ABSTRACT

Title of dissertation: SeSFJava: A FRAMEWORK FOR DESIGN
AND ASSERTION-TESTING OF
CONCURRENT SYSTEMS
Tamer Elsharnouby, Doctor of Philosophy, 2005

Dissertation directed by: Professor A. Udaya Shankar
Department of Computer Science

Many elegant formalisms have been developed for specifgtyreasoning about
concurrent systems. However, these formalisms have natwiekely used by developers
and programmers of concurrent systems. One reason is tisafonmal methods involve
techniques and tools not familiar to programmers, for eXapgspecification language
very different from C, C++ or Java. SeSF is a framework for desigrification and test-
ing of concurrent systems that attempts to address thesewmby keeping the theory
close to the programmer’s world.

SeSF considerkiyered compositionality. Here, a composite system consists of
layers of component systems, asetvicesdefine the allowed sequences of interactions
between layers. SeSF uses conventional programming lgagtadefine services. Specif-
ically, SeSF is a markup language that can be integratedamitfprogramming language.
We have integrated SeSF into Java, resulting in what we e&FSava. We developed a
testing harness for SeSFJava, called SeSFJava Harnesscman(distributed) SeSFJava

program can be executed, and the execution checked agairsgtrvice and any other

correctness assertion. A key capability of the SeSFJavadsaris that one can test the
final implementation of a concurrent system, rather thangosbstract representation of
it.

We have two major applications of SeSFJava and the Harndss fifkt is to the
TCP transport layer, where service specification is cast BF3ava and the system is
tested under SeSFJava Harness. The second is to a Gnutgllarkne We define the
intended services of Gnutella — which was not done beforbddest of our knowledge

— and we tested an open-source implementation, namelydgainst the service.

SeSFJava: A FRAMEWORK FOR DESIGN AND
ASSERTION-TESTING OF CONCURRENT SYSTEMS

by

Tamer Elsharnouby

Dissertation submitted to the Faculty of the Graduate Sobicihe
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2005

Advisory Committee:

Professor A. Udaya Shankar, Chair/Advisor
Professor Eyad Abed, Dean’s Representative
Professor Ashok Agrawala

Professor Samrat Bhattacharjee

Professor Atif Memon

(© Copyright by
Tamer Elsharnouby

2005

To My Parents Amani and Mahmoud,

To Rehab and Grandpa Mohamed

ACKNOWLEDGMENTS

| owe my gratitude to all the people who have made this diagert possible and
because of whom my graduate experience has been one thatheriish forever.

First and foremost I'd like to thank my adviser, Professorlslaya Shankar for
giving me an invaluable opportunity to work on challengingl &xtremely interesting
projects over the past years. He has always made himsdHbheior help and advice and
there has never been an occasion when I've knocked on hisatholdne hasn’t given me
time. It has been a pleasure to work with and learn from suax#aaordinary individual.

| owe my deepest thanks to my family - my motienaniand my fatheMahmoud
who have always stood by me and guided me through my careghare pulled me
through against impossible odds at times. Words cannoesgfthe gratitude | owe them.
| would also like to thank my sister Rehab and my grandpa Moldame

My friends have been a crucial factor in my finishing smoatliity like to express
my gratitude to Khaled Arisha, Ahmed Elgammal, Mohamed Eamaes, Gehad Galal,
Ayman Khalafallah, Tamer Nadeem, Zaki Sharbash and Ades¥eifor their friendship
and support. | would also like to thank my friends Mohamed &lzth, Ahmed Abdel
Hafez, Abdel Hameed Badawy, Mona Diab, Tamer Elbatt, Mahnkitayoumy, Ashraf
Elmasry, Mohamed Tamer Elrefae, Tarek Ghanem, Walid GoNes®r Jaradat, Hesham
Mahmoud, Anis Valiani and Moustafa Youssef.

It is impossible to remember all, and | apologize to thoseviehiaadvertently left

out. Thank Allah and thank you all!

TABLE OF CONTENTS

Introduction 1
1.1 SeSFJava e 3
1.2 Bankexample 5
1.3 Applications e 8
1.4 Structure of the Dissertation 9
Related Work 10
2.1 System modelingapproaches 10
2.2 Runtime monitoringof programs 14
2.3 Model checking and theoremproving 16
SeSFJava 21
SeSF Overview 22
3.1 Atomicity and the interleavingmodel 23
3.2 Systems 24
3.3 ASSErtions e 29
34 SEIVICES 31
3.5 Service satisfaction o 33
SeSFJava by Example 36
4.1 Bankandclientsystemprograms 37
4.2 Composite system &ank andClients 39
4.3 Accountservice program e e e 0 4
4.4 Service satisfaction conditions: event-trace coo#i. 41
4.5 Service satisfaction conditions: programversion 43
45.1 Constructin@ank-wrt-Account 43
45.2 Constructind\ccount-wrt-Bank 44
45.3 Conditionsomank* L 46
45.4 Constructin@lient-wrt-Account a7
455 Constructing\ccount-wrt-Client 48
45.6 Conditionsorflient* Lo 49

SeSFJava Harness by Example 54
5.1 Constructindank-wrt-Account’ L 55
5.2 Constructinddccount-wrt-Bank”o oL 56
5.3 Constructing testing platform 58
54 TestingandGUI. 60
SeSFJava Harness Overview 64
6.1 Process-based versusthread-based 65
6.2 Typesofassertionssupported 68
6.3 Assertion checkinglocations 69
6.4 Collecting data for assertionchecking 69
6.5 Evaluationofassertions 71
6.6 Breakpoints 72
6.7 Configurations. e 76
6.7.1 Examplel 76
6.7.2 Example2 77
Applications 79
Data Transfer Protocol 80
7.1 SYStems e e e 81
7.2 SEIVICE e 82
7.3 DT satisfaction conditions 87
7.4 Testing and assertion checkingharness 91
7.4.1 ConstructinGW Sys* 92
7.4.2 ExecutingW Sys” 93
Connection Management Protocol 95
8.1 Systems 96
8.2 Service e 102
8.3 (M satisfaction conditions 109
8.4 Testing and assertion checkingharness 110
8.4.1 ConstructingM Sys™ 111
8.4.2 ExecutindCM_Sys™ 112
Educational Use of SeSFJava 114
9.1 Phase I: Data transfer protocol (correctness) 116
9.1.1 Testingphasel 117
9.1.2 Gradingphasel. 119
9.2 Phase Il: Data transfer protocol (performance) 119
9.3 Phase lll: Connection management protocol 120
9.4 Phase IV: Puttingitalltogether 121
9.5 Experiencewiththestudents 121

Vi

10 Peer-to-Peer Network: Gnutella
10.1 Gnutellaoverview
10.1.1 Joining the Gnutellanetwork
10.1.2 Gnutellabinarymessages

10.2 TheGnuService i e e e
10.2.1 Join/departcomponent

10.2.2 Querycomponent.
10.3 Internal servic&nu TCP,

10.3.1 Join/departcomponent

10.3.2 Querycomponent. e
10.4 Testing and assertion checkingof Furi

11 Conclusions and Future Work

A Preprocessed Code oAccountExample
A.1l BankSystem.java

A.2 AccountwrtBankjava o

B Conversion versus Embedded Markup Language

C Complete SeSFJava Programs of Data Transfer Protocol
C.1 SWSource.java o v v i

C.2 SWSinkjava

C.3 DTjava e e e

Bibliography

Vil

LIST OF TABLES

8.1 EventsofservicEM 106
9.1 ImprovementusingSeSFJava 122
10.1 Events of join/depart component of serviges. The first parameter in-
dicates the node where the eventoccurs. 133
10.2 Events of join/depart component of serviee_TCP. The first parameter
indicates the servent where the eventoccurs. 142
10.3 Events of query component of serviGeu TCP. The first parameter
indicates the servent where the eventoccurs. 151

viii

1.1
1.2

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4

7.5

LIST OF FIGURES

Example: systemsandservices 6
Composite system of bank andtwoclients 7
L-to-lcategory 16
[-to-Lcategory e 17
Concurrent execution modeled as non-deterministicleseng 24
AccountExample: systemsandservices 36
AccountExample: system and service programs 37
Composite system of bank and two clients R 10
BankSystem system program (file BankSystem. Java) 50
ClientSystem system program (file ClientSystem.java) b5l
Bankinterface interface (file Bankinterface.java) 52
Clientinterface interface (file Clientinterface.java) 52
Accountinterface interface (file Accountinterfaceap 52
AccountService service program (file AccountServasea) 53
Bank* andBank™ composite systems. 55
Harnessinterface interface (file HarnessInterfaeg.ja. 55
Graphical Interface ofthe Harness 63
SeSFJava Harness: operation overview 65
Configuration file oAccountExample (file account.cfg) 66
Testing framework for thread-based system 67
Listofthreads. 73
methocbreakpoint of Testerjava 74
Componentsystemphases 76
Component system phases of example1 77.
Composite system phases ofexample2 78.
Data transfer service and protocol system 81
SW _Source system programinSeSF 83
SW_Sink system programinSeSF 84
Outline of SeSFJava\W _Source system program (file SV&ource.java)

(see appendix C.1 for complete program) 5 8
Outline of SeSFJavaW _Sink system program (file SV&ink.java) (see
appendix C.2 for complete program) 86

7.6 SeSPDT: datatransfer service program 88
7.7 Outline of data transfer service program (file DT.jawe(appendix C.3

for complete program) 89
7.8 Service satisfaction transformations 90
7.9 SW Sys* andSW_Sys* compositesystems 93
8.1 Connection management service and protocol system 96
8.2 CM_Client system programinSeSF 98
8.3 CM_Server system programinSeSF 99
8.4 Successful connection and disconnection scenario 101
8.5 SeSK_M: connection management service program (Part1) 4. 10
8.6 SeSK_M: connection management service program (Part2) 5. 10
8.7 Effect of client-side events fo servi€® on <cStatus> 107
8.8 Effect of server-side events of servickl on < sStatus, sAccepting> . . 107
8.9 Service satisfaction transformations 108
8.10 CM_Sys* andCM_Sys* composite systems 112
9.1 Phaseloverview 117
9.2 Phasellloverview 120
10.1 Gnutellaprotocolstack 124
10.2 Example of a Gnutellanetwork 126
10.3 Example of a successful connection scenario in Gaudedl 128
10.4 Gnutella message structure o0 e 128
10.5 Gnujoin/departscenariol 135
10.6 Gnujoin/departscenario2 135
10.7 Gnujoin/departscenario3 136
10.8 Gnujoin/departscenario4o 137
10.9 Gnujoin/departscenario5 137
10.10Gnu join/departscenario6 137
10.11Gnu_TCP join/departscenariol 144
10.12Gnu_TCP join/departscenario 2 145
10.13Gnu_TCP join/departscenario3 145
10.14Gnu_TCP join/departscenario4 146
10.15Gnu_TCP join/depart scenario5 147
10.16Gnu_TCP join/departscenario6 148
10.17Gnu_TCP Query SCeNario v v v v v v it e e e 151
10.18 Join/depart componentGiiu service in SeSF (Part1) 155
10.19 Join/depart componentGiiu service in SeSF (Part2) 156
10.20 Join/depart componentGfu service in SeSF (Part3) 157
10.21 Query component @nu serviceinSeSF 158
10.22 Join/Depart component of GACP service in SeSF (Part1) 159
10.23 Join/Depart component of GACP service in SeSF (Part2) 160
10.24 Join/Depart component of GACP service in SeSF (Part3) 161
10.25 Join/Depart component of GACP service in SeSF (Part4) 162

10.26 Join/Depart component of GACP service in SeSF (Part5) 163

10.27 Query component &hu_TCP serviceinSeSF 164
B.1 BankSystem SeSF systemprogram 3. 17
B.2 ClientSystem SeSF system program 74. 1
B.3 AccountService SeSF service program a 175

Xi

Chapter 1

Introduction

Formal specification and correctness analysis of concusgsiems have been investi-
gated since the mid-1970s. @oncurrent systemis a collection of active entities that
execute simultaneously and interact with each other duhiagourse of their lifetimes.
Formal specification of a system refers to a description efdésired external behavior
of the system in a language with mathematically defined syawa semantics. Correct-
ness analysis of a system is a proof that the systatisfiesits specification, i.e., the
system does what it is supposed to do. The terms “specificaind “system satisfies its
specification” have various interpretations in softwargieeering, spanning functional-
ity, performance, reliability and resource utilizationerd, we use the terms in the sense
of correct functionality. The execution of a concurrenttsys is represented by the se-
guence of state changes, and a correctness property is di@orah this sequence of
states.

Many elegant formalisms have been developed for specifgntjreasoning about
concurrent systems, for example, Lynch and Tuttle’s |/Comndta [49], Chandy and

Misra’s UNITY [12, 58], Lamport’s TLA [44], Milner's CCS [57]Hoare’s CSP [33, 69],

Manna and Pnueli's Temporal Logic [50, 51], and Lam and Shdskelational nota-
tion [43]. However, these formalisms have not been widelgduby developers and
programmers of concurrent systems. One reason is that mwsalf methods involve
techniques and tools that are not familiar to programmersexample, a specification
language that is very different from Java, C or C++.

SeSF is a framework for design, verification and testing otcorent systems [78]
that addresses these concerns by keeping the theory cldse programmer’s world.
This dissertation presents an implementation of SeSF ia. J3eSF uses the terser-
vice specificationto refer to a formal specification of a system, and the tegstem
specification torefer to the description of the system itself.

The system specification is intended for execution. Hericis, defined by pro-
grams written in an implemented programming language. heamtore, it must satisfy
the computational, synchronization, and other conssahthe underlying platform— for
example, does the platform have a single processor, a proktiessor with shared mem-
ory, or a set of loosely-coupled message-passing proessor

The service specification is a description of the externdbb®r of the system,
capturing all (and only) the desired properties and unemeured by implementation is-
sues and internal structure. Its primary goal is to be easytierstand. This invariably
means that the service specification assumes much more fpbatmicity, memory,
and computation than is required by the system specification

In addition, to systems and services, SeSF also formalieeaation of a system
satisfying its service. Informally, this holds if (1) thestgm is ready to accept any input

allowed by the service, and (2) any output the system dodgel by the service.

Like most formalisms, SeSF providesmpositionality. This means that in a com-
posite system, if a component system is replaced by anoys¢ers that satisfies the
service of the original component system, then the compagistem continues to work
properly. In most formalisms, the service defines the pesilnis interactions between
the system and its environment. However, our interest iayared compositionality.
Here, a composite system consists of layers of componetdrags and services define

the allowed sequences of interactions between layers.

1.1 SeSFJava

Services can be defined using one of the following: (1) anratishon-executable for-
malism, e.g., TLA [44] and CSP [33, 69]; (2) a high-level sfieation language that can
be compiled and executed, e.g., PAISLey [88] and Stater29iednd (3) a conventional
programming language, e.g., C, C++ and Java.

The second and third options lead to what we eakkcutable servicegor exe-
cutable specifications). The adoption of executable sesyim general, and in SeSF in
particular, has the following consequences. First, thenaif a system satisfying a ser-
vice is equivalent to the composite program of the systemsamndgce satisfying certain
correctness properties. Second, developersesta concurrent system against its service
simply by executing the composite program of the system hadérvice, and checking
whether those properties are violated.

Compared to the second option, the third option has certaiarddges and dis-

advantages. One advantage of the third option is that tveceespecification language

is familiar to programmers, perhaps even the same languagetof implementation.
This reduces the possibility of the service specificatiomdpenisunderstood by imple-
mentors. Another advantage is that it allows actual implaatens to be tested, rather
than an abstract model. One disadvantage of the third ofstithrat service specifications
are invariably larger in size, making “mechanical verificat practically infeasible, al-
though we think that this is not a big loss because mechawaéication is currently
impractical for unbounded-state models. Another concethat the service specification
language may suffer from inconsistencies and ambiguitiasgglague most conventional
programming languages.

Our approach is really a mix of the second and third optioeSFSitself is a high-
level executable language, but it is not compiled. Insteeltreat SeSF as a markup
language that can be integrated with any programming lagggud\Ve integrate SeSF
with Java, resulting in what we céleSFJava We choose Java because of its relatively
precise semantics, popularity and built-in concurrenaystmicts. A SeSFJava program
is a Java program with SeSF tags inserted as Java commenkssyBt¢ms and services
are specified by SeSFJava programs.

Because the SeSFJava tags are Java comments, a SeSFJaaa magibe com-
piled and executed as a Java program. Thus, for implementptirposes, a SeSFJava
system program is identical to the original Java program. d&ctuse of the SeSF tags,
it can also be tested against its service and other corectssertions. We developed a
testing harness, call&geSFJava Harnesshat can execute a (distributed) SeSFJava sys-
tem program and check whether the resulting executionfiegtithe relevant SeSFJava

service program and any other desired correctness aseertio

This is not straightforward because the SeSF tags are at b higler level than
most programming languages, including Java. In partictddest a system against its ser-
vices, the Harness must construct the composite prograystea and services, which is
not trivial in the context of dynamically created objectslgmocesses. SeSFJava Harness
is able to handle general Java programs (e.g., not resttictBnite-state programs) and
general services with arbitrary safety and progress asssrt

The development of SeSFJava and SeSFJava Harness is pubtivat large extent
by the desire to eliminate errors that are introduced ing&iom formal specifications to
implementations, due to the developer’s lack of expertigle the specification language
or formal methods in general. By defining specifications inveotional languages, SeS-
FJava frees the programmer from having to understand tierelift languages. SeSFJava
Harness allows developer to test a system on its actuabptatf

As mentioned earlier, using Java as a specification langergueses specifications
to the flaws and ambiguities of Java. For example, Java hasnégaous memory
model [67, 52], and different Java implementations haviediht memory models. For
another example, Java Virtual Machines running/dindows have three priority levels,

whereas those running &unOS have thirty one priority levels.

1.2 Bank example

We illustrate the discussion above with a very brief exangpl@Bank system andlient
systems as shown in figure 1.1. This example is expanded upohaipters 4 and 5.

The clients request tapdate (either by depositing to or withdrawing from) a shared

account in théBank. TheBank informs the client of the transaction outcome whether it is
accepteddck) or rejected fack). The servicéAccount specifies the acceptable sequences
of interactions (pdate, ack andnack) the lower layer of theBank and the upper layer
of the Clients. Interactions are . In particular, (1) each client has astrooe update
pending, and (2) the outcome of an updateask iff the update is a withdrawal for an

amount greater than the balance in the account.

Client Client | = Client | =~ Upper Layer (service user)

Account

Bank -— Lower layer (service offerer)

Figure 1.1: Example: systems and services

The Bank andClient systems are specified by SeSFJava system programs. System
programs are similar tolassesn programming languages, and systemsiaséanceof
the classes. A system program defines constants, varidbtegions that are initiated
(callable) by the environment, referred toxasevents(externally controlled events), and
functions that are initiated by the system itself, refetedslc events(locally-controlled
events). Each event has an enabling condition which hasltbfboits execution to be
correct (e.g., aclient can initiate an update only if it emtlty has no outstanding balance).
SeSF does not impose any particular behavior when a syskenegent is called when
not enabled. The system can block, or respond with an erresage, but it may also not
check (and perhaps behave unpredictably later on).

The Account service is specified by a SeSFJava service program that siefiae

events of the lower layer callable from the upper layer,refitto asdnw events(down-

ward events), and the events of the upper layer callable finerfower layer, referred to as
upw events(upward events). SAccount defines dnw evenipdate and upw eventsck
andnack. SeSF also defines the conditions for syst&mk to satisfy servicéAccount,
and the conditions for systefilient to satisfy servicé\ccount.

TheBank andClient system programs as well as thecount service programs are
in SeSFJava, that is, they are Java programs with SeSFXgs/a Taese programs are
compiled using a standard Java compiler. The SeSFJavaragssarted as comments.
For example, to specify that evantdate of systemBank is callable from the environment
(clients in this case), the programmer inserts tag “//#exent;” just before the method’s
header.

For implementation, the programmer can treat Ba@k and Client programs as

Java programs, compile them, and run them as illustratedundil.2(a).

Client0 Clientl Client0 Clientl r---« Harness
Bank Bank f-o- < " Account’
(a) Without Harness (b) With Harness

Figure 1.2: Composite system of bank and two clients

For testing, the programmer uses a SeSFJava preprocegsocess the SeSFJava
tags inside the SeSFJava programs. This preprocessamesits the program so as to
connect th&€lient andBank systems to the Harness, and send the local snapshots (data an
control variables) of the systems to the Harness at predeted breakpoints. After pre-
processing, the systems and the Harness, which includgsebeocesseéccount pro-

gram, are compiled using a standard Java compiler. The€litres, Bank andAccount

are executed together under the control of the Harness €fi@(b)). During the exe-
cution, the Harness constructs a global snapshot from tlbeaé snapshots states, and

records any violations to properties stated in the systemdsarvices.

1.3 Applications

We have done two major applications of SeSFJava and the starfbe first is to the TCP
transport protocol, where the service specification is ikeSeSFJava and the system is
tested under SeSFJava Harness. The second is to a Gnutgltarine We define the
intended services of Gnutella — which was not done beforhddest of our knowledge
— and tested an open-source implementation, namely Fainsighe services.

The TCP transport protocol application was also done in timeest of the intro-
ductory networks course (CMSC417) at the Department of Comfgience of the Uni-
versity of Maryland. This educational use of SeSFJava amdé$s was motivated by our
desire to expose students to formal methods and to seeatdiefiness in a “real-life” sit-
uation. Networking course projects are usually descrilyeaitinformal specification and
a collection of test cases. Students often misunderstansipicification or oversimplify
it to fit just the test cases. Using formal methods, in genealahinates these misun-
derstandings and allows the students to test their projeotsughly, but at the expense
of learning a new specification language within the tightetisthedule of the semester.
Using SeSFJava eliminates such expense. The use of Se$ficaigly increased the
percentage of students who completed the projects, redbeedemail queries about the

specification, and reduced the grading time.

1.4 Structure of the Dissertation

Chapter 2 presents related work. Chapter 3 describes SeSReCHapses thdank
example to introduce SeSFJava. Chapter 5 applies the SeSHaaness to th&ank
example. Chapter 6 describes the SeSFJava Harness aniasdetking more exten-
sively. Chapter 7 describes the application of the Harnesiset@ata transfer protocol.
Chapter 8 describes the application of the Harness to theection management proto-
col. Chapter 9 describes how we used SeSFJava in an introgumttworking course,
and summarizes our classroom experience. Chapter 10 allastthe service specifica-
tions of Gnutella peer-to-peer and how we tested an opercs@nutella implementation

against these services. Chapter 11 concludes.

Chapter 2

Related Work

This discussion of related work is in three parts. First, weatibe formalisms for design
and verification of distributed systems. Second, we preseid that depend on runtime
monitoring of programs. Third, we present tools and teamesgfor model checking of

Java programs.

2.1 System modeling approaches

A rich set of formalisms has been developed in the past tlgegrs for compositional

modeling and verification of concurrent systems. Compawsatity, in general, requires

two steps: (1) verifying the component programs of a contpasistem individually, and

(2) constructing the properties of the composite system fiee component system prop-
erties. Unlike SeSF, which adopts of layered compositionahe formalisms presented
in this section adopt traditional compositionality. We gpahose formalisms according
to the mathematical and logical foundations adopted by them

Temporal logic refers to all approaches for specifying temporal inforamatvithin

logic frameworks (i.e., well-formed formulas, axioms amference rules). Temporal

10

logic was first introduced by Rescher in 1971 [68], and Pn&li 5] pioneered the
use of temporal logic for reasoning formally about the praps of concurrent systems.
Since then, various assertional methods based on tempgialformalisms have been
proposed.

Lynch and Tuttle introduced 1/0O automata [49]. An I/O autdomais a labeled
transition system, which consists of a $ebf states, a sefA of actions divided into
input, output and internal actions, and a $etf transitions § x A x S). Like SeSF,
the semantics of an I/O automaton is described by execuéindsts external behaviors
by traces. Unlike SeSF, input events of an I/0O automatonlesaya enabled. Hence, if an
input is to be not valid in certain states, the natural wayafatare this is to have the action
of the input check whether the current state is valid, anaif transition appropriately
(e.g., ignore input, go to an “error” state, etc.). But thiguiees the implementation to
check the validity condition, which may be expensive (egecking the primality of an
input number). Also, unlike SeSF, input events can not retuvalue, and this prevents
I/O automaton from modeling atomic read-modify-write doasts, which is an important
class of synchronization constructs. A formal languagd/forautomata is described in
[25].

DIOA (Dynamic I/O Automata) is a process algebra for I/0O awiéda. It extends
I/O automata with the ability to change their signatureatés, transitions, actions) dy-
namically, and to create other I/O automata [5]. Similar tocess algebra, DIOA uses
parallel composition operator to check that the tracesmgee by an implementation au-
tomaton are equivalent to those generated by the speaficatitomaton. The differences

between DIOA and SeSF are the same as those between 1/0O éatamilsSeSF.

11

Unity [12], developed by Chandy and Misra, uses a rich setroptaral logic oper-
ators. A Unity program consists of a collection of guardeshownds that are repeatedly
selected and executed under some fairness constraintike (B@SF, process interaction
is based on shared variables rather than coupled actions, Umity has a single global
state shared by all processes. In order to partition a Unitgnam into processes, in-
structions for partitioning are given outside the progr&roving the correctness of such
a program requires one to prove the correctness of the abptgram and then to prove
the correctness of the partitioning [12]. Unity also doessupport dynamic creation and
termination of processes.

Seuss [58] is the object-oriented extension of Unity. Samib SeSF, it has the
concept of a program, calldgbx, and an instance, calledbne. A Seuss program can be
divided into sub-components that communicate with eacérotia procedural calls. The
Seuss sub-components have no shared variables. Thus, sitiondity proofs are easier
in Seuss than in Unity. Similar to SeSF, Seuss specifiesaithphvhether a procedure is
callable by the environment or internally controlled. WeliSeSF, when a caller calls a
procedure while its enabling condition is not satisfied, ¢hk is rejected and the caller
tries again later till the call is accepted. Consequenthatigconsidered a fault in SeSF
(calling an event with an unsatisfied enabling conditionjui a rejected event call in
Seuss.

Temporal Logic of Actions (TLA) [45], developed by Lampanges primed expres-
sions to indicate updates, e.g.— x-+1to denotex := x+1. Similar to Unity, TLA uses a
single shared global state. Similar formalisms are deesldyy Manna & Pnueli [50, 51],

Owicki & Lamport [61], Lam & Shankar [43], Back & Kurki-Suoni®, 7] and Schneider

12

& Andrews [73].

Process algebrapproaches model concurrency by using a collection of opera
and algebraic representation of processes. The two apibatyprocess algebras are
CSP (Communicating Sequential Processes) of Hoare [33, 68]C&LS (Calculus of
Communicating Systems) of Milner [57]. In CSP, processes afmed by all finite

behaviors, for example,

meet = hi — talk — bye — STOP

Recursion is used to define long (including unbounded) bemsve.g. Clock = tick —
Clock. Unlike SeSF, CSP allows input actions to be blockable. Coitipnsn CSP is
guite complex; for example, CSP has both external nondetésmiS = PLIQ means
thatS can beP or Q depending on the environment’s choice) and internal n@mdehism

(S = PrNQ means thad can beP or Q and the environment has no control on this choice).
CCS defines similar operators and semantics. Both of them cariposynchronizing
external actions. Both CSP and CCS check correctness by chesketer the traces
generated by implementation process are equivalent te theserated by the specifica-
tion process. They differ in how to calculate process edenees. LOTOS is the most
common specification language based on process algebras.

Finite State Machines(FSM) are usually used for verification of protocols. The
most common variation of FSM Sommunicating FSMCFSM) [10, 63]: CFSM defines
a tuple of machines, channels, initial set and transitistesyis; one per machine. SDL
and Estelle are the popular specification languages of FSKlelao FSM models are

inadequate for specifying general programming models.s Tbecause capturing the

13

dynamics of any non-trivial program generally results ia $tate explosion problem.

