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Chapter 0

Organization and Summary of Results

Let Aut(oa) be the group of homeomorphisms of a shift of finite tyfagthat com-
mute with the shift mawa. In Chapter 1 we describe the dimension representation of
a SFT,pa, from the mysteriougwut(ox, ) to the more tractable group of automorphisms
of the dimension moduleAut(A). An automorphism is inert if it is in the kernel of the
dimension representation.

Let @ be an automorphism of a SFXa and let fixy(Xa) denote the set of points
fixed by @. It is well known that with dynamics given by the restriction of the shift,

fixg(Xa), (a subshift 0iXa) is a shift of finite type. We refer tiixy(Xa) as the fixed point

shift of @ on Xa. The first question we consider is:

Question 0.0.1.What can be the fixed point shift of an inert involution of a mixing shift

of finite type?

This is a generalization of the following question posed by John Smillie with mo-
tivation from complex dynamics: What are the fixed point shifts of involutions on the
2-shift? In fact, every involution of the 2-shift is inert and the inert case is still the fun-
damental case to understand even when noninert involutions exist. Apart from complex
dynamics, QuestioR.0.1 is natural from the viewpoint of symbolic dynamics, where
a great deal of what is understood (and what is not understood) about the automorphism

group of a SFT involves in a fundamental way the involutions. The following result shows



how subshifts that are invariant under an inert automorphism can be realized as fixed point

shifts.

Theorem 0.0.2.Let f be an inert automorphism of a mixing shift of finite type X, with
fixs(X) CY where Y#£A X and Y is a f-invariant subshift of finite type in X. Suppose
n> 2 and n is the smallest possible integer such tHa&fld. If the restriction of f toY

is inert, then Y can be realized as the fixed point shift of a finite order automorpdism,

on X, whereg" = id and n is the minimal positive integer k such tight= id.

For example, in Theore®0.2 X could be the 2-shiftf could be the flip involution
(which exchanges the two symbols), anaould be any flip invariant subshift of finite
type (sincefix; (X) = 0 for f the flip). As Example.4.6 shows, Theorerf).0.2 does not
resolve Questio®.0.1 in general. PropositioR.3.4 gives the necessary condition that
if a shift of finite typeY is the fixed point shift of an inert involution on a mixing shift
of finite type X, thenPer(X)\Per(Y) is the disjoint union of 2-cascades (as defined in

Section 3.3.1). This raises the question:

Question 0.0.3.LetY be a SFT in a mixing shift of finite type X such tha{RexPer(Y)
is the disjoint union of 2-cascades. Can Y be realized as the fixed point shift of an inert

involution on X?

While Theoren®.0.2 answers this question for certain special cases, our main result
shows that the answer to Questi@0.3 is yes up to shift equivalence whéhis the full

2-shift.

Theorem 0.0.4.For a shift of finite type Y, contained in the full 2-shift, X, the following

are equivalent:



1. Per(X)\Per(Y) is the disjoint union of 2-cascades.

2. Y is the fixed point shift of an involution on a mixing shift of finite type which is SE

to X.

It is still unknown if a shift that is shift equivalent ov&r*to the 2-shift is strong
shift equivalent oveZ "to the 2-shift. We also show that the answer to Que<iors is
yes for a larger class of mixing shifts of finite type. We also give a (rather technical) proof
that there is a finite decision procedure for checking condition (1) of TheOrérh

An important part of our understanding of the action of inert automorphisms is the
relationship between a shift of finite typéwith finite order automorphismy, and the
quotient spac& /U. We say thatl is a strictly order n automorphism if every point lies
in aU-orbit of cardinality n (i.e.U generates a fre&/n action onX). Kim and Roush

asked the following question:

Question 0.0.5.For p prime, when does a mixing SFT X have a strictly order n automor-

phism U such that X is conjugate tg/M?

In the strongest result to date, when p is prime, Kim and Roush [KR3] showed that
for a mixing shift of finite type X, there existX’ shift equivalent toX with a strictly
order p automorphisnf,, such thaX’/f is conjugate tX iff the periodic points oX are
the disjoint union of p-cascades. For 1-sided mixing SFTs, the following result gives a

complete answer to Questi@rD.5.

Theorem 0.0.6.Let A be a totally out-amalgamated square matrix o¥erand let p be

a prime integer. The following are equivalent:



1. The 1-sided shift of finite type JXhas a strictly order p automorphism, U, with X

conjugate to X /U

2. The matrix A89 is nilpotent where
A{ed _ 0 if Ajj is a multiple of p
j
Ajj otherwise
Here nilpotence oA™Y refers to nilpotence as a matrix ov&t, and depends only
on the zero-plus pattern @9, Question0.0.5 is a specific case of the following ques-
tion:
Question 0.0.7.For a prime p and a mixing shift of finite type X, what are the conjugacy

classes of XU when U is a strictly order p automorphism?

For an adjacency matri, let A’ denote the matrix which is the total out-amalgamation
of A (as described in Section 5.3). For a 1-sided mixing shift of finite tfpethe
following result characterizes the conjugacy classeX df in terms of the total out-

amalgamatiom’.

Theorem 0.0.8.Let A be a totally out-amalgamated square matrix o¥eand let p be
a prime integer. The 1-sided shift of finite type, Xas a strictly order p automorphism,
U, with X3 conjugate to ),g*/U <= Gg is the quotient graph of an order p or order 1
graph automorphisng of Ga satisfying the following.

Let C be the principal submatrix of A such that G the maximal subgraph of 5
that has vertices fixed hy. The matrix ¢9 is nilpotent where
0 ifCjj is a multiple of p

red __
G =

Gij otherwise



The dimension representation has been of fundamental importance in studying the
structure of shifts of finite type. There is a known complete characterization of the actions
of inert automorphisms on finite subsystems of shifts of finite type. An essential (and to
a large extent sufficient) part of understanding how non-inert automorphisms can act on
finite subsystems would be simply to know the image of the dimension representation.
Additionally, given a classification of irreducible SFTs, Kim and Roush [KR6] describe
how the classification of (reducible) SFTs can be found if and only if the range of the
dimension representation is known.

The last question we address is:

Question 0.0.9.Given A, a primitive matrix , what is the image of the dimension repre-

A

sentationpa : Aut(oa) — Aut(A)?

Our contribution to addressing Questi@g.9, though meaningful, is so far modest.
Proposition5.2.4 shows that the only general constructions to date, which are composi-
tions of conjugates of elementary automorphisms, cannot construct certain candidate im-
ages ofpa. In Propositiorb.4.3 we examine a certain class of mixing shifts of finite type
for which it is impossible by Propositioh.2.4 to show thatpa is surjective using only
elementary strong shift equivalences. For this class, we construct suitable nonelementary
strong shift equivalences to show that the dimension representation is surjective. While
this construction is complicated and not fully understood, it is the first class of essentially

nonelementary examples constructed and will hopefully lead to further insight.



Chapter 1
Definitions and Background

1.1 Definitions of Shift Spaces

A discrete dynamical system is a topological space, X, equipped with a homeo-
morphism, f, from X to itself and is denoted by the p@X, f). Let 4 be a finite set of
symbols, called an alphabet, and /&t denote the set of bi-infinite sequences {x;}
wherex; € 4 andi € Z. There is a natural majm, called the shift map that moves a
sequence one step leti(x); = xi.1. (4%,0) is called the full shift on the alphabet.
When 4 has n symbols, the pafra?, o) is called the full shift on n symbols or the full
n-shift and is denoted b{X,, o). Unless otherwise indicated, = {0,1,....n—1}. If 4
is given the discrete topology, thefy has topology given by the product topology from
A and is topologically a Cantor set. A compact, shift invariant subset of a full shift gives
rise to a subspace with induced map given by the restriction of the shift. We refer to the
subspace together with the restriction of the shift map as a subshift or as a shift space. A
block is a finite sequendé;b,...b,] where each symbdl € 4.

A continuous shift commuting mayp, from a shift space X to a shift space Y is a
block map or block code, meaning that there is@Z" and a functiond such that for
allx e X, @(x)i = ®([Xi—k.--Xi+k]). A 1-block code is a block map with= 0. Dynamical
systemg X, f) and(Y,g) are topologically conjugate if there exists a homeomorphgsm

from X toY such thatpo f = go@. In particular, shift spaces X and Y are conjugate if



there exists a 1-1 and onto block code from X to Y.

A subshift of finite typeX is defined by fixing a finite list of blocks;, and ex-
cluding fromX, all sequences that contain a block from F. Equivalently, a shift of finite
type X is the set of sequencds € Xq|Xjj i m-1 = b,b € M} whereM is a fixed list of
blocks of lengthm. Shifts of finite type or SFTs are a very rich and important class of
shift spaces and are useful in applications to hyperbolic dynamical systems. See [LM] for
an introduction to symbolic dynamics.

A SFT can be presented interchangeably by a directed graph and its adjacency ma-
trix, a square matrix with entries in the semi-ring of the non-negative inte@ers;
{0,1,...}. LetG be a finite directed graph with n ordered vertices and a finite edge set
E. G is defined by its adjacency matrix, A, which is & n non-negative integral matrix
with Ajj = the number of edges from vertex i to vertex j. lté¢) andi(e) denote the
terminal and initial vertices of the edge= E. The shift of finite typeXg, or Xa, is the
subshift ofEZ given by {x = (X)icz € EZ” : t(g) = i(g,1)for all i € Z}. We say that a
square, non-negative integral matrix A is an edge presentation or simply presents the shift

of finite type(Xa, 0a).

Standing Convention 1.1.1.For simplicity, we will denote the shift dynamical system
(X,0) by the spac& since the shift map is understood to be the underlying map, and we

refer too specifically when we are talking about the dynamical map.



1.2 Conjugacy Invariants of SFTs

Dynamical systemgX, f) and (Y,g) are conjugate if there exists a homeomor-
phism,@: X — Y, such thatpo f = go@. In general, conjugate systems have the same
dynamical properties and a classification of conjugate SFTs would be especially useful.
We will discuss several properties of SFTs that are invariant under conjugacy, and in the
next section we will discuss the state of the classification problem for SFTs.

A SFT is mixing if there exists & € N such that for each pair of allowed blocks,

u andv, and for eacln > N, there is a blockv of lengthn such thatuwvis an allowed
block.

A matrix, B, is primitive if its entries are nonnegative integers and there is some
n € N such that(B");; > 0 for all ij. If all rows and columns of a square matéxover
Z*are nonzero, then A is primitive ifKy is a mixing shift of finite type. The class
of mixing shifts of finite type (MSFTs) are the fundamental class of SFTs and many
problems of involving SFTs can be reduced to the case of MSFTs. A SFT is irreducible
if for each pair of allowed blocksj andyv, there is a blockv, with uwvan allowed block.

A SFT is reducible if it is not irreducible.

For a dynamical systeniX, f), let Per(X,n) denote the set of points of X such that
f1(x) = x, and letPer(X) = Uncz+Per(X,n) be the collection of all periodic points. The
length of an orbit is the number of points in the shift orbit.

WhenPer(X,n) is finite for alln € Z*, the periodic point counts of a dynamical

system(X, f) are encoded by its Artin-Mazur zeta function,

2x(t) = exp(zi o ooy



The zeta function for a SFKa, can be computed as

1 1
T txa(tl)  det(ld —tA)

ZXA(t) (1-1)

wherexa(t) is the characteristic polynomial of the< r matrix A. The non-zero spectrum
of a matrix is the set of non-zero eigenvalues with corresponding multiplicity. The zeta

function of a SFTXa, is determined by the nonzero spectrunAand vice versa.

The entropy of a shift space is defined tyX) = nTw%Iog|Bn(X)|, whereB,(X)
is the set of allowed blocks in X of length n. The entropy of a shift space measures the
exponential rate at which the number of allowed words increases. The Spectral Radius
Theorem and Perron-Frobenius theory imply that for a M3k Tthe entropy ofXa is

the eigenvalue of A with largest modulus, which we will caj, and that there is an

eigenvector oA Which is positive.

1.3 The Conjugacy Problem for SFTs

Let (Xa,0a) or simplyXa denote the shift of finite type defined by the non-negative
integral matrixA. ForA andB matrices ovelZ ", it is natural to ask under what conditions
do A andB present topologically conjugate shifts of finite type. Any two conjugate SFTs
will have the same zeta function and entropy, thus #&dB present conjugate shifts of
finite type, thermA andB have the same non-zero spectrum. The non-zero spectrum is not
enough to guarantee conjugacy, and in 1973 R. Williams gave an algebraic framework

with which to study conjugacy classes of shifts of finite type.



1.3.1 Strong Shift Equivalence

Given matrice\ andB over a unital semiring, Ais elementary strong shift equiv-
alent (ESSE) t® (overS) if there exist matriceRandSover S with A=RS,B=SR An
ESSE,(R,S), has direction fronA to B for A= RSandB = SR whereas the ESSES R)
has direction fronB to A. An elementary conjugacy is one that arises from an elementary
strong shift equivalence.

For matricesA andB overZ™, Ais strong shift equivalent (SSE) Bover S if there
is a chain of ESSE (ovef) betweenA andB. SSE is an algebraic equivalence relation

whereas ESSE is not because ESSE is not a transitive relation.

Theorem 1.3.1.[Wil] For A and B matrices oveZ™, (Xa,0a) is conjugate tq(Xg,0g)

iff Ais SSE to B oveZ.t.

SSE ovelZtis an algebraic equivalence relation whose equivalence classes corre-
spond to conjugacy classes of shifts of finite type. This characterization of conjugacy does
not solve the conjugacy problem because there is no known finite procedure for deciding

when two non-negative integral matrices are SSE @ver

1.3.2 Shift Equivalence

Williams also defined the very tractable equivalence relation of shift equivalence.
For matricesA andB over a unital semirings, A is shift equivalent (SE) t® over S if
there exist matriceR andSover$ andl € N such that

RA=BR AS=SB A=RS B=SR

The integel is referred to as the lag of the shift equivalence giveriRys,1). The

10



advantage of using SE rather than SSE is that SE @vand Z"are well understood.
For example, matrices ové&t are SE (ovelZ ) to a non-singular matrix. Further, two
integral matrices are SE ovgriff they are SSE ove¥. . Most importantly, SE oveZ tis
decidable. In various important special cases, SE @vés classified by well understood
invariants. For example, all matrices ov&rwith the same single non-zero eigenvalue,
A > 0, are SE oveZ™. It is not known whether they must also be SSE d&ér

The relation of shift equivalence can be given more concretely, as we present now.
If Ais annx n matrix overZt, then the eventual range 8f Ra, is given byAkQ", for
large enougtik such thatA is an isomorphism fromdkQ" to AKt1Q". By convention, the
action ofA is on row vectors. The dimension groupAfGa, and its positive seB;, are

defined as

Ga = {v e Ra: VA € Z"for somek > 0} (1.2)
G) = {ve Ra: vA € (ZT)"for somek > 0} (1.3)
(1.4)

(GA,GJAF,A) is called the dimension module or dimension triple. Dimension mod-
ules(Ga, G, A) and(Gg, G§, B) are isomorphic if there exists an isomorphigm G —
Gg that takes the positive s} to G5 andyoA=Boy.
Theorem 1.3.2.[K2] Let A and B be matrices ovef.™, then A is SE to B oveZ iff
(Ga,A) = (Gg,B), and A is SE to B oveZ*iff (Ga,Gj,A) = (Gs, G5, B).

The dimension module has an important presentation in terms of polynomials. For
a ringR, let L(R) denote the Laurent ring of polynomials i with coefficients inR,

11



and letL(R)N be theL(R)-module of (countably infinite) column vectors with all but
a finite number of entries zero. Lebk(ld —tA) be the cokernelL(Z)-module given
by L(Z)N/(Id —tA)L(Z)N. As above, matrices act from the right on row vectors. et
Ga — cok(Id —tA) be defined by — t“vAX for k such thavA € Z". @is an isomorphism
from Ga to cok(ld —tA) such thatL(Z )N N {L(Z)N/(1d —tA)L(Z)"} is isomorphic to
the positive seG4. The isomorphism oG4 given byA corresponds to multiplication by
t~1 on cok(ld —tA). So by Theoreni.3.2, for A andB matrices ovetZ , A is SE toB
overZ iff cok(l —tA) andcok(l —tB) are isomorphic ak(Z)-modules, and\ is SE toB

overZTiff cok(l —tA) andcok(l —tB) are isomorphic as orderédZ)-modules.

Example 1.3.3.1f A= [2], thenA presents the full 2-shiftGp is the ringZ[1/2] since
Z[1/2] are the elements @ that will be eventually mapped int by multiplication by

2. G} will be Z*[1/2] andA will be the isomorphism o[1/2] given by multiplication

by 2.

