
ABSTRACT

Title of dissertation: SeSFJava: A FRAMEWORK FOR DESIGN
AND ASSERTION-TESTING OF
CONCURRENT SYSTEMS

Tamer Elsharnouby, Doctor of Philosophy, 2005

Dissertation directed by: Professor A. Udaya Shankar
Department of Computer Science

Many elegant formalisms have been developed for specifyingand reasoning about

concurrent systems. However, these formalisms have not been widely used by developers

and programmers of concurrent systems. One reason is that most formal methods involve

techniques and tools not familiar to programmers, for example, a specification language

very different from C, C++ or Java. SeSF is a framework for design, verification and test-

ing of concurrent systems that attempts to address these concerns by keeping the theory

close to the programmer’s world.

SeSF considerslayered compositionality. Here, a composite system consists of

layers of component systems, andservicesdefine the allowed sequences of interactions

between layers. SeSF uses conventional programming languages to define services. Specif-

ically, SeSF is a markup language that can be integrated withany programming language.

We have integrated SeSF into Java, resulting in what we call SeSFJava. We developed a

testing harness for SeSFJava, called SeSFJava Harness, in which a (distributed) SeSFJava

program can be executed, and the execution checked against its service and any other



correctness assertion. A key capability of the SeSFJava Harness is that one can test the

final implementation of a concurrent system, rather than just an abstract representation of

it.

We have two major applications of SeSFJava and the Harness. The first is to the

TCP transport layer, where service specification is cast in SeSFJava and the system is

tested under SeSFJava Harness. The second is to a Gnutella network. We define the

intended services of Gnutella – which was not done before to the best of our knowledge

– and we tested an open-source implementation, namely Furi,against the service.



SeSFJava: A FRAMEWORK FOR DESIGN AND
ASSERTION-TESTING OF CONCURRENT SYSTEMS

by

Tamer Elsharnouby

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Committee:

Professor A. Udaya Shankar, Chair/Advisor
Professor Eyad Abed, Dean’s Representative
Professor Ashok Agrawala
Professor Samrat Bhattacharjee
Professor Atif Memon



c© Copyright by

Tamer Elsharnouby

2005



To My Parents Amani and Mahmoud,

To Rehab and Grandpa Mohamed



ACKNOWLEDGMENTS

I owe my gratitude to all the people who have made this dissertation possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I’d like to thank my adviser, Professor A.Udaya Shankar for

giving me an invaluable opportunity to work on challenging and extremely interesting

projects over the past years. He has always made himself available for help and advice and

there has never been an occasion when I’ve knocked on his doorand he hasn’t given me

time. It has been a pleasure to work with and learn from such anextraordinary individual.

I owe my deepest thanks to my family - my motherAmaniand my fatherMahmoud

who have always stood by me and guided me through my career, and have pulled me

through against impossible odds at times. Words cannot express the gratitude I owe them.

I would also like to thank my sister Rehab and my grandpa Mohamed.

My friends have been a crucial factor in my finishing smoothly. I’d like to express

my gratitude to Khaled Arisha, Ahmed Elgammal, Mohamed Elmohandes, Gehad Galal,

Ayman Khalafallah, Tamer Nadeem, Zaki Sharbash and Adel Youssef for their friendship

and support. I would also like to thank my friends Mohamed Abdallah, Ahmed Abdel

Hafez, Abdel Hameed Badawy, Mona Diab, Tamer Elbatt, MahmoudElfayoumy, Ashraf

Elmasry, Mohamed Tamer Elrefae, Tarek Ghanem, Walid Gomaa,Yaser Jaradat, Hesham

Mahmoud, Anis Valiani and Moustafa Youssef.

It is impossible to remember all, and I apologize to those I have inadvertently left

iii



out. Thank Allah and thank you all!

iv



TABLE OF CONTENTS

1 Introduction 1
1.1 SeSFJava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Bank example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . .. . 9

2 Related Work 10
2.1 System modeling approaches . . . . . . . . . . . . . . . . . . . . . . . .10
2.2 Runtime monitoring of programs . . . . . . . . . . . . . . . . . . . . . .14
2.3 Model checking and theorem proving . . . . . . . . . . . . . . . . . .. 16

I SeSFJava 21

3 SeSF Overview 22
3.1 Atomicity and the interleaving model . . . . . . . . . . . . . . . .. . . 23
3.2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Service satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

4 SeSFJava by Example 36
4.1 Bank and client system programs . . . . . . . . . . . . . . . . . . . . . .37
4.2 Composite system ofBank andClients . . . . . . . . . . . . . . . . . . . 39
4.3 Account service program . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Service satisfaction conditions: event-trace conditions . . . . . . . . . . . 41
4.5 Service satisfaction conditions: program version . . . .. . . . . . . . . . 43

4.5.1 ConstructingBank-wrt-Account . . . . . . . . . . . . . . . . . . 43
4.5.2 ConstructingAccount-wrt-Bank . . . . . . . . . . . . . . . . . . 44
4.5.3 Conditions onBank∗ . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.4 ConstructingClient-wrt-Account . . . . . . . . . . . . . . . . . . 47
4.5.5 ConstructingAccount-wrt-Client . . . . . . . . . . . . . . . . . . 48
4.5.6 Conditions onClient∗ . . . . . . . . . . . . . . . . . . . . . . . . 49

v



5 SeSFJava Harness by Example 54
5.1 ConstructingBank-wrt-Account′ . . . . . . . . . . . . . . . . . . . . . . 55
5.2 ConstructingAccount-wrt-Bank′ . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Constructing testing platform . . . . . . . . . . . . . . . . . . . . . .. . 58
5.4 Testing and GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 SeSFJava Harness Overview 64
6.1 Process-based versus thread-based . . . . . . . . . . . . . . . . .. . . . 65
6.2 Types of assertions supported . . . . . . . . . . . . . . . . . . . . . .. . 68
6.3 Assertion checking locations . . . . . . . . . . . . . . . . . . . . . .. . 69
6.4 Collecting data for assertion checking . . . . . . . . . . . . . . .. . . . 69
6.5 Evaluation of assertions . . . . . . . . . . . . . . . . . . . . . . . . . .. 71
6.6 Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.7 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.7.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.7.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

II Applications 79

7 Data Transfer Protocol 80
7.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3 DT satisfaction conditions . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4 Testing and assertion checking harness . . . . . . . . . . . . . .. . . . . 91

7.4.1 ConstructingSW Sys∗′ . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.2 ExecutingSW Sys∗′ . . . . . . . . . . . . . . . . . . . . . . . . 93

8 Connection Management Protocol 95
8.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.2 Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3 CM satisfaction conditions . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.4 Testing and assertion checking harness . . . . . . . . . . . . . .. . . . . 110

8.4.1 ConstructingCM Sys∗′ . . . . . . . . . . . . . . . . . . . . . . . 111
8.4.2 ExecutingCM Sys∗′ . . . . . . . . . . . . . . . . . . . . . . . . 112

9 Educational Use of SeSFJava 114
9.1 Phase I: Data transfer protocol (correctness) . . . . . . . .. . . . . . . . 116

9.1.1 Testing phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.1.2 Grading phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.2 Phase II: Data transfer protocol (performance) . . . . . . .. . . . . . . . 119
9.3 Phase III: Connection management protocol . . . . . . . . . . . .. . . . 120
9.4 Phase IV: Putting it all together . . . . . . . . . . . . . . . . . . . .. . . 121
9.5 Experience with the students . . . . . . . . . . . . . . . . . . . . . . .. 121

vi



10 Peer-to-Peer Network: Gnutella 123
10.1 Gnutella overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10.1.1 Joining the Gnutella network . . . . . . . . . . . . . . . . . . . .127
10.1.2 Gnutella binary messages . . . . . . . . . . . . . . . . . . . . . 128

10.2 TheGnu service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.2.1 Join/depart component . . . . . . . . . . . . . . . . . . . . . . . 131
10.2.2 Query component . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.3 Internal serviceGnu TCP . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.3.1 Join/depart component . . . . . . . . . . . . . . . . . . . . . . . 139
10.3.2 Query component . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10.4 Testing and assertion checking of Furi . . . . . . . . . . . . . .. . . . . 152

11 Conclusions and Future Work 165

A Preprocessed Code ofAccountExample 167
A.1 BankSystem.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.2 Accountwrt Bank.java . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B Conversion versus Embedded Markup Language 172

C Complete SeSFJava Programs of Data Transfer Protocol 177
C.1 SWSource.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
C.2 SWSink.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
C.3 DT.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Bibliography 185

vii



LIST OF TABLES

8.1 Events of serviceCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.1 Improvement using SeSFJava . . . . . . . . . . . . . . . . . . . . . . . .122

10.1 Events of join/depart component of serviceGnu. The first parameter in-
dicates the node where the event occurs. . . . . . . . . . . . . . . . . .. 133

10.2 Events of join/depart component of serviceGnu TCP. The first parameter
indicates the servent where the event occurs. . . . . . . . . . . . .. . . . 142

10.3 Events of query component of serviceGnu TCP. The first parameter
indicates the servent where the event occurs. . . . . . . . . . . . .. . . . 151

viii



LIST OF FIGURES

1.1 Example: systems and services . . . . . . . . . . . . . . . . . . . . . .. 6
1.2 Composite system of bank and two clients . . . . . . . . . . . . . . .. . 7

2.1 L-to-I category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 I-to-L category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Concurrent execution modeled as non-deterministic interleaving . . . . . 24

4.1 AccountExample: systems and services . . . . . . . . . . . . . . .. . . 36
4.2 AccountExample: system and service programs . . . . . . . . .. . . . . 37
4.3 Composite system of bank and two clients . . . . . . . . . . . . . . .. . 40
4.4 BankSystem system program (file BankSystem.java) . . . . . . .. . . . 50
4.5 ClientSystem system program (file ClientSystem.java) . . .. . . . . . . 51
4.6 BankInterface interface (file BankInterface.java) . . . . .. . . . . . . . . 52
4.7 ClientInterface interface (file ClientInterface.java) .. . . . . . . . . . . . 52
4.8 AccountInterface interface (file AccountInterface.java) . . . . . . . . . . 52
4.9 AccountService service program (file AccountService.java) . . . . . . . . 53

5.1 Bank∗ andBank∗′ composite systems. . . . . . . . . . . . . . . . . . . . 55
5.2 HarnessInterface interface (file HarnessInterface.java) . . . . . . . . . . . 55
5.3 Graphical Interface of the Harness . . . . . . . . . . . . . . . . . .. . . 63

6.1 SeSFJava Harness: operation overview . . . . . . . . . . . . . . .. . . 65
6.2 Configuration file ofAccountExample (file account.cfg) . . . . . . . . . . 66
6.3 Testing framework for thread-based system . . . . . . . . . . .. . . . . 67
6.4 List of threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5 methodbreakpoint of Tester.java . . . . . . . . . . . . . . . . . . . . . . 74
6.6 Component system phases . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.7 Component system phases of example 1 . . . . . . . . . . . . . . . . . .77
6.8 Composite system phases of example 2 . . . . . . . . . . . . . . . . . .78

7.1 Data transfer service and protocol system . . . . . . . . . . . .. . . . . 81
7.2 SW Source system program in SeSF . . . . . . . . . . . . . . . . . . . . 83
7.3 SW Sink system program in SeSF . . . . . . . . . . . . . . . . . . . . . 84
7.4 Outline of SeSFJavaSW Source system program (file SWSource.java)

(see appendix C.1 for complete program) . . . . . . . . . . . . . . . . . 85
7.5 Outline of SeSFJavaSW Sink system program (file SWSink.java) (see

appendix C.2 for complete program) . . . . . . . . . . . . . . . . . . . . 86

ix



7.6 SeSFDT: data transfer service program . . . . . . . . . . . . . . . . . . 88
7.7 Outline of data transfer service program (file DT.java) (see appendix C.3

for complete program) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.8 Service satisfaction transformations . . . . . . . . . . . . . .. . . . . . 90
7.9 SW Sys∗ andSW Sys∗′ composite systems . . . . . . . . . . . . . . . . . 93

8.1 Connection management service and protocol system . . . . .. . . . . . 96
8.2 CM Client system program in SeSF . . . . . . . . . . . . . . . . . . . . 98
8.3 CM Server system program in SeSF . . . . . . . . . . . . . . . . . . . . 99
8.4 Successful connection and disconnection scenario . . . .. . . . . . . . . 101
8.5 SeSFCM: connection management service program (Part 1) . . . . . . . 104
8.6 SeSFCM: connection management service program (Part 2) . . . . . . . 105
8.7 Effect of client-side events fo serviceCM on<cStatus> . . . . . . . . . 107
8.8 Effect of server-side events of serviceCM on<sStatus, sAccepting> . . 107
8.9 Service satisfaction transformations . . . . . . . . . . . . . .. . . . . . 108
8.10 CM Sys∗ andCM Sys∗′ composite systems . . . . . . . . . . . . . . . . . 112

9.1 Phase I overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.2 Phase III overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.1 Gnutella protocol stack . . . . . . . . . . . . . . . . . . . . . . . . . .. 124
10.2 Example of a Gnutella network . . . . . . . . . . . . . . . . . . . . . .126
10.3 Example of a successful connection scenario in Gnutella 0.6 . . . . . . . 128
10.4 Gnutella message structure . . . . . . . . . . . . . . . . . . . . . . .. . 128
10.5 Gnu join/depart scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . 135
10.6 Gnu join/depart scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . 135
10.7 Gnu join/depart scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . 136
10.8 Gnu join/depart scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.9 Gnu join/depart scenario 5 . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.10Gnu join/depart scenario 6 . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.11Gnu TCP join/depart scenario 1 . . . . . . . . . . . . . . . . . . . . . . 144
10.12Gnu TCP join/depart scenario 2 . . . . . . . . . . . . . . . . . . . . . . 145
10.13Gnu TCP join/depart scenario 3 . . . . . . . . . . . . . . . . . . . . . . 145
10.14Gnu TCP join/depart scenario 4 . . . . . . . . . . . . . . . . . . . . . . 146
10.15Gnu TCP join/depart scenario 5 . . . . . . . . . . . . . . . . . . . . . . 147
10.16Gnu TCP join/depart scenario 6 . . . . . . . . . . . . . . . . . . . . . . 148
10.17Gnu TCP query scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.18 Join/depart component ofGnu service in SeSF (Part 1) . . . . . . . . . . 155
10.19 Join/depart component ofGnu service in SeSF (Part 2) . . . . . . . . . . 156
10.20 Join/depart component ofGnu service in SeSF (Part 3) . . . . . . . . . . 157
10.21 Query component ofGnu service in SeSF . . . . . . . . . . . . . . . . . 158
10.22 Join/Depart component of GnuTCP service in SeSF (Part 1) . . . . . . . 159
10.23 Join/Depart component of GnuTCP service in SeSF (Part 2) . . . . . . . 160
10.24 Join/Depart component of GnuTCP service in SeSF (Part 3) . . . . . . . 161
10.25 Join/Depart component of GnuTCP service in SeSF (Part 4) . . . . . . . 162

x



10.26 Join/Depart component of GnuTCP service in SeSF (Part 5) . . . . . . . 163
10.27 Query component ofGnu TCP service in SeSF . . . . . . . . . . . . . . 164

B.1 BankSystem SeSF system program . . . . . . . . . . . . . . . . . . . . . 173
B.2 ClientSystem SeSF system program . . . . . . . . . . . . . . . . . . . . 174
B.3 AccountService SeSF service program . . . . . . . . . . . . . . . . .. . 175

xi



Chapter 1

Introduction

Formal specification and correctness analysis of concurrent systems have been investi-

gated since the mid-1970s. Aconcurrent systemis a collection of active entities that

execute simultaneously and interact with each other duringthe course of their lifetimes.

Formal specification of a system refers to a description of the desired external behavior

of the system in a language with mathematically defined syntax and semantics. Correct-

ness analysis of a system is a proof that the systemsatisfiesits specification, i.e., the

system does what it is supposed to do. The terms “specification” and “system satisfies its

specification” have various interpretations in software engineering, spanning functional-

ity, performance, reliability and resource utilization. Here, we use the terms in the sense

of correct functionality. The execution of a concurrent system is represented by the se-

quence of state changes, and a correctness property is a condition on this sequence of

states.

Many elegant formalisms have been developed for specifyingand reasoning about

concurrent systems, for example, Lynch and Tuttle’s I/O automata [49], Chandy and

Misra’s UNITY [12, 58], Lamport’s TLA [44], Milner’s CCS [57],Hoare’s CSP [33, 69],

1



Manna and Pnueli’s Temporal Logic [50, 51], and Lam and Shankar’s relational nota-

tion [43]. However, these formalisms have not been widely used by developers and

programmers of concurrent systems. One reason is that most formal methods involve

techniques and tools that are not familiar to programmers, for example, a specification

language that is very different from Java, C or C++.

SeSF is a framework for design, verification and testing of concurrent systems [78]

that addresses these concerns by keeping the theory close tothe programmer’s world.

This dissertation presents an implementation of SeSF in Java. SeSF uses the termser-

vice specificationto refer to a formal specification of a system, and the termsystem

specification torefer to the description of the system itself.

The system specification is intended for execution. Hence, it is defined by pro-

grams written in an implemented programming language. Furthermore, it must satisfy

the computational, synchronization, and other constraints of the underlying platform– for

example, does the platform have a single processor, a multi-processor with shared mem-

ory, or a set of loosely-coupled message-passing processors.

The service specification is a description of the external behavior of the system,

capturing all (and only) the desired properties and unencumbered by implementation is-

sues and internal structure. Its primary goal is to be easy tounderstand. This invariably

means that the service specification assumes much more powerful atomicity, memory,

and computation than is required by the system specification.

In addition, to systems and services, SeSF also formalizes the notion of a system

satisfying its service. Informally, this holds if (1) the system is ready to accept any input

allowed by the service, and (2) any output the system does is allowed by the service.

2



Like most formalisms, SeSF providescompositionality. This means that in a com-

posite system, if a component system is replaced by another system that satisfies the

service of the original component system, then the composite system continues to work

properly. In most formalisms, the service defines the permissible interactions between

the system and its environment. However, our interest is inlayered compositionality.

Here, a composite system consists of layers of component systems, and services define

the allowed sequences of interactions between layers.

1.1 SeSFJava

Services can be defined using one of the following: (1) an abstract non-executable for-

malism, e.g., TLA [44] and CSP [33, 69]; (2) a high-level specification language that can

be compiled and executed, e.g., PAISLey [88] and Statemate [29]; and (3) a conventional

programming language, e.g., C, C++ and Java.

The second and third options lead to what we callexecutable services(or exe-

cutable specifications). The adoption of executable services, in general, and in SeSF in

particular, has the following consequences. First, the notion of a system satisfying a ser-

vice is equivalent to the composite program of the system andservice satisfying certain

correctness properties. Second, developers cantesta concurrent system against its service

simply by executing the composite program of the system and the service, and checking

whether those properties are violated.

Compared to the second option, the third option has certain advantages and dis-

advantages. One advantage of the third option is that the service specification language

3



is familiar to programmers, perhaps even the same language as that of implementation.

This reduces the possibility of the service specification being misunderstood by imple-

mentors. Another advantage is that it allows actual implementations to be tested, rather

than an abstract model. One disadvantage of the third optionis that service specifications

are invariably larger in size, making “mechanical verification” practically infeasible, al-

though we think that this is not a big loss because mechanicalverification is currently

impractical for unbounded-state models. Another concern is that the service specification

language may suffer from inconsistencies and ambiguities that plague most conventional

programming languages.

Our approach is really a mix of the second and third options. SeSF itself is a high-

level executable language, but it is not compiled. Instead,we treat SeSF as a markup

language that can be integrated with any programming language. We integrate SeSF

with Java, resulting in what we callSeSFJava. We choose Java because of its relatively

precise semantics, popularity and built-in concurrency constructs. A SeSFJava program

is a Java program with SeSF tags inserted as Java comments. Both systems and services

are specified by SeSFJava programs.

Because the SeSFJava tags are Java comments, a SeSFJava program can be com-

piled and executed as a Java program. Thus, for implementation purposes, a SeSFJava

system program is identical to the original Java program. Butbecause of the SeSF tags,

it can also be tested against its service and other correctness assertions. We developed a

testing harness, calledSeSFJava Harness, that can execute a (distributed) SeSFJava sys-

tem program and check whether the resulting execution satisfies the relevant SeSFJava

service program and any other desired correctness assertions.

4



This is not straightforward because the SeSF tags are at a much higher level than

most programming languages, including Java. In particular, to test a system against its ser-

vices, the Harness must construct the composite program of system and services, which is

not trivial in the context of dynamically created objects and processes. SeSFJava Harness

is able to handle general Java programs (e.g., not restricted to finite-state programs) and

general services with arbitrary safety and progress assertions.

The development of SeSFJava and SeSFJava Harness is motivated to a large extent

by the desire to eliminate errors that are introduced in going from formal specifications to

implementations, due to the developer’s lack of expertise with the specification language

or formal methods in general. By defining specifications in conventional languages, SeS-

FJava frees the programmer from having to understand two different languages. SeSFJava

Harness allows developer to test a system on its actual platform.

As mentioned earlier, using Java as a specification languageexposes specifications

to the flaws and ambiguities of Java. For example, Java has an ambiguous memory

model [67, 52], and different Java implementations have different memory models. For

another example, Java Virtual Machines running onWindows have three priority levels,

whereas those running onSunOS have thirty one priority levels.

1.2 Bank example

We illustrate the discussion above with a very brief exampleof aBank system andClient

systems as shown in figure 1.1. This example is expanded upon in chapters 4 and 5.

The clients request toupdate (either by depositing to or withdrawing from) a shared

5



account in theBank. TheBank informs the client of the transaction outcome whether it is

accepted (ack) or rejected (nack). The serviceAccount specifies the acceptable sequences

of interactions (update, ack andnack) the lower layer of theBank and the upper layer

of the Clients. Interactions are . In particular, (1) each client has at most one update

pending, and (2) the outcome of an update isnack iff the update is a withdrawal for an

amount greater than the balance in the account.

Lower layer (service offerer)Bank

Client Client Client

Account

Upper Layer (service user)

Figure 1.1: Example: systems and services

TheBank andClient systems are specified by SeSFJava system programs. System

programs are similar toclassesin programming languages, and systems areinstancesof

the classes. A system program defines constants, variables,functions that are initiated

(callable) by the environment, referred to asxc events(externally controlled events), and

functions that are initiated by the system itself, referredto aslc events(locally-controlled

events). Each event has an enabling condition which has to hold for its execution to be

correct (e.g., a client can initiate an update only if it currently has no outstanding balance).

SeSF does not impose any particular behavior when a system’sxc event is called when

not enabled. The system can block, or respond with an error message, but it may also not

check (and perhaps behave unpredictably later on).

The Account service is specified by a SeSFJava service program that defines the

events of the lower layer callable from the upper layer, referred to asdnw events(down-

6



ward events), and the events of the upper layer callable fromthe lower layer, referred to as

upw events(upward events). SoAccount defines dnw eventupdate and upw eventsack

andnack. SeSF also defines the conditions for systemBank to satisfy serviceAccount,

and the conditions for systemClient to satisfy serviceAccount.

TheBank andClient system programs as well as theAccount service programs are

in SeSFJava, that is, they are Java programs with SeSFJava tags. These programs are

compiled using a standard Java compiler. The SeSFJava tags are inserted as comments.

For example, to specify that eventupdate of systemBank is callable from the environment

(clients in this case), the programmer inserts tag “//# xcevent;” just before the method’s

header.

For implementation, the programmer can treat theBank andClient programs as

Java programs, compile them, and run them as illustrated in figure 1.2(a).

(b) With Harness

Client1Client0

Bank Account

Client1Client0

Bank

Harness

(a) Without Harness

Figure 1.2: Composite system of bank and two clients

For testing, the programmer uses a SeSFJava preprocessor toprocess the SeSFJava

tags inside the SeSFJava programs. This preprocessor instruments the program so as to

connect theClient andBank systems to the Harness, and send the local snapshots (data and

control variables) of the systems to the Harness at predetermined breakpoints. After pre-

processing, the systems and the Harness, which includes thepreprocessedAccount pro-

gram, are compiled using a standard Java compiler. Then theClients,Bank andAccount

7



are executed together under the control of the Harness (figure 1.2(b)). During the exe-

cution, the Harness constructs a global snapshot from theselocal snapshots states, and

records any violations to properties stated in the systems and services.

1.3 Applications

We have done two major applications of SeSFJava and the Harness. The first is to the TCP

transport protocol, where the service specification is castin SeSFJava and the system is

tested under SeSFJava Harness. The second is to a Gnutella network. We define the

intended services of Gnutella – which was not done before to the best of our knowledge

– and tested an open-source implementation, namely Furi, against the services.

The TCP transport protocol application was also done in the context of the intro-

ductory networks course (CMSC417) at the Department of Computer Science of the Uni-

versity of Maryland. This educational use of SeSFJava and Harness was motivated by our

desire to expose students to formal methods and to see its effectiveness in a “real-life” sit-

uation. Networking course projects are usually described by an informal specification and

a collection of test cases. Students often misunderstand the specification or oversimplify

it to fit just the test cases. Using formal methods, in general, eliminates these misun-

derstandings and allows the students to test their projectsthoroughly, but at the expense

of learning a new specification language within the tight time schedule of the semester.

Using SeSFJava eliminates such expense. The use of SeSF significantly increased the

percentage of students who completed the projects, reducedtheir email queries about the

specification, and reduced the grading time.

8



1.4 Structure of the Dissertation

Chapter 2 presents related work. Chapter 3 describes SeSF. Chapter 4 uses theBank

example to introduce SeSFJava. Chapter 5 applies the SeSFJava Harness to theBank

example. Chapter 6 describes the SeSFJava Harness and assertion checking more exten-

sively. Chapter 7 describes the application of the Harness tothe data transfer protocol.

Chapter 8 describes the application of the Harness to the connection management proto-

col. Chapter 9 describes how we used SeSFJava in an introductory networking course,

and summarizes our classroom experience. Chapter 10 illustrates the service specifica-

tions of Gnutella peer-to-peer and how we tested an open-source Gnutella implementation

against these services. Chapter 11 concludes.

9



Chapter 2

Related Work

This discussion of related work is in three parts. First, we describe formalisms for design

and verification of distributed systems. Second, we presenttools that depend on runtime

monitoring of programs. Third, we present tools and techniques for model checking of

Java programs.

2.1 System modeling approaches

A rich set of formalisms has been developed in the past thirtyyears for compositional

modeling and verification of concurrent systems. Compositionality, in general, requires

two steps: (1) verifying the component programs of a composite system individually, and

(2) constructing the properties of the composite system from the component system prop-

erties. Unlike SeSF, which adopts of layered compositionality, the formalisms presented

in this section adopt traditional compositionality. We group those formalisms according

to the mathematical and logical foundations adopted by them.

Temporal logic refers to all approaches for specifying temporal information within

logic frameworks (i.e., well-formed formulas, axioms and inference rules). Temporal

10



logic was first introduced by Rescher in 1971 [68], and Pnueli [64, 65] pioneered the

use of temporal logic for reasoning formally about the properties of concurrent systems.

Since then, various assertional methods based on temporal logic formalisms have been

proposed.

Lynch and Tuttle introduced I/O automata [49]. An I/O automaton is a labeled

transition system, which consists of a setS of states, a setA of actions divided into

input, output and internal actions, and a setT of transitions (S × A × S). Like SeSF,

the semantics of an I/O automaton is described by executionsand its external behaviors

by traces. Unlike SeSF, input events of an I/O automaton are always enabled. Hence, if an

input is to be not valid in certain states, the natural way to capture this is to have the action

of the input check whether the current state is valid, and if not, transition appropriately

(e.g., ignore input, go to an “error” state, etc.). But this requires the implementation to

check the validity condition, which may be expensive (e.g.,checking the primality of an

input number). Also, unlike SeSF, input events can not return a value, and this prevents

I/O automaton from modeling atomic read-modify-write constructs, which is an important

class of synchronization constructs. A formal language forI/O automata is described in

[25].

DIOA (Dynamic I/O Automata) is a process algebra for I/O automata. It extends

I/O automata with the ability to change their signatures (states, transitions, actions) dy-

namically, and to create other I/O automata [5]. Similar to process algebra, DIOA uses

parallel composition operator to check that the traces generated by an implementation au-

tomaton are equivalent to those generated by the specification automaton. The differences

between DIOA and SeSF are the same as those between I/O automata and SeSF.

11



Unity [12], developed by Chandy and Misra, uses a rich set of temporal logic oper-

ators. A Unity program consists of a collection of guarded commands that are repeatedly

selected and executed under some fairness constraints. Unlike SeSF, process interaction

is based on shared variables rather than coupled actions. Thus, Unity has a single global

state shared by all processes. In order to partition a Unity program into processes, in-

structions for partitioning are given outside the program.Proving the correctness of such

a program requires one to prove the correctness of the abstract program and then to prove

the correctness of the partitioning [12]. Unity also does not support dynamic creation and

termination of processes.

Seuss [58] is the object-oriented extension of Unity. Similar to SeSF, it has the

concept of a program, calledbox, and an instance, calledclone. A Seuss program can be

divided into sub-components that communicate with each other via procedural calls. The

Seuss sub-components have no shared variables. Thus, compositionality proofs are easier

in Seuss than in Unity. Similar to SeSF, Seuss specifies explicitly whether a procedure is

callable by the environment or internally controlled. Unlike SeSF, when a caller calls a

procedure while its enabling condition is not satisfied, thecall is rejected and the caller

tries again later till the call is accepted. Consequently, what is considered a fault in SeSF

(calling an event with an unsatisfied enabling condition) isjust a rejected event call in

Seuss.

Temporal Logic of Actions (TLA) [45], developed by Lamport,uses primed expres-

sions to indicate updates, e.g.,x′ = x+1 to denotex := x+1. Similar to Unity, TLA uses a

single shared global state. Similar formalisms are developed by Manna & Pnueli [50, 51],

Owicki & Lamport [61], Lam & Shankar [43], Back & Kurki-Suonio[6, 7] and Schneider

12



& Andrews [73].

Process algebraapproaches model concurrency by using a collection of operators

and algebraic representation of processes. The two archetypical process algebras are

CSP (Communicating Sequential Processes) of Hoare [33, 69], and CCS (Calculus of

Communicating Systems) of Milner [57]. In CSP, processes are defined by all finite

behaviors, for example,

meet = hi → talk → bye → STOP

Recursion is used to define long (including unbounded) behaviors, e.g.,Clock = tick →

Clock. Unlike SeSF, CSP allows input actions to be blockable. Composition in CSP is

quite complex; for example, CSP has both external nondeterminism (S = P�Q means

thatS can beP or Q depending on the environment’s choice) and internal nondeterminism

(S = P⊓Q means thatS can beP or Q and the environment has no control on this choice).

CCS defines similar operators and semantics. Both of them compose by synchronizing

external actions. Both CSP and CCS check correctness by checkingwhether the traces

generated by implementation process are equivalent to those generated by the specifica-

tion process. They differ in how to calculate process equivalences. LOTOS is the most

common specification language based on process algebras.

Finite State Machines(FSM) are usually used for verification of protocols. The

most common variation of FSM isCommunicating FSM(CFSM) [10, 63]: CFSM defines

a tuple of machines, channels, initial set and transition systems; one per machine. SDL

and Estelle are the popular specification languages of FSM models. FSM models are

inadequate for specifying general programming models. This is because capturing the

13



dynamics of any non-trivial program generally results in the state explosion problem.

2.2 Runtime monitoring of programs

Computer systems are often monitored during their executionfor performance measure-

ment, evaluation and enhancement, and debugging and testing [75]. We focus on moni-

toring for testing purposes.

One of the earliest systems is Anna (Annotated Ada) [71], which was developed

to continuously monitor an executing Ada program for specification consistency. Anna

annotations are inserted within the comments in Ada programs. Anna transforms the

annotations into checking functions. It instruments callsto these functions into code

areas that may cause specification violations.

MaC (Monitoring and Checking) framework [41, 46] provides assurance on the

correctness of an execution of a system at run-time. MaC has two phases: before and dur-

ing execution of the system. Before system execution, systemrequirements are formal-

ized and monitoring scripts are constructed. Scripts instrument code into Java bytecode,

and map from low-level information (e.g., variables changes) into high-level events (e.g.,

predicates). During run-time phase, the instrumented codeextracts the low-level informa-

tion and passes this information to a monitoring component.This component determines

whether the generated events satisfy the formal specifications of the system. MaC is ap-

plied to a single system and does not support distributed systems. Although MaC does

not handle progress assertions, it can be extended easily todo so as with SeSF.

Reference [14] tests multi-threaded applications by using DejaVu [4, 13], a cap-

14



ture/replay tool for the Jalapeno JVM (Java Virtual Machine) [3]. During execution of a

Java program, DejaVu records all the thread switches that take place. DejaVu can replay

the original thread schedule back and thus it can execute theoriginal program determin-

istically. Thus, invariants can be tested whenever a threadswitch takes place without

needing an external module to ensure atomicity. As in previous approaches, this is lim-

ited to concurrent systems, not distributed ones. Further,it does not work with other

JVMs.

Temporal Rover [21] is a specification based verification toolfor applications writ-

ten in C, C++, Java, Verilog and VHDL. It generates executable code from LTL (Linear

Temporal Logic) and MTL (Metric Temporal Logic) assertionswritten as comments in

the source code. These comments are compiled and linked as part of the application under

test. During execution, the generated code validates the executing program against those

specified assertions. Similar to MaC, it does not handle distributed systems.

Passive testing [55, 56] insertsobserversat specific locations in CFSM models.

One can determine the correctness of the protocol by checking generated executions at

those observers.

Programmers’ Playground [26] uses a language with formal semantics expressed

in terms of I/O automata. The Playground separates communication from computations

using I/O abstraction, which is a model of interprocess communication. A module defines

three parts: data structures which are externally visible,reactive actions that start upon any

change in the external data structures, and active actions that access other modules. The

Playground compiles these modules, sets up the communication channels between each

pair of processes that have common access to certain data. The Playground ensures atomic

15



access to these external data structures. Playground has aconnection managerwhich is

a central runtime module that sets up the interprocess communication channels between

all the defined Playground modules. Although Programmers’ Playground is intended for

implementation and not just testing, the system generated by the Playground is similar to

how SeSFJava Harness works.

