbase, the requirements
(represented by their description and possible scenarios), were acccaptehed by the artifacts
from another lifecycle phase, the High-level design. Becawsddbuments that are compared
here are from different lifecycle phases, we have called these technigtie terhniques.

Using our previous knowledge that a reading technique should bes aiesteps to help the
reader focus on the right information, we came up with a set eeguoal techniques for the
comparison of the artifacts. Figure 2 illustrates all oftdhniques that we have defined, also
showing which are horizontal and which are vertical. For each grbdpcuments that was to
be compared, using knowledge of Object Oriented design conceptsnweupawith a set of
steps that would focus the reader on information that should be found in botheddgEum
Associated with each step was a set of questions that ther e@add use to help them locate
possible defects. One of the initial techniques can be seen in Figure 3.

Now that we had an initial set of Reading Techniques, we needed to evaluatertteeder |
to do that, we designed and carried out an experiment.

Reading Technique for Class diagrams x Class descri ptions

For each class modeled into the class diagram, do:
1) Read theclass descriptionto find an associated description to the class.
@ Underline with a yellow pen the portion of the &lalescriptions corresponding to the class

Verify if:

1.1) All the attributes are described and with basic tygs associated

& Underline them with a blue pen

1.2) All the behaviors and conditions are described

< Underline them with a green pen

1.3) All the class inheritance relationships are describd

@ Draw a box around them with a yellow pen if thisrany

1.4) All the class relationships (association, aggtion and composition) are

described with multiplicity indication
@ Circle each multiplicity indication with a blue pé it is correct.

Note that the emphasis is on syntactic checkirg,ith) that the OO notation on both diagr
agrees.
Figure 3 - First version of a horizontal reading te chnique.

2. Experimental evaluation of Reading techniques

Method

The main goal of this experiment was to evaluate the fei@gibil applying reading
techniques to an Object Oriented design. A secondary goal wasdive feedback on the
format and content of the reading techniques, which was used to arsat®nd version of the
techniques.

Subjects

The subjects in this experiment came from an undergraduate soémgireering course
at UMCP during the Fall 1998 semester. The 44 students in thehadsa mix of previous
software experience: 32% had some previous industry experience tivareofdesign from

requirements and/or use cases, 9% had no prior experienceiratsaftware design, and the

remaining majority of the class (59%) had classroom exp=zienth design but had not used it
on a real system. However, all students were trained in OOageneht, UML and OO software

design activities as a part of the course. The subjects watemdy assigned into 15 teams (14
teams with 3 students each and 1 team with 2 students) for the experiment.

Materials

The materials under study during this experiment consisted ohitie version of the
reading techniques. They were applied to the design of a “Loan Arraiygteirsresponsible for
organizing the loans held by a financial consolidating organizationfaaralindling them for
resale to investors. It was a small system, but contained design complexity due to non-
functional performance requirements. Table 1 summarizes thefdizis design by reporting for
each class the number of attributes, Weighted Methods/Class WMMERth of Inheritance
(DIT), Number of Children (NOC), and Coupling Between Objects@LBAdditionally, there
were 3 state diagrams and 5 sequence diagrams (Seql-Seg@sdks participating in each are
marked.

Class Name Attrs. WMC DIT NOC CBO |State Seql Seq2 Seq3 Seq4 Seq5
Dgm. Con- Con- Con- Con- Con-
exists? tains? | tains? | tains? tains? tains?

Property 5 0 0 0 1

Borrower 2 2 0 0 1

Lender 3 1 0 0 2 yes

Loan 3 3 0 2 4 yes yes

Fixed 0 1 1 0 4

Rate Loan

Adjustable 0 1 1 0 4

Rate Loan

Bundle 5 2 0 0 2 yes yes
Investment 4 1 0 0 1 yes

Request

Loan Arranger 0 15 0 0 4 Yes yes yes yes yes
Financial Org. 1 0 0 0 2 yes Yes yes yes yes yes
Loan Analyst 1 12 0 0 3 yes yes yes yes yes

Table 1 — Size measures for the inspected design.

Procedure

The first thing that the subjects did was to receive the Loaangar requirements and
perform an inspection. This served the purpose of improving the usnldirsy of the system.
After this, the subjects were given the requirements andaf sse cases and asked to create an
OO design of the system. Once the designs were complete|agteddwo of the best designs
submitted. Each team was given one of the designs to inspkedheiteading techniques. (Two
designs were chosen to ensure that no team inspected their owm dBsigto keep the results
comparable, all but one team reviewed the same design.)

We should note here that we had no control group; that is, we could notreothpa
subject’s effectiveness to their own effectiveness using an@@emspection method. There
were two main reasons for this decision. The first is thaamgeaware of no other published
methods for reading OO designs with which we could compare. Tloedseeason is that
because we were in a classroom environment, it was not possikkctodnly a portion of the
class the reading techniques and use the others as a control.

Each team applied the whole set of techniques, but the techniques were ajvidesiich
a way that each subject had to deal only with a small number. UDjeetsperformed the vertical

reading, while the other two divided the horizontal techniques between tAéer performing
their individual reviews, the team members met to compile their individuattests into a final
list that reflected the group consensus.

As was stated earlier, the main goal of this experimenttovasaluate the feasibility of
OO reading techniques. In order to do this, we collected a numimeetdts, both qualitative
and quantitative. Table 2 shows a subset of the metrics thatulreted. The qualitative data
were collected using questionnaires, which were collected withdeifiect lists, retrospective
guestionnaires at the end of the semester, and post-hoc interaegiscted separately for each
team. By collecting the data at various times throughout theggsoge were able to check the
consistency of the subjects’ answers, and have more confidence in theiryaccurac

We collected quantitative data by having the subjects turn in dieéct lists. Because
this was mainly a feasibility study, we did not discriminagéwkeen true defects reported and
false positives. That is, we made the assumption in our countingfedtslehat all defects
reported were real problems with the document.

When Collected Metrics

Before the study a) Details on subjects’ amount of experience with nesuents, design, and code

After individual review | b) Time spent on review (in minutes)

c) Opinion of effectiveness of technique (measuredwtat percentage of th
defects in the document they thought they had fpund

d) How closely they followed the techniques (measunea 3-point scale)

e) Number and type of defects reported

[¢)

After team meeting f) Time spent (in minutes)
g) Usefulness of different perspectives (open-endestipn)

In post-hoc interviews | h) How closely they followed technique (open-endedstjoe, to corroborate d)
i) Were the techniques practical, would they use somal of them again (open
ended question)

Table 2 — Subset of metrics collected in the feasib ility study

Results and Lessons Learned

The quantitative data from this experiment showed some positivastesulsing the
techniques did allow teams to detect defects (11 were reported, @yevel.7 for horizontal
readers, 10.4 for vertical), and in general subjects tended to #mre¢he techniques were
helpful. Also, the vertical techniques tended to find more defects dtedmand incorrect
functionality, while the horizontal techniques tended to find more tefgfcambiguities and
inconsistencies between design documents, lending some credencealeattiet the distinction
between horizontal and vertical techniques is real and useful.

The qualitative data also provided us with some lessons that helpegprove the next
version of the techniques. From the qualitative data we werdal#arn three global lessons
on how to improve the techniques for the second version. The firshlésst we learned was
that OO reading techniques should concentrate on semantic, nggntactic, issues Based on
the qualitative data that we received from the subjects itoas that the reading techniques
should explore more of the semantic information contained in the mosledppmsed to the
syntactic (notation) information (Figure 3 illustrates the sym@a@rsion). When we talk about

semantic checking we are referring to validation of whethagdekecisions make sense and are
feasible. For example, a reader may be asked to check that dgertygves have been assigned
to class attributes, given his or her understanding (from thereagemts) of what information
those attributes are supposed to represent. As another examplkedea meay be given a
procedure for how to check that some class (or combination of €Jlassesponsible for each
functionality of the system, as described in the requirements.nelissemantic version of the
techniques required the reader to recreataahenalesthat describe why a design appears the
way it does, in response to the constraints and requirements set woiva requirements
specification. This new version allowed the reading techniques &sbarlechanical and require
more thought on the part of the reader. As an example Figurékphtg the new version of the
technique previously examined in Figure 3. Note that in the technidtigure 4, the reader is
instructed to determine if all of the attributes have been described and tf/fes make sense.

Reading 4 -- Class diagrams x Class descriptions

Goal: To verify that the detailed descriptions lafsses contain all the information necessary aaugitd the class
diagram, and that the description of classes mak®&stic sense.

Inputs to Process:

1. Aclass diagram (possibly divided into packageaj tlescribes the classes of a system and how they a
associated.

2. A set of class descriptions that lists the clasgessystem along with their attributes and behavio

1) Read the class diagram to understand the necessapyoperties of the classes in the system.

INPUTS: Class diagram;
Class description.
OUTPUTS: Discrepancy reports.

Foreach class on the class diagrarpgerform the following steps:

< Verify that all the attributes are described alerith basic types.
Are the same set of attributes present in both thelass description and the class diagram? If not, it
means that attributes are not appropriately descriled. This represents an inconsistency between the|
documents. Fill in a discrepancy report describinghis situation and showing which document didn’t
capture the appropriate information.
Can this classmeaningfully encapsulate all these attributes? That is, doesritake sense to have these
attributes in the class description? Are the basitypes assigned to the attribute$easible according to
the description of the attribute? If not, it represents an ambiguity or an incorrect fact. Fill in a
discrepancy report describing this situation and shwing which document didn’t capture the
appropriate information.