2.2 Runtime monitoring of programs

Computer systems are often monitored during their execdtioperformance measure-
ment, evaluation and enhancement, and debugging andgi¢gsh We focus on moni-
toring for testing purposes.

One of the earliest systems is Anna (Annotated Ada) [71]clvivas developed
to continuously monitor an executing Ada program for speaifon consistency. Anna
annotations are inserted within the comments in Ada prografnna transforms the
annotations into checking functions. It instruments cadlghese functions into code
areas that may cause specification violations.

MaC (Monitoring and Checking) framework [41, 46] providesw@snce on the
correctness of an execution of a system at run-time. MaOA@plhases: before and dur-
ing execution of the system. Before system execution, systgmirements are formal-
ized and monitoring scripts are constructed. Scriptsunsént code into Java bytecode,
and map from low-level information (e.qg., variables chas)geto high-level events (e.g.,
predicates). During run-time phase, the instrumented egttacts the low-level informa-
tion and passes this information to a monitoring componEinis component determines
whether the generated events satisfy the formal specditabf the system. MacC is ap-
plied to a single system and does not support distributettisys Although MaC does
not handle progress assertions, it can be extended easlitygo as with SeSF.

Reference [14] tests multi-threaded applications by usiegfu [4, 13], a cap-

14

ture/replay tool for the Jalapeno JVM (Java Virtual Machif®. During execution of a
Java program, DejaVu records all the thread switches thatgkce. DejaVu can replay
the original thread schedule back and thus it can executeritmal program determin-
istically. Thus, invariants can be tested whenever a thesatth takes place without
needing an external module to ensure atomicity. As in pre/epproaches, this is lim-
ited to concurrent systems, not distributed ones. Furthelpes not work with other
JVMs.

Temporal Rover [21] is a specification based verification tophpplications writ-
ten in C, C++, Java, Verilog and VHDL. It generates executabteedrom LTL (Linear
Temporal Logic) and MTL (Metric Temporal Logic) assertiongtten as comments in
the source code. These comments are compiled and linkedtas ffee application under
test. During execution, the generated code validates theudixg program against those
specified assertions. Similar to MaC, it does not handleiliged systems.

Passive testing [55, 56] insertdserversat specific locations in CFSM models.
One can determine the correctness of the protocol by chgdenerated executions at
those observers.

Programmers’ Playground [26] uses a language with formalasgics expressed
in terms of 1/0 automata. The Playground separates commatmicfrom computations
using I/O abstraction, which is a model of interprocess camication. A module defines
three parts: data structures which are externally visielGtive actions that start upon any
change in the external data structures, and active actatsatcess other modules. The
Playground compiles these modules, sets up the commuomcettiannels between each

pair of processes that have common access to certain da&ldyground ensures atomic

15

access to these external data structures. Playgrounddwsaction managewhich is

a central runtime module that sets up the interprocess caonaation channels between
all the defined Playground modules. Although Programmdes/d?ound is intended for
implementation and not just testing, the system generatéleoPlayground is similar to

how SeSFJava Harness works.

2.3 Model checking and theorem proving

Model checking is one of the techniques used to determin¢h&ha system specification
possesses a property expressed as a temporal logic formMatiel checking algorithms
rely on state-space exploration in order to determine varetlsystem satisfies a temporal
formula. Model checkers accept system specifications inestmmmal languagé., for

example, TLA+ or IOA. Next, they construct a finite state &idion system which is

.

checked against properg

System in Model System in
Compiler ————
Formal Language (L) Checker Imperative Language (I)
Phase 1 Phase 2

Figure 2.1:L-to-l category

To apply model checking to a program written in a conventignagramming lan-
guage], there are two techniquek:to-l andI-to-L. L-to-l technique (figure 2.1) specifies
the system using a formal langualgeverifies the correctness bfusing model checking
tools, and then convertsto | using a compiler. One major disadvantage of this approach

that it is very restrictive in the implementations it prodscand the resulting performance

16

is questionable.

IOA-to-Java [84] is a compiler developed at MIT to compile programs veritin
IOA [25]. A user writes an algorithm in IOA, and then verifiést this algorithm satisfies
its properties using tools available to 1/0 automata, ¢hgorem provers, simulators and
model checkers. After the end of this phase, the algoritheoiserted to Java using
IOA-to-Java compiler.

A series of tools have been developed based on the CCS progessaalcalled
Concurrency Workbench [18] and Concurrency Factory [17].s€Heols analyze systems
expressed as CCS expressions, and include model checkindason and translation to
C++ [28].

On the other hand;to-L technique (figure 2.2) constructs a finite state model that
approximates the executable behavior of the software sysfeinterest (phase 1). In
phase 2, this finite state model is verified using one of theynmaodel checkers. The
major disadvantage of this approach is that extractingthftdiFSM (phase |) is very

difficult. However, phase 2 can be automated. Most framesvadopt this technique.

System Incorrect

$
&©
System in FSM Model
—— = Extract FSM
Imperative Language (1) Checker
Yo
Phase 1 Phase 2 I

(2
7 System Correct

Figure 2.2:I-to-L category

Banderaenables the automatic extraction of compact finite-stateetsdrom pro-
gram source code [20, 30]. It takes Java as input and gesesgpeogram model in

the input language of one of the several existing verificatmols. Bandera supports

17

SMV [54], PVS (guarded statements) [62, 70, 79] &B¥EIN [34] model checkers.

SAL (Symbolic Analysis Laboratory) [9] is a framework for comlvig different
tools for program analysis, theorem proving and model cimgctoward the calculation
of properties. The main part of the SAL is an intermediateyleage for specifying the
concurrent systems. Translators extract transition sysfeom languages like Java, and
convert those transition systems to SAL’s intermediatguage. Afterwards, the gener-
ated code is translated by the SAL environment to inputshieratystems, for example,
PVS or SMV.

Java PathFinder [31] translates a given Java program to PROMELA [35] which
is the input language to SPIN [34]. The generated PROMELAe@hbds the same state
space characteristics as the Java program; that is, it tegeaa the bytecode level (it
emulates the bytecode).

There are various techniques to handle the state explosaitgmn which usually
results when extracting a finite-state model from a Javarprog These techniques in-
volve hand-construction of models, which is expensivenprto errors, and difficult to
optimize.

Bandera and Java PathFinder alleviate the state explosittepn by eliminating
components (classes, variables, code) that are not rel@vire property being verified,;
of course, identifying this is non trivial. For example,esgting a certain menu item is
likely to be independent of the code. If the state explosimbiem persists, the developer
can limit the number of components or variables that padita in analysis, for example,
bounding the number of objects that can be created.

Abstractionis used when some components contain more details thansaegésr

18

the property being verified. The range of such componentbeabstracted to a smaller
set [15, 11, 27]. For example, given two integerandy and a propertyk < y, one can
abstract the two integers by a boolean variable x < y, and thus it is represented by a
boolean instead of two “practically unbounded” integers.

Static analysiof a program scans this program without executing it in otder
construct state transition systems to be used in model oige¢k8]. Runtime analysis
tools constructs transition systems from recorded exewcsitifor example, Eraser [72].
Reference [74] adopts a technique that combines testing lzstchation. It first defines
an interfacd between two CSP processes which are tested agaifsten, it uses the
generated runtime execution to abstract the model.

Theorem proving is the technique of finding a proof of a property from the axsom
of the system, where both the system and its desired prepente expressed as formulae
in some mathematical logic. Theorem proving can be combivigdmodel checking to
reduce the effect of state explosion, or to reduce the humanviention in the process.
Deductionis used to construct valid finite-state abstractions of retesn [80]: simple
assertions can be deduced and proved using the theorenr,gomnexample, if predicate
p satisfies state and there is a transitioR to states’, then predicatg satisfies’. Thus,
the checker needs not to explore states that have beenyapremaan.

Reference [86] uses theorem proving to refine the abstractipplied to the pro-
grams. If an abstractiof of systenS does not satisfy propergybut noconcretecounter
example ofS is generated, one can refiAeio get another abstractiokl and recheclp.
This process continues till abstractidhsatisfiesp, or a concrete counter exampleSis

generated.

19

In summary, applying model checking to large software systes an art. It needs
experienced model builders who can abstract/eliminate ofabe details of these pro-

grams, leaving only what is essential to verify a specifiqprty.

20

Part |

SeSFJava

21

Chapter 3

SeSF Overview

SeSF is a framework for compositional design and implentiemtaf concurrent systems.
It formalizes the notions of processes, systems, servéyssem satisfying services, and
compositionality. It uses temporal logic to specify safatyd program assertions. It
attempts to stay close to the programmer’s world.

SeSF focuses on layered compositionality. Here, a congeggtem consists of
layers of component systems, with services defining thevalicsequences of interactions
between systems in different layers. Thus a system, in géner“encapsulated” by
services above and below. When component systems are cotnjpdeem a composite
system, services between components become internal tthposite system and the
remaining services encapsulate the composite system.

Roughly speaking, a system “satisfies” its encapsulatingces if the interactions
it initiates are allowed by the servicessuminghe interactions initiated by the system’s
environment are allowed by the services. Given a sy$teamd service$) andV, we say
M satisfiesU above andV below, or as we prefer sayl offers U usesV, to mean that

M is encapsulated by above and/ below and satisfies the services. Typically sysidm

22

is a distributed system, and,andV each is a distributed service.
Our compositionality property is that, given a composite system consisting of
layers of component systems with services in between, ifyegemponent system in

isolation satisfies its services, then the composite syageawhole satisfies its services.

3.1 Atomicity and the interleaving model

A key feature of SeSF is the explicit treatment of atomickyhen a process executes
a statement, it affects its state (values of its data andoitgral) and also perhaps the
state of another process. A statemerdt@mic if once a process starts executing it, the
environment of the process cannot influence the executiobsgrve intermediate states.
Thus, the atomic statements of a process define when itscstatiee altered or observed
by other processes. Atomicity is essential to understandirconcurrent system, and
yet most concurrent programming languages do not explicitdicate atomicity in their
specification. We emphasize thetecutions of atomic statements can overlap intime
that is, atomicity does not imply mutual exclusiveness ineti although the converse is
true.

An interaction happens when a process executes an atomic statement das aff
the state of another process; we say the first process doestput and the second
process does anput.

Atomic execution of a statement implies that the statemppears to its environ-
ment to executénstantaneoushat some point between the start and the end of the ex-

ecution. This allows one to use the nondeterministic ietaring model of concurrent

23

execution, in which the simultaneous execution of atomateshents is represented by
the set of all possible sequential executions of atomi@stants. Figure 3.1 illustrates
this for two statements. The interleaving model, which pestine notion of global state,

greatly facilitates reasoning about concurrent systems.

J K
J1 time
K K J
time time
concurrent execution nondeterministic interleaving

Figure 3.1: Concurrent execution modeled as non-detertitimgerleaving

3.2 Systems

In SeSF, a system is a collection of processes that exegstem programs A sys-
tem program can be in any concurrent programming language (ava, C/PThreads,
C++/WinThreads), but it must make explicit the following @ar case, by inserting SeSF

tags):
1. Atomically-executed statements.
2. Atomically-executed statements that are callable betivironment.
3. Fairness (or progress) expected from underlying platfor

We refer to atomically-executed statementewnts An event can be non-blocking

(e.g.,x = 4) or blockable (e.g.R(sem)). An event is either externally controlled, denoted

24

xc event or locally controlled, denotelt event depending on whether its execution is
initiated by the environment or by the system.

A system program has the form

system-program <name>(<parameters>) { /l header
<constants, types, variables, functions> // can include constructor
<externally-controlled events> Il xc events
<progress assumptions>

}

The header indicates the system program’s name and any @@@msnand their
types. Constants, types, variables and functions are ayipranedural language. There
can be a “constructor” for initializing variables and stagtprocesses. The externally-
controlled events are functions that can be called by the@mwent. The progress as-
sumptions define the fairness expected of the underlyirtfppia.

Functions can do all the usual things that concurrent progrean do: define vari-
ables and functions, update variables, call functiongterprocesses and start them exe-
cuting, terminate processes, block on synchronizatiostcocts (e.g., semaphore wait),
and so on. They can also call xc eventotifersystems. An event call would be imple-
mented by an interprocess communication facility such as/[FCRttp exchange, remote
procedure call, or a simple function call (if the two systeams threads of the same pro-
cess).

Atomic statements are indicated by enclosing them in anglackets or some other
convention (e.g., a statement that “every memory read andangewrite is atomic”).
Every atomic statement corresponds td@avent It can make at most one event call in
any execution. An Ic event is said to brabledif a process is at the event and the event,

if it has a blocking condition, is not blocked. For examplsgaaphore wait statement is

25

enabled if a process is at the statement and the semaphaaenbagero value.

Externally-controlled events An xc event has the form

Xc-event <return type> <event name>(<event input parameters>) { // header
ec <enabling condition predicate> /I not checked by system, no side effects
ac <action> /I no event calls, no blocking

}

The header indicates tlewent’s signature similar to a function’s signature, con-
sisting of return type (which can beid), the event name, and event input parameters (if
any) and their types. Thenabling conditionis a predicate in the program variables and
parameters. We say an event caleisabledin a state if the event’'s enabling condition
holds for the values of the program variables in this statethe parameters (if any) of
the call. Theaction is the code that is executed when the event is called. Therelets
no event calls. It returns a valuedfreturn type> is notvoid.

We next define the notion of safe event calls and safe evamet An event call
P.e(x) is safeif (1) it is signature-consistent that is, systenP exists, has as an xc
event, and the instantiated parametensatch the event'’s signature, and (2) the enabling
condition ofe(x) holds when the call is made. For a call of an xc event with noia-v
return, the return isafeif the value returned is of the return type.

It is the caller’s responsibility, not the callee’s, to enshat the call is safeThe
caller must determine this based solely on the event's gigg@and past interaction with
the callee, since nothing else of the callee system is eisiBbr a safe event call, the
callee’s responsibility is to execute the action atomigalithout blocking and, for an

xc-with-return event, to do a safe returithere is no obligation on the callee if the call

26

is not safe. The callee is not obliged to check that the cathfe, but it can choose to do
so in the action. Thus, the enabling condition is neededralysis and testing only, and
not for implementation.

We have imposed the above requirement that a safe eventecatitblocking be-
cause it simplifies the theory without any loss of generaftyplockable input operation,
e.g., a semaphore wait operation, would be modeled in omdlism by two events, an
Xc event corresponding to initiating the operation, anccavent corresponding to the re-
turn of the operation. This does not introduce more compleitimerely makes explicit

the inherent complexity of blockable input operations.

Progress assumptions Progress assumptions define the progress properties egpct
the underlying platform in scheduling the processes, oivatgntly, in executing its Ic

events. SeSF usesak fairnesandstrong fairnes$s1].

o wfair(e) denotesveak fairnessof evente. This means that if evertis continu-

ously enabledbeyond a certain point, it will eventually be executed.

o sfair(e) denotesstrong fairnessof evente. This means that if evertis enabled

infinitely oftenbeyond a certain point, it will eventually be executed.

Any collection of systems can be grouped to forrmompositesystem. In addition
to interactions with its environment, a composite systemalao have internal interac-
tions, that is, interactions between its components. [#yira component system can

itself be a composite system.

27

Explicit and implicit Ic events We refer to the Ic events defined aboveiraglicit Ic

events A SeSF program can also have so-cabeglicit Ic events which have the form

Ic-event <event name>(<event parameters>) { //header
ec <enabling condition> /I checked by system, no side effects
ac <action> /l can have event calls

The header indicates the event name and any parameterseantyfes. There
is no return value. The enabling condition, as in xc everst® predicate in program
variables and parameters, except that here it is checketébgyistem. Whenever the
event is enabled, the action can be executed. The actiondseeecute atomically and
without blocking; thus the enabling condition is the onlpg® to block the event. The
action can have event calls.

Most conventional programming languages do not have buitbnstructs corre-
sponding to explicit Ic events. To perform any activity, theve to create processes (or
threads). Essentially, an explicit Ic-event performswtgtiwithout identifying the work-
ing process. Explicit Ic events are ideal for defining sexsiand during system design,

whereas processes would introduce needless structurearglications.

Semantics of systems An execution of a system is a sequence of event executions
along with the states traversed, starting from an initiatest Each event execution is
a transition. There are four kinds of transitiomsternal transitions represent Ic event
executions in which no xc event is callédput transitions represent xc event executions,
output transitions represent Ic event executions that call xc events fanld transitions

represent event executions where an event encounters afingtoperation or an unsafe

28

call to an xc event. Aaulty execution of a system is an execution that ends in a fault
transition. A fault is either ¢ocally-caused fault which happens if the system executes
an undefined or non-terminating operation (e.g., divisiprzdro, infinite loops, etc.), or
an externally-caused fault which happens if the environment makes an unsafe call of
an event of the system. fault-free executionof a system is an execution that contains
no fault transitions; it can be finite or infinite. domplete executionof a system is a

fault-free execution that satisfies the progress assunmgptibthe system.

3.3 Assertions

Assertions are a way of specifying properties of system @i@ts. Assertions are di-
vided into safety and progress assertions. So far the oslgréens we have used are
progress assertions, specifically, fairness assertioingigystem specifications. Progress
assertions are also the only kind of assertions we will usgumservice specifications.

Safety assertions are needed for reasoning about whetlstesrssatisfies a service.

Predicates A predicateis a statement in first-order logic, i.e., involving the cters
and (\), or (V), implies &), negation {), and the quantifiers foralt/j and forsome).
We are interested in predicates in variables and paramaténe programs about which

we want to reason.

Safety assertions SeSF uses two kinds of safety assertions, namely, “inviaasser-
tions” and “unless assertions”. These assertions impoedittans on the inter-event

states of executions, not on intra-event states.

29

An invariant assertion has the forminv(P), whereP is a predicateinv(P) (read
“invariant P”) means thaP always holds. Formallypv(P) holds for an execution iff the
execution is fault-free and every inter-event state in #tezetion satisfieB. inv(P) holds
for a system iff it holds for every fault-free execution oétbystem and the system has no
locally-caused faulty executions.

An unless assertiorhas the formP unless Q, whereP andQ are predicates. It
means that iP holds at some instant, then it continues to hold uRtholds. Formally,

P unless Q holds for an execution iff the execution is fault-free anddwery inter-event
state in the execution that satisflfes —Q, either that state is the last state in the execution
or the next inter-event state satisfies/ Q. P unless Q holds for a system iff it holds
for every fault-free execution of the system and the systamro locally-caused faulty

executions.

Progress assertions In addition to the fairness assertions described abovel- BaS
two kinds of assertions for expressing progress propedfiesecutions, namely, sim-
ple “leads-to” assertions and compound “leads-to” assesti Like invariant and unless
assertions, leads-to assertions do not state conditiomgrarevent states.

A simple leads-to assertiorhas the fornP leadsto Q, whereP andQ are predi-
cates.P leadsto Q means that iP holds at some instant, théh holds at that instant or
at some later instant. Formalll, leadsto Q holds for an execution iff the execution is
fault-free and for every inter-event state in the executiat satisfie®, either that state
satisfiesQ or some later inter-event state satisfiesP leadsto Q holds for a system iff it

holds for everycompleteexecution of the system (i.e., execution that satisfiesytses’s

30

fairness assumptions).

A compound leads-to assertions a predicate with its terms replaced by leads-to
assertions, for exampléy integer n :: (X leadsto Y) = (P leadsto Q)]. A compound
leads-to assertioR holds for an execution iff the execution is fault-free dhdvaluates
to true after each simple leads-to asserttbim R is replaced bytrue or false depending
on whether or not the execution satisfiesR holds for a system iff it holds for every
complete execution of the system. [We do not allow the uydeglpredicate to have’s.
This is to avoid assertions like(P leadsto Q), which are really assertions about absence

of progress.]

3.4 Services

In SeSF, a service defines the acceptable sequences ottiesabetween systems in
different layers. A service is specified bysarvice program The purpose of a service

program is to:

e Specify the signatures of the system events on each sidarinaallable from the

other side.

o Define the acceptable sequences of these event calls.

e Be directly usable in analysis and testing.

A service program has the form

service-program <name>(<parameters>) {
<constants, types, variables, functions>
<dnw events>

31

<upw events>
<progress obligations>

}

Events are divided intdownward events(dnw) andupward events(upw). Dnw
eventscorrespondto xc events of the system below the service callable by tlseesy
above the service; xc events of the system belownaaipped to the dnw events of the
service. Upw events correspond to xc events of the system above the sarzilable
by the system below the service; xc events of the system adr@raappedto the upw

events of the service. A service event has the form

dnw-event|upw-event <return type><event name>(<event parameters>){ // header
ec: <enabling condition predicate>
ac: <action> /I no event calls, no process creations

}

The header indicates the event's signature, consistingeotytpe (upw or dnw),
return type (if any), event name, and parameters (if anylagid types. The event corre-
sponds to an xc event with the same signature.

The progress obligations of a service define the progresssthapected in execut-
ing upw events. Service programs should not impose any @ssgsbligations on dnw

events. They have the form

progress-obligation <name>(<parameters>) {
<progress assertions>

}

It is important to note that service programs have a diffepempose than system
programs. Service programs are intended not for execudarept in testing, but to pro-

vide an easily understandable definition of the servicevi€emprograms can ignore all

32

the constraints of the underlying platform, for examplspréing to system-wide updates
and global history variables. Service programs are usualigxecutable on the underly-

ing distributed platform, but they can be executed on a aéméd platform.

Semantics of services The semantics of a service is similar to that of a system. An
executionof a service is a sequence of event executions along withtétesstraversed.
A service is not supposed to have any faulty executionscofplete executionis an

execution which satisfies the progress obligations of thae

3.5 Service satisfaction

In this section, we define what it means for a system to sasisfgrvice, whether as an
offerer or as a user.

Consider a systerM that is encapsulated by a servideabove and a service
below. That is, every xc event ¥ visible to its environment corresponds to a dnw event
of U or an upw event o¥, and every event thal calls in its environment corresponds to
an upw event ot or a dnw event oV. The inputs oM are all the possible calls of its xc

events. The outputs & are the possible calls it can make to xc events in its enviesrim

Definition An executions of M is safe with respectto U, abbreviated “safe wiy”, if
the sequence of inputs and outputsrinorresponds to that generated by some execution

of U.

33

Definition An executions of M is complete with respectto U, abbreviated “complete
wrt U”, if the sequence of inputs and outputsdircorresponds to that generated by some
execution ofU that satisfied)’s progress obligations.

Executiono being safe (complete) wit is similarly defined.

Definition M offers U usesV, also said a1 satisfiesU aboveV below, if
e Safety. For every finite executior of M such thak is safe wrtU andV:

— x is fault-free.

— For every input calk of M: if x o (e) is safe wrtU andV, thene is enabled
in the last state ok and its execution is fault-free and nonblocking. e¥

execution returns a value, sgythenx o (e, g) is safe wrtU andV.

— For every executiog of M such thaly is x extended by an internal or output

transition:y is fault-free and safe wii andV.

e Progress For every executioxx of M such thatx is safe wrtU andV: if x is

complete wrtM andV, thenx is complete wrtJ.

Program-based formulation The above definition of service satisfaction provides com-
positionality. However, because it is stated in terms ohétces, it does not lend itself
to program verification or testing techniques. We now prewath equivalent program-

version of service satisfaction [78].

We first modifyM, U andV, so that they interact with each other (rather tihén

interacting with its environment):

34

e Define the systerM-wrt-{U,V} to beM with every output calk(x) changed to a

call of the corresponding service eventiror V.

e Define systentJ-wrt-M to beU with the following changes:

— For every eveng(x) that corresponds to an output it
x Change the event type (which would be “upw”) to “xc”.
— For every eveng, (x) that corresponds to an input bf.

x Change the event type (which would be “dnw”) to “Ic”.
« If ey(x) has no return type, change the actior{¢x).ac; M.e(x).

« If ey(x) has a non-void return type, replace each returned \alnehe

action by code that generates a fault i not safe.

— Set the progress assumptions to null.

e DefineV-wrt-M to be the same ds-wrt-M except that is replaced by, “dnw”

by “upw”, and “upw” by “dnw”.

Let M* be the composite system ®fFwrt-{U, V}, U-wrt-M, andV-wrt-M. We have

the following (proof in [78]):

e The safety condition foM offersU usesV holds iff M* is fault-free.

e The progress condition fayl offers U usesV holds iff M* satisfies the progress

assertiorV.progress = U.progress.

35

Chapter 4

SeSFJava by Example

This section introduces SeSFJava with an extended exaifipdeexample, calledccountExample,
consists of three parts (figure 4.1):Bank system, one or mor€lient systems, and an
Account service.Bank system offerd\ccount service, whileClient systems use this ser-

vice. Each system (bank or client) is a process that canaesic separate machine.

Client Client | = Client | = Upper Layer (service offerer)

Account

Bank Lower layer (service user)

Figure 4.1: AccountExample: systems and services

The example involves three programs (figure 4.2): systemrpmBankSystem, of
which Bank system is an instance; system progrélientSystem, of which eachClient
system is an instance; and service progrsatountService, of which Account service is
an instance.

Each client is identified by a uniqué, and resides at lacation (RMI port name).
All clients share an account maintained by the bank. A cleart request the bank to

update the account balance only if it has no request cuyrpaetiding. The bank eventu-

36

ClientSystem program

AccountService program------------------------------

BankSystem program

Figure 4.2: AccountExample: system and service programs

ally responds to every request. The response is an ack ifstaehas a valid id and the
account balance is adequate; otherwise, the response tkaAwount service defines
the interactions between the clients (user system) andahie (@fferer system).

Section 4.1 describes the bank and client system prograewio8 4.2 describes
the composite system of bank and clients. Section 4.3 destkiccount service. Sec-
tion 4.4 illustrates the event-trace version of the coondsgifor Bank system to satisfy
Account service and foClient system to satisffAccount service. Section 4.5 illustrates

the program version of these same conditions.

4.1 Bank and client system programs

A SeSFJava system program is a Java program with a speciiiciise indicated by
SeSFJavatags inserted in the program. SeSFJava tags@ed spges of Java comments;
specifically, they have the prefix “//#”, where the “//” deastthe start of a Java comment.
Thus, a SeSFJava program can be treated just like a Javaaprpgrcan be compiled
and executed by any Java platform without any modificatibmshe case of testing, the
SeSFJava Harness preprocesses the SeSFJava tags anéproddified Java files.

Consider BankSystem program (figure 4.4 on page 50). It haotlogving kinds

37

of SeSF tags:

Tags of the form “//# systemrogram;” precede and identify the system program,

in this case, the system program cl8askSystem.

e Tags of the form “//# xcevent;” precede and identify the xc events of the program.
There is one xc event, namelypdate(id, n, location), indicating that the user as-

sociated withd andlocation requests to update the balance by value

e Tags of the form “//# ec<predicate-;” specify the enabling condition of the as-
sociated event. For example, xc evaptlate is enabled if0 < id < N and the
user has no pending requests. An enabling condition mustyalevaluate to true

or false; it is not allowed to terminate abruptly, for exampghrow an exception.

e Tags involving harness (e.g., “//# harness”, “/[# breakpgietc.) are relevant for

testing and will be explained later.

BankInterface (figure 4.6) is a Java interface that indicates the xc evgmiasures
of BankSystem.

WhenBankSystem is executed, it binds to an RMI port called “Bank” and waits for
update requests from client. Every incoming update recpiads a new thread in the bank
system. Specifically, the statemewetv UpdateThread(id, n).start() in BankSystem’s xc
eventupdate creates an instance bbdateThread and starts executing methech. The
JVM should, supposedly, ensure weak fairness for all cdethteads.

ClientSystem program (figure 4.5 on page 51) is organized in a similar tashi

It has two xc eventsack(id), called by the bank to indicate acceptance of the client’s

38

update request; anthck(id), called by the bank to indicate rejection of the client’s up-
date request. When executed with paraméteiit first binds to an RMI port called
“Client< id >". It then repeatedly issues update requests to the bankifispdy,
update(id, n, " Client<id>") wheren is a random number in the range40, 40]. To keep
the example short, the client’s location has the form "Ckeadt-". An arbitrary location
could be chosen but thHgank would have to implement a hash table to map locations to
ids.