A C
Proposition 1.3.4.Let A, B, and C be integral matrices with B nilpotent. Then

0 B

and A are shift equivalent ovéf .

SupposeA is an x n matrix overZ and detd) = +1. ThenGa = Z" andA = A,
sinceA is invertible overZ . ForB an x n matrix overZ , Awill be SE toB overZ iff A

andB are conjugate in the matrix gro@in(Z).

Proposition 1.3.5.[LM 7.3.6] For A and B primitive matrices, A is SE to B ov&riff A

is SE to B ovef .

By Theorem1.3.2 we can neglect the positive set when dealing with SE between

12



primitive matrices.

Definition 1.3.6. Xa and Xg are eventually conjugate if there is an integer N such that

(Xa,04) and(Xg, og) are topologically conjugate for afi> N.

Theorem 1.3.7.[W2] For matrices A and B oveZ ", Xa and X are eventually conjugate

iff A and B are SE over ™.

Clearly if Ais SSE ovelZ*to B, thenA is SE overZ*to B, but when doeé\ SE
to B over Ztimply A is SSE toB over Z*™? Williams [Wil] conjectured in 1974 that
for matrices oveZ ™, SE overZimplies SSE ovefZ™. This conjecture was refuted by
Kim and Roush for the reducible case in 1992 [KR4] and for the irreducible and mixing
cases in 1999 [KR1] but there remains much to be understood about the relation of SSE
to SE. Essential to the counterexamples was a deeper understanding of the dimension

representation of the automorphism group of a shift of finite type.

Standing Convention 1.3.8.For the rest of this paper, SE and SSE refer to SE over

Ztand SSE oveZ. "unless otherwise stated.

1.4 The Dimension Representation

An automorphism of a shift spacéis a shift commuting homeomorphism X%fto
itself. LetAut(ox) denote the group of automorphisms on a shift spac8oyle, Lind,
and Rudolph [BLR] showed that when a SFEX, has non-zero entropy, the countably
infinite groupAut(ox ) is not finitely generated and contains a copy of every finite group.

Aut(ox ) is complicated and poorly understood.

13



Let Aut(A) be the group of automorphisms @f that commute witiA. Aut(A) is a
much more tractable group to study and is typically finitely generatedAEoGL,(Z),
Ga = Z" andA = A is the isomorphism given by multiplication i#; soAut(A) consists
of invertible integral matrices that commute wih

By Theoreml.3.1, any@ € Aut(oa) can be realized by some chain of ESSEs over
ZTfromAto A (R, S1) (R, S)...(R, &)- If (R'S) is an ESSE fronA to B, thenR in-
duces an isomorphism frofGa, GX,A) to (Gg,Gg,B). For an automorphismp and a
corresponding SSE frolto A, (R1,S1)(R2, S)...(Rk, &) Ietfpbe the induced automor-
phism on(GA,GX,A), where@=[(R)& ands; is -1 according to the direction that the
i-th ESSE is traversed. Sin&mloes not depend on the choice of SSE represegitigs
gives a well defined map : Aut(ca) — Aut(A) wherep(¢) = @. p is called the dimen-
sion representation and elements in its kernel are catled automorphisms. Krieger
originally defined the dimension representation dynamically using a Grothendieck style
construction on compact open subsets of unstable sets. We will use the algebraic defini-
tion given above because it is more convenient for our constructions which use chains of
ESSEs.p depends explicitly on the presentatiénbut for brevity we neglecA in the

notation of the dimension representation.

Definition 1.4.1. A graph automorphism ofja induces a 1-block map oXa. The group
of simple automorphisms is the subgroup of inert automorphisms generated by automor-

phisms conjugate to a block code induced by a graph automorphism that fixes all vertices.

In Chapter 3, we discuss at length the group of inert automorphisms, defined as the

kernel of the dimension representation. In Section 3.3.2, we briefly discuss the known

14



complete characterization of the actions of inert automorphisms on finite subsystems of
shifts of finite type. In stark contrast, there has been little progress in describing how
non-inert automorphisms can act on finite subsystems. An essential (and to a large extent
sufficient) part of this understanding would be simply to know the image of the dimension
representation. Additionally, given a classification of irreducible SFTs, Kim and Roush
[KR6] describe how the classification of (reducible) SFTs can be found if Quéestiah

is answered.

15



Chapter 2

Fixed Point Shifts of Involutions
An involution of a shift of finite typeX, is an automorphism of such that/2 = Id.
Recall from Section 1.4 that an automorphism of a shift of finite type is inert if it is in the

kernel of the dimension representation. The question we consider in this chapter is:

Question 2.0.2.What can be the fixed point shift of an inert involution of a mixing shift

of finite type?

For many shifts of finite type, such as full shifts, every involution is inert. Even
when noninert involutions exist, the fundamental case to understand is the inert case. See
Section 3.3 for further discussion. QuestiA.2 is a natural generalization of a problem

posed by John Smillie:

Question 2.0.3.[Smillie, 2005] What are the fixed point shifts of involutions of the full

2-shift?

In Section 3.1, we discuss the motivation of Smillie’s question from complex dy-
namics and mention some motivation from symbolic dynamics. In Section 3.2, we recall
background results from symbolic dynamics which will give context and be used in our
later theorems. In Section 3.3, we discuss the class of inert automorphisms and condi-
tions on periodic points that are necessary for the existence of inert automorphisms. In

Section 3.4, we answer Questiad.2 in a special case and discuss the limitations of this
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result. In Section 3.5, we present a hierarchy of conditions involving cascades, zeta func-
tions, and matrix traces, and establish a decision procedure for checking the necessary

conditions of QuestioR.4.7.

2.1 Application to Complex Dynamics

Smillie’s Question 2.0.3) stems from a problem involving quadratic maps@h
The Hend family is a 2-parameter family of diffeomorphisms®f given by quadratic
mapsfap : R? — R?, with fap(x,y) = (X2 +a—by,x) anda,b € R (b # 0 for a diffeo-
morphism). The Henofamily has been of interest for many years because of its relation
to one-dimensional and complex dynamics. &e 0, the restriction off, , to its chain
recurrent set is hyperbolic and topologically conjugate to the full 2-shift, and ate0,
the dynamics off,, are wandering [BS], but there are many open questions about what
happens between these extremes. Cvitanovic conjectured that each map in the Heno
family can be described by horseshoe dynamics with collections of orbits removed; this
conjecture has been supported by numerical evidence from Davis, MacKay, and Sannami
[DMS].

Let Ky be the set of bounded orbits &f,. Let the real horseshoe locusR, be
the set of(a,b) € R? such that the restriction dhp to Kap is topologically conjugate to
the full 2-shift, (Xz,0). Likewise, let the complex horseshoe loct;, be the set of
(a,b) € C2 such that the restriction dfy, : C2 — C2 to K}, is topologically conjugate
to the full 2-shift, (Xm,c). Bedford and Smillie [BS] describe how distinct connected

components oH® may be connected by pathsif. Hubbard and Oberste-Vorth [Ob]
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show thatH® contains the s OV = {(a,b) € C2: |a| > 2(|b| +1)2,b # O}.

For some(ag, by) € HE, pick gy, a conjugacy fronK g, by to the full 2-shift. Now
lety(t), 0<t < 1, be a closed loop ik with basepointag, bp). Because real and com-
plex horseshoes (represented here by the full 2-shift) are structurally stablaoduces
a homotopy of conjugacids from Kz ) t0 Kg ). Thus,0(y) = @oohy o cpal defines
an automorphism of the 2-shif® sends a loop it € to an automorphism of the full shift

and depends only on the homotopy class of the I§gpSo the map
©:my(H®, (a0, b)) — Aut(oy)

given by[y(t)] — ©(y) is a well defined homomorphism. This homomorph®mrovides
a probe into the topological structure of connected componei§ of

Let HSo, be the connected componentf that contains the connected s£0V.
Hubbard [H] conjectured in 1986 that the imagerafHq,) under® is isomorphic
to the automorphism group of the full 2-shift. Recently, [BS] showed that the range of
O(tu(HSoy)) is nontrivial: fory a loop inHOV, ©(y) can be the automorphism defined
by flipping the symbols 0 and 1. Even more recently, Arai's numerical work applying
the theory of Bedford and Smillie, showed ti@tr (HS,,)) has an element of infinite
order [A]. In contrast, the automorphism group of the 2-shift, is large and complicated.
For example, it is countably infinite, residually finite, not finitely generated, it contains a
copy of every finite group, the free group on infinitely many generators, and many other
groups (but not any group with unsolvable word problem) [BLR].

Much more is understood in the analogous one-sided setting. Blanchard, Devaney,

and Keen considere§, the space of monic polynomials of degreéen the complex
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plane such that the restriction of the polynomial to its bounded orbits is conjugate to the
one-sidedfull d-shift, X[g]. They defined®q : (&) — Aut(ox[g]) as above. [BDK]
exploited the interactions between the dynamical space and the parameter space to show
that the ma®q : Tu (&) — Aut(X[g}) is surjective.

In contrast to the two sided case, the automorphism group of the one-sided 2-shift
contains only two elements. So if true, Hubbard’s conjecture would show that the param-
eter space of the complex Hem&amily is quite different than the set of monic quadratic
maps on the complex plane and would give a geometric description of the still quite mys-
terious automorphism group of the two-sided 2-shift. Apart from complex dynamics,
Question2.0.2 is natural from the viewpoint of symbolic dynamics, where a great deal of
what is understood (and what is not understood) about the automorphism group of a SFT

involves in a fundamental way the involutions [F, BF, BLR, KRW1].

2.2 Embedding Theorems and Nasu’s Masking Lemma

A map, g, from a shift of finite typeX to a shift of finite typeY is an embedding if
g is a continuous shift-commuting, one-to-one map. The following theorem of Krieger is

a fundamental result of symbolic dynamics.

Theorem 2.2.1.Let X be a shift space and Y a mixing shift of finite type. The following

are equivalent:
1. h(X) < h(Y) and there exists a shift commuting injectign,Per(X) — Per(Y).

2. There exists an embedding of X into Y as a proper subshift.
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Theoren2.2.1in particular shows the very rich nature of subsystems of a SFT with
positive entropy.
The following result of Nasu is a very useful tool which brings dynamical embed-

dings to the level of matrix presentations.

Theorem 2.2.2 (Nasu’s Masking Lemma)Let A be a matrix presentation of shift of fi-
nite type X. If X embeds into a shift of finite type Y, then there exists a matrix presentation,

B, of Y such that A is a principal submatrix of B.

(See [LM] for proofs and discussion of Theorefh&.1 and2.2.2)

Let U be an automorphism of a shift of finite typé Then letfixy (X) be the
set of points ofX that are not moved by. SinceU is a shift-commuting mapgyx
will move points fixed byJ to points fixed byJ, and therefordixy (X) is a shift space.
Additionally, fixy (X) will be a SFT becauséixy (X) is the set of all bi-infinite sequences
which can be built from the finite list of blocks of, {b € Ban1(X)[X_nn = b,U (X)o =
X0}, whereU has radius andBy,(X) is the set of allowed words of lengthin X.

Itis a natural question to ask when a shift of finite type with a shift commuting finite
group action can be embedded into another shift of finite type with a shift commuting
finite group action. It is notable that the existence of embeddings is again characterized

by entropy and periodic point structure.

Theorem 2.2.3.[L] Let X and Y be mixing shifts of finite type with involutions U and V.

Suppose the following hold:

1. h(X) < h(Y)
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2. There exists a shift commuting injectign: Per(X) — Per(Y) such thatpoU =

Vol
3. There exists an embedding of §(X) into fixy (Y).
Then there exists an embeddipgX — Y with@goU =V o @.

In an unpublished work, Lightwood [L] proved a generalization of this theorem as
a tool for a construction for embeddit#f subshifts into certaiZ? shifts of finite type.

We will use this theorem to compare involutions of a shift of finite type to involutions of
its subshifts.

Let us examine condition 2 of Theored®.3 with U andV involutions of mixing
shifts of finite typeX andY. If x € Per(X) of least perioch andx # U (x), thenU will
mapx to eithero”/z(x) or to another periodic point of least periadhot in the shift orbit
of x. A periodic pointyx, is type 1 ifU movesx to another periodic point in the-orbit of
X. A periodic point is type 2 ifJ sendsx to a periodic point that is not in the-orbit of x.

A periodic point is called type O if it is fixed by .

Standing Convention 2.2.4.Let the following be a standing convention for the rest of
the paper: A symbolic block of length, b = bgbs...b,_1, will represent a shift orbit
consisting of periodic pointg'((b)®) for 0 > i > n— 1 where(b)* refers tox, the point

of periodn with Xgn_1; = b.

Example 2.2.5.Let X be the full shift on symbol$0,1,2,3}, and letU be the involution
defined by switching the symbols 0 and 1 and fixing 2 and 3. TB&10 is mapped

to (100)* = ¢2((0110*), so (0110 is a type 1 periodic point. The poiri0111)®
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is mapped to/1000%, so (0111)” and (1000 are type 2 periodic points. The point

(2332 is mapped td2332, so (2332 is a periodic point of type O.

Letal (U) be the number of points of least shift perio¢c N) of typei (¢ {0,1,2})

with respect to the involutioly.

Proposition 2.2.6.1f U and V are involutions of shifts of finite type X and Y, then there
exists a shift commuting embeddigg Per(X) — Per(Y) with yoU =V o Y iff for all

neNandie {0,1,2}, a (V) > a,(U).

This proposition is immediately apparent and shows how the embedding of a shift
commutingZ/2 action on the periodic points of a shift of finite type is a set theoretic

property of having enough periodic points of each type in the range SFT.

2.3 Inert Automorphisms

An automorphisme, of a shift of finite type X, defines an equivalence relation on
the points ofX given by: ifx,y € X, thenx ~¢y if x andy are in the same orbit. X/¢
is the quotient space of by the relation~¢. Let 1tbe the projection oK onto the orbit
spaceX /@ that takes a poink € X to its @-orbit, [x| = {y € X|x ~¢ y}. The shift onX
induces a bijectiongy /, from X /@to X /@which will define(X /@, 0y /o) as a dynamical
system. It is well known thaX /¢ will not be conjugate to a shift space unless for some
n € N every@-orbit has cardinalityn, i.e. @ is a strictly ordem automorphism. Recall
from Section 1.4, that an automorphism on a shift of finite type is inert if it is in the kernel
of the dimension representation. Fiebig [F] gives a useful characterization of inertness in
terms of zeta functions and orbit spaces.
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Theorem 2.3.1.[F] If @is a finite order automorphism on a shift of finite type X, then

Z;(/l(p(t) = L H(t) iff @is inert.

Example 2.3.2.Let X be the full 2-shift, and let be the automorphism that switches 0
and 1. Letg be the 2-to-1 sliding block code defined b{x); = x_.i + X1 mod 2. For
X,y € X, xis in the f-orbit of y iff g(x) = g(y). SinceX/f is topologically conjugate to

g(X) and the image af is the full 2-shift, then by Theorem 3.3.1,is inert.

Let X be a shift of finite type ang be a finite order automorphism ¢h Formula
1.1 shows that the reciprocal zeta function of a shift of finite type is a polynomial. Fiebig
shows that the reciprocal zeta function of the orbit spé;%(t), is a polynomial factor
of the reciprocal zeta function of [F]. If a shift of finite type, X, has an irreducible
reciprocal zeta function, then all finite order automorphismX @ire inert since{;(l(t)

will not have polynomial factors, and thv]g/l(p(t) = L),

Example 2.3.3.Let A= [2] be the matrix representation of the full 2-shift. Sin’[g(é(t) =
1-—2t isirreducible, all finite order automorphisms ¥ are inert. In fact (see Example

5.4.1), Aut(ox,) = Z @ Inert(ox, ).

2.3.1 Cascades

A (2,n)-cascade is the union of two lengthshift orbits and one shift orbit of
length 2n for eachi € N = {1,2,...}. The base of 42, n)-cascade consists of the two
least periodh orbits and the tail of 42, n)-cascade consists of its shift orbits of length
2n,4n,...,2'n,.... A 2-cascade is &2, n)-cascade for some. If U is an involution of a

SFTX, then a(2,n)-U cascade is &, n)-cascade with a base of two type 2 lengtbhift
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orbits and a tail of one type 1 shift orbit of lengtmZor eachi e N= {1,2,...}. A2-U
cascade is &2,n)-U cascade for some. Note here that 2} cascades are 2-cascades,
so any condition involving 2-cascades will be true fod Zzascades, but as is shown in
Example2.3.5, conditions involving 2J cascades can not necessarily be weakened to

2-cascades.

