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5.2 Aut+(Â) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
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Chapter 0

Organization and Summary of Results

Let Aut(σA) be the group of homeomorphisms of a shift of finite typeXA that com-

mute with the shift mapσA. In Chapter 1 we describe the dimension representation of

a SFT,ρA, from the mysteriousAut(σXA) to the more tractable group of automorphisms

of the dimension module,Aut(Â). An automorphism is inert if it is in the kernel of the

dimension representation.

Let φ be an automorphism of a SFTXA and let f ixφ(XA) denote the set of points

fixed by φ. It is well known that with dynamics given by the restriction of the shift,

f ixφ(XA), (a subshift ofXA) is a shift of finite type. We refer tof ixφ(XA) as the fixed point

shift of φ onXA. The first question we consider is:

Question 0.0.1.What can be the fixed point shift of an inert involution of a mixing shift

of finite type?

This is a generalization of the following question posed by John Smillie with mo-

tivation from complex dynamics: What are the fixed point shifts of involutions on the

2-shift? In fact, every involution of the 2-shift is inert and the inert case is still the fun-

damental case to understand even when noninert involutions exist. Apart from complex

dynamics, Question0.0.1 is natural from the viewpoint of symbolic dynamics, where

a great deal of what is understood (and what is not understood) about the automorphism

group of a SFT involves in a fundamental way the involutions. The following result shows
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how subshifts that are invariant under an inert automorphism can be realized as fixed point

shifts.

Theorem 0.0.2.Let f be an inert automorphism of a mixing shift of finite type X, with

f ix f (X) ⊆ Y where Y6= X and Y is a f -invariant subshift of finite type in X. Suppose

n≥ 2 and n is the smallest possible integer such that fn = Id. If the restriction of f to Y

is inert, then Y can be realized as the fixed point shift of a finite order automorphism,φ

on X, whereφn = id and n is the minimal positive integer k such thatφk = id.

For example, in Theorem0.0.2 X could be the 2-shift,f could be the flip involution

(which exchanges the two symbols), andY could be any flip invariant subshift of finite

type (sincef ix f (X) = /0 for f the flip). As Example2.4.6 shows, Theorem0.0.2 does not

resolve Question0.0.1 in general. Proposition2.3.4 gives the necessary condition that

if a shift of finite typeY is the fixed point shift of an inert involution on a mixing shift

of finite typeX, thenPer(X)\Per(Y) is the disjoint union of 2-cascades (as defined in

Section 3.3.1). This raises the question:

Question 0.0.3.Let Y be a SFT in a mixing shift of finite type X such that Per(X)\Per(Y)

is the disjoint union of 2-cascades. Can Y be realized as the fixed point shift of an inert

involution on X?

While Theorem0.0.2 answers this question for certain special cases, our main result

shows that the answer to Question0.0.3 is yes up to shift equivalence whenX is the full

2-shift.

Theorem 0.0.4.For a shift of finite type Y, contained in the full 2-shift, X, the following

are equivalent:
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1. Per(X)\Per(Y) is the disjoint union of 2-cascades.

2. Y is the fixed point shift of an involution on a mixing shift of finite type which is SE

to X.

It is still unknown if a shift that is shift equivalent overZ+to the 2-shift is strong

shift equivalent overZ+to the 2-shift. We also show that the answer to Question0.0.3 is

yes for a larger class of mixing shifts of finite type. We also give a (rather technical) proof

that there is a finite decision procedure for checking condition (1) of Theorem0.0.4.

An important part of our understanding of the action of inert automorphisms is the

relationship between a shift of finite typeX with finite order automorphism,U , and the

quotient spaceX/U . We say thatU is a strictly order n automorphism if every point lies

in aU-orbit of cardinality n (i.e.U generates a freeZ/n action onX). Kim and Roush

asked the following question:

Question 0.0.5.For p prime, when does a mixing SFT X have a strictly order n automor-

phism U such that X is conjugate to X/U?

In the strongest result to date, when p is prime, Kim and Roush [KR3] showed that

for a mixing shift of finite type,X, there existsX′ shift equivalent toX with a strictly

order p automorphism,f , such thatX′/ f is conjugate toX iff the periodic points ofX are

the disjoint union of p-cascades. For 1-sided mixing SFTs, the following result gives a

complete answer to Question0.0.5.

Theorem 0.0.6.Let A be a totally out-amalgamated square matrix overZ+and let p be

a prime integer. The following are equivalent:
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1. The 1-sided shift of finite type, X+
A has a strictly order p automorphism, U, with X+

A

conjugate to X+A /U

2. The matrix Ared is nilpotent where

Ared
i j =


0 if Ai j is a multiple of p

Ai j otherwise

Here nilpotence ofAred refers to nilpotence as a matrix overZ+, and depends only

on the zero-plus pattern ofAred. Question0.0.5 is a specific case of the following ques-

tion:

Question 0.0.7.For a prime p and a mixing shift of finite type X, what are the conjugacy

classes of X/U when U is a strictly order p automorphism?

For an adjacency matrixA, letA′ denote the matrix which is the total out-amalgamation

of A (as described in Section 5.3). For a 1-sided mixing shift of finite typeXA, the

following result characterizes the conjugacy classes ofX/U in terms of the total out-

amalgamationA′.

Theorem 0.0.8.Let A be a totally out-amalgamated square matrix overZ+and let p be

a prime integer. The 1-sided shift of finite type, X+
A has a strictly order p automorphism,

U, with X+
B conjugate to X+A /U ⇐⇒ GB is the quotient graph of an order p or order 1

graph automorphismψ of GA satisfying the following.

Let C be the principal submatrix of A such that GC is the maximal subgraph of GA

that has vertices fixed byψ. The matrix Cred is nilpotent where

Cred
i j =


0 if Ci j is a multiple of p

Ci j otherwise
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The dimension representation has been of fundamental importance in studying the

structure of shifts of finite type. There is a known complete characterization of the actions

of inert automorphisms on finite subsystems of shifts of finite type. An essential (and to

a large extent sufficient) part of understanding how non-inert automorphisms can act on

finite subsystems would be simply to know the image of the dimension representation.

Additionally, given a classification of irreducible SFTs, Kim and Roush [KR6] describe

how the classification of (reducible) SFTs can be found if and only if the range of the

dimension representation is known.

The last question we address is:

Question 0.0.9.Given A, a primitive matrix , what is the image of the dimension repre-

sentation,ρA : Aut(σA)→ Aut(Â)?

Our contribution to addressing Question0.0.9, though meaningful, is so far modest.

Proposition5.2.4 shows that the only general constructions to date, which are composi-

tions of conjugates of elementary automorphisms, cannot construct certain candidate im-

ages ofρA. In Proposition5.4.3 we examine a certain class of mixing shifts of finite type

for which it is impossible by Proposition5.2.4 to show thatρA is surjective using only

elementary strong shift equivalences. For this class, we construct suitable nonelementary

strong shift equivalences to show that the dimension representation is surjective. While

this construction is complicated and not fully understood, it is the first class of essentially

nonelementary examples constructed and will hopefully lead to further insight.
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Chapter 1

Definitions and Background

1.1 Definitions of Shift Spaces

A discrete dynamical system is a topological space, X, equipped with a homeo-

morphism, f, from X to itself and is denoted by the pair(X, f ). Let A be a finite set of

symbols, called an alphabet, and letAZ denote the set of bi-infinite sequencesx = {xi}

wherexi ∈ A and i ∈ Z. There is a natural map,σ, called the shift map that moves a

sequence one step left,σ(x)i = xi+1. (AZ,σ) is called the full shift on the alphabetA .

WhenA has n symbols, the pair(AZ,σ) is called the full shift on n symbols or the full

n-shift and is denoted by(Xn,σn). Unless otherwise indicated,A = {0,1, ...,n−1}. If A

is given the discrete topology, thenXn has topology given by the product topology from

A and is topologically a Cantor set. A compact, shift invariant subset of a full shift gives

rise to a subspace with induced map given by the restriction of the shift. We refer to the

subspace together with the restriction of the shift map as a subshift or as a shift space. A

block is a finite sequence[b1b2...bn] where each symbolbi ∈ A .

A continuous shift commuting map,φ, from a shift space X to a shift space Y is a

block map or block code, meaning that there is ak ∈ Z+ and a functionΦ such that for

all x∈ X, φ(x)i = Φ([xi−k...xi+k]). A 1-block code is a block map withk = 0. Dynamical

systems(X, f ) and(Y,g) are topologically conjugate if there exists a homeomorphismφ

from X to Y such thatφ ◦ f = g◦ φ. In particular, shift spaces X and Y are conjugate if
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there exists a 1-1 and onto block code from X to Y.

A subshift of finite typeX is defined by fixing a finite list of blocks,F , and ex-

cluding fromXn all sequences that contain a block from F. Equivalently, a shift of finite

type X is the set of sequences{x ∈ Xn|x[i,i+m−1] = b,b ∈ M} whereM is a fixed list of

blocks of lengthm. Shifts of finite type or SFTs are a very rich and important class of

shift spaces and are useful in applications to hyperbolic dynamical systems. See [LM] for

an introduction to symbolic dynamics.

A SFT can be presented interchangeably by a directed graph and its adjacency ma-

trix, a square matrix with entries in the semi-ring of the non-negative integers,Z+ =

{0,1, ...}. Let G be a finite directed graph with n ordered vertices and a finite edge set

E. G is defined by its adjacency matrix, A, which is an×n non-negative integral matrix

with Ai j = the number of edges from vertex i to vertex j. Lett(e) and i(e) denote the

terminal and initial vertices of the edgee∈ E. The shift of finite typeXG, or XA, is the

subshift ofEZ given by{x = (xi)i∈Z ∈ EZ : t(ei) = i(ei+1)for all i ∈ Z}. We say that a

square, non-negative integral matrix A is an edge presentation or simply presents the shift

of finite type(XA,σA).

Standing Convention 1.1.1.For simplicity, we will denote the shift dynamical system

(X,σ) by the spaceX since the shift map is understood to be the underlying map, and we

refer toσ specifically when we are talking about the dynamical map.
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1.2 Conjugacy Invariants of SFTs

Dynamical systems(X, f ) and (Y,g) are conjugate if there exists a homeomor-

phism,φ : X → Y, such thatφ ◦ f = g◦ φ. In general, conjugate systems have the same

dynamical properties and a classification of conjugate SFTs would be especially useful.

We will discuss several properties of SFTs that are invariant under conjugacy, and in the

next section we will discuss the state of the classification problem for SFTs.

A SFT is mixing if there exists aN ∈ N such that for each pair of allowed blocks,

u andv, and for eachn≥ N, there is a blockw of lengthn such thatuwv is an allowed

block.

A matrix, B, is primitive if its entries are nonnegative integers and there is some

n∈ N such that(Bn)i j > 0 for all ij. If all rows and columns of a square matrixA over

Z+are nonzero, then A is primitive iffXA is a mixing shift of finite type. The class

of mixing shifts of finite type (MSFTs) are the fundamental class of SFTs and many

problems of involving SFTs can be reduced to the case of MSFTs. A SFT is irreducible

if for each pair of allowed blocks,u andv, there is a blockw, with uwvan allowed block.

A SFT is reducible if it is not irreducible.

For a dynamical system,(X, f ), let Per(X,n) denote the set of points of X such that

f n(x) = x, and letPer(X) = ∪n∈Z+Per(X,n) be the collection of all periodic points. The

length of an orbit is the number of points in the shift orbit.

WhenPer(X,n) is finite for all n ∈ Z+, the periodic point counts of a dynamical

system(X, f ) are encoded by its Artin-Mazur zeta function,

ζX(t) = exp(Σ∞
n=0

|Per(X,n)|
n

tn)
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The zeta function for a SFT,XA, can be computed as

ζXA(t) =
1

trχA(t−1)
=

1
det(Id− tA)

(1.1)

whereχA(t) is the characteristic polynomial of ther× r matrix A. The non-zero spectrum

of a matrix is the set of non-zero eigenvalues with corresponding multiplicity. The zeta

function of a SFT,XA, is determined by the nonzero spectrum ofA and vice versa.

The entropy of a shift space is defined byh(X) = lim
n→∞

1
nlog|Bn(X)|, whereBn(X)

is the set of allowed blocks in X of length n. The entropy of a shift space measures the

exponential rate at which the number of allowed words increases. The Spectral Radius

Theorem and Perron-Frobenius theory imply that for a MSFTXA, the entropy ofXA is

the eigenvalue of A with largest modulus, which we will callλA, and that there is an

eigenvector ofλA which is positive.

1.3 The Conjugacy Problem for SFTs

Let (XA,σA) or simplyXA denote the shift of finite type defined by the non-negative

integral matrixA. ForA andB matrices overZ+, it is natural to ask under what conditions

do A andB present topologically conjugate shifts of finite type. Any two conjugate SFTs

will have the same zeta function and entropy, thus ifA andB present conjugate shifts of

finite type, thenA andB have the same non-zero spectrum. The non-zero spectrum is not

enough to guarantee conjugacy, and in 1973 R. Williams gave an algebraic framework

with which to study conjugacy classes of shifts of finite type.
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1.3.1 Strong Shift Equivalence

Given matricesA andB over a unital semiringS , A is elementary strong shift equiv-

alent (ESSE) toB (overS ) if there exist matricesRandSoverS with A= RS, B= SR. An

ESSE,(R,S), has direction fromA to B for A = RSandB = SR, whereas the ESSE(S,R)

has direction fromB to A. An elementary conjugacy is one that arises from an elementary

strong shift equivalence.

For matricesA andB overZ+, A is strong shift equivalent (SSE) toB overS if there

is a chain of ESSE (overS ) betweenA andB. SSE is an algebraic equivalence relation

whereas ESSE is not because ESSE is not a transitive relation.

Theorem 1.3.1.[Wil] For A and B matrices overZ+, (XA,σA) is conjugate to(XB,σB)

iff A is SSE to B overZ+.

SSE overZ+is an algebraic equivalence relation whose equivalence classes corre-

spond to conjugacy classes of shifts of finite type. This characterization of conjugacy does

not solve the conjugacy problem because there is no known finite procedure for deciding

when two non-negative integral matrices are SSE overZ+.

1.3.2 Shift Equivalence

Williams also defined the very tractable equivalence relation of shift equivalence.

For matricesA andB over a unital semiringS , A is shift equivalent (SE) toB over S if

there exist matricesRandSoverS andl ∈ N such that

RA= BR AS= SB Al = RS Bl = SR.

The integerl is referred to as the lag of the shift equivalence given by(R,S, l). The
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advantage of using SE rather than SSE is that SE overZ andZ+are well understood.

For example, matrices overZ are SE (overZ ) to a non-singular matrix. Further, two

integral matrices are SE overZ iff they are SSE overZ . Most importantly, SE overZ+is

decidable. In various important special cases, SE overZ+is classified by well understood

invariants. For example, all matrices overZ+with the same single non-zero eigenvalue,

λ > 0, are SE overZ+. It is not known whether they must also be SSE overZ+.

The relation of shift equivalence can be given more concretely, as we present now.

If A is ann×n matrix overZ+, then the eventual range ofA, RA, is given byAkQn, for

large enoughk such thatA is an isomorphism fromAkQn to Ak+1Qn. By convention, the

action ofA is on row vectors. The dimension group ofA, GA, and its positive setG+
A , are

defined as

GA = {v∈ RA : vAk ∈ Znfor somek≥ 0} (1.2)

G+
A = {v∈ RA : vAk ∈ (Z+)nfor somek≥ 0} (1.3)

(1.4)

(GA,G+
A , Â) is called the dimension module or dimension triple. Dimension mod-

ules(GA,G+
A , Â) and(GB,G+

B , B̂) are isomorphic if there exists an isomorphism,ψ : GA→

GB that takes the positive setG+
A to G+

B andψ◦ Â = B̂◦ψ.

Theorem 1.3.2. [K2] Let A and B be matrices overZ+, then A is SE to B overZ iff

(GA, Â)∼= (GB, B̂), and A is SE to B overZ+iff (GA,G+
A , Â)∼= (GB,G+

B , B̂).

The dimension module has an important presentation in terms of polynomials. For

a ring R, let L(R) denote the Laurent ring of polynomials int±1 with coefficients inR,
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and letL(R)N be theL(R)-module of (countably infinite) column vectors with all but

a finite number of entries zero. Letcok(Id − tA) be the cokernelL(Z)-module given

by L(Z)N/(Id− tA)L(Z)N. As above, matrices act from the right on row vectors. Letφ :

GA→ cok(Id−tA) be defined byv→ tkvAk for k such thatvAk ∈Zn. φ is an isomorphism

from GA to cok(Id− tA) such thatL(Z+)N∩{L(Z)N/(Id− tA)L(Z)N} is isomorphic to

the positive setG+
A . The isomorphism ofGA given byÂ corresponds to multiplication by

t−1 on cok(Id− tA). So by Theorem1.3.2, for A andB matrices overZ , A is SE toB

overZ iff cok(I − tA) andcok(I − tB) are isomorphic asL(Z)-modules, andA is SE toB

overZ+iff cok(I − tA) andcok(I − tB) are isomorphic as orderedL(Z)-modules.

Example 1.3.3. If A = [2], thenA presents the full 2-shift.GA is the ringZ[1/2] since

Z[1/2] are the elements ofQ that will be eventually mapped intoZ by multiplication by

2. G+
A will be Z+[1/2] andÂ will be the isomorphism ofZ[1/2] given by multiplication

by 2.

Proposition 1.3.4.Let A, B, and C be integral matrices with B nilpotent. Then

A C

0 B


and A are shift equivalent overZ .

SupposeA is a n×n matrix overZ and det(A) = ±1. ThenGA = Zn andÂ = A,

sinceA is invertible overZ . ForB a n×n matrix overZ , A will be SE toB overZ iff A

andB are conjugate in the matrix groupGln(Z).

Proposition 1.3.5. [LM 7.3.6] For A and B primitive matrices, A is SE to B overZ+iff A

is SE to B overZ .

By Theorem1.3.2 we can neglect the positive set when dealing with SE between
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primitive matrices.

Definition 1.3.6. XA andXB are eventually conjugate if there is an integer N such that

(XA,σn
A) and(XB,σn

B) are topologically conjugate for alln≥ N.

Theorem 1.3.7.[W2] For matrices A and B overZ+, XA and XB are eventually conjugate

iff A and B are SE overZ+.