ClientInterface (figure 4.7 on page 52) is a Java interface that indicatesdleent

signatures oflientSystem.

4.2 Composite system oBank and Clients

Bank is a process that is created by executing the command-&vej - BankSystem”.

It binds to a specific port, namely “Bank”, using the RMbind command. Clients know
this port and hence can interact with the bank via RMI methediseld inBankinterface.
Each client is a process that is created by executing comviiramdjava - - - ClientSys-
tem <id>". A client does a lookup for RMI port “Bank”, and binds itself & port
“Client<id>" using RMI rebind command. The client then starts updating the balance
account by repeatedly executingdate(id, n, ”Client<id>"), wheren is a random num-
ber. Bank uses RMI port “Clientid>" for the callback methods, namedyk andnack.

Figure 4.3 illustrates such a composite system.

39

instance Client(0) instance Client(1)
of class ClientSystem of class ClientSystem

"Client0" bound "Client1" bound

"Bank" bound

instance Bank
of class BankSystem

Figure 4.3: Composite system of bank and two clients

4.3 Account service program

The AccountService service program (figure 4.9 on page 53) defines the permessibl
teractions between client systems (users of the servickpank system (offerer of the
service). Specifically, it defines the signatures of theradtgons and the permissible
sequences of interactions (i.e., their safety and prognegserties)

The program defines three eventgidate, ack andnack. The signature of each
service event is the same as that of the corresponding xd.et&th service event is
preceded by a tag indicating the system of the correspondimyent. So the tag//#
dnw:BankSystem;” preceding eventipdate indicates that dnw eveliccountService.update
is mapped to xc evertankSystem.update, and that they both have the same signature (for
brevity, we refer to the dnw event @&countService.update rather than the more accu-
rate AccountService.BankSystem.update). Similarly, the tag 7 /# upw:ClientSystem;”
preceding evendck indicates that upw evem{ccountService.ack is mapped to xc event
ClientSystem.ack, and that they both have the same signature. Note that nd ensstes
threads or processes.

Informally, Account service requires the sequence of interactions to satisffoth

40

lowing properties:

e Safety: A client has at most one update request pending. An updateesequst
have a valid id. The bank issues an ack to a client only if thentlhas a pend-
ing update request with a valid id and, in case of negativeatggdhe balance is

adequate.

e Progress:Every update request is eventually acked or nacked.

InterfaceAccountinterface (figure 4.8 on page 52) defines the headers of all the

methods available iAccountService.

4.4 Service satisfaction conditions: event-trace conditions

We first note thaBank is encapsulated above Byccount: that is, the xc event dBank
corresponds to a dnw eventArcount, and every output dBank corresponds to a call of
a upw event oAccount.

We next give the event-trace version of the conditions feBimk to satisfyAccount

as offerer:

e Safety condition For every finite execution of Bank that is safe wrAccount:

— If 0 o Account.update(id, n, loc) is safe wrtAccount,
then Bank.update(id, n, loc) is enabled at the end aef and its execution is

well-formed.

— If a Bank thread is at a statement,

then the execution of the statement is well-formed.

41

— If a Bank thread is atlient]id].ack(id) at the end o#,

theno o Account.ack(id) is safe wrtAccount.

— If a Bank thread is atlient|id].nack(id) at the end o#,

theno o Account.nack(id) is safe wrtAccount.

e Progress condition For every executiom of Bank that is safe wrtAccount, if o
satisfiesBank progress assumptions (i.e., weak fairness oBaitlk threads) thewr

is complete wriAccount (i.e., satisfiepending]|i] leadsto —pending|i] for everyi).

We next give the event-trace version of the conditions fer Ghent to satisfy

Account as user:

e Safety condition For every finite execution of Client that is safe wriAccount:
— If o o Account.ack(id) is safe wrtAccount, thenClient.ack(id) is enabled at
the end ofr and its execution is well-formed.

— If 0 o Account.nack(id) is safe wrtAccount, thenClient.nack(id) is enabled at

the end ofr and its execution is well-formed.

— If a Client thread is at a statement, then the execution of the statasertl-

formed.

— If a Client thread is abank.update(id, r.nextInt(80) — 40, ”Client” + id) at
the end ofo, theno o Account.update(id, r.nextInt(80) — 40, " Client” + id)

is safe wrtAccount.

e Progress condition Null (becauseéAccount service does not impose any progress

requirements oflient system).

42

Although we do not do so here, it would be straightforwardrimvp by operational

reasoning that these conditions hold.

4.5 Service satisfaction conditions: program version

As mentioned earlier, the event trace conditions given alcavinot be directly tested. We
now give the program version of the service satisfactiorddans.

Developing the conditions fdBank to offer Account involve the following steps:
(1) constructingBank-wrt-Account from Bank, (2) constructingAccount-wrt-Bank from
Account, and (3) constructing the assertions to be satisfied by ceitgpsystenBank*
consisting ofBank-wrt-Account and Account-wrt-Bank. The above steps are described
in sections 4.5.1, 4.5.2 and 4.5.3, respectively.

Developing the conditions fdtlient to offer Account involve the following steps:
(1) constructind_lient-wrt-Account from Client, (2) constructing\ccount-wrt-Client from
Account, and (3) constructing the assertions to be satisfied by ceitegpsystentlient*
consisting ofClient-wrt-Account andAccount-wrt-Client. The above steps are described

in sections 4.5.4, 4.5.5 and 4.5.6, respectively.

4.5.1 ConstructingBank-wrt-Account

We constructBank-wrt-Account from Bank as follows (the complete code is given in

appendix A.1):

e System nam®ank is changed td&ank-wrt-Account.

43

e For every xc even:

— Change its action td(le.ec) then fault; else e.ac;.

— Change its enabling condition teue.

In particular, xc eventipdate is changed to:

/I# xc_event;
void update(int id, int n, String location) throws RemoteException{
synchronized(lock){
I[# ec: true;
if (I(id >=0 && id < N && client[id] == null))
throw new Error("Bank.update enabling failed”);
try {client[id] = (Clientinterface) Naming.lookup(location);}
catch (Exception e) {e.printStackTrace();}
new UpdateThread(id, n).start();

}
}

e Every output call irBank is replaced by a call to the corresponding evem@bunt.
This is done implicitly becausBank determines the location of the callee (which

is Account) via parametelocationof eventupdate.

4.5.2 ConstructingAccount-wrt-Bank

We constructAccount-wrt-Bank from Account as follows (the complete code is given in

appendix A.2):
e Account service is changed tccount-wrt-Bank system.
e For every upw event:

— Change the event type to “xc”.
— Change its action td(le.ec) then fault; else e.ac;.

— Change its enabling condition teue.

44

In particular, upw eventsck andnack are transformed to:

[1# xc_event;
synchronized public void ack(int id) throws RemoteException {
I#ec: true;
if (!(id >=0 &&id < N && pending[id] &&
(amount[id] >= 0 || balance >= —amount[id])))
throw new Error();
pending[id] = false;
balance + = amount[id];

}

[l#xc_event;
synchronized public void nack(int id) throws RemoteException {
/I# ec: true;
if (I(id >= 0 && id < N && pending]id] && balance < —amount[id]))
throw new Error();
pending[id] = false;

For every dnw service event

— Change the event type to “Ic”.

— Augment its action by a call to the corresponding xc event.

In particular, dnw evenipdate is transformed to

Ic-event synchronized void update(int id, int n, String location)
throws RemoteException {
ec:id >=0 && id < N && !pending([id];
ac: amount[id] =n;
pending[id] = true;
bank.update(id, n, location); // corresponding system event.

Because Java does not have an explicitvent construct, this Ic event is imple-

mented in Java as follows:

1. Create functiompdate by removing the event’s “Ic” construct and its enabling

condition. So, Ic evenipdate is changed to:

45

synchronized void update(int id, int n, String location) throws RemoteException {
amount[id] =n;
pending[id] = true;
bank.update(id, n, location);

}

2. Create athread, which we cafhirl, that repeatedly checks the enabling con-
dition of this Ic event, and executes its action (which istmoetipdate) when-
ever its enabling condition holds. This thread is createdualy. For event

update, create:

class whirl extends Thread {

int id;
whirl(int id){

this.id = id;
}

public void run(){
while(true) {
synchronized(lock){ // ensures atomicity of this block
if (id >= 0 && id < N && !pending]id]) {
update(id, r.nextInt(80) - 40, “Account™);

}
}

yield(); //allows other thread to proceed

}
}
}

4.5.3 Conditions onBank*

Define Bank* to be the composite system consisting of syst&msk-wrt-Account and
Account-wrt-Bank. The safety condition foBank offers Account is thatBank* is fault-
free. Faults inBank* arise from calling a disabled event or executing an undefoped
eration (division by zero, signature-inconsistent cdtt,)eThis reduces to the following

conditions:

46

Bank* statements do not have undefined values or operations.

Bank* satisfiesnv(Account.update.ec = Bank.update.ec).

Bank* satisfiesnv(Bank's thread is at client[id].ack(id) = Account.ack.ec).

Bank* satisfiesnv(Bank’s thread is at client[id].nack(id) = Account.nack.ec).

The progress condition holds ifank* satisfies assumptigi (figure 4.9) assum-
ing weak fairness oBank’s threads.
Although we do not do so here, it would be straightforwardravp by assertional

or operational reasoning that these conditions hold.

4.5.4 ConstructingClient-wrt-Account

We construcClient-wrt-Account from Client as follows:
e System namé€lient is changed tdlient-wrt-Account.
e Change the xc eventgk andnack to:

/[# xc_event;
void ack(int id) throws RemoteException{
I# ec: true;
synchronized(lock){
wait = false;
lock.notify();
}
}

[1# xc_event;
void nack(int id) throws RemoteException{
II# ec: true;
synchronized(lock){
wait = false;
lock.notify();
}
}

a7

e Every output call inClient is replaced by a call to the corresponding event of
Account. This is done implicitly becaus@lient determines the location of the bank

via lookup call.

4.5.5 ConstructingAccount-wrt-Client
We constructccount-wrt-Client from Account as follows:
e Account service is changed thccount-wrt-Client system.

e For every dnw event, change it similar to upw events in cositng Account-wrt-

Bank. Dnw eventupdate is transformed to:

/l# xc_event;
synchronized public void update(int id, int n, String location)
throws RemoteException {
I#ec: true;
if (I(id >=0 && id < N && !pending[id]))
throw new Error();
pending[id] = false;
balance + = amount[id];

e For every upw service evert change it similar to dnw events in constructing

Account-wrt-Bank.

1. Create functionsck andnack:

synchronized void ack(int id) throws RemoteException {
pending[id] = false;
balance + = amount[id];
client.ack(id);

}

synchronized void nack(int id) throws RemoteException {
pending[id] = false;
client.nack(id);

}

48

2. Create a thread, which we cafhirl, that repeatedly checks the enabling con-
dition of these two events, and executes their action wremnigy enabling
condition holds. This thread is created manually. For euedbte, create a
thread:

class whirl extends Thread {

int id;
whirl(int id){

this.id = id;
}

public void run(){

while(true) {
synchronized(lock){ /I ensures atomicity of this block

if Id >= 0 && id < N && pending[id] &&
(amount[id] >= 0 || balance >= -amount][id])) {
ack(id);

}

if (id >= 0 && id < N && pending[id] &&
balance < -amount][id]) {
nack(id);

¥

yield(); //allows other thread to proceed

}
}
}

4.5.6 Conditions onClient*

DefineClient* to be the composite system consisting of syst€iient-wrt-Account and

Account-wrt-Client. The program-version conditions reduce to the followingditons:
e Client* statements do not have undefined values or operations.
e Client* satisfiesnv(Account.ack.ec = Client.ack.ec).

e Client* satisfiesnv(Account.nack.ec = Client.nack.ec).

49

import java.rmi.*;
import java.rmi.server.*;

[l# system_program;
class BankSystem extends UnicastRemoteObject implements Banklnterface {
[I# static HarnesslInterface harness;
static int balance;

static final int N = 10; /I number of clients
static Object lock = new Object(); /I for atomicity
static ClientInterface client[] = new Clientinterface[N]; // client[i] is null if it has no pending requests.

BankSystem() throws RemoteException {}

public static void main(String argv([]) throws Exception {
/l# harness = (HarnesslInterface) Naming.lookup("AccountHarness”);
Naming.rebind("Bank”, new BankSystem());

}

Il# xc_event;
public void update(int id, int n, String location) throws RemoteException {
synchronized(lock){
/I# ec:id >= 0 && id < N && client[id] == null;
try { client[id] = (Clientinterface) Naming.lookup(location); }
catch(Exception e){ e.printStackTrace();}
new UpdateThread(id, n).start();

}
}

class UpdateThread extends Thread {
intid, n;
UpdateThread(int id, int n) {
this.id = id;
this.n=n;

public void run(){
try {
[# breakpoint("Bank.bpBegin”, BEGIN);
synchronized(lock){
if (n >= 0 || balance >= -n) {
balance + = n;
client[id].ack(id);
} else
client[id].nack(id);
client[id] = null;

}
[# breakpoint("Bank.bpEnd”, END);
} catch (RemoteException re) { re.printStackTrace(); }

}
} //End Thread
} //IEnd System

Figure 4.4: BankSystem system program (file BankSystem.java)

e Client* satisfiesnv(Client’s thread is at bank.update(id, .. .) = Account.update.ec).

There are no progress conditions.

50

import java.rmi.*;
import java.rmi.server.*;

[l# system_program;
class ClientSystem extends UnicastRemoteObject implements Clientinterface {
[I# static Harnesslnterface harness;

Object lock = new Object(); /I for atomicity
Random r = new Random(); /I random number generator
boolean wait = false; /I true if it has pending requests, false otherwise

ClientSystem() throws RemoteException { }
public static void main(String argv([]) throws Exception {
if (System.getSecurityManager() == null)
System.setSecurityManager(new RMISecurityManager());
/l# harness = (HarnesslInterface) Naming.lookup("AccountHarness”);
ClientSystem client = new ClientSystem();
client.execute(Intger.parselnt(argv[0]));

}

void execute(int id) throws Exception {
Bankinterface bank = (Bankinterface) Naming.lookup("Bank”);
Naming.rebind("Client” + id, this);
for(inti=0;i < 50; i++){
[1# breakpoint("Client.bpinc”, MANUAL);
wait = true;
bank.update(id, r.nextInt(80) - 40, "Client” + id);
/I Wait for ack or nack
synchronized(lock){
while (wait){
[1# breakpoint("Client.bpWait”, WAIT);
lock.wait();
}
}

}
[# breakpoint("Client.bpEnd”, END);
}

l# xc_event;
public void ack(int id) throws RemoteException {
/1# ec: true;
synchronized(lock){
wait = false;
lock.notify();
}
}

Il# xc_event;
public void nack(int id) throws RemoteException {
I# ec: true;
synchronized(lock){
wait = false;
lock.notify();
}
}
}

Figure 4.5: ClientSystem system program (file ClientSystar))

51

import java.rmi.Remote;
import java.rmi.RemoteException;
interface Banklnterface extends Remote {
void update(int id, int n, String location) throws RemoteException;

Figure 4.6: Bankinterface interface (file Bankinterfaceajav

import java.rmi.Remote;

import java.rmi.RemoteException;

interface Clientinterface extends Remote {
void ack(int id) throws RemoteException;
void nack(int id) throws RemoteException;

}

Figure 4.7: Clientinterface interface (file Clientinterfgaea)

import java.rmi.Remote;

import java.rmi.RemoteException;

interface Accountinterface extends Remote {
void update(int id, int n, String location) throws RemoteException;
void ack(int id) throws RemoteException;
void nack(int id) throws RemoteException;

}

Figure 4.8: Accountinterface interface (file Accountlfdee.java)

52

import java.rmi.*;
import java.rmi.server.*;

I# service_program;

class AccountService extends UnicastRemoteObject implements Accountinterface {
/1# Harness harness;

static final int N = 10; /I number of clients

int balance;

boolean pending[] = new boolean[N]; /I pending[i] is false if it has no pending request

int amount[] = new int[N]; /I amount[i] is the update value of user i last request
AccountService() throws RemoteException {

try {

Naming.rebind("AccountHarness”, this);
} catch (Exception e) {
e.printStackTrace();
}
}

/l# dnw: BankSystem;
synchronized public void update(int id, int n, String location) throws RemoteException {
/I# ec:id >= 0 && id < N && !pending]id];
amount[id] =n;
pending[id] = true;

}

/l# upw: ClientSystem;
synchronized public void ack(int id) throws RemoteException {
/I# ec:id >= 0 && id < N && pending][id] && (amount[id] >= 0 || balance >= -amount]id]);
pending[id] = false;
balance + = amount]id];

}

/l# upw: ClientSystem;
synchronized public void nack(int id) throws RemoteException {
Il# ec:id >= 0 && id < N && pending[id] && balance < -amount[id];
pending][id] = false;

/# progress_obligation pA {

4 forall i: 0 — > (N-1)

/l# beginAssertion

/l# pending[i] leadsto !pending]i]
/l# endAssertion

[l# endfor

I1#}

Figure 4.9: AccountService service program (file Accountige.java)

53

Chapter 5

SeSFJava Harness by Example

This chapter introduces the SeSFJava Harness by apphtmthAccount example. As
mentioned earlier, the program-based conditions of sersatisfaction give us a way to
mechanically test a system against services. Td&st againstAccount, we proceed as

follows:

1. Create a Harness process to control the execution. Theestairs a process that
resides on an arbitrary machine. In our example, the Haisdssund to an RMI
port, namely “AccountHarness”. The Harness has interféweessinterface (fig-

ure 5.2).

2. ConstructBank-wrt-Account’, a version ofBank-wrt-Account that interacts with

the Harness.

3. ConstructAccount-wrt-Bank’, a version ofAccount-wrt-Bank that interacts with

the Harness.

4. Execute composite systeBank* (figure 5.1), consisting oBank-wrt-Account’

andAccount-wrt-Bank, along with the Harness, and check whether the generated

54

execution becomes faulty.

Account-wrt—-Bank Account-wrt—-Bank’

Bank-wrt—Account Bank-wrt—Account’

I
I
I
I
I
I
|
1 Harness
I
I
I
I
I
I
I
I

Verification framework Testing framework

Figure 5.1:Bank* andBank* composite systems.

Sections 5.1 and 5.2 describe how to obtamk-wrt-Account’ and Account-wrt-
Bank, respectively. Section 5.3 describes how to obtain a tggilatform on which

Bank* can be executed. Section 5.4 describes how to ex&zute”.

5.1 Constructing Bank-wrt-Account’

We construcBank-wrt-Account’, referred to aBank’, from Bank-wrt-Account (described

in section 4.5.1) as follows:

e Tags

“ | |4 static HarnessInterface harness;” and

import java.rmi.Remote;
import java.rmi.RemoteException;
interface Harnesslinterface {
void printinLog (String str) throws RemoteException;
void printLog (String str) throws RemoteException;
void checkAssertions(boolean debuginfo) throws RemoteException;
void breakpoint(String name, int mode) throws RemoteException;

}

Figure 5.2: Harnessinterface interface (file Harnesdimterjava)

55

“ / /# harness = (HarnessInterface) Naming.lookup(” AccountHarness”);”

indicate the location of the Harness.
e For every xc event:

— Insert a call to methodheckAssertions(), which sends data necessary for as-

sertion checking to Harness module.

— Log information to the log file.
So change xc evempdate to:

[l# xc_event;
public void update(int id, int n, String location)
throws RemoteException{
harness.log.print(...); // log event execution
checkAssertions(); // check the validity of any assertions.
synchronized(lock){
I[# ec: true;
if (1(id >= 0 && id < N && client[id] == null))
throw new Error("Bank.update failed”);
try { client[id] = (ClientInterface) Naming.lookup(location); }
catch (Exception e){ e.printStackTrace(); }
new UpdateThread(id, n).start();

}
}

e Breakpoints are called to indicate transition of systemserinbreakpoints at loca-
tions specified by tag/#breakpoint. Breakpoints will be explained later in this

section.

5.2 Constructing Account-wrt-Bank’

We constructAccount-wrt-Bank’, referred to as\ccount’, from Account-wrt-Bank (de-

scribed in section 4.5.2)as follows:

56

e For every upw event, insert a call theckAssertions, and log information to log

file. Upw eventsack andnack are changed to:

/l# xc_event;
synchronized public void ack(int id) throws RemoteException {
II# ec: true;
harness.log.print(...); //log event execution
checkAssertions();
if (I(id >= 0 && id < N && pending]id] &&
(amount[id] >= 0 || balance >= —amount[id])))
throw new Error("ack --- fault”);
pending[id] = false;
balance += amount[id];

}

I1# xc_event;
synchronized public void nack(int id) throws RemoteException {
II# ec: true;
harness.log.print(...); // writing info to log file
checkAssertions();
if (I(id >=0 && id < N && pending[id] && balance < —amount[id]))
throw new Error("nack --- fault”);
pending[id] = false;

e Recall that every dnw event should be transformed to an IcteVéa handled this
situation by constructing a metha@date and threadvhirl. In addition to this, the

following modifications have to take place:

— In method update, insert a call theckAssertions, and log event execution.

So, change methagpdate to:

synchronization void update(int id, int n, String location) throws RemoteException {
harness.log.print(...); // writing info to log file
checkAssertions();
amount[id] =n;
pending[id] = true;
bank.update(id, n, location);

— In threadwhirl, insert breakpoints at necessary locations. So, thneead

changes to:

57

class whirl extends Thread {

int id;
whirl(int id){

this.id = id;
}

public void run(){
breakpoint("whirl.Begin”, BEGIN);
while(true) {
synchronized (lock) {
if (id >= 0 && id < N && !pending[id]) {
breakpoint("whirl.implicitLc”, AUTOMATIC);
update(id, r.nextInt(80) - 40, “Account”);

}

yield(); //allows other threads to continue

}
}
}

5.3 Constructing testing platform

Once composite systeBank™ consisting ofBank’ andAccount’ is constructed, the next
step is to obtain desting platform on which it can be executed. This is not trivial
because the atomicity requirementBahk* are usually much more stringent than those
of Bank*.

Let | refer to the platform on whiclBank is intended to execute; that iBank’s
program involved-specific constructs for 10, communication, synchron@aticoncur-
rency, and so on. Becaus8ank’ is obtained by a simple redirection Bank’s output
calls,Bank’ also must be executed dnHowever,| invariably cannot ensure atomicity of
the interactions betwedBank’ and other components in the system (eAgcount’). This
is becausé\ccount, and hencé\ccount’, makes use of more powerful atomicity than is

intrinsically provided byl. Thusl alone cannot serve as a testing platform.

58

We need to augmemtso thatBank’-Account’ interactions are executed atomically.
SAC (Serializer And Checker) module within the Harness i®ohiiced to solve this prob-
lem. In order to conform to the interleaving model, SAC emsuhat only one thread is
proceeding at a time. Every thread within the compositeesyss associated with a lock.
When the lock is released, the thread proceeds. When the loekdked, the thread is
paused. SeSFJava Harness inserts breakpoi@snki and Account’ such that at any
time, at most one thread &fank* runs and every other thread is paused at a breakpoint.
SAC module maintains relevant state for every process, aschihether the process is
running, paused, blocked, or about to be terminated. Outisalis based on the follow-

ing steps:

e Whenever a thread is createdBank™, it provides its relevant state to the SAC (by
callingbreakpoint(BEGIN)) and pauses. For exampjg# breakpoint(” Bank.bpBegin”,
BEGIN); in

BankSystem.UpdateThread.

e Whenever a thread encounters a breakpoint during its exeguti provides its

relevant state to the SAC and pauses.

e Whenever a thread is paused, SAC module chooses one threadHeopaused
ones to proceed. This thread is selected either automgtmamanually by the
user. Other operations can take place during the executorexample, listing

unsatisfied assertions so far.

e If the thread is about to execute a blocking statement, @rmé the SAC module

(by calling breakpoint(WAIT)). When SAC module receives this breakpoint call,

59

it allows the calling thread to proceed to the block procedand then it chooses
another thread to proceed. When the blocked thread unbli¢kEyrms the SAC
module and goes to pause state. For examplé; breakpoint(” Client.bpWait”,

WAIT); in ClientSystem.execute.

e Whenever a thread is (about to be) terminated, it provideseltsvant state to
SAC module (by callingoreakpoint(END)) and terminates. For examplé/#

breakpoint(”Bank.bpEnd”, END); in BankSystem.UpdateThread.

The serializer-based approach is rather conservativea(isecit prevents parallel
execution of processes). However, it is simple and, as wkk @, easily provides the
snapshots needed to check assertions.

Assertions are evaluated etecking locations specifically, at the start of every
event and at every breakpoint. For example, the schemettid &k satisfies assertion
inv(Bank.balance >= 0) is as follows. First, whenevéank’ encounters a checking loca-
tion, it sendBank.balanceo the Harness (via methatieckAssertions). Second, when-
ever the Harness receives this field, it checks whether thdigateBank.balance >= 0

holds. If the predicate fails once, then the invariant dagsold.

5.4 Testing and GUI

After construction oBank™, it is executed on the same platformBsk* as follows:

1. SeSFJava Harness is started as a separate process,tdetfd® iRMI port “Ac-

countHarness”.

60

2. Bank’ process is created. It looks up for port “AccountHarnes&igi®RMI lookup

command.

3. Account’ process is created, and looks up for harness’ port. So, lysteraes are

hooked up with SeSFJava Harness.

4. The developer can choose to work in batch mode, whereédk/ates the execution
to run for a while, and then analyze the log file. Or, he can enfae the flow of the

execution manually.

Figure 5.3 shows a snapshot of the Harness’ GUI interfacmglihe testing of
the AccountExample in the chapter 4Thread Paneldisplays the current set of threads

stopping at breakpoints. The set of breakpoints are disdlaytwo ways:

e Module/Thread: This displays the breakpoints by their name, mode (e.g.udlan
or Automatic), the thread that encountered the breakpairtt,the module that this

thread belongs to.

e RMI Connection Name: This displays the breakpoints by their name, mode and
the name of the RMI connection port that connects the calliogute to the Har-

ness.

In Thread Panel (figure 5.3), a user clicks the “Choose Manaalio button to
manually choose the next thread to proceed. Clicking “ChoagerAatic” tells the Har-
ness to randomly pick threads to proceed.

Developers can insert tag “/f#atch: < var_name >”" inside SeSFJava program.

This permits them to monitor these variables throughoutetken in theWatch Panel

61

Assertion Paneldisplays the assertions and the evolution of their valuesmduhe ex-
ecutions. There are two tables, one for local assertiorse@sns that involve variables
that belong to only one system or service), and another fuvajlassertions (assertions
that involve variables that span multiple systems or sesjicColumn “Pr” is checked if

the assertion is a progress assertion.