Proposition 2.3.4. Suppose U is an involution of a mixing shift of finite type X, and Y is

the fixed point shift of U. Then the following are equivalent:

1. Uisinert.
-1 ~1
2. ZX/u = {x
3. Per(X)\Per(Y) is a disjoint union of 2-U cascades.

Proof:

(1) < (2) from Theoren?.3.1.

(2) = (3): Letcy be the number of type 2 shift orbits of lengthd,, be the number
of type 1 shift orbits of lengtim, and f, be the number of type 0 shift orbits of length
Let P, be the number of length shift orbits inX and letQ, be the number of length
shift orbits inX/U. ClearlyP, = ¢+ dn+ fy andQn = ¢n/2+ don + fn.

SinceZ;(/lU =, we haveP, = Qy, for eachn € N, sodan = €n/2+dh. Letn=2g

with g odd andr € Z*. Sinced, = 0 for g odd, we have by induction anthat

dn - = S Ck
22,
Therefore type 1 length shift orbits can be put in bijective correspondence with

pairs of type 2 shift orbits of shorter lengktsuch thain/k = 2' for i > 0. It follows that
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Per(X)\Per(Y) is a disjoint union of 2J cascades.
(3) = (2): LetPer(X)\Per(Y) be a disjoint union of 2J cascades, and le}, dp,
and f, be defined as above. Then by the cascade decompositier(f)\Per(Y), there
are exactly as many type 1 length shift orbits as there are lower cascades, i.e. for each

neN,d,= %chk wheren/k = 2 with i > 0. Note that this impliesl, = dn+°—2”. So
Qn:Cn/2+d2n+fn:Cn/2+(Cn/2+dn)+fn:Cn+dn—|—fn:Pn

and thui;/lu =t o

2 4
Example 2.3.5.1f A= , then ZgAl(t) = (1—6t)(1+2t). By Theorem2.3.4,

4 2
Per(Xa) is the disjoint union of 2-cascades becaXgéas a fixed point free simple (inert)

involution. Xa also has a fixed point free involutio@, given by switching the vertices of

the graphGa. @ will not be inert sinceZ;Al/(p(t) =16t # L (1) = (1—6t)(1+21).

This example shows that condition (3) of PropositidB.4 can not be weakened to
Per(X)\Per(Y) is a disjoint union of 2-cascades and displays the difference between 2-

cascades and@-cascades.

2.4 SSE classes of Fixed Point Sets

First we present a useful lemma from [BFK]:

Lemma 2.4.1.Let@be a finite order automorphism of a shift of finite type Xhen there
exists a B such thatXis conjugate to X and @ is defined by a graph automorphism of

Gg.
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Proof: LetPa be the partition oXa by the symbol in the zero coordinate, and let
P’ = Viez@ (Pa). P’ is a finite clopen partition oKa and if B € P/, then@(P) = P,
for some j. Eachx € X corresponds to a point € (P')Z where(X)n = R, for a"(x) €
P. Clearly, (Xa,04) and (X’,0) are conjugate. LeXg be a higher block presentation
of X’ such thatXg is a one-step shift of finite type. Thepmwill act on Xg as a graph
automorphismt

We now present and discuss the following result addressing Questién

Theorem 2.4.2.Let f be an inert automorphism of a mixing shift of finite type X, with
fix; (X) CY whereY is a f-invariant subshift of finite type in X. Suppdse fd, with
n > 2 and n minimal. If the restriction of f to Y is inert, then Y can be realized as a fixed

point shift of a finite order automorphism,on X, whergp” = id and n is minimal.

Proof of Theoren?.4.2:

By Lemma2.4.1, we may assume that has a graph presentaticBy, such thatf
is a one block map defined by a graph automorphis@ygfwhich we will also refer to as
f. LetY be defined by, a finite set of forbidden lengthblocks fromX. Let XX be the
k-block presentation ok and note thaf will still act as a graph automorphism G x -
Y will be presented byy, a subgraph oGy that does not contain vertices defined by
word inF and f will act onY as a graph automorphism Gf,. Let the image undef of
an edgea in Gy be denoted as, and the image of a vertébe denoted.

Sincef isinert onY, we fixN € N such that for and|, vertices oGy, there are the
same number of paths of lengthin Gy from j toi as there are paths of lengthfrom |

toi in Gy. Letg;, be a bijection from the set of paths of lengihin Gy from j toi to the
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set of paths of lengthl in Gy from jtoi. Similarly, leth; ; be a bijection from the set of
paths of lengtiN in Gy from j to i to the set of paths of lengd in Gy from j_to i. We
choose these bijections such thaiyif..., ik is a simple cycle of vertices under the action
of U, then for allj gji, o ... o gji, = id andhj,jo...ohjj; =id.

We definep on X by the following rules:
1. If Xj_n,i+n) IS @ path inGy, then@(x)i = x;.

2. If Xj_nj+N—1) IS @ path inGy andX;n is an edge not iGy, then®(X) i n-1 =

9j k(Xjii+n—1), for j the initial vertex and k the terminal vertex ®f i n_1;-

3. If Xj_n—g+n) IS @ path inGy andx—n is an edge not itGy, then®(X)i_n1] =

hj k(Xi—n+1,]), for j the initial vertex and k the terminal vertex ®f_n.1)-
4. Otherwise@(x); = f(X);.

@is well defined by the preceding rules since each rule applies to a different disjoint
set of paths ifGx. Note that; j; is aGy path iff @(x);; j; is aGy path andp(x) = X <=X¢&
Y since paths irGy are the only paths fixed byg. Consequentlyp™ = id, and@ is an

automorphism oK with fixed point shifty. O

Corollary 2.4.3. Let f be the flip map on the full 2-shift, X, that switches the symbols 0
and 1. If fisinerton a f-invariant SFTY in X, thenY can be realized as the fixed point

set of an involution of X.
Corollary2.4.3 raises two questions:

Question 2.4.4.1f Y is the fixed point shift of an inert involution of X, the 2-shift, is Y
conjugate to a subshift of finite type in X on which the flip map, f, is inert?
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Question 2.4.5.For Y a subshift of finite type of X, and ¥\ Per(Y) a disjoint union

of 2-cascades, when does there exist an inert involution, g, of X such(¥atgy ?

We will show in Example.4.6 that the answer to Questi@v.4 is no. In particular,
this shows that Corollarg.4.3 is not enough to characterize the fixed point shifts of inert
involutions of the 2-shift. The main result of Chapter 4 shows that the answer to Question

2.4.5isyes upto SE.

Example 2.4.6. There exists a fixed point shif¥;, of an inert involution on the 2-shift

such that the flip map is not inert on any subshift conjuga to

Note that the flip map on the 2-shift has an empty fixed point shift. There are 240
points of least period 8 in the full 2-shift which correspond to 30 length 8 shift orbits.
Choose some pairing of these length 8 orbits, and choose higher length orbits such that
the 30 length 8 shift orbits are the bases of 15 (2,8)-cascades. For each (2,8)-cascade
there exists an inert involution on the points in the cascade which moves all points in the
cascade. If we consider the disjoint union of the 15 (2,8)-cascades each with an inert fixed
point free involution and the identity map on the poit®* and(1)®, then we have an
inert involution on the subsystem of the 2-shift which contains only the 15 (2,8)-cascades
and the pointg0)” and (1)®. The results of [BF] will give an inert involution of the
2-shift, g, which moves all points in the 15 (2,8)-cascades and fixes the p@j)itsand
(1)®. If Y is the fixed point shift ofg, thenY contains the point0)* and contains no
orbits of length 8. Thug0)® can not be in a (2,1)-cascade, ahavill not be inert onY
by Theoren.3.4. O

Note that the last example shows tha®ér(X) andPer(X)\Per(Y) are the disjoint
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unions of 2-cascades, this does not meanReg(lY) is the disjoint union of 2-cascades.

In the absence of an involution, the following question arises from The@rémh

Question 2.4.7.LetY be a SFT in a mixing shift of finite type X such thatRexPer(Y)
is the disjoint union of 2-cascades. Can Y be realized as the fixed point shift of an inert

involution on X?

By Proposition2.3.4, the cascade condition of Questi@nl.7 is necessary fov
to be the fixed point shift of an involution ak. We will comment more on the central
nature of the cascade condition in the latter part of Section 3.4.2. In section 3.3, we saw
the answer to Questiah4.7 is yes for certain subshifts of the full 2-shift. In Chapter 4,
we show that the cascade condition of QuesHah? is sufficient to realizef as the fixed

point shift of an involution ofX’, whereX' is shift equivalent to the 2-shift.

2.4.1 Inert Automorphism Constructions

An important tool in the manipulation of inert automorphisms has been the Inert

Extension Theorem of Kim and Roush [KR2]. We will use the following special case.

Theorem 2.4.8.[KR3] Let X and Y be shifts of finite type with Y a subshift of X. If U
is an inert automorphism of Y such that"= id, then U can be extended to an inert

automorphismV on X such that\~ id.

Proof: By Lemma2.4.1, we may assume thathas a graph presentatid@y, with
adjacency matriXA such thatJ is a one block map defined by a graph automorphism of
Gy, which we will also refer to all. Nasu's Masking Lemma (Lemma 3.1.2) gives a
matrix presentation fok, and thus a graph presentationXafGy, such thalGy appears
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as a subgraph d@by. Let the image undeay of an edge< and vertex (of Gy) be denoted
by x andi, respectively. Sinc# is inert onY, we may fixN € N such that for and j,
vertices ofGy, there are the same number of paths of lemgih Gy from j toi as there
are paths of lengtN from j toi in Gy. Letgji be a bijection from the set of paths of length
N in Gy from j toi to the set of paths of length in Gy from j to i Similarly, leth;i be

a bijection from the set of paths of lengthin Gy from j toi to the set of paths of length
N in Gy from j_to i. We choose these bijections such that jf..,ix is a simple cycle of
vertices under the action &, then for allj gji, o... o gji, = id andhj,jo...ohj,j =id.

We defineV on X as the extension @ by the following rules:
1. If Xj_n,i+n) IS @ path inGy, thenV (x)i = U (x);.

2. If Xji_nji4n—1) IS @ path inGy andx;;\ is an edge not itGy, thenV (X)jj i n_1 =

dj k(Xji+N—1)), for j the initial vertex and k the terminal vertex ®f; n_y;-

3. If Xj_n-—1i4n] IS @ path inGy andx;—n is an edge not iGy, thenV (X)i_ni1] =

hj k(Xi—N+1,]), for j the initial vertex and k the terminal vertex ®f_n.1-
4. OtherwiseV (X)j =X;.

V is well defined by the preceding rules since each rule applies to a different disjoint
set of paths irGx. Note thatx; ;) is aGy path iff V(x); j is aGy path. Consequently,
the assumptiotd™ = id and the cycle conditions on the choicegggfandh;; imply that
VM =id. ClearlyV is an automorphism of which is an extension df onY. O

In Section 3.3, we used a similar argument to realize some subshifts as a fixed point

shift of finite order inert automorphisms. Note here that the fixed point shit wfill
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usually be larger than the the fixed point setof

We pause now to give some background on the role of cascade conditions in the
construction and extension of finite order inert automorphisms.

Boyle and Fiebig [BF] characterize when automorphisms on finite subsystems of a
shift of finite type X, can be extended to a product of inert, finite order automorphisms on
X. The complete characterization is quite complicated, but for automorphisms with order
a power of a primep, this extension is predicated on the existence-chscades. Boyle
and Fiebig create a set of model systems with inert automorphisms that mimic the action
of (p,n)-cascades and use Krieger's Embedding Theorem (The@r2d) to show the
existence of a subshift with the given action on the finite subsyste(p,of-cascades.

The Inert Extension Theoren2.4.8) is then used to extend the inert automorphism on
the embedded model systemXo

Kim, Roush, and Wagoner [KRW1, KRW2] later gave a complete description of the
action of inert automorphisms on finite subsystems of a mixing shift of finite type. KRW
used the strategy of BF, except that their extremely complicated construction of model
subsystems involved the “positive K-theory” method of polynomial matrix operations
discussed in Section 4.1. The actions of compositions of finite order inert automorphisms
on finite subsystems of a mixing SETrealize the actions of all inert automorphisms on
these finite subsystems, up to finitely many obstructions arising from low order periodic

points.
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2.5 Computability of 2-Cascade Condition

In this section we will discuss the related conditions of cascades, zeta functions, and
matrix traces. In PropositioR.5.1, we give a hierarchy of conditions involving cascade
decompositions, zeta functions, and the traces of presenting matrices. In Proposition
2.5.3, we give a criterion for wheRer(X)\Per(Y) is the disjoint union of 2-cascades, and
Proposition2.5.5 shows that ifZ;(l(t) =1 mod 2 then the procedure given in Procedure
2.5.4is decidable in a finite number of steps.

Consider the following four conditions onnex n non-negative integral matrix:
1. Per(Xa) is the disjoint union of 2-cascades
2. det(ld —tA) =1 mod 2
3. Ais nilpotent mod 2
4. operatornametrA= 0 mod 2vn
Note that condition 2 is the same as sayfrg(t) = 1 mod 2 by Formuld..1.

Proposition 2.5.1. The conditions above satisfy the implications£1)2) < (3) = (4)

and (2)7 (1), (4) 7 (3)

Proof: (2)< (3): SupposeA is ak x k matrix. Then defid —tA) = t*xa(t™1),
wherexa(t) is the characteristic polynomial & The matrixA, considered with its mod
2 entries lying in the field/2, hasxa(t) = tXiff Ais nilpotent.

(1) = (2): Supposéder(Xa) is the disjoint union of 2-cascadeé;1(t) =y(1—

tlY), where the product is taken over all finite shift orbitsXrand|y| denotes the length
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of the shift orbity. The product of terms in &2,n)-cascade is given byl —t")?(1 —
t°M)(1—t%")-.., which is 1 mod 2. Sincer(Xa) is the disjoint union of 2-cascades, the
zeta function ofXa will be 1 mod 2.

(3) = (4): If a k x k matrix, A, is nilpotent mod 2, then all of the coefficients,
except for the term, of the characteristic polynomial 8fare 0 mod 2. The trace of
A is the coefficient of th& — 1 degree term of the characteristic polynomial, and o if
is nilpotent mod 2 then the trace Afis 0 mod 2. Also ifA is nilpotent mod 2, then all

powers ofA are nilpotent mod 2, and thus all powersfofiave trace that is 0 mod 2.

1100

0110
(2)% (1): LetA= , thendet(ld —tA) = —4t3+6t> — 4t + 1 =1 mod

0011

1001
2 butXa has 4 points of least period 1 and no points of least period PegiXa) cannot

be the disjoint union of 2-cascades.

10
4) % (3): If A= , then for alln € N, tr(A") =2 =0 mod 2, butA is not

01
nilpotent mod 20

Proposition2.5.1 shows that the decomposition of periodic points into 2-cascades
is a stronger condition than the mod 2 zeta function can capture. We devote the rest of
this section to deciding (in the case we need) when a collection of periodic points is the

disjoint union of 2-cascades.

Lemma 2.5.2.Let Y be a SFT in SFT X. If PeX)\Per(Y) is the disjoint union of 2-

cascades, thegy (t) = ¢, 1(t) mod 2.
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Proof of Lemma2.5.2: Z;}(t) = ,(1—tM), where the product is taken over all

finite shift orbits inX and|y| denotes the length of the shift orlit{; 1 (t) = Myeper(y) (1—

t¥) Myeperox\perty) (1 —tM) = T (t) Myeperx)\pery) (1 — tV). If Per(X)\Per(Y) is the
disjoint union of 2-cascades, thq‘rpyeper(x)\per(y)(l—t|V|) is the product of series of
the form (1 —t")?(1—t2")(1—1t4")... which correspond t¢2, n)-cascades. Singd —
tM2(1—t2")(1—t4)- .. = 1 mod 2, therf]ycperx)\perty) (1 —tM) = 1 mod 2 and; (t) =

&, H(t)mod 20

2.5.1 Decision Procedure

Let X be a mixing SFT with subshift of finite typé, such thaf;1(t) = ¢, *(t) mod
2. LetPR, be the number of points of least perindh Per(X)\Per(Y). We defineD,, with

ne N={12 ..}, recursively according to the following rules:
1. Dgq =0 for all g odd.
2. FornevenPp =Dy 2+ Ry 2.
Note that fom = 2"q with g odd andr > 1, it follows by induction on r that
r—-1
Dn = Z) P2|q
i=
Proposition 2.5.3. Let R, and D, be as in the previous paragraph. Defing € P, —

Dn. Then Pe(X)\Per(Y) is the disjoint union of 2-cascades vn € N, the following

conditions hold:
1. (Parity condition) G, is divisible by2" ™ for n = 2"q with q odd.