Clearly if A is SSE overZ+to B, thenA is SE overZ+to B, but when doesA SE

to B over Z+imply A is SSE toB over Z+? Williams [Wil] conjectured in 1974 that

for matrices overZ+, SE overZ+implies SSE overZ+. This conjecture was refuted by

Kim and Roush for the reducible case in 1992 [KR4] and for the irreducible and mixing

cases in 1999 [KR1] but there remains much to be understood about the relation of SSE

to SE. Essential to the counterexamples was a deeper understanding of the dimension

representation of the automorphism group of a shift of finite type.

Standing Convention 1.3.8.For the rest of this paper, SE and SSE refer to SE over

Z+and SSE overZ+unless otherwise stated.

1.4 The Dimension Representation

An automorphism of a shift spaceX is a shift commuting homeomorphism ofX to

itself. Let Aut(σX) denote the group of automorphisms on a shift spaceX. Boyle, Lind,

and Rudolph [BLR] showed that when a SFT,X, has non-zero entropy, the countably

infinite groupAut(σX) is not finitely generated and contains a copy of every finite group.

Aut(σX) is complicated and poorly understood.
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Let Aut(Â) be the group of automorphisms ofGA that commute witĥA. Aut(Â) is a

much more tractable group to study and is typically finitely generated. ForA∈ GLn(Z),

GA = Zn andÂ = A is the isomorphism given by multiplication byA, soAut(Â) consists

of invertible integral matrices that commute withA.

By Theorem1.3.1, anyφ ∈ Aut(σA) can be realized by some chain of ESSEs over

Z+from A to A, (R1,S1)(R2,S2)...(Rk,Sk). If (R,S) is an ESSE fromA to B, thenR in-

duces an isomorphism from(GA,G+
A , Â) to (GB,G+

B , B̂). For an automorphismφ and a

corresponding SSE fromA to A, (R1,S1)(R2,S2)...(Rk,Sk), let φ̂ be the induced automor-

phism on(GA,G+
A , Â), whereφ̂ = ∏(R̂i)εi andεi is±1 according to the direction that the

i-th ESSE is traversed. Sinceφ̂ does not depend on the choice of SSE representingφ, this

gives a well defined mapρ : Aut(σA)→ Aut(Â) whereρ(φ) = φ̂. ρ is called the dimen-

sion representation and elements in its kernel are calledinert automorphisms. Krieger

originally defined the dimension representation dynamically using a Grothendieck style

construction on compact open subsets of unstable sets. We will use the algebraic defini-

tion given above because it is more convenient for our constructions which use chains of

ESSEs.ρ depends explicitly on the presentationA, but for brevity we neglectA in the

notation of the dimension representation.

Definition 1.4.1. A graph automorphism ofGA induces a 1-block map onXA. The group

of simple automorphisms is the subgroup of inert automorphisms generated by automor-

phisms conjugate to a block code induced by a graph automorphism that fixes all vertices.

In Chapter 3, we discuss at length the group of inert automorphisms, defined as the

kernel of the dimension representation. In Section 3.3.2, we briefly discuss the known
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complete characterization of the actions of inert automorphisms on finite subsystems of

shifts of finite type. In stark contrast, there has been little progress in describing how

non-inert automorphisms can act on finite subsystems. An essential (and to a large extent

sufficient) part of this understanding would be simply to know the image of the dimension

representation. Additionally, given a classification of irreducible SFTs, Kim and Roush

[KR6] describe how the classification of (reducible) SFTs can be found if Question5.1.1

is answered.
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Chapter 2

Fixed Point Shifts of Involutions

An involution of a shift of finite type,X, is an automorphism ofX such thatU2 = Id.

Recall from Section 1.4 that an automorphism of a shift of finite type is inert if it is in the

kernel of the dimension representation. The question we consider in this chapter is:

Question 2.0.2.What can be the fixed point shift of an inert involution of a mixing shift

of finite type?

For many shifts of finite type, such as full shifts, every involution is inert. Even

when noninert involutions exist, the fundamental case to understand is the inert case. See

Section 3.3 for further discussion. Question2.0.2 is a natural generalization of a problem

posed by John Smillie:

Question 2.0.3.[Smillie, 2005] What are the fixed point shifts of involutions of the full

2-shift?

In Section 3.1, we discuss the motivation of Smillie’s question from complex dy-

namics and mention some motivation from symbolic dynamics. In Section 3.2, we recall

background results from symbolic dynamics which will give context and be used in our

later theorems. In Section 3.3, we discuss the class of inert automorphisms and condi-

tions on periodic points that are necessary for the existence of inert automorphisms. In

Section 3.4, we answer Question2.0.2 in a special case and discuss the limitations of this
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result. In Section 3.5, we present a hierarchy of conditions involving cascades, zeta func-

tions, and matrix traces, and establish a decision procedure for checking the necessary

conditions of Question2.4.7.

2.1 Application to Complex Dynamics

Smillie’s Question (2.0.3) stems from a problem involving quadratic maps onC2.

The Henón family is a 2-parameter family of diffeomorphisms ofR2 given by quadratic

maps fa,b : R2 → R2, with fa,b(x,y) = (x2 + a−by,x) anda,b ∈ R (b 6= 0 for a diffeo-

morphism). The Henón family has been of interest for many years because of its relation

to one-dimensional and complex dynamics. Fora� 0, the restriction offa,b to its chain

recurrent set is hyperbolic and topologically conjugate to the full 2-shift, and whena� 0,

the dynamics offa,b are wandering [BS], but there are many open questions about what

happens between these extremes. Cvitanovic conjectured that each map in the Henoń

family can be described by horseshoe dynamics with collections of orbits removed; this

conjecture has been supported by numerical evidence from Davis, MacKay, and Sannami

[DMS].

Let Ka,b be the set of bounded orbits offa,b. Let the real horseshoe locus,HR, be

the set of(a,b) ∈ R2 such that the restriction offa,b to Ka,b is topologically conjugate to

the full 2-shift, (X[2],σ). Likewise, let the complex horseshoe locus,HC, be the set of

(a,b) ∈ C2 such that the restriction offa,b : C2 → C2 to Ka,b is topologically conjugate

to the full 2-shift,(X[2],σ). Bedford and Smillie [BS] describe how distinct connected

components ofHR may be connected by paths inHC. Hubbard and Oberste-Vorth [Ob]

17



show thatHC contains the setHOV = {(a,b) ∈ C2 : |a|> 2(|b|+1)2,b 6= 0}.

For some(a0,b0) ∈ HC, pick φ0, a conjugacy fromK(a0,b0) to the full 2-shift. Now

let γ(t), 0≤ t ≤ 1, be a closed loop inHC with basepoint(a0,b0). Because real and com-

plex horseshoes (represented here by the full 2-shift) are structurally stable,γ(t) produces

a homotopy of conjugaciesht from K(a0,b0) to K(at ,bt).Thus,Θ(γ) = φ0 ◦h1 ◦φ−1
0 defines

an automorphism of the 2-shift.Θ sends a loop inHC to an automorphism of the full shift

and depends only on the homotopy class of the loop,[γ]. So the map

Θ : π1(HC,(a0,b0))→ Aut(σ[2])

given by[γ(t)]→Θ(γ) is a well defined homomorphism. This homomorphismΘ provides

a probe into the topological structure of connected components ofHC.

Let HC
HOV be the connected component ofHC that contains the connected setHOV.

Hubbard [H] conjectured in 1986 that the image ofπ1(HC
HOV) underΘ is isomorphic

to the automorphism group of the full 2-shift. Recently, [BS] showed that the range of

Θ(π1(HC
HOV)) is nontrivial: forγ a loop inHOV, Θ(γ) can be the automorphism defined

by flipping the symbols 0 and 1. Even more recently, Arai’s numerical work applying

the theory of Bedford and Smillie, showed thatΘ(π1(HC
HOV)) has an element of infinite

order [A]. In contrast, the automorphism group of the 2-shift, is large and complicated.

For example, it is countably infinite, residually finite, not finitely generated, it contains a

copy of every finite group, the free group on infinitely many generators, and many other

groups (but not any group with unsolvable word problem) [BLR].

Much more is understood in the analogous one-sided setting. Blanchard, Devaney,

and Keen consideredSd, the space of monic polynomials of degreed on the complex

18



plane such that the restriction of the polynomial to its bounded orbits is conjugate to the

one-sidedfull d-shift, X+
[d]. They definedΘd : π1(Sd) → Aut(σX+

[d]
) as above. [BDK]

exploited the interactions between the dynamical space and the parameter space to show

that the mapΘd : π1(Sd)→ Aut(X+
[d]) is surjective.

In contrast to the two sided case, the automorphism group of the one-sided 2-shift

contains only two elements. So if true, Hubbard’s conjecture would show that the param-

eter space of the complex Henoń family is quite different than the set of monic quadratic

maps on the complex plane and would give a geometric description of the still quite mys-

terious automorphism group of the two-sided 2-shift. Apart from complex dynamics,

Question2.0.2 is natural from the viewpoint of symbolic dynamics, where a great deal of

what is understood (and what is not understood) about the automorphism group of a SFT

involves in a fundamental way the involutions [F, BF, BLR, KRW1].

2.2 Embedding Theorems and Nasu’s Masking Lemma

A map,g, from a shift of finite typeX to a shift of finite typeY is an embedding if

g is a continuous shift-commuting, one-to-one map. The following theorem of Krieger is

a fundamental result of symbolic dynamics.

Theorem 2.2.1.Let X be a shift space and Y a mixing shift of finite type. The following

are equivalent:

1. h(X) < h(Y) and there exists a shift commuting injection,φ : Per(X) ↪→ Per(Y).

2. There exists an embedding of X into Y as a proper subshift.
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Theorem2.2.1 in particular shows the very rich nature of subsystems of a SFT with

positive entropy.

The following result of Nasu is a very useful tool which brings dynamical embed-

dings to the level of matrix presentations.

Theorem 2.2.2 (Nasu’s Masking Lemma).Let A be a matrix presentation of shift of fi-

nite type X. If X embeds into a shift of finite type Y, then there exists a matrix presentation,

B, of Y such that A is a principal submatrix of B.

(See [LM] for proofs and discussion of Theorems2.2.1 and2.2.2)

Let U be an automorphism of a shift of finite typeX. Then let f ixU(X) be the

set of points ofX that are not moved byU . SinceU is a shift-commuting map,σX

will move points fixed byU to points fixed byU , and thereforef ixU(X) is a shift space.

Additionally, f ixU(X) will be a SFT becausef ixU(X) is the set of all bi-infinite sequences

which can be built from the finite list of blocks ofX, {b∈ B2n+1(X)|x[−n,n] = b,U(x)0 =

x0}, whereU has radiusn andBm(X) is the set of allowed words of lengthn in X.

It is a natural question to ask when a shift of finite type with a shift commuting finite

group action can be embedded into another shift of finite type with a shift commuting

finite group action. It is notable that the existence of embeddings is again characterized

by entropy and periodic point structure.

Theorem 2.2.3.[L] Let X and Y be mixing shifts of finite type with involutions U and V.

Suppose the following hold:

1. h(X) < h(Y)
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2. There exists a shift commuting injectionψ : Per(X) ↪→ Per(Y) such thatψ ◦U =

V ◦ψ

3. There exists an embedding of f ixU(X) into f ixV(Y).

Then there exists an embeddingφ : X ↪→Y withφ◦U = V ◦φ.

In an unpublished work, Lightwood [L] proved a generalization of this theorem as

a tool for a construction for embeddingZ2 subshifts into certainZ2 shifts of finite type.

We will use this theorem to compare involutions of a shift of finite type to involutions of

its subshifts.

Let us examine condition 2 of Theorem2.2.3 with U andV involutions of mixing

shifts of finite typeX andY. If x ∈ Per(X) of least periodn andx 6= U(x), thenU will

mapx to eitherσn/2(x) or to another periodic point of least periodn not in the shift orbit

of x. A periodic point,x, is type 1 ifU movesx to another periodic point in theσ-orbit of

x. A periodic point is type 2 ifU sendsx to a periodic point that is not in theσ-orbit of x.

A periodic point is called type 0 if it is fixed byU .

Standing Convention 2.2.4.Let the following be a standing convention for the rest of

the paper: A symbolic block of lengthn, b = b0b1...bn−1, will represent a shift orbit

consisting of periodic pointsσi((b)∞) for 0≥ i ≥ n−1 where(b)∞ refers tox, the point

of periodn with x[0,n−1] = b.

Example 2.2.5.Let X be the full shift on symbols{0,1,2,3}, and letU be the involution

defined by switching the symbols 0 and 1 and fixing 2 and 3. Then(0110)∞ is mapped

to (1001)∞ = σ2((0110)∞), so (0110)∞ is a type 1 periodic point. The point(0111)∞

21



is mapped to(1000)∞, so (0111)∞ and (1000)∞ are type 2 periodic points. The point

(2332)∞ is mapped to(2332)∞, so(2332)∞ is a periodic point of type 0.

Let ai
n(U) be the number of points of least shift periodn (∈N) of typei (∈ {0,1,2})

with respect to the involutionU .

Proposition 2.2.6. If U and V are involutions of shifts of finite type X and Y, then there

exists a shift commuting embeddingψ : Per(X) ↪→ Per(Y) with ψ ◦U = V ◦ψ iff for all

n∈ N and i∈ {0,1,2}, ai
n(V)≥ ai

n(U).

This proposition is immediately apparent and shows how the embedding of a shift

commutingZ/2 action on the periodic points of a shift of finite type is a set theoretic

property of having enough periodic points of each type in the range SFT.

2.3 Inert Automorphisms

An automorphism,φ, of a shift of finite type,X, defines an equivalence relation on

the points ofX given by: if x,y∈ X, thenx∼φ y if x andy are in the sameφ orbit. X/φ

is the quotient space ofX by the relation∼φ. Let π be the projection ofX onto the orbit

spaceX/φ that takes a pointx ∈ X to its φ-orbit, [x] = {y ∈ X|x∼φ y}. The shift onX

induces a bijection,σX/φ, from X/φ to X/φ which will define(X/φ,σX/φ) as a dynamical

system. It is well known thatX/φ will not be conjugate to a shift space unless for some

n ∈ N everyφ-orbit has cardinalityn, i.e. φ is a strictly ordern automorphism. Recall

from Section 1.4, that an automorphism on a shift of finite type is inert if it is in the kernel

of the dimension representation. Fiebig [F] gives a useful characterization of inertness in

terms of zeta functions and orbit spaces.
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Theorem 2.3.1. [F] If φ is a finite order automorphism on a shift of finite type X, then

ζ−1
X/φ(t) = ζ−1

X (t) iff φ is inert.

Example 2.3.2.Let X be the full 2-shift, and letf be the automorphism that switches 0

and 1. Letg be the 2-to-1 sliding block code defined byg(x)i = x i + xi+1 mod 2. For

x,y∈ X, x is in the f -orbit of y iff g(x) = g(y). SinceX/ f is topologically conjugate to

g(X) and the image ofg is the full 2-shift, then by Theorem 3.3.1,f is inert.

Let X be a shift of finite type andφ be a finite order automorphism onX. Formula

1.1 shows that the reciprocal zeta function of a shift of finite type is a polynomial. Fiebig

shows that the reciprocal zeta function of the orbit space,ζ−1
X/φ(t), is a polynomial factor

of the reciprocal zeta function ofX [F]. If a shift of finite type,X, has an irreducible

reciprocal zeta function, then all finite order automorphisms ofX are inert sinceζ−1
X (t)

will not have polynomial factors, and thusζ−1
X/φ(t) = ζ−1

X (t).

Example 2.3.3.Let A= [2] be the matrix representation of the full 2-shift. Sinceζ−1
XA

(t) =

1−2t is irreducible, all finite order automorphisms onXA are inert. In fact (see Example

5.4.1), Aut(σXA) = Z
L

Inert(σXA).

2.3.1 Cascades

A (2,n)-cascade is the union of two lengthn shift orbits and one shift orbit of

length 2in for eachi ∈ N = {1,2, ...}. The base of a(2,n)-cascade consists of the two

least periodn orbits and the tail of a(2,n)-cascade consists of its shift orbits of length

2n,4n, . . . ,2in, . . .. A 2-cascade is a(2,n)-cascade for somen. If U is an involution of a

SFTX, then a(2,n)-U cascade is a(2,n)-cascade with a base of two type 2 lengthn shift
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orbits and a tail of one type 1 shift orbit of length 2in for eachi ∈ N = {1,2, ...}. A 2-U

cascade is a(2,n)-U cascade for somen. Note here that 2-U cascades are 2-cascades,

so any condition involving 2-cascades will be true for 2-U cascades, but as is shown in

Example2.3.5, conditions involving 2-U cascades can not necessarily be weakened to

2-cascades.

Proposition 2.3.4.Suppose U is an involution of a mixing shift of finite type X, and Y is

the fixed point shift of U. Then the following are equivalent:

1. U is inert.

2. ζ−1
X/U = ζ−1

X

3. Per(X)\Per(Y) is a disjoint union of 2-U cascades.

Proof:

(1)⇔ (2) from Theorem2.3.1.

(2)⇒ (3): Letcn be the number of type 2 shift orbits of lengthn, dn be the number

of type 1 shift orbits of lengthn, and fn be the number of type 0 shift orbits of lengthn.

Let Pn be the number of lengthn shift orbits inX and letQn be the number of lengthn

shift orbits inX/U . ClearlyPn = cn +dn + fn andQn = cn/2+d2n + fn.

Sinceζ−1
X/U = ζ−1

X , we havePn = Qn for eachn∈N, sod2n = cn/2+dn. Letn= 2rq

with q odd andr ∈ Z+. Sincedq = 0 for q odd, we have by induction onr that

dn =
1
2

r−1

∑
i=0

ck

Therefore type 1 lengthn shift orbits can be put in bijective correspondence with

pairs of type 2 shift orbits of shorter lengthk such thatn/k = 2i for i > 0. It follows that
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Per(X)\Per(Y) is a disjoint union of 2-U cascades.

(3)⇒ (2): Let Per(X)\Per(Y) be a disjoint union of 2-U cascades, and letcn, dn,

and fn be defined as above. Then by the cascade decomposition ofPer(X)\Per(Y), there

are exactly as many type 1 length shift orbits as there are lower cascades, i.e. for each

n∈ N, dn = 1
2 ∑k ck wheren/k = 2i with i > 0. Note that this impliesd2n = dn + cn

2 . So

Qn = cn/2+d2n + fn = cn/2+(cn/2+dn)+ fn = cn +dn + fn = Pn

and thusζ−1
X/U = ζ−1

X . 2

Example 2.3.5. If A =

2 4

4 2

, then ζ−1
XA

(t) = (1− 6t)(1+ 2t). By Theorem2.3.4,

Per(XA) is the disjoint union of 2-cascades becauseXA has a fixed point free simple (inert)

involution. XA also has a fixed point free involution,φ, given by switching the vertices of

the graphGA. φ will not be inert sinceζ−1
XA/φ(t) = 1− 6t 6= ζ−1

XA
(t) = (1− 6t)(1+ 2t).