62

v s | R]|

__:_m:mj_c_m:mj_:m:mu.l.__c_m:m:_umwmm_s_wux_.l__ m

]

AUIEN UOIIIUUOT [INY ()

c<cREE2O S

pERIY L /ANPO @

UoIE|ad

sEalfinig [

BUIER DI85y

SUDIIASSY [eqOID
LB UOIIBUUOD WY ()

pRIYL fAINpoR @

el :

0 UEG WEISAS U]

1037

nsay _ “1d _m_EngEm_mmﬂ

PESIYLfEINP0H

621 8821 -(EIUDIIAUUD] dD L IWY
I E B ST ES,

SUDIUASSY |[EJ0]

Aeanewony asooyd
Allenuey asooyd ()
sbumas wiodyealg yUnejag @

_ EGIER

SN BIGELER |

PEEILIEMpoR

|aUe4 UDILIASSY

asooyl _

JAURY YIIRAA
BWBN UOIIAUUOD JIWH)

pERIYL/ANPOR &)

T GT-60-+00Z| TIUoch{Eadg HuEg| P AUEg| WRLSASAUES|#
T ET-60-F007| TIUloch Al HUEg| Zueg| PEE=T
61-60-700¢] TiIDcHEa. RLE] WaISASALE
TET-60-+007 TII0CEAIG SUE 0 HUEG WBISASUE] T
T BT-60-£007| upodHEalg W T wano| METEANE]

[duEEsuiL | ET ALER WIotEalg [SLUER PEAIYL _ ALUEN afpop

| Interface of the Harness

ica

Graph

Figure 5.3

63

[3uRd pEAIY]
oo
“I5jsa] eAe[45sS P

Chapter 6

SeSFJava Harness Overview

The previous section introduced the SeSFJava Harness loypéxa This section dis-
cusses it in more general terms. Figure 6.1 gives the owsratiture and operation of the

SeSFJava Harness:

e System and service program files are fed to SeSF Preprocd$smpreprocessor
accepts aonfiguration file that contains all the parameters of preprocessing, for
example, directories where the program resides, programdiines, etc. Figure 6.2

illustrates a sample configuration file.

e The preprocessor generates the following: composite mypt@gram, assertion
checker that checks assertions of all services and systanas, Serializer and

Checker” (SAC) module.

e The composite system is executed, execution is logged itag éle, system and

service properties are checked, and violations are redorde

e Users can interact with the composite system during itswei@t to influence the

flow of execution and/or to view the results of evaluatingeaissns.

64

e The log analyzer is used to analyze the log file to extracttetranes of interest,
e.g., those that have led to desired assertions failing.oitipes a method to view

log files in a readable format.

Log .
Analyzer Log File User
SAC . N

Service progams < Module Composite System M

]
System progams §

o
Configuration File a Checker

Harness Framework

Figure 6.1: SeSFJava Harness: operation overview

Section 6.1 describes the types of systems supported byaheebk. Section 6.2
illustrates the types of assertions supported. Sectiomé&s8ribes where the assertions
are checked. Section 6.4 describes how the data necessaagsrtion evaluation is
collected. Section 6.5 describes how to evaluate asssrti®ection 6.6 describes the

operation of the breakpoints. Section 6.7 describes thégroations supported.

6.1 Process-based versus thread-based

The SeSFJava Harness can handle Ipotitess-basedomposite systems aritiread-
basedcomposite systems. In the process-based case, the comggatms of the com-

posite system are all separate processes, perhaps iredtffeachines. Consequently, the

65

OutputToSTDOuUL: true

HarnessDistributed

HarnessMachine: "leibniz.cs.umd.edu”
HarnessDirName: "outApps/outStaticAccountRMI3”

inputDirName: "../Apps/StaticAccountRMI3”
outputDirName: "../outApps/outStaticAccountRMI3”
service: "AccountService.java’

system: "ClientSystem.java”

system: "BankSystem.java”, theoremFiles: "BankThm.thm”

global: "SAC.java”

/I Direct comments about the progress to stdout
/I Process-based system

/I Machine where the Harness resides

/I Directory where the Harness resides

/I Directory that contains input systems and services
// Output directory of preprocessed files

/I Input service file

/I Input system file

/I Input system file

/I Its assertions defined in BankThm.thm

/I File that contains global assertions

Figure 6.2: Configuration file ohccountExample (file account.cfg)

composite system being tested is a distributed system fatgrspanning multiple ma-
chines. The services and the SAC module reside on one @shimachine. Calls from
systems to services are executed using Java RMI (Remote Methachtion) method
calls. Because the SAC module has no access to the data eariablde processes,
methods are instrumented into the systemm#oshalto the SAC module the relevant
data needed to calculate global assertions. Using Javanaties the data encoding prob-
lem; for example, SeSFJava Harness does not care whethendledying platform of a

certain system is big endian or little endian. The examp$edeed in chapters 4 and 5 is

process-based.

In the thread-based case, the component systems are allishoéa single process.
Consequently, the composite system being tested resides imachine. We put the SAC
module also on that machine and give it access privilegel thagd variables of services
and public data variables of systems. For example, one may toadestBank system
againstAccount service, wherdank, Account and the Harness module are all threads
within a single process. In this case, testBank system againshccount service is the

same as executing a composite systeak*. Figure 6.3 illustrates the outline of this

framework.

66

Testing process

Threads (n: 0 —> N-1)
SAC P |

mOdUIj

Account-wrt-Bank

Method calls

Bank-wrt—Account’

Figure 6.3: Testing framework for thread-based system

67

6.2 Types of assertions supported

The assertion checker evaluates assertions on the exeofitite composite system gen-

erated thus far by SeSFJava Harness. The assertions cangoegsrassertions from the

developer, to provide insight and/or aid debugging; suski®ns, referred to agaims,
are not part of the system and service specifications bu¢ratkended to be derivable
from them.

SeSFJava supports the same assertions and predicatedaasteda similar syn-
tax. It supports the usual boolean operators: negatjpadquals £=), conjunction (&&),
disjunction (|), and implication €-). It supports quantified assertions with integer-valued
bound variables. The scope of the quantification is denoyeglther aforall /endfor pair
or aforsome/endfor pair. It supports all the safety and progress temporal opesa.e.,
inv, unless, leadsto, wfair, andsfair. Because testing generates only finite executions,
wfair andsfair are equivalent for testing purposes.

Fairness assertions require special handling. Considér X), whereX is a thread.

A finite executiorno does not satisfyfair(X) if X is alive and is at a statement that is not
blocked. The natural way to check whether this holds is t& loto the JVM or operating
system, but this is usually not feasible. Alternativelyearan capture this condition
using appropriate system predicate XIfs not at a blockable statement, then it suffices
to check whether the predicakeisAlive() holds at the end of (whereX.isAlive() is a
system function that returnsue whenever the thread’s control pointer is in the thread’s

run method). IfX is at a blocking statement, say.wait(), wherem is a lock object,

68

thenX.holdsLock(m) holds at the end of and thuswfair(X) succeedsX.holdsLock(m)
returnstrue if X currently holds the lock ofn; note thatm.wait() relinquishes the lock

during waiting.

6.3 Assertion checking locations

Checking an assertion of the composite system involves teseies: when to check the
assertion, how to collect data necessary to evaluate tleetiass and how to evaluate the
assertion.

In SeSFJava Harness, assertion are checked wheneverlgeatbes any of the

following locations, referred to ashecking locations
e XCevents in a system.
e breakpointsin a system.

e dnw andupw events in a service.

6.4 Collecting data for assertion checking

The assertion checker takes snapshots of the variablesrusedluating the assertions.
This process is calleshapshot gathering It takes place at the checking locations. There
are two kinds of snapshots: local snapshot and global snapShtherindocal snapshots
requires instrumentation of certain method calls to evellacal assertions. Gathering
global snapshots requires an external running system (SAC mothaejeceives snap-

shots of variables from the systems under execution.

69

Let X denote the assertions that are to be checked. For any gkabba| ket theX-
image of the state denote the part of the state relevant toagireg X, that is, the values of
the variables oK. Note that theX-image may overlap with the states of several processes.
For any execution, let th&-image of the execution denote the sequenck-ohages of
the states of the execution.

To check whetheK holds, we need th&-image of the execution generated thus
far. This can be collected at SAC if each process, when ithema checking location,
sends its part of th¥-image of its current state to SAC module. By integrating thosm
recentX-images from all the process, SAC module obtainsXkenage of the current
global state. By storing paXtimages, SAC module obtains the sequenck-oghages of
the global states encountered at the breakpoints thus far.

SeSF Harness implements the above by inserting the foltpwliackAssertions
method in SAC module:

void checkAssertions() {
For every global theorem <t>:
Evaluate theorem <t> /I using X-image of the execution
Write value of <t> to log file

Next, SeSFJava Harness inserts the followihgckAssertions method in every system
and service:

void checkAssertions() {
For every local theorem <t>:
Evaluate <t>;
Write value of <t> to log file
Inside a system:
For every global variable <g> relevant to X-image:
Marshall <g> to Harness module;
Issue an RMI call to SAC.checkAssertions();
Inside a service:
Issue a call to SAC.checkAssertions();

70

Whenever the control reaches any checking location, a aafiugd to locatheckAssertions

method which in turn callSAC.checkAssertions.

6.5 Evaluation of assertions

Assertions can be checked by storing only a small amountaté gter assertion, instead

of the entire generated sequence. We describe this for éadlokassertion:

e inv(P)

Initially: Result[0] = P;
At check i, fori > 0:
Result[i] = Result[i-1] && P;

e P unless Q

Initially: a[0] = P && 'Q;
Result[0] = true ;
At check i, where i > 0:
afi] =P && !Q;
Result[i] = Result[i-1] && (a[i-1] implies (P || Q));

e P leadsto Q

Initially: Result[0] = 'P || Q;
At check i, where i > O:
Result[i] = (Result[i-1] && !P) || Q;

e wfair(P, name) or sfair(P, name), whereP is a predicate, andame is a character

string:

Initially: Result[0] = !P;
At check i, where i > O:
Result[0] = IP;
Write (<name>, <Result>) into log file.

71

e For an assertion witforall quantifier, the checker dynamically creategssertions
wheren is the cardinality of the bound variable of the quantifiereTwonjunction

of all n assertions forms the result of theall assertion. For example:

forallu: 1-> N
beginAssertion
P(u) unless Q(u)
endAssertion

results inN assertions, and their conjunction forms one assertion.

e For an assertion with #érsome quantifier, the checker dynamically createas-
sertions wheren is the cardinality of the bound variable of the quantifier.eTh

disjunction of alln assertions forms the result of thesome assertion.

6.6 Breakpoints

As previously mentioned, SeSFJava Harness uses breakpoiptoduce serialized be-
haviors. The Harness stops all threads that encounterwedk during their executions,
and allows only one thread to continue. Consider five threads &, D and E (figure 6.4)

running in the composite system. When the four threads A, B,dClaare dispatched,

they stop at their first encountered breakpoints which aydalcl and d1 respectively.
Then, the harness chooses one thread from these thredesl tbatad pool) to proceed
without interruption till the next breakpoint. For exampgtechooses thread B to continue
to breakpoint b2. When thread B reaches b2, it stops and theelsichooses another
thread to continue. Since thread E has no breakpoints, @e&Fhrness cannot stop it

during execution.

72

breakpoint |

—al

- a2

—+ a3

— bl

— b2

Figure 6.4: List of threads.

—+c3

——d1

—d2

time

Thread

Choosing a thread to continue may be done automatically ouallgndepending

on the mode of the breakpoint. The following modes are ctigresupported. Mode

Manual means that the user selects which thread to continue. Matlenatic tells the

Harness to randomly select a thread to proceed. Mudematic_And_View instructs

the Harness to print the status of the composite system {@lges of assertions) before

choosing a thread automatically. Modéw prints the status of the composite system

before continuing with the same thread. A thread must caltemkpoint with mode

End before terminating. Finally, mod#/ait means that the thread is going to execute

a blocking statement. The different modes supported by $®&BFHarness are illustrated

in figure 6.5.

Setting breakpoints is the mechanism by which the testeleaeh serial execu-

73

void breakpoint(name, mode) {
Variable ThreadPool: all threads that have encountered breakpoints.
If (mode = MANUAL)
Add the calling thread to ThreadPool (if the thread is not already present).
List the available assertions with their values.
List the available threads inside ThreadPool.
User chooses the next thread to continue.
Notify the chosen thread to continue its work.
If (mode = VIEW_AND_AUTOMATIC)
Add the calling thread to ThreadPool (if the thread is not already present).
List the available assertions with their values.
List the available threads inside ThreadPool.
Pick randomly the next thread to continue.
Notify the chosen thread to continue its work.
If (mode = AUTOMATIC)
Add the calling thread to ThreadPool (if the thread is not already present).
Pick randomly the next thread to continue.
Notify the chosen thread to continue its work.
If (mode = VIEW)
List the available assertions with their values.
List the available threads inside ThreadPool.
Allow the calling thread to continue work
If (mode = END)
Remove the calling thread from ThreadPool.
Allow the calling thread to continue its work.
Pick randomly the next thread to continue.
Notify the chosen thread to continue its work.
If (mode = WAIT)
Allow the calling thread to wait.
Pick randomly the next thread to continue.
Notify the chosen thread to continue its work.

Figure 6.5: methodireakpoint of Tester.java

tions. Therefore, the user should insert breakpoints aiogpate locations. A misplaced

breakpoint may lead to a violation of a valid assertion. B@meaple,

Thread {

x =0;
[I# breakpoint(“1”, AUTOMATIC)

y=4

y=3
[1# breakpoint (*2”, AUTOMATIC)

74

Assertion {(x==0) leadsto (y==4)” fails upon testing the previous program, al-

though the behavior satisfies the assertion. The prograrohesmodified to:

Thread {

x =0;
/I# breakpoint(“1”, AUTOMATIC)

y=4
I1# breakpoint (2", AUTOMATIC)

y=3;

A misplaced breakpoint may lead to a deadlock. For example,

Thread X {

x =0;
[I# breakpoint(“1”, AUTOMATIC)

y=4;
}

The thread ends while holding the lock from breakpoint “1”. n€equently, all
other threads in the system will be blocked at their respedireakpoints waiting for
threadX to relinquish control of the lock, which will not happen ae tthreadX is no
longer active. The program has to be modified to:

Thread {

X =0;
[# breakpoint(*1”, AUTOMATIC)

y=4
[1# breakpoint(*2”, END)
}

It is important to calbreakpoint(<name>, END) before ending the thread (the call

can be placed in &nally clause). Missing a call toreakpoint(<name>, END) results

75

in the violation of the fairness assumptions (other thresdscontinuously enabled, but

never executed).

6.7 Configurations

SeSFJava Harness can test various configurations of syatehservices. In chapter 4, in
order to verify that systeriv satisfies servic# (figure 6.6(a)), we constructed composite
systemM* of M-wrt-U and U-wrt-M as in figure 6.6(b) and proved that its execution
results in no faulty transition. But in order to tegt againstU, we had to construct
composite systerM* of U-wrt-M’ and M-wrt-U’ (Figure 6.6(c)). After construction of

M*, itis executed to test the service satisfaction. We wilspre two more configurations.

Convention An input composite system is the system composed of systems and ser-

vices that are stated ina@nfigurationfile.

M
1 U-wrt-M
U-wrt-M’
ffffffffffff U 3 | Harness
é | Mewrit-U | é /
M ! } M-wrt-U’
(a) System framework (b) Verification framework (c) Harness framework

Figure 6.6: Component system phases

6.7.1 Example 1

Consider a component system that is itself a composite sydtggare 6.7(a) illustrates

systemdM andN, and serviced), V andW. In order to verify thatVl andN satisfiesv

76

andW, we construct composite systeid$ andN* as in figure 6.7(b)M* is composed of
M-wrt-{U, W}, U-wrt-M andW-wrt-M. N* is composed oN-wrt-{U, V}, U-wrt-N and
V-wrt-N. If M* andN* are correct (each satisfy its services and assertions) {tieN }
satisfies{V, W}.

In order to tes{M, N} against{V, W}, we have two options. The first is to test
each component alone, that is, to test tHagatisfiesU andW, and to test thall usesU
satisfiesV. The second option is to construct composite systéiti’ of M-wrt-W’, U’,
N-wrt-V’, V/, V-wrt-N’, W andW-wrt-M’ (figure 6.7(c)). After construction d¥IN*, it

is executed to test the service satisfaction.

$ | V-wrt-N’
| Harness

(a) System framework (b) Verification framework (c) Harness framework

Figure 6.7: Component system phases of example 1

6.7.2 Example 2

Consider a closed composite system of systéindl and O, and serviced), V andW
(figure 6.8(a)). For verification, we construdt', N* andO* (figure 6.8(b)). and verify
each system independently. If each is correct (each satssBervices and assertions),

then the composite systeMNO is correct. For testing of the composite systBiNO,

77

we construct the components shown in figure 6.8(c), and ¢éxdbe entire composite

system, and check the validity of the assertions.

,,,,,,,,,,,,,

! @ Do O-wrt-{V |
Tnwnom]| | ;
© 7 - o
R - ! | ;‘V—wrt—o‘ ‘W—wrt—o‘l Harness
pUswrt=Ng o L L

V —
N w | K
U L ‘ U-wrt-M ‘ ‘W—Wrt—M ‘1 o
; |
M é | M-wrt—{U,W} § ‘ M
(a) System framework (b) Verification framework (c) Harness framework

Figure 6.8: Composite system phases of example 2

The possible executions df* andN* in figure 6.8(c) is typically a subset of the the
possible executions &fi* andN* in figure 6.7(c) because the systé@thas a constraining

effect (i.e., because it does not supply all the possiblatsthaty andW can accept).

78

Part Il

Applications

79

Chapter 7

Data Transfer Protocol

In this chapter, we apply SeSFJava to the data transfer fpattansport protocol, specif-
ically, a sliding window protocol that provides reliablevilaccontrolled data transfer from
a source to a sink over unreliable channels that can losejeeand duplicate messages
in transit subject to a maximum message lifetime.

Fig. 7.1l illustrates the data transfer layes8V_SourceUser passes data 8V _Source.
SW _Source buffers the data (in a send window) and transfers W Sink, resending un-
til it is acknowledged bysW Sink. SW _Sink buffers data received out of sequence (in a
receive window) and delivers data in sequenc&w SinkUser. The sliding window pro-
tocol is significantly more complex than stop-and-wait oflg@kN protocols [42]. We
assume fixed size messages for readability reasons.

SW _Source, SW_Sink, and the unreliable channels make up $h¢_Sys composite
system.SW _SourceUser andSW _SinkUser make up the composite system using the ser-
vice. DT denotes the data transfer service, that is, the signattine afteractions between
the systems on either side, as well as the permissible segsiehthese interactions.

This chapter is organized as follows. Section 7.1 describe$W _Source and

80

SW_SourceUser SW_SinkUser N

_ = Application

Layer
xc ackData xc deliverData
[} [}
DT data transfer
service | S N
\ liable ch | |
xc sendData < unreliable channels xc readyToAccept
I A Transport
SW._Source loss, reorder and duplicate SW_Sink 3 Layer

! SW_Sys composite system

Figure 7.1: Data transfer service and protocol system

SW _Sink systems. Section 7.2 describes & service. Section 7.3 illustrates the
program-version conditions f&\W _Sys system to satisfp T service. Section 7.4 demon-

strates how to te§W Sys system againdd T service.

7.1 Systems

Figures 7.2 and 7.3 show the system programs in (high-lIS8&HF forSW _Source and
SW _Sink systems, respectivelySW _SourceUser createsSW Source process and sets
SW _Source.sourceuser to refer to itself (for callback methods). SimilaryV_SinkUser
createsSW _Sink process and sef8/VN _Sink.sinkuser to refer to itself (for callback meth-
0ds).SW _SourceUser sends an array of bytes via xc-evéi¥_Source.sendData. SW_Source
divides the received array into data blocks, and sends thaiseblocks t&W _Sink. When
SW _Sink receives a data block, it replies with an ACK messageSWf SinkUser has
enough space (v&W _Sink.allowedBytes > 0), SW_Sink delivers the data block to its

user via xc-even$W _SinkUser.deliverData; otherwiseSW _Sink waits (busy waiting) for

81

SW _SinkUser to call xc-eventSW _Sink.readyToAccept before delivering more data to
the user. Wheneve&SW Source receives a new ACK (not a duplicate), it calls xc-event
SW _SourceUser.ackData to inform the user that it has more empty space in the buffer.

Inside SW _Source system, threadDataSender sends data packets whenever data
packets are ready in the buffer within the boundaries oféinel svindow. Threa®etransmission
retransmits un-acked packets whenever the timeout firegalBourceReceiver receives
ACK messages and modifies the variables accordingly.

ThreadDataDelivery delivers received data ®V _SinkUser if the user has enough
buffer space. ThreafinkReceiver receives data packets and store them in the sink’s
buffer.

Atomically-executed code is indicated by enclosing it igled brackets (e.g., see
DataSender thread in fig. 7.2; we use large-scale atomicity to keep tlzengte small).

Both systems have the standard progress assumptions,,thesaik fairness of all
threads.

Figures 7.4 and 7.5 outline the SeSFJava programs &Mh&ource andSW Sink,
respectively (for the complete SeSFJava code, see appsndi@ and C.2). As usual,

statements preceded by/#"” are SeSFJava constructs that are used only for testing.

7.2 Service

The service progra®T in SeSF is given in figure 7.6. Dnw evelDT .sendData corre-
sponds taSW _SourceUser passing data t8 W _Source (for brevity, we refer to the dnw

event asDT.sendData rather than the more accurafel .SW _Source.sendData). The

82

Description of sliding window protocol (source side):
At any time at the source, lséndBuf[0, 1, ..., (ng — na — 1)] denotes the sequence of data blocks generated by the squrce
Of thesesendBuf[0,1,. .., (ns — na — 1)] have been sent but not yet acknowledged, @nel ns < ng holds. The variable|
sw is the source’s estimate of the curreeteive windowsize of the sink, wherew < constant SW. [na..(na + sw — 1)]
constitutes theend window

system-program SW_Source { /I system header
constant int bufSize := 32 * 1024; /I buffer size is constant (equals SW x message size)
constant int msgSize := 128; /I message size is constant
constant int SW := bufSize/msgSize, // maximum send window size
intng :=0, /I number of data blocks generated by local user, initially 0
ns:=0, /I number of data blocks sent at least once, initially 0
na:=0, /I number of data blocks acknowledged, initially O
bufUsed := 0; /I occupied portion of buffer in bytes, initially 0
Sw := SW, /I send window size, initially SW.
Buffer sendBuf; /I send buffer of SW equal-sized data blocks;
/I no need to store acked data blocks [0,1,. . .,(na-1)]
Timer rTimer; /I retransmission timer, fires after timeout elapses
boolean rTimerFired Il it is true whenever rTimer fires
SW_SourceUser sourceuser; /I reference to the user application for callback methods

/I data.length is the number of bytes in array data
xc-eventvoid sendData(byte[] data) { /Ixc-event header
ec: bufUsed + data.length < bufSize A data.length = 0 A data.length % msgSize = 0;
ac: Divide data array into data blocks;
tmp := number of constructed data blocks;
Store tmp data blocks in sendBuf; /I sendBuf[ng..(ng+tmp-1)] := data]...]
ng := ng + tmp;
bufUsed := bufUsed + data.length;
}

Thread DataSender (){
/I Busy waiting is used to keep the example simple

while (/I'(’: begin atomic section
(1 <ns—na < min(ng, na + sw) — na) {
Send data block with sequence number (ns); I via unreliable channel
Reset rTimer of data block ns;
ns:=ns+ 1;
) /') end atomic section

}

Ic-eventRetransmission (int seqNo) {
ec: na < seqNo < ns A rTimerFired;
ac: Send data block (seqNo); /l via unreliable channel
Reset rTimer of data block seqNo;
}

Thread SourceReceiver {
while(true) {

Receive ACK(segNo, w); /I blocks till an ACK message is received with sequence number seqNo
/I and window size w
(/I begin atomic section
int tmp := seqNo — na; /I number of newly acked messages

if (1 <tmp < (ns — na)) {
sourceuser.ackData(tmp * message size);
na := na + tmp; I/l remove first tmp data blocks from sendBuf;
SWi=Ww;
bufUsed := bufUsed — tmp * data block size;

} else if (tmp = 0)

SW := max(sw, w);

) /l end atomic section

}
}

progress-assumptiondefault {
wfair(DataSender, Retransmission, SourceReceiver);
}

}

Figure 7.2:SW _Source system program in SeSF

83

Description of sliding window protocol (sink side):

(which isrecvBuf[0..RW — 1]) constitutes the receive window.

At any time at the sinkrecvBuf[0] has not yet been delivered to the usetcvBuf[0, 1, ..., (RW — 1)] may have been
received out-of-sequence, in which case, they are tempotarifered, but are not passed to the uspm..nr + RW — 1]

system-program SW_Sink { /I system header

int allowedBytes := 0, /I number of the bytes that SW_Sink is able to foist on user’s buffer, initially 0.
nr:=0; /I number of data blocks delivered to the local user, initially 0.

Buffer recvBuf; /I buffer of RW equally-sized data blocks

SW_SinkUser sinkuser; /I reference to the user application for callback methods

xc-event void readyToAccept(intn) { // xc-event header
ec: true; /I not checked by system, no side effects
ac: allowedBytes := n; /I no event calls, no blocking

}

Thread DataDelivery () {
// Busy waiting is used to keep the example simple

while ((recvBuf[nr] # null A allowedBytes > 0) { /I'*(’: begin atomic section
allowedBytes := allowedBytes — recvBuf{nr].length;
sinkuser.deliverData(recvBuf[nr]);
remove recvBuf[nr]; /I no need to store recvBuf[nr]
nr:=nr+ 1,

o) /1'*y’: end atomic section

}

Thread SinkReceiver {
while (true) {
Receive data block (cj, data); /I blocks until a data block with sequence number (cj) and contents (data)
(if (0 <cj— nr < RW) // begin atomic section
recvBuf[cj — nr] := data;
Send ACK message ACK(nr, RW);
) /I end atomic section
}
}

progress-assumption default {
wfair(ModifyWindow, DataDelivery, SinkReceiver);
}

}

Figure 7.3:SW_Sink system program in SeSF

84

[[# system_program; /I TimerTask is class that executes method run

class SW_Source{ /I whenever its timer fires
/I# Harnesslnterface harness = ...; class Retransmission extends TimerTask {
SW_SourceUser sourceuser; // ref. for callback methods ...
Socket nSocket; public void run() {
Vector sendBuf = new Vector (); /1# breakpoint(...);
final static int msgSize = 128; sendDataBlock(j); // retransmit block j
final static int bufSize = 32*1024; /I when timer fires and it is not acked
final static int SW = bufSize / msgSize; I1# breakpoint(...);
int bufUsed, ns, na, ng, sw = SW, }

Obiject lock = new Object(); // lock object }

class SourceReceiver extends Thread {
I1# xc_event; ;

public void sendData(byte[] data) { public void run(){
/I# ec: data.length =0 && while (true){
/# bufUsed + data.length <= bufSize && [l# breakpoint(...);
/# data.length % msgSize == 0; /I get ACK message with (seqNo, w)
[# breakpoint(...); .
synchronized(lock){ synchronized(lock){
.. int tmp = segNo -na;
bufUsed += data.length; if tmp >=1&&
} tmp <= ns - na){
} .
sourceuser.ackData(ackedBytes);
/I Thread is a class that continuously } else if (tmp == 0)
/I executes method run SW=SW>W?SW:Ww,

class DataSender extends Thread { }
. /1# breakpoint(...);
public void run() { R

while (true){ }

/1# breakpoint(...); }

synchronized(lock){ }

sendDataBlock(ns); // Send data block ns /# progress_assumption default {

} II# beginAssertion {

. /l# wfair(!DataSender.isAlive()) &&
} /% wfair(!SourceReceiver.isAlive()))

} %}
} 11}
}

Figure 7.4: Outline of SeSFJa®&V_Source system program (file SV&ource.java) (see

appendix C.1 for complete program)

85

[l# system_program;
class SW_Sink {
/l# HarnesslInterface harness = ...;

SW_SinkUser sinkuser;

Socket nSocket;

Vector recvBuf = new Vector();
final static int bufSize = 32 * 1024;
final int msgSize = 128;

final int RW = bufSize / msgSize;
int nr, allowedBytes = bufSize;
Object lock = new Object();

[I# xc_event;

public void readyToAccept(long n) {
/1# ec: true;
allowedBytes = n;

}

class SinkReceiver extends Thread {

public void run() {
while (true) {
/I receive data block with (seqNo, data)

114 breakpoint(...);
synchronized(lock){
int tmp = seqNo — nr — 1;
if (seqNo — nr — 1 >=0)
&& tmp < RW && data.length ! = 0 &&

recvBuf.elementAt(tmp) == null) {
recvBuf.set(tmp, data); // recvBuf[tmp] = data
/I send ACK
}
}
}

class DataDelivery extends Thread {

public void run() {
while (true) {
[# breakpoint(...);
synchronized(lock){
if (recvBuf.elementAt(0) ! = null &&
allowedBytes > 0) {

dtsink.deliverData(delData); // delData denotes
/I deleted data

/I# progress_assumption default {

/I# beginAssertion {

Il# wfair('DataDelivery.isAlive()) &&
I# wfair('SW_SinkReceiver.isAlive())
I}

I1#}

Figure 7.5: Outline of SeSFJa%V Sink system program (file SV6ink.java) (see ap-

pendix C.2 for complete program)

86

event appends the data to a stream (infinite array), and islexh# the data fits the
available space (as advertised by prior calls of upw eS@hiSourceUser.ackData). Upw
eventDT .deliverData corresponds t6 W _Sink passing data t6W _SinkUser. Itis enabled

if the data to be delivered is in sequence (with respect tal#ta sequence passed down
by SW_SourceUser), and theSW _SinkUser buffer has enough spac&W _SinkUser can
advertise its window at any time (via dnw evéhi .ready ToAccept). Upw DT.ackData
informs the source user how much data has been delivered stk user.