Note the introduction of semantic checking, that isthat the information expressed by the notation i$easible,
possible, or meaningful.

Figure 4 — Second version of a horizontal readingte chnique .

The second lesson learned was that reading techniques need to inoluamly
instructions for the reader, but some motivation as to why thosaanetrs are necessary. The
information in the qualitative data suggested that subjects werested in why the steps of the
technique were important and useful, as opposed to just being told wihat thh seemed that

when the subjects understand the overall goal they are more bkityltvalue in the individual
steps, which previously may have seemed of little value.

The third lesson that was learned was that the level of granularity ofsthections needs
to be precisely described. Discussing functionality is acdiffbut necessary part of the reading
techniques. The difficulty comes from the many different levelgrahularity at which system
behavior can be described. To solve this problem we decided to defineingtdisays of
discussing functionality, ranging from very specific systamssageqgthe communications

Customer : Gas Station Owner Parking Spot : Credit Card System Customer Bill : Purchase :
Customer Gas Station Owner| Parking_Spot Credit_Card System Bill Purchase

‘ parking_spot_request(account_number) ‘

next_available()

where_to_park(available parking_spot)

[Payment type = Credit Card and payment time = novﬁ

“'Iease_parking_spot(parking_spot, payment time, payment typg)ﬂ(‘
o
authorize_paymem}custc mer, amount, date) /U [payment time = monthly] ﬁ

new_payment_type_request()

[response time < 30 secs] ﬁ

[response time => 30 secs
credit card not authorized and add_to_bill(customer, amount, date)
payment time = now]

| |

Combinations of messages that form systniceshave been marked. Conditions and constraints reckided as
annotations on the diagram. “Response time < 3@&"segpresents a nonfunctionabnstraint on the way certain
functionality has to be implemented. “Payment timanonthly” is an example of aondition that must be true for a
particular message to be executed; in this casesytbtem variable “payment time” must have the e&toonthly.”
Figure 5 - A sequence diagram capturing how classes collaborate to perform system
functionality.

>

ew_purchase(customer, parking_spot, date)

between objects that work together to implement system behavisystenservices(the steps
by which some larger goal or functionality is achieved) andlfinal the top level, system
functionalities (the behavior of the system, from the user’'s point of view). Thuscametalk
about specific behaviors of the classes combining to provide seofities system and, in turn,
the high-level functionality that the user sees. For exampladsonthe diagram presented in
Figure 5. The sequence diagram describes how classes cobalogoadvide som&inctionality,
the ability to lease a parking spot. This functionality is meant to descube af the system from
the user’s point of view; although the user may have to performaesteps in his interaction
with the system, we expect that his or her final goal iddghse of a spot to park his car. Two
servicesare marked on the diagram, represented by the heavy dashed andnsslidvhich
group together a collection ofiessagesThese services represent particular steps that must be
accomplished for the user to achieve the task of purchasing tkengapot. The dashed
grouping may be thought of as the service of “getting an open spot” whilgaieing circled by
the solid line accomplishes the step of “paying for the spdteatime of leasing.” To the user,

neither step makes sense as a goal in and of itself; esgfitiitle use to the customer to find an

open spot but not pay for it.

With the information gained from these lessons we were ablenrage the next version
of the reading techniques, making global changes to the techniques. What was needas twow w
evaluate each technique in more detail. We needed to collect aiformabout the individual
steps in each technique as opposed to the global information that wellemted up to this
point. This seemed best accomplished through the use of “observagicmailgues”, by which
we mean an experimental subject performs some task while plegreenter gathers data about
what exactly the subject does. The purpose of the observatiorcaldéct data about how the
particular task is accomplished. To test the feasibility of pteposed observational studies
methods and the changes to the technique format, a pilot study was run.

3. Pilot Study of Observational Techniques

Background

Observational methods are distinct frogtrospectivemethods of collecting qualitative
data about processes, such as post-mortem interviews or questionrlossrvational studies
address an important drawback of retrospective techniques, namekhgttbapection does not
present the experimenter with a completely accurate pictutBeo$ubject’s thought process.
This is because often, when using retrospective techniques, itfisultifor a subject to
reconstruct from memory the actual thought process they went thitougolve a problem.
Another drawback to retrospective techniques is that if a subjgotan time to reflect on what
he did, then he may, intentionally or casually, present his thoughtgzr@nd ideas in a more
structured and coherent way than they actually occurred. As ouhgmalis to design reading
techniques that support the reader, knowledge of how the thought protesiy avorks is
important. Because of all this, it has been suggested that emplteghgiques to observe
subjects while working may be a way to capture more completa@natate information about
what is really going on [Van Someren94].

In her paper on observational studies, Dr. Singer discusses howoatlatdion can be
split into 2 subtypes, observational and inquisitive. Observational slatallected while the
process is being executed, but without direction from the researélmerinstance, subjects are
told to think out loud as they execute a technique. This allows $karaher to gain insight into
how the process is executed, for example, the researcher cad retloe subject becomes
confused or does not know what to do next at any step of the procdssti@globservational
data is largely passive on the part of the researcher, isiisceequired that the researcher avoids
interfering with the process being studied as much as possible.

Inquisitive data is collected at the completion of a process s#perrthan during its
execution. Data collection requires the researcher to be meedias, since they must solicit
responses to definite questions rather than observe process exesutioncars. For example,
at the end of each step, the researcher could ask the subject ftatigaaleedback on the
reading technique. This is not information that the subject would Hgrthank about while
executing the process, yet it is invaluable to collect attithis, while it is still fresh in the mind
of the subject [Singer96].

10

Method

This pilot study was undertaken to evaluate the feasiblity ofgusibservational
techniques to evaluate the Object Oriented reading techniques.s Istutly we hoped to gain
some insight into how the observational techniques interacted witleddeng techniques. Our
main goal was to come out of the pilot study with observational tgeésithat we had some
confidence in, instead of testing something blindly on a large group.

Subjects

There were two subjects in this pilot study. The subjects saderted because of their
experience and knowledge in the area of process improvement, seethatild receive valuable
feedback on the observational techniques and the reading techniquesapefgireg them on a
larger scale.

Materials

Based on the two types of questions, inquisitive and observational, Weeatts guide
that the researcher would follow when observing an experimariigdcs. The guide consisted of
a copy of the reading technique (so that researchers could tbkosubject’s progress) in which
each step was augmented with a series of questions to beirfileexithe information became
available. These questions asked for both observational and inquisitiyveaadteavere decided
upon after discussion among the research team of the most im@spacts of the techniques to
get feedback on. The questions were concerned with how long theoste if there was
anything that was confusing about the step, and whether or not tleetskrigw of a better way
to accomplish that step.

Procedure

Because this was only a pilot study, only two of the readirtgntques were selected for
evaluation. We decided that because we were most interestegprioving the observational
techniques and not the reading techniques, it was not important or inséfiel pilot study to
evaluate all of the reading techniques. Each of the subjects hasgivea an OO reading
technique and a set of artifacts. There were two members aeslearch team that acted as
observers. One was an active observer, following the guide séstuis the Materials section.
This observer was there to: 1) step the subject through the prec@juemind the subject to
“think out loud”, if necessary, so that the observational data could leeteal; and 3) to capture
information about the circumstances in which the subject experigmobkems or has trouble
understanding the OO reading technique. He also took note of the time consumeddigpeath
the process and whether or not the step was successful in finfiegsd@he other observer was
a passive one. This observer wrote down observations about what wagoimgt did not
interfere with the reading process. This allowed a more obgesBt of notes about the study
method to be collected.

11

Results and Lessons Learned

First we will consider the results gained from the observdtidai@. These results deal
mainly with the amout of time taken for each step. We observeditfeaent aspects influenced
the time it took to apply such techniques. The prior experiendeeakder and the complexity
of the information being inspected seem to be influential factors, atlirsmrgetimes the order of
steps and the abstraction level of the reading technique contributertd¢ase the time required
for applying the techniques. For example, the first time that ricplar reader used the
techniques, extra time was required to understand the steps and ewelerstand the types of
information in the inspected document that were relevant. But, théereader applied the
techniques once, the time spent to apply such techniques diminishedob$bevational
techniques revealed several causes for this, including thatatierreould better understand the
steps and, interestingly, could mentally reorganize some of the istan order that made more
sense for him.

It was also observed that the complexity of the class beimgétesd is an important
factor that can determine how long particular steps will takés dspect was noticed especially
when readers tried to read classes belonging to inheritan@gdhies. In this situation, it was
also observed that readers have a tendency to apply a top-down rather than aipagpnmoach.
In other words, to understand the real-world concept or rationale behimdrnktuction of the
design, readers typically need to build the whole conceptual modekbefolerstanding the
basic concept.