This example shows that condition (3) of Proposition2.3.4 can not be weakened to

Per(X)\Per(Y) is a disjoint union of 2-cascades and displays the difference between 2-

cascades and 2-U cascades.

2.4 SSE classes of Fixed Point Sets

First we present a useful lemma from [BFK]:

Lemma 2.4.1.Letφ be a finite order automorphism of a shift of finite type XA. Then there

exists a B such that XA is conjugate to XB andφ is defined by a graph automorphism of

GB.
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Proof: LetPA be the partition ofXA by the symbol in the zero coordinate, and let

P′ = ∨i∈Zφi(PA). P′ is a finite clopen partition ofXA and if Pi ∈ P′, then φ(Pi) = Pj

for some j. Eachx ∈ X corresponds to a pointx′ ∈ (P′)Z where(x′)n = Pi for σn(x) ∈

Pi . Clearly, (XA,σA) and (X′,σ) are conjugate. LetXB be a higher block presentation

of X′ such thatXB is a one-step shift of finite type. Thenφ will act on XB as a graph

automorphism.2

We now present and discuss the following result addressing Question2.0.2.

Theorem 2.4.2.Let f be an inert automorphism of a mixing shift of finite type X, with

f ix f (X) ⊆Y where Y is a f -invariant subshift of finite type in X. Suppose fn = Id, with

n≥ 2 and n minimal. If the restriction of f to Y is inert, then Y can be realized as a fixed

point shift of a finite order automorphism,φ on X, whereφn = id and n is minimal.

Proof of Theorem2.4.2:

By Lemma2.4.1, we may assume thatX has a graph presentation,GX, such thatf

is a one block map defined by a graph automorphism ofGX, which we will also refer to as

f . LetY be defined byF , a finite set of forbidden lengthk blocks fromX. Let X[k] be the

k-block presentation ofX and note thatf will still act as a graph automorphism ofGX[k].

Y will be presented byGY, a subgraph ofGX[k] that does not contain vertices defined by

word in F and f will act onY as a graph automorphism ofGY. Let the image underf of

an edgea in GY be denoted as ¯a, and the image of a vertexi be denoted̄i.

Since f is inert onY, we fixN ∈N such that fori and j, vertices ofGY, there are the

same number of paths of lengthN in GY from j to i as there are paths of lengthN from j

to ī in GY. Let g j,i be a bijection from the set of paths of lengthN in GY from j to i to the

26



set of paths of lengthN in GY from j to ī. Similarly, leth j,i be a bijection from the set of

paths of lengthN in GY from j to i to the set of paths of lengthN in GY from j̄ to i. We

choose these bijections such that ifi1, ..., ik is a simple cycle of vertices under the action

of U , then for all j g jik ◦ ...◦g ji0 = id andhik j ◦ ...◦hi0 j = id.

We defineφ onX by the following rules:

1. If x[i−N,i+N] is a path inGY, thenφ(x)i = xi .

2. If x[i−N,i+N−1] is a path inGY andxi+N is an edge not inGY, thenφ(x)[i,i+N−1] =

g j,k(x[i,i+N−1]), for j the initial vertex and k the terminal vertex ofx[i,i+N−1].

3. If x[i−N−1,i+N] is a path inGY andxi−N is an edge not inGY, thenφ(x)[i−N+1,i] =

h j,k(x[i−N+1,i]), for j the initial vertex and k the terminal vertex ofx[i−N+1,i].

4. Otherwise,φ(x)i = f (x)i .

φ is well defined by the preceding rules since each rule applies to a different disjoint

set of paths inGX. Note thatx[i, j] is aGY path iff φ(x)[i, j] is aGY path andφ(x) = x⇐⇒X∈

Y since paths inGY are the only paths fixed byφ. Consequently,φm = id, andφ is an

automorphism ofX with fixed point shiftY. 2

Corollary 2.4.3. Let f be the flip map on the full 2-shift, X, that switches the symbols 0

and 1. If f is inert on a f -invariant SFT Y in X, then Y can be realized as the fixed point

set of an involution of X.

Corollary2.4.3 raises two questions:

Question 2.4.4.If Y is the fixed point shift of an inert involution of X, the 2-shift, is Y

conjugate to a subshift of finite type in X on which the flip map, f , is inert?
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Question 2.4.5.For Y a subshift of finite type of X, and Per(X)\Per(Y) a disjoint union

of 2-cascades, when does there exist an inert involution, g, of X such that g(Y) = Y?

We will show in Example2.4.6 that the answer to Question2.4.4 is no. In particular,

this shows that Corollary2.4.3 is not enough to characterize the fixed point shifts of inert

involutions of the 2-shift. The main result of Chapter 4 shows that the answer to Question

2.4.5 is yes up to SE.

Example 2.4.6.There exists a fixed point shift,Y, of an inert involution on the 2-shift

such that the flip map is not inert on any subshift conjugate toY.

Note that the flip map on the 2-shift has an empty fixed point shift. There are 240

points of least period 8 in the full 2-shift which correspond to 30 length 8 shift orbits.

Choose some pairing of these length 8 orbits, and choose higher length orbits such that

the 30 length 8 shift orbits are the bases of 15 (2,8)-cascades. For each (2,8)-cascade

there exists an inert involution on the points in the cascade which moves all points in the

cascade. If we consider the disjoint union of the 15 (2,8)-cascades each with an inert fixed

point free involution and the identity map on the points(0)∞ and(1)∞, then we have an

inert involution on the subsystem of the 2-shift which contains only the 15 (2,8)-cascades

and the points(0)∞ and (1)∞. The results of [BF] will give an inert involution of the

2-shift, g, which moves all points in the 15 (2,8)-cascades and fixes the points(0)∞ and

(1)∞. If Y is the fixed point shift ofg, thenY contains the point(0)∞ and contains no

orbits of length 8. Thus(0)∞ can not be in a (2,1)-cascade, andf will not be inert onY

by Theorem2.3.4. 2

Note that the last example shows that ifPer(X) andPer(X)\Per(Y) are the disjoint
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unions of 2-cascades, this does not mean thatPer(Y) is the disjoint union of 2-cascades.

In the absence of an involution, the following question arises from Theorem2.3.4:

Question 2.4.7.Let Y be a SFT in a mixing shift of finite type X such that Per(X)\Per(Y)

is the disjoint union of 2-cascades. Can Y be realized as the fixed point shift of an inert

involution on X?

By Proposition2.3.4, the cascade condition of Question2.4.7 is necessary forY

to be the fixed point shift of an involution onX. We will comment more on the central

nature of the cascade condition in the latter part of Section 3.4.2. In section 3.3, we saw

the answer to Question2.4.7 is yes for certain subshifts of the full 2-shift. In Chapter 4,

we show that the cascade condition of Question2.4.7 is sufficient to realizeY as the fixed

point shift of an involution ofX′, whereX′ is shift equivalent to the 2-shift.

2.4.1 Inert Automorphism Constructions

An important tool in the manipulation of inert automorphisms has been the Inert

Extension Theorem of Kim and Roush [KR2]. We will use the following special case.

Theorem 2.4.8.[KR3] Let X and Y be shifts of finite type with Y a subshift of X. If U

is an inert automorphism of Y such that Um = id, then U can be extended to an inert

automorphism V on X such that Vm = id.

Proof: By Lemma2.4.1, we may assume thatY has a graph presentation,GY, with

adjacency matrixA such thatU is a one block map defined by a graph automorphism of

GY, which we will also refer to asU . Nasu’s Masking Lemma (Lemma 3.1.2) gives a

matrix presentation forX, and thus a graph presentation ofX, GX, such thatGY appears

29



as a subgraph ofGX. Let the image underU of an edgex and vertexi (of GY) be denoted

by x̄ and ī, respectively. SinceU is inert onY, we may fixN ∈ N such that fori and j,

vertices ofGY, there are the same number of paths of lengthN in GY from j to i as there

are paths of lengthN from j to ī in GY. Letg ji be a bijection from the set of paths of length

N in GY from j to i to the set of paths of lengthN in GY from j to ī. Similarly, leth ji be

a bijection from the set of paths of lengthN in GY from j to i to the set of paths of length

N in GY from j̄ to i. We choose these bijections such that ifi1, ..., ik is a simple cycle of

vertices under the action ofU , then for all j g jik ◦ ...◦g ji0 = id andhik j ◦ ...◦hi0 j = id.

We defineV onX as the extension ofU by the following rules:

1. If x[i−N,i+N] is a path inGY, thenV(x)i = U(x)i .

2. If x[i−N,i+N−1] is a path inGY andxi+N is an edge not inGY, thenV(x)[i,i+N−1] =

g j,k(x[i,i+N−1]), for j the initial vertex and k the terminal vertex ofx[i,i+N−1].

3. If x[i−N−1,i+N] is a path inGY andxi−N is an edge not inGY, thenV(x)[i−N+1,i] =

h j,k(x[i−N+1,i]), for j the initial vertex and k the terminal vertex ofx[i−N+1,i].

4. Otherwise,V(x)i =X i .

V is well defined by the preceding rules since each rule applies to a different disjoint

set of paths inGX. Note thatx[i, j] is a GY path iff V(x)[i, j] is a GY path. Consequently,

the assumptionUm = id and the cycle conditions on the choices ofgi j andhi j imply that

Vm = id. ClearlyV is an automorphism ofX which is an extension ofU onY. 2

In Section 3.3, we used a similar argument to realize some subshifts as a fixed point

shift of finite order inert automorphisms. Note here that the fixed point shift ofV will
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usually be larger than the the fixed point set ofU .

We pause now to give some background on the role of cascade conditions in the

construction and extension of finite order inert automorphisms.

Boyle and Fiebig [BF] characterize when automorphisms on finite subsystems of a

shift of finite type,X, can be extended to a product of inert, finite order automorphisms on

X. The complete characterization is quite complicated, but for automorphisms with order

a power of a primep, this extension is predicated on the existence ofp-cascades. Boyle

and Fiebig create a set of model systems with inert automorphisms that mimic the action

of (p,n)-cascades and use Krieger’s Embedding Theorem (Theorem2.2.1) to show the

existence of a subshift with the given action on the finite subsystem of(p,n)-cascades.

The Inert Extension Theorem (2.4.8) is then used to extend the inert automorphism on

the embedded model system toX.

Kim, Roush, and Wagoner [KRW1, KRW2] later gave a complete description of the

action of inert automorphisms on finite subsystems of a mixing shift of finite type. KRW

used the strategy of BF, except that their extremely complicated construction of model

subsystems involved the “positive K-theory” method of polynomial matrix operations

discussed in Section 4.1. The actions of compositions of finite order inert automorphisms

on finite subsystems of a mixing SFTX realize the actions of all inert automorphisms on

these finite subsystems, up to finitely many obstructions arising from low order periodic

points.
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2.5 Computability of 2-Cascade Condition

In this section we will discuss the related conditions of cascades, zeta functions, and

matrix traces. In Proposition2.5.1, we give a hierarchy of conditions involving cascade

decompositions, zeta functions, and the traces of presenting matrices. In Proposition

2.5.3, we give a criterion for whenPer(X)\Per(Y) is the disjoint union of 2-cascades, and

Proposition2.5.5 shows that ifζ−1
X (t) = 1 mod 2 then the procedure given in Procedure

2.5.4 is decidable in a finite number of steps.

Consider the following four conditions on an×n non-negative integral matrixA:

1. Per(XA) is the disjoint union of 2-cascades

2. det(Id− tA) = 1 mod 2

3. A is nilpotent mod 2

4. operatornametrAn = 0 mod 2∀n

Note that condition 2 is the same as sayingζXA(t) = 1 mod 2 by Formula1.1.

Proposition 2.5.1.The conditions above satisfy the implications (1)⇒ (2)⇔ (3)⇒ (4)

and (2) 6⇒ (1), (4) 6⇒ (3)

Proof: (2)⇔ (3): SupposeA is a k× k matrix. Then det(Id− tA) = tkχA(t−1),

whereχA(t) is the characteristic polynomial ofA. The matrixA, considered with its mod

2 entries lying in the fieldZ/2, hasχA(t) = tk iff A is nilpotent.

(1)⇒ (2): SupposePer(XA) is the disjoint union of 2-cascades.ζ−1
X (t) = ∏γ(1−

t |γ|), where the product is taken over all finite shift orbits inX and|γ| denotes the length
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of the shift orbitγ. The product of terms in a(2,n)-cascade is given by(1− tn)2(1−

t2n)(1− t4n) · · · , which is 1 mod 2. SincePer(XA) is the disjoint union of 2-cascades, the

zeta function ofXA will be 1 mod 2.

(3) ⇒ (4): If a k× k matrix, A, is nilpotent mod 2, then all of the coefficients,

except for thetk term, of the characteristic polynomial ofA are 0 mod 2. The trace of

A is the coefficient of thek−1 degree term of the characteristic polynomial, and so ifA

is nilpotent mod 2 then the trace ofA is 0 mod 2. Also ifA is nilpotent mod 2, then all

powers ofA are nilpotent mod 2, and thus all powers ofA have trace that is 0 mod 2.

(2) 6⇒ (1): LetA=



1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1


, thendet(Id−tA) =−4t3+6t2−4t +1= 1 mod

2 butXA has 4 points of least period 1 and no points of least period 2, soPer(XA) cannot

be the disjoint union of 2-cascades.

(4) 6⇒ (3): If A =

1 0

0 1

, then for alln∈ N, tr(An) = 2 = 0 mod 2, butA is not

nilpotent mod 2.2

Proposition2.5.1 shows that the decomposition of periodic points into 2-cascades

is a stronger condition than the mod 2 zeta function can capture. We devote the rest of

this section to deciding (in the case we need) when a collection of periodic points is the

disjoint union of 2-cascades.

Lemma 2.5.2. Let Y be a SFT in SFT X. If Per(X)\Per(Y) is the disjoint union of 2-

cascades, thenζ−1
X (t) = ζ−1

Y (t) mod 2.
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Proof of Lemma2.5.2: ζ−1
X (t) = ∏γ(1− t |γ|), where the product is taken over all

finite shift orbits inX and|γ| denotes the length of the shift orbitγ. ζ−1
X (t) = ∏γ∈Per(Y)(1−

t |γ|)∏γ∈Per(X)\Per(Y)(1− t |γ|) = ζ−1
Y (t)∏γ∈Per(X)\Per(Y)(1− t |γ|). If Per(X)\Per(Y) is the

disjoint union of 2-cascades, then∏γ∈Per(X)\Per(Y)(1− t |γ|) is the product of series of

the form(1− tn)2(1− t2n)(1− t4n) · · · which correspond to(2,n)-cascades. Since(1−

tn)2(1−t2n)(1−t4n) · · ·= 1 mod 2, then∏γ∈Per(X)\Per(Y)(1−t |γ|) = 1 mod 2 andζ−1
X (t) =

ζ−1
Y (t)mod 22

2.5.1 Decision Procedure

Let X be a mixing SFT with subshift of finite typeY, such thatζ−1
X (t) = ζ−1

Y (t) mod

2. LetPn be the number of points of least periodn in Per(X)\Per(Y). We defineDn with

n∈ N = {1,2, ...}, recursively according to the following rules:

1. Dq = 0 for all q odd.

2. For n even,Dn = Dn/2 +Pn/2.

Note that forn = 2rq with q odd andr ≥ 1, it follows by induction on r that

Dn =
r−1

∑
i=0

P2iq

Proposition 2.5.3. Let Pn and Dn be as in the previous paragraph. Define Cn = Pn−

Dn. Then Per(X)\Per(Y) is the disjoint union of 2-cascades⇔ ∀n ∈ N, the following

conditions hold:

1. (Parity condition) Cn is divisible by2r+1 for n = 2rq with q odd.

2. (Quantity condition) Cn is non-negative.
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Moreover, Cn = Pn−∑r−1
i=0 P2iq for n = 2rq with q odd.

Proof: ⇒: AssumePer(X)\Per(Y) is the disjoint union of 2-cascades and letan

be the number of(2,n)-cascades inPer(X)\Per(Y). For n = 2rq with q odd, letbn =

∑r−1
i=0 a2iq and note thatbn is the number of lengthn shift orbits in(2,k)-cascades where

n/k = 2i for i > 0. Also note thatb2n = bn+an and forq odd,bq = 0. By the assumption,

Pn = 2nan +nbn.

We would like to show that∀n ∈ N, Cn = 2nan andDn = nbn. For n odd, Dn =

0 = nbn andPn = 2nan = Cn. Assume that for allm≤ n thatCm = 2mam andDm = mbm.

ThenD2n = Dn +Pn = 2Dn +Cn = 2nbn +2nan = 2n(an +bn) = 2nb2n andC2n = P2n−

D2n = 2(2n)a2n +(2n)b2n−2nb2n = 2(2n)a2n. So by induction,∀n∈ N, Cn = 2nan and

Dn = nbn. The Parity and Quantity conditions are satisfied becausean is a non-negative

integer for alln∈ N andCn = 2nan.

⇐: Assume that the Parity and Quantity conditions hold∀n ∈ N, and letPn be

the number of least periodn points in Per(X)\Per(Y). Per(X)\Per(Y) is the disjoint

union of 2-cascades iff there exists non-negative integers,ai such that forn = 2rq with

q odd, Pn = 2nan + n∗∑r−1
i=0 a2iq. If we let an = Cn

2n, then by the Parity and Quantity

conditions,an will be a non-negative integer. It remains to show that forn = 2rq with q

odd,Pn = 2nan +n∗∑r−1
i=0 a2iq, which we will prove by induction onr.

For n odd,Pn = Cn = 2nan. Assume that forn = 2rq with q odd,Pn = 2nan + n∗

∑r−1
i=0 a2iq. Then for

P2n = C2n +D2n = C2n +Dn +Pn = C2n +2Dn +Cn =

2(2n)a2n +(2n)∗∑r−1
i=0 a2iq +2nan = 2(2n)a2n +(2n)∑r

i=0a2iq
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And so by induction onr, for n = 2rq with q odd,Pn = 2nan +n∑r−1
i=0 a2iq. 2

Proposition2.5.3gives criterion but not yet a finite procedure to decide ifPer(X)\Per(Y)

is the disjoint union of 2-cascades.