2.3 Model checking and theorem proving

Model checking is one of the techniques used to determine whether a system specification

possesses a property expressed as a temporal logic formula.Model checking algorithms

rely on state-space exploration in order to determine whether a system satisfies a temporal

formula. Model checkers accept system specifications in some formal languageL, for

example, TLA+ or IOA. Next, they construct a finite state transition system which is

checked against propertyP.

System in
Compiler

Checker

ModelSystem in

Formal Language (L)

Phase 1 Phase 2

Imperative Language (I)

Figure 2.1:L-to-I category

To apply model checking to a program written in a conventional programming lan-

guage,I, there are two techniques:L-to-I andI-to-L. L-to-I technique (figure 2.1) specifies

the system using a formal languageL, verifies the correctness ofL using model checking

tools, and then convertsL to I using a compiler. One major disadvantage of this approach

that it is very restrictive in the implementations it produces, and the resulting performance

16



is questionable.

IOA-to-Java [84] is a compiler developed at MIT to compile programs written in

IOA [25]. A user writes an algorithm in IOA, and then verifies that this algorithm satisfies

its properties using tools available to I/O automata, e.g.,theorem provers, simulators and

model checkers. After the end of this phase, the algorithm isconverted to Java using

IOA-to-Java compiler.

A series of tools have been developed based on the CCS process algebra, called

Concurrency Workbench [18] and Concurrency Factory [17]. These tools analyze systems

expressed as CCS expressions, and include model checking, simulation and translation to

C++ [28].

On the other hand,I-to-L technique (figure 2.2) constructs a finite state model that

approximates the executable behavior of the software system of interest (phase 1). In

phase 2, this finite state model is verified using one of the many model checkers. The

major disadvantage of this approach is that extracting a faithful FSM (phase I) is very

difficult. However, phase 2 can be automated. Most frameworks adopt this technique.

System Correct
Phase 1

Model

Checker
Extract FSM

Phase 2

Imperative Language (I)

System in FSM

Erro
r

No Error

System Incorrect

Figure 2.2:I-to-L category

Banderaenables the automatic extraction of compact finite-state models from pro-

gram source code [20, 30]. It takes Java as input and generates a program model in

the input language of one of the several existing verification tools. Bandera supports

17



SMV [54], PVS (guarded statements) [62, 70, 79] andSPIN [34] model checkers.

SAL (Symbolic Analysis Laboratory) [9] is a framework for combining different

tools for program analysis, theorem proving and model checking toward the calculation

of properties. The main part of the SAL is an intermediate language for specifying the

concurrent systems. Translators extract transition systems from languages like Java, and

convert those transition systems to SAL’s intermediate language. Afterwards, the gener-

ated code is translated by the SAL environment to inputs to other systems, for example,

PVS or SMV.

Java PathFinder [31] translates a given Java program to PROMELA [35] which

is the input language to SPIN [34]. The generated PROMELA model has the same state

space characteristics as the Java program; that is, it operates at the bytecode level (it

emulates the bytecode).

There are various techniques to handle the state explosion problem which usually

results when extracting a finite-state model from a Java program. These techniques in-

volve hand-construction of models, which is expensive, prone to errors, and difficult to

optimize.

Bandera and Java PathFinder alleviate the state explosion problem by eliminating

components (classes, variables, code) that are not relevant to the property being verified;

of course, identifying this is non trivial. For example, selecting a certain menu item is

likely to be independent of the code. If the state explosion problem persists, the developer

can limit the number of components or variables that participate in analysis, for example,

bounding the number of objects that can be created.

Abstractionis used when some components contain more details than necessary for

18



the property being verified. The range of such components canbe abstracted to a smaller

set [15, 11, 27]. For example, given two integersx andy and a propertyx < y, one can

abstract the two integers by a boolean variablez := x < y, and thus it is represented by a

boolean instead of two “practically unbounded” integers.

Static analysisof a program scans this program without executing it in orderto

construct state transition systems to be used in model checking [48]. Runtime analysis

tools constructs transition systems from recorded executions, for example, Eraser [72].

Reference [74] adopts a technique that combines testing and abstraction. It first defines

an interfaceI between two CSP processes which are tested againstI. Then, it uses the

generated runtime execution to abstract the model.

Theorem proving is the technique of finding a proof of a property from the axioms

of the system, where both the system and its desired properties are expressed as formulae

in some mathematical logic. Theorem proving can be combinedwith model checking to

reduce the effect of state explosion, or to reduce the human intervention in the process.

Deductionis used to construct valid finite-state abstractions of the system [80]: simple

assertions can be deduced and proved using the theorem prover, for example, if predicate

p satisfies states and there is a transitionR to states′, then predicateq satisfiess′. Thus,

the checker needs not to explore states that have been already proven.

Reference [86] uses theorem proving to refine the abstractions applied to the pro-

grams. If an abstractionA of systemS does not satisfy propertyp but noconcretecounter

example ofS is generated, one can refineA to get another abstractionA′ and recheckP.

This process continues till abstractionA′ satisfiesp, or a concrete counter example ofS is

generated.

19



In summary, applying model checking to large software systems is an art. It needs

experienced model builders who can abstract/eliminate most of the details of these pro-

grams, leaving only what is essential to verify a specific property.

20



Part I

SeSFJava

21



Chapter 3

SeSF Overview

SeSF is a framework for compositional design and implementation of concurrent systems.

It formalizes the notions of processes, systems, services,system satisfying services, and

compositionality. It uses temporal logic to specify safetyand program assertions. It

attempts to stay close to the programmer’s world.

SeSF focuses on layered compositionality. Here, a composite system consists of

layers of component systems, with services defining the allowed sequences of interactions

between systems in different layers. Thus a system, in general, is “encapsulated” by

services above and below. When component systems are composed to form a composite

system, services between components become internal to thecomposite system and the

remaining services encapsulate the composite system.

Roughly speaking, a system “satisfies” its encapsulating services if the interactions

it initiates are allowed by the services,assumingthe interactions initiated by the system’s

environment are allowed by the services. Given a systemM and servicesU andV, we say

M satisfiesU above andV below, or as we prefer say,M offers U usesV, to mean that

M is encapsulated byU above andV below and satisfies the services. Typically systemM

22



is a distributed system, and,U andV each is a distributed service.

Our compositionality property is that, given a composite system consisting of

layers of component systems with services in between, if every component system in

isolation satisfies its services, then the composite systemas a whole satisfies its services.

3.1 Atomicity and the interleaving model

A key feature of SeSF is the explicit treatment of atomicity.When a process executes

a statement, it affects its state (values of its data and its control) and also perhaps the

state of another process. A statement isatomic if once a process starts executing it, the

environment of the process cannot influence the execution orobserve intermediate states.

Thus, the atomic statements of a process define when its statecan be altered or observed

by other processes. Atomicity is essential to understanding a concurrent system, and

yet most concurrent programming languages do not explicitly indicate atomicity in their

specification. We emphasize thatexecutions of atomic statements can overlap in time;

that is, atomicity does not imply mutual exclusiveness in time, although the converse is

true.

An interaction happens when a process executes an atomic statement that affects

the state of another process; we say the first process does anoutput and the second

process does aninput .

Atomic execution of a statement implies that the statement appears to its environ-

ment to executeinstantaneouslyat some point between the start and the end of the ex-

ecution. This allows one to use the nondeterministic interleaving model of concurrent

23



execution, in which the simultaneous execution of atomic statements is represented by

the set of all possible sequential executions of atomic statements. Figure 3.1 illustrates

this for two statements. The interleaving model, which permits the notion of global state,

greatly facilitates reasoning about concurrent systems.

nondeterministic interleaving

K

time

timetime

concurrent execution

K

J
K

J

J

Figure 3.1: Concurrent execution modeled as non-deterministic interleaving

3.2 Systems

In SeSF, a system is a collection of processes that executesystem programs. A sys-

tem program can be in any concurrent programming language (e.g., Java, C/PThreads,

C++/WinThreads), but it must make explicit the following (inour case, by inserting SeSF

tags):

1. Atomically-executed statements.

2. Atomically-executed statements that are callable by theenvironment.

3. Fairness (or progress) expected from underlying platform.

We refer to atomically-executed statements asevents. An event can be non-blocking

(e.g.,x = 4) or blockable (e.g.,P(sem)). An event is either externally controlled, denoted

24



xc event, or locally controlled, denotedlc event, depending on whether its execution is

initiated by the environment or by the system.

A system program has the form

system-program <name>( <parameters> ) { // header
<constants, types, variables, functions> // can include constructor
<externally-controlled events> // xc events
<progress assumptions>

}

The header indicates the system program’s name and any parameters and their

types. Constants, types, variables and functions are as in any procedural language. There

can be a “constructor” for initializing variables and starting processes. The externally-

controlled events are functions that can be called by the environment. The progress as-

sumptions define the fairness expected of the underlying platform.

Functions can do all the usual things that concurrent programs can do: define vari-

ables and functions, update variables, call functions, create processes and start them exe-

cuting, terminate processes, block on synchronization constructs (e.g., semaphore wait),

and so on. They can also call xc events ofothersystems. An event call would be imple-

mented by an interprocess communication facility such as TCP/IP, http exchange, remote

procedure call, or a simple function call (if the two systemsare threads of the same pro-

cess).

Atomic statements are indicated by enclosing them in angledbrackets or some other

convention (e.g., a statement that “every memory read and memory write is atomic”).

Every atomic statement corresponds to anlc event. It can make at most one event call in

any execution. An lc event is said to beenabledif a process is at the event and the event,

if it has a blocking condition, is not blocked. For example, asemaphore wait statement is

25



enabled if a process is at the statement and the semaphore hasa nonzero value.

Externally-controlled events An xc event has the form

xc-event <return type> <event name>( <event input parameters> ) { // header
ec <enabling condition predicate> // not checked by system, no side effects
ac <action> // no event calls, no blocking

}

The header indicates theevent’s signature, similar to a function’s signature, con-

sisting of return type (which can bevoid), the event name, and event input parameters (if

any) and their types. Theenabling condition is a predicate in the program variables and

parameters. We say an event call isenabled in a state if the event’s enabling condition

holds for the values of the program variables in this state and the parameters (if any) of

the call. Theaction is the code that is executed when the event is called. The action has

no event calls. It returns a value if<return type> is notvoid.

We next define the notion of safe event calls and safe event returns. An event call

P.e(x) is safe if (1) it is signature-consistent, that is, systemP exists, hase as an xc

event, and the instantiated parametersx match the event’s signature, and (2) the enabling

condition ofe(x) holds when the call is made. For a call of an xc event with non-void

return, the return issafeif the value returned is of the return type.

It is the caller’s responsibility, not the callee’s, to ensure that the call is safe. The

caller must determine this based solely on the event’s signature and past interaction with

the callee, since nothing else of the callee system is visible. For a safe event call, the

callee’s responsibility is to execute the action atomically without blocking and, for an

xc-with-return event, to do a safe return. There is no obligation on the callee if the call

26



is not safe. The callee is not obliged to check that the call issafe, but it can choose to do

so in the action. Thus, the enabling condition is needed for analysis and testing only, and

not for implementation.

We have imposed the above requirement that a safe event call be nonblocking be-

cause it simplifies the theory without any loss of generality. A blockable input operation,

e.g., a semaphore wait operation, would be modeled in our formalism by two events, an

xc event corresponding to initiating the operation, and an lc event corresponding to the re-

turn of the operation. This does not introduce more complexity; it merely makes explicit

the inherent complexity of blockable input operations.

Progress assumptions Progress assumptions define the progress properties expected of

the underlying platform in scheduling the processes, or equivalently, in executing its lc

events. SeSF usesweak fairnessandstrong fairness[51].

• wfair( e) denotesweak fairnessof evente. This means that if evente is continu-

ously enabledbeyond a certain point, it will eventually be executed.

• sfair(e) denotesstrong fairnessof evente. This means that if evente is enabled

infinitely oftenbeyond a certain point, it will eventually be executed.

Any collection of systems can be grouped to form acompositesystem. In addition

to interactions with its environment, a composite system can also have internal interac-

tions, that is, interactions between its components. Naturally, a component system can

itself be a composite system.

27



Explicit and implicit lc events We refer to the lc events defined above asimplicit lc

events. A SeSF program can also have so-calledexplicit lc events, which have the form

lc-event <event name>(<event parameters>) { //header
ec <enabling condition> // checked by system, no side effects
ac <action> // can have event calls

}

The header indicates the event name and any parameters and their types. There

is no return value. The enabling condition, as in xc events, is a predicate in program

variables and parameters, except that here it is checked by the system. Whenever the

event is enabled, the action can be executed. The action should execute atomically and

without blocking; thus the enabling condition is the only place to block the event. The

action can have event calls.

Most conventional programming languages do not have built-in constructs corre-

sponding to explicit lc events. To perform any activity, they have to create processes (or

threads). Essentially, an explicit lc-event performs activity without identifying the work-

ing process. Explicit lc events are ideal for defining services and during system design,

whereas processes would introduce needless structure and complications.

Semantics of systems An execution of a system is a sequence of event executions

along with the states traversed, starting from an initial state. Each event execution is

a transition. There are four kinds of transitions:internal transitions represent lc event

executions in which no xc event is called,input transitions represent xc event executions,

output transitions represent lc event executions that call xc events, andfault transitions

represent event executions where an event encounters an undefined operation or an unsafe

28



call to an xc event. Afaulty execution of a system is an execution that ends in a fault

transition. A fault is either alocally-caused fault, which happens if the system executes

an undefined or non-terminating operation (e.g., division by zero, infinite loops, etc.), or

an externally-caused fault, which happens if the environment makes an unsafe call of

an event of the system. Afault-free executionof a system is an execution that contains

no fault transitions; it can be finite or infinite. Acomplete executionof a system is a

fault-free execution that satisfies the progress assumptions of the system.

3.3 Assertions

Assertions are a way of specifying properties of system executions. Assertions are di-

vided into safety and progress assertions. So far the only assertions we have used are

progress assertions, specifically, fairness assertions inthe system specifications. Progress

assertions are also the only kind of assertions we will use inour service specifications.

Safety assertions are needed for reasoning about whether a system satisfies a service.

Predicates A predicate is a statement in first-order logic, i.e., involving the operators

and (∧), or (∨), implies (⇒), negation (¬), and the quantifiers forall (∀) and forsome (∃).

We are interested in predicates in variables and parametersof the programs about which

we want to reason.

Safety assertions SeSF uses two kinds of safety assertions, namely, “invariant asser-

tions” and “unless assertions”. These assertions impose conditions on the inter-event

states of executions, not on intra-event states.

29



An invariant assertion has the forminv(P), whereP is a predicate.inv(P) (read

“invariantP”) means thatP always holds. Formally,inv(P) holds for an execution iff the

execution is fault-free and every inter-event state in the execution satisfiesP. inv(P) holds

for a system iff it holds for every fault-free execution of the system and the system has no

locally-caused faulty executions.

An unless assertionhas the formP unless Q, whereP andQ are predicates. It

means that ifP holds at some instant, then it continues to hold untilQ holds. Formally,

P unless Q holds for an execution iff the execution is fault-free and for every inter-event

state in the execution that satisfiesP∧¬Q, either that state is the last state in the execution

or the next inter-event state satisfiesP ∨ Q. P unless Q holds for a system iff it holds

for every fault-free execution of the system and the system has no locally-caused faulty

executions.

Progress assertions In addition to the fairness assertions described above, SeSF has

two kinds of assertions for expressing progress propertiesof executions, namely, sim-

ple “leads-to” assertions and compound “leads-to” assertions. Like invariant and unless

assertions, leads-to assertions do not state conditions onintra-event states.

A simple leads-to assertionhas the formP leadsto Q, whereP andQ are predi-

cates.P leadsto Q means that ifP holds at some instant, thenQ holds at that instant or

at some later instant. Formally,P leadsto Q holds for an execution iff the execution is

fault-free and for every inter-event state in the executionthat satisfiesP, either that state

satisfiesQ or some later inter-event state satisfiesQ. P leadsto Q holds for a system iff it

holds for everycompleteexecution of the system (i.e., execution that satisfies the system’s

30



fairness assumptions).

A compound leads-to assertionis a predicate with its terms replaced by leads-to

assertions, for example,[∀ integer n :: (X leadsto Y) ⇒ (P leadsto Q)]. A compound

leads-to assertionR holds for an execution iff the execution is fault-free andR evaluates

to true after each simple leads-to assertionS in R is replaced bytrue or false depending

on whether or not the execution satisfiesS. R holds for a system iff it holds for every

complete execution of the system. [We do not allow the underlying predicate to have¬’s.

This is to avoid assertions like¬(P leadsto Q), which are really assertions about absence

of progress.]

3.4 Services

In SeSF, a service defines the acceptable sequences of interactions between systems in

different layers. A service is specified by aservice program. The purpose of a service

program is to:

• Specify the signatures of the system events on each side thatare callable from the

other side.

• Define the acceptable sequences of these event calls.

• Be directly usable in analysis and testing.

A service program has the form

service-program <name>(<parameters>) {
<constants, types, variables, functions>

<dnw events>

31



<upw events>

<progress obligations>

}

Events are divided intodownward events(dnw) andupward events(upw). Dnw

eventscorrespond to xc events of the system below the service callable by the system

above the service; xc events of the system below aremapped to the dnw events of the

service. Upw events correspond to xc events of the system above the service callable

by the system below the service; xc events of the system abovearemapped to the upw

events of the service. A service event has the form

dnw-event|upw-event <return type><event name>(<event parameters>){ // header
ec: <enabling condition predicate>

ac: <action> // no event calls, no process creations
}

The header indicates the event’s signature, consisting of the type (upw or dnw),

return type (if any), event name, and parameters (if any) andtheir types. The event corre-

sponds to an xc event with the same signature.

The progress obligations of a service define the progress that is expected in execut-

ing upw events. Service programs should not impose any progress obligations on dnw

events. They have the form

progress-obligation <name>(<parameters>) {
<progress assertions>

}

It is important to note that service programs have a different purpose than system

programs. Service programs are intended not for execution,except in testing, but to pro-

vide an easily understandable definition of the service. Service programs can ignore all

32



the constraints of the underlying platform, for example, resorting to system-wide updates

and global history variables. Service programs are usuallynot executable on the underly-

ing distributed platform, but they can be executed on a centralized platform.

Semantics of services The semantics of a service is similar to that of a system. An

executionof a service is a sequence of event executions along with the states traversed.

A service is not supposed to have any faulty executions. Acomplete executionis an

execution which satisfies the progress obligations of the service.

3.5 Service satisfaction

In this section, we define what it means for a system to satisfya service, whether as an

offerer or as a user.

Consider a systemM that is encapsulated by a serviceU above and a serviceV

below. That is, every xc event ofM visible to its environment corresponds to a dnw event

of U or an upw event ofV, and every event thatM calls in its environment corresponds to

an upw event ofU or a dnw event ofV. The inputs ofM are all the possible calls of its xc

events. The outputs ofM are the possible calls it can make to xc events in its environment.

Definition An executionσ of M is safe with respectto U, abbreviated “safe wrtU”, if

the sequence of inputs and outputs inσ corresponds to that generated by some execution

of U.

33



Definition An executionσ of M is complete with respectto U, abbreviated “complete

wrt U”, if the sequence of inputs and outputs inσ corresponds to that generated by some

execution ofU that satisfiesU’s progress obligations.

Executionσ being safe (complete) wrtV is similarly defined.

Definition M offers U usesV, also said asM satisfiesU aboveV below, if

• Safety: For every finite executionx of M such thatx is safe wrtU andV:

– x is fault-free.

– For every input calle of M: if x ◦ 〈e〉 is safe wrtU andV, thene is enabled

in the last state ofx and its execution is fault-free and nonblocking. Ife’s

execution returns a value, sayg, thenx ◦ 〈e, g〉 is safe wrtU andV.

– For every executiony of M such thaty is x extended by an internal or output

transition:y is fault-free and safe wrtU andV.

• Progress: For every executionx of M such thatx is safe wrtU andV: if x is

complete wrtM andV, thenx is complete wrtU.

Program-based formulation The above definition of service satisfaction provides com-

positionality. However, because it is stated in terms of event traces, it does not lend itself

to program verification or testing techniques. We now provide an equivalent program-

version of service satisfaction [78].

We first modifyM, U andV, so that they interact with each other (rather thanM

interacting with its environment):

34



• Define the systemM-wrt-{U, V} to beM with every output calle(x) changed to a

call of the corresponding service event inU or V.

• Define systemU-wrt-M to beU with the following changes:

– For every eventeU(x) that corresponds to an output ofM:

∗ Change the event type (which would be “upw”) to “xc”.

– For every eventeU(x) that corresponds to an input ofM:

∗ Change the event type (which would be “dnw”) to “lc”.

∗ If eU(x) has no return type, change the action toeU(x).ac; M.e(x).

∗ If eU(x) has a non-void return type, replace each returned valuez in the

action by code that generates a fault ifz is not safe.

– Set the progress assumptions to null.

• DefineV-wrt-M to be the same asU-wrt-M except thatU is replaced byV, “dnw”

by “upw”, and “upw” by “dnw”.

Let M∗ be the composite system ofM-wrt-{U, V}, U-wrt-M, andV-wrt-M. We have

the following (proof in [78]):

• The safety condition forM offersU usesV holds iff M∗ is fault-free.

• The progress condition forM offers U usesV holds iff M∗ satisfies the progress

assertionV.progress ⇒ U.progress.

35



Chapter 4

SeSFJava by Example

This section introduces SeSFJava with an extended example.The example, calledAccountExample,

consists of three parts (figure 4.1): aBank system, one or moreClient systems, and an

Account service.Bank system offersAccount service, whileClient systems use this ser-

vice. Each system (bank or client) is a process that can reside on a separate machine.

Lower layer (service user)Bank

Client Client Client

Account

Upper Layer (service offerer)

Figure 4.1: AccountExample: systems and services

The example involves three programs (figure 4.2): system programBankSystem, of

which Bank system is an instance; system programClientSystem, of which eachClient

system is an instance; and service programAccountService, of whichAccount service is

an instance.

Each client is identified by a uniqueid, and resides at alocation(RMI port name).

All clients share an account maintained by the bank. A clientcan request the bank to

update the account balance only if it has no request currently pending. The bank eventu-

36



ClientSystem program

BankSystem program

AccountService program

Figure 4.2: AccountExample: system and service programs

ally responds to every request. The response is an ack if the user has a valid id and the

account balance is adequate; otherwise, the response is a nack. Account service defines

the interactions between the clients (user system) and the bank (offerer system).

Section 4.1 describes the bank and client system programs. Section 4.2 describes

the composite system of bank and clients. Section 4.3 describesAccount service. Sec-

tion 4.4 illustrates the event-trace version of the conditions forBank system to satisfy

Account service and forClient system to satisfyAccount service. Section 4.5 illustrates

the program version of these same conditions.

4.1 Bank and client system programs

A SeSFJava system program is a Java program with a specific structure indicated by

SeSFJava tags inserted in the program. SeSFJava tags are special cases of Java comments;

specifically, they have the prefix “//#”, where the “//” denotes the start of a Java comment.

Thus, a SeSFJava program can be treated just like a Java program; it can be compiled

and executed by any Java platform without any modifications.In the case of testing, the

SeSFJava Harness preprocesses the SeSFJava tags and produces modified Java files.

Consider BankSystem program (figure 4.4 on page 50). It has the following kinds

37



of SeSF tags:

• Tags of the form “//# systemprogram;” precede and identify the system program,

in this case, the system program classBankSystem.

• Tags of the form “//# xcevent;” precede and identify the xc events of the program.

There is one xc event, namelyupdate(id, n, location), indicating that the user as-

sociated withid andlocation requests to update the balance by valuen.

• Tags of the form “//# ec:<predicate>;” specify the enabling condition of the as-

sociated event. For example, xc eventupdate is enabled if0 ≤ id < N and the

user has no pending requests. An enabling condition must always evaluate to true

or false; it is not allowed to terminate abruptly, for example, throw an exception.

• Tags involving harness (e.g., “//# harness”, “//# breakpoint”, etc.) are relevant for

testing and will be explained later.

BankInterface (figure 4.6) is a Java interface that indicates the xc event signatures

of BankSystem.

WhenBankSystem is executed, it binds to an RMI port called “Bank” and waits for

update requests from client. Every incoming update requeststarts a new thread in the bank

system. Specifically, the statementnew UpdateThread(id, n).start() in BankSystem’s xc

eventupdate creates an instance ofUpdateThread and starts executing methodrun. The

JVM should, supposedly, ensure weak fairness for all created threads.

ClientSystem program (figure 4.5 on page 51) is organized in a similar fashion.

It has two xc events:ack(id), called by the bank to indicate acceptance of the client’s

38



update request; andnack(id), called by the bank to indicate rejection of the client’s up-

date request. When executed with parameterid, it first binds to an RMI port called

“Client< id >”. It then repeatedly issues update requests to the bank, specifically,

update(id, n, ”Client<id>”) wheren is a random number in the range[−40, 40]. To keep

the example short, the client’s location has the form ”Client<id>”. An arbitrary location

could be chosen but theBank would have to implement a hash table to map locations to

ids.

ClientInterface (figure 4.7 on page 52) is a Java interface that indicates the xc event

signatures ofClientSystem.

4.2 Composite system ofBank and Clients

Bank is a process that is created by executing the command-line “java· · · BankSystem”.

It binds to a specific port, namely “Bank”, using the RMIrebind command. Clients know

this port and hence can interact with the bank via RMI methods defined inBankInterface.

Each client is a process that is created by executing command-line “java · · · ClientSys-

tem <id>”. A client does a lookup for RMI port “Bank”, and binds itself toa port

“Client<id>” using RMI rebind command. The client then starts updating the balance

account by repeatedly executingupdate(id, n, ”Client<id>”), wheren is a random num-

ber. Bank uses RMI port “Client<id>” for the callback methods, namelyack andnack.

Figure 4.3 illustrates such a composite system.

39



"Client1" bound

of class ClientSystem
instance Client(1)instance Client(0)

of class ClientSystem

of class BankSystem
instance Bank

"Bank" bound

"Client0" bound

Figure 4.3: Composite system of bank and two clients

4.3 Account service program

TheAccountService service program (figure 4.9 on page 53) defines the permissible in-

teractions between client systems (users of the service) and bank system (offerer of the

service). Specifically, it defines the signatures of the interactions and the permissible

sequences of interactions (i.e., their safety and progressproperties)

The program defines three events:update, ack andnack. The signature of each

service event is the same as that of the corresponding xc event. Each service event is

preceded by a tag indicating the system of the correspondingxc event. So the tag “//#

dnw:BankSystem;” preceding eventupdate indicates that dnw eventAccountService.update

is mapped to xc eventBankSystem.update, and that they both have the same signature (for

brevity, we refer to the dnw event asAccountService.update rather than the more accu-

rateAccountService.BankSystem.update). Similarly, the tag “//# upw:ClientSystem;”

preceding eventack indicates that upw eventAccountService.ack is mapped to xc event

ClientSystem.ack, and that they both have the same signature. Note that no event creates

threads or processes.

Informally, Account service requires the sequence of interactions to satisfy the fol-

40



lowing properties:

• Safety: A client has at most one update request pending. An update request must

have a valid id. The bank issues an ack to a client only if the client has a pend-

ing update request with a valid id and, in case of negative update, the balance is

adequate.

• Progress:Every update request is eventually acked or nacked.

InterfaceAccountInterface (figure 4.8 on page 52) defines the headers of all the

methods available inAccountService.

4.4 Service satisfaction conditions: event-trace conditions

We first note thatBank is encapsulated above byAccount: that is, the xc event ofBank

corresponds to a dnw event inAccount, and every output ofBank corresponds to a call of

a upw event ofAccount.

We next give the event-trace version of the conditions for theBank to satisfyAccount

as offerer:

• Safety condition For every finite executionσ of Bank that is safe wrtAccount:

– If σ ◦ Account.update(id, n, loc) is safe wrtAccount,

thenBank.update(id, n, loc) is enabled at the end ofσ and its execution is

well-formed.

– If a Bank thread is at a statement,

then the execution of the statement is well-formed.

41



– If a Bank thread is atclient[id].ack(id) at the end ofσ,

thenσ ◦ Account.ack(id) is safe wrtAccount.

– If a Bank thread is atclient[id].nack(id) at the end ofσ,

thenσ ◦ Account.nack(id) is safe wrtAccount.

• Progress condition: For every executionσ of Bank that is safe wrtAccount, if σ

satisfiesBank progress assumptions (i.e., weak fairness of allBank threads) thenσ

is complete wrtAccount (i.e., satisfiespending[i] leadsto ¬pending[i] for everyi).

We next give the event-trace version of the conditions for the Client to satisfy

Account as user:

• Safety condition For every finite executionσ of Client that is safe wrtAccount:

– If σ ◦ Account.ack(id) is safe wrtAccount, thenClient.ack(id) is enabled at

the end ofσ and its execution is well-formed.

– If σ ◦Account.nack(id) is safe wrtAccount, thenClient.nack(id) is enabled at

the end ofσ and its execution is well-formed.

– If a Client thread is at a statement, then the execution of the statementis well-

formed.

– If a Client thread is atbank.update(id, r.nextInt(80) − 40, ”Client” + id) at

the end ofσ, thenσ ◦ Account.update(id, r.nextInt(80) − 40, ”Client” + id)

is safe wrtAccount.

• Progress condition: Null (becauseAccount service does not impose any progress

requirements onClient system).

42



Although we do not do so here, it would be straightforward to prove by operational

reasoning that these conditions hold.

4.5 Service satisfaction conditions: program version

As mentioned earlier, the event trace conditions given above cannot be directly tested. We

now give the program version of the service satisfaction conditions.

Developing the conditions forBank to offer Account involve the following steps:

(1) constructingBank-wrt-Account from Bank, (2) constructingAccount-wrt-Bank from

Account, and (3) constructing the assertions to be satisfied by composite systemBank∗

consisting ofBank-wrt-Account andAccount-wrt-Bank. The above steps are described

in sections 4.5.1, 4.5.2 and 4.5.3, respectively.

Developing the conditions forClient to offer Account involve the following steps:

(1) constructingClient-wrt-Account fromClient, (2) constructingAccount-wrt-Client from

Account, and (3) constructing the assertions to be satisfied by composite systemClient∗

consisting ofClient-wrt-Account andAccount-wrt-Client. The above steps are described

in sections 4.5.4, 4.5.5 and 4.5.6, respectively.

4.5.1 ConstructingBank-wrt-Account

We constructBank-wrt-Account from Bank as follows (the complete code is given in

appendix A.1):

• System nameBank is changed toBank-wrt-Account.

43



• For every xc evente:

– Change its action toif(!e.ec) then fault; else e.ac;.

– Change its enabling condition totrue.

In particular, xc eventupdate is changed to:

//# xc event;
void update(int id, int n, String location) throws RemoteException{

synchronized(lock){
//# ec: true;
if (!(id >= 0 && id < N && client[id] == null ))

throw new Error(”Bank.update enabling failed”);
try {client[id] = (ClientInterface) Naming.lookup(location);}
catch (Exception e) {e.printStackTrace();}
new UpdateThread(id, n).start();

}
}

• Every output call inBank is replaced by a call to the corresponding event ofAccount.

This is done implicitly becauseBank determines the location of the callee (which

is Account) via parameterlocationof eventupdate.

4.5.2 ConstructingAccount-wrt-Bank

We constructAccount-wrt-Bank from Account as follows (the complete code is given in

appendix A.2):

• Account service is changed toAccount-wrt-Bank system.

• For every upw event:

– Change the event type to “xc”.

– Change its action toif(!e.ec) then fault; else e.ac;.

– Change its enabling condition totrue.

44



In particular, upw eventsack andnack are transformed to:

//# xc event;
synchronized public void ack(int id) throws RemoteException {

//#ec: true;
if (!(id >= 0 && id < N && pending[id] &&

(amount[id] >= 0 ‖ balance >= −amount[id])))
throw new Error();

pending[id] = false;
balance + = amount[id];

}

//#xc event;
synchronized public void nack(int id) throws RemoteException {

//# ec: true;
if (!(id >= 0 && id < N && pending[id] && balance < −amount[id]))

throw new Error();
pending[id] = false;

}

• For every dnw service evente:

– Change the event type to “lc”.

– Augment its action by a call to the corresponding xc event.

In particular, dnw eventupdate is transformed to

lc-event synchronized void update(int id, int n, String location)
throws RemoteException {

ec: id >= 0 && id < N && !pending[id];
ac: amount[id] = n;

pending[id] = true;
bank.update(id, n, location); // corresponding system event.

}

Because Java does not have an explicitlc-event construct, this lc event is imple-

mented in Java as follows:

1. Create functionupdate by removing the event’s “lc” construct and its enabling

condition. So, lc eventupdate is changed to:

45



synchronized void update(int id, int n, String location) throws RemoteException {
amount[id] = n;
pending[id] = true;
bank.update(id, n, location);

}

2. Create a thread, which we callwhirl, that repeatedly checks the enabling con-

dition of this lc event, and executes its action (which is methodupdate) when-

ever its enabling condition holds. This thread is created manually. For event

update, create:

class whirl extends Thread {
int id;
whirl(int id){

this.id = id;
}

public void run(){
while(true) {

synchronized(lock){ // ensures atomicity of this block
if (id >= 0 && id < N && !pending[id]) {

update(id, r.nextInt(80) - 40, ‘‘Account’’);
}

}
yield(); //allows other thread to proceed

}
}

}

4.5.3 Conditions onBank∗

DefineBank∗ to be the composite system consisting of systemsBank-wrt-Account and

Account-wrt-Bank. The safety condition forBank offers Account is thatBank∗ is fault-

free. Faults inBank∗ arise from calling a disabled event or executing an undefinedop-

eration (division by zero, signature-inconsistent call, etc.) This reduces to the following

conditions:

46



• Bank∗ statements do not have undefined values or operations.