2. (Quantity condition) @ is non-negative.
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Moreover, G = P, — 51 Pyiq for n=2'q with g odd.

Proof: =: AssumePer(X)\Per(Y) is the disjoint union of 2-cascades and &gt
be the number of2,n)-cascades ifPer(X)\Per(Y). Forn = 2"q with g odd, letb, =
2{;&a2iq and note thab, is the number of length shift orbits in(2,k)-cascades where
n/k= 2! fori > 0. Also note thaby, = b, +a, and forq odd,bg = 0. By the assumption,
P, = 2na, + nby.

We would like to show that'n € N, C, = 2nay andD,, = nb,. Forn odd, D =
0 = nb, andP, = 2na, = C,,. Assume that for alin < n thatC,, = 2may,, andDpy, = mby,.
ThenDyp = Dp+ Py = 2D + G = 2nby + 2na, = 2n(an + bp) = 2nbp, andCyp = Pop —
Don = 2(2n)agn + (2n)bon — 2nbpn = 2(2n)ag,. So by inductionyn € N, C, = 2na, and
Dy = nb,. The Parity and Quantity conditions are satisfied becayse a non-negative
integer for alln € N andC,, = 2na,.

<: Assume that the Parity and Quantity conditions hefde N, and letP, be
the number of least period points inPer(X)\Per(Y). Per(X)\Per(Y) is the disjoint
union of 2-cascades iff there exists non-negative integgrsich that fom = 2"q with

g odd, Py, = 2na, + nx z{;gazi If we let a, = % then by the Parity and Quantity

q-
conditions,a, will be a non-negative integer. It remains to show thatrfer 2'q with g
odd,P, = 2na, +nx* z{;& Qig which we will prove by induction on.

Forn odd, P, = C, = 2na,. Assume that fon = 2"q with q odd, R, = 2na, + nx
Y1 -0 @iq. Then for

Pon =Con+Don=Con+Dn+ Py =Con+2Dn +C, =

2(2n)agn + (2n) * 3 _J apiq + 2nan = 2(2n)azn + (2n) T{_oaviq
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And so by induction om, for n= 2"qwith q odd, Py = 2na, + Ny g aiq. O
Propositior2.5.3 gives criterion but not yet a finite procedure to decideeif(X)\ Per(Y)

is the disjoint union of 2-cascades.

Procedure 2.5.4.Procedure for deciding wheer(X)\Per(Y) is the disjoint union of

2-cascades:
1. 1F ZH(t) # 21 (t) mod 2 therPer(X)\Per(Y) is not the disjoint union of 2-cascades.

2. ComputeC, for all n € N recursively using the formul&, = P, — z{;& Poiq for

n = 2"qwith g odd.

3. If G, satisfies the Parity and Quantity conditions of Proposificin3 for all n € N,

thenPer(X)\Per(Y) is the disjoint union of 2-cascades.

Proposition 2.5.5. Let X be a mixing shift of finite type such that X has positive entropy
andz;(l(t) =1mod 2. GivenY, a proper subshift of finite type in X, the procedure given
by Procedure2.5.4 will determine if Pe(X)\Per(Y) is the disjoint union of 2-cascades in

a finite number of steps.

If Z;(l(t) =1mod 2, then Lemm2a.5.2 shows that ifY is a SFT inX andPer(X)\Per(Y)
is the disjoint union of 2-cascades, thgrt(t) = 1 mod 2.

Proof for Parity Condition:

Let Y be a subshift of finite type ixX with Z;l(t) =1 mod 2. LetA andB be
matrices ovefZthat presenX andY. By Proposition2.5.1, A andB will be nilpotent

mod 2. Letl be the minimum positive integer such ti#tandB' have all entries divisible
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by 2, then ttA') and t(B') are divisible by 2. Letx| denote the largest integer that is
less than or equal we R.

Clearly 2!l divides t(A"), and there existl € N such that for alh > N, |n/I | >
logz2(n) + 2 sincen/| is bounded below by a linear function nfand will eventually be
larger tharlogp(n) + 2. So for alln > N, A" andB" are divisible by 272 and thus tfA")
and t(B") are divisible by 272, wheren = 2" x g for g odd.

The number of least periaa points inPer(X)\Per(Y) is equal to ts(A) — try(B),

where then-th net trace is given by#tA) = Y g u(g)tr(Ad) andpis the Mobius function,

(

(—1)" if mis the product of distinct primes
H(m) = 0 If mcontains a square factor

1 ifm=1

SinceCy = Pn— 3|3 Paig, it follows that

r—1 r-1
Ch=[trh(A) — ) tig(A)]—[tra(B) — ) triy(B
n = [tr(A) i;) 2g(A)] —[tra(B) i;2q<)]
Applying the net trace formula and simplifying, for= 2" x q with q odd, we get
Cn= ? W(S)[tr(AZ9/S) — 2tr(AZ9/S) — tr(BZU/S) 1 2tr(BZ /%) (2.1)
sid

Case 1: Fon = 2" xq > N with g odd, if all non-zero terms in Formula1 are
tr(A) for i > N, then 2+1 divides all terms and"2* dividesC.

Case 2. Lefj= ptll...pﬂ‘ with eachp; prime. If p; is a prime greater than N with
t > 2, then all terms in Formul&.1 will have tr(A') for i > N because eitheq/s is
divisible by p; or p(s) = 0.

Case 3: Ifpj > N andtj = 1, thenn= 2"p;d’ and
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Cn = Fgq H(S)[tr(AZ PA/S) — 2tr(AZ " PIA/S) — [tr(AZA/S) 4 2tr(AZ0/9)]
—tr(BZ PiA/S) — 2tr(BZ'PA/S) — [tr(BZU/S) 4 2tr(BZ /S]]

All of the terms involvingp; will be tr(A') for i > N and 2+ will divide those
terms, saC, will be divisible by 21 iff the sum of the remaining terms will be divisible
by 2+1. A careful examination of the terms that remains yields:

S H(S)[—tr(AZV/S) - 24r(AZ 9/%) 1 tr(BXV/) — 21r(BF V/%)] = —Cprg
slof

By iterating the argument for Cases 2 and 3, we have reduced our problem to ver-
ifying C, satisfies the Parity Condition whencontains only primes less thah If a is
the product of all primes less thah then forn > a2 andn divisible only by primes less
thanN, all non-zero terms in Formul2 1 will be tr(A") for i > N becauses will be at
mosta and 2q/s> a > N.

This shows that if the Parity condition is true uprte- a2, then the Parity condition
will be satisfied for alh € N.

Quantity Condition:

Dy, will grow as n(\/)\_n — \/)\_Bn) whereasP, grows as\j —A]. This means that
at some finite M, for alh > M, B, will be much larger tha,,, and thus the Quantity
condition will be satisfied.

So, if L is the maximum ofi? and M, then it only needs to be checked tlat

satisfies the Parity and Quantity conditionsiior L. O.
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Chapter 3

SE classes of Fixed Point Sets
The purpose of this chapter is to answer Smillie’s Quesdh ) up to shift equiv-

alence. The main result of this chapter is

Theorem 3.0.6.For a shift of finite type Y, contained in the full 2-shift, X, the following

are equivalent:
1. Per(X)\Per(Y) is the disjoint union of 2-cascades.

2. Y is the fixed point shift of an involution on a mixing shift of finite type which is SE

to X.

Note that Condition (1) of Theore® 2.1 is decidable in a finite number of steps
by Proposition2.5.5. We also note that it is unknown (since 1974 [Wil]) whether a SFT
which is SE to the 2-shift must be topologically conjugate to the 2-shift. The proof of our
main result relies heavily on the use of polynomial matrix presentations of shifts of finite
type and positive elementary matrix operations that produce presentations of conjugate
SFTs as discussed in Section 4.1. Section 4.2 is dedicated to the proof of the main result
and a discussion of its usefulness. In Section 4.2.2, we remark on some generalizations

of the main result.
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3.1 Path Presentations and Polynomial Matrices

Section 1.1 describes how shifts of finite type are presented as edge shifts by square

matrices oveZ™. Square matrices ovéZ " [t] can also present a shift of finite type, as

0 t2+t

can be understood from an example. Giver , We associate té the
3 2

following directed graphga.

—
7

The graphGa is constructed as follows. Since A is 2 by 2, we begin with two ver-
tices (the dark vertices of the above graph). These “essential’vertices will be the indices
of the rows ofA. For each monomial tern, in the Ajj entry, we add a path of length k
fromi to j. For each path of length k, we a#td- 1 "nonessential” vertices to build the
path. A “nonessential’vertex has exactly one incoming and exactly one outgoing edge.
LetB be the 5 by 5 adjacency matrix of the graghh We regardA as a presentation of the
SFT Xg. As can be seen from this example, matrices oZetjt] and the corresponding
path construction allow for a more compact presentations of graphs.

If B is a non-negative integer matrix, th€n= tB andB define the same directed
graph. For a matriyA overtZ*|[t], the conversion from a path presentation to an edge pre-
sentation involves building the directed graph by the path construction and then creating

the adjacency matrix of this graph. We can convert edge presentations to path presenta-
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tions and vice versa as is convenient. Ketdenote the shift of finite type defined By a
matrix over eithetZ* [t] or Z*. ForB a matrix ovetZ* [t], let B* be the adjacency matrix

of the graphgg and note thakg andXg; are the same SFT.

3.1.1 Constructions Using Polynomial Matrices

Several constructions using polynomial matrices and the path construction have
been useful over the past 15 years. In this section, we will discuss how elementary matrix
operations on polynomial matrices can be used to describe conjugacies between shifts of
finite type, and how elementary positive operations can also be used to recode a polyno-
mial matrix into convenient forms.

Let A be a nonnegative polynomial matrix that is indexed by2, ...} and has finite
support, i.e. there are finitely many non-zero entries. Constructing SFTs using matrices
from this infinite setting allows us to use the following tools to compare polynomial matri-
ces of different sizes. For polynomiadgndy, we definex >y to mean thay —x € Z*|t].

Let Ejj(x) be the matrix that is the identity matrix (also indexed oM@rexcept for the

(i,)) (i # j) entry which is a polynomiat overZ*|t].

Standing Convention 3.1.1.When we refer to finite square polynomial matrices we
mean that the matrix is actually embedded into the upper left corner of a matrix indexed
by N. In many cases we will be dealing with matrices of fixed size but in all generality

these matrices will sit principally inside the infinite matrices described above.

Theorem 3.1.2.[KRW, BW] For A,B square matrices oveZt|[t], suppose that ld- B =

[Eij(x)(Id —A)] or Id — B = [(Id — A)Ejj(x)] with xe Z"[t] such that x< Ajj. Then B
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defines a polynomial matrix such that ¥ conjugate to X.

Multiplications byE;; are called positive or elementary operations if they produce

a presentation of a conjugate shift of finite type as in Thed@dn?2.

0 t+t?
For example, ifA = andx=t2 < Aq o, then

3 2
1 —t-—t? 1 t?
[1d —AJE21(x) = =
—t3 1-2t 01
1 —t 0 t
= [Id — B], whereB =
3 1-2—t5 2 2t+t°
SoA andB present conjugate shifts of finite type by Theorgm?2. A positive operation

on a matrixA corresponds to deleting a path in the directed graph and adding paths that
are the deleted path concatenated with either the predecessor or follower paths. In the

example aboves corresponds to the dashed path in

The graph,Gg is created by deleting the dashed path and adding paths which are
the concatenation of predecessor paths and the dotted path. In this example, we delete the
length 2 dashed path and add a path of length 5 which is the concatenation of the length
3 path going from the second dark vertex to the first dark vertex and the length 2 dotted

path from the previous graph. Thdg is
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Let us note that it is possible to define a shift of finite type with a matrix A over
Z*|t], if A satisfies the No Zero Cycle (NZC) Condition. The NZC says that there are
no closed loops in the corresponding directed graph that are traveled in zero time. This
generality is not needed for the constructions used in Section 4.2, where we will only
need polynomial matrices to be ow# " [t]. The more general constructions involving
NZC are necessary for the following theorems of Boyle and Wagoner (which we will not

need but demonstrate the fundamental nature of positive operations).

Theorem 3.1.3 (Classification Theorem)Suppose A and B are matrices OVET [t]

satisfying the NZC, then the following are equivalent:
1. Xa and X are topologically conjugate

2. There is a sequence of positive row and column operations&vgf from [Id — A]

to [Id — B]

Theorem 3.1.4 (Conjugacy Theorem).Every topological conjugacy frortXa,oa) to
(Xg,0B) arises from some sequence of positive row and column operationsZoVer

from[ld — A to [Id — B].

0 t+t2
Let us return to the example given above whére- and B =

t3 2
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0 t
. Note that when we multiplyld — A] by an elementary matrix corre-

t3 2t 4t°
sponding to a positive operatiohd — B| has a higher order term in the 2,2 position. The

multiplication of the elementary matrices allows us to clear a low order off-diagonal term
at the price of adding higher order terms.

A clearing process (or procedure) is a sequence of positive polynomial operations
on a polynomial matrix such that all terms of degree less than somedixed cleared
from all off-diagonal entries. Note here that after applying a clearing process to a matrix,
all terms of degree less thahare removed from the off-diagonal entries, but there may
be terms of degree less than d on the diagonal. For arbiratys impossible to remove
all terms of degree less tharsince periodic points of period less thadugan only be built
from such terms. Clearing processes enable us to deal with the structure of low order
periodic points and higher length paths separately. This is a useful technique to exploit
if we wish to extend some property from finite collections of periodic points to the entire
shift of finite type. This technique is analogous to more traditional methods of coding
between shift of finite types like the marker construction. For example, Kim and Roush
used a clearing process to prove theifold covering theorem, for which the following

theorem is a special case and will be used in proving The@&rh.

Theorem 3.1.5.[KR3] Let X be a mixing shift of finite type with Ré&t) a disjoint union
of 2-cascades. Given a matrix tD ovét[t] presenting X, there exist positive elementary
operations from tD tdtA; +tAy], where tA and tA are matrices overZ ™ [t] and [tA; —

tAy] is nilpotent.
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3.2 Fixed Point Shifts of Involutions up to SE

The following theorem will answer Smillie’s Questi@D.3 and Questior2.4.7 up

to shift equivalence.

Theorem 3.2.1.For a shift of finite type Y, contained in the full 2-shift, X, the following

are equivalent:

1. Per(X)\Per(Y) is the disjoint union of 2-cascades.

2. Y is the fixed point shift of an involution on a mixing shift of finite type which is SE

to X.

The proof of Theoren8.2.1 relies on Theoren3.1.5 and the following lemma,

which will be proven in the next section.

Lemma 3.2.2.Let X be the 2-shift and let F be a non-negative integer matrix presentation

of a subshift Y, where PEX)\Per(Y) is the disjoint union of 2-cascades. Then there exists

tM 2tB
a polynomial matrix A overZ ™ [t], where A= , Per(Xgy ) is the disjoint union

tC tF
of 2-cascades, andp{s conjugate to X.

Proof of Theoren8.2.1: Let X be the 2-shift an be a subshift of finite type iX

with F a presentation of such thatPer(X)\Per(Y) is the disjoint union of 2-cascades.

tM  2tB
Applying Lemma3.2.2, we have a polynomial matrid = , whereF is a

tC tF
non-negative integer matrix presentation of the subshieY( Xy ) is the disjoint union

of 2-cascades, anda is conjugate to the 2-shift. Applying Theore3rl.5 to Xy, we
get a sequence of positive polynomial operations ffov] to [tA; +tAy], wheretA; and
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tA, are matrices ovetZ™[t] andtA; —tA; is nilpotent, and these operations will also

t(Al4+A2) 2tB
be positive operations fro to . These positive operations will not

tC’ tF
change theF block or the even nature of the upper right block since they will correspond

to adding a multiple of one of the firgtrows or columns to another of the firstows or

columns, wheréM isnx n.

tM  2tB t(Al+A2) 2tB
So by Theoren8.1.2, A= and present conjugate
tC tF tC’ tF
SFTs.
t(A1+A2) 2tB'
If D1 = , then letgp, be the directed graph defined Dy. Let

tC/ tF
Gp, be the graph created frofb, as follows. For each monomial term of the foat'f in

Ajj, with Aj; from either of the upper blocks @fy, we replace the correspondiagaths of
lengthk fromi to j with a single path of lengtk— 1 fromi to a nonessential vertex aad
edges from this nonessential vertexX t&e letD, be the adjacency matrix @fp,. Xa and

Xp, are conjugate shifts of finite type because there is an obvious bijective correspondence

between bi-infinite paths iGp, and Gp,. The nonnegative integral matrB; will also
Al +A; 2B*
have the form , WwhereA] — A’ is nilpotent.
C* F
Al +AS 0 2B*

D2 will be SE overZ to D3 = A5 AL-Ay, —B becausé\; — A is nilpo-

Cr 0 F
tent and thus for large enoughD'3_differ from D, by conjhgation with a permutation

matrix (Theoreml.3.4).
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A A B
Also, D3 is SE overZ to D4 = A5 A B becausd®, = RSandD3 = SRfor

crC F

integral matrices

Id 1d 0| |Aj+A; 0 28| [ild I1d O

RSY=1]]0 —-1d 0|,| -Ay A;—A; —B*| |0 —Id O

0O 0 |Id C* 0 F 0O o0 1Id
So D, is SE overZ to Dg4, and by Theorenmi..3.5, D, is also SE ovefZ™to Dy
because they both present mixing shifts of finite type. Becafise SSE ovelZ*(thus
SE overZ™") to D, and D, is SE overZ'to Da, A' andDy4 are SE ovelZt. If we let

D4 presentX’ and A’ is n x n, thenX’ is SE toXa over Z*and X’ has an obvious inert

involution ¢, defined by switching the first vertices with the secona vertices. Clearly

Xk =Y will be the fixed point shift ofp. O

3.2.1 Proof of Lemm&.2.2

We begin the proof of Lemma 2.2 with the following lemma.