ServiceDT has two progress obligationsliDataAcked which requires that all sent
data are eventually acked, adataDelivered which requires that all sent data are eventu-
ally delivered to the sink user.

Figure 7.7 outlines the SeSFJava service program oDthe Notice that there
is a a difference between assertigifDataAcked in SeSF (fig. 7.6) and the assertion
allDataAcked in SeSFJava (fig. 7.7). We cannot apph5F.allDataAcked to SeSFJava
systems, because we have to check for every integer valoevdiich is infeasible. So,
we have to use an assertion that models the same constraichugethe execution is

finite, SeSFJava.allDataAcked can be used instead 8&SF.allDataAcked.

7.3 DT satisfaction conditions

Fig. 7.8 illustrates the construction 6 _Sys* from SW_Sys andDT. SW _Sys* con-
sists ofSW_Source-wrt-DT, SW_Sink-wrt-DT, the channels between them, and-wrt-
{SW_Source, SW_Sink}. In particular, every output call i8W_Source andSW Sink is

replaced by a call to the corresponding everD®fby appropriately modifying variables

87

service-program DT {
/I Declarations
int msgSize;

/I Source side variables.

Stream srcHist;

int srcBufSize,
srcBufUsed;

int srcNumSent,
srcNumAcked;

/I Sink side variables.
int sinkNumDelivered,
sinkBufAvail,

/I Events of source side:

/I service program’s header
/I message size (constant)

I/ source entity history in bytes

I/l equals SW x message size

/I occupied portion of source buffer in bytes, always srcBufUsed < srcBufSize
/I number of bytes accepted from source’s local user, initially 0

/I number of acked bytes (at source entity), initially 0

/I number of bytes delivered to sink user, initially 0
/I number of bytes that sink user can accept, initially (RW * message size)

/I sends data from local user to source entity to be delivered to remote user
dnw-event void SW_Source.sendData(byte [[data) { /I dnw event header
ec: srcBufUsed + data.length < srcBufSize A data.length > 0 A data.length % msgSize = 0;
ac: // data.length is number of bytes in data array
srcHist[srcNumSent .. srcNumSent + data.length - 1] := data[0..data.length-1];
srcNumSent := srcNumSent + data.length;
srcBufUsed := srcBufUsed + data.length;

}

I notifies the entity user that n bytes have been acked by remote user
upw_event void SW_SourceUser.ackData(int n) { /I upw event header
ec: srcNumAcked + n < srcNumSent;
ac: srcBufUsed := srcBufUsed — n;
srcNumAcked := srcNumAcked + n;

}

/I Events of sink side

/I informs sink entity that its user can accept cumulative amount of data (in bytes) equals to n
dnw_event void SW_Sink.readyToAccept(long n) {

ec: true;

ac: sinkBufAvail := n;

}

/I delivers data to local user, such that, data is delivered in sequence without loss or duplication
upw_event void SW_SinkUser.deliverData(byte [|data) {
ec: sinkNumDelivered + data.length < srcNumSent A
data.length < sinkBufAvail A data.length > 0 A
srcHist[sinkNumDelivered .. sinkNumDelivered + data.length] = data[0..data.length];
ac: sinkNumDelivered := sinkNumDelivered + data.length;

sinkBufAvail

}

:= sinkBufAvail — data.length;

progress-obligation allDataAcked {
((srcNumAcked = n) A (sinkNumDelivered > n) leadsto (srcNumAcked = n))

}

progress-obligation dataDelivered {
((sinkNumbDelivered = n) A (srcNumSent > n) A (sinkBufAvail > 0)) leadsto (sinkNumDelivered > n)

Figure 7.6: SeSPT: data transfer service program

88

import java.io.*;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

[1# service_program;
class DT extends UnicastRemoteObject implements ... {
final static int msgSize = 128;

/I Source side variables.
ByteArrayOutputStream srcHist = new ByteArrayOutputStream ();
int srcBufSize = 32 *1024,
srcBufUsed;
long srcNumSent, srcNumAcked; // =0

/I Sink side variables.
long sinkNumDelivered, // = 0
sinkBufAvail = 32 x 1024 ;

DT() throws RemoteException {
try {
Naming.rebind("DT", this);
} catch (Exception e) { throw new RemoteException(); }

/I Events of source side
/l# dnw_event: SW_Source;
public synchronized void sendData(byte [Jdata) throws RemoteException {
Il# ec: srcBufUsed + data.length <= srcBufSize && data.length > 0 && data.length % msgSize == 0;
srcHist.write(data, 0, data.length);
srcNumSent + = data.length;
srcBufUsed + = data.length;

}

/l# upw_event: SW_SourceUser;

public synchronized void ackData(int n) throws RemoteException {
/l# ec: srcNumAcked + n <= srcNumSent;
srcBufUsed = srcBufUsed — n;
srcNumAcked = srcNumAcked + n;

}

/I Events of sink side

/I# progress_obligation allDataAcked {

/I# beginAssertion {

Il# (srcNumAcked < sinkNumDelivered) leadsto
11 (srcNumAcked == sinkNumDelivered)

I# }

I1#}

Figure 7.7: Outline of data transfer service program (filej@va) (see appendix C.3 for

complete program)

89

———————————————————————————— | !
: service DT 1 ! system DT-wrt—{SW_Source, SW_Sink} I
I ! ! :
I dnw sendData(...{ dnw readyToAccept(...){ : ! Thread sendData(...){ Thread readyToAccept(...){ 1
: ec: ct; ec: ¢3; | | while <(c1) { while <(03) { !
. ac: act; ac: acs; I | act; ac3; !
) } : i SW_Source.sendData(...); SW_Sink.readyToAccept(...); !
! , | } } > !
: I | } } !
I : | !

I
: upw ackData(...){ upw deliverData(...){ | ! xc ackData(...){ xc deliverData(...){ i
| €c: €2; ec: c4; ! I ec: true; ec: true; 1
1 ac: ac2; ac: ac4; ! | ac: if (c2) ac2; ac: if (c4) ac4; !
(I } : | else fault; else fault; !
: | b } !
___________________________ 4 : |
| i A |
! |
! I
T ! | \ \ 3
| system SW_Source system SW_Sink i | system SW_Source-wrt-DT system SW_Sink-wrt-DT i
| | ! |
1 xc sendData(...){ ™ xc readyToAccept(...){ i ! xc sendData(...){ xc readyToAccept(...){ 1
! ec: ¢5; €c: c6; i I ec: true; | ec: true; i

le—1 I . .

! ac: ach; ac: ach; ' | ac: if (c5) ac5; ac: if (c6) acé; i
} } ! else fault;} else fault;} !

system SW_Sys

Figure 7.8: Service satisfaction transformations
sourceuser andsinkuser.

The safety condition fofW _Sys offersDT reduces to the following:

1. SW_Sys* does not have undefined values or operations (division lyy, segnature-

inconsistent call, type mismatch, etc.).

2. SW_Sys* does not call a disabled event, which reduces to the follgwiredicates

being invariant:

e DT.sendData.ec = SW_Source.sendData.ec

(This formalizes the constraint th&W _Source.sendData should be enabled
whenever its user call3T.sendData. The predicates below are similarly ob-

tained.)
e DT.readyToAccept.ec = SW_Sink.ready ToAccept.ec

e SW_Source atsourceuser.ackData(- - -) = DT.ackData.ec

90

e SW._Sink atsinkuser.deliverData(- - -) = DT.deliverData.ec

The progress condition holds BV _Sys* satisfies progress obligatioal$DataAcked
anddataDelivered assuming weak fairness ¥V _Sys’s threads.
Although we do not do so here, it would be straightforwardravp by assertional

reasoning that these conditions hold (e.g., as in [76]).

7.4 Testing and assertion checking harness

To testSW _Sys againstD T, we do the following:

1. Create a Harness process to control the test execution.Haheess process is

bound to RMI (Remote Method Invocation in Java) port “DTHagies

2. Construct fromSW _Sys* a composite syster8W_Sys* which interacts with the
harness.SW _Sys* consists oSW _Source-wrt-DT’ (a version ofSW_Source-wrt-
DT that interacts with the harnes§\WV _Sink-wrt-DT’ (a version ofSW _Sink-wrt-
DT that interacts with the harness), @nd-wrt-{SW_Source, SW_Sink}’ (a version

of DT-wrt-{SW _Source, SW_Sink} that interacts with the harness).
3. ExecutésW _Sys* along with (and under the control of) the harness process.
4. Check whether the generated execution becomes faulty.

Section 7.4.1 describes how to obt&W _Sys*. Section 7.4.2 describes how to

executeéSW_Sys* under the control of the harness process.

91

7.4.1 ConstructingSW _Sys*

The first step is to construct composite syst&W_Sys* (figure 7.9). Section 7.3 de-
scribed how to ge8W _Source-wrt-DT, SW_Sink-wrt-DT andDT-wrt-{SW_Source, SW_Sink}.
In addition to those modification, we need these componentsiinect to the harness.
This leads to the following modifications.

First, we construc8W Source-wrt-DT’, referred to aSW Source’, from SW _Source-

wrt-DT as follows:

e Tag//#HarnessInterface harness = . .. ; indicates the location of the harness, i.e.,

its RMI port.

e For every xc event, (1) insert a call to methdeckAssertions which sends data
necessary for assertion checking to SAC module, and (2nlogrmation to the log

file.
e Insert breakpoints at locations specified by tagbreakpoint.

Second, we constru&W Sink-wrt-DT’, referred to a$W _Sink’, from SW _Sink-
wrt-DT.

Third, we construcDT-wrt-{SW _Source, SW_Sink}’, referred to a®T’, fromDT-
wrt-{SW _Source, SW_Sink}’ as follows. For every upw/dnw event, insert a call to method
checkAssertions, and log information to log file.

Fourth, we construcW Sys* consisting ofSW _Source’, SW _Sink, the channels

between them anBT’.

92

77

| ‘ DT-wrt-{SW_Source,SW_Sink} ‘ | | ‘ DT-wrt-{SW_Source,SW_Sink}' N‘

| = |

| ‘ SW_Source-wrt-DT ‘H‘ SW_Sink-wrt-DT ‘ 3 i ‘ SW_Source-wrt-DT’ ‘H‘ SW_Sink-wrt-DT’ W
Verification framework Checking framework

Figure 7.9:SW_Sys* andSW _Sys* composite systems

7.4.2 ExecutingSW_Sys*

OnceSW _Sys* is constructed, the next step is to obtain the testing piatfon which it

can be executed. SAC (Serializer And Checker) module, witierharness, ensures that
SW_Sys'-DT’ interactions are executed atomically, and that only oresithis proceeding

at atime. SeSFJava harness inserts breakpoifi/isys’ andDT’ such that at any time,

at most one thread &W _Sys* runs and every other thread is paused at a breakpoint.
SAC module maintains relevant state for every process, agalihether the process is
running, paused, blocked, or about to be terminated. Eaeladhsends its state to the
SAC module. Breakpoints are inserted manually to indicatere/tthe thread transitions
take place.

Assertions are evaluated at checking locations, spedyfical the start of every
event and at every breakpoint as mentioned in section 6.3.e¥ample, the scheme
to test if SW_Source satisfies assertioimv(SW_Source.sw >= 0) is as follows. First,
whenevelSW _Sys’ encounters a checking location, it sei3d¢_Source.sw to the Harness
(via methodcheckAssertions). Second, whenever the harness receives this field, it sheck
whether the predicat®W Source.sw >= 0 holds. If the predicate fails once, then the

invariant does not hold.

93

After SW_Sys* is constructed, it is executed on the same platforr8\@sSys* as

follows:

1. SeSFJava harness starts as a separate process, antsblhttsRMI port “DTHar-

ness”.

2. DT’ process starts, and looks up for the harness’ port “DTHaifnes

3. SW_Sys’ process is created. It looks up for port “DTHarness” using Rddkup

command. So, both system (source and sink) are hooked upheitiarness.

4. The developer can use the harness either in batch motieg léte harness run for
a while and then analyzing the log file, or in interactive mad#uencing the flow

of the execution manually.

94

Chapter 8

Connection Management Protocol

In this chapter, we apply SeSFJava to the connection marexgguart of a transport pro-
tocol. Here, a client connects and terminates connectmasserver using messages sent
over unreliable channels that can lose, reorder and duplioassages in transit subject
to a maximum message lifetime. The protocol has been takem[69, 77].

Figure 8.1 illustrates the components of connection mamagé protocol. When
CM_ClientUser wants to establish a connection@¥ _ServerUser, it passes its request to
CM_Client. CM_Client, in turn, establishes a connection WM _Server via a three-way
handshake. If the handshake is succes&Ml,Server andCM _Client notify CM _ServerUser
andCM_ClientUser, respectively, of the connection establishment; othenthgy notify
the users of the cancellation. After establishing the cotioe, the client and the server
may exchange data using a data transfer protocol (e.g.,nbe&escribed in chapter 7).
When CM _ClientUser wants to terminate an open connection WitW_ServerUser, it
passes its request €M _Client, which, in turn, terminates the connection Wit _Server
via a two-way handshake. Bo@M_Client andCM _Server notify their respective user ap-

plications of the terminationCM_Client, CM _Server, and the unreliable channels make

95

CM_ClientUser CM_ServerUser

xc connectRequestind xc distantRequestind Application
xc connectRequestRej xc listenlnd Layer
xc disconnectRequestind xc connectind
xc closelnd
L} L}

CM connection
management service

Fmmmm == He.—e—e. F-d-------——————-
|

|]] |

| | xcconnectRequest unreliable channels xc listenRequest !

i | xc disconnectRequest - xc endListenRequest | Transport
| - > ! Layer

! loss, reorder and duplicate | y

| CM_Client CM_Server 3

i CM_Sys composite system !

Figure 8.1: Connection management service and protocasyst

up theCM_Sys composite systemCM _ClientUser andCM _ServerUser make up the com-
posite system of the applicatiotM denotes the connection management service, that
is, the signature of the interactions between the systentbar side, as well as the
permissible sequences of these interactions.

This chapter is organized as follows. Section 8.1 describe< M Client and
CM_Server systems. Section 8.2 describes bl service. Section 8.3 illustrates the
conditions necessary for systérivl_Sys to satisfyCM service. Section 8.4 demonstrates

how to testCM _Sys system againstM service.

8.1 Systems

Figures 8.2 and 8.3 illustrate the system programs in SelSEMiaClient andCM _Server

systems, respectively. Before explaining these prograraesfinst define the notion of

96

incarnations. Each connection between the client and tiversis an association between
two incarnations: one at the client and another at the searew incarnation at the
CM_Client is created whenever its user requests a new connectiorligistabnt. A new
incarnation at th&€M _Server is created whenever it becomes willing to accept a remote
connection request. Every incarnation is assigned annatian number when it starts;
the incarnation is uniquely distinguished by its incarmathumber and user id. Each of
the client and the server has at most one incarnation at suay i

CM_Client and CM_Server exchange messages of the fol{sin, rin), whereM
is the type of the messagein is the sender’s incarnation number, at is the in-
tended receiver’s incarnation number. In some messagesy rin may be absent, de-
noted by “-”. TheCM_Client, sends the following message§R(sin, —), which indi-
cates connection requestRRACK(sin, rin), which indicates connection request reply
ack; DR(sin, rin), which indicates disconnect request; &Riel(—, rin), which indicates
reject. TheCM _Server sends the following messaggsRRACK(sin, rin), which indicates
connection request repPRACK(sin, rin), which indicates disconnect request ack; and
REJ(—, rin), which indicates reject.

Each message is either a primary or a secondary messageimAry message
is sent repeatedly until a response is received. CligiRsandDR, and Servers<CRR
are primary messages. gecondarymessage is sent only in response to the reception
of a primary message, and does not wait for response. ClERFACK andREJ, and
Server'sDRACK andREJ are secondary messages.

CM_ClientUser create<CM _Client process and setdM _Client.clientuser to refer to

itself (for callback methods). Similarly;M_ServerUser createsSCM _Server process and

97

Description of connection management protocol (client sigl):

Var status: {CLOSED, OPENING, OPEN, CLOSING}; initially CLOSED. Status of client’s relationship with the serve
CLOSED iff client has no incarnation involved with the serv@PENING means client has an incarnation requesting a con-
nection with the servelOPEN means client has an incarnation open to the se@e®SING means client has an incarnatign
closing a connection with the server.
Var lin: {nil, 0,1, ...}; initially nil. Local incarnation numbenil if status = CLOSED. Otherwise identifies client incarna-
tion involved with the server.

Var din: {nil,0,1,...}; initially nil. Distant incarnation numbemil if status equalsCLOSED or OPENING. Otherwise
identifies the incarnation of the server with which the dliexcarnation is involved.

=

system-programCM_Client {
[# static Harnesslinterface harness := (Harnessinterface) Naming.lookup("CMHarness”);

int lin := nil; /l'local incarnation number

int din := nil; /I distant incarnation number

intlinGen := 0; /I incarnation number generator

Timer rTimer; /I retransmission timer, fires after timeout elapses

boolean rTimerFired /I this boolean is true whenever rTimer fires

CM_ClientUser clientuser; // Reference to the user application for callback methods

xc-eventvoid connectRequest () { xc-eventvoid disconnectRequest () {
ec: status = CLOSED; ec: status = OPEN
ac: status := OPENING; ac: status := CLOSING;

lin := linGen-++; Send msg DR(lin, din);
Send msg CR(lin, -); Reset rTimer of msg DR;
Reset rTimer of msg CR,; }

}

Ic-eventCR_Retransmission () { Ic-eventDR_Retransmission () {
ec: (status = OPENING A rTimerFired); ec: status = CLOSING A rTimerFired,;
ac: Send msg CR(lin,-); ac: Send msg DR(lin,din);

Reset rTimer of msg CR; Reset rTimer of msg DR;

} }

Thread CM_Receiver {
Receive msg {
[1# breakpoint("CM_Client.msgRcvd”, AUTOMATIC);

case CRR(sin, rin): (if (status = OPENING A rin = lin){
status := OPEN;
din := sin;

Send msg CRRACK(lin, din);
clientuser.connectRequestind();

} else if (status = OPEN A sin = din A rin = lin) {
Send msg CRRACK(lin, din);

} else if (status = CLOSED || status = CLOSING)

Send msg REJ(-,sin);)
case REJ(-,rin): (if (status = OPENING A rin = lin){

status := CLOSED;
din := nil; lin := nil;
clientuser.connectRequestRej();

} else if (status = CLOSING A rin = lin){
status := CLOSED;
din := nil; lin := nil;
clientuser.disconnectRequestind();

case DRACK (sin, rin): (if (status = CLOSING A rin = lin A sin = din){
status := CLOSED;
din := nil; lin := nil;
clientuser.disconnectRequestind();

B

[# breakpoint("CM_Client. CM_Receiver”, END);
} //End Thread CM_Receiver.

}

Figure 8.2:CM_Client system program in SeSF

98

Description of connection management protocol (server s&):

Var status: {CLOSED, OPENING, OPEN}; initially CLOSED. Status of server’s relationship with the clie@L. OSED iff
server has no incarnation involved with the clie@BPENING means server has an incarnation accepting a connectionsteqjue
from the client. OPEN means server has an incarnation open to the client.
Var lin: {nil, 0,1, ...}; initially nil. Local incarnation numbenil if status = CLOSED. Otherwise identifies server incarna
tion involved with the client.
Vardin: {nil,0,1,...}; initially nil. Distant incarnation numbenil if status = CLOSED. Otherwise identifies the incarnation
of the client with which the server incarnation is involved.

system-programlass CM_Server{
[# static Harnesslinterface harness := (Harnessinterface) Naming.lookup("CMHarness”);

int status := CLOSED; /I status of server’s relationship with the client

int listening := false; /I equals true if the server is accepting incoming connections
int lin := nil; /l'local incarnation number

int din := nil; /I distant incarnation number

int linGen := 0; /I incarnation number generator

Timer rTimer; /I retransmission timer, fires after timeout elapses

boolean rTimerFired /it is true whenever rTimer fires

CM_ServerUser serveruser; // reference to the user application for callback methods

xc-eventvoid listenRequest(){ xc-eventvoid endListenRequest (){ Ic-event CRR_Retransmission () {
ec: true; ec: true; ec: status = OPENING A rTimerFired;
ac: listening := true; ac: listening := false; ac: Send msg CRR(lin,din);
} } Reset rTimer of msg CRR;
}

Thread CM_Receiver {
Receive msg {
[1# breakpoint("CM_Server.msgRcvd”, AUTOMATIC);
case CR(sin,-): (if (status = CLOSED A llistening){
Send msg REJ(-,sin); // Not in accept mode
} else if (status = CLOSED A listening){
lin := linGen++; // Attempted connection
din := sin;
status := OPENING;
Send msg CRR(lin,din);
Reset rTimer of msg CRR
serveruser.distantRequestind(sin);
} else if (status = OPENING A sin > din){ // new remote incarnation
din := sin;
Send msg CRR(lin,din);
serveruser.distantRequestind(sin);

case CRRACK(sin,rin): (if (status = OPENING A sin = din A rin = lin){
status := OPEN,;
serveruser.connectind();
P
(if (status = OPEN A sin = din A rin = lin){
Send msg DRACK(lin,din);
status := CLOSED;
lin := nil; din := nil;
serveruser.closelnd();
} else if (status = CLOSED)
Send msg DRACK(rin,sin);
case REJ(-,rin): (if (status = OPENING A rin = lin){
status := CLOSED;
lin := nil; din := nil;
serveruser.listenind();

)

/1# breakpoint("CM_Server.CM_Receiver”, END);
} //IEnd Class CM_Receiver.
} //lEnd Class CM_Server

case DR(sin,rin):

Figure 8.3:CM_Server system program in SeSF

99

setsCM_Client.sinkuser to refer to itself (for callback methods). The handshake&esaqges

of connection establishment operate as follows:

e CM_ServerUser instructsCM_Server to accept incoming connection requests via xc-
eventCM _ Server listenRequest(), and to reject incoming connection requests via

CM _Server.endListenRequest().

e CM_ClientUser requests connection establishment@a_Client.connectRequest().

CM_Client creates a new incarnatio, and send§R(x0, —) to CM_Server.

e WhenCM _Server receivesCR(x0, —):

— If it is accepting incoming connections, it inforn@dv_ServerUser of the ar-
rival of the connection request Vi@l_ServerUser.distantRequestInd(x0), cre-

ates a new incarnation®, and replies witlCRR(y0, x0).
— If itis not accepting incoming connections, it replies WRBJ(—, x0).

e If CM_Client receivesCRR(y0, x0), it informs the user of the connection establish-

ment viaCM _ClientUser.connectRequestind(), and replies wittCRRACK(x0, y0).

e If CM_Client receivesREJ(—, x0) or its timeout fires before it receives a response,
it calls CM_ClientUser.connectRequestRej() to inform the user of the failure to es-

tablish a connection.

e WhenCM Server receivesCRRACK(x0, y0), it informs the user of the connection
establishment vi&M ServerUser.connectInd(). If CM_Server receiveREJ(—, y0),

it informs the user of the connection cancellation @M _ServerUser listenInd().

100

CM_ClientUser . . CM_Client CM_Server . . CM_ServerUser
din lin status status lin din
nil nil CLOSED CLOSED nil nil
connectRequest called
nil x0 OPENING (
R, x0)

call distantRequestind(x0)

OPENING y0 x0
\)
KC,RR’\;O‘*)

call connectRequestind
yo x0 OPEN

(CRRACK, X0
» ¥0) call connectind()

OPEN y0)

disconnectRequest called
yo x0 CLOSING

©r, X0, yo)

call closelnd()
CLOSED il nil

0)
oRACIE

call disconnectRequestind
nil nil CLOSED

\J ' \J

time

Figure 8.4: Successful connection and disconnection sicena

The handshake sequences of connection termination opzey&éows:

e CM_ClientUser requests connection termination ¥ill_Client.disconnectRequest().

CM_Client sendsDR(x0, y0) to CM_Server.

o WhenCM _Server receiveDR(x0, y0), it informs CM_ServerUser of the connection

termination viaCM _ServerUser.closelnd(), and replies wittDRACK(y0, x0).

e When CM_Client receivesDRACK(y0,x0), it informs the user of the connection

termination viaCM _ClientUser.disconnectRequestind.

Both systems assume the standard progress assumptions, thiatk fairness of
all threads. Figure 8.4 illustrates a successful scendrommnection establishment and

termination.

101

8.2 Service

Figures 8.5 and 8.6 illustrate tl{éM service program in SeSF. The service defines the

following variables:

e cStatus: {CLOSED, OPENING, OPEN, CLOSING}; initially CLOSED. Status of
client’s relationship with the serve€LOSED iff client has no incarnation involved
with the serverOPENING means client has an incarnation requesting a connection
with the serverOPEN means client has an incarnation open to the seGlegDSING

means client has an incarnation closing a connection wélsénver.

e clin: {-1,0,1,...}; initially —1. Number of client’s local incarnations minus 1,
that is, the number of times that the client has requested@emtion establishment

minus 1. The “-1” indicates the nil.

e cdin: {—1,0,1,...}; initially —1. Equals the value of the server’s local incarna-
tion during the client most recent transition to st@teEN, that is, the last time a

connection was established (at client side). The “-1” iaths the nil.

e sStatus: {CLOSED, OPENING, OPEN}; initially CLOSED. Status of server’s re-
lationship with the clientCLOSED iff server has no incarnation involved with the
client. OPENING means server has an incarnation accepting a connectioastqu

from the client. OPEN means server has an incarnation open to the client.

e sAccepting: {REJECT,ACCEPT}; initially REJECT. Current status of the server,

that is, whether it can accept connections or not.

102

e slin: {—1,0,1,...}; initially -1. Number of server’s local incarnations, thatthe
number of times that the server has entered &IENING. The “-1” indicates the

nil.

e sdin: {—1,0,1,...}; initially -1. Equals the value of the client’s local incation
when the last connection request was received by the s@iver:-1” indicates the

nil.

Table 8.1 illustrates the events used in i component. Client-side events are
the interactions betwee@M Client and CM _ClientUser. Server-side events are the in-
teractions betweeQM _Server and CM _ServerUser. Figure 8.7 indicates the effect of
client-side events or cStatus >. Figure 8.8 indicates the effect of server-side events on
< sStatus, sAccepting >.

ServiceCM defines the following progress obligations:

P1 If client has requested a connection establishment amdrde accepting connec-
tions, then eventually (1) server is Std€ENING, (2) client’s status i LOSED,

or (3) server rejects connections.

P2 If the client iSOPENING and server i©OPENING, then eventually (1) the client is

OPEN, or (2) one or both entities’ status at€ OSED.

P3 If the client isOpen and the server iIOPENING, then eventually (1) the client and

the server ar®PEN, or (2) one or both entities close the connection.

P4 If connectRequest() occurs, then eithetonnectRequestind() or connectRequestRej()

will eventually be executed. The client cannot stay in staiening forever.