• Bank∗ satisfiesinv(Account.update.ec ⇒ Bank.update.ec).

• Bank∗ satisfiesinv(Bank′s thread is at client[id].ack(id) ⇒ Account.ack.ec).

• Bank∗ satisfiesinv(Bank′s thread is at client[id].nack(id) ⇒ Account.nack.ec).

The progress condition holds iffBank∗ satisfies assumptionpA (figure 4.9) assum-

ing weak fairness ofBank’s threads.

Although we do not do so here, it would be straightforward to prove by assertional

or operational reasoning that these conditions hold.

4.5.4 ConstructingClient-wrt-Account

We constructClient-wrt-Account from Client as follows:

• System nameClient is changed toClient-wrt-Account.

• Change the xc eventsack andnack to:

//# xc event;
void ack(int id) throws RemoteException{

//# ec: true;
synchronized(lock){

wait = false;
lock.notify();

}
}

//# xc event;
void nack(int id) throws RemoteException{

//# ec: true;
synchronized(lock){

wait = false;
lock.notify();

}
}

47



• Every output call inClient is replaced by a call to the corresponding event of

Account. This is done implicitly becauseClient determines the location of the bank

via lookup call.

4.5.5 ConstructingAccount-wrt-Client

We constructAccount-wrt-Client from Account as follows:

• Account service is changed toAccount-wrt-Client system.

• For every dnw event, change it similar to upw events in constructingAccount-wrt-

Bank. Dnw eventupdate is transformed to:

//# xc event;
synchronized public void update(int id, int n, String location)

throws RemoteException {
//#ec: true;
if (!(id >= 0 && id < N && !pending[id]))

throw new Error();
pending[id] = false;
balance + = amount[id];

}

• For every upw service evente, change it similar to dnw events in constructing

Account-wrt-Bank.

1. Create functionsack andnack:

synchronized void ack(int id) throws RemoteException {
pending[id] = false;
balance + = amount[id];
client.ack(id);

}

synchronized void nack(int id) throws RemoteException {
pending[id] = false;
client.nack(id);

}

48



2. Create a thread, which we callwhirl, that repeatedly checks the enabling con-

dition of these two events, and executes their action whenever its enabling

condition holds. This thread is created manually. For eventupdate, create a

thread:

class whirl extends Thread {
int id;
whirl(int id){

this.id = id;
}

public void run(){
while(true) {

synchronized(lock){ // ensures atomicity of this block
if (id >= 0 && id < N && pending[id] &&

(amount[id] >= 0 ‖ balance >= -amount[id])) {
ack(id);

}

if (id >= 0 && id < N && pending[id] &&
balance < -amount[id]) {

nack(id);
}

}
yield(); //allows other thread to proceed

}
}

}

4.5.6 Conditions onClient∗

DefineClient∗ to be the composite system consisting of systemsClient-wrt-Account and

Account-wrt-Client. The program-version conditions reduce to the following conditions:

• Client∗ statements do not have undefined values or operations.

• Client∗ satisfiesinv(Account.ack.ec ⇒ Client.ack.ec).

• Client∗ satisfiesinv(Account.nack.ec ⇒ Client.nack.ec).

49



import java.rmi.*;
import java.rmi.server.*;

//# system program;
class BankSystem extends UnicastRemoteObject implements BankInterface {

//# static HarnessInterface harness;
static int balance;
static final int N = 10; // number of clients
static Object lock = new Object(); // for atomicity
static ClientInterface client[] = new ClientInterface[N]; // client[i] is null if it has no pending requests.

BankSystem() throws RemoteException {}

public static void main(String argv[]) throws Exception {
//# harness = (HarnessInterface) Naming.lookup(”AccountHarness”);
Naming.rebind(”Bank”, new BankSystem());

}

//# xc event;
public void update(int id, int n, String location) throws RemoteException {

synchronized(lock){
//# ec: id >= 0 && id < N && client[id] == null;
try { client[id] = (ClientInterface) Naming.lookup(location); }
catch(Exception e){ e.printStackTrace();}
new UpdateThread(id, n).start();

}
}

class UpdateThread extends Thread {
int id, n;
UpdateThread(int id, int n) {

this.id = id;
this.n = n;

}
public void run(){

try {
//# breakpoint(”Bank.bpBegin”, BEGIN);
synchronized(lock){

if (n >= 0 ‖ balance >= -n) {
balance + = n;
client[id].ack(id);

} else
client[id].nack(id);

client[id] = null;
}
//# breakpoint(”Bank.bpEnd”, END);

} catch (RemoteException re) { re.printStackTrace(); }
}

} //End Thread
} //End System

Figure 4.4: BankSystem system program (file BankSystem.java)

• Client∗ satisfiesinv(Client′s thread is at bank.update(id, . . .) ⇒ Account.update.ec).

There are no progress conditions.

50



import java.rmi.*;
import java.rmi.server.*;

//# system program;
class ClientSystem extends UnicastRemoteObject implements ClientInterface {

//# static HarnessInterface harness;
Object lock = new Object(); // for atomicity
Random r = new Random(); // random number generator
boolean wait = false; // true if it has pending requests, false otherwise

ClientSystem() throws RemoteException { }
public static void main(String argv[]) throws Exception {

if (System.getSecurityManager() == null )
System.setSecurityManager(new RMISecurityManager());

//# harness = (HarnessInterface) Naming.lookup(”AccountHarness”);
ClientSystem client = new ClientSystem();
client.execute(Intger.parseInt(argv[0]));

}

void execute(int id) throws Exception {
BankInterface bank = (BankInterface) Naming.lookup(”Bank”);
Naming.rebind(”Client” + id, this);
for( int i = 0; i < 50; i++){

//# breakpoint(”Client.bpInc”, MANUAL);
wait = true;
bank.update(id, r.nextInt(80) - 40, ”Client” + id);
// Wait for ack or nack
synchronized(lock){

while (wait){
//# breakpoint(”Client.bpWait”, WAIT);
lock.wait();

}
}

}
//# breakpoint(”Client.bpEnd”, END);

}

//# xc event;
public void ack(int id) throws RemoteException {

//# ec: true;
synchronized(lock){

wait = false;
lock.notify();

}
}

//# xc event;
public void nack(int id) throws RemoteException {

//# ec: true;
synchronized(lock){

wait = false;
lock.notify();

}
}

}

Figure 4.5: ClientSystem system program (file ClientSystem.java)

51



import java.rmi.Remote;
import java.rmi.RemoteException;
interface BankInterface extends Remote {

void update(int id, int n, String location) throws RemoteException;
}

Figure 4.6: BankInterface interface (file BankInterface.java)

import java.rmi.Remote;
import java.rmi.RemoteException;
interface ClientInterface extends Remote {

void ack(int id) throws RemoteException;
void nack(int id) throws RemoteException;

}

Figure 4.7: ClientInterface interface (file ClientInterface.java)

import java.rmi.Remote;
import java.rmi.RemoteException;
interface AccountInterface extends Remote {

void update(int id, int n, String location) throws RemoteException;
void ack(int id) throws RemoteException;
void nack(int id) throws RemoteException;

}

Figure 4.8: AccountInterface interface (file AccountInterface.java)

52



import java.rmi.*;
import java.rmi.server.*;

//# service program;
class AccountService extends UnicastRemoteObject implements AccountInterface {

//# Harness harness;
static final int N = 10; // number of clients
int balance;
boolean pending[] = new boolean[N]; // pending[i] is false if it has no pending request
int amount[] = new int[N]; // amount[i] is the update value of user i last request

AccountService() throws RemoteException {
try {
Naming.rebind(”AccountHarness”, this);

} catch (Exception e) {
e.printStackTrace();

}
}

//# dnw: BankSystem;
synchronized public void update(int id, int n, String location) throws RemoteException {

//# ec: id >= 0 && id < N && !pending[id];
amount[id] = n;
pending[id] = true;

}
}

//# upw: ClientSystem;
synchronized public void ack(int id) throws RemoteException {

//# ec: id >= 0 && id < N && pending[id] && (amount[id] >= 0 ‖ balance >= -amount[id]);
pending[id] = false;
balance + = amount[id];

}

//# upw: ClientSystem;
synchronized public void nack(int id) throws RemoteException {

//# ec: id >= 0 && id < N && pending[id] && balance < -amount[id];
pending[id] = false;

}

//# progress obligation pA {
//# forall i: 0 − > (N-1)
//# beginAssertion
//# pending[i] leadsto !pending[i]
//# endAssertion
//# endfor
//# }

}

Figure 4.9: AccountService service program (file AccountService.java)

53



Chapter 5

SeSFJava Harness by Example

This chapter introduces the SeSFJava Harness by applying itto theAccount example. As

mentioned earlier, the program-based conditions of service satisfaction give us a way to

mechanically test a system against services. To testBank againstAccount, we proceed as

follows:

1. Create a Harness process to control the execution. The Harness is a process that

resides on an arbitrary machine. In our example, the Harnessis bound to an RMI

port, namely “AccountHarness”. The Harness has interfaceHarnessInterface (fig-

ure 5.2).

2. ConstructBank-wrt-Account′, a version ofBank-wrt-Account that interacts with

the Harness.

3. ConstructAccount-wrt-Bank′, a version ofAccount-wrt-Bank that interacts with

the Harness.

4. Execute composite systemBank∗′ (figure 5.1), consisting ofBank-wrt-Account′

andAccount-wrt-Bank, along with the Harness, and check whether the generated

54



execution becomes faulty.

Account−wrt−Bank

Bank−wrt−Account’

Account−wrt−Bank’

Harness

Verification framework Testing framework

Bank* Bank*’

Bank−wrt−Account

Figure 5.1:Bank∗ andBank∗′ composite systems.

Sections 5.1 and 5.2 describe how to obtainBank-wrt-Account′ andAccount-wrt-

Bank, respectively. Section 5.3 describes how to obtain a testing platform on which

Bank∗′ can be executed. Section 5.4 describes how to executeBank∗′.

5.1 ConstructingBank-wrt-Account′

We constructBank-wrt-Account′, referred to asBank′, fromBank-wrt-Account (described

in section 4.5.1) as follows:

• Tags

“//# static HarnessInterface harness;” and

import java.rmi.Remote;
import java.rmi.RemoteException;
interface HarnessInterface {

void printlnLog (String str) throws RemoteException;
void printLog (String str) throws RemoteException;
void checkAssertions(boolean debugInfo) throws RemoteException;
void breakpoint(String name, int mode) throws RemoteException;

}

Figure 5.2: HarnessInterface interface (file HarnessInterface.java)

55



“//# harness = (HarnessInterface) Naming.lookup(”AccountHarness”);”

indicate the location of the Harness.

• For every xc evente:

– Insert a call to methodcheckAssertions(), which sends data necessary for as-

sertion checking to Harness module.

– Log information to the log file.

So change xc eventupdate to:

//# xc event;
public void update(int id, int n, String location)

throws RemoteException{
harness.log.print(...); // log event execution
checkAssertions(); // check the validity of any assertions.
synchronized(lock){

//# ec: true;
if (!(id >= 0 && id < N && client[id] == null))

throw new Error(”Bank.update failed”);
try { client[id] = (ClientInterface) Naming.lookup(location); }
catch (Exception e){ e.printStackTrace(); }
new UpdateThread(id, n).start();

}
}

• Breakpoints are called to indicate transition of systems. Insert breakpoints at loca-

tions specified by tag//#breakpoint. Breakpoints will be explained later in this

section.

5.2 ConstructingAccount-wrt-Bank′

We constructAccount-wrt-Bank′, referred to asAccount′, from Account-wrt-Bank (de-

scribed in section 4.5.2)as follows:

56



• For every upw event, insert a call tocheckAssertions, and log information to log

file. Upw eventsack andnack are changed to:

//# xc event;
synchronized public void ack(int id) throws RemoteException {

//# ec: true;
harness.log.print(...); // log event execution
checkAssertions();
if (!(id >= 0 && id < N && pending[id] &&

(amount[id] >= 0 ‖ balance >= −amount[id])))
throw new Error(”ack --- fault”);

pending[id] = false;
balance += amount[id];

}

//# xc event;
synchronized public void nack(int id) throws RemoteException {

//# ec: true;
harness.log.print(...); // writing info to log file
checkAssertions();
if (!(id >= 0 && id < N && pending[id] && balance < −amount[id]))

throw new Error(”nack --- fault”);
pending[id] = false;

}

• Recall that every dnw event should be transformed to an lc event. We handled this

situation by constructing a methodupdate and threadwhirl. In addition to this, the

following modifications have to take place:

– In method update, insert a call tocheckAssertions, and log event execution.

So, change methodupdate to:

synchronization void update(int id, int n, String location) throws RemoteException {
harness.log.print(...); // writing info to log file
checkAssertions();
amount[id] = n;
pending[id] = true;
bank.update(id, n, location);

}

– In threadwhirl, insert breakpoints at necessary locations. So, threadwhirl

changes to:

57



class whirl extends Thread {
int id;
whirl(int id){

this.id = id;
}

public void run(){
breakpoint(”whirl.Begin”, BEGIN);
while(true) {

synchronized (lock) {
if (id >= 0 && id < N && !pending[id]) {

breakpoint(”whirl.implicitLc”, AUTOMATIC);
update(id, r.nextInt(80) - 40, ‘‘Account’’);

}
}
yield(); //allows other threads to continue

}
}

}

5.3 Constructing testing platform

Once composite systemBank∗′ consisting ofBank′ andAccount′ is constructed, the next

step is to obtain atesting platform on which it can be executed. This is not trivial

because the atomicity requirements ofBank∗′ are usually much more stringent than those

of Bank∗.

Let I refer to the platform on whichBank is intended to execute; that is,Bank’s

program involvesI-specific constructs for IO, communication, synchronization, concur-

rency, and so on. BecauseBank′ is obtained by a simple redirection ofBank’s output

calls,Bank′ also must be executed onI. However,I invariably cannot ensure atomicity of

the interactions betweenBank′ and other components in the system (e.g.,Account′). This

is becauseAccount, and henceAccount′, makes use of more powerful atomicity than is

intrinsically provided byI. ThusI alone cannot serve as a testing platform.

58



We need to augmentI so thatBank′-Account′ interactions are executed atomically.

SAC (Serializer And Checker) module within the Harness is introduced to solve this prob-

lem. In order to conform to the interleaving model, SAC ensures that only one thread is

proceeding at a time. Every thread within the composite system is associated with a lock.

When the lock is released, the thread proceeds. When the lock isrevoked, the thread is

paused. SeSFJava Harness inserts breakpoints inBank′ andAccount′ such that at any

time, at most one thread ofBank∗′ runs and every other thread is paused at a breakpoint.

SAC module maintains relevant state for every process, suchas whether the process is

running, paused, blocked, or about to be terminated. Our solution is based on the follow-

ing steps:

• Whenever a thread is created inBank∗′, it provides its relevant state to the SAC (by

callingbreakpoint(BEGIN)) and pauses. For example,//# breakpoint(”Bank.bpBegin”,

BEGIN); in

BankSystem.UpdateThread.

• Whenever a thread encounters a breakpoint during its execution, it provides its

relevant state to the SAC and pauses.

• Whenever a thread is paused, SAC module chooses one thread from the paused

ones to proceed. This thread is selected either automatically or manually by the

user. Other operations can take place during the execution,for example, listing

unsatisfied assertions so far.

• If the thread is about to execute a blocking statement, it informs the SAC module

(by callingbreakpoint(WAIT)). When SAC module receives this breakpoint call,

59



it allows the calling thread to proceed to the block procedure, and then it chooses

another thread to proceed. When the blocked thread unblocks,it informs the SAC

module and goes to pause state. For example,//# breakpoint(”Client.bpWait”,

WAIT); in ClientSystem.execute.

• Whenever a thread is (about to be) terminated, it provides itsrelevant state to

SAC module (by callingbreakpoint(END)) and terminates. For example,//#

breakpoint(”Bank.bpEnd”, END); in BankSystem.UpdateThread.

The serializer-based approach is rather conservative (because it prevents parallel

execution of processes). However, it is simple and, as we shall see, easily provides the

snapshots needed to check assertions.

Assertions are evaluated atchecking locations, specifically, at the start of every

event and at every breakpoint. For example, the scheme to test if Bank satisfies assertion

inv(Bank.balance >= 0) is as follows. First, wheneverBank′ encounters a checking loca-

tion, it sendsBank.balanceto the Harness (via methodcheckAssertions). Second, when-

ever the Harness receives this field, it checks whether the predicateBank.balance >= 0

holds. If the predicate fails once, then the invariant does not hold.

5.4 Testing and GUI

After construction ofBank∗′, it is executed on the same platform asBank∗ as follows:

1. SeSFJava Harness is started as a separate process, binds itself to RMI port “Ac-

countHarness”.

60



2. Bank′ process is created. It looks up for port “AccountHarness” using RMI lookup

command.

3. Account′ process is created, and looks up for harness’ port. So, both systems are

hooked up with SeSFJava Harness.

4. The developer can choose to work in batch mode, where he/she leaves the execution

to run for a while, and then analyze the log file. Or, he can influence the flow of the

execution manually.

Figure 5.3 shows a snapshot of the Harness’ GUI interface during the testing of

theAccountExample in the chapter 4.Thread Paneldisplays the current set of threads

stopping at breakpoints. The set of breakpoints are displayed in two ways:

• Module/Thread: This displays the breakpoints by their name, mode (e.g., Manual

or Automatic), the thread that encountered the breakpoint,and the module that this

thread belongs to.

• RMI Connection Name: This displays the breakpoints by their name, mode and

the name of the RMI connection port that connects the calling module to the Har-

ness.

In Thread Panel (figure 5.3), a user clicks the “Choose Manual”radio button to

manually choose the next thread to proceed. Clicking “Choose Automatic” tells the Har-

ness to randomly pick threads to proceed.

Developers can insert tag “//#watch: < var name >” inside SeSFJava program.

This permits them to monitor these variables throughout execution in theWatch Panel.

61



Assertion Paneldisplays the assertions and the evolution of their values during the ex-

ecutions. There are two tables, one for local assertions (assertions that involve variables

that belong to only one system or service), and another for global assertions (assertions

that involve variables that span multiple systems or services). Column “Pr” is checked if

the assertion is a progress assertion.

62



Figure 5.3: Graphical Interface of the Harness

63



Chapter 6

SeSFJava Harness Overview

The previous section introduced the SeSFJava Harness by example. This section dis-

cusses it in more general terms. Figure 6.1 gives the overallstructure and operation of the

SeSFJava Harness:

• System and service program files are fed to SeSF Preprocessor. The preprocessor

accepts aconfiguration file that contains all the parameters of preprocessing, for

example, directories where the program resides, program file names, etc. Figure 6.2

illustrates a sample configuration file.

• The preprocessor generates the following: composite system program, assertion

checker that checks assertions of all services and systems,and “Serializer and

Checker” (SAC) module.

• The composite system is executed, execution is logged into alog file, system and

service properties are checked, and violations are recorded.

• Users can interact with the composite system during its execution to influence the

flow of execution and/or to view the results of evaluating assertions.

64



• The log analyzer is used to analyze the log file to extract event-traces of interest,

e.g., those that have led to desired assertions failing. It provides a method to view

log files in a readable format.

Configuration File

Harness Framework

Analyzer
Log Log File User

Composite System M*

Checker
Assertion

Module
SAC

P
re

pr
oc

es
se

rService progams

System progams

Global claims

Figure 6.1: SeSFJava Harness: operation overview

Section 6.1 describes the types of systems supported by the Harness. Section 6.2

illustrates the types of assertions supported. Section 6.3describes where the assertions

are checked. Section 6.4 describes how the data necessary for assertion evaluation is

collected. Section 6.5 describes how to evaluate assertions. Section 6.6 describes the

operation of the breakpoints. Section 6.7 describes the configurations supported.

6.1 Process-based versus thread-based

The SeSFJava Harness can handle bothprocess-basedcomposite systems andthread-

basedcomposite systems. In the process-based case, the component systems of the com-

posite system are all separate processes, perhaps in different machines. Consequently, the

65



OutputToSTDOut: true // Direct comments about the progress to stdout
HarnessDistributed // Process-based system
HarnessMachine: ”leibniz.cs.umd.edu” // Machine where the Harness resides
HarnessDirName: ”outApps/outStaticAccountRMI3” // Directory where the Harness resides

inputDirName: ”../Apps/StaticAccountRMI3” // Directory that contains input systems and services
outputDirName: ”../outApps/outStaticAccountRMI3” // Output directory of preprocessed files
service: ”AccountService.java” // Input service file
system: ”ClientSystem.java” // Input system file
system: ”BankSystem.java”, theoremFiles: ”BankThm.thm” // Input system file

// Its assertions defined in BankThm.thm
global: ”SAC.java” // File that contains global assertions

Figure 6.2: Configuration file ofAccountExample (file account.cfg)

composite system being tested is a distributed system potentially spanning multiple ma-

chines. The services and the SAC module reside on one (arbitrary) machine. Calls from

systems to services are executed using Java RMI (Remote MethodInvocation) method

calls. Because the SAC module has no access to the data variables inside processes,

methods are instrumented into the systems tomarshalto the SAC module the relevant

data needed to calculate global assertions. Using Java eliminates the data encoding prob-

lem; for example, SeSFJava Harness does not care whether theunderlying platform of a

certain system is big endian or little endian. The example described in chapters 4 and 5 is

process-based.

In the thread-based case, the component systems are all threads of a single process.

Consequently, the composite system being tested resides in one machine. We put the SAC

module also on that machine and give it access privilege to all data variables of services

and public data variables of systems. For example, one may want to testBank system

againstAccount service, whereBank, Account and the Harness module are all threads

within a single process. In this case, testingBank system againstAccount service is the

same as executing a composite systemBank∗. Figure 6.3 illustrates the outline of this

framework.

66



Threads (n: 0 −> N−1)

module

Testing process

Method calls

SAC

checker

checker

checker

Threads (m: 0 −> M−1)

Account’

Bank−wrt−Account’

Account−wrt−Bank’

Figure 6.3: Testing framework for thread-based system

67



6.2 Types of assertions supported

The assertion checker evaluates assertions on the execution of the composite system gen-

erated thus far by SeSFJava Harness. The assertions can be progress assertions from the

service specifications. They can also be safety and progressassertions specified by the

developer, to provide insight and/or aid debugging; such assertions, referred to asclaims,

are not part of the system and service specifications but rather intended to be derivable

from them.

SeSFJava supports the same assertions and predicates as SeSF, using a similar syn-

tax. It supports the usual boolean operators: negation (!), equals (==), conjunction (&&),

disjunction (||), and implication (⇒). It supports quantified assertions with integer-valued

bound variables. The scope of the quantification is denoted by either aforall/endfor pair

or a forsome/endfor pair. It supports all the safety and progress temporal operators, i.e.,

inv, unless, leadsto, wfair, and sfair. Because testing generates only finite executions,

wfair andsfair are equivalent for testing purposes.

Fairness assertions require special handling. Considerwfair(X), whereX is a thread.

A finite executionσ does not satisfywfair(X) if X is alive and is at a statement that is not

blocked. The natural way to check whether this holds is to look into the JVM or operating

system, but this is usually not feasible. Alternatively, one can capture this condition

using appropriate system predicate. IfX is not at a blockable statement, then it suffices

to check whether the predicateX.isAlive() holds at the end ofσ (whereX.isAlive() is a

system function that returnstrue whenever the thread’s control pointer is in the thread’s

run method). IfX is at a blocking statement, saym.wait(), wherem is a lock object,

68



thenX.holdsLock(m) holds at the end ofσ and thuswfair(X) succeeds.X.holdsLock(m)

returnstrue if X currently holds the lock ofm; note thatm.wait() relinquishes the lock

during waiting.

6.3 Assertion checking locations

Checking an assertion of the composite system involves threeissues: when to check the

assertion, how to collect data necessary to evaluate the assertion, and how to evaluate the

assertion.

In SeSFJava Harness, assertion are checked whenever control reaches any of the

following locations, referred to aschecking locations:

• xc events in a system.

• breakpoints in a system.

• dnw andupw events in a service.

6.4 Collecting data for assertion checking

The assertion checker takes snapshots of the variables usedin evaluating the assertions.

This process is calledsnapshot gathering. It takes place at the checking locations. There

are two kinds of snapshots: local snapshot and global snapshot. Gatheringlocal snapshots

requires instrumentation of certain method calls to evaluate local assertions. Gathering

global snapshots requires an external running system (SAC module)that receives snap-

shots of variables from the systems under execution.

69



Let X denote the assertions that are to be checked. For any global state, let theX-

image of the state denote the part of the state relevant to evaluatingX, that is, the values of

the variables ofX. Note that theX-image may overlap with the states of several processes.

For any execution, let theX-image of the execution denote the sequence ofX-images of

the states of the execution.

To check whetherX holds, we need theX-image of the execution generated thus

far. This can be collected at SAC if each process, when it reaches a checking location,

sends its part of theX-image of its current state to SAC module. By integrating the most

recentX-images from all the process, SAC module obtains theX-image of the current

global state. By storing pastX-images, SAC module obtains the sequence ofX-images of

the global states encountered at the breakpoints thus far.

SeSF Harness implements the above by inserting the following checkAssertions

method in SAC module:

void checkAssertions() {
For every global theorem <t>:

Evaluate theorem <t> // using X-image of the execution
Write value of <t> to log file

}

Next, SeSFJava Harness inserts the followingcheckAssertions method in every system

and service:

void checkAssertions() {
For every local theorem <t>:

Evaluate <t>;
Write value of <t> to log file

Inside a system:
For every global variable <g> relevant to X-image:

Marshall <g> to Harness module;
Issue an RMI call to SAC.checkAssertions();

Inside a service:
Issue a call to SAC.checkAssertions();

}

70



Whenever the control reaches any checking location, a call isissued to localcheckAssertions

method which in turn callsSAC.checkAssertions.

6.5 Evaluation of assertions

Assertions can be checked by storing only a small amount of state per assertion, instead

of the entire generated sequence. We describe this for each kind of assertion:

• inv(P)

Initially: Result[0] = P;
At check i, for i > 0:

Result[i] = Result[i-1] && P;

• P unless Q

Initially: a[0] = P && !Q;
Result[0] = true ;

At check i, where i > 0:
a[i] = P && !Q;
Result[i] = Result[i-1] && (a[i-1] implies (P ‖ Q));

• P leadsto Q

Initially: Result[0] = !P ‖ Q;
At check i, where i > 0:

Result[i] = (Result[i-1] && !P) ‖ Q;

• wfair(P, name) or sfair(P, name), whereP is a predicate, andname is a character

string:

Initially: Result[0] = !P;
At check i, where i > 0:

Result[0] = !P;
Write (<name>, <Result>) into log file.

71



• For an assertion withforall quantifier, the checker dynamically createsn assertions

wheren is the cardinality of the bound variable of the quantifier. The conjunction

of all n assertions forms the result of theforall assertion. For example:

forall u: 1 -> N
beginAssertion

P(u) unless Q(u)
endAssertion

results inN assertions, and their conjunction forms one assertion.

• For an assertion with aforsome quantifier, the checker dynamically createsn as-

sertions wheren is the cardinality of the bound variable of the quantifier. The

disjunction of alln assertions forms the result of theforsome assertion.

6.6 Breakpoints

As previously mentioned, SeSFJava Harness uses breakpoints to produce serialized be-

haviors. The Harness stops all threads that encounter breakpoints during their executions,

and allows only one thread to continue. Consider five threads A, B, C, D and E (figure 6.4)

running in the composite system. When the four threads A, B, C and D are dispatched,

they stop at their first encountered breakpoints which are a1, b1, c1 and d1 respectively.

Then, the harness chooses one thread from these threads (called thread pool) to proceed

without interruption till the next breakpoint. For example, it chooses thread B to continue

to breakpoint b2. When thread B reaches b2, it stops and the Harness chooses another

thread to continue. Since thread E has no breakpoints, SeSFJava Harness cannot stop it

during execution.

72



Thread

B C D EA

b2

time

d1

d2c3

c2

c1b1

a2

a1

a3

breakpoint

Figure 6.4: List of threads.

Choosing a thread to continue may be done automatically or manually depending

on the mode of the breakpoint. The following modes are currently supported. Mode

Manual means that the user selects which thread to continue. ModeAutomatic tells the

Harness to randomly select a thread to proceed. ModeAutomatic And View instructs

the Harness to print the status of the composite system (e.g., values of assertions) before

choosing a thread automatically. ModeView prints the status of the composite system

before continuing with the same thread. A thread must call a breakpoint with mode

End before terminating. Finally, modeWait means that the thread is going to execute

a blocking statement. The different modes supported by SeSFJava Harness are illustrated

in figure 6.5.

Setting breakpoints is the mechanism by which the tester achieves serial execu-

73



void breakpoint(name, mode) {
Variable ThreadPool: all threads that have encountered breakpoints.
If (mode = MANUAL)

Add the calling thread to ThreadPool (if the thread is not already present).
List the available assertions with their values.
List the available threads inside ThreadPool.
User chooses the next thread to continue.
Notify the chosen thread to continue its work.

If (mode = VIEW AND AUTOMATIC)
Add the calling thread to ThreadPool (if the thread is not already present).
List the available assertions with their values.
List the available threads inside ThreadPool.
Pick randomly the next thread to continue.
Notify the chosen thread to continue its work.

If (mode = AUTOMATIC)
Add the calling thread to ThreadPool (if the thread is not already present).
Pick randomly the next thread to continue.
Notify the chosen thread to continue its work.

If (mode = VIEW)
List the available assertions with their values.
List the available threads inside ThreadPool.
Allow the calling thread to continue work

If (mode = END)
Remove the calling thread from ThreadPool.
Allow the calling thread to continue its work.
Pick randomly the next thread to continue.
Notify the chosen thread to continue its work.

If (mode = WAIT)
Allow the calling thread to wait.
Pick randomly the next thread to continue.
Notify the chosen thread to continue its work.

}

Figure 6.5: methodbreakpoint of Tester.java

tions. Therefore, the user should insert breakpoints at appropriate locations. A misplaced

breakpoint may lead to a violation of a valid assertion. For example,

Thread {
...
x = 0;
//# breakpoint(‘‘1’’, AUTOMATIC)
....
y = 4;
...
y = 3;
//# breakpoint (‘‘2’’, AUTOMATIC)
....

}

74



Assertion “(x==0) leadsto (y==4)” fails upon testing the previous program, al-

though the behavior satisfies the assertion. The program hasto be modified to:

Thread {
...
x = 0;
//# breakpoint(‘‘1’’, AUTOMATIC)
....
y = 4;
//# breakpoint (‘‘2’’, AUTOMATIC)
...
y = 3;
....

}

A misplaced breakpoint may lead to a deadlock. For example,

Thread X {
...
x = 0;
//# breakpoint(‘‘1’’, AUTOMATIC)
....
y = 4;

}

The thread ends while holding the lock from breakpoint “1”. Consequently, all

other threads in the system will be blocked at their respective breakpoints waiting for

threadX to relinquish control of the lock, which will not happen as the threadX is no

longer active. The program has to be modified to:

Thread {
...
x = 0;
//# breakpoint(‘‘1’’, AUTOMATIC)
....
y = 4;
//# breakpoint(‘‘2’’, END)

}

It is important to callbreakpoint(<name>, END) before ending the thread (the call

can be placed in afinally clause). Missing a call tobreakpoint(<name>, END) results

75



in the violation of the fairness assumptions (other threadsare continuously enabled, but

never executed).

6.7 Configurations

SeSFJava Harness can test various configurations of systemsand services. In chapter 4, in

order to verify that systemM satisfies serviceU (figure 6.6(a)), we constructed composite

systemM∗ of M-wrt-U and U-wrt-M as in figure 6.6(b) and proved that its execution

results in no faulty transition. But in order to testM againstU, we had to construct

composite systemM∗′ of U-wrt-M′ andM-wrt-U′ (Figure 6.6(c)). After construction of

M∗′, it is executed to test the service satisfaction. We will present two more configurations.

Convention An input composite system is the system composed of systems and ser-

vices that are stated in aconfigurationfile.

U

M−wrt−U

U−wrt−M

M*

(c) Harness framework(b) Verification framework(a) System framework

M−wrt−U’

U−wrt−M’

Harness

M

Figure 6.6: Component system phases

6.7.1 Example 1

Consider a component system that is itself a composite system. Figure 6.7(a) illustrates

systemsM andN, and servicesU, V andW. In order to verify thatM andN satisfiesV

76



andW, we construct composite systemsM∗ andN∗ as in figure 6.7(b).M∗ is composed of

M-wrt-{U, W}, U-wrt-M andW-wrt-M. N∗ is composed ofN-wrt-{U, V}, U-wrt-N and

V-wrt-N. If M∗ andN∗ are correct (each satisfy its services and assertions), then {M, N}

satisfies{V, W}.

In order to test{M, N} against{V, W}, we have two options. The first is to test

each component alone, that is, to test thatM satisfiesU andW, and to test thatN usesU

satisfiesV. The second option is to construct composite systemMN∗′ of M-wrt-W′, U′,

N-wrt-V′, V′, V-wrt-N′, W′ andW-wrt-M′ (figure 6.7(c)). After construction ofMN∗′, it

is executed to test the service satisfaction.

U’

(a) System framework (b) Verification framework

W−wrt−M’

V−wrt−N’

N−wrt−V’

(c) Harness framework

Harness

M*

M−wrt−W’M

N

U

W

V

N−wrt−{U,V}

V−wrt−N

U−wrt−N

N*

M−wrt−{U,W}

U−wrt−M W−wrt−M

Figure 6.7: Component system phases of example 1

6.7.2 Example 2

Consider a closed composite system of systemsM, N andO, and servicesU, V andW

(figure 6.8(a)). For verification, we constructM∗, N∗ andO∗ (figure 6.8(b)). and verify

each system independently. If each is correct (each satisfyits services and assertions),

then the composite systemMNO is correct. For testing of the composite systemMNO,

77



we construct the components shown in figure 6.8(c), and execute the entire composite

system, and check the validity of the assertions.