Lemma 3.2.3.Let X be the 2-shift and let F be a non-negative integer matrix presentation

of a subshift Y, where PeX)\Per(Y) is the disjoint union of 2-cascades. Then for all suf-

tM 2tMB’
ficiently large m, there exists a polynomial matrix A ov&r {t], where A= ,

tC tF
such that X is conjugate to the full 2-shift and B non-negative integral matrix.

Proof: LetF be some non-negative integer matrix presentin@@y Lemmaz2.5.2,
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Y will have zeta function equal to 1 mod 2 and by Propositddnl, F will be nilpotent

mod 2. Thus for large, F" will have entries a multiple of 2.

M B
By Nasu’s Masking Lemma.2.2, there exists a matrix ov&, A= such
C F
tM tB
thatXa is conjugate tX. We will consider the polynomial presentatipph] =
tC tF

By TheoremB.1.2, if Ejj (Aj)[ld —tA] = [Id —tA'], thentA’ presents a shift of finite
type that is conjugate to X. If we multipljfd —tA] on the left by an elementary matrix
for each entry in the upper right blodiB, then
For1<i<nandn+1< j<n+kwhere Mis anx nmatrix and F is & x k matrix,

Mij Eqi.j) (tAGj))[1d —tA] =
Id tB

ld —tA] =
0 Id

Id tB| |ld—-tM —tB

0 Id —tC ID-tF

Id —tM —t°BC —t?BF

—tC Id—tF

tM +t?BC  t°BF
The matricegtA] and present conjugate shifts of finite type
tC tF
Id
by TheorenB3.1.2. We call multiplying on the left by clearing the upper right
0 Id

block when * is the matrix in the upper right block. If we iterate clearing the upper right
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tM’ t™HIBFE™
block of [tA] mtimes, the resulting polynomial presentation|is , Where

tC tF
tM’ contains mixed degree polynomial terms. But siRde nilpotent mod 2, we have for

large enougm, —t™1BF™M = —2t™1B’ for some non-negative integer matgk O

The remainder of this section is devoted to showing that for large emaquide

tM  2tMB’
presentation from LemmaZ2.3, A= presents a mixing shift of finite type
tC tF

which is conjugate to the 2-shift and for whidter(Xyy,) is the disjoint union of 2-

cascades.

tM  2tMB’
Proposition 3.2.4.1f X is presented by polynomial matrix-A and T=
tC tF

Per(Xa)\{Per(Xgm;) UPer(Xg)}, then T is the disjoint union of 2-cascades.

The setT is the subset of periodic points in the complemenPef(Xg) that are
not in Per(Xyvy). P = Per(Xa)\Per(Xg) will be the disjoint union of 2-cascades by the
hypothesis of the Lemma2.2.

Proof: Recall from Definitiorl.4.1, that the group of simple automorphisms is the
subgroup of inert automorphisms that are generated by automorphisdasadfich are
conjugate to a graph automorphism that fixes the all verticesylbet a pairing of paths
corresponding to terms in the upper right blockAofi.e. for eachx, a path of lengthm
fromi to j that corresponds to a term in the upper right block, we associatariother
path of lengthm fromi to | (which correspond to another term of the same power in the
same entry of the upper right blocka has a simple involution defined by flipping paths

according tap andT is exactly the set of periodic points moved by this involution. So by
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Theorem2.3.4, T must be the disjoint union of 2-cascades.

Proposition 3.2.5.Let B and B be collections of periodic points of a SFT X such that
P, and B are the disjoint union of 2-cascades angd®P;. If c, is the number of2, n)-
cascades in R d, is the number of2, n)-cascades in £ and ¢, > d, for all n € N, then

P\ P is the disjoint union of 2-cascades.

This proposition is immediately clear sinBg\P, will be the disjoint union of the

remainingc, — dn (2— n)-cascades for alt € N .

tM  2tMB
Lemma 3.2.6. Let A be a polynomial matrix ovefZt"[t], where A= :
tC tF

such that X is conjugate to the full 2-shift, PEXa)\Per(Xg) is the disjoint union of 2-
cascades, and’B.non-negative integral matrix. LetF Per(Xa)\{Per(Xj) UPer(Xg ) }
and P= Per(Xa)\Per(Xg). There exists an N N such that for all n=> N, ¢, > dj for
all n € N where g is the number of2, n)-cascades in P, and,ds the number of2, n)-

cascadesinT.

Proof: Letp, be the number of points of perigdnot necessarily least periogi in
P, a, be the number of points of periadin P that are not least periad thenp, — a, is
the number of least periaalpoints inP. If by, is the number of least periadpoints inP
that are in(2,k)-cascades fan/k = 2 with i > 0, thennxc, = p,— a, — by because each
least perioch point in P is either in a(2,n)-cascade or in a lower cascade. lfgbe the

number of points of least periadin Xg.

tM  2tMB’
Given the presentatioh= , the Spectral Radius Theorem bounds the
tC tF

number of allowed blocks of lengthin Xa betweerCy (Aa)" andCy(Aa)" whereA, is the
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eigenvalue with largest modulus a@g andC, are positive constants. It is also possible
to pick constant€; andC; in such a way that for large, there are betwedd; (Aa)" and
C2(Aa)" paths of lengtin between any 2 vertices.

If we apply this same argument to the graph define& pye can choose a constant
Cs such that there are less th@s(Ag )" paths between any two vertices. This implies that
pn=2"— fn > 2" — Ca(Ap)"

Letn= 2"« g with g odd, therb, < Z{;&Zzi*q because the number of least period
points in the tail of cascades is clearly less than sum of the number of periodic points of
order 2q for 0 < i < r. Furtherb, < £I-122+4 < ()« 2V2 < n(/2)" because the sum is
less than the largest term times the number of terms. This shows that@asasesh, is
bounded above by an exponential function with rg@

Similarly, the number of points of period but not least penoth P, a,, can be
bounded above by an exponential function with rd@becausey, < Zjjn;zn2 < n2V2 =
n(v2)".

We now need to find an upperboundtgnthe number of points of least periodn
T. A periodic point inT corresponds to a timapath from a term in the upper right block
and a timen — L path fromGp that together create a closed loop. This lengthL path
may have subpaths that correspond to terms in the upper right block, but we only care
about overestimating the number of possible pathS4rthat will create a closed path.
For largem, there are at leaslsA!" paths that correspond to terms from the upper right
block, where\g (< 2) is the spectral radius &f andmis the power of in the upper right
block. Soty < Co2" M« CaAL.

We now combine the estimates given above to compaie- nd,.

51



NCy — NGy = Pn— @ — bp — Ndh
>ph—an—bp—t—n
> 2" — C3(Ag)" —nx* (v2)" — n(v/2)" — Cg2"- MM,

The only term that grows at the same exponential rate as the first termtjstdine
containing 2-1, but we can make the difference betweyiA\r)™ and 2" as large as
we want by increasingn. So, there exists a large enoulyh such that for alim > N,
Nnc,—ndh >0forallne N. O

Proof of Lemma3.2.2:

Let X be the 2-shift and leF be a non-negative integer matrix presentation of a
subshiftY, wherePer(X)\Per(Y) is the disjoint union of 2-cascades. Then by Lemma

3.2.3, for all sufficiently largem, there exists a polynomial matr& overtZ[t], where

tM  2tMB’
A= , such thatXa is conjugate to the full 2-shift anB’ a non-negative
tC tF

integral matrix. ForT = Per(Xa)\{Per(Xyv;) UPer(Xg)} and P = Per(Xa)\Per(Xg),
Lemma3.2.4 says thafl is the disjoint union of 2-cascades aRds the disjoint union of
2-cascades by assumption. By Lem8ia6, there exists aN € N such that for alm> N,

Cn > dy, for all n € N wherecy is the number of2, n)-cascades iR, andd, is the number

tM 2t™B
of (2,n)-cascades ifM. Proposition3.2.5 says that form > N and A = ,

tC tF
Per(Xyy) is the disjoint union of 2-cascades, adis conjugate to the full 2-shift]
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3.2.2 Generalizations of Theore®r2.1

In the proof of Lemm&.2.3, we never used that was conjugate to the full 2-shift,
just that{x (t) = Imod2. And the proof of Lemm®.2.6, relies only on the entropy of
being larger than the entropy of the proper subshiffo the same proof above works for

the following theorem:

Theorem 3.2.7.1f a mixing shift of finite type, W, has a zeta function that is 1 mod 2,

then the following are equivalent:

1. Y is a subshift of finite type of W such that @)\ Per(Y) is the disjoint union of

2-cascades.

2. There is a mixing shift of finite typeMhat is SE to W and V\has an inert involution

with fixed point shift Y.

Note that Condition (1) of Theore® 2.7 is decidable in a finite number of steps

by Propositior2.5.5.

3.2.3 Future work

There should be a straightforward generalization of The@@ni for strictly order
n inert automorphisms.

If Lemma 4.2.2 could be proven relying on the cascade decomposition of
Per(X)\Per(Y) rather than the zeta function ¥f then we could eliminate the assump-
tion of Theorem3.2.7 involving the zeta function dfV. This might be accomplished by

a different clearing procedure for the upper right block.
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SE overZTis a very strong equivalence relation on shifts of finite type (See section
1.4 for discussion), but still the use of SE in the statement of The@t2rh reflects the
mysterious gap between SE and SSE &eywhich pervades the analysis of SFTs. For
example, wheiX is the full 2-shift andX’ is SE toX overZ™, it is not known if there is

a fixed point free involution oK’'.
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Chapter 4

Strictly Ordern Automorphisms of 1-sided SFTs

If @is an automorphism of a shift of finite type X, thens called strictly order
n if all @ orbits have cardinality. Recall from Section 3.3 that/@ is the quotient of
X by the orbit relation ofp. The induced action of the shift map &y, denotedoy q,
defines(X/@,0x ) as a dynamical system. FHrirreducible, it is well known thak /¢
is conjugate to a SFT ipis strictly ordem, andoy y is not even expansive @ does not
have strict orden. For a shift of finite typeX with finite order automorphisrd, Fiebig
showed thaU is inert iff {x (t) = {x u (t) [F]. This result shows the relationship between
the periodic point counts of the orbit spaX¢U (which is not usually even a shift space)

and the inertness &f. Kim and Roush asked the following question:

Question 4.0.8.When does a mixing SFT X have a strictly order n automorphism U such

that X is conjugate to XU?

Note that by Fiebig’s result) must be inert foiX /U to be conjugate tX. In the
strongest result to date, Kim and Roush answered this question up to shift equivalence

with the following theorem.

Theorem 4.0.9.[KR3] For a mixing shift of finite type X and p prime, the following are

equivalent:

1. There exists a mixing shift of finite typé 3tch that X is SE ovelZ*to X and X
has an inert strictly order p automorphism U witH X conjugate to X.
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2. Per(X) is the disjoint union of p-cascades.

(See section 3.3.1 for a discussion of cascades.) We also note that it is still unknown
if X being SE to the 2-shift implies tha¢ is SSE to the 2-shift. In this chapter, we
consider the more general question involving 1-sided SFTs of which Ques@idhnis a

special case:

Question 4.0.10.Given a 1-sided mixing shift of finite type and a prime p, what are

the conjugacy classes of’XU for U a strictly order p automorphism of X?

Ouir first result uses the structure theorem of Boyle, Franks, and Kitchens to com-
pletely describe the conjugacy classes of orbit quotient spaces of 1-sided mixing shifts of

finite type by strictly ordep automorphisms whep is prime.

Theorem 4.0.11.Let A be a totally out-amalgamated square matrix aZéand let p be
a prime integer. The 1-sided shift of finite type, Xas a strictly order p automorphism,
U, with X3 conjugate to ),{/U <= Gg is the quotient graph of an order p (or order 1)

graph automorphisng of Ga satisfying the following condition:

1. Let C be the principal submatrix of A such that 6 the maximal subgraph of 5

that has vertices fixed hy. The matrix €89 is nilpotent, where

C{jed _ 0 ifCjj is a multiple of p
Gij otherwise
We also present the following result which shows that the orbit quotient of a mixing
shift of finite type by a strictly orden automorphism is conjugate to the image of a
particular kind of 1-block map defined by a graph homomorphism of the totally out-

amalgamated graph.
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Theorem 4.0.12.Let A present a 1-sided shift of finite typel Xvith a strictly order n
automorphism U. ThenX/U is conjugate to a 1-sided shift of finite typg Xsuch that
there is a left resolving factor mal : Xo — Xg whered(,, the vertex map d¥, is the

guotient map of the vertex graph automorphism induced by U.

While this result unlike Theorem.0.11 does not requiré) to have prime order,
we do not have a way to determine which of the candidate image shifts will be the orbit
quotient of a strictly orden automorphism oKa. However, there are only finitely many
possible candidates up to topological conjugacy. There is no analogous result known (or
ruled out) for 2-sided SFTs.

In Section 5.1 we will introduce 1-sided shift spaces and present relevant properties
including the solution to the conjugacy problem for 1-sided shifts of finite type. Section
5.2 is dedicated to proving Theoreh®.11. In Section 5.3, we give the proof of Theorem

4.0.12.

4.1 One-sided Shift Spaces

In the previous chapters, we considered bi-infinite symbol sequences and the corre-
sponding bi-infinite walks in directed graphs as defining 2-sided shifts of finite type. For
a shift spaceX, let X be the sef{xj)|x € X}. We callX* a 1-sided shift space and
XT is a 1-sided shift of finite type ifK is a shift of finite type. Finite directed graphs and
their matrix presentations will also present 1-sided SFTs as the set of (forward) infinite
walks through a directed graph.

Obviously, a block code oKX with memory 0 will define a block code ox™, and
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by considering a higher block presentation and shifting a code with memsr§ onX,

it is possible to define a block code ¥ from any block code oX. A block code from

X to'Y with zero memoryp, will define an onto block code™ : X+ — YT iff @is an onto

map. While Krieger's Embedding TheoreZ.1) characterizes the existence of proper
embedded subshifts for mixing 2-sided shifts of finite type, there have been very limited
results on when a 1-sided SFT can be embedded into another.

In general, it is much harder for a block map to be invertible at the 1-sided level
because no memory is allowed. For example, the shift map is invertible on 2-sided shift
spaces but the shift map will be one-to-one only on finite 1-sided shift spaces. For ir-
reducible SFTsX andY, a left resolving mapp : X — Y is a 1-block code such that
wheneverp(a) = b andb’b is an allowed 2-block itY, there exists exactly one symbs|
such thad'a is an allowed 2-block irX andg(a’) = b'. If @is a 1-block conjugacy from
X toY, theng™ will be a conjugacy fronX* to Y iff @is left resolving.

Let Aut(coy; ) be the group of homeomorphismsXf that commute withog,. For
example,Aut(c;m) consists of only two elements. In contrast, recall that(ox[z]) is
countably infinite, residually finite, and not finitely generated: it contains a copy of every
finite group, the free group on infinitely many generators, and many other groups (but
not any group with solvable word problem) [BLR]. Boyle, Franks, and Kitchens show
that Aut(oy ) is generated by elements of finite order, and prove the following structure

theorem forAut(oy; ).

Theorem 4.1.1.[BFK] Let Simp(X,") be the group of simple automorphisms of a 1-sided

shift space X (as defined irl.4.1). Aut(oy, )/SimgX, ) is a finite group isomorphic to
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the group of permutation matrices that commute with the total out-amalgamation of A.