Procedure 2.5.4.Procedure for deciding whenPer(X)\Per(Y) is the disjoint union of

2-cascades:

1. If ζ−1
X (t) 6= ζ−1

Y (t) mod 2 thenPer(X)\Per(Y) is not the disjoint union of 2-cascades.

2. ComputeCn for all n ∈ N recursively using the formulaCn = Pn−∑r−1
i=0 P2iq for

n = 2rq with q odd.

3. If Cn satisfies the Parity and Quantity conditions of Proposition2.5.3 for all n∈ N,

thenPer(X)\Per(Y) is the disjoint union of 2-cascades.

Proposition 2.5.5.Let X be a mixing shift of finite type such that X has positive entropy

andζ−1
X (t) = 1 mod 2. Given Y, a proper subshift of finite type in X, the procedure given

by Procedure2.5.4 will determine if Per(X)\Per(Y) is the disjoint union of 2-cascades in

a finite number of steps.

If ζ−1
X (t)= 1 mod 2, then Lemma2.5.2shows that ifY is a SFT inX andPer(X)\Per(Y)

is the disjoint union of 2-cascades, thenζ−1
Y (t) = 1 mod 2.

Proof for Parity Condition:

Let Y be a subshift of finite type inX with ζ−1
Y (t) = 1 mod 2. LetA andB be

matrices overZ+that presentX andY. By Proposition2.5.1, A andB will be nilpotent

mod 2. Letl be the minimum positive integer such thatAl andBl have all entries divisible
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by 2, then tr(Al ) and tr(Bl ) are divisible by 2. Letbxc denote the largest integer that is

less than or equal tox∈ R.

Clearly 2bn/lc divides tr(An), and there existsN ∈N such that for alln> N, bn/lc>

log2(n)+ 2 sincen/l is bounded below by a linear function ofn and will eventually be

larger thanlog2(n)+2. So for alln > N, An andBn are divisible by 2r+2 and thus tr(An)

and tr(Bn) are divisible by 2r+2, wheren = 2r ∗q for q odd.

The number of least periodn points inPer(X)\Per(Y) is equal to trn(A)− trn(B),

where then-th net trace is given by trn(A) = ∑d|nµ(n
d)tr(Ad) andµ is the Mobius function,

µ(m) =


(−1)r if m is the product ofr distinct primes

0 if m contains a square factor

1 if m= 1

.

SinceCn = Pn−∑r−1
i=0 P2iq, it follows that

Cn = [trn(A)−
r−1

∑
i=0

tr2iq(A)]− [trn(B)−
r−1

∑
i=0

tr2iq(B)]

Applying the net trace formula and simplifying, forn = 2r ∗q with q odd, we get

Cn = ∑
s|q

µ(s)[tr(A2rq/s)−2tr(A2r−1q/s)− tr(B2rq/s)+2tr(B2r−1q/s)] (2.1)

Case 1: Forn = 2r ∗ q > N with q odd, if all non-zero terms in Formula2.1 are

tr(Ai) for i > N, then 2r+1 divides all terms and 2r+1 dividesCn.

Case 2: Letq = pt1
1 ...ptk

k with eachpi prime. If pi is a prime greater than N with

ti ≥ 2, then all terms in Formula2.1 will have tr(Ai) for i > N because eitherq/s is

divisible by pi or µ(s) = 0.

Case 3: Ifpi > N andti = 1, thenn = 2r piq′ and

37



Cn = ∑s|q′ µ(s)[tr(A2r piq′/s)−2tr(A2r−1piq′/s)− [tr(A2rq′/s)+2tr(A2r−1q′/s)]

− tr(B2r piq′/s)−2tr(B2r−1piq′/s)− [tr(B2rq′/s)+2tr(B2r−1q′/s)]]

All of the terms involvingpi will be tr(Ai) for i > N and 2r+1 will divide those

terms, soCn will be divisible by 2r+1 iff the sum of the remaining terms will be divisible

by 2r+1. A careful examination of the terms that remains yields:

∑
s|q′

µ(s)[− tr(A2rq′/s)+2tr(A2r−1q′/s)+ tr(B2rq′/s)−2tr(B2r−1q′/s)] =−C2rq′

By iterating the argument for Cases 2 and 3, we have reduced our problem to ver-

ifying Cn satisfies the Parity Condition whenn contains only primes less thanN. If α is

the product of all primes less thanN, then forn > α2 andn divisible only by primes less

thanN, all non-zero terms in Formula2.1 will be tr(Ai) for i > N becauses will be at

mostα and 2rq/s> α > N.

This shows that if the Parity condition is true up ton= α2, then the Parity condition

will be satisfied for alln∈ N.

Quantity Condition:

Dn will grow as n(
√

λA
n−

√
λB

n) whereasPn grows asλn
A−λn

b. This means that

at some finite M, for alln > M, Pn will be much larger thanDn, and thus the Quantity

condition will be satisfied.

So, if L is the maximum ofα2 and M, then it only needs to be checked thatCn

satisfies the Parity and Quantity conditions forn < L. 2.
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Chapter 3

SE classes of Fixed Point Sets

The purpose of this chapter is to answer Smillie’s Question (2.0.3) up to shift equiv-

alence. The main result of this chapter is

Theorem 3.0.6.For a shift of finite type Y, contained in the full 2-shift, X, the following

are equivalent:

1. Per(X)\Per(Y) is the disjoint union of 2-cascades.

2. Y is the fixed point shift of an involution on a mixing shift of finite type which is SE

to X.

Note that Condition (1) of Theorem3.2.1 is decidable in a finite number of steps

by Proposition2.5.5. We also note that it is unknown (since 1974 [Wil]) whether a SFT

which is SE to the 2-shift must be topologically conjugate to the 2-shift. The proof of our

main result relies heavily on the use of polynomial matrix presentations of shifts of finite

type and positive elementary matrix operations that produce presentations of conjugate

SFTs as discussed in Section 4.1. Section 4.2 is dedicated to the proof of the main result

and a discussion of its usefulness. In Section 4.2.2, we remark on some generalizations

of the main result.
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3.1 Path Presentations and Polynomial Matrices

Section 1.1 describes how shifts of finite type are presented as edge shifts by square

matrices overZ+. Square matrices overtZ+[t] can also present a shift of finite type, as

can be understood from an example. GivenA =

 0 t2 + t

t3 2t

, we associate toA the

following directed graph,GA.

The graphGA is constructed as follows. Since A is 2 by 2, we begin with two ver-

tices (the dark vertices of the above graph). These “essential”vertices will be the indices

of the rows ofA. For each monomial term,tk, in theAi j entry, we add a path of length k

from i to j. For each path of length k, we addk−1 ”nonessential” vertices to build the

path. A “nonessential”vertex has exactly one incoming and exactly one outgoing edge.

Let B be the 5 by 5 adjacency matrix of the graphGA. We regardA as a presentation of the

SFTXB. As can be seen from this example, matrices overtZ+[t] and the corresponding

path construction allow for a more compact presentations of graphs.

If B is a non-negative integer matrix, thenC = tB andB define the same directed

graph. For a matrixA overtZ+[t], the conversion from a path presentation to an edge pre-

sentation involves building the directed graph by the path construction and then creating

the adjacency matrix of this graph. We can convert edge presentations to path presenta-
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tions and vice versa as is convenient. LetXA denote the shift of finite type defined byA, a

matrix over eithertZ+[t] or Z+. ForB a matrix overtZ+[t], letB] be the adjacency matrix

of the graphGB and note thatXB andXB] are the same SFT.

3.1.1 Constructions Using Polynomial Matrices

Several constructions using polynomial matrices and the path construction have

been useful over the past 15 years. In this section, we will discuss how elementary matrix

operations on polynomial matrices can be used to describe conjugacies between shifts of

finite type, and how elementary positive operations can also be used to recode a polyno-

mial matrix into convenient forms.

Let A be a nonnegative polynomial matrix that is indexed by{1,2, ...} and has finite

support, i.e. there are finitely many non-zero entries. Constructing SFTs using matrices

from this infinite setting allows us to use the following tools to compare polynomial matri-

ces of different sizes. For polynomialsx andy, we definex≥ y to mean thaty−x∈Z+[t].

Let Ei j (x) be the matrix that is the identity matrix (also indexed overN) except for the

(i, j) (i 6= j) entry which is a polynomialx overZ+[t].

Standing Convention 3.1.1.When we refer to finite square polynomial matrices we

mean that the matrix is actually embedded into the upper left corner of a matrix indexed

by N. In many cases we will be dealing with matrices of fixed size but in all generality

these matrices will sit principally inside the infinite matrices described above.

Theorem 3.1.2.[KRW, BW] For A,B square matrices over tZ+[t], suppose that Id−B =

[Ei j (x)(Id−A)] or Id−B = [(Id−A)Ei j (x)] with x∈ Z+[t] such that x≤ Ai j . Then B
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defines a polynomial matrix such that XA is conjugate to XB.

Multiplications byEi j are called positive or elementary operations if they produce

a presentation of a conjugate shift of finite type as in Theorem3.1.2.

For example, ifA =

 0 t + t2

t3 2t

 andx = t2 < A1,2, then

[Id−A]E2,1(x) =

 1 −t− t2

−t3 1−2t


 1 t2

0 1

 =

 1 −t

−t3 1−2t− t5

 = [Id−B], whereB =

 0 t

t3 2t + t5

.

SoA andB present conjugate shifts of finite type by Theorem3.1.2. A positive operation

on a matrixA corresponds to deleting a path in the directed graph and adding paths that

are the deleted path concatenated with either the predecessor or follower paths. In the

example above,x corresponds to the dashed path in

The graph,GB is created by deleting the dashed path and adding paths which are

the concatenation of predecessor paths and the dotted path. In this example, we delete the

length 2 dashed path and add a path of length 5 which is the concatenation of the length

3 path going from the second dark vertex to the first dark vertex and the length 2 dotted

path from the previous graph. ThusGB is
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Let us note that it is possible to define a shift of finite type with a matrix A over

Z+[t], if A satisfies the No Zero Cycle (NZC) Condition. The NZC says that there are

no closed loops in the corresponding directed graph that are traveled in zero time. This

generality is not needed for the constructions used in Section 4.2, where we will only

need polynomial matrices to be overtZ+[t]. The more general constructions involving

NZC are necessary for the following theorems of Boyle and Wagoner (which we will not

need but demonstrate the fundamental nature of positive operations).

Theorem 3.1.3 (Classification Theorem).Suppose A and B are matrices overZ+[t]

satisfying the NZC, then the following are equivalent:

1. XA and XB are topologically conjugate

2. There is a sequence of positive row and column operations overZ+[t] from [Id−A]

to [Id−B]

Theorem 3.1.4 (Conjugacy Theorem).Every topological conjugacy from(XA,σA) to

(XB,σB) arises from some sequence of positive row and column operations overZ+[t]

from [Id−A] to [Id−B].

Let us return to the example given above whereA =

 0 t + t2

t3 2t

 and B =
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 0 t

t3 2t + t5

. Note that when we multiply[Id−A] by an elementary matrix corre-

sponding to a positive operation,[Id−B] has a higher order term in the 2,2 position. The

multiplication of the elementary matrices allows us to clear a low order off-diagonal term

at the price of adding higher order terms.

A clearing process (or procedure) is a sequence of positive polynomial operations

on a polynomial matrix such that all terms of degree less than some fixedd are cleared

from all off-diagonal entries. Note here that after applying a clearing process to a matrix,

all terms of degree less thand are removed from the off-diagonal entries, but there may

be terms of degree less than d on the diagonal. For arbitraryd, it is impossible to remove

all terms of degree less thand since periodic points of period less thand can only be built

from such terms. Clearing processes enable us to deal with the structure of low order

periodic points and higher length paths separately. This is a useful technique to exploit

if we wish to extend some property from finite collections of periodic points to the entire

shift of finite type. This technique is analogous to more traditional methods of coding

between shift of finite types like the marker construction. For example, Kim and Roush

used a clearing process to prove theirp-fold covering theorem, for which the following

theorem is a special case and will be used in proving Theorem3.2.1.

Theorem 3.1.5.[KR3] Let X be a mixing shift of finite type with Per(X) a disjoint union

of 2-cascades. Given a matrix tD over tZ+[t] presenting X, there exist positive elementary

operations from tD to[tA1+ tA2], where tA1 and tA2 are matrices over tZ+[t] and[tA1−

tA2] is nilpotent.
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3.2 Fixed Point Shifts of Involutions up to SE

The following theorem will answer Smillie’s Question2.0.3 and Question2.4.7 up

to shift equivalence.

Theorem 3.2.1.For a shift of finite type Y, contained in the full 2-shift, X, the following

are equivalent:

1. Per(X)\Per(Y) is the disjoint union of 2-cascades.

2. Y is the fixed point shift of an involution on a mixing shift of finite type which is SE

to X.

The proof of Theorem3.2.1 relies on Theorem3.1.5 and the following lemma,

which will be proven in the next section.

Lemma 3.2.2.Let X be the 2-shift and let F be a non-negative integer matrix presentation

of a subshift Y , where Per(X)\Per(Y) is the disjoint union of 2-cascades. Then there exists

a polynomial matrix A over tZ+[t], where A=

tM 2tB

tC tF

, Per(X[tM]) is the disjoint union

of 2-cascades, and XA is conjugate to X.

Proof of Theorem3.2.1: Let X be the 2-shift andY be a subshift of finite type inX

with F a presentation ofY such thatPer(X)\Per(Y) is the disjoint union of 2-cascades.

Applying Lemma3.2.2, we have a polynomial matrixA =

tM 2tB

tC tF

, whereF is a

non-negative integer matrix presentation of the subshift Y,Per(X[tM]) is the disjoint union

of 2-cascades, andXA is conjugate to the 2-shift. Applying Theorem3.1.5 to X[tM], we

get a sequence of positive polynomial operations from[tM] to [tA1 + tA2], wheretA1 and
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tA2 are matrices overtZ+[t] and tA1− tA2 is nilpotent, and these operations will also

be positive operations fromA to

t(A1+A2) 2tB′

tC′ tF

. These positive operations will not

change thetF block or the even nature of the upper right block since they will correspond

to adding a multiple of one of the firstn rows or columns to another of the firstn rows or

columns, wheretM is n×n.

So by Theorem3.1.2, A =

tM 2tB

tC tF

 and

t(A1+A2) 2tB′

tC′ tF

 present conjugate

SFTs.

If D1 =

t(A1+A2) 2tB′

tC′ tF

, then letGD1 be the directed graph defined byD1. Let

GD2 be the graph created fromGD1 as follows. For each monomial term of the formatk in

Ai j , with Ai j from either of the upper blocks ofD1, we replace the correspondingapaths of

lengthk from i to j with a single path of lengthk−1 from i to a nonessential vertex anda

edges from this nonessential vertex toj. We letD2 be the adjacency matrix ofGD2. XA and

XD2 are conjugate shifts of finite type because there is an obvious bijective correspondence

between bi-infinite paths inGD1 andGD2. The nonnegative integral matrixD2 will also

have the form

A∗1 +A∗2 2B∗

C∗ F

, whereA∗1−A∗2 is nilpotent.

D2 will be SE overZ to D3 =


A∗1 +A∗2 0 2B∗

−A∗2 A∗1−A∗2 −B∗

C∗ 0 F

 becauseA∗1−A∗2 is nilpo-

tent and thus for large enoughl , Dl
3 differ from D2 by conjugation with a permutation

matrix (Theorem1.3.4).
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Also, D3 is SE overZ to D4 =


A∗1 A∗2 B∗

A∗2 A∗1 B∗

C∗ C∗ F

 becauseD4 = RSandD3 = SRfor

integral matrices

(R,S) =




Id Id 0

0 −Id 0

0 0 Id

 ,


A∗1 +A∗2 0 2B∗

−A∗2 A∗1−A∗2 −B∗

C∗ 0 F




Id Id 0

0 −Id 0

0 0 Id




So D2 is SE overZ to D4, and by Theorem1.3.5, D2 is also SE overZ+to D4

because they both present mixing shifts of finite type. BecauseA] is SSE overZ+(thus

SE overZ+) to D2 andD2 is SE overZ+to D4, A] andD4 are SE overZ+. If we let

D4 presentX′ andA∗i is n×n, thenX′ is SE toXA over Z+andX′ has an obvious inert

involution φ, defined by switching the firstn vertices with the secondn vertices. Clearly

XF = Y will be the fixed point shift ofφ. 2

3.2.1 Proof of Lemma3.2.2

We begin the proof of Lemma3.2.2 with the following lemma.

Lemma 3.2.3.Let X be the 2-shift and let F be a non-negative integer matrix presentation

of a subshift Y, where Per(X)\Per(Y) is the disjoint union of 2-cascades. Then for all suf-

ficiently large m, there exists a polynomial matrix A over tZ+[t], where A=

tM 2tmB′

tC tF

,

such that XA is conjugate to the full 2-shift and B′ a non-negative integral matrix.

Proof: LetF be some non-negative integer matrix presentingY. By Lemma2.5.2,
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Y will have zeta function equal to 1 mod 2 and by Proposition2.5.1, F will be nilpotent

mod 2. Thus for largen, Fn will have entries a multiple of 2.

By Nasu’s Masking Lemma2.2.2, there exists a matrix overZ+, A=

M B

C F

 such

thatXA is conjugate toX. We will consider the polynomial presentation[tA] =

tM tB

tC tF

.

By Theorem3.1.2, if Ei j (Ai j )[Id− tA] = [Id− tA′], thentA′ presents a shift of finite

type that is conjugate to X. If we multiply[Id− tA] on the left by an elementary matrix

for each entry in the upper right block,tB, then

For 1≤i≤ n andn+1≤ j ≤ n+k where M is an×n matrix and F is ak×k matrix,

∏i j E(i, j)(tA(i, j))[Id− tA] =Id tB

0 Id

 [Id− tA] =

Id tB

0 Id


Id− tM −tB

−tC ID− tF

 =

Id− tM− t2BC −t2BF

−tC Id− tF

.

The matrices[tA] and

tM + t2BC t2BF

tC tF

 present conjugate shifts of finite type

by Theorem3.1.2. We call multiplying on the left by

Id ∗

0 Id

 clearing the upper right

block when * is the matrix in the upper right block. If we iterate clearing the upper right
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block of [tA] m times, the resulting polynomial presentation is

tM′ tm+1BFm

tC tF

, where

tM′ contains mixed degree polynomial terms. But sinceF is nilpotent mod 2, we have for

large enoughm,−tm+1BFm =−2tm+1B′ for some non-negative integer matrixB′. 2

The remainder of this section is devoted to showing that for large enoughm, the

presentation from Lemma3.2.3, A =

tM 2tmB′

tC tF

 presents a mixing shift of finite type

which is conjugate to the 2-shift and for whichPer(X[tM]) is the disjoint union of 2-

cascades.