V’

(a) System framework (b) Verification framework

V−wrt−O W−wrt−O

O−wrt−{V,W}

U−wrt−M W−wrt−M

M−wrt−{U,W} M’

N’

O’

(c) Harness framework

Harness

M*

O*

N*

M

N

O

U

W

V

N−wrt−{U,V}

V−wrt−N

U−wrt−N

U’

W’

Figure 6.8: Composite system phases of example 2

The possible executions ofM∗ andN∗ in figure 6.8(c) is typically a subset of the the

possible executions ofM∗ andN∗ in figure 6.7(c) because the systemO′ has a constraining

effect (i.e., because it does not supply all the possible inputs thatV andW can accept).

78



Part II

Applications

79



Chapter 7

Data Transfer Protocol

In this chapter, we apply SeSFJava to the data transfer part of a transport protocol, specif-

ically, a sliding window protocol that provides reliable flow-controlled data transfer from

a source to a sink over unreliable channels that can lose, reorder and duplicate messages

in transit subject to a maximum message lifetime.

Fig. 7.1 illustrates the data transfer layers.SW SourceUser passes data toSW Source.

SW Source buffers the data (in a send window) and transfers it toSW Sink, resending un-

til it is acknowledged bySW Sink. SW Sink buffers data received out of sequence (in a

receive window) and delivers data in sequence toSW SinkUser. The sliding window pro-

tocol is significantly more complex than stop-and-wait or go-back-N protocols [42]. We

assume fixed size messages for readability reasons.

SW Source, SW Sink, and the unreliable channels make up theSW Sys composite

system.SW SourceUser andSW SinkUser make up the composite system using the ser-

vice.DT denotes the data transfer service, that is, the signature ofthe interactions between

the systems on either side, as well as the permissible sequences of these interactions.

This chapter is organized as follows. Section 7.1 describesthe SW Source and

80



DT data transfer
service

unreliable channels

loss, reorder and duplicate

Application
Layer

Layer
Transport

SW_Sink

SW_SinkUser

xc deliverData

xc sendData xc readyToAccept

SW_SourceUser

SW_Sys composite system

SW_Source

xc ackData

Figure 7.1: Data transfer service and protocol system

SW Sink systems. Section 7.2 describes theDT service. Section 7.3 illustrates the

program-version conditions forSW Sys system to satisfyDT service. Section 7.4 demon-

strates how to testSW Sys system againstDT service.

7.1 Systems

Figures 7.2 and 7.3 show the system programs in (high-level)SeSF forSW Source and

SW Sink systems, respectively.SW SourceUser createsSW Source process and sets

SW Source.sourceuser to refer to itself (for callback methods). Similarly,SW SinkUser

createsSW Sink process and setsSW Sink.sinkuser to refer to itself (for callback meth-

ods).SW SourceUser sends an array of bytes via xc-eventSW Source.sendData. SW Source

divides the received array into data blocks, and sends thosedata blocks toSW Sink. When

SW Sink receives a data block, it replies with an ACK message. IfSW SinkUser has

enough space (varSW Sink.allowedBytes > 0), SW Sink delivers the data block to its

user via xc-eventSW SinkUser.deliverData; otherwiseSW Sink waits (busy waiting) for

81



SW SinkUser to call xc-eventSW Sink.readyToAccept before delivering more data to

the user. WheneverSW Source receives a new ACK (not a duplicate), it calls xc-event

SW SourceUser.ackData to inform the user that it has more empty space in the buffer.

Inside SW Source system, threadDataSender sends data packets whenever data

packets are ready in the buffer within the boundaries of the send window. ThreadRetransmission

retransmits un-acked packets whenever the timeout fires. ThreadSourceReceiver receives

ACK messages and modifies the variables accordingly.

ThreadDataDelivery delivers received data toSW SinkUser if the user has enough

buffer space. ThreadSinkReceiver receives data packets and store them in the sink’s

buffer.

Atomically-executed code is indicated by enclosing it in angled brackets (e.g., see

DataSender thread in fig. 7.2; we use large-scale atomicity to keep the example small).

Both systems have the standard progress assumptions, that is, weak fairness of all

threads.

Figures 7.4 and 7.5 outline the SeSFJava programs of theSW Source andSW Sink,

respectively (for the complete SeSFJava code, see appendices C.1 and C.2). As usual,

statements preceded by “//#” are SeSFJava constructs that are used only for testing.

7.2 Service

The service programDT in SeSF is given in figure 7.6. Dnw eventDT.sendData corre-

sponds toSW SourceUser passing data toSW Source (for brevity, we refer to the dnw

event asDT.sendData rather than the more accurateDT.SW Source.sendData). The

82



Description of sliding window protocol (source side):
At any time at the source, letsendBuf[0, 1, . . . , (ng − na − 1)] denotes the sequence of data blocks generated by the source.
Of these,sendBuf[0, 1, . . . , (ns − na − 1)] have been sent but not yet acknowledged, andna ≤ ns ≤ ng holds. The variable
sw is the source’s estimate of the currentreceive windowsize of the sink, wheresw ≤ constant SW. [na..(na + sw − 1)]
constitutes thesend window.

system-program SW Source { // system header
constant int bufSize := 32 * 1024; // buffer size is constant (equals SW ∗ message size)
constant int msgSize := 128; // message size is constant
constant int SW := bufSize/msgSize, // maximum send window size
int ng := 0, // number of data blocks generated by local user, initially 0

ns := 0, // number of data blocks sent at least once, initially 0

na := 0, // number of data blocks acknowledged, initially 0

bufUsed := 0; // occupied portion of buffer in bytes, initially 0
sw := SW, // send window size, initially SW.

Buffer sendBuf; // send buffer of SW equal-sized data blocks;
// no need to store acked data blocks [0,1,. . .,(na-1)]

Timer rTimer; // retransmission timer, fires after timeout elapses
boolean rTimerFired // it is true whenever rTimer fires
SW SourceUser sourceuser; // reference to the user application for callback methods

// data.length is the number of bytes in array data
xc-eventvoid sendData(byte[] data) { //xc-event header

ec: bufUsed + data.length ≤ bufSize ∧ data.length = 0 ∧ data.length % msgSize = 0;
ac: Divide data array into data blocks;

tmp := number of constructed data blocks;
Store tmp data blocks in sendBuf; // sendBuf[ng..(ng+tmp-1)] := data[...]
ng := ng + tmp;
bufUsed := bufUsed + data.length;

}

Thread DataSender (){
// Busy waiting is used to keep the example simple

while 〈 // ‘〈’: begin atomic section
(1 ≤ ns − na < min (ng, na + sw) − na) {
Send data block with sequence number (ns); // via unreliable channel
Reset rTimer of data block ns;
ns := ns + 1;

} 〉 // ‘〉’: end atomic section
}

lc-eventRetransmission (int seqNo) {
ec: na ≤ seqNo < ns ∧ rTimerFired;
ac: Send data block (seqNo); // via unreliable channel

Reset rTimer of data block seqNo;
}

Thread SourceReceiver {
while(true) {

Receive ACK(seqNo, w); // blocks till an ACK message is received with sequence number seqNo
// and window size w

〈 // begin atomic section
int tmp := seqNo − na; // number of newly acked messages
if (1 ≤ tmp ≤ (ns − na)) {

sourceuser.ackData(tmp ∗ message size);
na := na + tmp; // remove first tmp data blocks from sendBuf;
sw := w;
bufUsed := bufUsed − tmp ∗ data block size;

} else if (tmp = 0)
sw := max(sw, w);

〉 // end atomic section
}

}

progress-assumptiondefault {
wfair(DataSender, Retransmission, SourceReceiver);

}
}

Figure 7.2:SW Source system program in SeSF

83



Description of sliding window protocol (sink side):
At any time at the sink,recvBuf[0] has not yet been delivered to the user.recvBuf[0, 1, . . . , (RW − 1)] may have been
received out-of-sequence, in which case, they are temporarily buffered, but are not passed to the user.[nr..nr + RW − 1]
(which isrecvBuf[0..RW − 1]) constitutes the receive window.

system-program SW Sink { // system header
int allowedBytes := 0, // number of the bytes that SW Sink is able to foist on user’s buffer, initially 0.

nr := 0; // number of data blocks delivered to the local user, initially 0.
Buffer recvBuf; // buffer of RW equally-sized data blocks
SW SinkUser sinkuser; // reference to the user application for callback methods

xc-event void readyToAccept(int n) { // xc-event header
ec: true; // not checked by system, no side effects
ac: allowedBytes := n; // no event calls, no blocking

}

Thread DataDelivery () {
// Busy waiting is used to keep the example simple

while 〈 (recvBuf[nr] 6= null ∧ allowedBytes > 0) { // ‘〈’: begin atomic section
allowedBytes := allowedBytes − recvBuf[nr].length;
sinkuser.deliverData(recvBuf[nr]);
remove recvBuf[nr]; // no need to store recvBuf[nr]
nr := nr + 1;

} 〉 // ‘〉’: end atomic section
}

Thread SinkReceiver {
while (true) {

Receive data block (cj, data); // blocks until a data block with sequence number (cj) and contents (data)
〈 if (0 ≤ cj − nr < RW) // begin atomic section

recvBuf[cj − nr] := data;
Send ACK message ACK(nr, RW);

〉 // end atomic section
}

}

progress-assumption default {
wfair(ModifyWindow, DataDelivery, SinkReceiver);

}
}

Figure 7.3:SW Sink system program in SeSF

84



//# system program;
class SW Source{

//# HarnessInterface harness = ...;
SW SourceUser sourceuser; // ref. for callback methods
Socket nSocket;
Vector sendBuf = new Vector ();
final static int msgSize = 128;
final static int bufSize = 32*1024;
final static int SW = bufSize / msgSize;
int bufUsed, ns, na, ng, sw = SW;
Object lock = new Object(); // lock object
. . .

//# xc event;
public void sendData(byte[] data) {

//# ec: data.length !=0 &&
//# bufUsed + data.length <= bufSize &&
//# data.length % msgSize == 0;
//# breakpoint(...);
synchronized(lock){

. . .

bufUsed += data.length;
}

}

// Thread is a class that continuously
// executes method run
class DataSender extends Thread {

. . .

public void run() {
while (true){

//# breakpoint(...);
synchronized(lock){

. . .

sendDataBlock(ns); // Send data block ns
}
. . .

}
}

}

// TimerTask is class that executes method run
// whenever its timer fires
class Retransmission extends TimerTask {

. . .

public void run() {
//# breakpoint(...);
sendDataBlock(j); // retransmit block j

// when timer fires and it is not acked
//# breakpoint(...);

}
}

class SourceReceiver extends Thread {
. . . ;
public void run(){

while (true){
//# breakpoint(...);
// get ACK message with (seqNo, w)
. . .

synchronized(lock){
int tmp = seqNo -na;
if (tmp >= 1 &&

tmp <= ns - na){
. . .

sourceuser.ackData(ackedBytes);
} else if (tmp == 0)

sw = sw > w ? sw : w;
}
//# breakpoint(...);
. . . ;

}
}

}

//# progress assumption default {
//# beginAssertion {
//# wfair(!DataSender.isAlive()) &&
//# wfair(!SourceReceiver.isAlive()))
//# }
//# }

}

Figure 7.4: Outline of SeSFJavaSW Source system program (file SWSource.java) (see

appendix C.1 for complete program)

85



//# system program;
class SW Sink {

//# HarnessInterface harness = ...;
. . .

SW SinkUser sinkuser;
Socket nSocket;
Vector recvBuf = new Vector();
final static int bufSize = 32 * 1024;
final int msgSize = 128;
final int RW = bufSize / msgSize;
int nr, allowedBytes = bufSize;
Object lock = new Object();
. . .

//# xc event;
public void readyToAccept(long n) {

//# ec: true;
allowedBytes = n;

}

class SinkReceiver extends Thread {
. . .

public void run() {
while (true) {

// receive data block with (seqNo, data)
. . .

//# breakpoint(...);
synchronized(lock){
int tmp = seqNo − nr − 1;
if ((seqNo − nr − 1 >= 0)

&& tmp < RW && data.length ! = 0 &&
recvBuf.elementAt(tmp) == null) {

recvBuf.set(tmp, data); // recvBuf[tmp] = data
// send ACK
. . .

}
. . .

}
}

}
}

class DataDelivery extends Thread {
. . .

public void run() {
while (true) {

//# breakpoint(...);
synchronized(lock){
if (recvBuf.elementAt(0) ! = null &&

allowedBytes > 0) {
. . .

dtsink.deliverData(delData); // delData denotes
// deleted data

}
}

}
}

}

//# progress assumption default {
//# beginAssertion {
//# wfair(!DataDelivery.isAlive()) &&
//# wfair(!SW SinkReceiver.isAlive())
//# }
//# }

}

Figure 7.5: Outline of SeSFJavaSW Sink system program (file SWSink.java) (see ap-

pendix C.2 for complete program)

86



event appends the data to a stream (infinite array), and is enabled if the data fits the

available space (as advertised by prior calls of upw eventSW SourceUser.ackData). Upw

eventDT.deliverData corresponds toSW Sink passing data toSW SinkUser. It is enabled

if the data to be delivered is in sequence (with respect to thedata sequence passed down

by SW SourceUser), and theSW SinkUser buffer has enough space.SW SinkUser can

advertise its window at any time (via dnw eventDT.readyToAccept). Upw DT.ackData

informs the source user how much data has been delivered to the sink user.

ServiceDT has two progress obligations:allDataAcked which requires that all sent

data are eventually acked, anddataDelivered which requires that all sent data are eventu-

ally delivered to the sink user.

Figure 7.7 outlines the SeSFJava service program of theDT. Notice that there

is a a difference between assertionallDataAcked in SeSF (fig. 7.6) and the assertion

allDataAcked in SeSFJava (fig. 7.7). We cannot applySeSF.allDataAcked to SeSFJava

systems, because we have to check for every integer value ofn, which is infeasible. So,

we have to use an assertion that models the same constraint. Because the execution is

finite, SeSFJava.allDataAcked can be used instead ofSeSF.allDataAcked.

7.3 DT satisfaction conditions

Fig. 7.8 illustrates the construction ofSW Sys∗ from SW Sys andDT. SW Sys∗ con-

sists ofSW Source-wrt-DT, SW Sink-wrt-DT, the channels between them, andDT-wrt-

{SW Source, SW Sink}. In particular, every output call inSW Source andSW Sink is

replaced by a call to the corresponding event ofDT by appropriately modifying variables

87



service-program DT { // service program’s header
// Declarations
int msgSize; // message size (constant)
// Source side variables.
Stream srcHist; // source entity history in bytes
int srcBufSize, // equals SW ∗ message size

srcBufUsed; // occupied portion of source buffer in bytes, always srcBufUsed ≤ srcBufSize
int srcNumSent, // number of bytes accepted from source’s local user, initially 0

srcNumAcked; // number of acked bytes (at source entity), initially 0

// Sink side variables.
int sinkNumDelivered, // number of bytes delivered to sink user, initially 0

sinkBufAvail; // number of bytes that sink user can accept, initially (RW ∗ message size)

// Events of source side:

// sends data from local user to source entity to be delivered to remote user
dnw-event void SW Source.sendData(byte []data) { // dnw event header

ec: srcBufUsed + data.length ≤ srcBufSize ∧ data.length > 0 ∧ data.length % msgSize = 0;
ac: // data.length is number of bytes in data array

srcHist[srcNumSent .. srcNumSent + data.length - 1] := data[0..data.length-1];
srcNumSent := srcNumSent + data.length;
srcBufUsed := srcBufUsed + data.length;

}

// notifies the entity user that n bytes have been acked by remote user
upw event void SW SourceUser.ackData(int n) { // upw event header

ec: srcNumAcked + n ≤ srcNumSent;
ac: srcBufUsed := srcBufUsed − n;

srcNumAcked := srcNumAcked + n;
}

// Events of sink side

// informs sink entity that its user can accept cumulative amount of data (in bytes) equals to n

dnw event void SW Sink.readyToAccept(long n) {
ec: true;
ac: sinkBufAvail := n;

}

// delivers data to local user, such that, data is delivered in sequence without loss or duplication
upw event void SW SinkUser.deliverData(byte []data) {

ec: sinkNumDelivered + data.length ≤ srcNumSent ∧
data.length ≤ sinkBufAvail ∧ data.length > 0 ∧
srcHist[sinkNumDelivered .. sinkNumDelivered + data.length] = data[0..data.length];

ac: sinkNumDelivered := sinkNumDelivered + data.length;
sinkBufAvail := sinkBufAvail − data.length;

}

progress-obligation allDataAcked {
((srcNumAcked = n) ∧ (sinkNumDelivered > n) leadsto (srcNumAcked = n))

}

progress-obligation dataDelivered {
((sinkNumDelivered = n) ∧ (srcNumSent > n) ∧ (sinkBufAvail > 0)) leadsto (sinkNumDelivered > n)

}
}

Figure 7.6: SeSFDT: data transfer service program

88



import java.io.*;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

//# service program;
class DT extends UnicastRemoteObject implements ... {

final static int msgSize = 128;

// Source side variables.
ByteArrayOutputStream srcHist = new ByteArrayOutputStream ();
int srcBufSize = 32 *1024,

srcBufUsed;
long srcNumSent, srcNumAcked; // = 0

// Sink side variables.
long sinkNumDelivered, // = 0

sinkBufAvail = 32 ∗ 1024 ;

DT() throws RemoteException {
try {

Naming.rebind(”DT”, this);
} catch (Exception e) { throw new RemoteException(); }

}

// Events of source side
//# dnw event: SW Source;
public synchronized void sendData(byte []data) throws RemoteException {

//# ec: srcBufUsed + data.length <= srcBufSize && data.length > 0 && data.length % msgSize == 0;
srcHist.write(data, 0, data.length);
srcNumSent + = data.length;
srcBufUsed + = data.length;

}

//# upw event: SW SourceUser;
public synchronized void ackData(int n) throws RemoteException {

//# ec: srcNumAcked + n <= srcNumSent;
srcBufUsed = srcBufUsed − n;
srcNumAcked = srcNumAcked + n;

}

// Events of sink side
...
//# progress obligation allDataAcked {
//# beginAssertion {
//# (srcNumAcked < sinkNumDelivered) leadsto
//# (srcNumAcked == sinkNumDelivered)
//# }
//# }
...

}

Figure 7.7: Outline of data transfer service program (file DT.java) (see appendix C.3 for

complete program)

89



system SW_Sink

  while   (c1) {

     ac1;

     SW_Source.sendData(...);

  } 

}

Thread readyToAccept(...){

  while   (c3) {

    ac3;

    SW_Sink.readyToAccept(...);

  }  

}

   ec: c1;

   ac: ac1;

}

dnw sendData(...){ dnw readyToAccept(...){

   ec: c3;

   ac: ac3;

}

upw deliverData(...){

   ec: c4;

   ac: ac4;

}

upw ackData(...){

   ec: c2;

   ac: ac2;

}

   ec: true;

   ac: if (c2) ac2;

        else fault;

xc ackData(...){

}

xc sendData(...){

   ec: true;

   ac: if (c5) ac5;

       else fault;}

xc readyToAccept(...){

   ec: true;

   ac: if (c6) ac6;

       else fault;}

xc readyToAccept(...){

   ec: c6;

   ac: ac6;

}

xc sendData(...){

   ec: c5;

   ac: ac5;

}

system DT−wrt−{SW_Source, SW_Sink}service DT

xc deliverData(...){

   ec: true;

   ac: if (c4) ac4;

        else fault;

}

system SW_Source−wrt−DT

system SW_Sys*

system SW_Sink−wrt−DT

system SW_Sys

system SW_Source

Thread sendData(...){

Figure 7.8: Service satisfaction transformations

sourceuser andsinkuser.

The safety condition forSW Sys offersDT reduces to the following:

1. SW Sys∗ does not have undefined values or operations (division by zero, signature-

inconsistent call, type mismatch, etc.).

2. SW Sys∗ does not call a disabled event, which reduces to the following predicates

being invariant:

• DT.sendData.ec ⇒ SW Source.sendData.ec

(This formalizes the constraint thatSW Source.sendData should be enabled

whenever its user callsDT.sendData. The predicates below are similarly ob-

tained.)

• DT.readyToAccept.ec ⇒ SW Sink.readyToAccept.ec

• SW Source at sourceuser.ackData(· · · ) ⇒ DT.ackData.ec

90



• SW Sink at sinkuser.deliverData(· · · ) ⇒ DT.deliverData.ec

The progress condition holds iffSW Sys∗ satisfies progress obligationsallDataAcked

anddataDelivered assuming weak fairness ofSW Sys’s threads.

Although we do not do so here, it would be straightforward to prove by assertional

reasoning that these conditions hold (e.g., as in [76]).

7.4 Testing and assertion checking harness

To testSW Sys againstDT, we do the following:

1. Create a Harness process to control the test execution. TheHarness process is

bound to RMI (Remote Method Invocation in Java) port “DTHarness”.

2. Construct fromSW Sys∗ a composite systemSW Sys∗′ which interacts with the

harness.SW Sys∗′ consists ofSW Source-wrt-DT′ (a version ofSW Source-wrt-

DT that interacts with the harness),SW Sink-wrt-DT′ (a version ofSW Sink-wrt-

DT that interacts with the harness), andDT-wrt-{SW Source, SW Sink}′ (a version

of DT-wrt-{SW Source, SW Sink} that interacts with the harness).

3. ExecuteSW Sys∗′ along with (and under the control of) the harness process.

4. Check whether the generated execution becomes faulty.

Section 7.4.1 describes how to obtainSW Sys∗′. Section 7.4.2 describes how to

executeSW Sys∗′ under the control of the harness process.

91



7.4.1 ConstructingSW Sys∗′

The first step is to construct composite systemSW Sys∗′ (figure 7.9). Section 7.3 de-

scribed how to getSW Source-wrt-DT, SW Sink-wrt-DT andDT-wrt-{SW Source, SW Sink}.

In addition to those modification, we need these components to connect to the harness.

This leads to the following modifications.

First, we constructSW Source-wrt-DT′, referred to asSW Source′, fromSW Source-

wrt-DT as follows:

• Tag//#HarnessInterface harness = . . . ; indicates the location of the harness, i.e.,

its RMI port.

• For every xc event, (1) insert a call to methodcheckAssertions which sends data

necessary for assertion checking to SAC module, and (2) log information to the log

file.

• Insert breakpoints at locations specified by tag//#breakpoint.

Second, we constructSW Sink-wrt-DT′, referred to asSW Sink′, from SW Sink-

wrt-DT.

Third, we constructDT-wrt-{SW Source, SW Sink}′, referred to asDT′, fromDT-

wrt-{SW Source, SW Sink}′ as follows. For every upw/dnw event, insert a call to method

checkAssertions, and log information to log file.

Fourth, we constructSW Sys∗′ consisting ofSW Source′, SW Sink, the channels

between them andDT′.

92



SW_Sys*’

SW_Sink−wrt−DTSW_Source−wrt−DT SW_Source−wrt−DT’

Harness

SW_Sink−wrt−DT’

DT−wrt−{SW_Source,SW_Sink}

Verification framework

SW_Sys*

Checking framework

DT−wrt−{SW_Source,SW_Sink}’

Figure 7.9:SW Sys∗ andSW Sys∗′ composite systems

7.4.2 ExecutingSW Sys∗′

OnceSW Sys∗′ is constructed, the next step is to obtain the testing platform on which it

can be executed. SAC (Serializer And Checker) module, withinthe harness, ensures that

SW Sys′-DT′ interactions are executed atomically, and that only one thread is proceeding

at a time. SeSFJava harness inserts breakpoints inSW Sys′ andDT′ such that at any time,

at most one thread ofSW Sys∗′ runs and every other thread is paused at a breakpoint.

SAC module maintains relevant state for every process, suchas whether the process is

running, paused, blocked, or about to be terminated. Each thread sends its state to the

SAC module. Breakpoints are inserted manually to indicate where the thread transitions

take place.

Assertions are evaluated at checking locations, specifically, at the start of every

event and at every breakpoint as mentioned in section 6.3. For example, the scheme

to test if SW Source satisfies assertioninv(SW Source.sw >= 0) is as follows. First,

wheneverSW Sys′ encounters a checking location, it sendsSW Source.sw to the Harness

(via methodcheckAssertions). Second, whenever the harness receives this field, it checks

whether the predicateSW Source.sw >= 0 holds. If the predicate fails once, then the

invariant does not hold.

93



After SW Sys∗′ is constructed, it is executed on the same platform asSW Sys∗ as

follows:

1. SeSFJava harness starts as a separate process, and binds itself to RMI port “DTHar-

ness”.

2. DT′ process starts, and looks up for the harness’ port “DTHarness”.

3. SW Sys′ process is created. It looks up for port “DTHarness” using RMIlookup

command. So, both system (source and sink) are hooked up withthe harness.

4. The developer can use the harness either in batch mode, letting the harness run for

a while and then analyzing the log file, or in interactive mode, influencing the flow

of the execution manually.

94



Chapter 8

Connection Management Protocol

In this chapter, we apply SeSFJava to the connection management part of a transport pro-

tocol. Here, a client connects and terminates connections to a server using messages sent

over unreliable channels that can lose, reorder and duplicate messages in transit subject

to a maximum message lifetime. The protocol has been taken from [59, 77].

Figure 8.1 illustrates the components of connection management protocol. When

CM ClientUser wants to establish a connection toCM ServerUser, it passes its request to

CM Client. CM Client, in turn, establishes a connection withCM Server via a three-way

handshake. If the handshake is successful,CM Server andCM Client notify CM ServerUser

andCM ClientUser, respectively, of the connection establishment; otherwise they notify

the users of the cancellation. After establishing the connection, the client and the server

may exchange data using a data transfer protocol (e.g., the one described in chapter 7).

When CM ClientUser wants to terminate an open connection withCM ServerUser, it

passes its request toCM Client, which, in turn, terminates the connection withCM Server

via a two-way handshake. BothCM Client andCM Server notify their respective user ap-

plications of the termination.CM Client, CM Server, and the unreliable channels make

95



CM connection

Transport

Application
Layer

unreliable channels

loss, reorder and duplicate

management service

Layer

CM_ClientUser

CM_Sys composite system

CM_Client CM_Server

CM_ServerUser

xc disconnectRequest
xc connectRequest

xc connectRequestInd

xc disconnectRequestInd

xc distantRequestInd
xc connectRequestRej

xc connectInd
xc closeInd

xc listenInd

xc listenRequest
xc endListenRequest

Figure 8.1: Connection management service and protocol system

up theCM Sys composite system.CM ClientUser andCM ServerUser make up the com-

posite system of the application.CM denotes the connection management service, that

is, the signature of the interactions between the systems oneither side, as well as the

permissible sequences of these interactions.

This chapter is organized as follows. Section 8.1 describesthe CM Client and

CM Server systems. Section 8.2 describes theCM service. Section 8.3 illustrates the

conditions necessary for systemCM Sys to satisfyCM service. Section 8.4 demonstrates

how to testCM Sys system againstCM service.

8.1 Systems

Figures 8.2 and 8.3 illustrate the system programs in SeSF for CM Client andCM Server

systems, respectively. Before explaining these programs, we first define the notion of

96



incarnations. Each connection between the client and the server is an association between

two incarnations: one at the client and another at the server. A new incarnation at the

CM Client is created whenever its user requests a new connection establishment. A new

incarnation at theCM Server is created whenever it becomes willing to accept a remote

connection request. Every incarnation is assigned an incarnation number when it starts;

the incarnation is uniquely distinguished by its incarnation number and user id. Each of

the client and the server has at most one incarnation at any time.

CM Client and CM Server exchange messages of the formM(sin, rin), whereM

is the type of the message,sin is the sender’s incarnation number, andrin is the in-

tended receiver’s incarnation number. In some messages,sin or rin may be absent, de-

noted by “-”. TheCM Client, sends the following messages:CR(sin,−), which indi-

cates connection request;CRRACK(sin, rin), which indicates connection request reply

ack; DR(sin, rin), which indicates disconnect request; andREJ(−, rin), which indicates

reject. TheCM Server sends the following messages:CRRACK(sin, rin), which indicates

connection request reply;DRACK(sin, rin), which indicates disconnect request ack; and

REJ(−, rin), which indicates reject.

Each message is either a primary or a secondary message. Aprimary message

is sent repeatedly until a response is received. Client’sCR andDR, and Server’sCRR

are primary messages. Asecondarymessage is sent only in response to the reception

of a primary message, and does not wait for response. Client’sCRRACK andREJ, and

Server’sDRACK andREJ are secondary messages.

CM ClientUser createsCM Client process and setsCM Client.clientuser to refer to

itself (for callback methods). Similarly,CM ServerUser createsCM Server process and

97



Description of connection management protocol (client side):
Var status: {CLOSED, OPENING, OPEN, CLOSING}; initially CLOSED. Status of client’s relationship with the server.
CLOSED iff client has no incarnation involved with the server.OPENING means client has an incarnation requesting a con-
nection with the server.OPEN means client has an incarnation open to the server.CLOSING means client has an incarnation
closing a connection with the server.
Var lin: {nil, 0, 1, ...}; initially nil. Local incarnation number.nil if status = CLOSED. Otherwise identifies client incarna-
tion involved with the server.
Var din: {nil, 0, 1, ...}; initially nil. Distant incarnation number.nil if status equalsCLOSED or OPENING. Otherwise
identifies the incarnation of the server with which the client incarnation is involved.

system-programCM Client {
//# static HarnessInterface harness := (HarnessInterface) Naming.lookup(”CMHarness”);

int lin := nil; // local incarnation number
int din := nil; // distant incarnation number
int linGen := 0; // incarnation number generator
Timer rTimer; // retransmission timer, fires after timeout elapses
boolean rTimerFired // this boolean is true whenever rTimer fires
CM ClientUser clientuser; // Reference to the user application for callback methods
xc-eventvoid connectRequest () { xc-eventvoid disconnectRequest () {

ec: status = CLOSED; ec: status = OPEN
ac: status := OPENING; ac: status := CLOSING;

lin := linGen++; Send msg DR(lin, din);
Send msg CR(lin, -); Reset rTimer of msg DR;
Reset rTimer of msg CR; }

}

lc-eventCR Retransmission () { lc-eventDR Retransmission () {
ec: (status = OPENING ∧ rTimerFired); ec: status = CLOSING ∧ rTimerFired;
ac: Send msg CR(lin,-); ac: Send msg DR(lin,din);

Reset rTimer of msg CR; Reset rTimer of msg DR;
} }

Thread CM Receiver {
Receive msg {

//# breakpoint(”CM Client.msgRcvd”, AUTOMATIC);
case CRR(sin, rin): 〈 if (status = OPENING ∧ rin = lin){

status := OPEN;
din := sin;
Send msg CRRACK(lin, din);
clientuser.connectRequestInd();

} else if (status = OPEN ∧ sin = din ∧ rin = lin) {
Send msg CRRACK(lin, din);

} else if (status = CLOSED ‖ status = CLOSING)
Send msg REJ(-,sin); 〉

case REJ(-,rin): 〈 if (status = OPENING ∧ rin = lin){
status := CLOSED;
din := nil; lin := nil;
clientuser.connectRequestRej();

} else if (status = CLOSING ∧ rin = lin){
status := CLOSED;
din := nil; lin := nil;
clientuser.disconnectRequestInd();

} 〉
case DRACK (sin, rin): 〈 if (status = CLOSING ∧ rin = lin ∧ sin = din){

status := CLOSED;
din := nil; lin := nil;
clientuser.disconnectRequestInd();

} 〉
}
//# breakpoint(”CM Client.CM Receiver”, END);

} //End Thread CM Receiver.
}

Figure 8.2:CM Client system program in SeSF

98



Description of connection management protocol (server side):
Var status: {CLOSED, OPENING, OPEN}; initially CLOSED. Status of server’s relationship with the client.CLOSED iff
server has no incarnation involved with the client.OPENING means server has an incarnation accepting a connection request
from the client.OPEN means server has an incarnation open to the client.
Var lin: {nil, 0, 1, ...}; initially nil. Local incarnation number.nil if status = CLOSED. Otherwise identifies server incarna-
tion involved with the client.
Vardin: {nil, 0, 1, ...}; initially nil. Distant incarnation number.nil if status = CLOSED. Otherwise identifies the incarnation
of the client with which the server incarnation is involved.

system-programlass CM Server{
//# static HarnessInterface harness := (HarnessInterface) Naming.lookup(”CMHarness”);
int status := CLOSED; // status of server’s relationship with the client
int listening := false; // equals true if the server is accepting incoming connections
int lin := nil; // local incarnation number
int din := nil; // distant incarnation number
int linGen := 0; // incarnation number generator
Timer rTimer; // retransmission timer, fires after timeout elapses
boolean rTimerFired // it is true whenever rTimer fires
CM ServerUser serveruser; // reference to the user application for callback methods

xc-eventvoid listenRequest(){ xc-eventvoid endListenRequest (){ lc-eventCRR Retransmission () {
ec: true; ec: true; ec: status = OPENING ∧ rTimerFired;
ac: listening := true; ac: listening := false; ac: Send msg CRR(lin,din);

} } Reset rTimer of msg CRR;
}

Thread CM Receiver {
Receive msg {
//# breakpoint(”CM Server.msgRcvd”, AUTOMATIC);

case CR(sin,-): 〈 if (status = CLOSED ∧ !listening){
Send msg REJ(-,sin); // Not in accept mode

} else if (status = CLOSED ∧ listening){
lin := linGen++; // Attempted connection
din := sin;
status := OPENING;
Send msg CRR(lin,din);
Reset rTimer of msg CRR
serveruser.distantRequestInd(sin);

} else if (status = OPENING ∧ sin > din){ // new remote incarnation
din := sin;
Send msg CRR(lin,din);
serveruser.distantRequestInd(sin);

} 〉
case CRRACK(sin,rin): 〈 if (status = OPENING ∧ sin = din ∧ rin = lin){

status := OPEN;
serveruser.connectInd();

} 〉
case DR(sin,rin): 〈 if (status = OPEN ∧ sin = din ∧ rin = lin){

Send msg DRACK(lin,din);
status := CLOSED;
lin := nil; din := nil;
serveruser.closeInd();

} else if (status = CLOSED)
Send msg DRACK(rin,sin);

case REJ(-,rin): 〈 if (status = OPENING ∧ rin = lin){
status := CLOSED;
lin := nil; din := nil;
serveruser.listenInd();

} 〉
}
//# breakpoint(”CM Server.CM Receiver”, END);

} //End Class CM Receiver.
} //End Class CM Server

Figure 8.3:CM Server system program in SeSF

99



setsCM Client.sinkuser to refer to itself (for callback methods). The handshake sequences

of connection establishment operate as follows:

• CM ServerUser instructsCM Server to accept incoming connection requests via xc-

eventCM Server.listenRequest(), and to reject incoming connection requests via

CM Server.endListenRequest().