103

service-program CM {
/I Client entity variables.
int cStatus := CLOSED; // Status of client’s relationship with the server

int clin := -1; /I Client’s local incarnation number
int cdin := -1; /I Client’s distant incarnation number
/I Server entity variables.
int sStatus := CLOSED; /I Status of server’s relationship with the client
int sAccepting := REJECT; // Reflect whether server is accepting or rejecting incoming connections
int slin := -1; /I Server’s local incarnation number
int sdin := -1; /I Server’s distant incarnation number

/I client requests to connect to server
dnw-eventvoid CM_Client.connectRequest() {
ec: cStatus = CLOSED,;
ac: cStatus :=OPENING;
clin++;
}

/I client user requests to disconnect.
dnw-eventCM_Client.disconnectRequest() {
ec: cStatus = OPEN,;
ac: cStatus := CLOSING;

}

/I client learns that its connection request to server is accepted;
/I client becomes open to server.
upw-eventvoid CM_ClientUser.connectRequestind() {
ec: cStatus = OPENING A clin = sdin;
ac: cStatus := OPEN,;
cdin := slin;
}

/I client learns that its connection request to server is rejected.
upw-eventvoid CM_ClientUser.connectRequestRej() {

ec: cStatus = OPENING,;

ac: cStatus := CLOSED;

}

/I client’s request to disconnect is fulfilled.
upw-eventvoid CM_ClientUser.disconnectRequestind() {
ec: cStatus = CLOSING;
ac: cStatus := CLOSED;

}

/I server will accept incoming connections.
dnw-eventvoid CM_Server.listenRequest() {
ec: sAccepting = REJECT;
ac: sAccepting := ACCEPT,;
}

/I server will not accept incoming connections.
dnw-eventvoid CM_Server.endListenRequest() {
ec: sStatus = CLOSED A sAccepting = ACCEPT;
ac: sAccepting := REJECT;
}

/I server receives a connection request from client.
upw-eventvoid CM_ServerUser.distantRequestind(int sin) {
ec: sAccepting = ACCEPT A sin < clin;
ac: if (sStatus = CLOSED) {
slin4++; // Attempt connection
sdin := sin;
sStatus := OPENING;
} else if (sStatus = OPENING A sin > sdin) {
sdin := sin;
sStatus := OPENING;
}

Figure 8.5: SeSEM: connection management service program (Part 1)
104

/] server learns that the client’s connection request has succeeded;
/I server becomes open.
upw-eventvoid CM_ServerUser.connectind() {

ec: sStatus = OPENING A slin = cdin;

ac: sStatus := OPEN,;

}

I server learns that its connection with the client is closed.
upw-eventvoid CM_ServerUser.closelnd() {

ec: sStatus = OPEN A cStatus ! = OPEN;

ac: sStatus := CLOSED;

}

/I server learns of the rejection to the connection request, and goes to listening.
upw-eventvoid CM_ServerUser.listenind() {

ec: sStatus = OPENING,;

ac: sStatus := CLOSED;

}

I If client has requested a connection establishment and server is accepting connections,
/I then eventually (1) server is state OPENING, (2) client’s status is CLOSED, or
I (3) server rejects connections.
progress-obligationP1 {
(cStatus = OPENING A sAccepting = ACCEPT) leadsto
(cStatus = OPENING A sStatus = OPENING) V cStatus = CLOSED V sAccepting = REJECT;
}

/I If the client is OPENING and server is OPENING, then eventually (1) the client is OPEN,
I/l or (2) one or both entities’ status are CLOSED.
progress-obligationP2 {
(cStatus = OPENING A sStatus = OPENING) leadsto
(cStatus = OPEN A sStatus = OPENING) Vv cStatus = CLOSED V sStatus = CLOSED;
}

/I 1f the client is Open and the server is OPENING, then eventually (1) the client and
I the server are OPEN, or (2) one or both entities close the connection.
progress-obligationP3 {
(cStatus = OPEN A sStatus = OPENING) leadsto
(cStatus = OPEN A sStatus = OPEN) V cStatus # OPEN V sStatus = CLOSED,;
}

/I If connectRequest occurs, then either connectRequestind or connectRequestRej
/I will eventually be executed. The client cannot stay in state Opening forever.
progress-obligationP4 {

cStatus = OPENING leadstocStatus = OPEN V cStatus = CLOSED;
}

/I If distantRequestind occurs, then connectind() or listenind is eventually executed,
/I or the server closes the connection. The server cannot stay in state OPENING forever.
progress-obligationP5 {
sStatus = OPENING leadstosStatus = OPEN V sStatus = CLOSED;
}

I 1f the client is in state CLOSING, then the connection is eventually closed.
progress-obligationP6 {

cStatus = CLOSING leadstocStatus = CLOSED;
}

}

Figure 8.6: SeSEM: connection management service program (Part 2)

105

Client-side Events

upw/dnw | Event Indication

dnw connectRequest client requests to connect to server.

upw connectRequestRej() | client learns that its connection request to
server is rejected.

upw connectRequestind() | client learns that its connection request to
server is accepted; client becomes open
to server.

dnw disconnectRequest() | client user requests to disconnect.

upw disconnectRequestind()client’s request to disconnect is fulfilled.

Server-side Events
upw/dnw | Event Indication

dnw listenRequest server will accept incoming connections.

dnw | endListenRequest server will not accept incoming
connections.

upw distantRequestind(-) | server receives a connection request
from client.

upw listenind() server learns of the rejection to the
connection request, and goes to listening;

upw connectind() server learns that the client’s connection
request has succeeded; server becomes ¢

upw closelnd() server learns that its connection with the

client is closed.

Table 8.1: Events of servidéM

106

pen.

<OPENING>

connectRequest
connectRequestRej

<CLOSED>

disconnectRequestind

connectRequestind

<OPEN>

disconnectRequest

<CLOSING>

Figure 8.7: Effect of client-side events fo servickl on < cStatus >

<CLOSED, ACCEPT>

listenRequest

endListenRequest

<CLOSED, REJECT>]

closelnd

4

distantRequestind

‘ distan uestind
listenind
<OPENING, ACCEPT>]
connectind

[<OPEN, ACCEPT>

distantRequestind

Figure 8.8: Effect of server-side events of servidé on < sStatus, sAccepting >

P5 IfdistantRequestind(- - -) occurs, themonnectlnd() or listenInd() is eventually exe-

cuted, or the server closes the connection. The server tataydn stat©OPENING

forever.

P6 If the client is in stat€ L OSING, then the connection is eventually closed.

107

service CM

dnw connectRequest(){
ec: cl;
ac: act;

}

dnw disconnectRequest(){
ec: c2,
ac: ac2;

}

ec: c3;
ac: ac3;

}

upw connectRequestRej(){
ec: c4;
ac: ac4;

}

upw disconntRequestind(){
ec: ¢b;
ac: ac5;

}

I
1
I
I
1
I
I
I
1
I
I
1
I
I
I
1
I
I
1
I
I
I
1
1 upw connectRequestind(){
I
1
I
I
I
1
I
I
1
I
I
I
1
I
I
1
I
I
I
1
I
I
1

dnw listenRequest(){
ec: ¢6;
ac: ac;

}

dnw endListenRequest(){
ec: ¢7,
ac: ac7;

}

upw distantRequestind(...){
ec: ¢8;
ac: acs;

}

upw listelnd(){
ec: ¢9;
ac: ac9;

}

upw connectind(){
ec: c10;
ac: ac10;

}

upw closelnd(){
ec:clt;
ac: ac1;

system CM_Client

xc connectRequest(){
ec:cl12;
ac: ac12;

}

xc disconnectRequest(){
ec:cl13;
ac: ac13;

}

—e

system CM_Server

xc listenRequest(){
ec: cl4;
ac: acl4;

}

xc endListenRequest(){
ec: ¢15;
ac: acl5;

Thread connectRequest(){
while <(c1) {
act;
CM_Client.connectRequest();
}
}
Thread disconnectRequest(){
while <(02) {
acz;
CM_Client.disconnectRequest();
}
}

xc connectRequestind(){
ec: true;
ac: if (c3) ac3;
else fault;
}
xc connectRequestRej(){
ec: true;
ac: if (c4) ac4;
else fault;
}
xc disconnectRequestind(){
ec: true;
ac: if (c5) ac5;
else fault;

system CM-wrt-{CM_Client, CM_Server}

Thread listenRequest(){
while <(cﬁ) {
aco;
(;M_Server.IistenRequest();
}
}
Thread endListenRequest(){
while <(c7) {
ac’;
(';MfServer.endListenRequest();
}
}

xc distantRequestind(...{
ec: true;
ac: if (c8) acg;
else fault;

2(0 listenInd(){
ec: true;
ac: if (c9) ac9;
else fault;
}
xc connectind(){
ec: true;
ac: if (c11) ac11;
else fault;
}
xc closelnd(){
ec: true;
ac: if (c14) ac14;
else fault;

Y

\

system CM_Client-wrt-CM

xc connectRequest(){
ec: true;
ac: if (c12) ac12;
else fault;}

xc disconnectRequest(){
ec: true;
ac: if (c13) ac13;
else fault;}

system CM_Server-wrt-CM

xc listenRequest(){
ec: true;
ac: if (c14) ac14;
else fault;}

e

xc endListenRequest(){
ec: true;
ac: if (c15) ac15;
else fault;}

Figure 8.9: Service satisfaction transformations

108

8.3 CM satisfaction conditions

Fig. 8.9 illustrates the construction 6M_Sys* from CM_Sys andCM. CM_Sys* consists
of of CM_Client-wrt-CM, CM _Server-wrt-CM and CM-wrt-{CM_Client, CM_Server} In
particular, every output call iGM _Client andCM Server is replaced by a call to the cor-
responding event oM by appropriately modifying variabledientuser andserveruser.

The safety condition fo€M _Sys offers CM reduces to the following:

1. CM_Sys* does not have undefined values or operations (division yy, segnature-

inconsistent call, type mismatch, etc.).

2. CM_Sys* does not call a disabled event, which reduces to the follgyiredicates

being invariant:

e CM.connectRequest.ec = CM _Client.connectRequest.ec

(This formalizes the constraint th&M_Client.connectRequest should be en-
abled whenever its user calldl.connectRequest. The predicates below are

similarly obtained.)
e CM.disconnectRequest.ec = CM _Client.disconnectRequest.ec
e CM.listenRequest.ec = CM _Server.listenRequest.ec
e CM.endListenRequest.ec = CM _Server.endListenRequest.ec
e CM_Client atclientuser.connectRequestind() = CM.connectRequestind.ec
e CM_Client atclientuser.connectRequestRej() = CM.connectRequestRej.ec

e CM _Client atclientuser.disconnectRequestind() = CM.disconnectRequestInd.ec

109

CM_Server atserveruser.distantRequestInd(- - -) = CM.distantRequestind.ec

CM_Server atserveruser.listenInd() = CM.listenInd.ec

CM_Server atserveruser.connectind() = CM.connectInd.ec

CM_Server atserveruser.closelnd() = CM.closelnd.ec

The progress condition holds ifM_Sys* satisfies progress obligatioffd ~ P6
assuming weak fairness @M Sys’s threads.
Although we do not do so here, it would be straightforwardravp by assertional

reasoning that these conditions hold (e.g., as in [76]).

8.4 Testing and assertion checking harness

To testCM_Sys againstCM, we do the following:

1. Create a Harness process to control the test execution.H&heess process is

bound to RMI (Remote Method Invocation in Java) port “CMHarhess

2. Construct fromCM_Sys* a composite syste@M_Sys* which is to interact with the
harness.CM _Sys*/ consists ofCM _Source-wrt-CM’ (a version ofCM_Client-wrt-
CM that interacts with the harnes§)Vl_Server-wrt-CM’ (a version ofCM Server-
wrt-CM that interacts with the harness), the channels between, tedM-wrt-
{CM_Client, CM_Server}’ (a version ofCM-wrt-{CM_Client, CM _Server} that in-

teracts with the harness).

3. ExecuteCM _Sys* along with (and under the control of) the harness process.

110

4. Check whether the generated execution becomes faulty.

Section 8.4.1 describes how to obtdiM_Sys*. Section 8.4.2 describes how to

executeCM_Sys*™ under the control of the harness process.

8.4.1 ConstructingCM _Sys*

The first step is to construct composite systém _Sys* (figure 8.10). Section 8.3 de-
scribed how to geEM_Client-wrt-CM, CM_Server-wrt-CM andCM-wrt-{ CM_Client, CM_Server}.
In addition to those modification, we need these componentsiinect to the harness.

This leads to the following modifications:

e ConstructCM_Client-wrt-CM’, referred to a&£M_Client’, from CM_Client-wrt-CM

as follows:
— Tag//#HarnessInterface harness = .. .; indicate the location of the harness,
l.e., its RMI port.

— For every xc event, (1) insert a call to methdeckAssertions which sends
data necessary for assertion checking to SAC module, arldg #)formation

to the log file.

— Insert breakpoints at locations specified by tdgbreakpoint.

e Similarly, construcCM Server-wrt-CM’, referred to a€EM Server’, from CM _Server-

wrt-CM.

e ConstructCM-wrt-{CM_Client, CM_Server}’, referred to a<CM’, from CM-wrt-

{CM _Client, CM Server}’ as follows. For every upw/dnw event, insert a call to

111

methodcheckAssertions, and log information to log file.

e ConstructCM_Sys* of CM_Client’, CM _Server andCM'.

CM_Sys* CM_Sys
! ‘ CM-wrt-{CM_Client,CM_Server} ‘ | | ‘ CM-wrt-{CM_Client,CM_Server}y K
: = :
3 ‘ CM_Client-wrt-CM ‘H‘ CM_Server—wrt—CM‘ ' ' ‘ CM_Client-wrt-CM’ }~—>‘ CM_Sewer—wrt—CM’W
Verification framework Checking framework

Figure 8.10:CM _Sys* andCM_Sys* composite systems

8.4.2 ExecutingCM_Sys*

OnceCM_Sys* is constructed, the next step is to obtain the testing piatfon which it
can be executed. SAC (Serializer And Checker) module, witierharness, ensures that
CM_Sys'-CM’ interactions are executed atomically, and that only oresithis proceeding
at atime. SeSFJava harness inserts breakpoiftsliSys’ andCM’ such that at any time,
at most one thread &M Sys* runs and every other thread is paused at a breakpoint. SAC
module maintains relevant state for every process, sucthagher the process is running,
paused, blocked, or about to be terminated. Each thread #emstiate to the SAC module.
Breakpoints are inserted manually to indicate where thethtensitions take place.

Assertions are evaluated at checking locations, spedyfica the start of every
event and at every breakpoint as mentioned in section 6.3.

After CM_Sys* is constructed, it is executed on the same platformaiMsSys* as

follows:

112

. SeSFJava harness starts as a separate process, antsblhttsRMI port “CMHar-

ness”.

. CM’ process starts, and looks up for the harness’s port “CMHatnes

. CM_Sys’ process is created, and it looks up for port “CMHarness” ushgl
lookup command. So, both systems (source and sink) are hooked phgihar-

ness.

. The developer can use the harness either in batch motieg léte harness run for
a while and then analyzing the log file, or in interactive mad#iuencing the flow

of the execution manually.

113

Chapter 9

Educational Use of SeSFJava

SeSFJava has been used in teaching an introductory sememnktwork course (CMSC417)
at University of Maryland. The goal of the programming asgignts in this course is to

teach the students the following:

The role of network protocols.

The different roles of the layers of the network and how thaglsabove each other.

How to enhance the performance of the network in the face ahgimg network

conditions.

How to implement a distributed multi-threading applicaspfor example, client-

server or peer-to-peer applications.

In fall 1999, we introduced a three-phase project that tékesibove goals into ac-
count. The project was to implement a transport protocoligiog client and server TCP
sockets. Phase | implements a data transfer protocol. Rhasplements congestion
control in order to enhance the performance of the datafeapsotocol. Phase IIl im-

plements the connection management and the two-way datddrgrotocols of TCP/IP.

114

All project specifications were described informally, agsttcases were provided.

During the course, a number of problems emerged. Some studesunderstood
the specification or oversimplified it to just fit the test apeovided with the project
assignment. Other students did not test their projectotigily with various inputs.
Others did not finish the project because they did not budgetgh time, especially
in phase lll which involved much more work than the other twages. The teaching
assistants (TAs) spent excessive time in testing and ggddenstudent projects.

These problems prompted us to integrate SeSFJava into tilverke course. SeS-
FJava (and formal methods in general), in theory, remouasialinderstandings about
the project specifications. The harness provides technajtest the projects extensively
on the actual platform, which helps the students to discovae bugs.

Here, the students do not have to learn a new formal langaagbe specifications
are written in Java which is familiar to the students. Thertdas depends on runtime
monitoring, a concept understandable by most studentspf@ssed to model checking
for example). SeSFJava and the Harness can be learned bedegtit time constraints
of the semester.

The transport-protocol project is divided into four phasach phase is indepen-
dently tested for correctness. Section 9.1 describes ghadach is the data transfer
protocol. Section 9.2 describes phase Il, which focuseserperformance of the data
transfer protocol. Section 9.3 describes phase Ill, whicthé connection management
protocol. Section 9.4 describes phase 1V, which puts itoglether (connection manage-

ment plus two-way data transfer). Section 9.5 describegxperience with the students.

115

9.1 Phase I: Data transfer protocol (correctness)

In this phase, the student implements a protocol that aekiesliable data transfer over
unreliable network channels. Specifically, the projectsists of two interacting pro-
grams, a Source and a Sink, as shown in fig. 9.1. The Sourcéstoon$ three com-
ponents: SW_SourceUser, SW _Source and NetworkSocket. The Sink consists of three
componentsSW _SinkUser, SW_Sink andNetworkSocket.

The students are provided with:

e The applicationsSW _SourceUser andSW _SinkUser, which transfer a file from the

source to the sink.

e TheNetworkSocket entity which provides the unreliable channels to be usedhéy t
transport entitiesNetworkSocket entity is a wrapper to the standard sockets. It is
used instead of the usual UDP sockets, because in a LAN emvént, the standard
sockets display hardly any loss, reordering or duplicatidre students can change
the probabilities of loss, reordering and duplication o fily, which is important

for testing.
e The SeSFJava Harness module and the data transfer sergaigcspion.

The students are to impleme$¥V_Source and SW _Sink so that they conform to
the provided data transfer service. The students are freledose the particulars of the
design, including message types and formats, sequenceenwgpéce, data block size,
retransmission policy, acknowledgment (cumulative andédective) policy, round-trip

time estimator, etc.

116

Application

SW_SourceUser SW_SinkUser Layer
,,,,,,,,,,,,,, ‘E,,,,,,,,,,,,,,,Tra,nspgr,t,,S,ervjcf;,,,,,,,,,,,,,,,, A
' '
. Transport
SW_Source SW_Sink Layer
,,,,,,,,,,,,,, b Neworksevice %
' '
- Network
NetworkSocket o NetworkSocket Layer

Figure 9.1: Phase | overview

9.1.1 Testing phase |

To participate in the testing, the system and service prmgnaeed to be instrumented
using SeSFJava Preprocessor in order connect servicegsteds to the Harness. This
includes issues like connecting to the Harness, checkiegtesnabling conditions, in-
serting breakpoints, etc. Instead of letting the studesgsthe preprocessor to generate
the Harness, services and systems, we gave the studentefreqessed code, thereby

relieving them of the preprocessing hassle. The prepredasze include the following:

e A simpler version of SeSFJava Harness which is encapsulatedingle class that

contains the following:

— A constructor that binds the Harness to Remote Method Ini@téRMI) port

“Harness”.

— Lock and unlock methods for the Harness main lock, for symmizing the
programs and threads of the project. When a thread acqueasdm lock,

no other thread in the network system can proceed, untilitieis released.

— Methods that represent the interactions between the toankgyer and the

application layer (as described in chapter 7).

117

— Invariants of the data transfer protocol, for example, thmber of bytes de-
livered to Sink’s user cannot exceed the number of bytes lsgr8Bource’s

user.

e The application systemS4¢urceUser andSinkUser) where the xc-events are already
modified to check the enabling conditions. Statements thatect the application

to the Harness are already instrumented.

e Templates of the transport layer syster®®/(Source andSW _Sink) which include
statements that lookup for the Harness RMI port, and thetstreiof the xc-event
methods. For exampl8W Source.sendData method appears in the template as fol-

lows:
/I Inside SW_Source.java
void sendData (byte [Jdata) throws Exception {

harness.lock(); // obtain Harness main lock
harness.sendData(data); /I RMI call of Harness method with same parameters
. /I Student inserts sendData method body here
harness.unlock(); /I release Harness main lock

}

Consequently, a student can determine the correctnessto$totce and sink sides
by checking that no errors were thrown during the executfdtiasness. (To detect dead-
locks, we add an extra condition: a file sent by the sourcedbs teceived.)

The program is executed as follows: (1) Execute the Harnestula, so it can
bind to port “Harness”, (2) Execute the sink side so it canktoathe Harness class, (3)

Execute the source side to start sending the file. A log fileasrded for every execution.

118

9.1.2 Grading phase |

The TAs grade the data in a semi-mechanical way. They ruptsda execute the projects
with different input files and different network conditionSach execution is stored in a
log file, which is checked for thrown errors. If there is aroerthe TA checks the log file
to print out the trace that has generated this error, andrdates the grade accordingly.
The student can resort to a very simple solution, say a sendowi size of 1, but they

will then suffer in Phase IlI.

9.2 Phase II: Data transfer protocol (performance)

This phase emphasizes the protocol’s performance; ththeigirade is primarily based on
the throughput achieved under varying network conditiarigch in turn depends on how
well the protocol adapts to congestion, the overhead ofdhgestion control mechanism,
etc.

The students strip the RMI calls inserted in Phase |, and eh#dreir code to
perform better. Enhancements are of two kinds: (1) netwptkrozations, for example,
adding Tahoe congestion control, and (2) code optimizatitor example, reducing the
thread-switching in their code. In this phase, NeworkSocket has the ability to play
scenarios that emulate real-life network traffic. Thus, shedents can view how their
code performs under various conditions.

The TAs grade this project by running scripts that execugestindents projects a
number of times for every test scenario, and record the gimput for each run. The aver-

age throughput is computed and the students are classifteddatg to the performance

119

into four groups, from fast to slow, and the grade is deteeahiaccordingly.

9.3 Phase Ill: Connection management protocol

In this phase, the students build a connection managemetacot over unreliable net-
work channels. The grade in this phase is primarily basedherptotocol’s correct-
ness (as described in chapter 8). Specifically, the projessists of two interacting
programs, a Client and a Server, as shown in fig. 9.2. Clientistsnsf three compo-
nents: ClientUser, CM_Client andNetworkSocket. Server consists of three components:

ServerUser, CM_Server andNetworkSocket.

Application
ClientUser ServerUser Layer
,,,,,,,,,,,,,,, ‘f,,,,,,,,,,,,,,Iranqutt,s,ervj,c,e,,,,,,,,,,,,,,,,, A
 J L J
. Transport
CM_Client CM_Server Layer
,,,,,,,,,,,,,,, b Newoksevice |t
i i
- Network
NetworkSocket o NetworkSocket Layer

Figure 9.2: Phase Il overview

The students are to impleme@M _Client and CM_Server which are the transport
entities at the two ends. They are provided with the othettiesit ClientUser and
ServerUser are the users of the transport entities. These applicatipes and close hun-
dreds of connections under different circumstances. ThiepaletworkSockets are as in
phases | and Il. The specifications formally describe theettway handshaking connec-
tion establishment, and the two-way handshaking of theodisection procedure. Similar

to that of phase I, the service specifications, the Harnassapplication level systems,

120

and the templates of the transport layer systems are prbundédarness file. The testing

and grading are carried out similarly to that of phase I.

9.4 Phase IV: Putting it all together

In this phase, the students build a full-fledged transpoxtice over unreliable network
channels, specifically, combining phases Il and Il (afteippping the RMI calls). The
grade of this project is based on the correctness and therperhce of the students’

implementations.

9.5 Experience with the students

We have been using SeSFJava in the senior-level undergeachraputer networks course
for the past three years. The projects are mandatory: nestedn pass the course with-
out passing the projects. The average number of studentdgssris 50. Most students
have not been exposed to formal methods before taking thiseo

Using SeSFJava significantly improves the performanceeéthdents. Table 9.1
compares the use of detailed informal description of thgeptse (without SeSF) against
the use of SeSF in specifying these projects. The numbemudests who completed
all the phases of their projects almost doubled. Their goestabout the specifications
decreased by 40%. The student drop rate decreased by alafiost h

From the TA perspective, using SeSF reduces the gradingoemstudent, because

considerable amount of the grading is carried mechanicdllye number of regrading

121

Without SeSH With SeSF| Improv.
% of students who completed their projects 45% 88% 95%
of email queries per students 16 10 60%
% of students dropping the class 27% 14% 93%

Table 9.1: Improvement using SeSFJava

requests fell by 60%. We think this is because a student ctmigher implementation
against the project specification, and because the TA peswioe student with the trace

demonstrating any errors (and thus grade penalties).

122

Chapter 10

Peer-to-Peer Network: Gnutella

In the past few years, many peer-to-peer network speciitathave been introduced,
for example, Gnutella [19, 40], Napster [38], Kazaa [36], @h&2], NICE [8, 47] and
Freenet [16]. For each of these specifications, many impigtiens become available,
for example, Gnutella implementations include Limewiré][3-uri [87], and JTella [53].
Because these specifications are informal, developerpietéholes” and ambiguities in
different ways, resulting in different interpretationstbé specifications.

In this chapter, our goal is to (1) formally define the sersicd a peer-to-peer
network protocol in SeSFJava; and (2) apply the testingdssto an open-source imple-
mentation of the peer-to-peer protocol to test whethernfaans to the defined services.

We focus on the Gnutella protocol [19, 40]. We chose Gnutadleause it is the
most prevalent peer-to-peer system in the world (with 2%ionilusers), and many open-
source implementations are available. Gnutella is a deslez®d peer-to-peer file shar-
ing protocol. Gnutella uses the TCP service below, and pesvjdin/depart, query, node
discovery and upload/download services to the applicdtesl above. Figure 10.1 illus-

trates the Gnutella protocol stack. Each Gnutella nodefesrezl to as aervent

123

App i App
PeerToPeer Application PeerToPeer Application
Gnu
i s e — ——— s Rt W s
‘ join/depart H query H node discovery H download ‘ ‘ join/depart H query ‘ ‘ node discovery H download ‘
Srvi Srvj
Gnutella Servent Gnutella Servent
R I ,,,,,,,,,,,,,,,,,,,,,,,,, I ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I I ,,,,,,,,,,,,,, TCP .
Service
Tepi LRD Tepj
TCP System TCP System
Network
Node i Node j

Figure 10.1: Gnutella protocol stack

In this chapter, we define the service provided by Gnutedierred to asnu ser-
vice. We also consider a particular Gnutella implementatr@amely Furi, and apply the
Harness to test whether Furi offegau.

We could also test whether Furi correctly uses TCP servicehwias been defined
in earlier chapters. But this is rather trivial and not ingtirey. Instead, we define the
special case of the TCP service as itis used by Gnutella,ghidits messages and control
exchanged between the Gnutella layer and the TCP layer, angetimissible sequences
of these exchanges. We refer to this as ititernal serviceGnu_TCP. We apply the
Harness to test whether Furi satisfies f&isi_TCP internal service.

The remainder of the chapter is organized as follows. Se&fol gives an overview
of the operation of a Gnutella network. Section 10.2 defihe§hu service. Section 10.3
defines theGnu_TCP internal service. Section 10.4 explains how SeSFJava Haican

test an open-source Gnutella system against the services.

124

10.1 Gnutella overview

A Gnutella network [19, 40] is a dynamic overlay on the top @ network. Each node,
or servent can have connections to a number of servents. A servens semeessage by
flooding it to its neighbors (ones with direct connectiont}@nd those neighbors flood to
their neighbors until the message’s TTL (time to live) enliservent is identified by an
address, which consists of the host machine id (IP addredsmain name) and the port
that it uses for listening to incoming connections.