Next we consider the results gained from the inquisitive dakesd results deal mainly
with the influence of prior knowledge. Some domain knowledge seembd twecessary to
support horizontal reading. Readers suggested that they didn’'t need tthédawvbkole set of
requirements to read design artifacts, but that some descriptibe ef/$tem, its main concepts
and objectives, would be worthwhile. This information could be useful tdyjuke design
choices or rationales somehow, with the goal of easing the idatith of the concepts captured
and used to represent the high-level system solution. Another pporte@ by the readers
regarded the necessary level of object-oriented development sgpeftithough the techniques
were meant to be described to allow any reader to read detifgetsl, readers seemed to be
comfortable when they knew the basic concepts of the OO paradigar. instance, the
techniques provided examples and definitions described with enoughtdetitolw the reader to
understand the idea behind each one of the constructs and concepts usedheBuwtifferent
levels of abstraction were used (e.g., references to objects\@asses), readers without a more
detailed knowledge of the object-oriented paradigm encounterecutliff It should be noted
that this does not imply that readers need experience in OO development, just sofeddaoiv
the basic OO concepts such as class, object, attribute, and behavior.

Another interesting observation was that readers typically lofewo other approach or
tool that could elicit the types of information being checkedheyreading techniques. The sole
exception was for some of the steps of the horizontal reading techriigaaly the ones dealing

2 We assumed that readers could use the technidjtiesutvprevious detailed knowledge about the OOstoiets.
This assumption is important mainly when verticgdding is been applied, because it allows the gigation of
readers who have knowledge of the system beingtmmtsd but not in-depth knowledge of software tattion
(e.g. system users or customers).

12

with syntactical issues), for which readers suggested usindASECool to automate the
consistency check.

Lastly we will examine the problems that we encountered ipitbestudy that led us to
improvements in the techniques and associated artifAéfis.were able to identify three basic
types of problems that were present in this version of the teclsniguganizational issues,
semantic issues, and the format of software artifacts being inspected.

Organizational problems are concerned with the way that therseadeuld apply the
different reading techniques. Sometimes, readers suggestedpihiging one or another step
before (or after) others could facilitate the identificatiorsome features or information in the
inspected document. For example, it was suggested that ites saanderstand the attributes of
a class after the set of behaviors has been understood. Thisf sqpggestion was possible only
after readers had applied the techniques for the second or thedhawing better understood
them and having mentally reorganized the steps necessary to accomplisksthe tas

Another type of organizational problem regarded the format used tot réefarcts.
Readers uncovered several problems with using the defect taxonaiyig @) to report defects.
Some confusion concerned the level of granularity that should be usethsEorce, some
students experienced difficulties trying to describe how a classription could be ambiguous
when actually the ambiguity was related to only one attribute of the class

Some semantic problems were also identified with the new reaeammique version.
Basically, these were concerned with how a reader’'s domain kigevkgffects the execution of
the techniques, and how questions should be phrased as part of the tedbnrioroesreaders to
think about the semantic content of the information they were rea&egders who used
horizontal reading techniques reported that having some domain knowlaadespeed up the
reading process, allowing them to quickly recognize some concaptared by the design
diagrams. This situation was not detected in the vertical rgadchniques, probably because
readers were checking the design against the requirememwtspties, which already aims to
describe the necessary knowledge to understand the problem.

Type of Defect | Description

Omission One or more design diagrams that should contain some concept from
the general requirements or from the requirements document do not
contain a representation for that concept.

Incorrect Fact A design diagram contains a misrepresentation of a concept described
in the general requirements or requirements document.

Inconsistency A representation of a concept in one design diagram disagrees with a
representation of the same concept in either the same or another
design diagram.

Ambiguity A representation of a concept in the design is unclear, and could cause
a user of the document (developer, low-level designer, etc.) to
misinterpret or misunderstand the meaning of the concept.

Extraneous The design includes information that, while perhaps true, does not
Information apply to this domain and should not be included in the design.

Table 3 — Types of software defects, and their spec ific definitions for OO designs

Last, but not least, subjects asked about the format of the atif@atg inspected.
Although UML notation had been used during the construction processficsphainges to the
format could be proposed to facilitate the reading process. As seddastthe readers, some

13 |

organizational improvements (e.g. having an index to find the conceptdyyuwiould speed up
searching consequently providing a way to speed up the reading process pE@%iks

[ll. Conclusions
The object oriented reading techniques (OORTS) have been, andestivalving since their
first definition. New issues and improvements have been included bastt deedback of
readers and volunteers. Throughout this process, we have beendrgamgure new features and
to understand whether the latest reading technique version keésssitslity and interest. We
have found observational techniques useful, because they allowed usoto flodl reading
process as it occurred, rather than trying to interpret the re2guest-hoc answers as was done
before. Observing how readers normally try to read diagramdecbatl many of our
assumptions about how our techniques were actually being applied.

For now, a new and reorganized version of the OORTSs, dealing with seamantic
issues, has been created in an attempt to facilitate the reading procégsypésstix B).

References
[Basili96]

[Basili98]

[Pfleeger98]

[Porter95]

[Pressman97]

[Shullog]

[Singer96]

[Travassos99a]

[Travassos99b]

[Van Someren94]

[Zhang99]

V. Basili, G. Caldiera, F. Lanubile, and F. Shull. Stadia Reading Technigues
In Proc. of the Twenty-First Annual Software Engineering WorksBajh-96-
002, pages 59-65, Greenbelt, MD, December 1996.
V. Basili, F. Lanubile, and F. Shull. Investigating Maimance Processes in a
Framework-Based Environment.Proc. Of the International Conference on
Software Maintenancðesda, MD. November 1998.

Shari Lawrence Pfleeg8&gftware Engineering: Theory and Practi¢erentice-
Hall, 1998.

A. Porter, L. Votta Jr., V. Basili. Comparing Detectiortivds for Software
Requirements Inspections: A Replicated ExperiméBEE Transactions on
Software Engineerin21(6): 563-575, June 1995.

Roger S. Pressm&oftware Engineering: A Practitioner's Approackourth
edition, McGraw-Hill, 1997.
F. Shull. Developing Techniques for Using Software Documents: A Series of

Empirical StudiesPh.D. thesis, University of Maryland, College Park, December
1998.

J. Singer and T. Lethbridge. “Methods for Studying taance Activities.” In
Proc. of the Workshop for Empirical Studies of Software Maintend&6

G. H. Travassos, F. Shull, M. Fredericks, V. R. Basitcting Defects in Object
Oriented Designs: Using Reading Techniques to Increasevé8eftQuality
OOPSLA99, Denver, Colorado, USA, November 1999

G. H. Travassos, F. Shull, and J. Carver. “Evolvifrgaess for Inspecting OO
Designs.” Xlll SBES:Workshop on Software QualityFloriandpolis, Curitiba,
Brazil, October 1999.

M.W. Van Someren, Y.F. Barnard, and J.A.C Sandbéry.Think Aloud
Method: A Practical guide to Modeling Cognitive Procesg®sademic Press:
London. 1994.

Z. Zhang. The Design and Empirical Studies of Perspective-Based Ugabilit
Inspection PhD. Thesis, University of Maryland, College Park, June 1999.

14

APPENDIX A - The Definitions
Throughout the description of the techniques, the following terms are constaudtly use

1. Functionality:Functionality describes the behavior of the system. Typically, functionality is
described from the user’s point of view. That is, a descriptionsiésyfunctionality should
answer the question: What can a user use the system to doxas¢hef a word processor,
an example of system functionality is formatting text.

2. Service: Like “functionality”, aserviceof the system is an action performed by the system.
However, services are much more low-level; they are the “atomis” out of which system
functionalities are composed. Users do not typically consider sgraitcend in themselves;
rather, services are the steps by which some larger gdahaionality is achieved. In the
case of a word processor, typical services include selgetwgusing pull-down menus, and
changing the font of a selection.

3. MessageMessagesre the very lowest-level behaviors out of which system saraind, in
turn, functionalities are composed. They represent the communicatioaemetwjects that
work together to implement system behavior. Messages may be sh@gguence diagrams
and must have associated class behaviors.

For example, consider the example diagrams provided in the appendix édainple 2, the
sequence diagram describes how classes collaborate to providéusatienality the ability to
lease a parking spot. This functionality is meant to descrilmeaf the system from the user’s
point of view; although the user may have to perform several stepis iinteraction with the
system, we expect that his or her final goal is the lease of a spot to paak his ¢

Two servicesare marked on the diagram, represented by the heavy dasheatidides, which
group together a collection ofiessagesThese services represent particular steps that must be
accomplished for the user to achieve the task of purchasing thangpapot. The dashed
grouping may be thought of as the service of “getting an open spot” whiledtingirtg circled by

the solid line accomplishes the step of “paying for the spdteatime of leasing.” To the user,
neither step makes sense as a goal in and of itself; esgfitiitle use to the customer to find an
open spot but not pay for it.

It should be noted that there may be multiple ways to group medsagéiser into services. The
messages lease parking_spot, add_to_bill, and new_purchase may be groupego&e caom
service that can be thought of as “paying for a spot via monthlyy Bach of these services
represents a different execution path the system will follow udidierent conditions, and thus
all are necessary to describe the full range of systemidmadity. In some cases, the designer
may choose to use a number of similar sequence diagrams, witlliagcam showing one such
execution path, in order to avoid the complexity of many serviceg bepresented on the same
diagram, as is the case in Example 2.