• CM ClientUser requests connection establishment viaCM Client.connectRequest().

CM Client creates a new incarnationx0, and sendsCR(x0,−) to CM Server.

• WhenCM Server receivesCR(x0,−):

– If it is accepting incoming connections, it informsCM ServerUser of the ar-

rival of the connection request viaCM ServerUser.distantRequestInd(x0), cre-

ates a new incarnationy0, and replies withCRR(y0, x0).

– If it is not accepting incoming connections, it replies withREJ(−, x0).

• If CM Client receivesCRR(y0, x0), it informs the user of the connection establish-

ment viaCM ClientUser.connectRequestInd(), and replies withCRRACK(x0, y0).

• If CM Client receivesREJ(−, x0) or its timeout fires before it receives a response,

it calls CM ClientUser.connectRequestRej() to inform the user of the failure to es-

tablish a connection.

• WhenCM Server receivesCRRACK(x0, y0), it informs the user of the connection

establishment viaCM ServerUser.connectInd(). If CM Server receivesREJ(−, y0),

it informs the user of the connection cancellation viaCM ServerUser.listenInd().

100



time

CM_Client

(CR, x0)

(DR, x0, y0)

disconnectRequest called

call connectRequestInd

connectRequest called

call disconnectRequestInd

call distantRequestInd(x0)

call connectInd()

call closeInd()

din status

nil CLOSED

nil

lin

nil

x0

nil nil

status

y0 x0

y0 x0

CLOSED

OPENING

OPEN

lin din

nil nil CLOSED

CM_Server CM_ServerUserCM_ClientUser

(CRR, y0, x0)

(CRRACK, x0, y0)

(DRACK, y0, x0) nilnilCLOSED

CLOSINGx0y0

OPENx0y0

OPENING

Figure 8.4: Successful connection and disconnection scenario

The handshake sequences of connection termination operateas follows:

• CM ClientUser requests connection termination viaCM Client.disconnectRequest().

CM Client sendsDR(x0, y0) to CM Server.

• WhenCM Server receivesDR(x0, y0), it informsCM ServerUser of the connection

termination viaCM ServerUser.closeInd(), and replies withDRACK(y0, x0).

• WhenCM Client receivesDRACK(y0, x0), it informs the user of the connection

termination viaCM ClientUser.disconnectRequestInd.

Both systems assume the standard progress assumptions, thatis, weak fairness of

all threads. Figure 8.4 illustrates a successful scenario of connection establishment and

termination.

101



8.2 Service

Figures 8.5 and 8.6 illustrate theCM service program in SeSF. The service defines the

following variables:

• cStatus: {CLOSED, OPENING, OPEN, CLOSING}; initially CLOSED. Status of

client’s relationship with the server.CLOSED iff client has no incarnation involved

with the server.OPENING means client has an incarnation requesting a connection

with the server.OPEN means client has an incarnation open to the server.CLOSING

means client has an incarnation closing a connection with the server.

• clin: {−1, 0, 1, . . .}; initially −1. Number of client’s local incarnations minus 1,

that is, the number of times that the client has requested a connection establishment

minus 1. The “-1” indicates the nil.

• cdin: {−1, 0, 1, . . .}; initially −1. Equals the value of the server’s local incarna-

tion during the client most recent transition to stateOPEN, that is, the last time a

connection was established (at client side). The “-1” indicates the nil.

• sStatus: {CLOSED, OPENING, OPEN}; initially CLOSED. Status of server’s re-

lationship with the client.CLOSED iff server has no incarnation involved with the

client. OPENING means server has an incarnation accepting a connection request

from the client.OPEN means server has an incarnation open to the client.

• sAccepting: {REJECT, ACCEPT}; initially REJECT. Current status of the server,

that is, whether it can accept connections or not.

102



• slin: {−1, 0, 1, . . .}; initially -1. Number of server’s local incarnations, thatis, the

number of times that the server has entered stateOPENING. The “-1” indicates the

nil.

• sdin: {−1, 0, 1, . . .}; initially -1. Equals the value of the client’s local incarnation

when the last connection request was received by the server.The “-1” indicates the

nil.

Table 8.1 illustrates the events used in theCM component. Client-side events are

the interactions betweenCM Client andCM ClientUser. Server-side events are the in-

teractions betweenCM Server and CM ServerUser. Figure 8.7 indicates the effect of

client-side events on<cStatus>. Figure 8.8 indicates the effect of server-side events on

<sStatus, sAccepting>.

ServiceCM defines the following progress obligations:

P1 If client has requested a connection establishment and server is accepting connec-

tions, then eventually (1) server is stateOPENING, (2) client’s status isCLOSED,

or (3) server rejects connections.

P2 If the client isOPENING and server isOPENING, then eventually (1) the client is

OPEN, or (2) one or both entities’ status areCLOSED.

P3 If the client isOpen and the server isOPENING, then eventually (1) the client and

the server areOPEN, or (2) one or both entities close the connection.

P4 If connectRequest() occurs, then eitherconnectRequestInd() or connectRequestRej()

will eventually be executed. The client cannot stay in stateOpening forever.

103



service-program CM {
// Client entity variables.
int cStatus := CLOSED; // Status of client’s relationship with the server
int clin := -1; // Client’s local incarnation number
int cdin := -1; // Client’s distant incarnation number

// Server entity variables.
int sStatus := CLOSED; // Status of server’s relationship with the client
int sAccepting := REJECT; // Reflect whether server is accepting or rejecting incoming connections
int slin := -1; // Server’s local incarnation number
int sdin := -1; // Server’s distant incarnation number

// client requests to connect to server
dnw-eventvoid CM Client.connectRequest() {

ec: cStatus = CLOSED;
ac: cStatus :=OPENING;

clin++;
}

// client user requests to disconnect.
dnw-eventCM Client.disconnectRequest() {

ec: cStatus = OPEN;
ac: cStatus := CLOSING;

}

// client learns that its connection request to server is accepted;
// client becomes open to server.
upw-eventvoid CM ClientUser.connectRequestInd() {

ec: cStatus = OPENING ∧ clin = sdin;
ac: cStatus := OPEN;

cdin := slin;
}

// client learns that its connection request to server is rejected.
upw-eventvoid CM ClientUser.connectRequestRej() {

ec: cStatus = OPENING;
ac: cStatus := CLOSED;

}

// client’s request to disconnect is fulfilled.
upw-eventvoid CM ClientUser.disconnectRequestInd() {

ec: cStatus = CLOSING;
ac: cStatus := CLOSED;

}

// server will accept incoming connections.
dnw-eventvoid CM Server.listenRequest() {

ec: sAccepting = REJECT;
ac: sAccepting := ACCEPT;

}

// server will not accept incoming connections.
dnw-eventvoid CM Server.endListenRequest() {

ec: sStatus = CLOSED ∧ sAccepting = ACCEPT;
ac: sAccepting := REJECT;

}

// server receives a connection request from client.
upw-eventvoid CM ServerUser.distantRequestInd(int sin) {

ec: sAccepting = ACCEPT ∧ sin ≤ clin;
ac: if (sStatus = CLOSED) {

slin++; // Attempt connection
sdin := sin;
sStatus := OPENING;

} else if (sStatus = OPENING ∧ sin > sdin) {
sdin := sin;
sStatus := OPENING;

}
}

Figure 8.5: SeSFCM: connection management service program (Part 1)

104



// server learns that the client’s connection request has succeeded;
// server becomes open.
upw-eventvoid CM ServerUser.connectInd() {

ec: sStatus = OPENING ∧ slin = cdin;
ac: sStatus := OPEN;

}

// server learns that its connection with the client is closed.
upw-eventvoid CM ServerUser.closeInd() {

ec: sStatus = OPEN ∧ cStatus ! = OPEN;
ac: sStatus := CLOSED;

}

// server learns of the rejection to the connection request, and goes to listening.
upw-eventvoid CM ServerUser.listenInd() {

ec: sStatus = OPENING;
ac: sStatus := CLOSED;

}

// If client has requested a connection establishment and server is accepting connections,
// then eventually (1) server is state OPENING, (2) client’s status is CLOSED, or
// (3) server rejects connections.
progress-obligationP1 {

(cStatus = OPENING ∧ sAccepting = ACCEPT) leadsto
(cStatus = OPENING ∧ sStatus = OPENING) ∨ cStatus = CLOSED ∨ sAccepting = REJECT;

}

// If the client is OPENING and server is OPENING, then eventually (1) the client is OPEN,
// or (2) one or both entities’ status are CLOSED.
progress-obligationP2 {

(cStatus = OPENING ∧ sStatus = OPENING) leadsto
(cStatus = OPEN ∧ sStatus = OPENING) ∨ cStatus = CLOSED ∨ sStatus = CLOSED;

}

// If the client is Open and the server is OPENING, then eventually (1) the client and
// the server are OPEN, or (2) one or both entities close the connection.
progress-obligationP3 {

(cStatus = OPEN ∧ sStatus = OPENING) leadsto
(cStatus = OPEN ∧ sStatus = OPEN) ∨ cStatus 6= OPEN ∨ sStatus = CLOSED;

}

// If connectRequest occurs, then either connectRequestInd or connectRequestRej
// will eventually be executed. The client cannot stay in state Opening forever.
progress-obligationP4 {

cStatus = OPENING leadstocStatus = OPEN ∨ cStatus = CLOSED;
}

// If distantRequestInd occurs, then connectInd() or listenInd is eventually executed,
// or the server closes the connection. The server cannot stay in state OPENING forever.
progress-obligationP5 {

sStatus = OPENING leadstosStatus = OPEN ∨ sStatus = CLOSED;
}

// If the client is in state CLOSING, then the connection is eventually closed.
progress-obligationP6 {

cStatus = CLOSING leadstocStatus = CLOSED;
}

}

Figure 8.6: SeSFCM: connection management service program (Part 2)

105



Client-side Events
upw/dnw Event Indication

dnw connectRequest client requests to connect to server.
upw connectRequestRej() client learns that its connection request to

server is rejected.
upw connectRequestInd() client learns that its connection request to

server is accepted; client becomes open
to server.

dnw disconnectRequest() client user requests to disconnect.
upw disconnectRequestInd()client’s request to disconnect is fulfilled.

Server-side Events
upw/dnw Event Indication

dnw listenRequest server will accept incoming connections.

dnw endListenRequest server will not accept incoming
connections.

upw distantRequestInd(· · · ) server receives a connection request
from client.

upw listenInd() server learns of the rejection to the
connection request, and goes to listening;

upw connectInd() server learns that the client’s connection
request has succeeded; server becomes open.

upw closeInd() server learns that its connection with the
client is closed.

Table 8.1: Events of serviceCM

106



<CLOSED> <OPEN>

<CLOSING>

<OPENING>

disconnectRequestdisconnectRequestInd

connectRequestRej

connectRequest connectRequestInd

Figure 8.7: Effect of client-side events fo serviceCM on<cStatus>

listenRequest

<CLOSED, REJECT>

<CLOSED, ACCEPT>

<OPENING, ACCEPT>

<OPEN, ACCEPT>

closeInd

listenInd

distantRequestInd
distantRequestInd

distantRequestInd

connectInd

endListenRequest

Figure 8.8: Effect of server-side events of serviceCM on<sStatus, sAccepting>

P5 IfdistantRequestInd(· · · ) occurs, thenconnectInd() or listenInd() is eventually exe-

cuted, or the server closes the connection. The server cannot stay in stateOPENING

forever.

P6 If the client is in stateCLOSING, then the connection is eventually closed.

107



}

upw closeInd(){

   ec: c11;

   ac: ac11;

}

xc connectRequest(){

   ec: true;

   ac: if (c12) ac12;

       else fault;}

xc listenRequest(){

   ec: true;

   ac: if (c14) ac14;

       else fault;}

xc listenRequest(){

   ec: c14;

   ac: ac14;

}

xc disconnectRequest(){

   ec: c13;

   ac: ac13;

}

xc endListenRequest(){

   ec: c15;

   ac: ac15;

}

xc connectRequest(){

   ec: c12;

   ac: ac12;

}

xc disconnectRequest(){

   ec: true;

   ac: if (c13) ac13;

       else fault;}

xc endListenRequest(){

   ec: true;

   ac: if (c15) ac15;

       else fault;}

upw connectRequestRej(){

   ec: c4;

   ac: ac4;

}

upw connectRequestInd(){

   ec: c3;

   ac: ac3;

}

upw connectInd(){

   ec: c10;

   ac: ac10;

}

upw distantRequestInd(...){

   ec: c8;

   ac: ac8;

}

upw disconntRequestInd(){

   ec: c5;

   ac: ac5;

}

   ec: true;

   ac: if (c5) ac5;

        else fault;

xc disconnectRequestInd(){

}

   ec: true;

   ac: if (c3) ac3;

        else fault;

xc connectRequestInd(){

}

xc closeInd(){

   ec: true;

   ac: if (c14) ac14;

        else fault;

}

xc distantRequestInd(...){

   ec: true;

   ac: if (c8) ac8;

        else fault;

}
xc listenInd(){

   ec: true;

   ac: if (c9) ac9;

        else fault;

}

   ec: true;

   ac: if (c4) ac4;

        else fault;

xc connectRequestRej(){

}

dnw listenRequest(){

   ec: c6;

   ac: ac6;

}

   ec: c2;

   ac: ac2;

}

dnw disconnectRequest(){ dnw endListenRequest(){

   ec: c7;

   ac: ac7;

}

   ec: c1;

   ac: ac1;

}

dnw connectRequest(){

Thread endListenRequest(){

  while   (c7) {

    ac7;

    CM_Server.endListenRequest();

  }  

}

Thread listenRequest(){

  while   (c6) {

    ac6;

    CM_Server.listenRequest();

  }  

}

Thread disconnectRequest(){

  while   (c2) {

     ac2;

     CM_Client.disconnectRequest();

  } 

}

upw listeInd(){

   ec: c9;

   ac: ac9;

}

xc connectInd(){

   ec: true;

   ac: if (c11) ac11;

        else fault;

}

system CM_Client−wrt−CM system CM_Server−wrt−CMsystem CM_Client system CM_Server

system CM_Sys*system CM_Sys

service CM system CM−wrt−{CM_Client, CM_Server}

Thread connectRequest(){

  while   (c1) {

     ac1;

     CM_Client.connectRequest();

  } 

Figure 8.9: Service satisfaction transformations

108



8.3 CM satisfaction conditions

Fig. 8.9 illustrates the construction ofCM Sys∗ from CM Sys andCM. CM Sys∗ consists

of of CM Client-wrt-CM, CM Server-wrt-CM andCM-wrt-{CM Client, CM Server} In

particular, every output call inCM Client andCM Server is replaced by a call to the cor-

responding event ofCM by appropriately modifying variablesclientuser andserveruser.

The safety condition forCM Sys offersCM reduces to the following:

1. CM Sys∗ does not have undefined values or operations (division by zero, signature-

inconsistent call, type mismatch, etc.).

2. CM Sys∗ does not call a disabled event, which reduces to the following predicates

being invariant:

• CM.connectRequest.ec ⇒ CM Client.connectRequest.ec

(This formalizes the constraint thatCM Client.connectRequest should be en-

abled whenever its user callsCM.connectRequest. The predicates below are

similarly obtained.)

• CM.disconnectRequest.ec ⇒ CM Client.disconnectRequest.ec

• CM.listenRequest.ec ⇒ CM Server.listenRequest.ec

• CM.endListenRequest.ec ⇒ CM Server.endListenRequest.ec

• CM Client at clientuser.connectRequestInd() ⇒ CM.connectRequestInd.ec

• CM Client at clientuser.connectRequestRej() ⇒ CM.connectRequestRej.ec

• CM Client atclientuser.disconnectRequestInd()⇒CM.disconnectRequestInd.ec

109



• CM Server atserveruser.distantRequestInd(· · · ) ⇒ CM.distantRequestInd.ec

• CM Server at serveruser.listenInd() ⇒ CM.listenInd.ec

• CM Server at serveruser.connectInd() ⇒ CM.connectInd.ec

• CM Server at serveruser.closeInd() ⇒ CM.closeInd.ec

The progress condition holds iffCM Sys∗ satisfies progress obligationsP1 ∼ P6

assuming weak fairness ofCM Sys’s threads.

Although we do not do so here, it would be straightforward to prove by assertional

reasoning that these conditions hold (e.g., as in [76]).

8.4 Testing and assertion checking harness

To testCM Sys againstCM, we do the following:

1. Create a Harness process to control the test execution. TheHarness process is

bound to RMI (Remote Method Invocation in Java) port “CMHarness”.

2. Construct fromCM Sys∗ a composite systemCM Sys∗′ which is to interact with the

harness.CM Sys∗′ consists ofCM Source-wrt-CM′ (a version ofCM Client-wrt-

CM that interacts with the harness),CM Server-wrt-CM′ (a version ofCM Server-

wrt-CM that interacts with the harness), the channels between them, andCM-wrt-

{CM Client, CM Server}′ (a version ofCM-wrt-{CM Client, CM Server} that in-

teracts with the harness).

3. ExecuteCM Sys∗′ along with (and under the control of) the harness process.

110



4. Check whether the generated execution becomes faulty.

Section 8.4.1 describes how to obtainCM Sys∗′. Section 8.4.2 describes how to

executeCM Sys∗′ under the control of the harness process.

8.4.1 ConstructingCM Sys∗′

The first step is to construct composite systemCM Sys∗′ (figure 8.10). Section 8.3 de-

scribed how to getCM Client-wrt-CM, CM Server-wrt-CM andCM-wrt-{CM Client, CM Server}.

In addition to those modification, we need these components to connect to the harness.

This leads to the following modifications:

• ConstructCM Client-wrt-CM′, referred to asCM Client′, from CM Client-wrt-CM

as follows:

– Tag//#HarnessInterface harness = . . . ; indicate the location of the harness,

i.e., its RMI port.

– For every xc event, (1) insert a call to methodcheckAssertions which sends

data necessary for assertion checking to SAC module, and (2)log information

to the log file.

– Insert breakpoints at locations specified by tag//#breakpoint.

• Similarly, constructCM Server-wrt-CM′, referred to asCM Server′, fromCM Server-

wrt-CM.

• ConstructCM-wrt-{CM Client, CM Server}′, referred to asCM′, from CM-wrt-

{CM Client, CM Server}′ as follows. For every upw/dnw event, insert a call to

111



methodcheckAssertions, and log information to log file.

• ConstructCM Sys∗′ of CM Client′, CM Server andCM′.

CM_Server−wrt−CM CM_Client−wrt−CM’

Checking framework

CM−wrt−{CM_Client,CM_Server}’

CM_Sys*’

Harness

CM_Server−wrt−CM’

CM−wrt−{CM_Client,CM_Server}

Verification framework

CM_Sys*

CM_Client−wrt−CM

Figure 8.10:CM Sys∗ andCM Sys∗′ composite systems

8.4.2 ExecutingCM Sys∗′

OnceCM Sys∗′ is constructed, the next step is to obtain the testing platform on which it

can be executed. SAC (Serializer And Checker) module, withinthe harness, ensures that

CM Sys′-CM′ interactions are executed atomically, and that only one thread is proceeding

at a time. SeSFJava harness inserts breakpoints inCM Sys′ andCM′ such that at any time,

at most one thread ofCM Sys∗′ runs and every other thread is paused at a breakpoint. SAC

module maintains relevant state for every process, such as whether the process is running,

paused, blocked, or about to be terminated. Each thread sends its state to the SAC module.

Breakpoints are inserted manually to indicate where the thread transitions take place.

Assertions are evaluated at checking locations, specifically, at the start of every

event and at every breakpoint as mentioned in section 6.3.

After CM Sys∗′ is constructed, it is executed on the same platform asCM Sys∗ as

follows:

112



1. SeSFJava harness starts as a separate process, and binds itself to RMI port “CMHar-

ness”.

2. CM′ process starts, and looks up for the harness’s port “CMHarness”.

3. CM Sys′ process is created, and it looks up for port “CMHarness” usingRMI

lookup command. So, both systems (source and sink) are hooked up with the har-

ness.

4. The developer can use the harness either in batch mode, letting the harness run for

a while and then analyzing the log file, or in interactive mode, influencing the flow

of the execution manually.

113



Chapter 9

Educational Use of SeSFJava

SeSFJava has been used in teaching an introductory senior-level network course (CMSC417)

at University of Maryland. The goal of the programming assignments in this course is to

teach the students the following:

• The role of network protocols.

• The different roles of the layers of the network and how they stack above each other.

• How to enhance the performance of the network in the face of changing network

conditions.

• How to implement a distributed multi-threading applications, for example, client-

server or peer-to-peer applications.

In fall 1999, we introduced a three-phase project that takesthe above goals into ac-

count. The project was to implement a transport protocol providing client and server TCP

sockets. Phase I implements a data transfer protocol. PhaseII implements congestion

control in order to enhance the performance of the data transfer protocol. Phase III im-

plements the connection management and the two-way data transfer protocols of TCP/IP.

114



All project specifications were described informally, and test cases were provided.

During the course, a number of problems emerged. Some students misunderstood

the specification or oversimplified it to just fit the test cases provided with the project

assignment. Other students did not test their projects thoroughly with various inputs.

Others did not finish the project because they did not budget enough time, especially

in phase III which involved much more work than the other two phases. The teaching

assistants (TAs) spent excessive time in testing and grading the student projects.

These problems prompted us to integrate SeSFJava into the networks course. SeS-

FJava (and formal methods in general), in theory, removes all misunderstandings about

the project specifications. The harness provides techniqueto test the projects extensively

on the actual platform, which helps the students to discovermore bugs.

Here, the students do not have to learn a new formal language,as the specifications

are written in Java which is familiar to the students. The Harness depends on runtime

monitoring, a concept understandable by most students (as opposed to model checking

for example). SeSFJava and the Harness can be learned under the tight time constraints

of the semester.

The transport-protocol project is divided into four phases. Each phase is indepen-

dently tested for correctness. Section 9.1 describes phaseI, which is the data transfer

protocol. Section 9.2 describes phase II, which focuses on the performance of the data

transfer protocol. Section 9.3 describes phase III, which is the connection management

protocol. Section 9.4 describes phase IV, which puts it all together (connection manage-

ment plus two-way data transfer). Section 9.5 describes ourexperience with the students.

115



9.1 Phase I: Data transfer protocol (correctness)

In this phase, the student implements a protocol that achieves reliable data transfer over

unreliable network channels. Specifically, the project consists of two interacting pro-

grams, a Source and a Sink, as shown in fig. 9.1. The Source consists of three com-

ponents:SW SourceUser, SW Source andNetworkSocket. The Sink consists of three

components:SW SinkUser, SW Sink andNetworkSocket.

The students are provided with:

• The applications,SW SourceUser andSW SinkUser, which transfer a file from the

source to the sink.

• TheNetworkSocket entity which provides the unreliable channels to be used by the

transport entities.NetworkSocket entity is a wrapper to the standard sockets. It is

used instead of the usual UDP sockets, because in a LAN environment, the standard

sockets display hardly any loss, reordering or duplication. The students can change

the probabilities of loss, reordering and duplication on the fly, which is important

for testing.

• The SeSFJava Harness module and the data transfer service specification.

The students are to implementSW Source andSW Sink so that they conform to

the provided data transfer service. The students are free tochoose the particulars of the

design, including message types and formats, sequence number space, data block size,

retransmission policy, acknowledgment (cumulative and/or selective) policy, round-trip

time estimator, etc.

116



Application

Network

Transport

Transport service

Network service

Layer

Layer

Layer

SW_SourceUser

SW_Source

SW_SinkUser

SW_Sink

NetworkSocketNetworkSocket

Figure 9.1: Phase I overview

9.1.1 Testing phase I

To participate in the testing, the system and service programs need to be instrumented

using SeSFJava Preprocessor in order connect services and systems to the Harness. This

includes issues like connecting to the Harness, checking event enabling conditions, in-

serting breakpoints, etc. Instead of letting the students use the preprocessor to generate

the Harness, services and systems, we gave the students the preprocessed code, thereby

relieving them of the preprocessing hassle. The preprocessed code include the following:

• A simpler version of SeSFJava Harness which is encapsulatedin a single class that

contains the following:

– A constructor that binds the Harness to Remote Method Invocation (RMI) port

“Harness”.

– Lock and unlock methods for the Harness main lock, for synchronizing the

programs and threads of the project. When a thread acquires the main lock,

no other thread in the network system can proceed, until the lock is released.

– Methods that represent the interactions between the transport layer and the

application layer (as described in chapter 7).

117



– Invariants of the data transfer protocol, for example, the number of bytes de-

livered to Sink’s user cannot exceed the number of bytes sentby Source’s

user.

• The application systems (SourceUser andSinkUser) where the xc-events are already

modified to check the enabling conditions. Statements that connect the application

to the Harness are already instrumented.

• Templates of the transport layer systems (SW Source andSW Sink) which include

statements that lookup for the Harness RMI port, and the structure of the xc-event

methods. For example,SW Source.sendData method appears in the template as fol-

lows:
// Inside SW Source.java
void sendData (byte []data) throws Exception {

harness.lock(); // obtain Harness main lock
harness.sendData(data); // RMI call of Harness method with same parameters
. . . // Student inserts sendData method body here
harness.unlock(); // release Harness main lock

}

Consequently, a student can determine the correctness of both source and sink sides

by checking that no errors were thrown during the execution of Harness. (To detect dead-

locks, we add an extra condition: a file sent by the source has to be received.)

The program is executed as follows: (1) Execute the Harness module, so it can

bind to port “Harness”, (2) Execute the sink side so it can hook to the Harness class, (3)

Execute the source side to start sending the file. A log file is recorded for every execution.

118



9.1.2 Grading phase I

The TAs grade the data in a semi-mechanical way. They run scripts to execute the projects

with different input files and different network conditions. Each execution is stored in a

log file, which is checked for thrown errors. If there is an error, the TA checks the log file

to print out the trace that has generated this error, and determines the grade accordingly.

The student can resort to a very simple solution, say a send window size of 1, but they

will then suffer in Phase II.

9.2 Phase II: Data transfer protocol (performance)

This phase emphasizes the protocol’s performance; that is,the grade is primarily based on

the throughput achieved under varying network conditions,which in turn depends on how

well the protocol adapts to congestion, the overhead of the congestion control mechanism,

etc.

The students strip the RMI calls inserted in Phase I, and enhance their code to

perform better. Enhancements are of two kinds: (1) network optimizations, for example,

adding Tahoe congestion control, and (2) code optimizations, for example, reducing the

thread-switching in their code. In this phase, theNetworkSocket has the ability to play

scenarios that emulate real-life network traffic. Thus, thestudents can view how their

code performs under various conditions.

The TAs grade this project by running scripts that execute the students projects a

number of times for every test scenario, and record the throughput for each run. The aver-

age throughput is computed and the students are classified according to the performance

119



into four groups, from fast to slow, and the grade is determined accordingly.

9.3 Phase III: Connection management protocol

In this phase, the students build a connection management protocol over unreliable net-

work channels. The grade in this phase is primarily based on the protocol’s correct-

ness (as described in chapter 8). Specifically, the project consists of two interacting

programs, a Client and a Server, as shown in fig. 9.2. Client consists of three compo-

nents:ClientUser, CM Client andNetworkSocket. Server consists of three components:

ServerUser, CM Server andNetworkSocket.

Application

Network

Transport

Transport service

Network service

Layer

Layer

Layer

ClientUser ServerUser

CM_Server

NetworkSocketNetworkSocket

CM_Client

Figure 9.2: Phase III overview

The students are to implementCM Client andCM Server which are the transport

entities at the two ends. They are provided with the other entities. ClientUser and

ServerUser are the users of the transport entities. These applicationsopen and close hun-

dreds of connections under different circumstances. The pair of NetworkSockets are as in

phases I and II. The specifications formally describe the three-way handshaking connec-

tion establishment, and the two-way handshaking of the disconnection procedure. Similar

to that of phase I, the service specifications, the Harness, the application level systems,

120



and the templates of the transport layer systems are provided in Harness file. The testing

and grading are carried out similarly to that of phase I.

9.4 Phase IV: Putting it all together

In this phase, the students build a full-fledged transport service over unreliable network

channels, specifically, combining phases II and III (after stripping the RMI calls). The

grade of this project is based on the correctness and the performance of the students’

implementations.

9.5 Experience with the students

We have been using SeSFJava in the senior-level undergraduate computer networks course

for the past three years. The projects are mandatory: no student can pass the course with-

out passing the projects. The average number of students perclass is 50. Most students

have not been exposed to formal methods before taking this course.

Using SeSFJava significantly improves the performance of the students. Table 9.1

compares the use of detailed informal description of the projects (without SeSF) against

the use of SeSF in specifying these projects. The number of students who completed

all the phases of their projects almost doubled. Their questions about the specifications

decreased by 40%. The student drop rate decreased by almost half.

From the TA perspective, using SeSF reduces the grading timeper student, because

considerable amount of the grading is carried mechanically. The number of regrading

121



Without SeSF With SeSF Improv.
% of students who completed their projects 45% 88% 95%
# of email queries per students 16 10 60%
% of students dropping the class 27% 14% 93%

Table 9.1: Improvement using SeSFJava

requests fell by 60%. We think this is because a student can test his/her implementation

against the project specification, and because the TA provides the student with the trace

demonstrating any errors (and thus grade penalties).

122



Chapter 10

Peer-to-Peer Network: Gnutella

In the past few years, many peer-to-peer network specifications have been introduced,

for example, Gnutella [19, 40], Napster [38], Kazaa [36], Chord [82], NICE [8, 47] and

Freenet [16]. For each of these specifications, many implementations become available,

for example, Gnutella implementations include Limewire [37], Furi [87], and JTella [53].

Because these specifications are informal, developers interpret “holes” and ambiguities in

different ways, resulting in different interpretations ofthe specifications.

In this chapter, our goal is to (1) formally define the services of a peer-to-peer

network protocol in SeSFJava; and (2) apply the testing harness to an open-source imple-

mentation of the peer-to-peer protocol to test whether it conforms to the defined services.

We focus on the Gnutella protocol [19, 40]. We chose Gnutellabecause it is the

most prevalent peer-to-peer system in the world (with 25 million users), and many open-

source implementations are available. Gnutella is a decentralized peer-to-peer file shar-

ing protocol. Gnutella uses the TCP service below, and provides join/depart, query, node

discovery and upload/download services to the applicationlevel above. Figure 10.1 illus-

trates the Gnutella protocol stack. Each Gnutella node is referred to as aservent.

123



Service
Tcp i

join/depart query

Gnutella Servent

TCP System

App i
PeerToPeer Application

download

Node i

Srv i

node discovery

Tcp j

join/depart query

Gnutella Servent

TCP System

App j
PeerToPeer Application

downloadnode discovery

Node j

Srv j

LRD

Network

TCP

Gnu

Service

Figure 10.1: Gnutella protocol stack

In this chapter, we define the service provided by Gnutella, referred to asGnu ser-

vice. We also consider a particular Gnutella implementation, namely Furi, and apply the

Harness to test whether Furi offersGnu.

We could also test whether Furi correctly uses TCP service, which has been defined

in earlier chapters. But this is rather trivial and not interesting. Instead, we define the

special case of the TCP service as it is used by Gnutella, that is, the messages and control

exchanged between the Gnutella layer and the TCP layer, and the permissible sequences

of these exchanges. We refer to this as theinternal serviceGnu TCP. We apply the

Harness to test whether Furi satisfies thisGnu TCP internal service.

The remainder of the chapter is organized as follows. Section 10.1 gives an overview

of the operation of a Gnutella network. Section 10.2 defines theGnu service. Section 10.3

defines theGnu TCP internal service. Section 10.4 explains how SeSFJava Harness can

test an open-source Gnutella system against the services.

124



10.1 Gnutella overview

A Gnutella network [19, 40] is a dynamic overlay on the top of TCP network. Each node,

or servent, can have connections to a number of servents. A servent sends a message by

flooding it to its neighbors (ones with direct connection to it) and those neighbors flood to

their neighbors until the message’s TTL (time to live) ends.A servent is identified by an

address, which consists of the host machine id (IP address ordomain name) and the port

that it uses for listening to incoming connections.

Figure 10.2 illustrates an example of how a Gnutella networkworks. SrvA wants

to join the Gnutella network. It knows the address of srvB, one of the servents of the

network, from a prior connection. SrvA establishes a Gnutella connection with srvB via

a handshake sequence exchanged through a TCP channel (figure 10.2(a)). After establish-

ing the Gnutella connection, srvA pings the network for information about more servents

via ping messages. SrvB sends information about the connected servents (C andE) back

to srvA (figure 10.2(b)) using pong messages. From this information, srvA knows about

serventsC andE, and connects to both of them as in figure 10.2(c). When srvA wants

to locate filesesf.pdf, it sends a query message, which includes string “sesf.pdf”, to its

neighborsB, C andE. Each of these neighbors forwards the message to its neighbors (fig-

ure 10.2(c)). SrvF is the only servent that has hits to this file. So when srvF receives the

query, it replies with the query hit message. When srvA receives the query hit message,

it downloads the file using http protocol. When srvB decides to leave, it closes all its

Gnutella connections, leaving the network as shown in figure10.2(d).