Proposition 3.2.4. If XA is presented by polynomial matrix A=

tM 2tmB′

tC tF

 and T=

Per(XA)\{Per(X[tM])∪Per(XF)}, then T is the disjoint union of 2-cascades.

The setT is the subset of periodic points in the complement ofPer(XF) that are

not in Per(X[tM]). P = Per(XA)\Per(XF) will be the disjoint union of 2-cascades by the

hypothesis of the Lemma3.2.2.

Proof: Recall from Definition1.4.1, that the group of simple automorphisms is the

subgroup of inert automorphisms that are generated by automorphisms ofXA which are

conjugate to a graph automorphism that fixes the all vertices. Letψ be a pairing of paths

corresponding to terms in the upper right block ofA, i.e. for eachx, a path of lengthm

from i to j that corresponds to a term in the upper right block, we associate tox another

path of lengthm from i to j (which correspond to another term of the same power in the

same entry of the upper right block).XA has a simple involution defined by flipping paths

according toψ andT is exactly the set of periodic points moved by this involution. So by
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Theorem2.3.4, T must be the disjoint union of 2-cascades.2

Proposition 3.2.5.Let P1 and P2 be collections of periodic points of a SFT X such that

P1 and P2 are the disjoint union of 2-cascades and P2 ⊆ P1. If cn is the number of(2,n)-

cascades in P1, dn is the number of(2,n)-cascades in P2, and cn ≥ dn for all n ∈ N, then

P1\P2 is the disjoint union of 2-cascades.

This proposition is immediately clear sinceP1\P2 will be the disjoint union of the

remainingcn−dn (2−n)-cascades for alln∈ N .

Lemma 3.2.6. Let A be a polynomial matrix over tZ+[t], where A=

tM 2tmB′

tC tF

,

such that XA is conjugate to the full 2-shift, Per(XA)\Per(XF) is the disjoint union of 2-

cascades, and B′ a non-negative integral matrix. Let T= Per(XA)\{Per(X[tM])∪Per(XF)}

and P= Per(XA)\Per(XF). There exists an N∈ N such that for all m≥ N, cn ≥ dn for

all n ∈ N where cn is the number of(2,n)-cascades in P, and dn is the number of(2,n)-

cascades in T .

Proof: Letpn be the number of points of periodn (not necessarily least periodn) in

P, an be the number of points of periodn in P that are not least periodn, thenpn−an is

the number of least periodn points inP. If bn is the number of least periodn points inP

that are in(2,k)-cascades forn/k = 2i with i > 0, thenn∗cn = pn−an−bn because each

least periodn point in P is either in a(2,n)-cascade or in a lower cascade. Letfn be the

number of points of least periodn in XF .

Given the presentationA=

tM 2tmB′

tC tF

, the Spectral Radius Theorem bounds the

number of allowed blocks of lengthn in XA betweenC1(λA)n andC2(λA)n whereλA is the
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eigenvalue with largest modulus andC1 andC2 are positive constants. It is also possible

to pick constantsC1 andC2 in such a way that for largen, there are betweenC1(λA)n and

C2(λA)n paths of lengthn between any 2 vertices.

If we apply this same argument to the graph defined byF , we can choose a constant

C3 such that there are less thanC3(λF)n paths between any two vertices. This implies that

pn = 2n− fn > 2n−C3(λF)n.

Let n = 2r ∗q with q odd, thenbn < Σr−1
i=022i∗q because the number of least periodn

points in the tail of cascades is clearly less than sum of the number of periodic points of

order 2iq for 0≤ i < r. Further,bn < Σr−1
i=022i∗q < (r)∗2n/2 < n(

√
2)n because the sum is

less than the largest term times the number of terms. This shows that asn increases,bn is

bounded above by an exponential function with rate
√

2.

Similarly, the number of points of period but not least periodn in P, an, can be

bounded above by an exponential function with rate
√

2 becausean < Σi|n,i 6=n2i < n2n/2 =

n(
√

2)n.

We now need to find an upperbound ontn, the number of points of least periodn in

T. A periodic point inT corresponds to a timempath from a term in the upper right block

and a timen−L path fromGA that together create a closed loop. This lengthn−L path

may have subpaths that correspond to terms in the upper right block, but we only care

about overestimating the number of possible paths inGA that will create a closed path.

For largem, there are at leastC4λm
F paths that correspond to terms from the upper right

block, whereλF(< 2) is the spectral radius ofF andm is the power oft in the upper right

block. Sotn < C22n−m∗C4λm
F .

We now combine the estimates given above to computencn−ndn.
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ncn−ndn = pn−an−bn−ndn

> pn−an−bn− t−n

> 2n−C3(λF)n−n∗ (
√

2)n−n(
√

2)n−C42n−mλm
F .

The only term that grows at the same exponential rate as the first term is thetn term

containing 2n−L, but we can make the difference betweenC4(λF)m and 2m as large as

we want by increasingm. So, there exists a large enoughN, such that for allm≥ N,

ncn−ndn > 0 for all n∈ N. 2

Proof of Lemma3.2.2:

Let X be the 2-shift and letF be a non-negative integer matrix presentation of a

subshiftY, wherePer(X)\Per(Y) is the disjoint union of 2-cascades. Then by Lemma

3.2.3, for all sufficiently largem, there exists a polynomial matrixA over tZ+[t], where

A =

tM 2tmB′

tC tF

, such thatXA is conjugate to the full 2-shift andB′ a non-negative

integral matrix. ForT = Per(XA)\{Per(X[tM])∪Per(XF)} and P = Per(XA)\Per(XF),

Lemma3.2.4 says thatT is the disjoint union of 2-cascades andP is the disjoint union of

2-cascades by assumption. By Lemma3.2.6, there exists anN∈N such that for allm≥N,

cn≥ dn for all n∈N wherecn is the number of(2,n)-cascades inP, anddn is the number

of (2,n)-cascades inT. Proposition3.2.5 says that form > N andA =

tM 2tmB

tC tF

,

Per(X[tM]) is the disjoint union of 2-cascades, andXA is conjugate to the full 2-shift.2
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3.2.2 Generalizations of Theorem3.2.1

In the proof of Lemma3.2.3, we never used thatX was conjugate to the full 2-shift,

just thatζX(t) = 1mod2. And the proof of Lemma3.2.6, relies only on the entropy ofX

being larger than the entropy of the proper subshiftY. So the same proof above works for

the following theorem:

Theorem 3.2.7. If a mixing shift of finite type, W, has a zeta function that is 1 mod 2,

then the following are equivalent:

1. Y is a subshift of finite type of W such that Per(W)\Per(Y) is the disjoint union of

2-cascades.

2. There is a mixing shift of finite type W′ that is SE to W and W′ has an inert involution

with fixed point shift Y .

Note that Condition (1) of Theorem3.2.7 is decidable in a finite number of steps

by Proposition2.5.5.

3.2.3 Future work

There should be a straightforward generalization of Theorem3.2.7 for strictly order

n inert automorphisms.

If Lemma 4.2.2 could be proven relying on the cascade decomposition of

Per(X)\Per(Y) rather than the zeta function ofY, then we could eliminate the assump-

tion of Theorem3.2.7 involving the zeta function ofW. This might be accomplished by

a different clearing procedure for the upper right block.
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SE overZ+is a very strong equivalence relation on shifts of finite type (See section

1.4 for discussion), but still the use of SE in the statement of Theorem3.2.1 reflects the

mysterious gap between SE and SSE overZ+, which pervades the analysis of SFTs. For

example, whenX is the full 2-shift andX′ is SE toX overZ+, it is not known if there is

a fixed point free involution ofX′.
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Chapter 4

Strictly Ordern Automorphisms of 1-sided SFTs

If φ is an automorphism of a shift of finite type X, thenφ is called strictly order

n if all φ orbits have cardinalityn. Recall from Section 3.3 thatX/φ is the quotient of

X by the orbit relation ofφ. The induced action of the shift map onX/φ, denotedσX/φ,

defines(X/φ,σX/φ) as a dynamical system. ForX irreducible, it is well known thatX/φ

is conjugate to a SFT ifφ is strictly ordern, andσX/U is not even expansive ifφ does not

have strict ordern. For a shift of finite typeX with finite order automorphismU , Fiebig

showed thatU is inert iff ζX(t) = ζX/U(t) [F]. This result shows the relationship between

the periodic point counts of the orbit spaceX/U (which is not usually even a shift space)

and the inertness ofU . Kim and Roush asked the following question:

Question 4.0.8.When does a mixing SFT X have a strictly order n automorphism U such

that X is conjugate to X/U?

Note that by Fiebig’s result,U must be inert forX/U to be conjugate toX. In the

strongest result to date, Kim and Roush answered this question up to shift equivalence

with the following theorem.

Theorem 4.0.9.[KR3] For a mixing shift of finite type X and p prime, the following are

equivalent:

1. There exists a mixing shift of finite type X′ such that X′ is SE overZ+to X and X′

has an inert strictly order p automorphism U with X′/U conjugate to X.
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2. Per(X) is the disjoint union of p-cascades.

(See section 3.3.1 for a discussion of cascades.) We also note that it is still unknown

if X being SE to the 2-shift implies thatX is SSE to the 2-shift. In this chapter, we

consider the more general question involving 1-sided SFTs of which Question4.0.8 is a

special case:

Question 4.0.10.Given a 1-sided mixing shift of finite type X+ and a prime p, what are

the conjugacy classes of X+/U for U a strictly order p automorphism of X+?

Our first result uses the structure theorem of Boyle, Franks, and Kitchens to com-

pletely describe the conjugacy classes of orbit quotient spaces of 1-sided mixing shifts of

finite type by strictly orderp automorphisms whenp is prime.

Theorem 4.0.11.Let A be a totally out-amalgamated square matrix overZ+and let p be

a prime integer. The 1-sided shift of finite type, X+
A has a strictly order p automorphism,

U, with X+
B conjugate to X+A /U ⇐⇒ GB is the quotient graph of an order p (or order 1)

graph automorphismψ of GA satisfying the following condition:

1. Let C be the principal submatrix of A such that GC is the maximal subgraph of GA

that has vertices fixed byψ. The matrix Cred is nilpotent, where

Cred
i j =


0 if Ci j is a multiple of p

Ci j otherwise

We also present the following result which shows that the orbit quotient of a mixing

shift of finite type by a strictly ordern automorphism is conjugate to the image of a

particular kind of 1-block map defined by a graph homomorphism of the totally out-

amalgamated graph.
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Theorem 4.0.12.Let A present a 1-sided shift of finite type, X+
A , with a strictly order n

automorphism U. Then X+A /U is conjugate to a 1-sided shift of finite type XB′, such that

there is a left resolving factor mapδ′ : XA′ → XB′ whereδ′V , the vertex map ofδ′, is the

quotient map of the vertex graph automorphism induced by U.

While this result unlike Theorem4.0.11 does not requireU to have prime order,

we do not have a way to determine which of the candidate image shifts will be the orbit

quotient of a strictly ordern automorphism ofXA. However, there are only finitely many

possible candidates up to topological conjugacy. There is no analogous result known (or

ruled out) for 2-sided SFTs.

In Section 5.1 we will introduce 1-sided shift spaces and present relevant properties

including the solution to the conjugacy problem for 1-sided shifts of finite type. Section

5.2 is dedicated to proving Theorem4.0.11. In Section 5.3, we give the proof of Theorem

4.0.12.

4.1 One-sided Shift Spaces

In the previous chapters, we considered bi-infinite symbol sequences and the corre-

sponding bi-infinite walks in directed graphs as defining 2-sided shifts of finite type. For

a shift spaceX, let X+ be the set{x[0,∞)|x ∈ X}. We callX+ a 1-sided shift space and

X+ is a 1-sided shift of finite type iffX is a shift of finite type. Finite directed graphs and

their matrix presentations will also present 1-sided SFTs as the set of (forward) infinite

walks through a directed graph.

Obviously, a block code onX with memory 0 will define a block code onX+, and
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by considering a higher block presentation and shifting a code with memoryn > 0 onX,

it is possible to define a block code onX+ from any block code onX. A block code from

X toY with zero memory,φ, will define an onto block codeφ+ : X+ →Y+ iff φ is an onto

map. While Krieger’s Embedding Theorem (2.2.1) characterizes the existence of proper

embedded subshifts for mixing 2-sided shifts of finite type, there have been very limited

results on when a 1-sided SFT can be embedded into another.

In general, it is much harder for a block map to be invertible at the 1-sided level

because no memory is allowed. For example, the shift map is invertible on 2-sided shift

spaces but the shift map will be one-to-one only on finite 1-sided shift spaces. For ir-

reducible SFTsX andY, a left resolving mapψ : X → Y is a 1-block code such that

wheneverφ(a) = b andb′b is an allowed 2-block inY, there exists exactly one symbola′

such thata′a is an allowed 2-block inX andφ(a′) = b′. If φ is a 1-block conjugacy from

X to Y, thenφ+ will be a conjugacy fromX+ to Y+ iff φ is left resolving.

Let Aut(σ+
X ) be the group of homeomorphisms ofX+ that commute withσ+

X . For

example,Aut(σ+
X[2]

) consists of only two elements. In contrast, recall thatAut(σX[2]) is

countably infinite, residually finite, and not finitely generated: it contains a copy of every

finite group, the free group on infinitely many generators, and many other groups (but

not any group with solvable word problem) [BLR]. Boyle, Franks, and Kitchens show

that Aut(σ+
X ) is generated by elements of finite order, and prove the following structure

theorem forAut(σ+
X ).

Theorem 4.1.1.[BFK] Let Simp(X+
A ) be the group of simple automorphisms of a 1-sided

shift space X+A (as defined in1.4.1). Aut(σ+
XA

)/Simp(X+
A ) is a finite group isomorphic to
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the group of permutation matrices that commute with the total out-amalgamation of A.

Further, Aut(σ+
XA

) is a semidirect product Simp(X+
A )nAut(σ+

XA
)/Simp(X+

A ).

Let A′ be the total out-amalgamation ofA. Fix an edge ordering ofGA′, and define

the vertex graph automorphisms ofXA′ to be the set of graph automorphisms ofGA′ that

preserve the edge ordering. We note that the vertex graph automorphisms are conjugate

to the group of permutation matrices that commute withA′. A different choice of edge

ordering would give a conjugate group of vertex graph automorphisms. Let the group of

vertex graph automorphisms of a graphG be denoted,AutV(G).

If U ∈Aut(σ+
A ), then by Theorem4.1.1U = φ◦ψ whereφ is a simple automorphism

andψ is ϕψ′ϕ−1 for a vertex graph automorphism ofGA′, ψ′ andϕ : XA→XA′ a conjugacy.

In particular, ifUn = Id thenψn = Id because the following diagram will commute.

Aut(σA)
U=φ◦ψ //

π
��

Aut(σA)

π
��

AutV(GA′)
ψ′ // AutV(GA′)

(4.1)

whereπ is the projection ofAut(σ+
A ) ontoAut(σ+

XA
)/Simp(X+

A )∼= AutV(GA′).

Standing Convention 4.1.2.We will drop the+ notation when referring to 1-sided shift

spaces, and for the rest of this chapter we will assume a shift space is 1-sided unless

otherwise noted.

In contrast to the 2-sided case, we know how to decide when nonnegative integral

matricesA andB present topologically conjugate 1-sided SFTs.

Theorem 4.1.3.[Wil] If A and B are nonnegative integer matrices, then XA is conjugate

to XB iff the total out-amalgamations of A and B differ by conjugation with a permutation

matrix.
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(We refer the reader to Section 5.3 for a description of state splitting and amal-

gamation on adjacency matrices including total out-amalgamation). LetGA be the di-

rected graph defined by adjacency matrixA. We will briefly describe 1-step total out-

amalgamation, the graph operation which corresponds to the 1-step total out-amalgamation

of an adjacency matrix. LetVA andEA be the vertices and edges of the graphGA and let

EA(u,v) be the number of edges from vertexu to vertexv in GA. Foru1,u2 ∈VA, we say

thatu1 has the same incoming edge pattern or incoming edge structure asu2 if for every

v∈ VA, EA(v,u1) = EA(v,u2). Let [v] be the equivalence class of vertices with the same

incoming edge pattern asv. The 1-step total out-amalgamation graph,GB, is defined as

follows.

• GB has vertices given by the classes of vertices ofVA with the same incoming edge

pattern.

• There are∑i∈[i] EA(i, j) edges inGB from [i] to [ j].

The total out-amalgamation of a graphG is the graph obtained by repeated total 1-step

out-amalgamation until all vertices have unique incoming edge pattern. For a directed

graphG, we denote the total 1-step out-amalgamation and the total out-amalgamation

by G∗ and G′ respectively. Out-amalgamation of directed graphs correspond to out-

amalgamations of adjacency matrices, so by Theorem4.1.3, graphsG and H present

conjugate SFTsXG andXH iff G′ is graph isomorphic toH ′.

Let p∗ be the 1-block map fromXA to XA∗ that takes a vertexi to [i] and an edge

in EA from i to j to an edge inEA∗ from [i] to [ j]. Similarly, let p′ be the 1-block map

from XA to XA′. The mapp∗ is described by a vertex mapp∗V : VA→VA∗ and an edge map
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p∗E : EA → EA∗. Similarly, the mapp′ is described by a vertex mapp′V : VA →VA′ and an

edge mapp′E : EA→ EA′.

Given a graph automorphismψ onG, we define the quotient graphH as follows.

• H has vertices that are given by theψ-vertex orbits.

• H has edges that are given by theψ-edge orbits (ife is an edge inG from i to j,

then[e] is an edge from[i] to [ j]).

There is a canonical graph homomorphism fromG to H that takes an edgee∈ EG from i

to j to an edge[e] ∈ EH from [i] to [ j].