Figure 10.2 illustrates an example of how a Gnutella netwawkks. SrvA wants
to join the Gnutella network. It knows the address of Brwone of the servents of the
network, from a prior connection. SAsestablishes a Gnutella connection with Brvia
a handshake sequence exchanged through a TCP channel (fige(a)L After establish-
ing the Gnutella connection, sA/pings the network for information about more servents
via ping messages. SB/sends information about the connected serventndE) back
to srvA (figure 10.2(b)) using pong messages. From this informasnm knows about
serventsC andE, and connects to both of them as in figure 10.2(c). Whemsmants
to locate filesesf.pdf, it sends a query message, which includes string “sesf, pafits
neighbors, C andE. Each of these neighbors forwards the message to its newg(figp
ure 10.2(c)). SnF is the only servent that has hits to this file. So whenFsreceives the
query, it replies with the query hit message. When/Aineceives the query hit message,
it downloads the file using http protocol. When $wecides to leave, it closes all its

Gnutella connections, leaving the network as shown in figor&(d).

125

Gnutella Connection

TCP Connection

(d) Srv B departs the network

Figure 10.2: Example of a Gnutella network

126

10.1.1 Joining the Gnutella network

Initially, a servent (client servent in this case) gets ttldrass of a servent on the network
(server servent in this case) by searching public datalmdssextracting addresses from

recent connections. Next, it (client servent) connectitogerver servent via a handshake
sequence, afterwhich it is connected to the Gnutella né&twdhe handshake sequence

operates as follows:

1. The client establishes a TCP/IP connection to the serviisistep fails, the client

considers it as a rejection to the connection attempt.

2. The client sends an ASCII string, “GNUTELLA CONNEGJprotocol version
\n\n", followed by its capability headers. A capability headehich is an ASCII

string terminated by a new line, indicates a feature supgdy the sender.

3. The server replies by sending to the client the ASCII stfiGINUTELLA/ <protocol
version> 200 OK\n\n" followed by its capability headers. Any other reply by the

server indicates the rejection of the connection and tleergtt ends here.

4. If the client is satisfied with the server's capability dess, it sends the ASCII
string, “GNUTELLA 200 OK\n\n", back to the server. Any other reply indicates

that the client is rejecting the connection and the attemgsdere.

Figure 10.3 illustrates an example of a successful conmecti
After the handshake sequence is successfully completedgetivent exchanges bi-
nary messages with the rest of the network for various p@godiscovering new ser-

vents, querying the network for certain criteria, and segdiles for servents behind

127

Servent (client-side) Servent (server-side)
GNUTELLA CONNECT/0.6

Company’s name is BearShare ‘—> User-Agent: BearShare/0.6

Supports Pong msg caching ‘—» Pong-Caching: 0.1

Supports graceful shutdown ‘—» Bye-Packet: 0.1

GNUTELLA/0.6 200 OK
User-Agent: BearShare/1.0
Pong-Caching: 0.1
Bye-Packet: 0.1

GNUTELLA/0.6 200 OK

[binary messages] [binary messages]

Figure 10.3: Example of a successful connection scenafBnurella 0.6

proxies (seldom used).
A Gnutella servent can exit either abruptly by shutting dpamgracefully by send-

ing aBye message and then shutting down after a specified timeout.

10.1.2 Gnutella binary messages

identifies the descriptor

16-byte string uniquely
on the network

Used to determine the
start of the next descriptor

Max number of times

Time To Live:
that this one is forwarded

|/]

Descriptor ID Payload Descriptor TTL Hops Payload Length

0 15 16 17 18? 19 22

0x00 = Ping
0x01 = Pong
0x02 = Bye

Number of times the descriptor
has been forwarded.
TTL(0) = TTL(i) + Hops(i)

0x40 = Push
0x80 = Query
0x81 = QueryHit

Figure 10.4: Gnutella message structure

Figure 10.4 shows the structure of the binary messages. liasbage begins with

a 16-byte descriptor ID that uniquely identifies this messagnd is generated based on

128

the host IP and its port. This is followed, in Gnutella (ve6)Qby a payload descriptor

which specifies the following messages:

e Ping/Pong MessagesThese are used for servent discovery. A servent sBngs
messages periodically in order to probe the network forratbevents. Whenever a
servent receives Ring message, it responds withPang message which includes
its IP address and listening port. TReng message’s descriptor ID must equal that

of the correspondinging message.

e Bye MessageTheBye message can be used only if the handshake capability header
includes string “Bye-Packet: 0.1". Bye message must be sent with TH.1. The
receiver of theBye closes the connection immediately. The sender must wait for
few seconds before closing down the connection. All incgmmessages during

this period must be discarded.

e Query/QueryHit MessagesThese are used for locating files. A servent queries by
flooding the network witlQuery message that includes a criteria string (a string
terminated by chabx00). When a node receives a query, if it has hits (file indexes
that meet the search criteria of tQaery message), it replies by sendinQaeryHit
message, which includes those hits, through the networit.hds no hits for the
query, it discards the request. When the sender recei@&Hit for a query it
has sent, it passes that hit to the servent application. @serightor ID of aQueryHit
must equal that of the correspondiQgery message.

The query requester will not receive a response if eithefikbe requested are not

available or the paths between the requesting server angotieatial responders

129

are broken.

e Push MessageA servent sends Bush message to trigger the download process for

users behind a proxy. This message is seldom used.

The routing protocol of Gnutella network is simple. Whenexeservent wants to
send a message, it sends the message to all the serventsteontmeit. Whenever a
servent receives a message and the message’s TTL (TimeApid greater than zero, it
decrements the TTL, and sends the message to all its codreteents, except the one
it received the message from. The servent does not forwarchassage with TTL equal

to zero.

10.2 TheGnu service

In this section, we define serviéeu. Section 10.2.1 describes the join/depart compo-
nent, while section 10.2.2 describes the query compondmbughout the remainder of
this chapter, we ignore node discovery and upload/downseadces for simplicity. We
identify a node by the IP address of its host machine and thetpgses for listening to
incoming connections. The domain of tblass Node (defined below) is all the possible

values of its attributes and the valoell.

130

classNode {
IPAddress ipAddr;
int port; // Port used for listening to incoming connections

10.2.1 Join/depart component

Figures 10.18, 10.19 and 10.20 specify the join/depart corapt ofGnu service program
in SeSF. The rest of this section explores informally paftshe specifications. The
service defines the following variables for each node i & Node — {null} for the

following definitions):

e stateli] = {Inactive, Active, Departing}. Initially Inactive.

This variable indicates the state of node i with respectégquer-to-peer network.

Inactive means i is not connected to the peer-to-peer network and esttemnpting
to connect to it.Active means i can issue connection requests to, or receive con-
nection requests from other nodd3eparting means i has requested to depart the

network and is waiting for the connections (if any) to close.

e outStatus|i, j] = {Closed, Connecting, Connected, Closing}. Initially Closed.
This variable reflects the status of node i's outgoing cotioedo node j. Anout-

goingconnection is a connection initiated by node i.

Closed means i does not have an outgoing connection to nodenjnecting means
i has requested a connection to nod€pnnected means i has established a con-
nection to node j.Closing means i has requested termination of the connection to

node j.

131

e inStatusli, j] = {Closed, Connecting, Connected, Closing}. Initially Closed.
This variable reflects the status of node i's incoming cotinoedrom node j. An

incomingconnection is a connection initiated by remote node |.

Closed means i does not have an incoming connection from nodopnecting
means i has indicated a connection establishment attempothg j. Connected
means i has established a connection to node j (node j adtiaie attempt)Closing

means i has requested termination of the connection to node |

e JRJi,j] = {true, false}. Initialized tofalse.
This variable is used to prevent node j from accepting a nistest connection
request from node i. It isrue iff node i has requested to join node j (issuing
joinReq(i, j) as explained later), node j has not received the requesayétnode j

has not yet departed the network.

e JRRJi,j] = {true, false}. Initialized tofalse.
This variable indicates that node i has received a connmectiquest from node |.
It is used to prevent node j from acknowledging a connectemjuest that hasn't
reached node i. It isrue iff node i has received a join request from node j, node |
hasn’'t acknowledged or rejected this join reply yet, andendths not yet departed

the network.

e JRRACK(i,j| = {true, false}. Initialized tofalse.
This variable serves to prevent node j from accepting a neteax connection re-
guest ack from node i. It isrue iff node i has sent the last ack in the handshake

sequence to node |, j hasn’t received it yet, and node | hadep#rted the network

132

upw/dnw | Event Indication

dnw activate(i) node i becomes active, and can receive incoming
connection requests from any node in the network

dnw joinReq(i,)) I requests to connect to |

upw | joinRej(i,)) i learns that its connection request to j is rejected

upw | joinInd(i,j) i learns that its connection request to j is accepted,;

i becomes connected to |

upw joinReqInd(i,j) | i receives a connection request from j
upw | joinReqRej(i,j) | ilearns that j's connection request to i has beer
rejected.

upw | joinRegAck(i,j) | i learns that j's connection request to i has
succeeded and i becomes connected to |

upw departind(i,j) | ilearns that its connection with j is terminated
dnw departReq(i) | i requests to depart the network

upw departAck(i) I's request to depart the network is fulfilled
dnw abort(i) i terminates abruptly

Table 10.1: Events of join/depart component of serGee. The first parameter indicates
the node where the event occurs.

yet.

We need bothoutStatus|i, j] andinStatus|i, j|, because if both node i and node j
issue join requests to each other simultaneously, two agpaonnections will eventually
be established (if they can reach each other and neithertdpa

Table 10.1 lists the events used in the join/depart comgonen

Figures 10.5 through 10.10 show various scenarios for aimmmeestablishment
and termination.

Figure 10.5 shows a typical successful connection estabést and termination
between two nodes i and j. Hersgp i andapp j are applicationssrv i andsrv j are the

corresponding servents, and nodes i and j are active.

e AppicallsjoinReq(i, j) of srv i.

133

e Srv i establishes a TCP connection wiflv j, and then sends “Connect Request”

string tosrv j, followed by its capability headers.

e Upon establishing the TCP connectigry j informsapp j thatsrv i is requesting
a connection. Afterwardsyv j receives the capability headers. Upon finding them

acceptablesrv j sends “OK” string followed by its own capability headers.

e Upon receiving the “OK” string, and accepting the capapitieaderssrv i calls
joinlnd(i, j) to informapp i of the success of the connection establishment, and then

sends “OK” string tasrv |.

e Srv j receives the “OK” string and call®inReqAck(j, i) to inform app j of the

connection establishment withv i.

e Later,app i decides to depart the network. It issurpartReq(i). Consequently,
srv i sends “Bye” string to all its connections (including j's) dathen terminates all

the outgoing paths of its connections.

e Upon receiving “Bye” srv j terminates its connection tov i, and informsapp j of

the departure of node i.

e After a certain timeoutrv i aborts all active connections (if any) and inforapg i

of the termination.

Figure 10.6 shows a variation of the scenario mentionedgnr€i10.5, where TCP
handshake sequence fails, because, for example, nodd jesacbable or node j is reach-
able but not listening. Suppose that one of these conditionars, therrv i waits for a

specified timeout, and then informgp i of the failure of the connection request.

134

App. i Srvi Srvj App. j
JRIijI JRRACK[ij] state[i] outStatusfi,j] state[] inStatusfji] JRRI,i]
false false Active Closed joinReq
true false Active Connecting
joinReglind Active Closed false
false false Active Connecting Active Connecting true
joinind
false true Active Connected o Active Connecting false
joinRegAck
false false Active Connected Active Connected false
departReq
false false Departing Closing)
departAck)
false false Inactive Closed departind
Active Closed false
time
Figure 10.5:Gnu join/depart scenario 1
App. i Srvi Srvj App. j
JR[i,j] JRRACKIi,j] state[i] outStatusli,j] state[j] inStatuslj,i] JRRIj,I]
false false Active _ Closed joinReq c Inactive Closed false
--Con
true false Active Connecting “Qq‘?{f??qussr
= 8
o
17
£
E
joinRej
true false Active Closed
time

i’s TCP connection

handshake failed.

Figure 10.6:Gnu join/depart scenario 2

135

App. i Srvi Srvj App. j

JR[ij] JRRACK(,j] state[i] ~outStatusfi,j] state[j] inStatus[j,i] JRRI,i]
false false Active Closed joinReq Tep Active Closed false
true false Active Connecting \x“(‘:pﬂ']?_ctio,,
~--.._Capap,. ----.| IoinReqind
false false Active Connecting \"“ql{?s,\ Active Connecting true
"~ joinReqRej
“Bgl“, i \ Active Closed true
joinRej B
false false Active Closed Active Closed false
time

i's capabilities are not

acceptable to j

Figure 10.7:Gnu join/depart scenario 3

Figure 10.7 shows a variation of the scenario mentionedguréi 10.5. After in-
forming app j of the existence of an attempt, j checks the capability heaaed finds
them unacceptable. Then, it inforragp j of the rejection of the connection, and sends
“REJ” string to node i, which in turn informspp i of the failure of the connection estab-
lishment.

Figure 10.8 shows a variation of the scenario mentionedguréi 10.7. Suppose
thatsrv j acceptsrv i's capability headers, and consequently, it sends “OKhgttosrv i
followed by its own capability headers. After receiving tkaK” string, srv i findssrv j's
capability headers unacceptable. Thus, it infoems i of the failure of the connection
establishment, and sends “REJ” stringoj, which in turn informsapp j of the rejection
of the connection establishment.

Figure 10.9 shows a scenario whasp i requests connection tgp j, butaborts
(closes abruptly) before connection is establishgd. j waits for an arbitrary timeout
before informingapp j of the failure of the connection attempt. In figure 10.30p i
recovers, activatesv i and requests the establishment of the connection befdnagout

fires. In this casesrv j informsapp j of the existence of a new connection request.

136

App. i Srvi Srvj App.
JR[i.j] JRRACK[i,j] stateli] outStatusl[i,j] statelj] inStatusj,i] JRRYj,i]
false false Active Closed joinReq
true false Active Connecting
__| joinRegInd Active Closed false
false false Active Connecting J Active Connecting true
joinRej
false false Active Closed o _ Active Connecting false
joinRegRej
. Active Closed false
time
J's capabilities are i's capabilities are
not acceptable to i acceptable to j
Figure 10.8:Gnu join/depart scenario 4
App. i Srvi Srvj App. j
JRIi.]] JRRACKI|] state[i] outStatusfi,]] state[]] inStatus[j,i] JRRI,i]
false false Active Closed joinReq
true false Active Connecting ‘
- ~-..__| joinRegInd Active Closed false
false false Active Connecting . Active Connnecting true
abort
false false Inactive Closed -y Active Connecting false
=]
o
(5]
£
| joinRegRej
Active Closed false
time
i's capabilities are
acceptable to
Figure 10.9:Gnu join/depart scenario 5
App. i Srvi Srvj App. j
JIRIij] JRRACk[i,j] ~ state[i] outStatusli,j] state[] inStatusfj,i] JRRIj,i]
false false Active Closed joinReq
true false Active Connecting
joinReqInd Active Closed false
false false Active Connecting Active Connecting true
abort --|
false false Inactive Closed B Active Connecting ~ false
activate
false false Active Closed
joinReq
true false Active Connecting
joinReqInd
false false Active Connecting Active Connecting true
time

Figure 10.10Gnu join/depart scenario 6

The join/depart component of serviéau defines the following progress obliga-

tions for every pair i and j:

P1 If i's outStatus is Connecting and j'sinStatus is Connecting, then eventually (1) i’'s
outStatus is Connected, (2) both i'soutStatus and j'sinStatus are Closed, or (3)

one or both nodes depart.

P2 If i's outStatus is Connected and j'sinStatus is Connecting, then eventually (1) i's

outStatus and j'sinStatus are Connected, or (2) one or both nodes depart.

P3 If joinReq(i,j) occurs, then eithgpinind(i, j) or joinRej(i, j) will eventually be ex-
ecuted, or node i departs the network. NodeoisStatus cannot stay in state

Connecting forever.

P4 IfjoinReqInd(i,) is occurred, then eithgsinReqAck(i, j) or joinReqRej(i, j) is even-
tually executed, or i departs the network. Nodeiw'Status cannot stay in state

Connecting forever.

P5 If departReq(i) occurs, then eithefepartAck(i) or abort(i) is eventually executed.

Node i cannot stay in stateeparting forever.

P6 Ifiis inactive, then all connections to i are eventuallysed.

10.2.2 Query component

The query component of thenu service, given in figure 10.21, is extremely simple. It

sends a query string, and waits for a reply set (empty set sm@ahits). This component

138

at a node i is active only if srv i's state (defined in the joapdrt component) iActive.

Gnu service (Query component) defines the following variable:

e queryingli] = {true, false}. Initialized tofalse. We assume that¢ Node— {null}.

Variable querying][i] is true if node i has requested a query, but haven't received a

reply yet.

10.3 Internal serviceGnu_TCP

In this section, we define serviéenu_TCP. Recall that the internal service is just the
special case of the TCP service as it is used by Gnutella. det@.3.1 describes the
join/depart component, while section 10.3.2 describesailnery component. Again,

for simplicity, we ignore node discovery and upload/dovadaservices. Since service

Gnu_TCP is internal, it can impose progress obligations on dnw ezent

10.3.1 Join/depart component

Figures 10.22 through 10.26 illustrate the join/depart gonent ofGnu_TCP service
program. The service defines the following variables foheamde i (we assume that i, j

€ Node— {null} for the following definitions):

e outStatusli, j] = {Closed, Connecting, Handshaking, Connected, Closing}. Initially
Closed.

This variable reflects the status of node i's outgoing cotioe¢o node j.

Closed means that node i does not have an outgoing connection tg.nGoenecting

139

means that node i has requested a connection to node j, aiC#dandshake is
underway. Handshaking means that node i has established a TCP connection to
node j and has initiated the Gnutella handshake sequé€ro@ected means that i

has established a Gnutella connection to node j (Gnutetiddteake is successful).

Closing means that node i has requested termination of the conneotizode |.

inStatus|i, j| = { Closed, Waiting, Handshaking, Connected, Closing}. Initially Closed.

This variable reflects the status of node i’'s incoming cotioedrom node |.

Closed means that node i does not have an incoming connection frae no
Waiting means node i has established a TCP connection to node j (node j i
ated the attempt), and is waiting for j to start the Gnuteladshake sequence.
Handshaking means i has received j's capabilities (first leg of the haakishand
has accepted these capabiliti€snnected means i has established a Gnutella con-
nection to node j (node j initiated the attemptllosing means i has requested

termination of the connection to node j.

JRJi, j] = {true, false}. Initialized tofalse.
Similar to Gnu, this variable is used to prevent node j from accepting a xistent

connection request from node i.

handshakeli, j| = {None, cCpbs, sCpbs, Ack, Bye}. Initialized toNone.
This variable reflects the status of the Gnutella handshedpeeice between node
i and node j, where node i initiated the sequence. Specifi¢alhdshake[i, j] indi-

cates the last message in the last handshake sequence.

140

None means that node i hasn't initiated a handshake sequence setiuence is
terminated either by an acceptance or a rejecti@pbs (Client Capabilities) means
that node i has sent its capabilities to nod&lpbs (Server Capabilities) means that
node j has accepted i's capabilities and has sent its owrbdaies. Ack means
that node i has accepted j's capabilities, and has sent thé3ge means that node

i has sent messadgye.

cRP[i, j] = {None, Cpbs, sCpbsReply, Close}. Initially None.
This variable indicates which reply is pending during thenomunication between

clienti and servej.

None means that there is no pending replypbs meansi has established a TCP
connection with j, and has to send its capabilite$bsReply means has received
|'s server capabilities, and has to send its reply (eitheeptance or rejection of
these capabilitiesClose means has sent 8ye message, and has to close its TCP

connection with j.

sRPJi, j] = {None, cCpbsReply, Close}. Initially None.
This variable indicates which reply is pending during thenomunication between

serveri and clientj.

None means that nothing is pendingCpbsReply meansi has received j's client
capabilities, and has to send its reply (either acceptancejection of these ca-
pabilities). Close means has received thBye message, and has to close its TCP

connection with j.

Table 10.2 illustrates the events used in the join/depampament.

141

upw/dnw | Event Indication
dnw | joinReq(i,)) i requests to connect to |
upw peerReached(i,)| i learns that it has established a TCP connection w
dnw cTx(i,},S) client i sends message s to j
upw cRx(i,},s) client i receives message s from |
upw | joinAborted(i,j) | ilearns that its connection request to j is aborted
upw joinReqInd(i,)) i learns that it has established a TCP connection w

(initiated by))

dnw sTx(i,},s) server i sends message s to |
upw sRx(i,},s) server i receives message s from j
upw | joinRegAbort(i,j) | i learns of the abortion to j's connection request
dnw cDepartReq(i,j) | clientirequests to close its TCP connection with |
upw cDepartAck(i,j) | clienti’'s TCP connection with jis closed
dnw sDepartReq(i,j) | serverirequests to close its TCP connection with j
upw sDepartAck(i,j) | serveri’s TCP connection with j is closed
dnw abort(i,j) i terminates its connection to j abruptly

thj

thj

Table 10.2: Events of join/depart component of serie@_TCP. The first parameter
indicates the servent where the event occurs.

Figures 10.11 through 10.16 show various scenarios forexdion establishment.

Figure 10.11 shows a typical successful connection estabhknt and termination

between two nodes i and . Hergy i andsrv j are serventstcp i andtcp j are the

corresponding network systems, and nodes i and j are active.

e Srv i calls joinReq(i,) of tcp i, which starts establishing a TCP connection with

tep J.

e Upon establishing the TCP connectianp i informssrv i of its successful TCP

connection establishment by callipgerReached(i, j), andtcp j informssrv j that

a TCP connection withcp i is established by callinginReqInd(j,i). Then,Srv i

passes “Connect Request” string followed by its capabilitgdees totcp i via

cTx(i, j, cpbsli]).

142

e Upon receiving the “Connect Request” string and finding theabdipy headers
acceptablesrv j passes an “OK” string (indicating its acceptance of the lbdipa
headers) followed by its own capability headersdpj via sTx(j, i, cpbs][j]), which

sends then tecp i.

e Upon receiving the “OK” string and the capability headers] &inding them ac-
ceptablesrv i sends “OK” string totcp j as an indication of the success of the

Gnutella connection establishment.

e Tcp jreceives the “OK” string and passesiit j to indicate the connection estab-

lishment withtcp i.

e Later,srv i decides to close the connection. It seiys, and then terminates the

TCP connection withcp j.

e Upon receiving “Bye” srv j terminates its connection tap i.

Figure 10.12 shows a variation of the scenario mentionedgarg 10.11, where
TCP handshake sequence fails, because, for example, nodetjrsachable or node j is
reachable but not listening. Suppose that one of these ttmmsloccurs, thercp i waits
for a specified timeout, and then informs i of the failure of the connection request.
Figure 10.13 shows a variation of the scenario mentionedgarg 10.11. After
being informed of the existence of an attemspt,j checks the capability headers and finds
them unacceptable. Then, it informs j of the rejection of the connection by sending

“REJ” string totcp i. Tcp i informssrv i of the failure of the connection establishment.

143

A
T oureudds uedapyuiof 4D 1 nusiTT 0T 8.nbi

Srvi Tepi Tepj Srv j

cRPJi,j] JRYi,j] handshakeli,j] outStatusi,j] inStatus[j SRPJji]
None false None Closed o Closed None
joinReq
None true None Connecting TCP Syn
ok
NP
peerReached /T/CP‘S
Cpbs true None Handshaking \:\\TCP\ACK
“---__ | joinRegInd
Cpbs false None Handshaking | CTX(i.j.cpbs[i]) | . onn Waiting None
. “---llee
None false cCpbs Handshaking \‘C\{R?g"estu
Pbsfi =~~~ | sRx(j,i,cpbs]i]).

None false None Handshaking Handshaking cCpbsReply
sTx(j,i,cpbs[i])

: S ---
None false sCpbs Handshaking - i no\g“i‘?pb““ Handshaking None
cRx(i,j,cpbsfl) | _.--—
sCpbsReply false None Handshaking
cTx(i,j,"OK")
T Ok .

None false Ack Connected | sRx(i ok Handshaking None
None false None Connected Connected None
cTx(i,j,"Bye")

Close false Bye Closing By
-~ | sRx(,i,"Bye")
Close false None Closing Closing Close
cog cDepartReq | —‘CPF\N sDepartReq
None false None 0sing BRSSP Closin None
Ay ’
pOK e
cDepartAck |{CP. 7~ TCcp ;>--. sDepartAck
N fal N Closed — ACk
one alse one ose Closed None
time

Srvi Tepi Tcpj Srvj
JRIi,j] handshakeli,j] outStatusi,j] inStatusfj,i]
false None Closed joinReq T Closed
-.Icp
true None Connecting “‘\CQQI]eCﬁOn
5 e
o
(]
£
'_
joinAborted
true None Closed
time
i’s TCP connection
handshake failed.
Figure 10.12:Gnu_TCP join/depart scenario 2
Srvi Tepi Tcepj Srvj
JR[i,j handshakel[i,j] outStatusli,j] | _inStatusii]
false None Closed joinReq Closed
true None Connecting ”n?Ct,On
joinRegInd
false None Connecting peerReached Connecting
false None Handshaking
cTx(i,j,cpbs[il)| * on
- n
false cCpbs Handshaking GQ{quUGS[
Cpbs[,-]‘ sRx(},i,cpbs[i])
- Handshaking
sTx(j,i,"REJ")
false None Handshaking “3‘;3,". Closed
cRx(i,j,"REJ")
false None Closed
time

i’s capabilities are not
acceptable to j

Figure 10.13Gnu_TCP join/depart scenario 3

145

IRl
false

true

false

false

false
false

false

false

false

handshakeli,j]

None

None

None

None

cCpbs
None
sCpbs

None

None

outStatusli,j]

Closed

Connecting

Connecting

Handshaking

Handshaking

Handshaking

Handshaking

Handshaking

Closed

Srvi

joinReq

peerReached

j's capabilities are

not acceptable to i

Tepi

cTx(i,j,cpbs[i])| "C

CcTx(i,j,"REJ")

cRx(i,j,cpbs[iDl, ----~~

Tcpj

joinReqInd

I SRx(j,i,cpbsli])|

sTx(j,i,cpbslj])

sRx(,i,"REJ"

i's capabilities are

acceptable to j

Figure 10.14Gnu_TCP join/depart scenario 4

Srv j

inStatusj,i]

Closed

Waiting

Handshaking

Handshaking

Closed
time

Figure 10.14 shows a variation of the scenario mentionedguarg 10.13. Suppose

thatsrv j accepts i's capability headers, and consequently, it S§DKS string to tcp i

followed by its own capability header$cp i passes the capability headersitoi, which

finds j's capability headers unacceptable. Thus,i informstcp i to send “REJ” string

to tcp j as an indication of the rejection of the connection esthbient. Finally,tcp i

informssrv j of this rejection.

Figure 10.15 shows a scenario whewn i requests connection to node j, laltorts

(closes abruptly) before the Gnutella connection is estiadtl. Tcp j waits for an ar-

bitrary timeout before informingrv j of the failure of the connection attempt. In fig-

ure 10.16, node i recovers, activateg i and requests the establishment of the connec-

tion before j's timeout fires. In this casep j informssrv j of the existence of a new

146

Srvi Tepi Tcpj Srvj

JRIi,jl handshakeli,j] outStatusi,j] inStatus(j,i]
false None Closed joinReq ., Closed
-Icp
true None Connecting T \F\q'?’]ectio,]
joinRegInd
false None Connecting peerReached Waiting
false None Handshaking
cTx(ii.cpbs[)| "Copp,,,
false cCpbs Handshaking el f{!??unst"
CPbspy - | sRx(i,i,cpbs]
false None Handshaking Handshaking
sTx(j,i,cpbs[j])
false sCpbs Handshaking abort .x (;.9‘95/“\'// Handshaking
false None Closed
3
(]
£
JjoinRegAbort
Closed
time

i's capabilities are

acceptable to j

Figure 10.15Gnu_TCP join/depart scenario 5

connection request.
The join/depart component of serviGau_TCP define the following progress obli-

gations for every pair i and j:

P1 If i has requested a connection establishment, thenwalgn(l) j is statéWNVaiting

(wrt i) or (2) one or both nodes af8osed.