125



handshake
B

C

D

E F

A

B

C

D

E F

A

C

D

E F

A

B

C

D

E F

A

Query
Query

Query

Query

Query

Query

Query
Query Hit

Query Hit

Query

(a) Srv A joins the network

(b) Srv B sends information about other servents to srv A (ping msgs have TTL = 2)

(c) Srv A connects to C and E, queries the network, and receives hits (query msgs have TTL = 2)

(d) Srv B departs the network

download

Ping

Ping

Pong

Pong

Ping

Pong

Gnutella Connection

TCP Connection

Figure 10.2: Example of a Gnutella network

126



10.1.1 Joining the Gnutella network

Initially, a servent (client servent in this case) gets the address of a servent on the network

(server servent in this case) by searching public databasesor by extracting addresses from

recent connections. Next, it (client servent) connects to this server servent via a handshake

sequence, afterwhich it is connected to the Gnutella network. The handshake sequence

operates as follows:

1. The client establishes a TCP/IP connection to the server. If this step fails, the client

considers it as a rejection to the connection attempt.

2. The client sends an ASCII string, “GNUTELLA CONNECT/<protocol version>

\n\n”, followed by its capability headers. A capability header, which is an ASCII

string terminated by a new line, indicates a feature supported by the sender.

3. The server replies by sending to the client the ASCII string, “GNUTELLA/<protocol

version> 200 OK\n\n” followed by its capability headers. Any other reply by the

server indicates the rejection of the connection and the attempt ends here.

4. If the client is satisfied with the server’s capability headers, it sends the ASCII

string, “GNUTELLA 200 OK\n\n”, back to the server. Any other reply indicates

that the client is rejecting the connection and the attempt ends here.

Figure 10.3 illustrates an example of a successful connection.

After the handshake sequence is successfully completed, the servent exchanges bi-

nary messages with the rest of the network for various purposes: discovering new ser-

vents, querying the network for certain criteria, and sending files for servents behind

127



Servent (client-side) Servent (server-side)
GNUTELLA CONNECT/0.6

Company’s name is BearShare −→ User-Agent: BearShare/0.6

Supports Pong msg caching −→ Pong-Caching: 0.1

Supports graceful shutdown −→ Bye-Packet: 0.1

GNUTELLA/0.6 200 OK
User-Agent: BearShare/1.0
Pong-Caching: 0.1
Bye-Packet: 0.1

GNUTELLA/0.6 200 OK

[binary messages] [binary messages]

Figure 10.3: Example of a successful connection scenario inGnutella 0.6

proxies (seldom used).

A Gnutella servent can exit either abruptly by shutting down, or gracefully by send-

ing aBye message and then shutting down after a specified timeout.

10.1.2 Gnutella binary messages

Time To Live:
Max number of times
that this one is forwarded

Number of times the descriptor
has been forwarded.
TTL(0) = TTL(i) + Hops(i)

Descriptor ID Payload Descriptor TTL Hops Payload Length

0 15 16 17 18 19 22

16−byte string uniquely
identifies the descriptor
on the network

0x00 = Ping
0x01 = Pong
0x02 = Bye
0x40 = Push
0x80 = Query 
0x81 = QueryHit

Used to determine the
start of the next descriptor

Figure 10.4: Gnutella message structure

Figure 10.4 shows the structure of the binary messages. Eachmessage begins with

a 16-byte descriptor ID that uniquely identifies this message, and is generated based on

128



the host IP and its port. This is followed, in Gnutella (ver. 0.6), by a payload descriptor

which specifies the following messages:

• Ping/Pong Messages: These are used for servent discovery. A servent sendsPing

messages periodically in order to probe the network for other servents. Whenever a

servent receives aPing message, it responds with aPong message which includes

its IP address and listening port. ThePong message’s descriptor ID must equal that

of the correspondingPing message.

• Bye Message:TheBye message can be used only if the handshake capability header

includes string “Bye-Packet: 0.1”. ABye message must be sent with TTL= 1. The

receiver of theBye closes the connection immediately. The sender must wait for

few seconds before closing down the connection. All incoming messages during

this period must be discarded.

• Query/QueryHit Messages: These are used for locating files. A servent queries by

flooding the network withQuery message that includes a criteria string (a string

terminated by char0x00). When a node receives a query, if it has hits (file indexes

that meet the search criteria of theQuery message), it replies by sending aQueryHit

message, which includes those hits, through the network. Ifit has no hits for the

query, it discards the request. When the sender receives aQueryHit for a query it

has sent, it passes that hit to the servent application. The descriptor ID of aQueryHit

must equal that of the correspondingQuery message.

The query requester will not receive a response if either thefiles requested are not

available or the paths between the requesting server and thepotential responders

129



are broken.

• Push Message: A servent sends aPush message to trigger the download process for

users behind a proxy. This message is seldom used.

The routing protocol of Gnutella network is simple. Whenevera servent wants to

send a message, it sends the message to all the servents connected to it. Whenever a

servent receives a message and the message’s TTL (Time-To-Live) is greater than zero, it

decrements the TTL, and sends the message to all its connected servents, except the one

it received the message from. The servent does not forward any message with TTL equal

to zero.

10.2 TheGnu service

In this section, we define serviceGnu. Section 10.2.1 describes the join/depart compo-

nent, while section 10.2.2 describes the query component. Throughout the remainder of

this chapter, we ignore node discovery and upload/downloadservices for simplicity. We

identify a node by the IP address of its host machine and the port it uses for listening to

incoming connections. The domain of theclass Node (defined below) is all the possible

values of its attributes and the valuenull.

130



classNode {
IPAddress ipAddr;
int port; // Port used for listening to incoming connections

}

10.2.1 Join/depart component

Figures 10.18, 10.19 and 10.20 specify the join/depart component ofGnu service program

in SeSF. The rest of this section explores informally parts of the specifications. The

service defines the following variables for each node i (i, j∈ Node− {null} for the

following definitions):

• state[i] = {Inactive, Active, Departing}. Initially Inactive.

This variable indicates the state of node i with respect to the peer-to-peer network.

Inactive means i is not connected to the peer-to-peer network and is not attempting

to connect to it.Active means i can issue connection requests to, or receive con-

nection requests from other nodes.Departing means i has requested to depart the

network and is waiting for the connections (if any) to close.

• outStatus[i, j] = {Closed, Connecting, Connected, Closing}. Initially Closed.

This variable reflects the status of node i’s outgoing connection to node j. Anout-

goingconnection is a connection initiated by node i.

Closed means i does not have an outgoing connection to node j.Connecting means

i has requested a connection to node j.Connected means i has established a con-

nection to node j.Closing means i has requested termination of the connection to

node j.

131



• inStatus[i, j] = {Closed, Connecting, Connected, Closing}. Initially Closed.

This variable reflects the status of node i’s incoming connection from node j. An

incomingconnection is a connection initiated by remote node j.

Closed means i does not have an incoming connection from node j.Connecting

means i has indicated a connection establishment attempt bynode j. Connected

means i has established a connection to node j (node j initiated the attempt).Closing

means i has requested termination of the connection to node j.

• JR[i, j] = {true, false}. Initialized tofalse.

This variable is used to prevent node j from accepting a nonexistent connection

request from node i. It istrue iff node i has requested to join node j ( issuing

joinReq(i, j) as explained later), node j has not received the request yet,and node j

has not yet departed the network.

• JRR[i, j] = {true, false}. Initialized tofalse.

This variable indicates that node i has received a connection request from node j.

It is used to prevent node j from acknowledging a connection request that hasn’t

reached node i. It istrue iff node i has received a join request from node j, node j

hasn’t acknowledged or rejected this join reply yet, and node j has not yet departed

the network.

• JRRAck[i, j] = {true, false}. Initialized tofalse.

This variable serves to prevent node j from accepting a nonexistent connection re-

quest ack from node i. It istrue iff node i has sent the last ack in the handshake

sequence to node j, j hasn’t received it yet, and node j has notdeparted the network

132



upw/dnw Event Indication
dnw activate(i) node i becomes active, and can receive incoming

connection requests from any node in the network
dnw joinReq(i,j) i requests to connect to j
upw joinRej(i,j) i learns that its connection request to j is rejected
upw joinInd(i,j) i learns that its connection request to j is accepted;

i becomes connected to j

upw joinReqInd(i,j) i receives a connection request from j
upw joinReqRej(i,j) i learns that j’s connection request to i has been

rejected.
upw joinReqAck(i,j) i learns that j’s connection request to i has

succeeded and i becomes connected to j

upw departInd(i,j) i learns that its connection with j is terminated
dnw departReq(i) i requests to depart the network
upw departAck(i) i’s request to depart the network is fulfilled
dnw abort(i) i terminates abruptly

Table 10.1: Events of join/depart component of serviceGnu. The first parameter indicates
the node where the event occurs.

yet.

We need bothoutStatus[i, j] and inStatus[i, j], because if both node i and node j

issue join requests to each other simultaneously, two separate connections will eventually

be established (if they can reach each other and neither departs).

Table 10.1 lists the events used in the join/depart component.

Figures 10.5 through 10.10 show various scenarios for connection establishment

and termination.

Figure 10.5 shows a typical successful connection establishment and termination

between two nodes i and j. Here,app i andapp j are applications,srv i andsrv j are the

corresponding servents, and nodes i and j are active.

• App i calls joinReq(i, j) of srv i.

133



• Srv i establishes a TCP connection withsrv j, and then sends “Connect Request”

string tosrv j, followed by its capability headers.

• Upon establishing the TCP connection,srv j informsapp j that srv i is requesting

a connection. Afterwards,srv j receives the capability headers. Upon finding them

acceptable,srv j sends “OK” string followed by its own capability headers.

• Upon receiving the “OK” string, and accepting the capability headers,srv i calls

joinInd(i, j) to informapp i of the success of the connection establishment, and then

sends “OK” string tosrv j.

• Srv j receives the “OK” string and callsjoinReqAck(j, i) to inform app j of the

connection establishment withsrv i.

• Later,app i decides to depart the network. It issuesdepartReq(i). Consequently,

srv i sends “Bye” string to all its connections (including j’s), and then terminates all

the outgoing paths of its connections.

• Upon receiving “Bye”,srv j terminates its connection tosrv i, and informsapp j of

the departure of node i.

• After a certain timeout,srv i aborts all active connections (if any) and informsapp i

of the termination.

Figure 10.6 shows a variation of the scenario mentioned in Figure 10.5, where TCP

handshake sequence fails, because, for example, node j is not reachable or node j is reach-

able but not listening. Suppose that one of these conditionsoccurs, thensrv i waits for a

specified timeout, and then informsapp i of the failure of the connection request.

134



time

TCP SYN

joinReq

TCP ACK
joinReqInd

Capabilities

joinInd

departAck

false Inactive Closedfalse

Srv i Srv j App. jApp. i

state[j]

false false

JR[i,j]

Active

state[i] inStatus[j,i]

TCP SYN−ACK

ActiveCapabilities

"OK"

"OK"
joinReqAck

departReq

false

false

false Departing

Closed

Connected

falseConnectingfalse Active

falsefalse Active

falsetrue Active

false Active

Closed

Connecting

Connecting

Connected

Connected

Closing

JRRAck[i,j]

true

false

false

outStatus[i,j]

Active trueConnecting

Active

Active

JRR[j,i]

TCP FIN

departInd

Active falseClosed

Bye

TCP FIN−ACK

TCP ACK

Figure 10.5:Gnu join/depart scenario 1

Connecting

i’s TCP connection
handshake failed.

inStatus[j,i]

Closed

jRR[j,i]

falsejoinReq
Connect Request

App. i Srv i Srv j App. j

Inactive

state[j]

time

joinRej

T
im

eo
ut

falsefalse

JR[i,j] JRRAck[i,j]

true false

true false

ClosedActive

state[i] outStatus[i,j]

Active Closed

Active

Figure 10.6:Gnu join/depart scenario 2

135



Connecting

i’s capabilities are not
acceptable to j

Active Closed true

Active Closed false

joinReq
TCP Connection

joinReqInd

App. i Srv i Srv j App. j

Active

state[j]

Active

time

joinReqRej

joinRej

Capabilities

"REJ"

falsefalse

JR[i,j] JRRAck[i,j]

false false

ClosedActive

state[i] outStatus[i,j]

Active Closed

inStatus[j,i]

Closed

Connecting

JRR[j,i]

false

true

true false Active Connecting

false false Active

Figure 10.7:Gnu join/depart scenario 3

Figure 10.7 shows a variation of the scenario mentioned in Figure 10.5. After in-

forming app j of the existence of an attempt, j checks the capability headers and finds

them unacceptable. Then, it informsapp j of the rejection of the connection, and sends

“REJ” string to node i, which in turn informsapp i of the failure of the connection estab-

lishment.

Figure 10.8 shows a variation of the scenario mentioned in Figure 10.7. Suppose

thatsrv j acceptssrv i’s capability headers, and consequently, it sends “OK” string tosrv i

followed by its own capability headers. After receiving the“OK” string, srv i findssrv j’s

capability headers unacceptable. Thus, it informsapp i of the failure of the connection

establishment, and sends “REJ” string tosrv j, which in turn informsapp j of the rejection

of the connection establishment.

Figure 10.9 shows a scenario whenapp i requests connection toapp j, but aborts

(closes abruptly) before connection is established.Srv j waits for an arbitrary timeout

before informingapp j of the failure of the connection attempt. In figure 10.10,app i

recovers, activatessrv i and requests the establishment of the connection before j’stimeout

fires. In this case,srv j informsapp j of the existence of a new connection request.

136



Active

not acceptable to i
i’s capabilities are
acceptable to j

Active

joinReq
TCP Connection

joinReqIndCapabilities

"OK"

Capabilities

Srv i Srv j App. jApp. i

state[j]

time

"REJ"

joinRej

joinReqRej

false false

false

JR[i,j]

Active

Active Closed

Closed

state[i] outStatus[i,j]

Closed

Closed

inStatus[j,i]

false

false

JRR[j,i]

falsetrue ConnectingActive

falsefalse ConnectingActive Active Connecting true

Active Connecting false

JRRAck[i,j]

false

j’s capabilities are

Figure 10.8:Gnu join/depart scenario 4

false

acceptable to j

Active

joinReq

joinReqIndCapabilities

"OK"

Capabilities

Srv j App. jApp. i

state[j]

time

abort

tim
eo

ut

Active

joinReqRej

Srv i

false false

JR[i,j] JRRAck[i,j]

false

Active Closed

state[i] outStatus[i,j]

Inactive

Closed

inStatus[j,i]

Closed

false

JRR[j,i]

false

TCP Connectionfalsetrue ConnectingActive

falsefalse ConnectingActive

Active Connecting false

Active Connnecting true

Closed

i’s capabilities are

Figure 10.9:Gnu join/depart scenario 5

time

"OK"

Capabilities

Srv i Srv j App. jApp. i

state[j]

joinReq
TCP Connection

joinReqIndCapabilities

abort

activate

joinReq
TCP Connection

joinReqIndCapabilities

JR[i,j] JRRAck[i,j] state[i] outStatus[i,j] inStatus[j,i] JRR[j,i]

false Active Closed

true ConnectingActive

false ConnectingActive

false Inactive

false Active

true ConnectingActive

false ConnectingActive Active Connecting true

Active Connecting false

Active Connecting true

Active Closed false

false

false

false

false

false

false

false

Closed

Closed

Figure 10.10:Gnu join/depart scenario 6

137



The join/depart component of serviceGnu defines the following progress obliga-

tions for every pair i and j:

P1 If i’s outStatus is Connecting and j’s inStatus is Connecting, then eventually (1) i’s

outStatus is Connected, (2) both i’soutStatus and j’s inStatus areClosed, or (3)

one or both nodes depart.

P2 If i’s outStatus is Connected and j’s inStatus is Connecting, then eventually (1) i’s

outStatus and j’s inStatus areConnected, or (2) one or both nodes depart.

P3 If joinReq(i, j) occurs, then eitherjoinInd(i, j) or joinRej(i, j) will eventually be ex-

ecuted, or node i departs the network. Node i’soutStatus cannot stay in state

Connecting forever.

P4 If joinReqInd(i, j) is occurred, then eitherjoinReqAck(i, j) or joinReqRej(i, j) is even-

tually executed, or i departs the network. Node i’sinStatus cannot stay in state

Connecting forever.

P5 If departReq(i) occurs, then eitherdepartAck(i) or abort(i) is eventually executed.

Node i cannot stay in stateDeparting forever.

P6 If i is inactive, then all connections to i are eventually closed.

10.2.2 Query component

The query component of theGnu service, given in figure 10.21, is extremely simple. It

sends a query string, and waits for a reply set (empty set means no hits). This component

138



at a node i is active only if srv i’s state (defined in the join/depart component) isActive.

Gnu service (Query component) defines the following variable:

• querying[i] = {true, false}. Initialized tofalse. We assume that i∈ Node− {null}.

Variablequerying[i] is true if node i has requested a query, but haven’t received a

reply yet.

10.3 Internal serviceGnu TCP

In this section, we define serviceGnu TCP. Recall that the internal service is just the

special case of the TCP service as it is used by Gnutella. Section 10.3.1 describes the

join/depart component, while section 10.3.2 describes thequery component. Again,

for simplicity, we ignore node discovery and upload/download services. Since service

Gnu TCP is internal, it can impose progress obligations on dnw events.

10.3.1 Join/depart component

Figures 10.22 through 10.26 illustrate the join/depart component ofGnu TCP service

program. The service defines the following variables for each node i (we assume that i, j

∈ Node− {null} for the following definitions):

• outStatus[i, j] = {Closed, Connecting, Handshaking, Connected, Closing}. Initially

Closed.

This variable reflects the status of node i’s outgoing connection to node j.

Closed means that node i does not have an outgoing connection to nodej. Connecting

139



means that node i has requested a connection to node j, and theTCP handshake is

underway. Handshaking means that node i has established a TCP connection to

node j and has initiated the Gnutella handshake sequence.Connected means that i

has established a Gnutella connection to node j (Gnutella handshake is successful).

Closing means that node i has requested termination of the connection to node j.

• inStatus[i, j] = {Closed, Waiting, Handshaking, Connected, Closing}. Initially Closed.

This variable reflects the status of node i’s incoming connection from node j.

Closed means that node i does not have an incoming connection from node j.

Waiting means node i has established a TCP connection to node j (node j initi-

ated the attempt), and is waiting for j to start the Gnutella handshake sequence.

Handshaking means i has received j’s capabilities (first leg of the handshake) and

has accepted these capabilities.Connected means i has established a Gnutella con-

nection to node j (node j initiated the attempt).Closing means i has requested

termination of the connection to node j.

• JR[i, j] = {true, false}. Initialized tofalse.

Similar toGnu, this variable is used to prevent node j from accepting a nonexistent

connection request from node i.

• handshake[i, j] = {None, cCpbs, sCpbs, Ack, Bye}. Initialized toNone.

This variable reflects the status of the Gnutella handshake sequence between node

i and node j, where node i initiated the sequence. Specifically, handshake[i, j] indi-

cates the last message in the last handshake sequence.

140



None means that node i hasn’t initiated a handshake sequence or the sequence is

terminated either by an acceptance or a rejection.cCpbs (Client Capabilities) means

that node i has sent its capabilities to node j.sCpbs (Server Capabilities) means that

node j has accepted i’s capabilities and has sent its own capabilities. Ack means

that node i has accepted j’s capabilities, and has sent the ack. Bye means that node

i has sent messageBye.

• cRP[i, j] = {None, Cpbs, sCpbsReply, Close}. Initially None.

This variable indicates which reply is pending during the communication between

client i and serverj.

None means that there is no pending reply.Cpbs meansi has established a TCP

connection with j, and has to send its capabilities.sCpbsReply meansi has received

j’s server capabilities, and has to send its reply (either acceptance or rejection of

these capabilities).Close meansi has sent aBye message, and has to close its TCP

connection with j.

• sRP[i, j] = {None, cCpbsReply, Close}. Initially None.

This variable indicates which reply is pending during the communication between

serveri and clientj.

None means that nothing is pending.cCpbsReply meansi has received j’s client

capabilities, and has to send its reply (either acceptance or rejection of these ca-

pabilities). Close meansi has received theBye message, and has to close its TCP

connection with j.

Table 10.2 illustrates the events used in the join/depart component.

141



upw/dnw Event Indication
dnw joinReq(i,j) i requests to connect to j
upw peerReached(i,j) i learns that it has established a TCP connection with j
dnw cTx(i,j,s) client i sends message s to j
upw cRx(i,j,s) client i receives message s from j
upw joinAborted(i,j) i learns that its connection request to j is aborted

upw joinReqInd(i,j) i learns that it has established a TCP connection with j
(initiated by j)

dnw sTx(i,j,s) server i sends message s to j
upw sRx(i,j,s) server i receives message s from j
upw joinReqAbort(i,j) i learns of the abortion to j’s connection request

dnw cDepartReq(i,j) client i requests to close its TCP connection with j
upw cDepartAck(i,j) client i’s TCP connection with j is closed
dnw sDepartReq(i,j) server i requests to close its TCP connection with j
upw sDepartAck(i,j) server i’s TCP connection with j is closed
dnw abort(i,j) i terminates its connection to j abruptly

Table 10.2: Events of join/depart component of serviceGnu TCP. The first parameter
indicates the servent where the event occurs.

Figures 10.11 through 10.16 show various scenarios for connection establishment.

Figure 10.11 shows a typical successful connection establishment and termination

between two nodes i and j. Here,srv i and srv j are servents,tcp i and tcp j are the

corresponding network systems, and nodes i and j are active.

• Srv i calls joinReq(i, j) of tcp i, which starts establishing a TCP connection with

tcp j.

• Upon establishing the TCP connection,tcp i informs srv i of its successful TCP

connection establishment by callingpeerReached(i, j), andtcp j informs srv j that

a TCP connection withtcp i is established by callingjoinReqInd(j, i). Then,Srv i

passes “Connect Request” string followed by its capability headers totcp i via

cTx(i, j, cpbs[i]).

142



• Upon receiving the “Connect Request” string and finding the capability headers

acceptable,srv j passes an “OK” string (indicating its acceptance of the capability

headers) followed by its own capability headers totcp j via sTx(j, i, cpbs[j]), which

sends then totcp i.

• Upon receiving the “OK” string and the capability headers, and finding them ac-

ceptable,srv i sends “OK” string totcp j as an indication of the success of the

Gnutella connection establishment.

• Tcp j receives the “OK” string and passes itsrv j to indicate the connection estab-

lishment withtcp i.

• Later, srv i decides to close the connection. It sendsBye, and then terminates the

TCP connection withtcp j.

• Upon receiving “Bye”,srv j terminates its connection totcp i.

Figure 10.12 shows a variation of the scenario mentioned in Figure 10.11, where

TCP handshake sequence fails, because, for example, node j isnot reachable or node j is

reachable but not listening. Suppose that one of these conditions occurs, thentcp i waits

for a specified timeout, and then informssrv i of the failure of the connection request.

Figure 10.13 shows a variation of the scenario mentioned in Figure 10.11. After

being informed of the existence of an attempt,srv j checks the capability headers and finds

them unacceptable. Then, it informstcp j of the rejection of the connection by sending

“REJ” string totcp i. Tcp i informssrv i of the failure of the connection establishment.

143



Handshaking None

None

None

None

cCpbsReply

Close

None

None

None

Tcp i Tcp j Srv jSrv i

outStatus[i,j]

Closing

Handshaking

Handshaking

Connecting

Closed

TCP SYN

TCP SYN−ACK

TCP ACK

"Connect Request" +cpbs[i]

"OK"+cpbs[j]

"OK"

"Bye"

joinReq

cTx(i,j,cpbs[i])

cTx(i,j,"OK")

cRx(i,j,cpbs[j])

peerReached

joinReqInd

sTx(j,i,cpbs[j])

sRx(j,i,"OK")

sRx(j,i,cpbs[i])

Handshaking

Handshaking

Handshaking

Connected

Closing

Closing

Closed

cDepartAck

cDepartReq sDepartReq

TCP FIN

TCP ACK

TCP FIN

TCP ACK

time

sDepartAck

Connected

Handshaking

cTx(i,j,"Bye")

sRx(j,i,"Bye")

cRP[i,j]

Close

None

Cpbs

None

None

JR[i,j]

false

false

true

true

false

handshake[i,j]

Bye

sCpbs

None

None

None

false None

None false cCpbs

None false None

None false Ack

Close false None

None false None

None false None

None false None

sCpbsReply false None

Cpbs

inStatus[j,i]

Handshaking

Closed

Waiting

Handshaking

Closing

Closing

Connected

Closed

sRP[j,i]

F
igure

10.11:G
n
u

T
C
P

join/departscenario
1

144



TCP Connection

i’s TCP connection
handshake failed.

joinReq

joinAborted

outStatus[i,j]

Closed

Connecting

Closed

handshake[i,j]

None

None

None

JR[i,j]

false

true

true

inStatus[j,i]

Closed

Srv i Tcp i Tcp j Srv j

time

T
im

eo
ut

Figure 10.12:Gnu TCP join/depart scenario 2

Connecting

i’s capabilities are not
acceptable to j

JR[i,j] handshake[i,j]

false None

false None

false cCpbs

false None

true None

Nonefalse

false None

TCP Connection

Srv i Tcp i Tcp j Srv j

outStatus[i,j]

joinReq

peerReached

joinReqInd

"Connect Request" +cpbs[i] sRx(j,i,cpbs[i])

time

cRx(i,j,"REJ")

sTx(j,i,"REJ")

cTx(i,j,cpbs[i])

"REJ"

Closed

Handshaking

Handshaking

Handshaking

Connecting

Closed

Connecting

inStatus[j,i]

Closed

Handshaking

Closed

Figure 10.13:Gnu TCP join/depart scenario 3

145



time

not acceptable to i
i’s capabilities are
acceptable to j

None

cCpbs

None

handshake[i,j]

None

None

sCpbs

None

false

false

false

false

false

JR[i,j]

true

false

false

false

None

None

Closed

inStatus[j,i]

Handshaking

Handshaking

Closed

Waiting

Tcp i Tcp j Srv jSrv i

TCP Connection

"Connect Request" +cpbs[i]

"REJ"

"OK" + cpbs[j]

Handshaking

Handshaking

Handshaking

Closed

outStatus[i,j]

Connecting

Handshaking

Handshaking

Closed

peerReached

joinReq

cTx(i,j,cpbs[i])

cTx(i,j,"REJ")

cRx(i,j,cpbs[j])

joinReqInd

sRx(j,i,cpbs[i])

sTx(j,i,cpbs[j])

sRx(j,i,"REJ")

Connecting

j’s capabilities are

Figure 10.14:Gnu TCP join/depart scenario 4

Figure 10.14 shows a variation of the scenario mentioned in Figure 10.13. Suppose

that srv j accepts i’s capability headers, and consequently, it sends“OK” string to tcp i

followed by its own capability headers.Tcp i passes the capability headers tosrv i, which

finds j’s capability headers unacceptable. Thus,srv i informs tcp i to send “REJ” string

to tcp j as an indication of the rejection of the connection establishment. Finally,tcp i

informssrv j of this rejection.

Figure 10.15 shows a scenario whensrv i requests connection to node j, butaborts

(closes abruptly) before the Gnutella connection is established. Tcp j waits for an ar-

bitrary timeout before informingsrv j of the failure of the connection attempt. In fig-

ure 10.16, node i recovers, activatestcp i and requests the establishment of the connec-

tion before j’s timeout fires. In this case,tcp j informs srv j of the existence of a new

146



joinReqAbort

acceptable to j

outStatus[i,j]

Connecting

Handshaking

Handshaking

Handshaking

Closed

Handshaking

Closed

Connecting

inStatus[j,i]

Closed

Handshaking

Handshaking

Closed

Waiting

handshake[i,j]

None

None

cCpbs

sCpbs

None

None

None

None

JR[i,j]

true

false

false

false

false

false

false

false

Tcp j Srv jTcp iSrv i

tim
eo

ut

time

peerReached

joinReq

cTx(i,j,cpbs[i])

abort

TCP Connection

"Connect Request" +cpbs[i]

"OK" + cpbs[j]

joinReqInd

sRx(j,i,cpbs[i])

sTx(j,i,cpbs[j])

i’s capabilities are

Figure 10.15:Gnu TCP join/depart scenario 5

connection request.

The join/depart component of serviceGnu TCP define the following progress obli-

gations for every pair i and j:

P1 If i has requested a connection establishment, then eventually (1) j is stateWaiting

(wrt i) or (2) one or both nodes areClosed.

P2 If i is Connecting and j isWaiting, then eventually (1) i isHandshaking, or (2) one

or both i and j areClosed.

P3 If i is Handshaking and j isWaiting, then eventually (1) i and j areHandshaking, or

(2) one or both nodes areClosed.

P4 If i is Handshaking and j isHandshaking, then eventually (1) i isConnected, or (2)

147



sTx(j,i,cpbs[j])

handshake[i,j]

false None

true None

false None

false None

false sCpbs

false None

true None

false None

false None

false None

false sCpbs

inStatus[j,i]

Closed

Waiting

Waiting

Handshaking

Handshaking

Tcp i Tcp j Srv jSrv i

time

outStatus[i,j]

Closed

Connecting

Connecting

Handshaking

Handshaking

Closed

Connecting

Connecting

Handshaking

peerReached

joinReq

cTx(i,j,cpbs[i])

abort

peerReached

cTx(i,j,cpbs[i])

TCP Connection

"Connect Request" +cpbs[i]

"OK" + cpbs[j]

TCP Connection

cpbs[i]

"Connect Request" +

joinReqInd

sRx(j,i,cpbs[i])

joinReqInd

Handshaking

Handshaking

joinReq

JR[i,j]

Figure 10.16:Gnu TCP join/depart scenario 6

148



one or both nodes areClosed.

P5 If i is Connected and j isHandshaking, then eventually (1) i and j areConnected, or

(2) one or both nodes areClosed.

P6 If joinReq(i, j) occurs, then eitherpeerReached(i, j), joinAborted(i, j) or abort(i, j)

will eventually be executed. Node i cannot stay in stateConnecting forever.

P7 If joinReqInd(i, j) occurs, thencRx(i, j, cpbs[i]), joinReqAbort(i, j) or abort(i, j) is

eventually executed. Node i cannot stay in stateWaiting forever.

P8 Client node i cannot stay in stateHandshaking forever.

P9 Server node i cannot stay in stateHandshaking forever.

P10 If cDepartReq(i, j) occurs, then eithercDepartAck(i, j) or abort(i, j) is eventually

executed.

P11 If sDepartReq(i, j) occurs, then eithersDepartAck(i, j) or abort(i, j) is eventually

executed.

P12 If a client node has a reply pending, then it eventually replies or the connection is

aborted.

P13 If a server node has a reply pending, then it eventually replies or the connection is

aborted.

149



10.3.2 Query component

A query has a unique 16-byte descriptorid, and a criteria string. Gnutella defines no stan-

dard format or matching semantics for the criteria string; its interpretation is completely

determined by each node that receives it [32]. This component at a node i is active only

if srv i’s outStatus[i, j] (defined in the join/depart component) isConnected.

classGUID = 16-byte ID;
classQuery {

GUID id;
String criteria;

}

The Query component ofGnu TCP service (figure 10.27) defines the following

variables for each node i∈ Node− {null}:

• Set(GUID) Q[i, j]. Initialized to{}. Set of queries transmitted from node i to node

j.

• Set(GUID) QRcvd[i, j]. Initialized to{}. Queries received by i from j.

• Set(GUID) QHasHit[i, j]. Initialized to{}. Set of query requests received by i where

i has files/data that satisfy the queries in this set.

• Set(GUID) H[i]. Initialized to{}. Set of query requests transmitted to j by node i.

• Set(GUID) HRcvd[i]. Initialized to{}. Set of query requests received by i from j.

Table 10.3 illustrates the events used in the query component. Figure 10.17 de-

scribes a scenario for the flow of a query request.Srv i sends a queryq to the net-

work through node k viaTxQuery(i, j). Tcp k receives it and askssrv k about hits via

150



upw/dnw Event Indication
dnw TxQuery(i,j,q) i issues query q
upw RxQuery(i,j, q) i receives query q; it returnstrue

if it has hits,false otherwise
dnw TxHit(i, j, q, hits) i sends or forwards hits for query q
upw RxHit(i, j, q, hits) i receives hits from j for query q

Table 10.3: Events of query component of serviceGnu TCP. The first parameter indicates
the servent where the event occurs.

TxQuery

QueryHit Msg

Query Msg

QueryHit Msg

Query Msg

Srv j

Net j

Node With Hit

Srv k

Net k

Node Without Hit

TxQuery

Net i

RxHit

Srv i

Initiating Node

RxQuery

RxHit

TxHit

Figure 10.17:Gnu TCP query scenario

RxQuery(k, i, q). Whentcp k knows thatsrv k has no hits, it forwardsq to its neigh-

bors, specifically j.Tcp j receives it and askssrv j about hits. It discovers thatsrv j

has some hits, so it does not forwardq to any other node. Later,srv j sends the hits via

TxHit(j, k, q.id, hits), and the hits message follows the same route back totcp i and then

to srv i via RxHit (events of receiving and forwarding query hits at node k are omitted in

figure 10.17, for figure simplicity).

The query component of serviceGnu TCP define the following progress obliga-

tions:

SP1 If i receives a query q and i has an answer, it eventually answers or exits.

151



10.4 Testing and assertion checking of Furi

There are many open-source Java implementations for Gnutella, for example, Furi [87],

Limewire [37], Phex [39] and JTella [53]

We applied the SeSFJava Harness to Furi. Furi is a medium-sized (33,000 lines of

code) Java implementation of Gnutella, which was developedtwo years ago. We chose

Furi because of its good documentation and readability. It does not support protocols

other than Gnutella, as opposed, for example, to the more popular Limewire which sup-

ports Gnutella and other protocols. Furi’s program structure is the closest to the Gnutella

stack (figure 10.1); that is, there is a set of Java classes that corresponds to Gnutella man-

agement system, and an another set that corresponds to the P2P application. During the

execution of Furi, we encountered fewer GUI errors comparedto other systems (except

Limewire).