Further, Autoy, ) is a semidirect product Sinfk, ) x Aut(oy, )/SimgXy ).

Let A’ be the total out-amalgamation Af Fix an edge ordering db,, and define
the vertex graph automorphismsX{ to be the set of graph automorphismsGy that
preserve the edge ordering. We note that the vertex graph automorphisms are conjugate
to the group of permutation matrices that commute with A different choice of edge
ordering would give a conjugate group of vertex graph automorphisms. Let the group of
vertex graph automorphisms of a graphoe denotedAut, (G).

If U € Aut(a), then by Theorem.1.1U = o wheregis a simple automorphism
andy is py'¢ L for a vertex graph automorphism@fy, Y’ andg : Xa — Xy a conjugacy.

In particular, iftU" = Id theny" = Id because the following diagram will commute.

Aut(oA) i Aut(oa) (4.1)

ln o
Auty (G ) — Auty (Gur)
)

wherertis the projection ofAut(o, ontoAut(crX )/SimEX!) = Auty (G ).

Standing Convention 4.1.2.We will drop the™ notation when referring to 1-sided shift

spaces, and for the rest of this chapter we will assume a shift space is 1-sided unless

otherwise noted.

In contrast to the 2-sided case, we know how to decide when nonnegative integral

matricesA andB present topologically conjugate 1-sided SFTs.

Theorem 4.1.3.[Wil] If A and B are nonnegative integer matrices, ther iX conjugate
to Xg iff the total out-amalgamations of A and B differ by conjugation with a permutation
matrix.
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(We refer the reader to Section 5.3 for a description of state splitting and amal-
gamation on adjacency matrices including total out-amalgamation) Ghédie the di-
rected graph defined by adjacency mathix We will briefly describe 1-step total out-
amalgamation, the graph operation which corresponds to the 1-step total out-amalgamation
of an adjacency matrix. L&fa andEa be the vertices and edges of the graphand let
Ea(u,v) be the number of edges from vertexo vertexv in Ga. Forug, u; € Va, we say
thatu; has the same incoming edge pattern or incoming edge structupafdsr every
V € Va, Ea(V,u1) = Ea(V,Up). Let [v] be the equivalence class of vertices with the same
incoming edge pattern as The 1-step total out-amalgamation grafs, is defined as

follows.

e Gp has vertices given by the classes of verticegolvith the same incoming edge

pattern.
e There arey i Ea(i, j) edges inGg from [i] to [j].

The total out-amalgamation of a graghis the graph obtained by repeated total 1-step
out-amalgamation until all vertices have unique incoming edge pattern. For a directed
graphG, we denote the total 1-step out-amalgamation and the total out-amalgamation
by G* and G’ respectively. Out-amalgamation of directed graphs correspond to out-
amalgamations of adjacency matrices, so by Theofeh8, graphsG andH present
conjugate SFTXg andXy iff G’ is graph isomorphic tél’.

Let p* be the 1-block map fronXa to Xa- that takes a vertekto [i] and an edge
in Ea fromi to j to an edge irEa- from [i] to [j]. Similarly, let p’ be the 1-block map
from Xa to Xy. The mapp* is described by a vertex mag, : Va — Va- and an edge map
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Pt : Ea — Ea-. Similarly, the mapp’ is described by a vertex mayg, : Va — Va and an
edge maypg : Ea — Ea.

Given a graph automorphisgnon G, we define the quotient grapt as follows.
e H has vertices that are given by tipevertex orbits.

e H has edges that are given by theedge orbits (ife is an edge irG fromi to j,

then|g] is an edge fronii| to [j]).

There is a canonical graph homomorphism frGito H that takes an edgec Eg from i

to j to an edgee] € Ey from [i] to [j].

4.2 Quotients of Prime Order Automorphisms

Theorem 4.2.1.Let A be a totally out-amalgamated square matrix o¥eand let p be
a prime integer. The 1-sided shift of finite type, Kas a strictly order p automorphism,
U, with X3 conjugate to X /U <= Gg is the quotient graph of an order p (or order 1)

graph automorphisng of Gp satisfying the following condition:

1. Let C be the principal submatrix of A such that 3 the maximal subgraph of 5

that has vertices fixed hy. The matrix €89 is nilpotent, where

ed 0 ifCjj is a multiple of p
G =

Gij otherwise

Proof=: LetU be a strictly ordemp automorphism oXa whereA is totally out-
amalgamated. By Theorefl.1, U = @o Y where@is a simple automorphism anlis
a vertex automorphism dba. Further, by Equatiod.1, ¢® = Id. Let Gg be the graph
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guotient ofGa by Y, and letC be the principal submatrix & such thatGc is the maximal

subgraph of5, that has vertices fixed hy.. LetC™d be a matrix defined by

cred _ 0 if Gj is a multiple ofp
ij

Gij otherwise

Suppose&d is not nilpotent. Len be the lowest length such that there is a closed
pathy of lengthn in Ggrea. Letk be the number of paths B.rqd that travel through the
same vertices agand note thak will be the product ot{fd wherey has an edge from
to j. Thenk will not be a multiple ofp becausep is prime. LetSbe the set ok periodic
points ofXa defined by thék closed paths of length. U will map Sinto Sand thus must
partitionSinto lengthp U-orbits. This is a contradiction becaugéoes not divideé, and
thusC'd will be nilpotent.

Proof<«: Let Gg be the graph quotient @& by an orderp vertex automorphism,

Y. LetC be the principal submatrix & such thatG¢ is the maximal subgraph @x that

has vertices fixed by. LetC"d be a matrix defined by

o 0 if G is a multiple ofp
Cij =

Gij otherwise

AssumeC'? is nilpotent. We definep, a 1-block automorphism ofa as follows. If
C(i, j) is nonzero and divisible by p, then lgf be an ordeip permutation of the edges
betweeri andj and defingp(x)o = @ (o) if Xo is an edge fromto j with C(i, j) divisible
by p and@(x)o = xp otherwise. We defing to be the composition ap with . Clearly,
Qo = YopandUP =id. Becausep is prime,U is strictly orderp if U has no fixed

points. Every point will be moved by since points not moved by will be infinite paths
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in Gc and paths that are B¢ for a long time will have an edge moved tppecaus€d

is nilpotent.O

4.3 Strictly Ordem Automorphisms of 1-sided SFTs

Before we will begin our proof of Theorer0.12, we will need several lemmas.

Given a matrixB, we letB* andB’ denote the 1-step total out-amalgamation and
total out-amalgamation d8. Fory a 1-block map fromXa to Xg/, we can ask whether
the action ofy on vertices and edges factors through the nmajpand pg (as defined in

Section 5.1).

Standing Convention 4.3.1.1f yis a 1-block map fronXa to Xg, theny is also a graph
homomorphism of55 to Gg. We will refer to both the map fronXa to Xg and the map
from Ga to Gg asy. In particular, we will denote the vertex map and edge mapasfyy

andyg respectively.

Lemma 4.3.2.Lety be a 1-block left resolving onto map from ¥ Xg. Let p* denote
the one block conjugacy fromaXo Xa- with vertex map {p and edge map g There
exists a vertex may, : Va- — Vg such thaty, = \§; o i, and alsoy; is the vertex map of
a left resolving graph homomorphisyh: Ga: — Gg'. Moreover, there is a left resolving

graph homomorphisrd: Gy — Gg such thad = y* o p*.

Proof: In order to show thap, factors throughp,, we must show that for any
Uz, Uz € Va, if B (u1) = py(u2), thenw (u1) = w(u2). Leturepresent the image vertex
of uunderpy, and[u;] be the image of a vertexunderyy. If p;(u1) = p;(u2), thenuy
andu, must have the same incoming edge patterny indu, have the same incoming
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edge pattern, thefu;] and[up] have the same incoming edge pattern becauisdeft
resolving. But sincéGy is totally out-amalgamated, each vertex has unique incoming
edge pattern and thiis;] = [up]. Thereforeyy, factors throughpy,, W =\ o B

Now for eachv € V-, pick j in Va such that = j. Let pj denote the bijection from
j-incoming edges tdj]-incoming edges. Then, becauges left resolving, the mago
(p’j‘)_l is a bijection from thg-incoming edges t¢-incoming edges, and it is compatible
with the vertex mayy;. Therefore this edge map defines the required left resolving graph
homomorphisny* : Gax — Gg. Defined: Ga — Gg on vertices by, = W and on edges
by 0 =Yg opg. Nowd =y op*. O

The following example shows how a left resolving map given by an orbit quotient

of a strictly order n automorphism does not factor through a conjugacya — Xa.

ab
Example 4.3.3.Let A= present a labeled directed gra@h with two vertices

b a
and edge from to j labeled by the symbol i&j. The (1-step) total out-amalgamation

of Ais [a+b]. The mapJ on Xa is a fixed point free involution (strictly order 2) defined
by the exchange of vertices By andXa/U is conjugate to<g whereB = [a+b]. Lety
be the 2-to-1 left resolving factor map fro¥p onto Xg defined by the orbit quotient of
U. The 1-block mapy will not factor through the conjugacy® : Xa — X because the
composition ofp* and any left resolving map frotdy to Xg will be one-to-one whereas

y will be 2-to-one.

Theorem 4.3.4.Lety: Xa — Xg be a left resolving factor map. Let pe a left resolving
conjugacy from X to Xy . Then there are 1-block left resolving factor ma&psXa — Xg
andd’ : Xy — Xg such that the vertex magg anddy are equal andd = &' o p'.
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Proof: The mapy is the composition of total 1-step out-amalgamation maips
So by iteration of Lemmd.0.12, we define the required mapsd’, andp’. O

Below by “n-to-one” we mean constantto-one.

Proposition 4.3.5.Let Xy be a 1-sided MSFT presented by the block circulant matrix

AL A o A,

An AL - Ay
A=

A As - A

where all of the Aare kx k matrices. Let Uc Aut(oa) be defined by a graph automor-
phism of G, that sends the i-th vertex to tH&+ i)-th vertex, such that U=id. For
B=A1+...+ Ay, let Gg be the quotient graph of .5by U and letrt: Xa — Xg be the
1-block map defined by the corresponding graph homomorphism frgro @g. Let
Y : Xa — Xg be defined by the 1-block map= pgo T, where f : Xg — Xg is a left

resolving conjugacy. The magps left resolving, n-to-one, and onto.

Proof: If Ttis a left resolvingn-to-one, onto map, then the compositipa: pgo Tt
will be a left resolvingn-to-one, onto map becaugéis a left resolving conjugacy. So it
suffices now to considet.

Each vertex o5, is in a vertex orbit unddd consisting oh distinct vertices. Since
U" =id, it follows for everyv € Vj that no two incoming edges efcan be in the same
U-orbit of edges. Therefore the m&a — Gg sends incoming edges wiijectively to
incoming edges ofv], andrtis left resolving. The mamis n-to-one because two points

of Xa are colllapsed bytif and only if they lie in the sam¥-orbit. Clearlyttis ontod
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Proof of Theorem4.0.12: Let A present a 1-sided shift of finite typ¥a, with a
strictly ordern automorphisnU. We care only about the conjugacy classXafU and
not on the particular presentation 98k or Xa/U or even the incarnation &f on Xa. So
without loss of generality, by Theoref4.1 we can assume th¥ is presented by the

block circulant matrix

AL A oo A,

An AL - Ay
A=

Ao As - A

where all of theA; arek x k matrices. Let) € Aut(oa) be defined by a graph automor-
phism of Ga that sends théth vertex to the(k + i)-th vertex, such that" =id. For
B=A1+...+ A, let Gg be the quotient graph da by U and letrt: Xa — Xg be the
1-block map defined by the corresponding graph homomorphism@gto Gg.

By Lemma4.3.5, we now havey a left resolvingn-to-one factor map fronXa onto
Xg/, WhereXg is conjugate tXa/U. Let p’ : Xa — Xu be a left resolving conjugacy. By
Theoremd.3.4, there is a left resolving map : Xa — Xg/, such tha®, o p{, = w. O

The following examples show how condition (1) in Theorér.11 is no longer

necessary iU does not have prime order.

0 2
Example 4.3.6.1f A= , thenGa is the following graph with names of its associ-

2 4
ated edges given.
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ap, 1

bo, b1

Let @ be the 2-block automorphism defined by

aj41 if xi = a;

P(X)i = Cjt1 if Xi = cj

| Piker 1 Xiiyg = bjax
where the subscripts @ andb are taken mod 2 and the subscriptoaf taken mod 4.

The mapgpis strictly order 4 since andbablocks are permuted with order 4 because
¢ ¢ ¢ ¢
bjax — bjiki18k 11 — bjr1ak — bjkaki1 — bjak

Also, Xa/@is conjugate toXa becausepis simple. In particular, this example shows that

condition (1) (involvingA™9) of Theorem4.0.11 is not necessary i is not of prime

0 2
order becausad = is not nilpotent.
2 0
This is an example like Exampke3.6 with the additional property thaba has a

non-trivial vertex graph automorphism.

4 2
Example 4.3.7.1f A= , thenG, is

2 4
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Co,C1,C2,C3

do,ds,d2,d3
ap, 1
bo, b1

Let ¢ be the 2-block automorphism defined by

(
aj+1 if X = a;
Cj+1 if X =c;j
Qx)i =
dj+1 if X = dj
\ bj k1 if X1 = bjax or bjdg

where the subscripts @f andb are taken mod 2 and the subscriptcandd are taken
mod 4. The magpis strictly order 4 since, d, bd, andbablocks are permuted with order

4. Also,Xa/@is conjugate tXg. This example shows that condition (1) (involviAkd)

0 2
of Theorem4.0.11 is not necessary i is not of prime order becaugg®d = is
20

not nilpotent whernp has nontrivial vertex graph automorphism.

This is an example like Exampke3.6 with the additional properties th&@a has a

non-trivial vertex graph automorphism aAdas relatively prime entries.

4 0 2

Example 4.3.8.I1f A= |2 o o0l|,thenGais

01 4
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.C1,C0,C
do,ds,d2,d3 c0C1.C2C

ap, 1
bo, b1

Similarly to the previous exampleXa will have a strictly order 4 automorphism and

0 0 2

A®d— |5 o o| is not nilpotent. This example shows that the previous examples are

010
not predicated o/ being divisible by 2.
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Chapter 5
Mixing Shifts of Finite Type with Surjective Dimension Representations

5.1 Importance of Dimension Representation

The fundamental question we consider is:

Question 5.1.1.Given A, a primitive matrix , what is the image of the dimension repre-

A

sentationp : Aut(oa) — Aut(A)?

The significance opa was indicated in Chapter 1. Our contribution to addressing
Question5.1.1, though meaningful, is so far modest. We will show that the only general
constructions to date, using elementary strong shift equivalences, cannot construct many
candidate images @ (Proposition5.2.4). Then we will give a construction of surjec-
tive dimension representations for a class of examples (PropoSidd), for which it is
impossible to show thata is surjective using only conjugacies arising from ESSEs by
Proposition5.2.4. The construction itself is complicated and poorly understood. Never-
theless, it is the only such class which has been constructed, and we hope it will lead to
further insight.

Recall from Section 1.4, thaut(A) is the group of automorphisms @y that
commute withA. Boyle, Lind, and Rudolph show thatAfhas simple non-zero spectrum
(i.e. every nonzero eigenvalue is a simple root of the characteristic polynom#gl of

A A

then Aut(A) is a finitely generated abelian group. Howewkut(A) in general can be
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nonabelian and not finitely generated. There are just a few sophisticated examples of

SFTs for which the dimension representation is shown to be non-surjective [KRW3, W3].
Let A be a primitive matrix and\ut, (A) be the positive automorphisms of the di-

mension group, i.e. automorphisms®f which multiply the Perron eigenvector by a

A

positive constant. Now we regapd as a map fronAut(oa) — Aut(A) and say thapa is

surjective if its image if\ut, (A)
Question 5.1.2.Under what conditions dogsy map Autoy, ) onto Aut. (A)?

In some easy cases (e.qg. for full shifts) the dimension representation is known to be
surjective. There is just one general positive result known for showing elements lie in the

image of the dimension representation.

A

Theorem 5.1.3.[BLR] Supposeb € Aut(A), then for all sufficiently large n, there is a
@ € Aut(o,) with p(@) = @, and moreover such thag is presented as an elementary

conjugacy of Xan,0an), i.e. @arises from some ESSR, S) from A to A"

In Proposition5.2.4, we will see an obstruction to generalizing the ESSE result of
Theoremb.1.3 to the casa = 1 (even after replacing with some matrix SSE t4,).