4.2 Quotients of Prime Order Automorphisms

Theorem 4.2.1.Let A be a totally out-amalgamated square matrix overZ+and let p be

a prime integer. The 1-sided shift of finite type, X+
A has a strictly order p automorphism,

U, with X+
B conjugate to X+A /U ⇐⇒ GB is the quotient graph of an order p (or order 1)

graph automorphismψ of GA satisfying the following condition:

1. Let C be the principal submatrix of A such that GC is the maximal subgraph of GA

that has vertices fixed byψ. The matrix Cred is nilpotent, where

Cred
i j =


0 if Ci j is a multiple of p

Ci j otherwise

Proof⇒: Let U be a strictly orderp automorphism ofXA whereA is totally out-

amalgamated. By Theorem4.1.1, U = φ◦ψ whereφ is a simple automorphism andψ is

a vertex automorphism ofGA. Further, by Equation4.1, ψp = Id. Let GB be the graph
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quotient ofGA by ψ, and letC be the principal submatrix ofA such thatGC is the maximal

subgraph ofGA that has vertices fixed byψ.. LetCred be a matrix defined by

Cred
i j =


0 if Ci j is a multiple ofp

Ci j otherwise

SupposeCred is not nilpotent. Letn be the lowest length such that there is a closed

pathγ of lengthn in GCred. Let k be the number of paths inGCred that travel through the

same vertices asγ and note thatk will be the product ofCred
i j whereγ has an edge fromi

to j. Thenk will not be a multiple ofp becausep is prime. LetSbe the set ofk periodic

points ofXA defined by thek closed paths of lengthn. U will map S into Sand thus must

partitionS into lengthp U-orbits. This is a contradiction becausep does not dividek, and

thusCred will be nilpotent.

Proof⇐: Let GB be the graph quotient ofGA by an orderp vertex automorphism,

ψ. LetC be the principal submatrix ofA such thatGC is the maximal subgraph ofGA that

has vertices fixed byψ. LetCred be a matrix defined by

Cred
i j =


0 if Ci j is a multiple ofp

Ci j otherwise

AssumeCred is nilpotent. We defineφ, a 1-block automorphism ofXA as follows. If

C(i, j) is nonzero and divisible by p, then letφi j be an orderp permutation of the edges

betweeni and j and defineφ(x)0 = φi j (x0) if x0 is an edge fromi to j with C(i, j) divisible

by p andφ(x)0 = x0 otherwise. We defineU to be the composition ofφ with ψ. Clearly,

φ ◦ψ = ψ ◦ φ andU p = id. Becausep is prime,U is strictly orderp if U has no fixed

points. Every point will be moved byU since points not moved byψ will be infinite paths
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in GC and paths that are inGC for a long time will have an edge moved byφ becauseCred

is nilpotent.2

4.3 Strictly Ordern Automorphisms of 1-sided SFTs

Before we will begin our proof of Theorem4.0.12, we will need several lemmas.

Given a matrixB, we letB∗ andB′ denote the 1-step total out-amalgamation and

total out-amalgamation ofB. For γ a 1-block map fromXA to XB′, we can ask whether

the action ofγ on vertices and edges factors through the mapsp∗V and p∗E (as defined in

Section 5.1).

Standing Convention 4.3.1.If γ is a 1-block map fromXA to XB, thenγ is also a graph

homomorphism ofGA to GB. We will refer to both the map fromXA to XB and the map

from GA to GB asγ. In particular, we will denote the vertex map and edge map ofγ asγV

andγE respectively.

Lemma 4.3.2.Let γ be a 1-block left resolving onto map from XA to XB′. Let p∗ denote

the one block conjugacy from XA to XA∗ with vertex map p∗V and edge map p∗E. There

exists a vertex mapγ∗V : VA∗ →VB′ such thatγV = γ∗V ◦ p∗V and alsoγ∗V is the vertex map of

a left resolving graph homomorphismγ∗ : GA∗ →GB′. Moreover, there is a left resolving

graph homomorphismδ : GA→GB′ such thatδ = γ∗ ◦ p∗.

Proof: In order to show thatγV factors throughp∗V , we must show that for any

u1,u2 ∈VA, if p∗V(u1) = p∗V(u2), thenγV(u1) = γV(u2). Let ū represent the image vertex

of u underp∗V and[u1] be the image of a vertexu underγV . If p∗V(u1) = p∗V(u2), thenu1

andu2 must have the same incoming edge pattern. Ifu1 andu2 have the same incoming
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edge pattern, then[u1] and [u2] have the same incoming edge pattern becauseγ is left

resolving. But sinceGB′ is totally out-amalgamated, each vertex has unique incoming

edge pattern and thus[u1] = [u2]. Therefore,γV factors throughp∗V , γV = γ∗V ◦ p∗V .

Now for eachv∈VA∗ , pick j in VA such thatv= j̄. Let p∗j denote the bijection from

j-incoming edges to[ j]-incoming edges. Then, becauseγ is left resolving, the mapγ ◦

(p∗j )
−1 is a bijection from thēj-incoming edges tōj-incoming edges, and it is compatible

with the vertex mapγ∗V . Therefore this edge map defines the required left resolving graph

homomorphismγ∗ : GA∗ →GB′. Defineδ : GA→GB′ on vertices byδV = γV and on edges

by δE = γ∗E ◦ p∗E. Now δ = γ∗ ◦ p∗. 2

The following example shows how a left resolving map given by an orbit quotient

of a strictly order n automorphism does not factor through a conjugacyp∗ : XA→ XA∗.

Example 4.3.3.Let A =

a b

b a

 present a labeled directed graphGA with two vertices

and edge fromi to j labeled by the symbol inAi j . The (1-step) total out-amalgamation

of A is [a+b]. The mapU on XA is a fixed point free involution (strictly order 2) defined

by the exchange of vertices inGA andXA/U is conjugate toXB whereB = [a+b]. Let γ

be the 2-to-1 left resolving factor map fromXA ontoXB defined by the orbit quotient of

U . The 1-block mapγ will not factor through the conjugacyp∗ : XA → XA′ because the

composition ofp∗ and any left resolving map fromXA′ to XB will be one-to-one whereas

γ will be 2-to-one.

Theorem 4.3.4.Let γ : XA→ XB′ be a left resolving factor map. Let p′ be a left resolving

conjugacy from XA to XA′. Then there are 1-block left resolving factor mapsδ : XA→ XB′

andδ′ : XA′ → XB′ such that the vertex mapsγV andδV are equal andδ = δ′ ◦ p′.
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Proof: The mapp′ is the composition of total 1-step out-amalgamation mapsp∗.

So by iteration of Lemma4.0.12, we define the required mapsδ, δ′, andp′. 2

Below by “n-to-one” we mean constantn-to-one.

Proposition 4.3.5.Let XA be a 1-sided MSFT presented by the block circulant matrix

A =



A1 A2 · · · An

An A1 · · · An1

...
...

A2 A3 · · · A1


where all of the Ai are k× k matrices. Let U∈ Aut(σA) be defined by a graph automor-

phism of GA that sends the i-th vertex to the(k+ i)-th vertex, such that Un = id. For

B = A1 + ...+ An, let GB be the quotient graph of GA by U and letπ : XA → XB be the

1-block map defined by the corresponding graph homomorphism from GA to GB. Let

γ : XA → XB′ be defined by the 1-block mapγ = p′B ◦ π, where p′B : XB → XB′ is a left

resolving conjugacy. The mapγ is left resolving, n-to-one, and onto.

Proof: If π is a left resolving,n-to-one, onto map, then the compositionγ = p′B◦π

will be a left resolving,n-to-one, onto map becausep′ is a left resolving conjugacy. So it

suffices now to considerπ.

Each vertex ofGA is in a vertex orbit underU consisting ofn distinct vertices. Since

Un = id, it follows for everyv∈VA that no two incoming edges ofv can be in the same

U-orbit of edges. Therefore the mapGA → GB sends incoming edges ofv bijectively to

incoming edges of[v], andπ is left resolving. The mapπ is n-to-one because two points

of XA are colllapsed byπ if and only if they lie in the sameU-orbit. Clearlyπ is onto.2
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Proof of Theorem4.0.12: Let A present a 1-sided shift of finite type,XA, with a

strictly ordern automorphismU . We care only about the conjugacy class ofXA/U and

not on the particular presentation forXA or XA/U or even the incarnation ofU on XA. So

without loss of generality, by Theorem2.4.1 we can assume thatXA is presented by the

block circulant matrix

A =



A1 A2 · · · An

An A1 · · · An1

...
...

A2 A3 · · · A1


where all of theAi arek× k matrices. LetU ∈ Aut(σA) be defined by a graph automor-

phism ofGA that sends thei-th vertex to the(k+ i)-th vertex, such thatUn = id. For

B = A1 + ...+ An, let GB be the quotient graph ofGA by U and letπ : XA → XB be the

1-block map defined by the corresponding graph homomorphism fromGA to GB.

By Lemma4.3.5, we now haveγ a left resolving,n-to-one factor map fromXA onto

XB′, whereXB′ is conjugate toXA/U . Let p′ : XA → XA′ be a left resolving conjugacy. By

Theorem4.3.4, there is a left resolving mapδ′ : XA′ → XB′, such thatδ′V ◦ p′V = γV . 2

The following examples show how condition (1) in Theorem4.0.11 is no longer

necessary ifU does not have prime order.

Example 4.3.6.If A =

0 2

2 4

, thenGA is the following graph with names of its associ-

ated edges given.
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a0,a1

b0,b1

c0,c1,c2,c3

Let φ be the 2-block automorphism defined by

φ(x)i =


a j+1 if xi = a j

c j+1 if xi = c j

b j+k+1 if x[i,i+1] = b jak

where the subscripts ofa andb are taken mod 2 and the subscript ofc is taken mod 4.

The mapφ is strictly order 4 sincec andbablocks are permuted with order 4 because

b jak
φ−→ b j+k+1ak+1

φ−→ b j+1ak
φ−→ b j+kak+1

φ−→ b jak

Also, XA/φ is conjugate toXA becauseφ is simple. In particular, this example shows that

condition (1) (involvingAred) of Theorem4.0.11 is not necessary ifφ is not of prime

order becauseAred =

0 2

2 0

 is not nilpotent.

This is an example like Example4.3.6 with the additional property thatGA has a

non-trivial vertex graph automorphism.

Example 4.3.7.If A =

4 2

2 4

, thenGA is
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a0,a1

b0,b1

c0,c1,c2,c3
d0,d1,d2,d3

Let φ be the 2-block automorphism defined by

φ(x)i =



a j+1 if xi = a j

c j+1 if xi = c j

d j+1 if xi = d j

b j+k+1 if x[i,i+1] = b jak or b jdk

where the subscripts ofa andb are taken mod 2 and the subscripts ofc andd are taken

mod 4. The mapφ is strictly order 4 sincec, d, bd, andbablocks are permuted with order

4. Also,XA/φ is conjugate toX[6]. This example shows that condition (1) (involvingAred)

of Theorem4.0.11 is not necessary ifφ is not of prime order becauseAred =

0 2

2 0

 is

not nilpotent whenφ has nontrivial vertex graph automorphism.

This is an example like Example4.3.6 with the additional properties thatGA has a

non-trivial vertex graph automorphism andA has relatively prime entries.

Example 4.3.8.If A =


4 0 2

2 0 0

0 1 4

, thenGA is
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a0,a1

b0,b1

c0,c1,c2,c3
d0,d1,d2,d3

Similarly to the previous examples,XA will have a strictly order 4 automorphism and

Ared =


0 0 2

2 0 0

0 1 0

 is not nilpotent. This example shows that the previous examples are

not predicated onA being divisible by 2.
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Chapter 5

Mixing Shifts of Finite Type with Surjective Dimension Representations

5.1 Importance of Dimension Representation

The fundamental question we consider is:

Question 5.1.1.Given A, a primitive matrix , what is the image of the dimension repre-

sentation,ρ : Aut(σA)→ Aut(Â)?

The significance ofρA was indicated in Chapter 1. Our contribution to addressing

Question5.1.1, though meaningful, is so far modest. We will show that the only general

constructions to date, using elementary strong shift equivalences, cannot construct many

candidate images ofρA (Proposition5.2.4). Then we will give a construction of surjec-

tive dimension representations for a class of examples (Proposition5.4.3), for which it is

impossible to show thatρA is surjective using only conjugacies arising from ESSEs by

Proposition5.2.4. The construction itself is complicated and poorly understood. Never-

theless, it is the only such class which has been constructed, and we hope it will lead to

further insight.

Recall from Section 1.4, thatAut(Â) is the group of automorphisms ofGA that

commute withÂ. Boyle, Lind, and Rudolph show that ifA has simple non-zero spectrum

(i.e. every nonzero eigenvalue is a simple root of the characteristic polynomial ofA),

then Aut(Â) is a finitely generated abelian group. However,Aut(Â) in general can be
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nonabelian and not finitely generated. There are just a few sophisticated examples of

SFTs for which the dimension representation is shown to be non-surjective [KRW3, W3].

Let A be a primitive matrix andAut+(Â) be the positive automorphisms of the di-

mension group, i.e. automorphisms ofGA which multiply the Perron eigenvector by a

positive constant. Now we regardρA as a map fromAut(σA)→ Aut(Â) and say thatρA is

surjective if its image isAut+(Â).

Question 5.1.2.Under what conditions doesρA map Aut(σXA) onto Aut+(Â)?

In some easy cases (e.g. for full shifts) the dimension representation is known to be

surjective. There is just one general positive result known for showing elements lie in the

image of the dimension representation.

Theorem 5.1.3. [BLR] SupposeΦ ∈ Aut(Â), then for all sufficiently large n, there is a

φ ∈ Aut(σn
A) with ρ(φ) = Φ, and moreover such thatφ is presented as an elementary

conjugacy of(XAn,σAn), i.e. φ arises from some ESSE(R,S) from An to An.

In Proposition5.2.4, we will see an obstruction to generalizing the ESSE result of

Theorem5.1.3 to the casen = 1 (even after replacingA with some matrix SSE toA).

The main result of this chapter (Proposition5.4.3) is the presentation of a non-

trivial class of examples in whichρ is surjective even though the ESSE obstruction of

Proposition5.2.4 holds. In Section 2.2, we describeAut+(Â), the candidate range of the

dimension representation and compute several relevant examples. In Section 2.3, we de-

scribe state splitting, an operation on matrices overZ+which is used in the constructions

of Section 2.4. In Section 2.4, we give the promised examples of mixing shifts of finite

type with surjective dimension representation.
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5.2 Aut+(Â)

Recall from Section 1.4 thatAut(Â) is the group of automorphisms ofGA that com-

mute withÂ and letρ : Aut(σA)→Aut(Â) be the dimension representation of the SFTXA.

Also note thatGA = GAn, Aut(Â) ⊂ Aut(Ân), and typically (e.g. if all eigenvalues of̂An

are simple roots ofχAn) Aut(Â) = Aut(Ân).

Recall from Section 1.4 that the eventual range ofA, RA, is given byAkQk, for large

enoughk such thatA is an isomorphism fromAkQn to Ak+1Qn. Every element̂φ∈Aut(Â)

is the restriction of a unique invertible real linear transformationφ̃ : RA⊗R → RA⊗R.

The use of̂φ andφ̃ is an abuse of notation since we do not in general have an associated

automorphism of the shift,φ, but we use the hat notation simply to refer to an element of

Aut(Â). AssumeA is a primitive matrix with spectral radiusλA. Let vA be a positive row

eigenvector ofλA (a Perron eigenvector ofA). In general,̃φ(vA) = αvA, whereα depends

only on φ̃. We define

Aut+(Â) = {φ̂ ∈ Aut(Â) : φ̃(vA) = αvA,α > 0}

It is well known that whenA is primitive,ρA(Aut(σXA))⊆Aut+(Â). We say that the

dimension representationρ is surjective ifρA(Aut(σXA)) = Aut+(Â).

5.2.1 Examples ofAut(Â) andAut+(Â)

Example 5.2.1.Let A = [n], soXA is the full n-shift. GA is the ringZ[1/n] sinceZ[1/n]

are the elements ofQ that will be eventually mapped intoZ by multiplication byn. G+
A

will be Z+[1/n] andÂ will be the isomorphism ofZ[1/n] given by multiplication byn. If

n = pr1
1 ...prk

k with each of thepi distinct primes, thenAut(Â) consists of elements of the
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form φ̂(x) =±pt1
1 ...ptk

k x for ti ∈ Z andAut+(Â) are the automorphisms ofGA of the form

φ̂(x) = pt1
1 ...ptk

k x for ti ∈ Z, HereAut+(Â) is isomorphic to the finitely generated abelian

groupZk.

Example 5.2.2.SupposeA is a n×n matrix overZ anddet(A) = ±1. ThenGA = Zn

andÂ = A, sinceA is invertible overZ . Aut(Â) consists of the elements ofGL(n,Z) that

commute withA. For A =

1 1

1 0

, we haveGA = Z2, Aut(Â) = {±Am : m∈ Z}, and

Aut+(Â) = {Am : m∈ Z}. Here the groupAut+(Â) is isomorphic toZ.

Example 5.2.3.Let A=

8 5

5 8

, the matrixA has eigenvalues 13 and 3 with eigenvectors

u = [1,1] and v = [1,−1]. If φ̂ ∈ Aut(Â), then φ̃ sendsu to αφu and v to βφv, where

αφ =±13n for n∈Z andβφ =±3m for m∈Z, and the pair(αφ,βφ) determineŝφ. Aut+(Â)

consists of the automorphismsφ̂ such thatαφ > 0. Clearly forφ̂ ∈ Aut+(Â) we have

(αφ,βφ) ∈ {(13n,(−1)l 3m : l ,m,n∈ Z}

ThusLA : φ̂→ (l ,m,n) defines an embedding of the groupAut+(Â) into

{(l ,m,n) ∈ Z/2×Z×Z}

The integral matrices

7 6

6 7

,

0 1

1 0

, and

 2 −1

−1 2

 commute withA and thus

define elements ofAut+(Â) with (αφ,βφ) respectively being(13,1), (1,−1), and(1,3).

The associated images of(l ,m,n) underLA are respectively(0,0,1), (1,0,0), and(0,1,0).

Now it is clear for thisA that the embeddingLA is an isomorphism fromAut+(Â) onto

Z/2×Z×Z.
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The automorphism ofXA, ψ, corresponding to the ESSE

(R,S) =


0 1

1 0

 ,

8 5

5 8


0 1

1 0




has(αψ,βψ) = (1,−1) andLA(ψ̂) = (1,0,0). The shift map,σA, has(ασ,βσ) = (13,3)

andLA(σ̂) = (0,1,1). However it is not obvious whetherρ mapsAut(σA) ontoAut+(Â).

Let us first consider if we can create a generating set ofAut+(Â) using the image of

ESSE under the dimension representation. If(R,S) is an ESSE fromA to A, thenR(andS)

commute withA and thusR (andS) have eigenvectors[1,1] and[1,−1]. This means that

R (and S) will have fixed column sum of either 13 or 1 and column difference of either 1

or 3. If R has column sum of 13 and column difference of 3, thenR= A or

5 8

8 5

, and

if R has column sum of 1 and column difference of 1, thenR= Id or R=

0 1

1 0

. The

only other possibility is that eitherR or Shas column sum of 1 and column difference of

3, which would imply that eitherRor Scontains negative entries, which is a contradiction

of the assumption that(R,S) is an ESSE overZ+. So(1,0,0), (1,1,1), and(0,1,1) are

the only possible coordinates inLA(Aut+(Â)) that can be the image of an ESSE.