Unfortunately, applying the Harness to Furi was not straightforward due to the fol-

lowing problems:

• The names of the xc events in Furi differ from the corresponding events in the

peer-to-peer services. We developed wrapper classes to overcome this problem.

• Some of the xc events in Furi are blockable events. The traditional way to over-

come such problem is to replace each blockable xc event<e> by two events: an

xc event that corresponds to the initiation (or call) of<e>, and another lc event

that corresponds to the return of<e>. Unfortunately we cannot do that because

this involves modifying the implementation (which we try toavoid). Instead, we

proceed as follows; assume that the event is a blockable callat the upper level.

152



We create two events in the upper service: one is the dnw eventthat corresponds

to the call of xc event, and another upw event that corresponds to the return of

the xc event. Then, we use the Harness breakpoint tags to ensure the correct-

ness of operation. For example, Furi has methodsconnectToRemoteHost in file

ReadWorker.java. This method corresponds toP2P Net.joinReq(i, j). It blocks till

the TCP connection is established. To counter this problem, we insert a service call

(p2pNet.joinReq) before the call toconnectToRemoteHost, and another service call

(p2pNet.peerReached) after the call. We insert breakpoints to instruct the tester of

how to execute the operation.

// p2pNet is an alias to service P2P Net

//# breakpoint(”ReadWorker.start”, VIEW AND AUTOMATIC);
// ServiceManager.hostPortName gets the address of the sender node
// mRemoteHost.getHostAddr() gets the address of the remote node
//# p2pNet.joinReq(ServiceManager.hostPortName,
//# mRemoteHost.getHostAddr()); //Service call
//# breakpoint(”ReadWorker.start”, WAIT);
try
{

connectToRemoteHost();
if (mRemoteHost.getStatus() == Host.sStatusTimeout)
{

// Connecting has been taken too long.
throw new Exception(”Timed out.”);

}
}
catch (Exception e3)
{

mHostMgr.setHostCaughtConnectionFailed(mRemoteHost.getHostAddr(), true);
throw e3;

}
//# breakpoint(”ReadWorker.peerReached”, VIEW AND AUTOMATIC);
//# p2pNet.peerReached(ServiceManager.hostPortName,
//# mRemoteHost.getHostAddr()); //Service call
//# breakpoint(”ReadWorker.tcpEstablished”, VIEW AND AUTOMATIC);

• Some methods include calls to multiple events, where each event is atomic. We

handle this by inserting manually calls to the corresponding service events. Break-

153



points are inserted to slice these methods in sequence of atomic lc events.

In order to test the implementation, we ran three copies of Furi. Each is on a differ-

ent machine on thejunkfoodandUMIACSclusters of University of Maryland. The three

copies interact with each other, connecting and disconnecting continuously. We found the

following errors:

• We found many synchronization errors in the connection establishment. Furi allows

multiple connections to the same node if two consecutivejoinReq calls are made to

the same node.

• Furi does not treat the domain name and the IP address of a nodeas the same node.

For example,newton.cs.umd.edu has an IP address of128.8.129.9. A Furi copy

at machinex can connect tonewton.cs.umd.edu:1234, and then connect again to

128.8.129.9:1234 without realizing that they are the same.

• The program works fine if all the nodes have the default port1234. If some of the

hosts have different ports, this may result in errors because in some situations, the

Furi does not augment the domain name with the port name.

154



serviceGnu {
for the following definitions: i and j ∈ Node − {null}.
state[i] = {Active, Departing, Inactive}. Initialized to Inactive.
outStatus[i,j] = {Closed, Connecting, Connected, Closing}. Initialized to Closed.
inStatus[i,j] = {Closed, Connecting, Connected, Closing}. Initialized to Closed.
boolean JR[i,j]. Initialized to false.
boolean JRR[i,j]. Initialized to false.
boolean acking[i,j]. Initialized to false.

dnw activate (Node i) {
ec: state[i] = Inactive;
ac: state[i] := Active;

JR[*,i] := false;
JRR[*,i] := false;
JRRAck[*,i] := false;

}

// App i requests a connection to j.
dnw joinReq (Node i, Node j) {

ec: i 6= j ∧ state[i] = Active ∧ outStatus[i,j]= Closed;
ac: outStatus[i,j] := Connecting;

JR[i,j] := true;
}

// Connection request joinReq(i,j) has been accepted, and informs app i of the acceptance.
upw joinInd (Node i, Node j) {

ec: i 6= j ∧ JRR[j,i] ∧ outStatus[i,j] = Connecting;
ac: outStatus[i,j] := Connected;

JRR[j,i] := false;
JRRAck[i,j] := true;

}

// Connection request joinReq(i,j) has been rejected, and srv i informs app i of the rejection.
upw joinRej (Node i, Node j) {

ec: i 6= j ∧ outStatus[i,j] = Connecting;
ac: outStatus[i,j] := Closed;

JRR[j,i] := false;
}

// Srv j has requested a connection to srv i.
upw joinReqInd (Node i, Node j) {

ec: i 6= j ∧ state[i] = Active ∧ JR[j,i] ∧ inStatus[i,j] ∈ {Closed, Connecting, Connected};
ac: inStatus[i,j] := Connecting;

JR[j,i] := false;
JRR[i,j] := true;

}

// Srv i accepts the connection request initiated by node j, and informs app i of the acceptance.
upw joinReqAck (Node i, Node j) {

ec: i 6= j ∧ JRRAck[j,i] ∧ inStatus[i,j] = Connecting;
ac: inStatus[i,j] := Connected;

JRRAck[j,i] := false;
}

// Srv i rejects the connection request initiated by srv j, and informs app i of the rejection.
upw joinReqRej (Node i, Node j) {

ec: i 6= j ∧ inStatus[i,j] = Connecting;
ac: inStatus[i,j] := Closed;

JRRAck[j,i] := false;
}

Figure 10.18: Join/depart component ofGnu service in SeSF (Part 1)

155



// Srv i informs the app i that j has departed or is departing the network,
// and i has closed all its connections to j.
upw departInd (Node i, Node j) {

ec: i 6= j ∧ (outStatus[i,j] = Connected ∨ inStatus[i,j] = Connected);
ac: outStatus[i,j] := Closed;

inStatus[i,j] := Closed;
JR[j,i] := false;
JRR[j,i] := false;
JRRAck[j,i] := false;
JR[i,j] := false;
JRR[i,j] := false;
JRRAck[i,j] := false;

}

// App i is requesting to depart the network.
dnw departReq (Node i) {

ec: state[i] = Active;
ac: state[i] := Departing;

forall (j: j ∈ Node - {null}) {
if (outStatus[i,j] = Connected)

outStatus[i,j] := Closing;
else

outStatus[i,j] := Closed;
if (inStatus[i,j] = Connected)

inStatus[i,j] := Closing;
else

inStatus[i,j] := Closed;
}

}

// Node i has no Connecting, Connected, or closing connections.
upw departAck(Node i) {

ec: state[i] = Departing;
ac: state[i] := Inactive;

outStatus[i,*] := Closed;
inStatus[i,*] := Closed;
JR[*,i] := false;
JRR[*,i] := false;
JRRAck[*,i] := false;

}

// App i closes abruptly.
dnw abort (Node i) {

ec: state[i] 6= Inactive;
ac: state[i] := Inactive;

outStatus[i,*] := Closed;
inStatus[i,*] := Closed;
JR[*,i] := false;
JRR[*,i] := false;
JRRAck[*,i] := false;

}

Figure 10.19: Join/depart component ofGnu service in SeSF (Part 2)

156



for the following definitions, i 6= j 6= null ∧ i 6= j

// If i’s outStatus is Connecting and j’s inStatus is Connecting, then eventually (1) i’s outStatus is Connected,
// (2) both i’s outStatus and j’s inStatus are Closed, or (3) one or both nodes depart.
progress-obligationP1 {
(outStatus[i,j] = Connecting ∧ inStatus[j,i] = Connecting ) leadsto

((outStatus[i,j] = Connected ∧ inStatus[j,i] = Connecting) ∨ (outStatus[i,j] = Closed ∧ inStatus[j,i] = Closed) ∨
state[i] 6= Active ∨ state[j] 6= Active);

}

// If i’s outStatus is Connected and j’s inStatus is Connecting,
// then eventually (1) i’s outStatus and j’s inStatus are Connected, or (2) one or both nodes depart.
progress-obligationP2 {
(outStatus[i,j] = Connected ∧ inStatus[j,i] = Connecting ) leadsto

((outStatus[i,j] = Connected ∧ inStatus[j,i] = Connected) ∨ state[i] 6= Active ∨ state[j] 6= Active);
}

// If joinReq(i,j) occurs, then either joinInd(i,j) or joinRej(i,j) will eventually be executed,
// or node i departs the network. Node i’s outStatus cannot stay in state Connecting forever.
progress-obligationP3 {
(outStatus[i,j] = Connecting leadsto(outStatus[i,j] = Closed ∨ outStatus[i,j] = Connected ∨ state[i] 6= Active)

}

// If joinReqInd(i,j) is occurred, then either joinReqAck(i,j) or joinReqRej(i,j) is eventually executed,
// or i departs the network. Node i’s inStatus cannot stay in state Connecting forever.
progress-obligationP4 {
(inStatus[i,j] = Connecting ∧ i,j 6= null) leadsto(inStatus[i,j] = Closed ∨ inStatus[i,j] = Connected ∨ state[i] 6= Active)
}

// If departReq(i) occurs, then either departAck(i) or abort(i) is eventually executed.
// Node i cannot stay in state Departing forever.
progress-obligationP5 {

state[i] = Departing leadstostate[i] = Inactive
}

// If i is inactive, then all connections to i are eventually closed.
progress-obligationP6 {

state[i] = Inactive leadsto
(∀ j: (j, i) ∈ E ::(outStatus[j,i] = Closed ∧ inStatus[j,i] = Closed) ∨ state[j] 6= Active)

}
}

Figure 10.20: Join/depart component ofGnu service in SeSF (Part 3)

157



serviceGnu {
...
for the following definitions, i ∈ Node − {null}.
boolean querying[i] = {true, false}. Initialized to false.

// App i issues a query request.
dnw queryReq (Node i, String query) {

ec: state[i] = Active ∧ !querying[i];
ac: querying[i] := true;

}

// App i receives set of hits. The set may be empty.
upw queryHitRcvd (Node i, Set(Hit) hits) {

ec: state[i] = Active ∧ querying[i];
ac: querying[i] := false;

}

// If i send a query, it will receive an answer.
progress-obligationSP1{

querying[i] leadsto ¬querying ∨ state[i] = Inactive;
}

}

Figure 10.21: Query component ofGnu service in SeSF

158



serviceGnu TCP {
for all of the following definitions: i and j ∈ Node − {null}.
outStatus[i,j] = {Closed, Connecting, Handshaking, Connected, Closing}. Initialized to Closed.
inStatus[i,j] = {Closed, Waiting, Handshaking, Connected}. Initialized to Closed.
boolean JR[i,j] Initialized to false.
handshake[i,j] = {None, cCpbs, sCpbs, Ack}. Initialized to None.
cRP[i,j] = {None, Cpbs, sCpbsReply, Close}. Initialized to None.
sRP[i,j] = {None, cCpbsReply, Close}. Initialized to None.

// Srv i requests a connection to j.
dnw joinReq (Node i, Node j) {

ec: i 6= j ∧ outStatus[i,j]= Closed;
ac: outStatus[i,j] := Connecting;

JR[i,j] := true;
}

// Srv i learns that it has established a TCP connection with j.
upw peerReached (Node i, Node j) {

ec: i 6= j ∧ outStatus[i,j] = Connecting;
ac: outStatus[i,j] := Handshaking;

cRP[i,j] := Cpbs;
}

// Client servent i sends a message s to j.
dnw cTx (Node i, Node j, String s) {

ec: i 6= j ∧ outStatus[i,j] ∈ {Handshaking, Connected};
ac: if (outStatus[i,j] = Handshaking ∧ cRP[i,j] = Cpbs ∧ prefix(s) = ”Connect Request”) { //Sending Cpbs

handshake[i,j] := cCpbs;
cRP[i,j] := None;

} else if (outStatus[i,j] = Handshaking ∧ cRP[i,j] = sCpbsReply ∧ s = ”OK”) { // Sending OK
outStatus[i,j] := Connected;
handshake[i,j] := Ack;
cRP[i,j] := None;

} else if (outStatus[i,j] = Handshaking ∧ cRP[i,j] = sCpbsReply ∧ s = ”REJ”) { // Sending REJ
outStatus[i,j] := Closed;
cRP[i,j] := None;

} else if (outStatus[i,j] = Connected ∧ s = ”Bye”) {
outStatus[i.j] := Closing;
handshake[i,j] := Bye;
cRP[i,j] := Close;

}
}

// Client servent i receives a message s from j.
upw cRx (Node i, Node j, String s) {

ec: i 6= j ∧ outStatus[i,j] = Handshaking;
ac: if (handshake[i,j] = sCpbs ∧ prefix(s) = ”OK”) { // sCpbs Received

cRP[i,j] := sCpbsReply;
handshake[i,j] := None;

} else if (prefix(s) = ”REJ”) { // REJ Received
outStatus[i,j] := Closed;

}
}

// Srv i learns that its connection request to j is rejected.
upw joinAborted (Node i, Node j) {

ec: i 6= j ∧ outStatus[i,j] ∈ {Connecting, Handshaking};
ac: outStatus[i,j] := Closed;

if (handshake[i,j] = sCpbs)
handshake[i,j] := None;

}

Figure 10.22: Join/Depart component of GnuTCP service in SeSF (Part 1)

159



// Srv i receives a connection request from j.
upw joinReqInd (Node i, Node j) {

ec: i 6= j ∧ JR[j,i] ∧ inStatus[i,j] ∈ {Closed, Waiting, Handshaking, Connected};
ac: inStatus[i,j] := Waiting;

JR[j,i] := false;
}

// Server servent i receives j’s message
upw sRx (Node i, Node j, String s) {

ec: i 6= j ∧ inStatus[i,j] ∈ {Waiting, Handshaking, Connected};
ac: if (inStatus[i,j] = Waiting ∧ handshake[j,i] = cCpbs ∧ prefix(s) = ”Connect Request”) { // cCaps Received

inStatus[i,j] := Handshaking;
handshake[j,i] := None;
sRP[i,j] := cCpbsReply;

} else if (inStatus[i,j] = Handshaking ∧ handshake[j,i] = Ack ∧ s = ”OK”) { // OK Received (final leg of handshake)
status[i,j] := Connected;
handshake[j,i] := None;

} else if (inStatus[i,j] = Handshaking ∧ s = ”REJ”) { // REJ Received
inStatus[i,j] := Closed;

} else if (inStatus[i,j] = Connected ∧ handshake[j,i] = Bye ∧ s = ”Bye”) {
inStatus[i,j] := Closing;
handshake[j,i] := None;
sRP[i,j] := Close;

}
}

// Server servent i sends a message s to j.
dnw sTx (Node i, Node j, String s) {

ec: i 6= j ∧ inStatus[i,j] = Handshaking ∧ sRP[i,j] = cCpbsReply ∧ handshake[j,i] = None;
ac: sRP[i,j] := None;

if (prefix(s) = ”OK”) { //Accepting j’s capabilities
handshake[j,i] := sCpbs;

} else if (s = ”REJ”) { //Rejecting j’s capabilities
inStatus[i,j] := Closed;

}
}

// Srv i learns of the rejection to j’s connection request.
upw joinReqAbort (Node i, Node j) {

ec: i 6= j ∧ inStatus[i,j] ∈ {Waiting, Handshaking};
ac: inStatus[i,j] := Closed;

if (handshake[j,i] ∈ {cCpbs, Ack})
handshake[j,i] := None;

}

Figure 10.23: Join/Depart component of GnuTCP service in SeSF (Part 2)

160



// Client servent i requests to disconnect its connection to j
dnw cDepartReq (Node i, Node j) {

ec: outStatus[i,j] = Closing ∧ cRP[i,j] = Close;
ac: cRP[i,j] := None;

}

// Client servent i’s request to disconnect is fulfilled.
upw cDepartAck(Node i, Node j) {

ec: outStatus[i,j] = Closing ∧ cRP[i,j] = None;
ac: outStatus[i,j] := Closed;

}

// Server servent i requests to disconnect with j.
dnw sDepartReq (Node i, Node j) {

ec: sStatus[i,j] = Closing ∧ sRP[i,j] = Close;
ac: sRP[i,j] := None;

}

// Server servent i’s request to disconnect is fulfilled.
upw sDepartAck(Node i, Node j) {

ec: inStatus[i,j] = Closing ∧ sRP[i,j] = None;
ac: inStatus[i,j] := Closed;

}

// i terminates abruptly.
dnw abort (Node i, Node j) {

ec: i 6= j ∧ (outStatus[i,j] 6= Closed ∨ inStatus[i,j] 6= Closed);
ac: outStatus[i,j] := Closed;

inStatus[i,j] := Closed;
JR[j,i] := false;
cRP[i,j] := None;
sRP[i,j] := None;
if (handshake[j,i] ∈ {cCpbs, Ack})

handshake[j,i] := None;
if (handshake[i,j] = sCpbs)

handshake[i,j] := None;
}

Figure 10.24: Join/Depart component of GnuTCP service in SeSF (Part 3)

161



For all the following definitions, i 6= j 6= null ∧ i 6= j

// If i has requested a connection establishment, then eventually
// (1) j is state Waiting (wrt i) or (2) one or both nodes are Closed.
progress-obligationP1 {
(outStatus[i,j] = Connecting ∧ inStatus[j,i] ∈ {Closed, Waiting, Handshaking, Connected}) leadsto
((outStatus[i,j] = Connecting ∧ inStatus[j,i] = Waiting) ∨ outStatus[i,j] = Closed ∨ inStatus[j,i] = Closed)

}

// If i is Connecting and j is Waiting, then eventually (1) i is Handshaking, or (2) both i and j are closed.
progress-obligationP2 {
(outStatus[i,j] = Connecting ∧ inStatus[j,i] = Waiting) leadsto
((outStatus[i,j] = Handshaking ∧ inStatus[j,i] = Waiting) ∨ outStatus[i,j] = Closed ∨ inStatus[j,i] = Closed)

}

// If i is Handshaking and j is Waiting, then eventually (1) i and j are Handshaking,
// or (2) one or both nodes are closed.
progress-obligationP3 {
(outStatus[i,j] = Handshaking ∧ inStatus[j,i] = Waiting) leadsto
((outStatus[i,j] = Handshaking ∧ inStatus[j,i] = Handshaking) ∨ outStatus[i,j] = Closed ∨ inStatus[j,i] = Closed)

}

// If i is Handshaking and j is Handshaking, then eventually (1) i is Connected,
// or (2) one or both nodes are closed.
progress-obligationP4 {
(outStatus[i,j] = Handshaking ∧ inStatus[j,i] = Handshaking) leadsto
((outStatus[i,j] = Connected ∧ inStatus[j,i] = Handshaking) ∨ outStatus[i,j] = Closed ∨ inStatus[j,i] = Closed)

}

// If i is Connected and j is Handshaking, then eventually (1) i and j are Connected,
// or (2) one or both nodes are closed.
progress-obligationP5 {
(outStatus[i,j] = Connected ∧ inStatus[j,i] = Handshaking) leadsto
((outStatus[i,j] = Connected ∧ inStatus[j,i] = Connected) ∨ outStatus[i,j] = Closed ∨ inStatus[j,i] = Closed)

}

// If joinReq(i, j) occurs, then either peerReached(i, j), joinAborted(i, j) or abort(i, j) will eventually be executed.
// Node i cannot stay in state Connecting forever.
progress-obligationP6 {

outStatus[i,j] = Connecting leadsto(outStatus[i,j] = Closed ∨ outStatus[i,j] = Handshaking)
}

// If joinReqInd(i, j) occurs, then cRx(i, j, cpbs[i]), joinReqAbort(i, j) or abort(i, j) is eventually executed.
// Node i cannot stay in state Waiting forever.
progress-obligationP7 {

inStatus[i,j] = Waiting leadsto(inStatus[i,j] = Closed ∨ inStatus[i,j] = Handshaking)
}

// Client node i cannot stay in state Handshaking forever.
progress-obligationP8 {

outStatus[i,j] = Handshaking leadsto(outStatus[i,j] = Closed ∨ outStatus[i,j] = Connected)
}

Figure 10.25: Join/Depart component of GnuTCP service in SeSF (Part 4)

162



// Server node i cannot stay in state Handshaking forever.
progress-obligationP9 {

inStatus[i,j] = Handshaking leadsto(inStatus[i,j] = Closed ∨ inStatus[i,j] = Connected)
}

// If cDepartReq(i, j) occurs, then either cDepartAck(i, j) or abort(i, j) is eventually executed.
progress-obligationP10 {

outStatus[i,j] = Closing leadstooutStatus[i,j] = Closed;
}

// If sDepartReq(i, j) occurs, then either sDepartAck(i, j) or abort(i, j) is eventually executed.
progress-obligationP11 {

inStatus[i,j] = Closing leadstoinStatus[i,j] = Closed;
}

// If a client node has a reply pending, then it eventually replies or the connection is aborted.
progress-obligationP12 {

cRP[i,j] 6= None leadstocRP[i,j] = None ∨ outStatus[i,j] = Closed;
}

// If a server node has a reply pending, then it eventually replies or the connection is aborted.
progress-obligationP13 {

sRP[i,j] 6= None leadstosRP[i,j] = None ∨ inStatus[i,j] = Closed;
}

}

Figure 10.26: Join/Depart component of GnuTCP service in SeSF (Part 5)

163



serviceGnu TCP {
...
for the following definitions, i ∈ Node − {null}.
Set(GUID) Q[i,j]. Initialized to {}.
Set(GUID) QRcvd[i,j]. Initialized to {}.
Set(GUID) QHasHit[i,j]. Initialized to {}.
Set(GUID) H[i,j]. Initialized to {}.
Set(GUID) HRcvd[i,j]. Initialized to {}.

function boolean connected(Node i, Node j) {
return (outStatus[i,j] = Connected ∨ inStatus[i,j] = Connected)

}

// Srv i sends a query request to j
dnw TxQuery (Node i, Node j, Query q) {

ec: i 6= j ∧ connected(i,j) ∧ q.id 6∈ Q[i,j] ∪ QRcvd[i,j];
ac: Q[i,j] := Q[i,j] ∪ {q.id};

}

// Tcp i informs srv i of the arrival of a query request.
// Srv i returns true if the set of files that satisfy the query is not empty.
upw booleanRxQuery (Node i, Node j, Query q)) {

ec: i 6= j ∧ connected(i,j) ∧ q.id ∈ Q[j,i] ∧ (q.id 6∈ Q[i,j] ∪ QRcvd[i,j);
ac: QRcvd := QRcvd[i] ∪ {q.id};

if ( return = true)
QHasHit[i] := QHasHit[i] ∪ {q.id};

}

// Tcp i receives hits from tcp j.
// Multiple replies (either from different nodes or from the same node)
// may arrive in response to the same query request.
upw RxHit (Node i, Node j, GUID id, Set(Hit) hits) {

ec: i 6= j ∧ connected(i,j) ∧ id ∈ Q[i,j] ∧ id ∈ H[j,i];
ac: HRcvd[i,j] := HRcvd[i,j] ∪ {id};

}

// Srv i transmits hits to srv j.
// Srv i may send multiple replies to the same query (if the set of replies exceeds the MTU of a msg).
dnw TxHit (Node i, GUID id, Set(Hit) hits) {

ec: i 6= j ∧ connected(i,j) ∧ id ∈ Q[i,j] ∧ id 6∈ H[i,j] ∪ HRcvd[i,j];
ac: H[i,j] := H[i,j] ∪ {id};

}

// If i receives a query with ”id” and i has a hit, it eventually answers or the connection is closed.
progress-obligationSP1 {

(id ∈ QHasHit[i,j]) leadsto(id ∈ H[i,j] ∨ 6 connected(i,j))
}

}

Figure 10.27: Query component ofGnu TCP service in SeSF

164



Chapter 11

Conclusions and Future Work

We have integrated the SeSF framework for concurrent and distributed systems into Java.

The resulting framework, called SeSFJava, can be used to define executable services (i.e.,

external specification) of concurrent and distributed systems.

We have also implemented a Harness for testing systems against services and against

safety and progress assertions, where systems, services, and assertions are specified in

SeSFJava. SeSFJava Harness is able to handle general programs, general services, and

general safety and progress assertions. SeSFJava Harness can test systems on their actual

platforms. It can handle both multi-threaded systems and multi-process systems.

Finally, we have presented two major applications of SeSFJava and the Harness.

The first was to the TCP transport protocol, and the second was to a Gnutella network.

We wrote the intended services of Gnutella, and tested an open-source implementation,

namely Furi, against the services.

The TCP transport protocol application was also done in the context of a senior-

level undergraduate introductory networking course at University of Maryland (CMSC417).

The use of SeSF significantly increased the percentage of students who completed the

165



projects, reduced their email queries about the specification, and reduced the grading

time.

There are several possible areas of future work. One is to extend to web services.

Web services, such as stock tickers and inventory check services, are packaged as pub-

licly accessible software components that are invoked by programs. XML is the standard

format used for data transmission of web services, and XML query languages are used

for manipulation of the data. W3C, in addition to companies (e.g., Microsoft, IBM), is

pushing to standardize the web services.

Researchers have used model checkers to check the correctness of these services [60,

24]. But model checkers, while appropriate for finite state machines, do not capture the

tree-structure of XML data and the high expressiveness of XML query languages. In ad-

dition, most of these methods require the translation of theweb services into intermediate

languages suitable for analysis. We propose to integrate SeSF and the testing harness with

the WSDL [2] interface specification of web services and with their behavioral descrip-

tions (e.g., BPEL [23], WSCI [1]).

Another possible area of work is in testing device drivers. The main reason of

crashes of commercial operating systems is the malfunctionof device drivers, for exam-

ple, 85% of crashes of Windows XP are due to errors in device driver [83]. Techniques

can be developed to check the correctness of these drivers and to prevent a failed driver

from corrupting the kernel. Ours could define SeSF executiveservices for the interface

between the operating system kernel and the device driver. Such services should capture

not only the syntax of the interface but also its behavior. This would permit OS developers

to test the drivers against their services and thus reduce the number of crashes of the OS.

166



Appendix A

Preprocessed Code ofAccountExample

A.1 BankSystem.java

import java.util.*;
import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

class BankSystem extends UnicastRemoteObject implements BankInterface {
final static int MANUAL = 0;
final static int VIEW AND AUTOMATIC = 1;
final static int AUTOMATIC = 2;
final static int VIEW = 3;
final static int END = 4;
final static int WAIT = 5;
void breakpoint(String breakpointName, int mode) {

breakpoint(breakpointName, null, mode);
}

void breakpoint(String breakpointName, String comment, int mode) {
try {

Hashtable watches = null;
Hashtable assertions = checkAssertions(true);
MarshalledInformation breakpointData =

new MarshalledInformation(”BankSystem”, MarshalledInformation.SYSTEM,
breakpointName, mode, comment, watches, assertions);

breakpointData.threadName = Thread.currentThread().getName();
tester.breakpoint(breakpointData);

} catch(RemoteException re){
re.printStackTrace();

}
}

Hashtable checkAssertions(boolean debugInfo){
Hashtable assertions = new Hashtable();

// Assertion: balanceCheck
balanceCheck(debugInfo);
if (balanceCheckResult)

assertions.put(”balanceCheck”, ”(true)”);
else

assertions.put(”balanceCheck”, ”(false)”);
return assertions;

}

167



static AccountInterface account;
static TesterInterface tester;

static int balance;//init to 0
static final int N =10;
static BankSystem bank;
static Object lock =new Object();
static ClientInterface client []=new ClientInterface [N];//init to null

BankSystem()throws RemoteException {
account.BankSystem();
breakpoint(”Bank.constructor”, VIEW AND AUTOMATIC);

}

public static void main(String argv [])throws Exception ,RemoteException {
tester =(TesterInterface) Naming.lookup(”AccountTester”);
account =(AccountInterface) Naming.lookup(”Account”);
System.out.println(”Everything found in rmiregistry”);
bank =new BankSystem();
Naming.rebind(”Bank”, bank);

}

public void update(int id,int n,String loc) throws RemoteException {
try {

account.update(id, n, loc);
breakpoint(”xc event: update”, ”params:(”+”)”, VIEW);
if (!(id >= 0 &&id < N &&client [id] == null) )

throw new Error(”Enabled Condition Failure: update ”);
synchronized(lock) {

try {
client [id] =(ClientInterface) Naming.lookup(loc);

}catch(Exception e) {
e.printStackTrace();

}
new DecThread(id,n).start();

}
} catch(RemoteException re) {

re.printStackTrace();
}

}

class DecThread extends Thread {
int id;
int n;
DecThread(int id ,int n) {

this.n =n;
this.id =id;

}

public void run(){
try {

breakpoint(”Bank.breakpoint1”, MANUAL);
synchronized(lock) {

if (n >= 0 ‖balance >= −n) {
balance + = n;
client [id].ack(id);

} else
client [id].nack(id);

client [id] =null;
}
breakpoint(”Bank.breakpointEnd”, END);

}catch(RemoteException re) {
re.printStackTrace();

}
}

}//End Thread

static boolean balanceCheckAntecedent1;

168



static boolean balanceCheckConsequent1;
static boolean balanceCheckPending1;
static boolean balanceCheckAssertion1;
static boolean initialPreprocessing1 = true;
static void initbalanceCheck(){

balanceCheckAntecedent1=false;
balanceCheckConsequent1=false;
balanceCheckPending1=false;
balanceCheckAssertion1=false;

}
static boolean balanceCheckResult = true;
void balanceCheck(boolean debugInfo) {

if(initialPreprocessing1)
initbalanceCheck();

balanceCheckAssertion1 = (( balance >= 0) );
initialPreprocessing1 = false;
balanceCheckResult = true;
if (balanceCheckAssertion1)

System.out.println((debugInfo)? ”Assertion( ” + ”balanceCheckAssertion1” + ”) is valid” : ””);
else

balanceCheckResult = false;
}

}//End system

A.2 Account wrt Bank.java

import java.util.*;
import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;
import java.rmi.server.UnicastRemoteObject;

class Account wrt Bank extends UnicastRemoteObject implements ClientInterface {
final static int MANUAL = 0;
final static int VIEW AND AUTOMATIC = 1;
final static int AUTOMATIC = 2;
final static int VIEW = 3;
final static int END = 4;
final static int WAIT = 5;
void breakpoint(String breakpointName, int mode) {

breakpoint(breakpointName, null, mode);
}

void breakpoint(String breakpointName, String comment, int mode) {
try {

Hashtable watches = null;
Hashtable assertions = new Hashtable();
MarshalledInformation breakpointData =

new MarshalledInformation(”Account wrt Bank”, MarshalledInformation.SYSTEM,
breakpointName, mode, comment, watches, assertions);

breakpointData.threadName = Thread.currentThread().getName();
tester.breakpoint(breakpointData);

} catch(RemoteException re){
re.printStackTrace();

}
}

static AccountInterface account; //Remote pointer to counter ’s user.’
static TesterInterface tester;

Object lock = new Object();
BankInterface bank;

169



static final int N = 5; //Number of clients
int balance = 0;
boolean pending []= new boolean[N];
int amount []= new int[N];

Account wrt Bank() throws RemoteException {
try {

//Binding ”Account”.
Naming.rebind(”Account wrt Bank”,this);
System.out.println(”Account bound to registry”);
bank = (BankInterface) Naming.lookup(”Bank”);
new Whirl().start();

}catch(Exception e) {
e.printStackTrace();
throw new RemoteException();

}
}

public static void main(String argv [])throws Exception, RemoteException {
if (System.getSecurityManager()==null)

System.setSecurityManager(new RMISecurityManager());
tester = (TesterInterface) Naming.lookup(”AccountTester”);
account = (AccountInterface) Naming.lookup(”Account”);
Account wrt Bank client = new Account wrt Bank();

}

public void update(int id, int n, String loc) throws RemoteException {
synchronized(lock) {

amount[id] = n;
pending[id] = true;
bank.update(id, n, ”Account wrt Bank”);

}
}

class Whirl extends Thread {
Random r = new Random();
public void run(){

while(true) {
try {

synchronized(lock) {
int id = r.nextInt(5);
if (id >=0 &&id <N &&!pending [id]) {

update(id, r.nextInt(80) -40, ”Account wrt Bank”);
}

}
sleep(10);
yield();

}catch(Exception e) {
e.printStackTrace();

}
}

}
}

public void ack(int id) throws RemoteException {
try {

account.ack(id);
breakpoint(”xc event: ack”, ”params:(”+”)”, VIEW);
synchronized(lock) {

if(!(id >= 0 &&id < N && pending[id] && (amount [id] >= 0 ‖ balance >= −amount[id])))
throw new Error(”Account wrt Bank.ack Enabling Condition failed.”);

pending[id] = false;
balance = balance + amount [id];

}
} catch(RemoteException re) {

re.printStackTrace();
}

}

170



public void nack(int id) throws RemoteException {
try {

account.nack(id);
breakpoint(”xc event: nack”, ”params:(”+”)”, VIEW);
synchronized(lock) {

if (!(id >= 0 && id < N && pending[id] && balance < −amount [id]) )
throw new Error(”Account wrt Bank.nack Enabling Condition failed.”);

pending [id] = false;
}

} catch(RemoteException re) {
re.printStackTrace();

}
}

}

171



Appendix B

Conversion versus Embedded Markup Language

In this dissertation, we have implemented a preprocessor that accepts files written in SeS-

FJava, that is, Java files with SeSF markup tags embedded within. Prior to this, we

designed a converter that accepts files written in a SeSF markup programming language

and converts them to Java files. Figures B.1, B.2 and B.3 illustrate the SeSF version of

theBankSystem, ClientSystem andAccountService in theAccountExample of chapter 4.

We notice the following:

• The files cannot be compiled using a standard Java compiler.

• The systems make calls to upper and lower services only. The means of communi-

cation from a system to another (upper or lower) is not specified.

• Exception handling and synchronization methods are not specified explicitly.