15

APPENDIX B - The Techniques
B.1 Reading 1 -- Sequence x Class Diagrams

Goal: To verify that the class diagram for the system describes classes and their relationships in such a
way that the behaviors specified in the sequence diagrams are correctly captured. To do this, you will first
check that the classes and objects specified in the sequence diagram appear in the class diagram. Then
you will check that the class diagram describes relationships, behaviors, and conditions that capture the
dynamic services as described on the sequence diagram.

Inputs to process:

1.

2.

1)

2)

A class diagram (possibly divided into packages) that describes teesctz#sa system and
how they are associated.

Sequence diagrams that describe the classes, objects, and possibly actorewof arsl/sow
they collaborate to capture services of the system.

Take a sequence diagram and read it to understand the system sersadescribed and how the
system should implement those services.

INPUTS: Sequence diagram (SD).

OUTPUTS: System objects (marked in blue on SD);
Services of the system (marked in green on SD);
Conditions on the services (marked in yellow on.SD)

& For each sequence diagram, underline the systesetstgnd classes, and any actors, with a blue pen.

& Underline the information exchanged between objébis horizontal arrows) with a green pen. Consider
whether this information representessage®r servicesof the system. If the information exchanged is
very detailed, at the level of messages, you shabkiract several messages together to underdtand t
services they work to provide. Example 2 providesiltustration of messages being abstracted into
services. Annotate the sequence diagram by writowgn these services, and underline them in gresmn al

@ Circle any of the following constraints on the maggssand services with a yellow pen: restrictions on the
number of classes/objects to which a message capmierestrictions on the global values of aritatte,
dependencies between data, or time constraintsctrataffect the state of the object. Also circlg/ an
conditions that determine under what circumstarecanessage will be sent. The sequence diagram in
Example 2 contains several examples of constraimisconditions on messages. The conditions comgerni
payment type and payment time determine when messaguthorize_payment and
new_payment_type_request will be sent , while thstrictions on response_time for message
authorize_payment represent time constraints.

Identify and inspect the related class diagrams, to identify if th corresponding system objects
are described accurately.

INPUTS: Sequence diagrams, with objects, serviaascanstraints marked;
Class diagrams.

OUTPUTS: Discrepancy reports.

@ Verify that every object, class, and actor usethensequence diagram is represented by a condas®in
a class diagram. For classes and actors, simpliytfie name on the class diagram. For objects, tfied
name of the class from which the object is instaatl.
If a class or object cannot be found on the classafjram, it means that the information is inconsistat
between both documents. If an actor cannot be foundt may also mean that there is inconsistent
information; you need to consider whether the actomust be represented as a class in the system in
order to provide necessary behavior. Fill in a disepancy report describing these problems.

< Verify that for every green-marked service or mgssan the sequence diagram, there is a corresgpndin
behavior on the class diagram. Verify that theeedass behaviors in the class diagram that entzpghe

16 |

higher-level services provided by the sequencerdiagTo do this, make sure that the class or olbjext
receivesthe message on the sequence diagram, or shouléspensible for the service, possesses an
associated behavior on the class diagram. Also reafethat there exists some kind of associatiorttie

class diagram) between the two classes that theagesconnects (on the sequence diagram). Remember
that in both cases, you may need to trace upwardsigh any inheritance trees in which the claserigd

to find the necessary features. Finally, verifyttttat each service, the messages described byetheeace
diagram are sufficient to achieve that service.

Is there a message on the sequence diagram for wihithe receiving class does not contain an
appropriate behavior on the class diagram? If yest means that there is an inconsistency between the
diagrams. The sequence diagram implies that a beh@v must exist, but no such behavior is recorded
for the appropriate class on the class diagram. Hilin a discrepancy report describing the problem.
Are there appropriate behaviors for the system serces? If not, it means that no class assumes
responsibility for a particular service. Fill in a discrepancy report describing the problem.
Is there an association on the class diagram betwe¢he two classes between which the message is
sent? If not, necessary information has been omitte from the class diagram. If a message is
exchanged between two classes they must be ass@tain some way. Fill in a discrepancy report
describing the problem.

Are there any missing behaviors, without which thesystem service cannot be achieved? If so, it means
that there is an omission from the sequence diagrantill in a discrepancy report describing the
problem.

Verify that the constraints identified in the senoe diagram can be fulfilled according to the cldisgram.
Consider the following cases: 1) If the sequenegmim places restrictions on the number of objiets
can receive a message, make sure that constrgieaepas cardinality information for the approgriat
association in the class diagram. 2) If the seguelimgram specifies a range of permissible valoeddta,
make sure that constraint appears as a value @m@a attribute in the class diagram. 3) If theusege
diagram contains information concerning the depeciés between data or objects (e.g. “a ‘Bill’ olbjec
cannot exist unless at least one ‘Purchase’ olgjeists”) make sure that this information is inclddes a
constraint on a class or relation on the classrdiag Dependencies between objects may also be
represented by cardinality constraints on relatigpes 4) If the sequence diagram contains timing
constraints that could affect the state of an dhjeq. “if no input is received within 5 minutdsen the
window should be closed”) make sure that this imiation is included as a constraint on a class latioa

on the class diagrarfror example, the class diagram in Example 3 costaitiming constraint for the class
“Credit_Card_System” since it applies to all instations of this class. The conditional expressiftmosn
Example 2 should not appear in the class diagrarause they do not affect the state of a class.

Could you find the data but they do not conform tothe behavior arguments? Or, could you find the
constraints but they do not completely agree in bbt documents? If yes, it means that the documents
are inconsistent. Fill in a discrepancy report to éscribe the problem.

Finally, for each class, message, and data idedt#dibove, think about whethdrased on your previous
experienceit results in a reasonable design. For examplaktabout quality attributes of the design such
as cohesion (do all the behaviors and attributea ofass really belong together?) and coupling {aee
relations between classes appropriate?).

Does it make sense for the class to receive this seage with these data? Could you verify if the
constraints are feasible? Are all of the necessasttributes defined? If not, the diagrams may contai
incorrect facts. Filll' in a discrepancy report to decribe the problem.
For the classes specified in the sequence diagrady the behaviors and attributes specified for them
on the class diagram make sense? Is thrmame of the class appropriate for the domain, and for i
attributes and behaviors? Are the relationships wih other classes appropriate? Are the relationships
of the right type? (For example, has a composition relationship beamsed where an association makes
sense?) If not, you have found an incorrect fact loause something in the design contradicts your
knowledge of the domain. Fill in a discrepancy repd to describe the problem.

17

B.2 Reading 2 -- State diagrams x Class description

Goal: To verify that the classes are defined in a way that can capture the functionality specified by the
state diagrams.

Inputs to Process:

1. A set of class descriptions that lists the classes of a system alongeiitattributes and
behaviors.

2. A state diagram that describes the internal states in wdmclobject may exist, and the
possible transitions between states.

For each state diagram, perform the following steps:

1) Read the state diagram to understand the possible states of the aftjand the actions that
trigger transitions between them.

INPUTS: State diagram (SD).

OUTPUTS: Object States (marked in blue on SD);
Transition Actions (marked in green on SD);
Discrepancy reports.

@ Determine which class is being modeled by thissstigagram.

Could you identify the type of the object that thisstate machine is modeling? If you can't find this
information, you have found a defect of omission. il in a discrepancy report for this.

& Trace the sequence of states andtthssition actions(system changes during the lifetime of the object,
which trigger a transition from one state to angtlierough the state diagram. Begin at the statedfilled
circle) and follow the transitions until you reagh end state (double circle). Make sure you havereal
all transitions.

< Underline the name of each state, as you comewatht a blue pen.

@ Highlight transition actions (represented by arrpws you come to them using a green pen. For
example, the state diagram provided in Exampleriatios seven transition actions. The arrow leading
from the state labeled “authorizing” back to itselpresents an action that does not actually chtrege
state of the object.

@ Think about the states and actions you have jesttifled, and how they fit together.

Is it possible to understand and describe what isaing on with the object just by reading this state
machine? If not, you may have discovered a defect ambiguity; the behavior of this class over its
lifetime is not well described.

2) Find the class or class hierarchy, attributes, and behavior®n the class description that
correspond to the concepts on the state diagram.

INPUTS: Class description (CD);
Object States (marked in blue on SD);
Transition Actions (marked in green on SD).
OUTPUTS: Relevant object attributes (marked in dneCD);
Relevant object behaviors (marked in green on CD);
Discrepancy reports.

& Use the class description to find the class orsclaierarchy that corresponds to this state diagram.
Did you find the corresponding class? If not, you ave found a defect of inconsistency. The state
machine describes a class that has not been deseribon the class description.

@ Find how the responsible class encapsulates tieeusiderlined states described on the state diagdtates
may be encapsulated:

18

- 1 attribute explicitly. (An attribute exists whog®ssible values correspond to system states, e.g.
attribute “mode” with possible values “on”, “off".)

- 1 attribute implicitly. (An object is considered be in a specific state depending on the valueonfes
attribute, but the state is not recorded explicityg. if a>5 the object behaves one way, for other
values of a another behavior is appropriate, bthing explicitly records the current state.)

- acombination of attributes.