Using our construction from Section 2.4, Appendix A explicitly givesγ, a chain of 4

ESSEs fromA to A with (αγ,βγ) = (13,1) andL(γ̂) = (0,1,0). The three automorphisms

of XA given byψ, γ, andσA will map to a generating set ofAut+(Â) given by theirLA

coordinates of(1,0,0), (0,1,0), and(0,1,1), and thusρ will be surjective.2

The construction of the embeddingLA is in no way particular to the preceding

example. LetA be a primitive matrix with simple integer eigenvaluesλ1, ...,λn whereλ1
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has the largest modulus. Ifλi is divisible bymi primes, then the mapLA is an embedding

of Aut+(Â) into (Z/2)n−1×Zm1× ...×Zmn given by

(pi1
1 ...p

im1
m1 ,(−1)l2q j1

1 ...q
jm2
m2 , ...,(−1)lnrk1

1 ...r
kmn
mn )→ (l2, ..., ln, i1, ..., im1, ...,k1, ...,kmn)

One could try to build the image ofρA by finding primitive matricesC which are

SSE toA, finding ESSEs ofC (C = RS= SR) with R a non-trivial action onGC, and

pulling back toGA. The following proposition shows this approach cannot succeed in

general.

Proposition 5.2.4.Suppose C= RS= SR with C a primitive matrix with its eigenvalue of

largest modulus being a prime integer p. Letφ be the conjugacy associated to the ESSE

(R,S). Then there is âψ ∈ Aut(Ĉ) and k∈ Z+ such thatψ̂k = id and φ̂ψ̂ = Ĉ or φ̂ = ψ̂.

Proof: The matricesR andS commute withC. Let vC be the positive eigenvector

of C. BecauseλC is a simple eigenvalue of C, there are constantsα, β > 0 such that

vC = αvC, vCS= βvC. Now αβ = p, so eitherα = 1 or β = 1. Supposeβ = 1. Because

vC > 0 andSi j ≥ 0 andvCβ = vCS, we have thatβ is the spectral radius ofSby the Spectral

Radius Theorem. If̂ψ = S, then for somek∈ Z+, ψ̂k = id sinceSwill have eigenvalues

of largest modulus that arek-th roots of unity. This would imply that̂φψ̂ = R̂Ŝ= Ĉ.

Supposeβ = p andα = 1. The same argument above shows that forψ̂ = R, there

is somek∈ Z+ such thatψ̂k = id. 2

Examples5.4.1 and5.4.2 do not satisfy the hypothesis of Proposition5.2.4 and

a generating set ofAut+(Â) can be made by image underρA of ESSEs. However, the

matrices presented in Proposition5.4.3 are subject to the obstruction of Proposition5.2.4,
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but ρA is still surjective. So not only are the examples in Proposition5.4.3 nontrivial, but

they demonstrate that we are not missing some miraculous obstruction.

Lastly, as an obstruction to another proof strategy, we give a cautionary example

where the image ofAut+(Â) under the embeddingLA constructed above need not be all

of the latticeZ/2×Z×Z. This does not precludeA from having a surjective dimension

representation, but it shows that one cannot find a general proof which simply realizes

automorphisms whoseLA images are arbitrary elements of the lattice.

Example 5.2.5.Let A=

4 1

2 3

. A has eigenvalues of 5 and 2 with eigenvectorsu= [2,1]

andv = [1,−1]. In order to compute the image ofLA, we need to examine matrices that

commute withA and have non-zero spectrum 5p1 and±2p2 with corresponding eigenvec-

tors u andv. The unique matrix that has eigenvalues 5 and 1 with eigenvectorsu andv

is C = 1
3

11 4

8 7

. C corresponds to the elementary vector(0,0,1) ∈ Z/2×Z×Z, but

C 6∈ Aut(Â), because for alln∈ N, [1,0]CAn 6∈ Z2. Therefore(0,0,1) 6∈ LA(Aut+(Â)). In

fact,(0,n,m) 6∈ LA(Aut+(Â)) if n+m is odd.

5.3 State splittings

State splitting is an important type of ESSE between matrices overZ+. Any SSE

between shifts of finite type can be decomposed into state splittings and the inverse oper-

ations of state amalgamations. State splittings will be used to generate the SSEs used in

Proposition5.4.3.

Let A be an×n matrix overZ+. An in-splitting ofA is given by some splitting of
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the rows ofA, i.e. the i-th row ofA, ai , is split intoki rows overZ+, b1, ...,bki , such that

∑ki
j=1b j = ai . Let k = ∑n

i=1ki . The in-splitting matrix ofA is thek by n matrix, R, of the

split rows ofA, i.e. that the firstk1 rows of R are the rows split froma1, thek1 + 1 to

k1 + k2 rows of R are the split rows ofa2, and so on. The split matrix,B, is created by

takingR and copying the i-th column ofR ki times. LetS be then× k matrix such that

Si j = 1 if the j-th row of R is split from thei-th row of A andSi j = 0 otherwise. Then

A = SR, B = RSand(R,S) is an ESSE fromB to A. S is a so called subdivision matrix in

which every row has exactly one entry equal to 1 and every column has at least one entry

equal to 1.A = RSsinceSwill sum the columns ofR that are split from the same column

of A. B = SRsinceSwill copy the the rows ofRaccording to how the columns ofRwere

split from the columns ofA. The matrixA is called an out-amalgamation ofB if B can be

made from a finite sequence of in-splittings ofA.

Example 5.3.1.Let A =

3 1

2 4

 and let the first row,[3,1], be split into[1,1] and[2,0]

and the second row,[2,4] be split into[1,1], [1,2], and[0,1].

ThenR=



1 1

2 0

1 1

1 2

0 1


andS=

1 1 0 0 0

0 0 1 1 1

, soB =



1 1 1 1 1

2 2 0 0 0

1 1 1 1 1

1 1 2 2 2

0 0 1 1 1


.

There is an analogous procedure for the out-splitting of a matrix A. For example,

if we split the first column ofA,

3

2

, into

3

1

 and

0

1

, and the second column,

1

4

,
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into

1

1

,

0

2

, and

0

1

, then

R=

3 0 1 0 0

1 1 1 2 1

, S=



1 0

1 0

0 1

0 1

0 1


, andB =



3 0 1 0 0

3 0 1 0 0

1 1 1 2 1

1 1 1 2 1

1 1 1 2 1


.

We say thatB is a out-splitting ofA.

A matrix B is a in-amalgamation ofA if B can be obtained by a finite sequence of

out-splittings ofA. A matrix B is a 1-step splitting of a matrixA if B can be obtained as

a single splitting ofA, i.e. if A andB are ESSE by some(R,S), given by a splitting.R

is called the in-/out-splitting matrix (or the in-/out-amalgamation matrix) for the out-/in-

splitting of A to B. S is called the subdivision matrix for the splitting ofA to B (or the

amalgamation matrix for the amalgamation ofB to A).

The total 1-step in-amalgamation ofA is defined as follows. IfA is n by n andA

hask(≤ n) distinct rows, then letR be thek by n matrix made up of the distinct rows of

A. R is unique up to some permutation of its rows. For a fixed choice of the rows ofR, S

is given by a unique subdivision matrix such thatA = SR. If B = RS, thenB is called the

total 1-step in-amalgamation ofA and is uniquely determined byA up to conjugation by a

permutation matrix. The total 1-step column amalgamation is defined similarly. The total

in-/out-amalgamation of a matrixA is the matrix arrived at by performing total 1-step

in-/out-amalgamations until every row/column is distinct.

78



Example 5.3.2.Let C =


1 0 1

1 1 0

1 1 0

, B =

1 1

1 1

, andA = [2]. The total 1-step in-

amalgamation ofC is B and the total in-amalgamation ofC is A.

Theorem 5.3.3 (LM 7.1.2).Letφ be a conjugacy from XA to XB. Thenφ is a composition

of conjugacies given by ESSEs from splittings and amalgamations.

Furthermore, it is possible to decompose an automorphism ofXA, φ, into the com-

position of k conjugacies arising from in-splittings andk conjugacies arising from in-

amalgamations.

5.4 Examples of Surjective Dimension Representations

Example 5.4.1.For n∈ N, the dimension representation of the fulln-shift is surjective.

Let A = [n], soXA is the full n-shift. GA is the ringZ[1/n], G+
A will be Z+[1/n],

andÂ will be the isomorphism ofZ[1/n] given by multiplication byn. If n = pr1
1 ...prk

k for

primesp1, ..., pk, thenAut(Â) consists of elements of the form̂φ(x) =±pt1
1 ...ptk

k x for ti ∈Z

andAut+(Â) = {φ̂ : φ̂(x) = pt1
1 ...ptk

k x}. Clearly,Aut(Â) ∼= Z/2×Zk andAut+(Â) ∼= Zk.

Considerγi , the ESSE fromA to A given by([pi ], [n/pi ]). ρA(γi) = [pi ] andLA(γ̂i) = ei ,

whereei is thei-th elementary row vector. Soγ1, ...,γk get mapped byρA to a generating

set ofAut+(Â), and thus the dimension representation of A is surjective.

Example 5.4.2.Let B = nA whereA is primitive symmetric matrix with eigenvaluesn

and 1, both of multiplicity 1. Ifn is prime, then the dimension representation ofB is

surjective.
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If A has integer eigenvectorsu andv for eigenvaluesn and 1, then B has eigen-

vectorsu andv for eigenvaluesn2 andn (by Perron-Frobenius theory, we assumeu is

positive).B̂ will be given by multiplication byB onGB.

Aut(B̂) consists of matrices overQ that are automorphisms ofGA and commute

with B (thus must have the same eigenspaces).Aut+(B̂) will consist of the matrices that

have eigenvaluen j onu and±nk onv for j,k∈Z. We will show thatLA will map Aut+(Â)

isomorphically ontoZ/2×Z×Z by giving elements ofAut+(B̂) whose images underLA

generate all ofZ/2×Z×Z. SinceA is symmetric,B will be symmetric, andψ is an

ESSE[D,BD] from B to B whereD is the permutation matrix such that conjugation by

D gives the transpose of a matrix. In this case,(αψ,βψ) = (1,−1) andLB(ψ̂) = (1,0,0).

Also note thatρ(σB) = B̂ andLB(B̂) = (0,2,1). If γ is the ESSE fromB to B given by

(A,nId), thenLB(γ̂) = (0,1,0). Since(1,0,0), (0,2,1), and(0,1,0) will generate all of

Z/2×Z×Z∼= Aut+(B̂), the dimension representation ofB is surjective.

Alternatively, it is possible to viewXB as a product shift ofX[n]×XA. A point in XB

is a point in the fulln-shift cross a point inXA andγ corresponds to the automorphism of

the product shift given byσXA× id[n].

Recall that a conjugacy arising from an ESSE is called an elementary automor-

phism.

Theorem 5.4.3.Let n and k be prime odd integers such that n> 1 and0 < k2 < n. Let

A =

n+k
2

n−k
2

n−k
2

n+k
2

, then the following are true:

1. The dimension representation,ρ, of A is surjective.

2. The restriction ofρ to the subgroup of Aut(σA) generated by conjugates of elemen-
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tary automorphisms in not surjective.

Remark: Note that the previous example shows for the casen = k2, A will have

surjective dimension representation.

Proof of (2): The matrixA has simple spectrum ofn andk, with eigenvectors of

u = [1,1] andv = [1,−1] respectively. By Proposition5.2.4, the restriction ofρ to the

subgroup ofAut(σA) generated by conjugates of elementary automorphisms is a subgroup

that is generated bŷA and finite order elements. As show below,Aut+(Â)∼= Z/2×Z×Z,

which is clearly larger than the subgroup generated byÂ and finite order elements.2

Proof of (1): The matrixA has simple spectrum ofn andk, with eigenvectors of

u = [1,1] andv = [1,−1] respectively. For̂φ ∈ Aut+(Â) with (αφ,βφ) = (nt ,(−1)l ks)),

LA mapsφ̂ to (l ,s, t) ∈ Z/2×Z×Z. Further,LA will map Aut+(Â) onto Z/2×Z×Z

because

nt+(−1)l ks

2
nt−(−1)l ks

2

nt−(−1)l ks

2
nt+(−1)l ks

2

 will be an integral matrix that commutes withA for any

(l ,s, t) ∈ Z/2×Z+×Z+, which generates the groupmathbbZ/2×Z×Z.

SinceA is symmetric, there existsψ, an ESSE[D,AD] from A to A with D =0 1

1 0

, andLB(ψ̂) = (1,0,0). Another generator ofAut+(Â) is given byρA(σA) = Â

with LA(Â) = (0,1,1). In the construction below, we produceγ, such that(αγ,βγ) = (n,1)

andρ composed withLA mapsγ to the(0,1,0) element ofZ/2×Z2∼= Aut+(Â). The con-

struction ofγ does not requiren or k to be prime: it does usen = k mod 2, which is

required for the entries ofA to be integers. The three automorphisms ofXA given byψ, γ,

andσA will map to a generating set ofAut+(Â) given by theirLA coordinates of(1,0,0),

(0,1,0), and(0,1,1), and thusρA will be surjective.
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The automorphismγ will be given by a chain of ESSEsA
(D1,S1)−→ A1

(D2,S2)−→ A2
(D3,S3)−→

A3
(D4,S4)−→ A whereD1 andD2 are subdivision matrices for in-splittings andD3 andD4 are

amalgamation matrices for in-amalgamations. Further, we will show that[1,1]∗D1∗D2∗

D3∗D4 = [n,n] and[1,−1]∗D1∗D2∗D3∗D4 = [1,−1], which implies(αγ,βγ) = (n,1)

andρA composed withLA mapsγ to the(0,1,0) element ofZ/2×Z2∼= Aut+(Â).

We will now briefly describe the general procedure for the splittings(D1,S1), (D2,S2),

(D3,S3), and(D4,S4).

The splitting(D1,S1):

(D1,S1) will be a row splitting of the two rows ofA. The first row,[n+k
2 , n−k

2 ] will

be split into k+1
2 rows of the form[k,0], k−1

2 rows of the form[0,k], and one row of the

form [n−k2

2 , n−k2

2 ]. This is a valid splitting becausen > k2 and

k+1
2

[k,0]+
k−1

2
[0,k]+ [

n−k2

2
,
n−k2

2
] = [

n+k
2

,
n−k

2
]

The second row ,[n−k
2 , n+k

2 ], will be split into k−1
2 rows of the form[k,0], k+1

2 rows

of the form[0,k], and one row of the form[n−k2

2 , n−k2

2 ]. This is a valid splitting because

n > k2 and

k−1
2

[k,0]+
k+1

2
[0,k]+ [

n−k2

2
,
n−k2

2
] = [

n−k
2

,
n+k

2
]

The matrixS1 will have 2 columns and 2k+2 rows because both rows ofA are split

k+1 times.

(For presentation purposes, we write outS1 transpose.)
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(k+1)/2 (k−1)/2 1 (k−1)/2 (k+1)/2 1

︷ ︸︸ ︷
k, · · · ,k,

︷ ︸︸ ︷
0, · · · ,0,

n−k2

2 ,
︷ ︸︸ ︷
k, · · · ,k,

︷ ︸︸ ︷
0, · · · ,0,

n−k2

2

0, · · · ,0, k, · · · ,k, n−k2

2 , 0, · · · ,0, k, · · · ,k, n−k2

2





# of cols= k+1 k+1

D1 =
︷ ︸︸ ︷
1, · · · ,1,

︷ ︸︸ ︷
0, · · · ,0

0, · · · ,0, 1, · · · ,1




A1 = S1D1 and will bek+1 copies of the first column ofS1 andk+1 copies of the

second column ofS1 because the first row ofA was splitk+1 times and the second row

of A was splitk+1 times.
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# of cols= k+1 k+1

︷︸︸︷
K

︷︸︸︷
0 (k+1)/2 rows

0 K (k−1)/2 rows

A1 = n−k2

2
n−k2

2 1 row

K 0 (k−1)/2 rows

0 K (k+1)/2 rows

n−k2

2
n−k2

2 1 row





,

with K denoting a matrix with all entries equal tok.

The splitting(D2,S2):

A1 has 3 different rows,[k, · · · ,k,0, · · · ,0], [0, · · · ,0,k, · · · ,k], and[n−k2

2 , · · · , n−k2

2 ].

Each of thek rows ofA1 with the form

# of cols = k+1 k+1

[
︷ ︸︸ ︷
k, · · · ,k,

︷ ︸︸ ︷
0, · · · ,0]

should be split intok rows
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# of cols = k k+1

[
︷ ︸︸ ︷
k,0, · · · ,0, 1,

︷ ︸︸ ︷
0, · · · ,0]

[0,k, · · · ,0, 1, 0, · · · ,0]

...
...

...

[0,0, · · · ,k, 1, 0, · · · ,0]
For 1≤ i ≤ k, we will call thei-th row above a type (1,i) row.

Each of thek rows ofA1 with the form

# of cols = k+1 k+1

[
︷ ︸︸ ︷
0, · · · ,0,

︷ ︸︸ ︷
k, · · · ,k]

should be split intok rows

# of cols = k+1 k 1

[
︷ ︸︸ ︷
0, · · · ,0,

︷ ︸︸ ︷
k,0, · · · ,0, 1]

[0, · · · ,0, 0,k, · · · ,0 1]

...
...

...

[0, · · · ,0, 0, · · · ,k, 1]
For 1≤ i ≤ k, we will call thei-th row above a type(2, i) row.

The two rows ofA1 of the form[n−k2

2 , · · · , n−k2

2 ] should be split inton−k2

2 pairs of

rows with each pair summing to[1, ...,1] and such that the first row of the pair has ones in

the first k+1
2 entries and from thek+1 entry to the3k+1

2 entry, and zeros otherwise. This
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pair is chosen such that the transpose will match the resulting columns that show up in

A2. Each pair of rows will look like

k+1
2

k−1
2 1 k−1

2
k+1

2 1

︷ ︸︸ ︷
1. . .1

︷ ︸︸ ︷
0· · ·0

︷︸︸︷
1

︷ ︸︸ ︷
1· · ·1

︷ ︸︸ ︷
0· · ·0

︷︸︸︷
0

0. . .0 1· · ·1 0 0· · ·0 1· · ·1 1




We will refer to this pair of rows as complementary rows.