The main result of this chapter (Propositidrit.3) is the presentation of a non-
trivial class of examples in whicp is surjective even though the ESSE obstruction of
Proposition5.2.4 holds. In Section 2.2, we describeit, (A), the candidate range of the
dimension representation and compute several relevant examples. In Section 2.3, we de-
scribe state splitting, an operation on matrices &ewhich is used in the constructions
of Section 2.4. In Section 2.4, we give the promised examples of mixing shifts of finite
type with surjective dimension representation.
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5.2 Aut.(A)

A

Recall from Section 1.4 th&ut(A) is the group of automorphisms &y that com-
mute withA and letp : Aut(ca) — Aut(A) be the dimension representation of the S&T
Also note thatGa = Gan, Aut(A) C Aut(A"), and typically (e.g. if all eigenvalues &
are simple roots gfan) Aut(A) = Aut(An).

Recall from Section 1.4 that the eventual rang&dRa, is given byAKQX, for large
enoughk such that is an isomorphism fromQ" to AK+1Q". Every elementfpe Aut(A)
is the restriction of a unique invertible real linear transformaﬁnrRA®R — Ra®R.
The use ofpand@is an abuse of notation since we do not in general have an associated
automorphism of the shiftp, but we use the hat notation simply to refer to an element of
Aut(A). AssumeA is a primitive matrix with spectral radiusa. Letva be a positive row

eigenvector ol (a Perron eigenvector ). In generalfp(vA) = ava, Wherea depends

only on@. We define
Aut, (A) = {@ e Aut(A) : P(vp) = ava,a > 0}

It is well known that wherd\ is primitive, pa(Aut(ox, )) C Aut, (A). We say that the

dimension representatignis surjective ifpa(Aut(ox,)) = Aut, (A)

A~ ~

5.2.1 Examples ofut(A) andAut, (A)

Example 5.2.1.Let A = [n], soXa is the full n-shift. Ga is the ringZ[1/n] sinceZ[1/n]
are the elements @ that will be eventually mapped int6 by multiplication byn. GX
will be Z*[1/n] andA will be the isomorphism oZ[1/n] given by multiplication byn. If
n= prll.‘.prkk with each of thep; distinct primes, them\ut(A) consists of elements of the
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form @(x) = +p...pix for t; € Z andAut, (A) are the automorphisms & of the form

A

Q(x) = ptll...pﬂ‘x fortj € Z, HereAut, (A) Is isomorphic to the finitely generated abelian

groupZk.

Example 5.2.2. SupposeA is an x n matrix overZ anddet(A) = +£1. ThenGa = Z"

andA = A, sinceA is invertible overZ . Aut(A) consists of the elements 6f(n, Z) that

11 A
commute withA. For A = , we haveGa = 72, Aut(A) = {+=A™: mc Z}, and

10
Aut, (A) = {A™: me Z}. Here the grougut, (A) is isomorphic tdZ.

8 5
Example 5.2.3.LetA= , the matrixA has eigenvalues 13 and 3 with eigenvectors

58
u=[1,1 andv = [1,—1]. If @€ Aut(A), then sendsu to aeu andyv to Bev, where

0= +13"for nc€ Z andBy = +3™for me Z, and the paifa, By) determinesp. Aut, (A)

consists of the automorphisnpssuch thatiy > 0. Clearly forgp e Auu(A) we have
(0g,Be) € {(13",(=1)'3™: I, mn e 7}
ThusLa: @— (I,m,n) defines an embedding of the groqu(A) into

{(l,mn) € Z/2x7Z x Z}

7 6/ (0 1 2 -1
The integral matrice : , and commute withA and thus

6 7/ |1 0 -1 2
define elements ofut, (A) with (0, By) respectively being13 1), (1,—1), and(1,3).
The associated images@fm, n) underLp are respectively0,0,1), (1,0,0), and(0, 1,0).

Now it is clear for thisA that the embeddinga is an isomorphism fronAut; (A) onto

7]2X 7 X 7.
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The automorphism oXa, Y, corresponding to the ESSE

0O 1f |8 5/ |0 1
(Ra S) = )
1 0/ |58 (10
has(ay,By) = (1,—1) andLa({) = (1,0,0). The shift mappa, has(ag,Bs) = (13,3)
andLa(6) = (0,1,1). However it is not obvious whethermapsAut(aa) ontoAut, (A).
Let us first consider if we can create a generating séubf (A) using the image of
ESSE under the dimension representatiofRIB) is an ESSE fronA to A, thenR (andS)

commute withA and thusR (andS) have eigenvectord, 1] and[1, —1]. This means that

R (and S) will have fixed column sum of either 13 or 1 and column difference of either 1

5 8

or 3. If R has column sum of 13 and column difference of 3, tRen A or , and
8 5
0 1

if Rhas column sum of 1 and column difference of 1, thea Id orR= . The
10

only other possibility is that eithd® or Shas column sum of 1 and column difference of
3, which would imply that eithelR or Scontains negative entries, which is a contradiction
of the assumption thdR S) is an ESSE oveZ'. So(1,0,0), (1,1,1), and(0,1,1) are
the only possible coordinates lin (Aut, (A)) that can be the image of an ESSE.

Using our construction from Section 2.4, Appendix A explicitly giyea chain of 4
ESSEs fromA to Awith (ay, By) = (13,1) andL(y) = (0,1,0). The three automorphisms

of Xa given by, y, andoa will map to a generating set @ut, (A) given by theirLa

coordinates of1,0,0), (0,1,0), and(0,1,1), and thugp will be surjective.0

The construction of the embeddinig, is in no way particular to the preceding
example. LefA be a primitive matrix with simple integer eigenvalues...,A, whereA
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has the largest modulus. Af is divisible bym; primes, then the malpa is an embedding

of Aut, (A) into (Z/2)" 1 x Z™ x ... x Z™ given by

- im i j . ) .
(P pmd, (=12l g2, (=) ey s (L, g iy K s Ky

One could try to build the image @ by finding primitive matricesC which are
SSE toA, finding ESSEs off (C = RS= SR with R a non-trivial action onG¢, and
pulling back toGa. The following proposition shows this approach cannot succeed in

general.

Proposition 5.2.4. Suppose G- RS= SR with C a primitive matrix with its eigenvalue of
largest modulus being a prime integer p. lgebe the conjugacy associated to the ESSE

(R,S). Then there is & < Aut(C) and ke Z* such that]* = id and @) = C or = {.

Proof: The matrice® andS commute withC. Let vc be the positive eigenvector
of C. Because\c is a simple eigenvalue of C, there are constant§ > 0 such that
Ve = ave, VieS= Bvc. Now a3 = p, so eithera = 1 or3 = 1. Supposg = 1. Because
vc > 0 andSj > 0 andvcf = vcS we have thaB is the spectral radius &by the Spectral
Radius Theorem. Ify = S, then for somé € Z*, X = id sinceSwill have eigenvalues
of largest modulus that ateth roots of unity. This would imply thapd = RS= C.

Suppose§ = p anda = 1. The same argument above shows thatffer R, there
is somek € Z* such thaipk = id. O

Examples5.4.1 and5.4.2 do not satisfy the hypothesis of Propositibr2.4 and
a generating set o&ug(A) can be made by image undek of ESSEs. However, the

matrices presented in Propositidd.3 are subject to the obstruction of Propositi®a.4,
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but pa is still surjective. So not only are the examples in Proposiidr3 nontrivial, but
they demonstrate that we are not missing some miraculous obstruction.

Lastly, as an obstruction to another proof strategy, we give a cautionary example
where the image OAUQ(A) under the embeddinga constructed above need not be all
of the latticeZ /2 x 7Z x Z. This does not preclud& from having a surjective dimension
representation, but it shows that one cannot find a general proof which simply realizes

automorphisms whodex images are arbitrary elements of the lattice.

4 1
Example 5.2.5.LetA= . Ahas eigenvalues of 5 and 2 with eigenvectofs|2, 1]

2 3
andv = [1,—1]. In order to compute the image bf, we need to examine matrices that

commute withA and have non-zero spectrurft mand-+2P2 with corresponding eigenvec-

torsu andv. The unique matrix that has eigenvalues 5 and 1 with eigenvectansl v

11 4
isC= % . C corresponds to the elementary vedi@0,1) € Z/2 x Z x Z, but

8 7
C & Aut(A), because for alh € N, [1,0]CA" ¢ Z2. Therefore(0,0,1) & La(Aut, (A)). In

A

fact, (0,n,m) ¢ La(Aut; (A)) if n+mis odd.

5.3 State splittings

State splitting is an important type of ESSE between matrices&verAny SSE
between shifts of finite type can be decomposed into state splittings and the inverse oper-
ations of state amalgamations. State splittings will be used to generate the SSEs used in
Proposition5.4.3.

Let A be an x n matrix overZ". An in-splitting of A is given by some splitting of
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the rows ofA, i.e. the i-th row ofA, &;, is split intok; rows overZ™, by, ..., by, such that
z'j“:l b; =a&. Letk= 3 ; ki. The in-splitting matrix ofA is thek by n matrix, R, of the
split rows of A, i.e. that the firsk; rows of R are the rows split frona;, thek; + 1 to
k1 + ko rows of R are the split rows ofy, and so on. The split matri)B, is created by
taking R and copying the i-th column dR k times. LetS be then x k matrix such that
Sj = 1 if the j-th row of Ris split from thei-th row of A andS; = 0 otherwise. Then
A=SR B=RSand(R,S) is an ESSE fronB to A. Sis a so called subdivision matrix in
which every row has exactly one entry equal to 1 and every column has at least one entry
equal to 1.A = RSsinceSwill sum the columns oR that are split from the same column
of A. B= SRsinceSwill copy the the rows oR according to how the columns Bfwere
split from the columns oA. The matrixA is called an out-amalgamation Bfif B can be

made from a finite sequence of in-splittingsAof

31
Example 5.3.1.LetA= and let the first row|3, 1], be split into[1,1] and[2,0]
2 4
and the second rovi2, 4] be splitinto[1,1], [1,2], and[0,1]. |
11 11111
2 0 22000
11000
ThenR= |1 1| andS= ,S0B=11 1 1 1 1/-
00111
1 2 112 2 2
01 00111
There is an analogous procedure for the out-splitting of a matrix A. For example,
3 3 0 1
if we split the first column ofA, , into and , and the second column, |,
2 1 1 4
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into , , and , then
1| |2 1
10 30100
10 30100
30100
R= ,S=10 1|.andB=1{1 1 1 2 1.
11121
01 11121
01 11121

We say thaB is a out-splitting ofA.

A matrix B is a in-amalgamation oA if B can be obtained by a finite sequence of
out-splittings ofA. A matrix B is a 1-step splitting of a matrii if B can be obtained as
a single splitting ofA, i.e. if AandB are ESSE by som@,S), given by a splitting.R
is called the in-/out-splitting matrix (or the in-/out-amalgamation matrix) for the out-/in-
splitting of A to B. Sis called the subdivision matrix for the splitting fto B (or the
amalgamation matrix for the amalgamationBoto A).

The total 1-step in-amalgamation Afis defined as follows. 1A is n by n andA
hask(< n) distinct rows, then leR be thek by n matrix made up of the distinct rows of
A. Ris unique up to some permutation of its rows. For a fixed choice of the roRs®f
is given by a unique subdivision matrix such that SR If B = RS thenB is called the
total 1-step in-amalgamation éfand is uniquely determined Byup to conjugation by a
permutation matrix. The total 1-step column amalgamation is defined similarly. The total
in-/out-amalgamation of a matri& is the matrix arrived at by performing total 1-step

in-/out-amalgamations until every row/column is distinct.
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11
Example 5.3.2.LetC= 1 1 o|, B= , andA = [2]. The total 1-step in-

11
110

amalgamation of is B and the total in-amalgamation Gfis A.

Theorem 5.3.3 (LM 7.1.2).Let@be a conjugacy from xto Xg. Thengis a composition

of conjugacies given by ESSEs from splittings and amalgamations.

Furthermore, it is possible to decompose an automorphisia,ap, into the com-
position ofk conjugacies arising from in-splittings atdconjugacies arising from in-

amalgamations.

5.4 Examples of Surjective Dimension Representations

Example 5.4.1.Forn € N, the dimension representation of the fadshift is surjective.

Let A = [n], soXa is the full n-shift. Ga is the ringZ[1/n], G will be Z*[1/n],
andA will be the isomorphism of.[1/n| given by multiplication byn. If n= prll...prk" for
primespy, ..., Pk, thenAut(A) consists of elements of the forpix) = +pil... pixfor t; € Z
andAut, (A) = {@: @(x) = pi...px}. Clearly, Aut(A) = Z/2 x ZX and Aut, (A) = ZX.
Considery;, the ESSE fromA to A given by ([pi], [n/pi])- pa(yi) = [pi] andLa(Yi) = &,
whereg is thei-th elementary row vector. 3@, ..., Yk get mapped bya to a generating

set of Aut, (A), and thus the dimension representation of A is surjective.

Example 5.4.2.Let B = nAwhereA is primitive symmetric matrix with eigenvalues
and 1, both of multiplicity 1. Ifn is prime, then the dimension representatiorBafk
surjective.
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If A has integer eigenvectons andv for eigenvaluesr and 1, then B has eigen-
vectorsu andyv for eigenvaluesi? andn (by Perron-Frobenius theory, we assumes
positive). B will be given by multiplication byB on Gg.

Aut(B) consists of matrices ove] that are automorphisms @ and commute
with B (thus must have the same eigenspacAer(é) will consist of the matrices that
have eigenvalugl onuand+n* onvfor j, k € Z. We will show that_a will map Aut, (A)
isomorphically ontdZ /2 x Z x Z by giving elements oAuu(é) whose images undémn
generate all ofZ/2 x Z x Z. SinceA is symmetric,B will be symmetric, and) is an
ESSE[D,BD] from B to B whereD is the permutation matrix such that conjugation by
D gives the transpose of a matrix. In this ca®ey, By) = (1, —1) andLg({() = (1,0,0).
Also note thatp(og) = B andLg(B) = (0,2,1). If yis the ESSE fronB to B given by
(A,nld), thenLg(y) = (0,1,0). Since(1,0,0), (0,2,1), and(0,1,0) will generate all of
Z./2 x 7. x 7. = Aut, (B), the dimension representation®fs surjective.

Alternatively, it is possible to viewg as a product shift 0Ky, x Xa. A pointin Xg
is a point in the fulln-shift cross a point itrKa andy corresponds to the automorphism of
the product shift given bgx, x id.

Recall that a conjugacy arising from an ESSE is called an elementary automor-

phism.

Theorem 5.4.3.Let n and k be prime odd integers such thatd and0 < k? < n. Let
nik  n—k
A= | ? 2 , then the following are true:

1. The dimension representatigm, of A is surjective.

2. The restriction op to the subgroup of Auba) generated by conjugates of elemen-
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tary automorphisms in not surjective.

Remark: Note that the previous example shows for the nasé?, A will have
surjective dimension representation.

Proof of (2): The matrixA has simple spectrum af andk, with eigenvectors of
u=[1,1] andv = [1,—1] respectively. By PropositioB.2.4, the restriction ofp to the
subgroup ofAut(oa) generated by conjugates of elementary automorphisms is a subgroup
that is generated bi and finite order elements. As show beldwat, (A) = Z/2 x 7 x Z,
which is clearly larger than the subgroup generated layd finite order elements]

Proof of (1): The matrixA has simple spectrum af andk, with eigenvectors of
u=[1,1] andv = [1,—1] respectively. Forpc Aut,(A) with (0, Be) = (nt,(—1)'kS)),

La maps@to (I,s,t) € Z/2 x Z x Z. Further,La will map Aut, (A) onto Z/2 x Z x Z
n+(—D'ks  nf—(—D'k
becaus 2 2 will be an integral matrix that commutes wighfor any
nt—(—1'k®  nl+(-1)'ks
2 2
(I,s,t) € Z/2x Zt x Z'*, which generates the grompathbbZ/2 x Z x Z.

SinceA is symmetric, there existy, an ESSE[D,AD] from A to A with D =

01 . A
, andLg((]) = (1,0,0). Another generator ofut, (A) is given bypa(oa) = A

10
with La(A) = (0,1,1). In the construction below, we produgesuch thatay, By) = (n,1)
andp composed with.a mapsyto the(0,1,0) element ofZ/2 x Z2 =~ Aut,_(A). The con-
struction ofy does not requirea or k to be prime: it does use = k mod 2, which is
required for the entries gk to be integers. The three automorphismXgfjiven byuy, v,

andoa will map to a generating set éfut, (A) given by theirLa coordinates of1,0,0),

(0,1,0), and(0,1,1), and thugpa will be surjective.
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(D1,81) , (D2,%) , (D3,Ss)

The automorphisng will be given by a chain of ESSES " — A ==

pg ©SY

A —
A whereD1 andD» are subdivision matrices for in-splittings aBd andD,4 are
amalgamation matrices for in-amalgamations. Further, we will showhHtx D Dy x
D3+ Ds = [n,n] and[1, —1] «* D1 * D2 * D3 * D4 = [1, —1], which implies(ay, By) = (n, 1)
andpa composed with_, mapsy to the(0, 1,0) element ofZ/2 x Z2 = Aut, (A).