- class type. (E.g. subclasses “fixed rate loan” ‘@adiable rate loan” can be considered states odmia
class “loan”.) Remember to check the correspondlags and all parents in its inheritance hierarchy.
Mark each blue-underlined state with a star (*) whes found.

Has the class captured the idea of the modeled sta® If not, you may have found a defect of
inconsistency; the state diagram specifies certaistates for an object that cannot be captured by
the class as it is described. Or, you may have fodran ambiguity; it is not clear how the modeled
states can be captured by a class.

& For each green-highlighted transition action on stete diagram, verify that there are class belnsvio
capable of achieving that transition. Remembeptk Iboth in the currently selected class and aagsgs
higher in the inheritance hierarchy.

(Keep in mind the following possible exceptions:The transition depends on a global attribute,idatef

the class hierarchy. 2) In instances of poor designhigh coupling and public class attributeshdwiors in
associated classes can modify the wvalue of a \Jariain the class directly.)
If the transition action is aavent(i.e. a transition occurs when something happkrd for a behavior or
set of class behaviors that achieve that event.

If the transition action is eonstraint(i.e. a transition occurs when some expressionres true or false)
look for behaviors that can change the value ofcthestraint expression. For example, note the cainss
“[payment ok]” and “[payment not ok]” in example Bhese describe when the actions they describe can
happen, based on the status of payment.

Does the class encapsulate behaviors to deal wittetmodeled actions? If not, you have found a defect
of inconsistency. The state diagram specifies centaactions that no class behavior is capable of
implementing.

Could you identify the object data used to verify he constraints? Are they consistent between the
state diagram and the class description? If not, wohave found an inconsistency. The state diagram
describes certain constraints that must be checkebut the class description as described may not
support this check.

3) Compare the class diagram to the state diagram to make surbat the class, as described, can
capture the appropriate functionality.

INPUTS: Object States (marked in blue on SD);
Transition Actions (marked in green on SD).
OUTPUTS: Discrepancy reports.

& Consider the system functionality in which thissslgarticipates, as described by the class descrjigtnd
the states in which it may exist, as describedhkystate diagram.

Using your semantic knowledge of this class and thgehaviors it should encapsulate, are all states
described? If not, you have uncovered a defect afidorrect fact, that is, the class as described caonh
behave as it should.

& Review the state diagram, looking for any unmartdes.

Is there some unstarred state? Could you evaluatéé importance of this state? Does it really descré
an essential object state? Is the state feasiblensidering all actions and constraints surrounding ti? If
yes, probably something is missing on the class di@am and there is an inconsistency between the
diagrams. Otherwise, an extraneous fact should besported.

& Review the state diagram, looking for any unmar&etibns.

19

Is there some unstarred event? If yes, fill in a dect record showing the inconsistency between thdass
description and state diagram.

Is there some unstarred constraint? Is the constrat directly concerned with some object data? If yedfill
in a defect record showing the information that hasreen omitted from the class description.

20

B.3 Reading 3 -- Sequence x State diagrams

Goal: To verify that every state transition for an object can be achieved by the messages sent and
received by that object.

Inputs to Process:

1. Sequence diagrams that describe the classes, objects, and possibly actorewf arsl/sow
they collaborate to capture services of the system.

2. State diagrams that describe the internal states in which an object stagedithe possible
transitions between states.

For each state diagram, perform the following steps:

1) Read the state diagram to understand the possible states of the adtjand the actions that
trigger transitions between them.

INPUTS: State diagram (SD).

OUTPUTS: Transition Actions (marked and labeledrieeg on SD);
Discrepancy reports.

@ Determine which class is being modeled by thissstigagram.

Could you identify the type of the object that thisstate machine is modeling? If you can't find this
information, you have found a defect of omission.ifrin a discrepancy report for this.

& Trace the sequence of states andtthssition actions(system changes during the lifetime of the object,
which trigger a transition from one state to anothierough the state diagram. Begin at the statesand
follow the transitions until you reach the end stdlake sure you have covered all transitions.

& Highlight transition actions (represented by arrpas you come to them using a green pen. For exampl
the state diagram provided in Example 5 contaimsrséransition actions. The arrow leading from skete
labeled “authorizing” back to itself representsaation that does not actually change the statbeobbject.
Give each action a unique label [Al, A2, ...].

@ Think about the states and actions you have jusintified, and how they fit together.
Is it possible to understand and describe what isaing on with the object just by reading this state
machine? If not, you may have discovered a defect ambiguity; the behavior of this class over its
lifetime is not well described.

2) Read the sequence diagrams to understand how the transition actionseaachieved by messages
that are sent and received by the relevant object.

INPUTS: State diagram (SD);
Transition Actions (marked and labeled in greers@);
Sequence diagrams (SgD).

OUTPUTS: Object messages (marked and labeled imgne&qgD);
Discrepancy reports.

& Take the sequence diagrams and choose the onasséhie object modeled by the state diagram; olse o
this subset of the sequence diagrams in the remaofdhis step.

Could you find sequence diagrams in which the objeparticipates? If not, you have found a defect of
omission (necessary descriptions of how this objecontributes to system services are missing) or
extraneous information (this object does not conthbute to system services and is not needed). Filltou
a discrepancy report describing this defect.

& For each sequence diagram identified in the previbep:

@ Read the diagram to identify the system servicaddescribed and the messages that this objedvesce

21 |

@ Think about which object states on the state diageae semanticallyrelated to the system service.
Highlight the state transitions leading to and frirase states, and use this subset for the renmaofdeis
step.

& Map the object messages on the sequence diagrahetstate transitions on the state diagram. Each
transition action may map to one message, or aeseguof messages. To do this, you will need tokthin
about thesemanticsbehind the system messages. Are they contribubngchieving some larger system
service or functionality? Do they have somethingltowith the types of states this object shouldrife
When you have made a mapping, mark the relatedagessand transition actions with a star (*). Lahel
messages with the same label given to their adedciaaction on the state diagram.
Semantically, could you do this mapping? Were theradditional messages needed to achieve the state
transition? If so, you have discovered a defect afmission. Important messages are missing from the
sequence diagrams for this object. Fill out a dis@pancy report describing this defect.

@ Look for constraints and conditions on the messagesjust mapped to state transitions. An example
constraint might be “t>07, that is, whether or @oinessage is sent depends on the value of soriueitttr.
Look to see that any constraints/conditions foume eaptured somehow on the state diagram. This
information might be captured by: 1) state inforimat(i.e. the fact that t>0 corresponds to a paldicstate
of the system; 2) transition information (i.e. sost&te transition occurs when t>0 becomes trualsef 3)
nothing (i.e. this information is not relevant orgortant for the state diagram).

Could you find some correspondence between the carant/condition information on the state and
sequence diagrams? Does the information included dyoth diagrams have the same meaning? If not,
you have detected an inconsistency between the diams. Fill out a discrepancy report describing
this defect. Is there some constraint/condition irdrmation on the sequence diagram that was not
captured on the state diagram? If so, is it importat enough to the idea of object states that it shddi
have been somehow represented? If yes, you haveaded an omission. Necessary information has
been left out of the state diagram. Fill out a disepancy report describing this defect.

3) Review the marked-up diagrams to make sure that all transition atons are accounted for.

INPUTS: Transition Actions (marked and labeled iaegr on SD);
Object messages (marked and labeled in green ojr.SqD
OUTPUTS: Discrepancy reports.
& Review the state diagram looking for unstarreddition actions that could not be associated witfeath
messages.

If the transition action was labeled with a constrant, could you find a message or sequence of
messages capable of satisfying the constraint? Ibf) you have found a defect of inconsistency. The
state diagram requires system services that are natescribed on any sequence diagram. Fill out a
discrepancy report describing this defect. If the tansition action was labeled with an event, couldgu
find a message, a sequence of messages, or somateperformed by an actor that achieves the
transition action? If not, you have found a defecbf inconsistency. The state diagram requires system
services that are not described on any sequence dgiam. Fill out a discrepancy report describing this
defect.

& |If the starred messages and transition actiongifahin the previous step appear on the same esem
diagram, make sure they appear in a logical ortleat is, suppose the messages that achieve acfion A
appear before the messages that achieve actiom AR@® sequence diagram. This means that A1 musst tak
place chronologically before A2. Then you shouldkenaure that Al could be reached before A2 on the
state diagram as well.

Does the order of events not match between the twibbagrams? If so, there is an inconsistency. The
system services and functionality are described idifferent ways on the two diagrams. Fill out a
discrepancy report describing this defect.

22

B.4 Reading 4 -- Class diagrams x Class descriptions

Goal: To verify that the detailed descriptions of classes contain all the information necessary according to
the class diagram, and that the description of classes make semantic sense.

Inputs to Process:

1. A class diagram (possibly divided into packages) that describes the dhasgystem and
how they are associated.

3. A set of class descriptions that lists the classes of a system alongeiitattributes and
behaviors.

1) Read the class diagram to understand the necessary propertiestbé classes in the system.

INPUTS: Class diagram;
Class description.
OUTPUTS: Discrepancy reports.

Foreach class on the class diagrarpgerform the following steps:

& Find the relevant class description. Mark the cldsscription with a blue symbol (*) when found.
If you can't find the description, you have found adefect of omission. This class was represented but
not described on the class diagram. Fill in a disepancy report for this.