S2 will have the form of

(k+1)/2 blocks of type 1 rows

(k−1)/2 blocks of type 2 rows

(n−k2)/2 pairs of complementary rows

(k−1)/2 blocks of type 1 rows

(k+1)/2 blocks of type 2 rows

(n−k2)/2 pairs of complementary rows


A2 will havek copies of the first(k+1)/2 columns ofR2 because the first(k+1)/2

rows ofA1 are splitk times. ThenA2 will havek copies of the(k+1)/2+1 to(k+1)/2+

(k−1)/2 columns ofR2 because the(k+ 1)/2+ 1 to (k+ 1)/2+(k−1)/2 rows ofA1

are splitk times, and so on.
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# of cols = k2 n−k2 k2 n−k2

DK 1 0 0 .

...
...

...
... k(k+1)/2 rows

DK 1 0 0 .

0 0 DK 1 .

...
...

...
... k(k−1)/2 rows

0 0 DK 1 .

A2 = P P P P n−k2 rows

DK 1 0 0 .

...
...

...
... k(k−1)/2 rows

DK 1 0 0 .

0 0 DK 1 .

...
...

...
... k(k+1)/2 rows

0 0 DK 1 .

P P P P n−k2 rows











where 0 and 1 represent matrices filled with zeros and ones respectively,DK is the
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k by k2 matrix

# of cols = k k k

︷ ︸︸ ︷
k, · · · ,k,

︷ ︸︸ ︷
0, · · · ,0, ... ︷ ︸︸ ︷

0, · · · ,0

DK = 0, · · · ,0, k, · · · ,k, ... 0, · · · ,0

...
...

...

0, · · · ,0, 0, · · · ,0, ... k, · · · ,k




and then−k2 rows of P are given by repeating(n−k2)/2 times the following pair

of rows.

k(k+1)
2

k(k−1)
2 n−k2 k(k−1)

2
k(k+1)

2 (n−k2)

︷ ︸︸ ︷
1, · · · ,1,

︷ ︸︸ ︷
0, · · · ,0,

︷ ︸︸ ︷
1, · · · ,1,

︷ ︸︸ ︷
1, · · · ,1,

︷ ︸︸ ︷
0, · · · ,0,

︷ ︸︸ ︷
0, · · · ,0

0, · · · ,0, 1, · · · ,1, 0, · · · ,0, 0, · · · ,0, 1, · · · ,1, 1, · · · ,1




The amalgamation(D3,S3):

We now turn to the third ESSE,A2→A3. The matrixA3 will be the total 1-step row

amalgamation ofA2. The matrixA2 has 2k+2 distinct rows andS3 is the(2k+2)×2n

matrix whose rows are the distinct rows ofA2. The matrixD3 is the amalgamation matrix

such thatA2 = D3S3 andA3 = S3D3. Explicitly we choose the ordering of the rows inS3
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so thatS3 has the following form:

k k (n−k2) k k (n−k2)

︷ ︸︸ ︷
k, · · · ,k, ...

︷ ︸︸ ︷
0, · · · ,0,

︷ ︸︸ ︷
1, · · · ,1,

︷ ︸︸ ︷
0, · · · ,0, ...

︷ ︸︸ ︷
0, · · · ,0,

︷ ︸︸ ︷
0, · · · ,0

...
...

...
...

0, · · · ,0, ... k, · · · ,k, 1, · · · ,1, 0, · · · ,0, ... 0, · · · ,0, 0, · · · ,0

0, · · · ,0, ... 0, · · · ,0, 0, · · · ,0, k, · · · ,k, ... 0, · · · ,0, 1, · · · ,1

...
...

...
...

0, · · · ,0, ... 0, · · · ,0, 0, · · · ,0, 0, · · · ,0, ... k, · · · ,k, 1, · · · ,1

1, · · · ,1, ... 0, · · · ,0, 1, · · · ,1, 1, · · · ,1, ... 0, · · · ,0, 0, · · · ,0

0, · · · ,0, ... 1, · · · ,1, 0, · · · ,0, 0, · · · ,0, ... 1, · · · ,1, 1, · · · ,1





A3 can be computed fromS3 as follows:

• for 1≤ i ≤ k, the i-th column ofA3 is the sum of thei + jk columns ofS3 for

0≤ j ≤ k+1
2 −1 and then+ i + jk columns ofS3 for 0≤ j ≤ k−1

2 −1.

• For 1≤ i ≤ k, the(k+ i)-th column ofA3 is the sum of thek(k+1)
2 + i+ jk columns of

S3 for 0≤ j ≤ k−1
2 −1 and then+ k(k−1)

2 + i + jk columns ofS3 for 0≤ j ≤ k+1
2 −1.

• The 2k+1 column ofA3 will be the sum of thek2 +1 ton columns ofS3.

• The 2k+2 column ofA3 will be the sum of then+k2 +1 to 2n columns ofS3.
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# of cols = k k 1 1

︷ ︸︸ ︷
k, · · · ,k,

︷ ︸︸ ︷
0, · · · ,0,

n−k2

2 , n−k2

2
.

...
...

...
...

k+1
2

k, · · · ,k, 0, · · · ,0, n−k2

2 , n−k2

2
.

0, · · · ,0, k, · · · ,k, n−k2

2 , n−k2

2
.

...
...

...
...

k−1
2

0, · · · ,0, k, · · · ,k, n−k2

2 , n−k2

2
.

A3 = k, · · · ,k, 0, · · · ,0, n−k2

2 , n−k2

2
.

...
...

...
...

k−1
2

k, · · · ,k, 0, · · · ,0, n−k2

2 , n−k2

2
.

0, · · · ,0, k, · · · ,k, n−k2

2 , n−k2

2
.

...
...

...
...

k+1
2

0, · · · ,0, k, · · · ,k, n−k2

2 , n−k2

2
.

k, · · · ,k, 0, · · · ,0, n−k2

2 , n−k2

2

0, · · · ,0, k, · · · ,k, n−k2

2 , n−k2

2









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The amalgamation(D4,S4):

As shown above,A3 will have only 2 different row patterns,

[k, ...,k,0, ...,0, n−k2

2 , n−k2

2 ] and[0, ...,0,k, ...,k, n−k2

2 , n−k2

2 ]. A4 is the total 1-step row

amalgamation ofA3 So,

# of cols = k k

S4 =
︷ ︸︸ ︷
k, · · · ,k,

︷ ︸︸ ︷
0, · · · ,0,

n−k2

2 , n−k2

2

0, · · · ,0, k, · · · ,k, n−k2

2 , n−k2

2





.

• The first column ofA4 will be the sum of columns 1 to(k+1)/2, k+1 to k+(k−

1)/2, and 2k+1 column ofS3.

• The second column ofA4 is the sum of columns(k+1)/2+1 tok, k+(k−1)/2+1

to 2k, and 2k+2 column ofS3.

A4 ends up being

n+k
2

n−k
2

n−k
2

n+k
2

 = A.

All that remains is to show[1,1]D1D2D3D4 = [n,n] and[1,−1]D1D2D3D4 = [1,−1].

D1 andD2 will copy columns according to how the rows ofA andA1 are split.D3 andD4

will sum columns according to how the rows ofA2 andA3 are amalgamated. Because the

first n rows ofA2 are split from the first row ofA and the second n rows ofA2 are split

from the second row ofA, [1,1]D1D2 = [1, · · · ,1︸ ︷︷ ︸ 1, · · · ,1︸ ︷︷ ︸]
n cols n cols

.
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# of cols = k k

[1,1]D1D2D3 = [1, · · · ,1]D3 = [
︷ ︸︸ ︷
k, · · · ,k,

︷ ︸︸ ︷
k, · · · ,k, n−k2, n−k2]

because there arek copies of the first 2k rows ofS3 in A2 andn− k2 copies of the

each of the last two rows ofS3 in A2. [1,1]D1D2D3D4 =

(k+1)/2 (k−1)/2 (k−1)/2 (k = 1)/2

[
︷ ︸︸ ︷
k, · · · ,k,

︷ ︸︸ ︷
k, · · · ,k,

︷ ︸︸ ︷
k, · · · ,k,

︷ ︸︸ ︷
k, · · · ,k, n−k2, n−k2]D4

= [n,n] because

• the first to(k+1)/2, k+1 to k+(k−1)/2, and 2k+1 rows ofA3 are the same as

the first row ofS4, soD4 will sum these columns andk∗ (k+1)/2+k∗ (k−1)/2+

n−k2 = n.

• the (k+1)/2+1 to k,k+(k−1)/2+1 to 2k, and 2k+2 rows ofA3 are the same

as the second row ofS4, soD4 will sum these columns andk∗ (k+1)/2+k∗ (k−

1)/2+n−k2 = n.

Because the first n rows ofA2 are split from the first row ofA and the second n rows

of A2 are split from the second row ofA,

[1,−1]D1D2 = [1, · · · ,1︸ ︷︷ ︸ −1, · · · ,−1︸ ︷︷ ︸]
n cols n cols

Let (S3)i be the i-th row of the matrixS3. The i-th coordinate of[1,−1]∗D1∗D2∗D3 =
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[1, ...1,−1, ...−1]∗D3 is the difference between the number of the first n rows ofA2 that

equal(S3)i and the number of the second n rows that are equal to(S3)i .

• There are(k+ 1)/2 copies of(S3)1 in the first n rows ofA3 and(k−1)/2 copies

of (S3)1 in the second n rows ofA3, which means that the first coordinate of

[1,−1]D1D2D3 is 1.

• The same argument applies to the first k coordinates of[1,−1]∗D1∗D2∗D3.

• For k+ 1≤ i ≤ 2k, there are(k− 1)/2 copies of(S3)i in the first n rows ofA3

and(k+1)/2 copies of(S3)i in the second n rows ofA3, so the i-th coordinate of

[1,−1]∗D1∗D2∗D3 is -1.

• For i = 2k+1,2k+2, there are(n−k2)/2 copies of(S3)i in the first n rows ofA3

and(n−k2)/2 copies of(S3)i in the second n rows ofA3, so the i-th coordinate of

[1,−1]∗D1∗D2∗D3 is 0.

This means that

[1,−1]∗D1∗D2∗D3 = [1, · · · ,1︸ ︷︷ ︸ −1, · · · ,−1︸ ︷︷ ︸ 0 0]

k cols k cols

.

In order to compute

[1,−1]D1D2D3D4 = [1, · · · ,1,︸ ︷︷ ︸ −1, · · · ,−1,︸ ︷︷ ︸ 0 0]D4

# of cols= k k

note that(k+1)/2 of the first k rows and(k−1)/2 of the second k rows ofA3 are equal

to the first row ofS4, and(k−1)/2 of the first k rows and(k+1)/2 of the second k rows
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of A3 are equal to the second row ofS4. This means that

[1,−1]∗D1∗D2∗D3∗D4 = [1,−1]. This completes Example5.4.3.

While the preceding example is not general, it is my hope that this example will

lead to some insight for more general constructions.
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Appendix A

Computations for Theorem5.2.3

Let us consider the case when n = 13 and k = 3, andA=

8 5

5 8

. In the construction

below, we produceγ, such that(αγ,βγ) = (13,1) andρ composed withLA mapsγ to the

(0,1,0) element ofZ/2×Z2 ∼= Aut+(Â). γ will be given by a chain of ESSEsA
(D1,S1)−→

A1
(D2,S2)−→ A2

(D3,S3)−→ A3
(D4,S4)−→ A whereD1 andD2 are subdivision matrices for row splittings

andD3 andD4 are amalgamation matrices for row amalgamations. Further, we will show

that [1,1] ∗D1 ∗D2 ∗D3 ∗D4 = [13,13] and [1,−1] ∗D1 ∗D2 ∗D3 ∗D4 = [1,−1], which

implies (αγ,βγ) = (13,1) andρA composed withLA mapsγ to the (0,1,0) element of

Z/2×Z2∼= Aut+(Â).

Below is the Matlab code and comments that computeγ and showγ has the proper

attributes.

A = [8 , 5;

5 , 8]

% A has eigenvalues of 13 and 3.

x = [1,1]

% x is the Perron eigenvector of A.

y = [1,-1]

% y is the eigenvector of 3.

S1 = [3,0;
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3,0;

0,3;

1,1;

1,1;

3,0;

0,3;

0,3;

1,1;

1,1]

D1 = [1,1,1,1,1,0,0,0,0,0;

0,0,0,0,0,1,1,1,1,1]

D1*S1

ans =

8 5

5 8

% This shows that D1*S1=A and below we define A1=S1*D1

A1 = S1*D1

A1 =

3 3 3 3 3 0 0 0 0 0

3 3 3 3 3 0 0 0 0 0

0 0 0 0 0 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
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3 3 3 3 3 0 0 0 0 0

0 0 0 0 0 3 3 3 3 3

0 0 0 0 0 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

% We define the row splitting matrix of A1 by

S2 = [3,0,0,1,1,0,0,0,0,0;

0,3,0,1,1,0,0,0,0,0;

0,0,3,1,1,0,0,0,0,0;

3,0,0,1,1,0,0,0,0,0;

0,3,0,1,1,0,0,0,0,0;

0,0,3,1,1,0,0,0,0,0;

0,0,0,0,0,3,0,0,1,1;

0,0,0,0,0,0,3,0,1,1;

0,0,0,0,0,0,0,3,1,1;

1,1,0,1,1,1,0,0,0,0;

0,0,1,0,0,0,1,1,1,1;

1,1,0,1,1,1,0,0,0,0;

0,0,1,0,0,0,1,1,1,1;

3,0,0,1,1,0,0,0,0,0;

0,3,0,1,1,0,0,0,0,0;

0,0,3,1,1,0,0,0,0,0;

0,0,0,0,0,3,0,0,1,1;

0,0,0,0,0,0,3,0,1,1;
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0,0,0,0,0,0,0,3,1,1;

0,0,0,0,0,3,0,0,1,1;

0,0,0,0,0,0,3,0,1,1;

0,0,0,0,0,0,0,3,1,1;

1,1,0,1,1,1,0,0,0,0;

0,0,1,0,0,0,1,1,1,1;

1,1,0,1,1,1,0,0,0,0;

0,0,1,0,0,0,1,1,1,1]

D2 = [1,0,0,0,0,0,0,0,0,0;

1,0,0,0,0,0,0,0,0,0;

1,0,0,0,0,0,0,0,0,0;

0,1,0,0,0,0,0,0,0,0;

0,1,0,0,0,0,0,0,0,0;

0,1,0,0,0,0,0,0,0,0;

0,0,1,0,0,0,0,0,0,0;

0,0,1,0,0,0,0,0,0,0;

0,0,1,0,0,0,0,0,0,0;

0,0,0,1,0,0,0,0,0,0;

0,0,0,1,0,0,0,0,0,0;

0,0,0,0,1,0,0,0,0,0;

0,0,0,0,1,0,0,0,0,0;

0,0,0,0,0,1,0,0,0,0;

0,0,0,0,0,1,0,0,0,0;
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0,0,0,0,0,1,0,0,0,0;

0,0,0,0,0,0,1,0,0,0;

0,0,0,0,0,0,1,0,0,0;

0,0,0,0,0,0,1,0,0,0;

0,0,0,0,0,0,0,1,0,0;

0,0,0,0,0,0,0,1,0,0;

0,0,0,0,0,0,0,1,0,0;

0,0,0,0,0,0,0,0,1,0;

0,0,0,0,0,0,0,0,1,0;

0,0,0,0,0,0,0,0,0,1;

0,0,0,0,0,0,0,0,0,1]’

A1 =

3 3 3 3 3 0 0 0 0 0

3 3 3 3 3 0 0 0 0 0

0 0 0 0 0 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

3 3 3 3 3 0 0 0 0 0

0 0 0 0 0 3 3 3 3 3

0 0 0 0 0 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

D2*S2

ans =
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3 3 3 3 3 0 0 0 0 0

3 3 3 3 3 0 0 0 0 0

0 0 0 0 0 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

3 3 3 3 3 0 0 0 0 0

0 0 0 0 0 3 3 3 3 3

0 0 0 0 0 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

% A1 =D2*S2 and we define A2=S2*D2

A2 = S2*D2

A2 =

3 3 3 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 3 3 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 3 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3 3 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 3 3 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 3 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 1 1 1 1

1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

3 3 3 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 3 3 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 3 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 1 1 1 1

1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

% We define S3 to be the distinct rows of A2 which create

A3 as the 1-step total column amalgamation of A2.

S3 = [ A2(1,:) ; A2(2,:) ; A2(3,:); A2(7,:); A2(8,:);

A2(9,:); A2(10,:) ; A2(11,:)]

S3 =

3 3 3 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 3 3 3 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 3 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 1 1 1 1

1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

D3 =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
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0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

max(max(A2-D3*S3)

ans = 0

%This computation shows that $A2 = D3*S3

A3 = S3*D3

A3 =

3 3 3 0 0 0 2 2

3 3 3 0 0 0 2 2

0 0 0 3 3 3 2 2

3 3 3 0 0 0 2 2

0 0 0 3 3 3 2 2

0 0 0 3 3 3 2 2

3 3 3 0 0 0 2 2

0 0 0 3 3 3 2 2
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%S4 is the set of distinct rows of A3 which will define A4 as the

1-step total column amalgamation of A3.

S4 = [ A3(1,:) ; A3(3,:) ]

S4 =

3 3 3 0 0 0 2 2

0 0 0 3 3 3 2 2

D4 =

1 0

1 0

0 1

1 0

0 1

0 1

1 0

0 1

A3 =

3 3 3 0 0 0 2 2

3 3 3 0 0 0 2 2

0 0 0 3 3 3 2 2

3 3 3 0 0 0 2 2

0 0 0 3 3 3 2 2

0 0 0 3 3 3 2 2

3 3 3 0 0 0 2 2

0 0 0 3 3 3 2 2

104



D4*S4

ans =

3 3 3 0 0 0 2 2

3 3 3 0 0 0 2 2

0 0 0 3 3 3 2 2

3 3 3 0 0 0 2 2

0 0 0 3 3 3 2 2

0 0 0 3 3 3 2 2

3 3 3 0 0 0 2 2

0 0 0 3 3 3 2 2

%We see that A3 = D4*S4 and below that A4=A.

A4 = S4*D4

A4 =

8 5

5 8

A =

8 5

5 8

x*D1*D2*D3*D4

ans =

13 13

y*D1*D2*D3*D4

ans =
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1 -1

% This shows that (\alpha_{\gamma}, \beta_{\gamma}) = (13,1).
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