The converter has to insert an RMI call from a system to another, for example,

wheneverBankSystem calls eventack in AccountService, the call is replaced by an RMI

call to the corresponding eventack in systemClientSystem. The converter handles syn-

chronization and exceptions. The programmer is limited to only small templates of code,

172



systemprogram BankSystem {
UpperService:AccountService;
static int balance;
static final int N = 10; // number of clients
int client[] = new client[N]; // true if the client[i] has pending update

BankSystem() {}

xc eventvoid update(int id, int n) {
ec: id >= 0 && id < N && !client[id];
ac: client[id] = true;

start UpdateThread(id, n);
}

Thread UpdateThread (int id, int n) {
try {

breakpoint(”Bank.bpBegin”, BEGIN);
beginAtomic

if (n >= 0 ‖ balance >= -n) {
balance + = n;
AccountService.ack(id);

} else
AccountService.nack(id);

client[id] = false;
endAtomic
breakpoint(”Bank.bpEnd”, END);

} catch (RemoteException re) { re.printStackTrace(); }
} //End Thread

} //End System

Figure B.1: BankSystem SeSF system program

otherwise the converter cannot convert the files to Java. Although the converter mirrors

faithfully the SeSF theory, it has many drawbacks:

• The correctness proof of the conversion from SeSF to Java is almost impossible.

• The converter cannot cope with the diversity and dynamic nature of programming

languages. For example, when we implemented the converter,calls where limited

to RMI calls only, which ignores other possibilities like TCP and MPI (Message

Passing Interface) calls. Also, we used simple synchronization templates which

limited the programmers from using more sophisticated methods.

• The performance of the generated code and its readability are questionable.

173



system-programClientSystem {
LowerService: AccountService;

Random r = new Random(); // random number generator
boolean wait = false; // true if it has pending requests, false otherwise

public static void main(String argv[]) throws Exception {
ClientSystem client = new ClientSystem();
client.execute(Intger.parseInt(argv[0]));

}

void execute(int id) throws Exception {
for(int i = 0; i < 50; i++){

breakpoint(”Client.bpInc”, MANUAL);
wait = true;
AccountService.update(id, r.nextInt(80) - 40);
// Wait for ack or nack
beginAtomic

while (wait){
breakpoint(”Client.bpWait”, WAIT);
wait;

}
beginAtomic

}
breakpoint(”Client.bpEnd”, END);

}

xc-eventvoid ack(int id) {
ec: true;
ac: wait = false;

notify ;
}

xc-eventvoid nack(int id) {
ec: true;
ac: wait = false;

notify ;
}

}

Figure B.2: ClientSystem SeSF system program

174



service-programAccountService {
//# Harness harness;
static final int N = 10; // number of clients
int balance;
boolean pending[] = new boolean[N]; // pending[i] is false if it has no pending request
int amount[] = new int[N]; // amount[i] is the update value of user i last request
dnw-eventvoid BankSystem:update(int id, int n) {

ec: id >= 0 && id < N && !pending[id];
ac: amount[id] = n;

pending[id] = true;
}

upw-eventvoid ClientSystem:ack(int id) {
ec: id >= 0 && id < N && pending[id] && (amount[id] >= 0 ‖ balance >= -amount[id]);
ac: pending[id] = false;

balance + = amount[id];
}

upw-eventvoid ClientSystem:nack(int id) {
ec: id >= 0 && id < N && pending[id] && balance < -amount[id];
ac: pending[id] = false;

}

progress-obligationpA {
forall i: 0 − > (N-1)

beginAssertion
pending[i] leadsto !pending[i]

endAssertion
endfor

}
}

Figure B.3: AccountService SeSF service program

175



These drawbacks are common to all frameworks that implementthe conversion method [81,

85, 22, 84, 28, 66]. This convinced us to favor the markup language methodology.

176



Appendix C

Complete SeSFJava Programs of Data Transfer Protocol

C.1 SW Source.java

import java.net.*;
import java.lang.*;
import java.io.*;
import java.util.*;
//# import java.rmi.RemoteException;
//# import java.rmi.server.UnicastRemoteObject;
//# import java.rmi.*;

//# system program: SW Source
class SW Source{

//# HarnessInterface harness = SourceUser.harness;
//# varOf(DT) dt; // Tells the harness that variable dt is an alias of DT
//# static DTInterface dt;
//# {

//# try {
//# dt = (DTInterface) Naming.lookup(”DT”);
//# } catch(Exception e) {System.out.println(”Error”);}

//# }
//# final static int mode = VIEW AND AUTOMATIC;

SourceUser dtsource;
NetworkSocket nSocket;
Vector sendBuf = new Vector ();
final static int msgSize = 128;
final static int bufSize = 32*1024;
final static int SW = bufSize / msgSize;
int bufUsed, ns, na, sw = SW;
Timer rTimer = new Timer();
volatile boolean contWork = true ;
Object lock = new Object(); // lock object
final static byte D = (byte) 1;
final static byte ACK = (byte) 2;
final static int headerSize = 3;
final static int msgTypeByte = 0;
final static int seqNoByte0 = 1;
final static int seqNoByte1 = 2;
//# watch ns,na,sw; // Harness monitor any changes in these variables

SW Source(int localPort, String remoteDN, int remotePort){
nSocket = new NetworkSocket(localPort, remoteDN, remotePort);
new SourceReceiver().start ();

177



new DataSender().start();
}

//# xc event;
public void sendData(byte []data) {

//# breakpoint(”breakpoint.SW Source.sendData(”+data.length +”)”, mode);
synchronized(lock){

//# ec: bufUsed + data.length <= bufSize && data.length != 0 && data.length % msgSize == 0;
int length = data.length;
int pos = 0;
while (length > 0){

int effPayload = (length > msgSize)? msgSize : length;
byte[] msgBuf = new byte[effPayload];
System.arraycopy(data, pos, msgBuf, 0, effPayload);
sendBuf.addElement(msgBuf);
ns = ns + 1;
pos = pos + effPayload;
length = length - effPayload;

}
bufUsed + = data.length;

}
}

public void closeSource() {
//# breakpoint(”breakpoint.SW Source.closeSource”, mode);
synchronized(lock){

sendBuf.clear();
contWork = false;
rTimer.cancel();
nSocket.close();

}
}

void sendDataMsg(int j) {
synchronized(lock){

if (!sendBuf.isEmpty() && (j − na) < (ns − na) && (j - na) < sw){
// Make buffer
byte tS [] = (byte []) sendBuf.elementAt(j - na);
int length = tS.length + headerSize ;
byte[] datablock = new byte [length];
System.arraycopy(tS, 0, datablock, headerSize, tS.length);
datablock[msgTypeByte] = D ;
datablock[seqNoByte0] = (byte) (j & 0xFF);
datablock[seqNoByte1 ] = (byte) (j >> 8);
nSocket.send(datablock, datablock.length);
rTimer.schedule(new Retransmission(j), new Date((new Date()).getTime()+ 4000));

}
}

}

void receiveACK(int seqNo,int w) {
boolean ackTheData = false;
int ackedBytes = 0;
synchronized(lock){

int tmp = seqNo − na;
if (tmp >= 1){ // && tmp <= (ns − na)){

for (int i = 0; i < tmp; i++){
ackedBytes + = ((byte [])sendBuf.elementAt(0)).length;
sendBuf.removeElementAt(0);

}
na = na + tmp;
sw = w;
bufUsed − = ackedBytes;
ackTheData = true;
sendDataMsg(seqNo);

} else if (tmp == 0)
sw = sw > w ? sw : w;

}

178



if (ackTheData)
dtsource.ackData(ackedBytes);

}

class DataSender extends Thread {
public void run() {

Thread.currentThread().setName(”SW Source.DataSender”);
int j =0 ;
while (contWork){

//# breakpoint(”breakpoint.SW Source.DataSender.run(”+ j + ”)”, mode);
sendDataMsg(j);
synchronized(lock){

if (!sendBuf.isEmpty() && (j − na) < sw && (j − na) < (ns − na))
j = j + 1;

}
}
//# breakpoint(”SW Source.DataSender”, END);

}
}

class Retransmission extends TimerTask {
int earlyJ ;
Retransmission (int aJ ){

earlyJ =aJ ;
Thread.currentThread().setName(”SW Source.Retransmission”);

}
public void run (){

//# breakpoint(”breakpoint.SW Source.Retransmission(”+ earlyJ+”)”, mode);
sendDataMsg(earlyJ);
//# breakpoint(”breakpoint.SW Source.Retransmission.End”, END);

}
}

class SourceReceiver extends Thread {
public void run(){

Thread.currentThread().setName(”SW Source.SourceReceiver”);
//# breakpoint(”breakpoint.SW Source.SourceReceiver.start)”, mode);
while (contWork ){

byte recBuf[] = new byte [100];
DatagramPacket dp = new DatagramPacket (recBuf, 100);
try {

//# breakpoint(”breakpoint.SW Source.SourceReceiver.wait”, WAIT);
nSocket.receive (dp, 1000);
int seqNo = ((int) (recBuf[seqNoByte1] & 0xFF) << 8) +

(int) (recBuf[seqNoByte0] & 0xFF);
int w =(int) recBuf[headerSize];
//# breakpoint(”breakpoint.SW Source.SourceReceiver(”+seqNo + ”, ” + w +”)”, mode);
receiveACK (seqNo, w);

}catch (InterruptedIOException iiooe ){
// Handle Congestion if needed

}catch(Exception e){
e.printStackTrace();

}
}
//# breakpoint(”SW Source.SourceReceiver.End”, END);

}
}

}

C.2 SW Sink.java

import java.util.*;

179



import java.net.*;
import java.lang.*;
import java.io.*;
import java.rmi.*;
//# import java.rmi.RemoteException;
//# import java.rmi.server.UnicastRemoteObject;
//# import java.rmi.Naming;

//# system program: SW Sink
class SW Sink {

//# HarnessInterface harness = SinkUser.harness;
//# varOf(DT) dt; // Tells the harness that variable dt is an alias of DT
//# static DTInterface dt;
//# {

//# try {
//# dt = (DTInterface) Naming.lookup(”DT”);
//# } catch(Exception e) {System.out.println(”Error”);}

//# }
//# final static int mode = VIEW AND AUTOMATIC;
SinkUser dtsink;
NetworkSocket nSocket;
Vector recvBuf = new Vector ();
final static int bufSize = 32 * 1024;
final int msgSize = 128;
final int RW = bufSize / msgSize;
int nr, allowedBytes = bufSize;
Timer dataTimer = new Timer ();
Timer ackTimer = new Timer();
volatile boolean receiverWork = true;

Object lock = new Object();

final static byte NULL = (byte) 0;
final static byte D = (byte) 1;
final static byte ACK = (byte) 2;

final static int headerSize = 3;
final static int msgTypeByte = 0;
final static int seqByte0 = 1;
final static int seqByte1 = 2;
final static int windowSizeByte = 3;

//# watch nr, allowedBytes; // Harness monitor any changes in these variables

SW Sink (int localPort, String remoteDN, int remotePort){
nSocket = new NetworkSocket(localPort, remoteDN, remotePort);

for (int i = 0; i < RW; i++)
recvBuf.addElement (null);

new SinkReceiver().start();
dataTimer.scheduleAtFixedRate (new DataDelivery(), new Date(), 300);
ackTimer.scheduleAtFixedRate (new AckSender(), new Date(), 400);

}

//# xc event;
void readyToAccept(int n) {

//# breakpoint(”breakpoint.SW Sink.readyToAccept(” + n + ”)”, mode);
//# ec: true;
allowedBytes = n;

}

void receiveD(int cj,byte []data) {
synchronized(lock){

if ((cj − nr >= 0) && (cj − nr) < RW && data.length ! = 0) {
int tmp = cj − nr;
if (recvBuf.elementAt(tmp) == null)

recvBuf.set(tmp, data);

180



}
}

}

//# xc event;
public void closeSink() {

//# breakpoint(”breakpoint.SW Sink.closeSink”, mode);
//# ec: true;
receiverWork = false;
nSocket.close();
ackTimer.cancel();
dataTimer.cancel();

}

class AckSender extends TimerTask {
AckSender() {

Thread.currentThread().setName(”SW Sink.AckSender”);
}
public void run() {

// SendACK
//# breakpoint(”breakpoint.SW Sink.AckSender(” + nr + ”)”, mode);
byte reply [] = new byte [headerSize + 1];
reply[msgTypeByte] = ACK;
reply[seqByte0] = (byte) (nr & 0xFF);
reply[seqByte1] = (byte) (nr >> 8);
reply[windowSizeByte]= (byte) RW;
nSocket.send(reply, headerSize + 1);
//# breakpoint(”breakpoint.SW Sink.AckSender.End”, END);

}
}

class DataDelivery extends TimerTask {
DataDelivery() {

Thread.currentThread().setName(”SW Sink.DataDelivery”);
}
public void run() {

byte[] delData;
//# breakpoint(”breakpoint.SW Sink.DataDelivery.start”, mode);
for(;;) {

//# breakpoint(”breakpoint.SW Sink.DataDelivery.loop(” + nr + ”)”, mode);
synchronized(lock){

if (!(recvBuf.elementAt(0) != null && allowedBytes > 0))
break;

byte data []=(byte [])recvBuf.firstElement ();
if (data.length <= allowedBytes){

recvBuf.removeElementAt(0);
recvBuf.addElement(null);
nr = nr + 1;
allowedBytes − = data.length;
delData = data;

}else {
byte rec[] = new byte [(int) allowedBytes];
byte residue[] = new byte [data.length − (int)allowedBytes];
System.arraycopy(data, 0, rec, 0, rec.length);
System.arraycopy(data, rec.length, residue, 0, residue.length);
recvBuf.removeElementAt(0);
recvBuf.add(0, residue);
allowedBytes = allowedBytes − rec.length;
delData = rec;

}
}
dtsink.deliverData(delData);

}
//# breakpoint(”breakpoint.SW Sink.DataDelivery.End”, END);

}
}

class SinkReceiver extends Thread {

181



SinkReceiver(){
setName(”SW Sink.SinkReceiver”);

}

public void run() {
//# breakpoint(”breakpoint.SW Sink.SinkReceiverStart”, mode);
while (receiverWork) {

byte recBuf []= new byte [headerSize + msgSize];
DatagramPacket dp = new DatagramPacket(recBuf, headerSize + msgSize);
try {

//# breakpoint(”breakpoint.SW Sink.SinkReceiver.waitForMsg”, WAIT);
nSocket.receive(dp, headerSize + msgSize);
int cj =((int) (recBuf[seqByte1] & 0xFF) << 8) + (int) (recBuf[seqByte0] & 0xFF);
byte data[] = new byte[dp.getLength() − headerSize];
System.arraycopy(recBuf, headerSize, data, 0, data.length);
//# breakpoint(”breakpoint.SW Sink.SinkReceiver.MsgRcvd(” + cj + ”)”, mode);
receiveD(cj, data);

}catch (InterruptedIOException iioe) {
// Do Nothing congestion control

}catch (IOException ioe){
ioe.printStackTrace(); }

// this.yield ();
}
//# breakpoint(”breakpoint.SW Sink.SinkReceiver.END”, END);

}
}

}

C.3 DT.java

import java.util.*;
import java.io.*;
import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;
import java.rmi.server.UnicastRemoteObject;

//# service program: DT
class DT extends UnicastRemoteObject implements DTInterface

// The following part describes Data Transfer (DT) service.
// DT service specifies a reliable data transfer service from a
// source entity to a sink entity, that is,
// - Safety: data is delivered in the same sequence without loss or
// duplication.
// DT assumes that source and sink are always connected and correctly
// initialized.
//
// DT has two groups corresponding to source and sink entities
// and events associated with each group.
// - Group ”Source” :
// Four events are associated with Source:
// - constructor(localPort, remoteDN, remotePort, availBufSize)
// constructs source entity with parameters: entity’s local
// port, remote domain name, remote port and entity’s buffer
// size (in bytes).
// - sendData (data)
// sends data from local user to source entity to be
// delivered to remote user.
// - ackData (n)
// notifies the entity user that ”n” bytes have been acked by
// remote user.
// - close();

182



// closes the entity.
// - Group ”Sink” :
// It has four events:
// - constructor(localPort, remoteDN, remotePort, sinkBufAvail)
// constructs sink entity with parameters: entity’s local
// port, remote domain name, remote port and entity user
// avail buffer size (in bytes).
// - readyToAccept (n)
// informs sink entity that its user can accept cumulative
// amount of data (in bytes) equals to ”n”.
// - deliverData(data)
// delivers ”data” to local user, such that, data is
// delivered in sequence without loss or duplication.
// - close();
// closes the entity.
//
// Variables :
// ------------
// srcHist : source entity history (<=4GB).
// srcBufSize : srcBuf size in bytes.
// srcBufUsed : occupied portion of srcBuf in bytes.
// srcNumSent : number of bytes accepted from source’s local user.
// srcNumAcked : number of acked bytes (at source entity).
// sinkBufAvail : number of bytes that sink user can accept.
// sinkNumDelivered : number of bytes delivered to sink user.
//--------------------------------------------------------------------------

final static int msgSize = 128;

// Source entity variables.
ByteArrayOutputStream srcHist = new ByteArrayOutputStream ();
long srcBufSize = 32 *1024;
int srcBufUsed = 0;
long srcNumSent = 0;
long srcNumAcked = 0;

// Sink entity variables.
long sinkNumDelivered; // = 0
int sinkBufAvail = 32 *1024 ;

//# Tester tester;
DT() throws RemoteException

try
Naming.rebind(”DT”, this);

catch (Exception e)
throw new RemoteException();

//---------------------------------------------------------------------
// Methods called by source side (SW SourceUser.java and SW Source.java)
//---------------------------------------------------------------------

// Sends data from source user to source entity to deliver it to
// remote user.
//# dnw event: SW Source;
public synchronized void sendData(byte []data) throws RemoteException

//# ec: srcBufUsed + data.length <= srcBufSize && data.length > 0 && data.length % msgSize == 0;
srcHist.write(data, 0, data.length);
srcNumSent + = data.length;
srcBufUsed + = data.length;

//# dnw event: SW Source;
public synchronized void closeSource() throws RemoteException

//# ec: true;

183



//# upw event: SW SourceUser;
public synchronized void ackData(int n) throws RemoteException

//# ec: srcNumAcked + n <= srcNumSent;
// Notifies user that n bytes have been acked.
srcBufUsed = srcBufUsed − n ;
srcNumAcked = srcNumAcked + n ;

//---------------------------------------------------------------------
// Methods called by sink side (SW SinkUser.java and SW Sink.java)
//---------------------------------------------------------------------

//# dnw event: SW Sink;
public synchronized void readyToAccept(int n) throws RemoteException

//# ec: true;
// Informs the entity that user can accept n more bytes of data.
sinkBufAvail = n;

//# dnw event: SW Sink
public synchronized void closeSink() throws RemoteException

//# ec: true;

//# upw event: SW SinkUser;
public synchronized void deliverData(byte []data) throws RemoteException

//# ec: sinkNumDelivered + data.length <= srcNumSent && data.length <= sinkBufAvail && data.length > 0 && cor-
rectData (data);

sinkNumDelivered = sinkNumDelivered +data.length ;
// Delivers ”data” received to entity user.
sinkBufAvail = sinkBufAvail −data.length ;

boolean correctData (byte[] data)
byte[] srcData = srcHist.toByteArray();
for (int i = 0; i < data.length; i++)

if (srcData [((int) sinkNumDelivered) + i] != data [i])
return false ;

return true ;

//# progress obligation allDataAcked
//# beginAssertion
//# ((sinkNumDelivered > srcNumAcked) leadsto (srcNumAcked == sinkNumDelivered))
//# endAssertion
//#

//# progress obligation dataDelivered
//# beginAssertion
//# ((srcNumSent > sinkNumDelivered) && (sinkBufAvail > 0)) leadsto (sinkNumDelivered == srcNumSent)
//# endAssertion
//#

184



BIBLIOGRAPHY

[1] Web Service Choreography Interface (WSCI) 1.0.

http://www.w3.org/TR/2002/NOTE-wsci-20020808/.

[2] Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Coc-

chi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.

Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,

V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeno virtual machine.IBM

Systems Journal, 39(1), 2000.

[4] Bowen Alpern, Jong-Deok Choi, Ton Ngo, and Manu Sridharan.DejaVu: Deter-

ministic Java replay debugger for Jalapeno JVM. InACM SIGPLAN Conference

on Object-Oriented Programming Systems, Languages, and Applications (OOP-

SLA’00) (Demo), October 2000.

[5] Paul C. Attie and Nancy A. Lynch. Dynamic input/output automata: a formal model

for dynamic systems. InCONCUR’01, the International Conference on Concur-

rency Theory, Aalborg, Denmark, August 2001.

185



[6] R.J.R. Back and R. Kurki-Suonio. Decentralization of process nets with a cen-

tralized control. InSecond ACM SIGACT-SIGCOPS Symposium on Principles of

Distributed Computing, pages 131–142, Montreal, August 1983.

[7] R.J.R. Back and R. Kurki-Suonio. Distributed cooperation with action systems.

ACM Transactions on Programming Languages and Systems, 10(4):513–554, Octo-

ber 1988.

[8] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer mul-

ticast, 2002.

[9] Saddek Bensalem, Vijay Genesh, Yassine Lakhnech, Cesar Munoz, Sam Owre, Her-

ald Rues, John Rushby, Vlad Rusu, Hassan Saidi, N. Shankar, Eli Singerman, and

Ashish Tiwari. An overview of SAL. InFifth NASA Langley Formal Methods Work-

shop, Williamsburg, VA, June 2000.

[10] D. Brand and P. Zafiropulo. On communicating finite state machines. J. ACM,

30(2):323–342, April 1983.

[11] Tevfik Bultan, Richard Gerber, and William Pugh. Model-checking concurrent sys-

tems with unbounded integer variables: Symbolic representations, approximations,

and experimental results.ACM Transactions on Programming Languages and Sys-

tems, 21(4):747–789, July 1999.

[12] K.M. Chandy and J. Misra.A Foundation of Parallel Program Design. Addison-

Wesley, Reading, MA., 1988.

186



[13] Jong-Deok Choi, Bowen Alpern, Ton Ngo, Manu Sridharan, and John Vlissides. A

perturbation-free replay platform for cross-optimized multithreaded application. In

15th International Parallel and Distributed Processing Symposium, April 2001.

[14] Jong-Deok Choi and Andreas Zeller. Isolating failure-inducing thread schedules.

Proceedings of the International Symposium on Software Testing and Analysis,

pages 210–220, 2002.

[15] Edmund M. Clarke and David E. Long. Model checking and abstraction. ACM

Transactions on Programming Languages, 21(4), July 1994.

[16] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A

distributed anonymous information storage and retrieval system. Lecture Notes in

Computer Science, 2009:46+, 2001.

[17] R. Cleaveland, J. Gada, P. Lewis, S. Smolka, O. Sokolsky, and S. Zhang. The

Concurrency Factory - practical tools for specification, 1994.

[18] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Concurrency Work-

bench: A semantics-based tool for the verification of concurrent systems.ACM

Transactions on Programming Languages and Systems, 15(1):36–72, January 1993.

[19] Clip2.com. The Gnutella protocol specification v.0.4, March 2001.

http://www.clip2.com/ GnutellaProtocol04.pdf.

[20] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Shawn Laubach,

and Hongjun Zheng. Bandera: Extracting finite-state models from Java source code.

187



In Proceedings of the 22nd International Conference on SoftwareEngineering, June

2000.

[21] Doron Drusinsky. The temporal rover and the ATG rover. In SPIN, pages 323–330,

2000.

[22] R. Eschbach, U. Glässer, R. Golzhein, M. Lwis, and A. Prinz. Formal defintion of

SDL-2000 - compiling and running SDL specifications as asm models. Journal of

Universal Computer Science, 7(11), 2001.

[23] Business Process Execution Language for Web Services (BPEL) 1.1.

http://www.ibm.com/developerworks/library/ws-bpel.

[24] Xiang Fu, Tevfik Bultan, and Jianwen Su. WSAT: A tool for formal analysis of web

services. In16th International Conference on Computer Aided Verification, July

2004.

[25] Stephen J. Garland and Nancy Lynch. IOA: A language for specifying programming

and validating distributed systems, December 2000.

[26] Kenneth J. Goldmann, Bala Swaminathan, T. Paul McCartney, Michael D. Ander-

son, and Ram Sethuraman. The programmers’ playground: I/O abstraction for user-

configurable distributed applications.IEEE Transactions on Software Engineering,

21(9):735–746, September 1995.

[27] Alex Groce and William Visser. Model checking Java programs using structural

heuristics. InInternational Symposium on Software Testing and Analysis, July 2002.

188



[28] David Hansel, Rance Cleaveland, and Scott A. Smolka. Distributed prototyping

from validated specifications.12th International Workshop on Rapid System Proto-

typing, June 2001.

[29] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli,Michal Politi, Rivi

Sherman, Aharon Shtull-Trauring, and Mark Trakhtenbrot. STATEMATE: A work-

ing environment for the development of complex reactive systems. IEEE Transac-

tions on Software Engineering, 16(4), April 1990.

[30] John Hatcliff and Matthew Dwyer. Using the Bandera tool set to model-check prop-

erties of concurrent Java software. InProceedings of CONCUR 2001, June 2001.

[31] K. Havelund and T. Pressburger. Model checking Java programs using Java

PathFinder.International Journal on Software Tools for Technology Transfer, 2(4),

April 2000.

[32] Dennis Heimbigner. Adapting publish/subscribe middleware to achieve gnutella-

like functionality. InSAC ’01: Proceedings of the 2001 ACM symposium on Applied

computing, pages 176–181. ACM Press, 2001.

[33] C.A.R. Hoare.Communicating Sequential Processes. Prentice Hall International,

1985.

[34] Gerard Holzmann. The model checker SPIN.IEEE Transactions on Software Engi-

neering, 23(5), May 1997.

[35] Gerard J. Holzmann.Design and Validation of Computer Protocols. Prentice Hall,

November 1990.

189



[36] KaZaa homepage. http://www.kazaa.com/.

[37] Limewire homepage. http://www.limewire.com/.

[38] Napster homepage. http://www.napster.com/.

[39] Phex homepage. http://phex.kouk.de/.

[40] Igor Ivkovic. Improving gnutella protocol: Protocol analysis and research proposals.

Technical report, LimeWire LLC, 2001.

[41] M. Kim, M. Viswanathan, I. Lee, H. Ben-Abdellah, S. Kannan, and O. Sokolsky.

Formally specified monitoring of temporal properties. InProceedings of the Euro-

pean Conference on Real-Time Systems, York, UK, June 1999.

[42] James Kurose and Keith Ross.Computer Networking: A Top-Down Approach Fea-

turing the Internet. Addison-Wesley, 2001.

[43] Simon. S. Lam and A.Udaya Shankar. A relational notation for state transition

systems.IEEE Transactions on Software Engineering, 16:755–775, July 1990.

[44] Leslie Lamport. The temporal logic of actions. Technical report, DEC SRC Report

57, 1991. April 1990, Revised April 1991.

[45] Leslie Lamport. The temporal logic of actions.ACM Transactions on Programming

Languages and Systems, 16(3):872–923, May 1994.

[46] I. Lee, S. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance based on

formal specifications. InProceedings of International Conference on Parallel and

Distributed Processing Techniques and Applications, Las Vegas, June 1999.

190



[47] Seungjoon Lee, Rob Sherwood, and Bobby Bhattacharjee. Cooperative peer groups

in nice. InIEEE Infocom, April 2003.

[48] Tal Lev-Ami, Thomas W. Reps, Shmuel Sagiv, and Reinhard Wilhelm. Putting

static analysis to work for verification: A case study. In2000, Proceedings of the

International Symposium on Software Testing and Analysis, pages 26–38, August

2000.

[49] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algo-

rithms. InProceedings of the ACM Symposium on Principles of Distributed Com-

puting, Vancouver, B.C., August 1987.

[50] Z. Manna and A. Pnueli. Adequate proof principles for invariance and liveness

properties of concurrent programs.Science of Computer Programming, 4:257–289,

1984.

[51] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer-Verlag, New York, 1992.

[52] Jeremy Manson and William Pugh. The Java memory model simulator. InWorkshop

on Formal Techniques for Java-like Programs, in Association with ECOOP, June

2002.

[53] Ken McCrary. JTella, 2000. http://jtella.sourceforge.net/.

[54] K. L. McMillan. The SMV system, February 1992.

191



[55] Raymond Miller. Passive testing of networks using a a CFSMspecification. InIEEE

International Performance, Computing and Communications Conference, pages

111–116, February 1998.

[56] Raymond E. Miller and Khaled A. Arisha. Fault coverage innetworks by passive

testing. InInternational Conference on Internet Computing, pages 413–419, 2001.

[57] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[58] Jaydev Misra.A Discipline of Multiprogramming. Springer-Verlag, 2001.

[59] Sandra Murphy and A. Udaya Shankar. Connection management for the transport

layer: Service specification and protocol verification.IEEE Transactions on Com-

munications, 39(12):1762–1775, December 1991.

[60] Shin Nakajima. Verification of web service flows with model-checking techniques.

In Proceedingsof the First International Symposium on Cyber Worlds, pages 378 –

385, November 2002.

[61] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.

ACM TOPLAS, 4:455–495, July 1982.

[62] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: combining

specification, proof checking, and model checking. In RajeevAlur and Thomas A.

Henzinger, editors,Computer-Aided Verification, CAV ’96, number 1102 in Lecture

Notes in Computer Science, pages 411–414, New Brunswick, NJ, July/August 1996.

Springer-Verlag.

192



[63] JunCheol Park and Raymond Miller. A compositional approach for designing mul-

tifunction time-dependent protocols. InIEEE International Conference on Network

Protocols, pages 105–112, October 1997.

[64] Amir Pnueli. The temporal logic of programs. InProceedings of the 18th ACM

Symposium on the Foundation of Computer Science, pages 46–57, November 1977.

[65] Amir Pnueli. The Temporal Semantics of Concurrent Programs, volume 70, pages

1–20. Springer-Verlag, July 1979.

[66] Andreas Prinz and Martin Lwis. Generating a compiler for SDL from the formal

language definition. InLecture Notes in Computer Science, volume 2708, pages

150–165. Springer-Verlag Heidelberg, January 2003.

[67] William Pugh. The Java memory model is fatally flawed.Concurrency: Practice

and Experience, 12(6):445–455, 2000.

[68] Nicholas Rescher and Alsadair Urquhart.Temporal Logic. Springer-Verlag, New

York, 1971.

[69] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall Series in

Computer Science, 1998.

[70] John Rushby. Specification, proof checking, and model checking for protocols and

distributed systems with PVS. Tutorial presented at FORTE X/PSTV XVII ’97,

November 1997.

193



[71] Sriram Sankar and Manas Mandal. Concurrent runtime monitoring of formally spec-

ified programs.IEEE Computer, 26(3), March 1993.

[72] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas

Anderson. Eraser: A dynamic data race detector for multithreaded programs.ACM

Transactions on Computer Systems, 15(4):391–411, 1997.

[73] F.B. Schneider and G.R. Andrews. Concepts for concurrent programming. InCur-

rent Trends in Concurrency, LNCS 224, pages 669–716. Springer-Verlag, New York,

1986.

[74] Steve Schneider. Abstraction and testing. InFM’99, Vol. I, LNCS 1708, pages

738–757. Springer-Verlag Berlin Heidelberg, 1999.

[75] Beth A. Schroeder. On-line monitoring: A tutorial.IEEE Computer, 28(6):72–78,

June 1995.

[76] A. Udaya Shankar. Verified data transfer protocols withvariable flow control.ACM

Transactions on Computer Systems, 7(3):281–316, August 1989.

[77] A. Udaya Shankar. Modular design principles for protocols with an application to

the transport layer.Proceedings of IEEE, 79(12):1687–1707, December 1991.

[78] A. Udaya Shankar.Concurrent Systems and Services: Design, Verification and

Testing. in preparation, 2005.

[79] N. Shankar. PVS: combining specification, proof checking, and model checking.

In Mandayam Srivas and Albert Camilleri, editors,Formal Methods in Computer-

194



Aided Design (FMCAD ’96), volume 1166 ofLecture Notes in Computer Science,

pages 257–264, Palo Alto, CA, November 1996. Springer-Verlag.

[80] Natarajan Shankar. Combining theorem proving and modelchecking through sym-

bolic analysis. InCONCUR’00: Concurrency Theory, Lecture Notes in Computer

Science, Number 1877, pages 1–16. Springer-Verlag, State College, PA., August

2000.

[81] R. Sijelmassi and B. Strausser. The pet and dingo tools forderiving distributed

implementations from Estelle.Computer Networks and ISDN Systems, 25:841–851,

1993.

[82] Ion Stoica, Robert Morris, David Karger, M. Francs Kaashoek, and Hari Balakrish-

nan. Chord: A scalable peer-to-peer lookup service for internet applications. In

Proceedings of SIGCOMM 2001, pages 149–160. ACM Press, 2001.

[83] Michael Swift, Muthukaruppan Annamalai, Brian N. Bershad, and Henry M. Levy.

Recovering device drivers. InProceedings of the 6th ACM/USENIX Symposium on

Operating Systems Design and Implementation (OSDI), San Francisco, CA, Decem-

ber 2004.

[84] Joshua Tauber.Verifiable Code Generation from Abstract I/O Automata Modelsfor

Distributed Computing. PhD thesis, Massachusetts Institute of Technology, March

2001.

[85] J. Thees and R. Golzhein. The eXperimental Estelle Compiler - automatic genera-

tion of implementations from formal specifications. InProceedings of the 2nd Work-

195



shop on Formal Methods in Software Practice, Clearwater Beach, Florida, March

1998.

[86] Tomas E. Uribe. Combinations of model checking and theorem proving. InFrontiers

of Combining Systems, pages 151–170, 2000.

[87] William Wong. Furi homepage, 2003. http://schnarff.com/gnutelladev/source/furi/.

[88] Pamela Zave. An insider’s evaluation of PAISLey.IEEE Transactions on Software

Engineering, 17:212–225, 1991.

196