& Check the name and textual description of the dlagnsure that they providenzeaningfuldescription of
the class that you are considering at this timesoAtheck that the description is using an adequate
abstraction level.

Can you understand the purpose of this class fromhe high-level description? If not, the description
may be too ambiguous to be used for the design mdd€&ill out a discrepancy report describing the
situation.

< Verify that all the attributes are described alenith basic types.

Are the same set of attributes present in both thelass description and the class diagram? If not, it
means that attributes are not appropriately descriled. This represents an inconsistency between the
documents. Fill in a discrepancy report describinghis situation and showing which document didn’t
capture the appropriate information.

Can this classmeaningfully encapsulate all these attributes? That is, doesiibake sense to have these
attributes in the class description? Are the basitypes assigned to the attribute$easible according to
the description of the attribute? If not, it represents an ambiguity or an incorrect fact. Fill in a
discrepancy report describing this situation and sbwing which document didn’t capture the
appropriate information.

& Verify that all the behaviors and constraints azsatibed.

Are the same set of behaviors and constraints preasiein both the class description and the class
diagram? Does the class description use the sameglstor level of granularity (e.g. pseudocode) to
describe all of the behaviors? If not, you have di®vered an inconsistency. Different information is
contained in different documents, or different styés are used within the same document. Fill in a
discrepancy report describing this situation and sbwing which document didn't capture the

appropriate information.

Can this classmeaningfully encapsulate all these behaviors? Do the constraintsake sense for this
class? If not, it represents an ambiguity or an inarrect fact. Fill in a discrepancy report describirg
this situation.

Do the behaviors accomplish this procedure using tibutes that have been defined (for this or some
other class)? Are the constraints satisfiable usinghe attributes and behaviors that have been
defined? If not, you may have discovered an omissimr ambiguity. The behaviors and constraints as
defined cannot be satisfied using the attributes ahbehaviors that have been defined. It may be that

23 |

new attributes must be included in the design, orhie definition of the constraint/behavior changed.
Fill in a discrepancy report describing the problem

Do the behaviors for this class relyexcessively on the attributes of other classes to accomplistheir
functionality? (Note that you must make a value judement about what is meant by “excessive
reliance.” You should compare the number of referenes to other classes for this class with the rest o
the system, and consider the type of functionalitaddressed to determine if such reliance is really
necessary.) If so, you have uncovered a potentidlyke issue: unnecessarily high coupling. Fill in a
discrepancy report describing the problem as a “misellaneous” defect.

@ If the class diagram specifies any inheritance rapisms for this classverify that they are correctly
described.
Is the inheritance relationship included on the clas description? If not, you have uncovered a defect
of omitted information. The class diagram specifieshat this class is part of an inheritance hierarcly
that should be described in the class descriptioiill in a discrepancy report describing this situaton.
Use the class hierarchy to find the parents of thislass. Is it true that,semantically, a <class name> is
a type of <parent name>? Does it make sense to hats class at this point of the hierarchy? If not,
you have uncovered a potential style issue: the ma&chy should not be defined in this way. Fill in a
discrepancy report describing the problem as a “misellaneous” defect.

& Verify that all the class relationships (assocmtiaggregation and composition) are correctly desdr
with respect to multiplicity indications.

Were the object roles captured on the class descriph? Is the correct graphical notation used on the
class diagram to denote the type of relationship?f Inot, you have discovered an inconsistency; the
information on the two diagrams does not agree. Hiin a discrepancy report describing this situation
and showing which document didn't capture the apprpriate information.
Semantically, do the relationships make sense given the role édihe objects related? For example, if a
composition relationship is involved, do the conneed objects really seem like a “whole-part”
relationship? If so, you have uncovered a potentiatyle issue: the relationships should not be defa
in this way. Fill in a discrepancy report describirg the problem as a “miscellaneous” defect.
If cardinalities are important, were they described in the class description? Given your
understanding of the relationship, do the quantitis of objects used seem enough? If not, you may
have discovered an inconsistency. Fill in a discrapcy report describing the problem.
Is there some attribute representing the relationsip? Does it use a feasible basic type, or structuef
basic types (if multiple cardinality is involved)?If not, you may have discovered an inconsistencyf (i
the documents do not agree). Fill in a discrepanagport describing the problem.

2) Review the class descriptions for extraneous information.

INPUTS: Class description.
OUTPUTS: Discrepancy reports.

& Review the class descriptions to make sure thatladises described actually appear in the claggaiia
Is there an unstarred class description? If so, yohave discovered a defect of extraneous information
Class information has been described that does nattually participate in the class diagram. Fill ina
discrepancy report describing the problem.

24

B.5 Reading 5 -- Class Descriptions x Requirements Degtion

Goal: To verify that the concepts and services that are described by the functional requirements are
captured appropriately by the class descriptions.

Inputs to Process:

1.
2.

1)

2)

A set of functional requirements that describesctirecepts and services that are necessary innalesfistem.

A set of class descriptions that lists the clagdessystem along with their attributes and behavio

Read the requirements description to understand the functioality described.

INPUTS: Set of functional requirements (FR).

OUTPUTS: Candidate classes/objects/attributes (ndarkelue in FRs);
Candidate services (marked in green in FRS);
Constraints or conditions on services (marked lloyein FRS).

@ Read over the each functional requirement to utaiedsthe functionality that it describes.

@ Find the nouns in the requirement; they are caneléd® become classes, objects, or attributesilgyhtem
design. Underline the nouns with a blue pen.

@ Find the verbs, or descriptions of actions, whioh eandidates to be services or behaviors in teesy
Underline the verbs or action descriptions withreeg pen.

& Look for descriptions of constraints or conditiaos the nouns and verbs you identified in the prisged
two steps. Especially pay attention to non-funalmequirements, which typically contain restriasoand
conditions on system functionality. For examplearaine whether relationships between the concepts ha
been identified. Ask whether there are explicitstoaints or limitations on the way actions are pearied.
Try to notice if definite quantities have been sfied at any point in the requirement (see Examp)e
Underline these conditions and constraints witleliow pen.

Compare the class descriptions to the requirements to veriff the requirements were captured
appropriately.

INPUTS: Set of functional requirements (FR);
Class description (CD).
OUTPUTS: Corresponding concepts have been markédeoRR and CD;

Discrepancy reports.

& For each green-underlined action description in filmectional requirements, try to find an associated
behavior or combination of behaviors in the classcdiption. Use syntactic clues (e.g. a behaviarenthat
is similar or synonymous to an action descriptimnhelp your search, but make sure skenantioneaning
of the function in the requirements and high-ledesign is the same. When found, mark both the rame
the behavior(s) in the class description and treerdgtion of the activity in the requirements wihgreen
symbol (*).

Do the classes receive the right information for ammplishing the required behaviors? Arefeasible
results produced? If not, you have found an incorret fact. The classes as defined cannot achieve an
appropriate service. Fill out a discrepancy reportdescribing the problem.

& For each blue-underlined noun in the functionalunements, try to find an associated class in thesc
description. An associated class may be named afteoncept from the requirements, may describe a
general class of which the concept is a particinistance (i.e. an object), or may contain the cphes an
attribute. Use syntactic clues (e.g. a class némaieis similar to the name of a concept) to helprygearch,
but make sure theemantianeaning of the concepts in the requirements anigmésthe same.

@ |f the concept in the functional requirements cspands to a class name in the class descriptiork bath
the name of the class in the class descriptionth@dconcept in the requirements description withiiee
symbol (*).

25

Do the class descriptions contain sufficient informtion regarding the concepts that play some role in
this functionality? Do the class names have someratection to the nouns you had marked? Are the
classes using unambiguous and clear information tdescribe the concepts? If not, you have detected
an ambiguity. Fill out a discrepancy report descriling the problem.

Do these classes encapsulate (blue-marked) attrileg concerned with the nouns you had markeddo
these classes encapsulate (green-marked) behaviomicerned with the verbs or actions descriptions
you had marked? Were all identified constraints and conditions for hese classes regarding this
requirement described? If not, you have found an omission; important infomation from the
requirements has been left out. Fill out a discrepacy report describing the problem.

@ |If the concept in the functional requirements cgpands to an attribute in the class descriptionmkrbath
the name of the attribute in the class descripdiot the concept in the requirements descriptioh wiblue
symbol (*).

Is the class description usingfeasible types to represent information, given the requirerants
description? Were the (yellow-underlined) constraing and conditions on these attributes observed in
their definition? If not, you have found an incorrect fact. Fill out a discrepancy report describing he
problem.

3) Review the class description and functional requirements to ake sure that all appropriate
concepts correspond between the documents.

INPUTS: Set of functional requirements (FR);
Class description (CD).
OUTPUTS: Discrepancy reports.

& Look for descriptions of functionality in the regaments that have been omitted from the design.
Is there some underlined concept (in blue) or actity (in green) in the requirements, which is
unstarred? If yes, it may mean that some concept vganot captured in the design. However, it may
also mean that some concept in the requirements wasmply used for explanation or example, and
need not be made a part of the systenDecide whether this omission should be identifiedsaa defect.
Describe what is missing, filling in a defect recat for each unstarred noun.