We will now briefly describe the general procedure for the splittiigs S, ), (D2, S),
(D3,S3), and(D4, %s).

The splitting(D1,S):

(D1,S1) will be a row splitting of the two rows of\. The first row, [”+" ”5"] will
be split intokiz1 rows of the form[k, 0], %1 rows of the form[0, k], and one row of the

k2 L k n=K7). This is a valid splitting because> k? and

form [P5%
n—k% n—k?, n+k n—k

kK+1 1= ]
2 72 0 272

2

o+ S oK+

The second row[>¥, "2k, will be split into X5 rows of the formlk, 0], ¥4 rows

of the form|[0,k], and one row of the formi"5*, 25 S , ] This is a valid splitting because
n> k2 and
k—1 +1 n—k% n—Kk2 n—k n+k

The matrixS; will have 2 columns andk+ 2 rows because both rows Afare split
k+1 times.

(For presentation purposes, we write 8utranspose.)
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k+1)/2  (k-1)/2 1 k-1)/2  (k+1)/2 1

0,---,0, K-k nié 0,---,0, K-k, n_ie
# of cols= k+1 k+1

A; = S D1 and will bek+ 1 copies of the first column & andk+ 1 copies of the
second column o%; because the first row & was splitk+ 1 times and the second row

of Awas splitk+ 1 times.
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# of cols= k+1 k+1 ,

s o (k+1)/2 rows
0 K (k—1)/2 rows
— —k? —K2
= - - 1 row
K 0 (k—1)/2 rows
0 K (k+1)/2 rows
_k2 —k2
- - 1 row

with K denoting a matrix with all entries equalko
The splitting(D2,S):
A; has 3 different rowsk, - - ,k,0, -+, 0], [0,---,0,k,--- K], and[% ...
Each of thek rows of A; with the form
# of cols = k+1 k+1

K,k 0,---,0
should be split intd rows
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# of cols = k k+1

[0707"'7k7 17 0770]
For 1<i <k, we will call thei-th row above a type (1,i) row.

Each of thek rows of A; with the form
# of cols = k+1 k41
0,---,0, k- K
should be split intd rows

# of cols = k+1 k 1

[Oa"'aoa 07"'7k7 1]
For 1<i <k, we will call thei-th row above a typ€2,i) row.

The two rows ofA; of the form [”‘—2"2, e ,”‘—2"2] should be split intd"‘Tk2 pairs of
rows with each pair summing {a, ..., 1] and such that the first row of the pair has ones in

the firstkiz1 entries and from th&+ 1 entry to the3"T+1 entry, and zeros otherwise. This
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pair is chosen such that the transpose will match the resulting columns that show up in

A,. Each pair of rows will look like

k+1 k—1 k—1 k+1

2 Z 1 Z 2 1
~ = ~ = = ~ = ~ = ~=
1...1 0---0 1 1---1 0---0 0
0...0 1---1 0 0---0 1---1 1

We will refer to this pair of rows as complementary rows.

S will have the form of

(k4 1)/2 blocks of type 1 rows
(k—1)/2 blocks of type 2 rows
(n—k?)/2 pairs of complementary rows
(k—1)/2 blocks of type 1 rows

(k+1)/2 blocks of type 2 rows

(n—k?)/2 pairs of complementary rows
Ay will have k copies of the firstk+ 1) /2 columns oR; because the firgk+1),/2

rows ofA; are splitk times. TherA, will havek copies of thegk+1) /2+1to (k+1)/2+

(k—1)/2 columns ofR; because thék+ 1)/2+1 to (k+1)/2+ (k—1)/2 rows ofA;

are splitk times, and so on.
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# of cols = K2 n—k? K2 n— k2

DK 1 0 0 )
k(k+1)/2 rows
DK 1 0 0
0 0 DK 1 )
k(k—1)/2 rows
0 0 DK 1 J
Ay = P P P P n—k? rows
DK 1 0 0 )
k(k—1)/2 rows
DK 1 0 0 )
0 0 DK 1 )
k(k+1)/2 rows
0 0 DK 1 )
| P P P P n— k2 rows

where 0 and 1 represent matrices filled with zeros and ones respeditely,the
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k by k? matrix

# of cols = Kk k k
(. . )
ku 7k7 07 707 07 70
DK = 0,---,0, |(7...,k7 o,---,0
0,---,0, 0,---,0, K-k
\ J

and then — k? rows of P are given by repeatirfg — k?) /2 times the following pair

of rows.
k(k2+1) k(k;l) n— K2 k(kgl) k(k2+1) (n—K2)
0,---,0, 1,1, 0,---,0, 0,---,0, 1,1, 1,--,1

The amalgamatiofD3, S3):

We now turn to the third ESSB, — As. The matrixAg will be the total 1-step row
amalgamation oA,. The matrixA; has X+ 2 distinct rows ands is the (2k+2) x 2n
matrix whose rows are the distinct rowsAf. The matrixDs3 is the amalgamation matrix

such thatd; = D3S3 andAs = SD3. Explicitly we choose the ordering of the rows$s
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so thatSs has the following form:

K k (n—K2) k k (n—K2)
(—— —— — — —— — )
ka 7ka 07 707 17"'717 07" 707 07 707 07 70
07 ’ O; k7 ) k7 17 ’ 17 07 ) O; 07 ) 07 07 ) 0
07 ) 07 O? Y 07 07 : 9 07 k) ) k’ O? Y 07 17 ) 1
07 707 07 ) 07 07 : 707 07 707 kv ) k7 17 ) 1
17 ) 17 07 ) 07 17 ) 17 17 Tty 17 07 ) 07 07 70
Oa 7Oa 17 ) 17 07 : 707 Ov 707 17 ’ 17 17 ) 1

Az can be computed froigs as follows:

e for 1 <i <k, thei-th column ofAgz is the sum of tha + jk columns ofSs for

0<j<Xl_1andthen+i+ jkcolumnsofSsforo<j<&t-1.

e For1<i <k, the(k+i)-th column ofA;z is the sum of thé@ +i+ jk columns of

Sfor0< j <1 —1andthen+ Kk~ )+|+cholumnsofS3forO<J k11,
e The 2k+1 column ofA; will be the sum of thé&? + 1 ton columns ofSs.

e The 2k+2 column ofA; will be the sum of then+ k? + 1 to 2n columns ofSs.
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# of cols = k

——
k)... ,k7
k7 "7k7
07 "707
07 "707

Az = k7 7k7
k7 "7k7
07 "707
07 "707
k)... 7k,
07 "707
\

——
0,---,0,
0,---,0,
ka' '7ka
K- K,
0,---,0,
0,---,0,
K-k,
K,--- K,
0,---,0,
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The amalgamatiofD4, &):
As shown aboveAs will have only 2 different row patterns,
k,....k,0,...,0, “‘—Zkz, “‘Tkz] and[0,...,0,k, ..., k, ”‘—2“2, ”‘—2"2]. A4 is the total 1-step row

amalgamation ofz So,

# of cols = k k
—— [P—— 2 12
Sl: kv '7k7 Oa"'aoa %’ %
07 707 ka '>k7 n;|(2 n;l@

e The first column ofA; will be the sum of columns 1 ttk+1)/2, k+ 1 tok+ (k—

1)/2, and 2k+1 column o8s.

e The second column & is the sum of column&+1)/2+1tok, k4 (k—1)/2+1

to 2k, and X+ 2 column ofS;.

n+k n=k

A4 ends up bein 2z =A

nk nik
2 2

Allthat remains is to shoyd, 1]D1D2D3D4 = [n,n] and[1, —1]D1D2D3D4 = [1, —1].
D1 andD» will copy columns according to how the rows AfandA; are split.D3 andDy4
will sum columns according to how the rowsAf andAgz are amalgamated. Because the
first n rows ofA, are split from the first row oA and the second n rows @b are split

from the second row oA, [1,1]D1Dp = L1 1,---,1

ncols ncols
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# of cols = k k

[171]D1D2D3:[17"'71]D3: k,"',k, K,--- .k n_k27 n_k2]

because there akecopies of the first R rows of 3 in A> andn — k? copies of the

each of the last two rows & in Ay. [1,1]D1D,D3D4 =

k+1)/2  (k-1)/2  (k=1)/2  (k=1)/2

— — —
K-k k- K k- K K-k n—k2, n—k?|Dy4

= [n,n| because

o thefirstto(k+1)/2,k+1tok+ (k—1)/2, and X+ 1 rows ofAz are the same as
the first row ofS;, soD4 will sum these columns and« (k+1) /2+kx (k—1)/2+

n—k2 =n.

e the(k+1)/2+1tokk+ (k—1)/2+1 to X, and X+ 2 rows ofAz are the same
as the second row &, soD4 will sum these columns arnkd« (k+ 1) /2+ k* (k—

1)/24+n—k? =n.

Because the first n rows 8§ are split from the first row oA and the second n rows

of Ay are split from the second row &,
[1’—1]D1D2: 1,...71 _1’...’_1

n cols ncols
Let (S3); be the i-th row of the matris. The i-th coordinate ofl, —1] « D1 « Do« D3 =
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[1,..1,—-1 ... — 1] x D3 is the difference between the number of the first n rowaathat

equal(S3); and the number of the second n rows that are equEstp.

e There argk+ 1)/2 copies of(S3)1 in the first n rows ofAz and (k—1)/2 copies
of (S3)1 in the second n rows ofz, which means that the first coordinate of

[1, —1]D1D2D3 is 1.
e The same argument applies to the first k coordinaté$,efl] « D1 x D2 D3.

e Fork+1 <i < 2k, there are(k—1)/2 copies of(Sg); in the first n rows ofAz
and(k+ 1)/2 copies of(S3); in the second n rows &g, so the i-th coordinate of

[1,—1]* D1+ D2+ D3is -1.

e Fori=2k+1,2k+2, there ardn—k?)/2 copies of(S); in the first n rows ofdg
and(n—k?)/2 copies of(z); in the second n rows dfg, so the i-th coordinate of

[1,—1] «D1* D2« D3is 0.

This means that

[1,—1]«D1+DyxD3 = 1.1 L1 0 0] .
k cols k cols

In order to compute

[1,—1]D1D2D3D4 = L1 Lo 0 0|D4

# of cols= k k

note that(k+ 1) /2 of the first k rows andk — 1) /2 of the second k rows @4z are equal

to the first row ofS, and(k— 1) /2 of the first k rows andk + 1) /2 of the second k rows
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of Az are equal to the second row &f. This means that
[1,—1] % D1+ D+ D3 D4 = [1,—1]. This completes Example4.3.
While the preceding example is not general, it is my hope that this example will

lead to some insight for more general constructions.
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Appendix A

Computations for Theorem 2.3

8 5
Let us consider the case whenn=13 and k = 3,/and . In the construction

5 8
below, we producg, such thafay, By) = (13,1) andp composed witl.o mapsy to the

(0,1,0) element ofZ/2 x 72 = Aut,(A). y will be given by a chain of ESSEA(Dl—’S>l)

Al (DZ—’Sf) Ao ('33—’53) Az (D“—’Sf‘) AwhereD1 andD5 are subdivision matrices for row splittings
andD3 andD,4 are amalgamation matrices for row amalgamations. Further, we will show
that [1,1] x D1 % D2 D3 * Dg = [13,13] and[1, —1] x D1 %« D2« D3 * D4 = [1,—1], which
implies (ay, By) = (13,1) and pa composed witi_a mapsy to the (0,1,0) element of

7./2 x 72 = Aut, (A).

Below is the Matlab code and comments that comged showy has the proper

attributes.
A=1[8, 5
5 , 8]

% A has eigenvalues of 13 and 3.

[1,1]

"
I

% x is the Perron eigenvector of A.

y = [1,-1]
% y is the eigenvector of 3.

S1 = [3,0;

95



3,0;
0,3;
1,1;
1,1;
3,0;
0,3;
0,3;
1,1;

1,1]

pt1 = [1,1,1,1,1,0,0,0,0,0;
0,0,0,0,0,1,1,1,1,1]
D1*S1
ans =
8 5
58
% This shows that D1*S1=A and below we define A1=S1*D1

Al

S1%D1

Al =

3333300000

3333300000

0000033333

1111111111

1111111111
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3333300000
0000033333
0000033333
1111111111
1111111111
% We define the row splitting matrix of Al by
s2 = [3,0,0,1,1,0,0,0,0,0;
0,3,0,1,1,0,0,0,0,0;
0,0,3,1,1,0,0,0,0,0;
3,0,0,1,1,0,0,0,0,0;
0,3,0,1,1,0,0,0,0,0;
0,0,3,1,1,0,0,0,0,0;
0,0,0,0,0,3,0,0,1,1;
0,0,0,0,0,0,3,0,1,1;
0,0,0,0,0,0,0,3,1,1;
1,1,0,1,1,1,0,0,0,0;
0,0,1,0,0,0,1,1,1,1;
1,1,0,1,1,1,0,0,0,0;
0,0,1,0,0,0,1,1,1,1;
3,0,0,1,1,0,0,0,0,0;
0,3,0,1,1,0,0,0,0,0;
0,0,3,1,1,0,0,0,0,0;
0,0,0,0,0,3,0,0,1,1;

0,0,0,0,0,0,3,0,1,1;
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0,0,0,0,0,0,0,3,1,1;
0,0,0,0,0,3,0,0,1,1;
0,0,0,0,0,0,3,0,1,1;
0,0,0,0,0,0,0,3,1,1;
1,1,0,1,1,1,0,0,0,0;
0,0,1,0,0,0,1,1,1,1;
1,1,0,1,1,1,0,0,0,0;

0,0,1,0,0,0,1,1,1,1]

p2 = [1,0,0,0,0,0,0,0,0,0;
1,0,0,0,0,0,0,0,0,0;
1,0,0,0,0,0,0,0,0,0;
0,1,0,0,0,0,0,0,0,0;
0,1,0,0,0,0,0,0,0,0;
0,1,0,0,0,0,0,0,0,0;
0,0,1,0,0,0,0,0,0,0;
0,0,1,0,0,0,0,0,0,0;
0,0,1,0,0,0,0,0,0,0;
0,0,0,1,0,0,0,0,0,0;
0,0,0,1,0,0,0,0,0,0;
0,0,0,0,1,0,0,0,0,0;
0,0,0,0,1,0,0,0,0,0;
0,0,0,0,0,1,0,0,0,0;

0,0,0,0,0,1,0,0,0,0;
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Al

0,0,0,0,0,1,0,0,0,0;
0,0,0,0,0,0,1,0,0,0;
0,0,0,0,0,0,1,0,0,0;
0,0,0,0,0,0,1,0,0,0;
0,0,0,0,0,0,0,1,0,0;
0,0,0,0,0,0,0,1,0,0;
0,0,0,0,0,0,0,1,0,0;
0,0,0,0,0,0,0,0,1,0;
0,0,0,0,0,0,0,0,1,0;
0,0,0,0,0,0,0,0,0,1;

0,0,0,0,0,0,0,0,0,1]"
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11

h Al

A2 =

A2

1111111

=D2*x32 and we

S2%D2

define A2=S2xD2
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% We define S3 to be the distinct rows of A2 which create
A3 as the 1-step total column amalgamation of A2.

S3 = [ A2(1,:) ; A2(2,:) ; A2(3,:); A2(7,:); A2(8,:);
A2(9,:); A2(10,:) ; A2(11,:)]

S3 =

3330000001111 0000000000000
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D3
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00000001
max (max (A2-D3*S3)
ans = 0
%This computation shows that $A2 = D3*S3
A3 = S3%D3

A3 =
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%S4 is the set of distinct rows of A3 which will define A4 as the
1-step total column amalgamation of A3.

S4 = [ A3(1,:) ; A3(3,:) ]

sS4 =

33300022

00033322
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D4x%S4

00033322

7%We see that A3 = D4*S4 and below that A4=A.
A4 = S4xD4
Ad =

85

58

x*D1*D2xD3*D4
ans =

13 13
y*D1+D2xD3*D4

ans =
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1 -1

% This shows that (\alpha_{\gamma}, \beta_{\gamma}) = (13,1).
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