26

B.6 Reading 6 -- Sequence Diagrams x Use-cases

Goal: To verify that sequence diagrams describe an appropriate combination of objects and messages
that work to capture the functionality described by the use case.

Inputs to process:

1.

2.

1)

2)

A use case that describes important concepts of the systemh(wiag eventually be
represented as objects, classes, or attributes) and the services it provides.

One or more sequence diagrams that describe the objects steansgnd the services it
provides. There may be multiple sequence diagrams for a given ussnasa use case will
typically describe multiple “execution paths” through the system fomality. The correct
set of sequence diagrams for a use case must be selectedgolyaceability information, or
by someone with semantic knowledge about the system. Findingtteetcset of sequence
diagrams without traceability information or knowledge of the system wiiaoe.

The class descriptions of all classes in the sequence diagram.

Identify the functionality described by a use case, and importantancepts of the system that are
necessary to achieve that functionality.

INPUTS: Use case (UC)

OUTPUTS: System concepts (marked in blue on UC);
Services provided by system (marked in green on, UC)
Data necessary for achieving services (markedllowen UC).

& Read over the use case to understand the fundtioti@t it describes.

< Find the nouns included in the use case; they ibesconcepts of the system. Underline and numbeh ea
unique noun with a blue pen as it is found. (Tlsatifia particular noun appears several times,| It
noun with the same number each time.)

@ For each noun identify the verbs that describeoastiappliedo or by the nouns. Underline the identified
services and number them (in the order they mugebidrmed) with a green pen. Look for the consatsai
and conditions that are necessary in order forgbtsof actions to be performed. As an examplesiden
Example 1, in which constraints and conditions ha&en highlighted. In this use case, there is ampie
of both a constraint (“The Customer can only wait 830 seconds for the authorization process”) and a
condition (“time of payment is the same as the pase time”).

@ Also identify any information or data that is reau to be sent or received in order to performatttions.
Label the data in yellow as “Di,j” where subscriptand j are the numbers given to the nouns between
which the information is exchanged.

Identify and inspect the related sequence diagrams, to identify the corresponding functionality
is described accurately and whether behaviors and data are repreged in the right order.

INPUTS: Use case, with concepts, services, andrdat&ed;
Sequence diagram (SD).
OUTPUTS: System concepts (marked in blue on SD);

Services provided by system (marked in green on SD)
Data exchanged between objects (marked in yello&n

@ For each sequence diagram, underline the systemctsbwith a blue pen. Number them with the
corresponding number from the use case.

& |dentify the servicesdescribed by the sequence diagrams. To do this, wl need to examine the
information exchanged between objects and clagséiseosequence diagrams (the horizontal arrowshelf

27 |

information exchanged is very detailed, at the lefenessages, you may need to abstract severadages
together to understand the services they workawige. Underline the identified services and nunthem
(in the order they occur in the diagram) with aggr@en. Look for the condition that activates ttigoas.

< |dentify the information (or data) that is exchaddeetween system classes. Label the data in yedlow
“Di,j” where subscripts i and j are the numbersegivto the objects between which the information is
exchanged.

3) Compare the marked-up diagrams to determine whether they apresent the same domain
concepts.

INPUTS: Use case, with concepts, services, andrdat&ed;
Sequence diagram, with objects, services, andrdatked.

OUTPUTS: Discrepancy reports.

& For each of the blue-marked nouns on the use saae;h the sequence diagram to see if the sameisioun

represented. Mark the noun on the use case witheashar (*) if it can be found on the sequenceydian.

Is there an unstarred noun on the use case? If yes, means that a concept was used to describe
functionality on the use case but was not represesd on the sequence diagram. For each of the nouns
on the sequence diagram, find the corresponding da on the class description and check whether the
unstarred noun is an attribute. If the unstarred naun does not appear as an attribute of any of these
classes, you have found an omission. A concept wiescribed on the use case but has not appeared in
the system design. Fill in a discrepancy report tdescribe the problem.

& Mark the nouns on the sequence diagram with a tlare(*) if they appear only on the sequence diagra
Is there a starred (*) noun on the sequence diagram? If so, you have fourth extraneous noun, or a
noun describing a lower-level concept, on the sequee diagram. Think about whether the concept is
necessary for the high-level design, and whether iepresents a level of detail that is appropriate &
this time. If necessary, fill in a discrepancy repad describing the problem.

& |dentify the services described by the sequenagraiia, and compare them with the description usetth®n
use case. Are the classes/objects exchanging nessBathe same order specified on the use caseg Wer
the data that appear on messages on the sequagcandicorrectly described on the use case? Isdilple
for you to understand the expected functionalitystjuby reading the sequence diagram?
Do the classes exchange messages in the same dpdcibrder? If not think about whether this
represents a defect. Usually, switching the orderfanessages may have an effect on the functionality.
But sometimes messages can be switched without atfag the outcome; other times, messages can be
performed in parallel, or conditions may ensure th& only one or the other message is executed
anyway. If a defect has been found, fill in a dis@pancy report describing the problem.
Are all transported data in the right message? Is ata being sent between the right two classes (igo
the labels “Di,j” for the data match between diagrans)? Do the messages make sense for the objects
sending and receiving them, and do they make senfar achieving the relevant services? If not, it
means that the sequence diagram is using informatioincorrectly. Fill in a discrepancy report
describing the problem.

@ Are all the constraints and conditions from the aase being observed in this sequence diagranthie s
detail from the use case missing here?

Were the constraints observed? Was all of the behavi@and data on the sequence diagram directly
concerned with the use-case? If no, it means thahe sequence diagram is using information
incorrectly. Fill in a discrepancy report on thismatter.

28

B.7 Reading 7 -- State Diagrams x Requirements Degation and Use-cases

Goal: To verify that the state diagrams describe appropriate states of objects and events that trigger state
changes as described by the requirements and use cases.

Inputs to process:

1. The set of all state diagrams, each of which describes an object in the system.

2. A set of functional requirements that describes the concepts and services tieatemsary in
the final system.

3. The set of use cases that describe the important concepts of the system

For each state diagram, do the following steps:

1) Read the state diagram to basically understand the object it imodeling.

2) Read the requirements description to determine the possibleates of the object, which states
are adjacent to each other, and events that cause the state changes.

INPUTS: Requirements Description (RD)
OUTPUTS: Object States (marked in blue on SD)
Adjacency Matrix

& Put away the state diagram and erase any (*) fftmhdre in the requirements from previous iteratioh
this step. Now, read through the requirementsitapkor places where the concept is described oaifty
functional requirements in which the concept patites or is affected. When you locate one ofdhes
mark it in pencil with a (*) so that it will be dasto use for the remainder of the step. Focuthese parts
of the RD for the rest of the step.

@ Locate descriptions of all of the different statfest this object can be in. To locate a statek foo attribute
vales or combinations of attribute values that camse the object to behave in a different way. W
locate a state underline it with a blue pen ane gia number.

< Now identify which one of the numbered states & lititial state. Using a blue pen, mark it with ‘&n
Likewise mark the end state with an “E”.

< When you have found all of the states, on a sepatatet of paper, create a matrix with 1..N acttessop
and 1..N down the left side, where 1..N represti@snumbers that you gave to the states in theiqurev
step.

& For each pair of states, if the object can change fthe state represented by the number on thédeid
side to the state represented by the number ototheow, then mark the box at the intersectionhef tow
and column. If you can determine the event(s) ¢hase the state change put that in the box, ifusbfput
a check mark (the event will be determined in arlatep). If you can determine that it is not gulesfor
the transition to happen then place an X in the biéyou cannot make a definite determination tkeave
the box blank for now.

@ For any event that you have identified above,aféhare any constraints described in the requiresntren
write those by the event in the matrix.

3) Read the Use cases and determine the events that can cause staeges.

INPUT: Use Cases

OUTPUT: Completed Adjacency Matrix

@ Read through the use cases and find the ones ohwiné object participates. Focus on these fordheof
the step.

29

@ For each box in the adjacency matrix that has alch@ark in it, look through the use cases and deter
what event(s) can cause that transition. Thesetgevyeay not be obvious and may require you to afistra
the use-cases and think about what is actuallyggomwith each object. Erase the check mark ariig wr
this event(s) in its place.

& For each box that is blank in the adjacency masex, if any event that can cause that transitiolessribed
in the use cases. If it is, then write that evenhe box, if not then place an X in the box.

4) Read the state diagram to determine if the states described arensistent with the requirements
and if the transitions are consistent with the requirementsand use cases.

INPUT: Requirements Description;
State Diagram (SD);
Adjacency Matrix (AM).

OUTPUT: Discrepancy Reports

& For each state that is marked and numbered iretipgrements description, find the correspondintgsta
the state diagram and using a blue pen, mark fit thi2 same number used in the requirements. Bdéutar
because the same state may have a different nathe nequirements than it has on the state diagram.
determine if two different names are talking abihigt same state, you must use your understandittgeof
requirement’s description of the state and therimfdion contained in the state diagram. This mayb
iterative process where if states appear to beimgisgou must go back and look again at what yoeeha
identified and make sure that it is correct.

Were you able to find all of the states?

If a state is missing, look to see if two or moreates that you marked in the requirements were
combined into one state on the state diagram. Ifat, then you have found a defect of Omission.
If so, then does this combination make sense? 169 you have found a defect of Incorrect Fact.

Where there extra states in the state diagram?

Look to see if one state that you marked in the ragrements has been split into two or more
states in the state diagram. If not, then you haviound a defect of Extraneous. If so, does this
split make sense? If not, you have found a defegat Incorrect Fact.

@ Once you have all of the states labeled with nusibgsing the AM, compare the transition events eark
on the matrix to the ones on the SD. For any boxhe AM that is marked with an event, check the
corresponding states on the SD to make sure they & event to transition between them, and check t
ensure that the event is the same.

Do all of the events on the AM appear on the SD?f hot, you have found a defect of omission. Do
events appear on the SD that are not on the AM? Ko, you have found a defect of extraneous
fact.

@ For each constraint that was marked on the AM, ifimth the SD.

Did you find all of the constraints that are on theAM? If not, then you have found a defect of
omission. Did you find a constraint on the stateidgram that is not on the AM? If so, does the
constraint make sense? If not then you have foura defect of extraneous fact.

30

APPENDIX C - The Defect report forms

C.1 - Sequence x Class Diagrams Discrepancy Report
Fill in one record for each defect
Document: Sequence Diagram
Concept Name:
Granularity: (actor, object, message, data, camit
Type of defect: (inconsistency, ambiguity, incotract, extraneous, miscellaneous)
Description:

Document: Class Diagram
Which classes are (or should be) involved?
Concept Name:
Granularity: (attributes, behavior, condition, initence, relationship, cardinalities, roles)
Type of defect: (inconsistency, ambiguity, incotriact, extraneous, miscellaneous)
Description:

C.2 - State Diagram x Class Description Discrepancy Report
Fill in one record for each defect
Document: State Diagram
Object/Class Name:
Granularity: (state, event, behavior, condition)
Concept Name:
Type of defect: (inconsistency, extraneous, miacelbus)
Description:

Document: Class Description
Class Name:
Granularity: (attribute, behavior, condition)
Concept Name:
Type of defect: (inconsistency, extraneous, miacelbus)
Description:

C.3 - State x Sequence Diagrams Defects Report
Fill in one record for each defect
Document: State Diagram
Object/Class Name:
Granularity: (state, event, behavior, condition)
Concept Name:
Type of defect: (inconsistency, extraneous, miacelbus)
Description:
Document: Sequence Diagram
Class Name:
Granularity: (behavior, condition)
Concept Name:
Type of defect: (inconsistency, extraneous, miacelbus)
Description:

C.4 - Class Diagram x Class Description Discrepancy Report

Fill in one record for each defect

Document: Class Descriptions
Class Name:
Granularity: (attributes, behavior, condition, énitance, relationship)
Concept Name:

31

Type of defect: (inconsistency, ambiguity, incotriact, extraneous, miscellaneous)
Description:

Document: Class Diagram
Class Name:
Granularity: (attributes, behavior, condition, inkence, relationship, cardinalities, roles)
Concept Name:
Type of defect: (inconsistency, ambiguity, incotriact, extraneous, miscellaneous)
Description:

C.5 - Class Description x Requirement Description Discrepancy Repo
Fill in one record for each defect

Document: Class Descriptions
Class Name:
Granularity: (class/objects, attributes, behaviondition, inheritance, relationship)
Concept name:
Type of defect: (omission, ambiguity, incorrecttfaaxtraneous, miscellaneous)
Description:

C.6 - Sequence Diagrams x Use Cases Discrepancy Report
Fill in one record for each defect

Document: Sequence Diagrams
Which classes are (or should be) involved?
Concept name:
Granularity: (class/objects, data, service, cooljt
Type of defect: (omission, ambiguity, incorrecttfaextraneous, miscellaneous)
Description:

C.7 - State Diagrams x Requirements Description Report
Fill in one record for each defect

Document: State Diagram
Which classes are (or should be) involved?
Concept name:
Granularity: (state, event, behavior, condition)
Type of defect: (inconsistency, extraneous, miacelbus)
Description:

32

APPENDIX D — The Examples of Documents to Be Read

Example 1: A use case for an automated system at a gas station, describangustomer
purchases a parking spot. Note that “time of payment is the same as pumbased
condition it describes what must be true for the functionality to be executed. “The Cusimme

only wait for 30 seconds for the authorization process” imposegstraintthat must be always
be true for system functionality.

f— A

Customer B Credit_Card
billing services System

A
O 5 2

parking
Gas Station Owner

A customer, giving his account_number, asks the&ason Owner for an available parking spot tdgds car.
To get an available parking spot Gas Station Owearches for the next parking place available.

With this information the customer can confirm tbase of the parking place. The time of paymenmétof
purchase or a monthly paper bill) and how the serghould be paid (by cash, personal check ortaredi).

If the time of payment is the same as the purchase timi€Castomer decides to pay by Credit Card then Ctatid
system should be useThe Customer can only wait for 30 seconds for tite@ization process otherwise this
payment should be made by cash or personal chemkoid other Customers waiting on the lane. The &aton
Owner should ask the Customer for a new paymeiet typ

It allows the Gas Station Owner to mark a new serpiurchase for this Customer at this date.

33

Example 2: A sequence diagram for the automated gasation system, capturing how classes collaborate
perform the functionality described in Example 1. @mbinations of messages that form systeservices have
been marked. Conditions and constraints are includdas annotations on the diagram. “Response time 03
secs” represents a nonfunctionatonstraint on the way certain functionality has to be implemeted. “Payment
time = monthly” is an example of acondition that must be true for a particular message to bexecuted; in this
case, the system variable “payment time” must havine value “monthly.”

Customer : Gas Station Owner Parking Spot : Credit Card System Customer Bill : Purchase :
Customer Gas Station Owne Parking_Spot Credit_Card System Bill Purchase

‘ parking_spot_request(account_number) ‘
next_available(')

where_to_park(available parking_spot)

[Payment type = Credit Card and payment time = nov\ﬁ

TIease_parking_spot(parking_spot, payment time, payment tyng

O ‘
authorize J)ayment}custc mer, amount, date) /U [payment time = monthly] ﬁ

new_payment_type_request()

[response time < 30 secs] ﬁ

[response time => 30 secs .
credit card not authorized and| add_to_bill(customer, amount, date)
payment time = now]

1

>
@

/_purchase(customer, parking_spot, date)

Example 3: The class diagram for the classes dedweid in Example 2. Note thatonstraints on system
functionality are represented as annotations on ckses.

Bill
Purchase Issue_Date : Date
Purchase_Date : Date . Payment_Date : Date
Tax : number 1 L.
price()
price() taxes()
taxes() customer()
new_purchase(customer, parking_spot)() purchases()
add_to_bill(customer, amount, date)()
1 / 1
/ Credit_Card System
(from External Systems)
0 /
/ + authorize_payment(customer, amount, date)()
Customer |
(from Customers) 1
- name : text é 0.* 1
: [response time should be less than 30
- address : text i
- SSN : number 1 Casisiatonownel secs for all Credit Card Systems]
- Birthday : Date 0.* q
- Account_number : number parking_spot_request()
+ opname() 1.7
+ new_payment_type_request()()
1
Parking_Spot
Place : text
is_available()
next_available()

34

Example 4: Requirements descriptions and Class degations used to show how conditions and constrailst
should be considered while reading both document&@bserve the relationship between both documents sivo
by the underlined information.

Requirement Description

1 — A customer has the option to be billed autoradl§i at the time of purchase (of gas, car mainteaar parking
spots) or to be sent a monthly paper bill. Custsrean pay via cash, credit card or personal chgak.Station
services have a fixed price (gas: US$ 1.09 galanmaintenance: US$ 150.00 and parking spot: US® ger day).
The tax is 5% added to the final price of the paseh Sometimes, the Gas Station owner can defigeutits to

those prices.

ClassDescription

Class name: Purchase
Category: Customers
External Documents:

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses:
Public Interface:
Operations:
price
taxes
Private Interface:
Attributes:
Purchase_Date : Date
Tax : number
Service: Services
Implementation:
Attributes:
Purchase_Date : Date
Tax : number = 0.05
Operation name: price
Public member of:
Concurrency: Sequential
Return (1 + tax) * service-
>price
Operation name: taxes
Public member of:
Concurrency: Sequential
Return tax * service->price

none

Class name: Services
Category: Services
External Documents:
Export Control: Public
Cardinality: n

Purchase

Purchase

35

Hierarchy:
Superclasses:
Public Interface:
Operations:
price
Private Interface:
Attributes:
Discount_Rate : number
Price : number
Implementation:
Attributes:
Discount_Rate : number
Price: number

none

Operation name: price
Public member of: Services
Concurrency: Sequential

Return (1 - discount_rate) *

price
Class name: Car_Maintenance
Category: Services

External Documents:

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Services

Public Interface:
Operations:
price
Private Interface:
Attributes:
Price : number
Implementation:
Attributes:
Price : number = 150.00

Example 5: A state diagram for the “gas station owar” class from the automated gas station system. An
associated sequence diagram is shown in Example 2.

. f/\\ [time <=7]
\‘ |

Authorizing

meent not OK]

[payment ok]

Purchased
®

/

@4

36