P2 If i is Connecting and j isWaiting, then eventually (1) i i$landshaking, or (2) one

or both i and j areClosed.

P3 Ifiis Handshaking and j isWaiting, then eventually (1) i and j af¢andshaking, or

(2) one or both nodes afdosed.

P4 If i is Handshaking and j isHandshaking, then eventually (1) i i€onnected, or (2)

147

IR
false

true

false

false

false

false
false

false

true

false

false

handshakeli,j]

None

None

None

None

sCpbs
None
sCpbs

None

None

None

None

outStatusli,j]

Closed

Connecting

Connecting

Handshaking

Handshaking

Handshaking
Handshaking

Closed

Connecting

Connecting

Handshaking

Srvi Tepi

joinReq

peerReached

cTx(i,j,cpbsli]) |

abort

joinReq

peerReached

cTx(i,j,cpbs[i])

Cpbs[,}; =

Tepj Srvj
Tcp
=P G
~.C ‘97{7\8;?{"0’7 joinReqInd
- "Cony,
-~0nnecy
E“‘e‘gy\eist'# -)
Pbsjir ===~ | sRx(j,i,cpbsli)
@ STx(j,i,cpbsli])
s -~
'Q\C + P
--..Tcp
=P G
ety joinRegInd
“Con
e neCt RG’QUeS,,.
S +

Figure 10.16:Gnu_TCP join/depart scenario 6

148

inStatusj,i]

Closed

Waiting

Handshaking

Handshaking

Waiting

time

one or both nodes aKdosed.

P5 Ifiis Connected and j isHandshaking, then eventually (1) i and j at@nnected, or

(2) one or both nodes afdosed.

P6 If joinReq(i,j) occurs, then eithepeerReached(i, j), joinAborted(i, j) or abort(i, j)

will eventually be executed. Node i cannot stay in staienecting forever.

P7 If joinReqlInd(i,) occurs, thercRx(i, j, cpbs]i]), joinReqAbort(i,j) or abort(i,) is

eventually executed. Node i cannot stay in sW&teting forever.

P8 Client node i cannot stay in stda@ndshaking forever.

P9 Server node i cannot stay in stéftendshaking forever.

P10 If cDepartReq(i,j) occurs, then eithetDepartAck(i,j) or abort(i,j) is eventually

executed.

P11 If sDepartReq(i,j) occurs, then eithesDepartAck(i,) or abort(i,j) is eventually

executed.

P12 If a client node has a reply pending, then it eventualies or the connection is

aborted.

P13 If a server node has a reply pending, then it eventugblyeeor the connection is

aborted.

149

10.3.2 Query component

A query has a unique 16-byte descripifirand a criteria string. Gnutella defines no stan-
dard format or matching semantics for the criteria stritgjnterpretation is completely
determined by each node that receives it [32]. This compoaies node i is active only

if srv i's outStatus|i, j| (defined in the join/depart component)dsnnected.

classGUID = 16-byte ID;
classQuery {

GUID id;

String criteria,;

}

The Query component dknu_TCP service (figure 10.27) defines the following

variables for each noded Node— {null}:

e Set(GUID) Qi,j]. Initialized to{}. Set of queries transmitted from node i to node

j.

Set(GUID) QRevd(i, j]. Initialized to{}. Queries received by i from j.

Set(GUID) QHasHit[i, j]. Initialized to{}. Set of query requests received by i where

i has files/data that satisfy the queries in this set.

Set(GUID) HJi]. Initialized to{}. Set of query requests transmitted to j by node i.

Set(GUID) HRcevd[i]. Initialized to{}. Set of query requests received by i from j.

Table 10.3 illustrates the events used in the query comporfégure 10.17 de-
scribes a scenario for the flow of a query requeStv i sends a query to the net-

work through node k vidxQuery(i,j). Tcp k receives it and asksv k about hits via

150

upw/dnw | Event Indication

dnw TxQuery(i,j,q) i issues query q

upw RxQuery(i,j, q) | ireceives query q; it returnsue
if it has hits,false otherwise
dnw | TxHit(i, j, g, hits) | i sends or forwards hits for query|q
upw RxHit(i, j, g, hits) | i receives hits from j for query q

Table 10.3: Events of query component of sen@ea_TCP. The first parameter indicates
the servent where the event occurs.

Initiating Node Node Without Hit Node With Hit

**

TxQu:ery

Query Msg ! ' Query Msg

Yy
I ‘ H
| Neti } Net k | 1 Net]j
' QueryHit Msg — ! QueryHit Msg |

Figure 10.17:Gnu_TCP query scenario

RxQuery(k,i,q). Whentcp k knows thatsrv k has no hits, it forwards to its neigh-
bors, specifically j. Tcp j receives it and asksv j about hits. It discovers thatv j
has some hits, so it does not forwaydo any other node. Latesyv j sends the hits via
TxHit(j, k, g.id, hits), and the hits message follows the same route backptdand then
to srv i via RxHit (events of receiving and forwarding query hits at node k anéted in
figure 10.17, for figure simplicity).

The query component of serviéau_TCP define the following progress obliga-

tions:

SP1 Ifireceives a query q and i has an answer, it eventuadiyars or exits.

151

10.4 Testing and assertion checking of Furi

There are many open-source Java implementations for Gauted example, Furi [87],
Limewire [37], Phex [39] and JTella [53]

We applied the SeSFJava Harness to Furi. Furi is a mediuaa-$83,000 lines of
code) Java implementation of Gnutella, which was develdpedyears ago. We chose
Furi because of its good documentation and readability.oétsdnot support protocols
other than Gnutella, as opposed, for example, to the moral@opimewire which sup-
ports Gnutella and other protocols. Furi’s program stmects the closest to the Gnutella
stack (figure 10.1); that is, there is a set of Java classésdh@sponds to Gnutella man-
agement system, and an another set that corresponds toRhappRcation. During the
execution of Furi, we encountered fewer GUI errors compéveather systems (except
Limewire).

Unfortunately, applying the Harness to Furi was not strdggtvard due to the fol-

lowing problems:

e The names of the xc events in Furi differ from the correspogdivents in the

peer-to-peer services. We developed wrapper classes ficoove this problem.

e Some of the xc events in Furi are blockable events. The toadit way to over-
come such problem is to replace each blockable xc event by two events: an
xc event that corresponds to the initiation (or call)<o#>, and another Ic event
that corresponds to the return @k&>. Unfortunately we cannot do that because
this involves modifying the implementation (which we trydwooid). Instead, we

proceed as follows; assume that the event is a blockableat#tie upper level.

152

We create two events in the upper service: one is the dnw évanhtorresponds
to the call of xc event, and another upw event that correspoodhe return of
the xc event. Then, we use the Harness breakpoint tags tweetisi correct-
ness of operation. For example, Furi has methagi®ect ToRemoteHost in file
ReadWorker.java. This method corresponds R2P _Net.joinReq(i, j). It blocks till
the TCP connection is established. To counter this problempnsgert a service call
(p2pNet.joinReq) before the call taonnect ToRemoteHost, and another service call
(p2pNet.peerReached) after the call. We insert breakpoints to instruct the teste

how to execute the operation.

/I p2pNet is an alias to service P2P_Net

[l# breakpoint("ReadWorker.start”, VIEW_AND_AUTOMATIC);

I/l ServiceManager.hostPortName gets the address of the sender node
/I mRemoteHost.getHostAddr() gets the address of the remote node
/l# p2pNet.joinReq(ServiceManager.hostPortName,

11# mRemoteHost.getHostAddr()); /Service call
[l# breakpoint("ReadWorker.start”, WAIT);

try

{

connectToRemoteHost();
if (mRemoteHost.getStatus() == Host.sStatusTimeout)

/I Connecting has been taken too long.
throw new Exception("Timed out.”);
}

}

catch (Exception e3)

{
mHostMgr.setHostCaughtConnectionFailed(mRemoteHost.getHostAddr(), true);
throw e3;

}

[l# breakpoint("ReadWorker.peerReached”, VIEW_AND_AUTOMATIC);

/I# p2pNet.peerReached(ServiceManager.hostPortName,

114 mRemoteHost.getHostAddr()); /Service call

[/I# breakpoint("ReadWorker.tcpEstablished”, VIEW_AND_AUTOMATIC);

Some methods include calls to multiple events, where eaehtas atomic. We

handle this by inserting manually calls to the correspog@irvice events. Break-

153

points are inserted to slice these methods in sequencenf@ikoevents.

In order to test the implementation, we ran three copies df BEach is on a differ-
ent machine on thpinkfoodandUMIACSclusters of University of Maryland. The three
copies interact with each other, connecting and discoimgecontinuously. We found the

following errors:

¢ We found many synchronization errors in the connectiorbéistament. Furi allows
multiple connections to the same node if two consecytivdReq calls are made to

the same node.

e Furi does not treat the domain name and the IP address of aasdtle same node.
For examplepewton.cs.umd.edu has an IP address @28.8.129.9. A Furi copy
at machinex can connect tmewton.cs.umd.edu:1234, and then connect again to

128.8.129.9:1234 without realizing that they are the same.

e The program works fine if all the nodes have the default p28t. If some of the
hosts have different ports, this may result in errors bezeausome situations, the

Furi does not augment the domain name with the port name.

154

serviceGnu {
for the following definitions: i and j € Node — {null}.
state[i] = {Active, Departing, Inactive}. Initialized to Inactive.
outStatus]i,j] = {Closed, Connecting, Connected, Closing}. Initialized to Closed.
inStatusli,j] = {Closed, Connecting, Connected, Closing}. Initialized to Closed.
boolean JR(i,j]. Initialized to false.
boolean JRRYi,j]. Initialized to false.
boolean acking[i,j]. Initialized to false.

dnw activate (Node i) {
ec: state[i] = Inactive;
ac: state[i] := Active;
JR[*,i] := false;
JRR[*,]] := false;
JRRACK[*,i] := false;

}

/I App i requests a connection to j.
dnw joinReq (Node i, Node j) {
ec:i # j A state[i] = Active A outStatus|i,j]= Closed;
ac: outStatus]i,j] := Connecting;
JR[i,j] := true;

/I Connection request joinReq(i,j) has been accepted, and informs app i of the acceptance.
upw joinind (Node i, Node j) {
ec:i # j A JRR][j,i] A outStatus[i,j] = Connecting;
ac: outStatus|i,j] := Connected;
JRRJ[j,i] := false;
JRRACK[i,j] := true;
}

/I Connection request joinReq(i,j) has been rejected, and srv i informs app i of the rejection.
upw joinRej (Node i, Node j) {
ec:i # j A outStatus]i,j] = Connecting;
ac: outStatus]i,j] := Closed;
JRRY[j,i] := false;
}

/I Srv j has requested a connection to srv i.
upw joinReqInd (Node i, Node j) {
ec:i #] A state[i] = Active A JRJj,i] A inStatusi,j] € {Closed, Connecting, Connected};
ac: inStatusi,j] := Connecting;
JR[},i] := false;
JRR[i,j] := true;

/I Srv i accepts the connection request initiated by node j, and informs app i of the acceptance.
upw joinRegAck (Node i, Node j) {
ec:i #j A JRRACK[,i] A inStatus]i,j] = Connecting;
ac: inStatus|i,j] := Connected;
JRRACK]j,i] := false;
}

/I Srv i rejects the connection request initiated by srv j, and informs app i of the rejection.
upw joinReqgRej (Node i, Node j) {
ec:i # j A inStatus|i,j] = Connecting;
ac: inStatus|[i,j] := Closed;
JRRACK]j,i] := false;

Figure 10.18: Join/depart component@iu service in SeSF (Part 1)

155

/I Srv i informs the app i that j has departed or is departing the network,
/I and i has closed all its connections to j.
upw departind (Node i, Node j) {
ec:i # j A (outStatus[i,j] = Connected V inStatus]i,j] = Connected);
ac: outStatus]i,j] := Closed;
inStatusJi,j] := Closed,;

JR[j,i] := false;
JRRY[j,i] := false;
JRRACK][j,i] := false;
JR[i,j] := false;
JRR[i,j] := false;

JRRACK]i,j] := false;
}

/I App i is requesting to depart the network.
dnw departReq (Node i) {
ec: state[i] = Active;
ac: state[i] := Departing;
forall (j: j € Node - {null}) {
if (outStatus[i,j] = Connected)
outStatusli,j] := Closing;
else
outStatusli,j] := Closed;
if (inStatusli,j] = Connected)
inStatusi,j] := Closing;
else
inStatusi,j] := Closed;
}

}

/I Node i has no Connecting, Connected, or closing connections.
upw departAck(Node i) {
ec: state[i] = Departing;
ac: state[i] := Inactive;
outStatus[i,*] := Closed;
inStatus|i,*] := Closed;
JR[*,i] := false;
JRR[*,i] := false;
JRRACK[*)i] := false;
}

/I App i closes abruptly.
dnw abort (Node i) {
ec: state[i] # Inactive;
ac: state[i] := Inactive;
outStatus[i,*] := Closed;
inStatusJi,*] := Closed;
JR[*,i] := false;
JRR[*,i] := false;
JRRACK[*i] := false;

Figure 10.19: Join/depart component@fu service in SeSF (Part 2)

156

for the following definitions, i # j # null Ai #]

/I'If i's outStatus is Connecting and j's inStatus is Connecting, then eventually (1) i's outStatus is Connected,
I/ (2) both i's outStatus and j’s inStatus are Closed, or (3) one or both nodes depart.
progress-obligationP1 {
(outStatus[i,j] = Connecting A inStatus]j,ij = Connecting) leadsto
((outStatus[i,j] = Connected A inStatuslj,i] = Connecting) V (outStatus]i,j] = Closed A inStatus[j,i] = Closed) Vv
state[i] # Active V state[j] # Active);

II'If i's outStatus is Connected and j's inStatus is Connecting,
/I then eventually (1) i's outStatus and j's inStatus are Connected, or (2) one or both nodes depart.
progress-obligationP2 {
(outStatus[i,jj = Connected A inStatus]j,i] = Connecting) leadsto
((outStatusli,j] = Connected A inStatuslj,i] = Connected) V state[i] # Active V state[j] # Active);

I'If joinReq(i,j) occurs, then either joinind(i,j) or joinRej(i,j) will eventually be executed,
/I or node i departs the network. Node i's outStatus cannot stay in state Connecting forever.
progress-obligationP3 {

(outStatus[i,jj = Connecting leadsto (outStatus]i,j] = Closed V outStatus][i,jl = Connected V state[i] # Active)

/I If joinReqInd(i,j) is occurred, then either joinRegAck(i,j) or joinReqgRej(i,j) is eventually executed,
/I or i departs the network. Node i's inStatus cannot stay in state Connecting forever.
progress-obligationP4 {

(inStatusli,j] = Connecting A i,j # null) leadsto(inStatus][i,j] = Closed V inStatus]i,j] = Connected V statel[i] # Active)

/' If departReq(i) occurs, then either departAck(i) or abort(i) is eventually executed.
/I Node i cannot stay in state Departing forever.
progress-obligationP5 {

state[i] = Departing leadstostate[i] = Inactive

/I If i is inactive, then all connections to i are eventually closed.
progress-obligationP6 {
state[i] = Inactive leadsto
(V¥ j: (j, i) € E ::(outStatus[j,i] = Closed A inStatus]j,i] = Closed) V state[j] # Active)

Figure 10.20: Join/depart component@iu service in SeSF (Part 3)

157

serviceGnu {

for the following definitions, i € Node — {null}.
boolean querying[i] = {true, false}. Initialized to false.

/I App i issues a query request.

dnw queryReq (Node i, String query) {
ec: state[i] = Active A !querying[i];
ac: queryingl[i] := true;

/I App i receives set of hits. The set may be empty.
upw queryHitRcvd (Node i, Set(Hit) hits) {

ec: state[i] = Active A querying[i];

ac: queryingl[i] := false;

/I'If i send a query, it will receive an answer.
progress-obligationSP1{
querying][i] leadsto —querying V state[i] = Inactive;

Figure 10.21: Query component Ghu service in SeSF

158

serviceGnu_TCP {
for all of the following definitions: i and j € Node — {null}.

outStatusi,j] = {Closed, Connecting, Handshaking, Connected, Closing}. Initialized to Closed.
inStatusi,j] = {Closed, Waiting, Handshaking, Connected}. Initialized to Closed.

boolean JRYi,j] Initialized to false.

handshakeli,j] = {None, cCpbs, sCpbs, Ack}. Initialized to None.

cRPIJi,j] = {None, Cpbs, sCpbsReply, Close}. Initialized to None.

sRPJi,j] = {None, cCpbsReply, Close}. Initialized to None.

/I Srv i requests a connection to j.
dnw joinReq (Node i, Node j) {
ec:i # j A outStatus]i,j]= Closed;
ac: outStatus]i,j] := Connecting;
JR[i,j] := true;

/I Srv i learns that it has established a TCP connection with j.
upw peerReached (Node i, Node j) {
ec:i # j A outStatus][i,jl = Connecting;
ac: outStatusi,j] := Handshaking;
cRPi,j] := Cpbs;

/I Client servent i sends a message s to j.
dnw cTx (Node i, Node j, String s) {
ec:i # j A outStatus|i,j] € {Handshaking, Connected};
ac: if (outStatus[i,j] = Handshaking A cRPJi,j] = Cpbs A prefix(s) = "Connect Request”) { //Sending Cpbs
handshakeli,j] := cCpbs;
cRPIi,j] := None;
} else if (outStatus]i,j] = Handshaking A cRPIi,j] = sCpbsReply A s = "OK") { // Sending OK
outStatusli,j] := Connected;
handshakeli,j] := Ack;
cRPIi,j] := None;
} else if (outStatus]i,j] = Handshaking A cRP][i,j] = sCpbsReply A s ="REJ") { // Sending REJ
outStatusli,j] := Closed;
cRPIi,j] := None;
} else if (outStatus]i,j] = Connected A s = "Bye”) {
outStatusli.j] := Closing;
handshakeli,j] := Bye;
cRPJi,j] := Close;

}

/I Client servent i receives a message s from j.
upw cRx (Node i, Node j, String s) {
ec:i # j A outStatus]i,j] = Handshaking;
ac: if (handshakeli,j] = sCpbs A prefix(s) = "OK") { // sCpbs Received
cRPIi,j] := sCpbsReply;
handshakeli,j] := None;
} else if (prefix(s) = "REJ") { // REJ Received
outStatusli,j] := Closed;

}

/I Srv i learns that its connection request to j is rejected.
upw joinAborted (Node i, Node j) {
ec:i # j A outStatus|i,j] € {Connecting, Handshaking};
ac: outStatusfi,j] := Closed;
if (handshake[i,j] = sCpbs)
handshake[i,j] := None;

Figure 10.22: Join/Depart component of GRGP service in SeSF (Part 1)

159

/I Srv i receives a connection request from j.
upw joinReqInd (Node i, Node j) {
ec:i # j A JR[j,i] A inStatus]i,j] € {Closed, Waiting, Handshaking, Connected};
ac: inStatus|i,j] := Waiting;
JR[j,i] := false;

/I Server servent i receives j's message
upw sRx (Node i, Node j, String s) {
ec:i # j A inStatus|i,j] € {Waiting, Handshaking, Connected};
ac: if (inStatus[i,j] = Waiting A handshakel[j,i] = cCpbs A prefix(s) = "Connect Request”) { // cCaps Received
inStatusi,j] := Handshaking;
handshakelj,i] := None;
sRPIJi,j] := cCpbsReply;
} else if (inStatus]i,j] = Handshaking A handshake[j,i] = Ack A s ="OK") { // OK Received (final leg of handshake)
status]i,j] := Connected;
handshakel[j,i] := None;
} else if (inStatus]i,j] = Handshaking A s = "REJ") { // REJ Received
inStatusi,j] := Closed;
} else if (inStatus]i,j] = Connected A handshake[j,i] = Bye A s = "Bye”) {
inStatusi,j] := Closing;
handshakelj,i] := None;
sRPJi,j] := Close;
}
}

/I Server servent i sends a message s to j.
dnw sTx (Node i, Node j, String s) {
ec:i # j A inStatus|i,j] = Handshaking A sRPJi,j] = cCpbsReply A handshake[j,i] = None;
ac: sRPJi,j] := None;
if (prefix(s) = "OK”) { //Accepting j's capabilities
handshakelj,i] := sCpbs;
} else if (s = "REJ") { //Rejecting j's capabilities
inStatusi,j] := Closed;

}

/I Srv i learns of the rejection to j's connection request.
upw joinRegAbort (Node i, Node j) {
ec:i # j A inStatusfi,j] € {Waiting, Handshaking};
ac: inStatusi,j] := Closed;
if (handshakelj,i] € {cCpbs, Ack})
handshakel[j,i] := None;

Figure 10.23: Join/Depart component of GRGP service in SeSF (Part 2)

160

/I Client servent i requests to disconnect its connection to j
dnw cDepartReq (Node i, Node j) {

ec: outStatusi,j] = Closing A cRPJi,j] = Close;

ac: cRP[i,j] := None;

/I Client servent i's request to disconnect is fulfilled.
upw cDepartAck(Node i, Node j) {
ec: outStatusi,j] = Closing A cRPJi,j] = None;
ac: outStatus]i,j] := Closed;

}

/I Server servent i requests to disconnect with j.
dnw sDepartReq (Node i, Node j) {
ec: sStatus][i,j] = Closing A sRP]i,j] = Close;
ac: sRP[i,j] := None;

/I Server servent i's request to disconnect is fulfilled.
upw sDepartAck(Node i, Node j) {

ec: inStatus]i,j] = Closing A sRPJi,j] = None;

ac: inStatusi,j] := Closed,;

}

/i terminates abruptly.
dnw abort (Node i, Node j) {
ec:i # j A (outStatus|i,j] # Closed V inStatus[i,j] # Closed);
ac: outStatus]i,j] := Closed;
inStatus|i,j] := Closed,
JRY[j,i] := false;
cRPi,j] := None;
sRP[i,j] := None;
if (handshakelj,i] € {cCpbs, Ack})
handshakelj,i] := None;
if (handshakeli,j] = sCpbs)
handshakeli,j] := None;

Figure 10.24: Join/Depart component of GRGP service in SeSF (Part 3)

161

For all the following definitions, i # j # null Ai #j

/l'If i has requested a connection establishment, then eventually
I (1) j is state Waiting (wrt i) or (2) one or both nodes are Closed.
progress-obligationP1 {
(outStatus[i,j] = Connecting A inStatus]j,i] € {Closed, Waiting, Handshaking, Connected}) leadsto
((outStatusi,j] = Connecting A inStatus]j,i] = Waiting) V outStatus][i,j] = Closed V inStatus|j,i] = Closed)

Il'If i is Connecting and j is Waiting, then eventually (1) i is Handshaking, or (2) both i and j are closed.
progress-obligationP2 {

(outStatusi,j] = Connecting A inStatus]j,i] = Waiting) leadsto

((outStatus[i,jl = Handshaking A inStatus[j,i] = Waiting) Vv outStatusi,j] = Closed V inStatus][j,i] = Closed)

/I lf i is Handshaking and j is Waiting, then eventually (1) i and j are Handshaking,
Il or (2) one or both nodes are closed.
progress-obligationP3 {
(outStatusi,j] = Handshaking A inStatus[j,i] = Waiting) leadsto
((outStatus[i,jj = Handshaking A inStatus[j,i] = Handshaking) Vv outStatusi,jj = Closed V inStatus]j,i] = Closed)

/[If i is Handshaking and j is Handshaking, then eventually (1) i is Connected,
Il or (2) one or both nodes are closed.
progress-obligationP4 {
(outStatus]i,j] = Handshaking A inStatus[j,i] = Handshaking) leadsto
((outStatus[i,jl = Connected A inStatus|j,i] = Handshaking) Vv outStatus|i,j] = Closed V inStatus][j,i] = Closed)

/l'lf i is Connected and j is Handshaking, then eventually (1) i and j are Connected,
Il or (2) one or both nodes are closed.
progress-obligationP5 {
(outStatus[i,j] = Connected A inStatus]j,i] = Handshaking) leadsto
((outStatus[i,jl = Connected A inStatus|j,i] = Connected) V outStatus]i,j] = Closed V inStatus[j,i] = Closed)

I1'If joinReq(i, j) occurs, then either peerReached(i, j), joinAborted(i, j) or abort(i, j) will eventually be executed.
/I Node i cannot stay in state Connecting forever.
progress-obligationP6 {

outStatus]i,jj = Connecting leadsto (outStatus]i,j] = Closed V outStatus]i,j] = Handshaking)

I1'If joinReqlnd(i, j) occurs, then cRx(i, j, cpbsli]), joinReqAbort(i, j) or abort(i, j) is eventually executed.
/I Node i cannot stay in state Waiting forever.
progress-obligationP7 {

inStatusli,j] = Waiting leadsto (inStatus|i,j] = Closed V inStatus][i,j] = Handshaking)

/I Client node i cannot stay in state Handshaking forever.
progress-obligationP8 {
outStatus]i,jj = Handshaking leadsto (outStatus]i,j] = Closed V outStatusi,j] = Connected)

}

Figure 10.25: Join/Depart component of GRGP service in SeSF (Part 4)

162

/I Server node i cannot stay in state Handshaking forever.
progress-obligationP9 {
inStatusli,j] = Handshaking leadsto (inStatus]i,j] = Closed V inStatus[i,jj = Connected)

II'If cDepartReq(i, j) occurs, then either cDepartAck(i, j) or abort(i, j) is eventually executed.
progress-obligationP10 {
outStatus][i,j] = Closing leadstooutStatusi,j] = Closed;

}

/1'If sDepartReq(i, j) occurs, then either sDepartAck(i, j) or abort(i, j) is eventually executed.
progress-obligationP11 {
inStatusi,j] = Closing leadstoinStatus]i,j] = Closed;

/I If a client node has a reply pending, then it eventually replies or the connection is aborted.
progress-obligationP12 {
cRPi,j] # None leadstocRPJi,jl = None V outStatus]i,j] = Closed;

II'If a server node has a reply pending, then it eventually replies or the connection is aborted.
progress-obligationP13 {
SRPIi,j] # None leadstosRP[i,jl = None V inStatusi,j] = Closed;

Figure 10.26: Join/Depart component of GRGP service in SeSF (Part 5)

163

serviceGnu_TCP {

for the following definitions, i € Node — {null}.
Set(GUID) Q][i,j]. Initialized to {}.

Set(GUID) QRcvd[i,j]. Initialized to {}.
Set(GUID) QHasHit[i,j]. Initialized to {}.
Set(GUID) H[i,j]. Initialized to {}.

Set(GUID) HRcvd[i,j]. Initialized to {}.

function boolean connected(Node i, Node j) {
return (outStatus[i,jl = Connected V inStatus[i,jj = Connected)

}

/I Srv i sends a query request to j
dnw TxQuery (Node i, Node j, Query q) {

ec:i #j A connected(i,j) A g.id € Q[i,j] U QRevd]i,j];
} ac: Qfi] := Q[i,j] U {a.id};

/I Tcp i informs srv i of the arrival of a query request.
/I Srv i returns true if the set of files that satisfy the query is not empty.
upw booleanRxQuery (Node i, Node j, Query q)) {

ec:i # j A connected(i,j) A g.id € QIj,il A (g.id € QIi,j] U QRevd[i,j);

ac: QRcvd := QRevd[i] U {q.id};

if (return = true)
QHasHit[i] := QHasHit[i] U {q.id};

}

/I Tcp i receives hits from tcp j.
/I Multiple replies (either from different nodes or from the same node)
/I may arrive in response to the same query request.
upw RxHit (Node i, Node j, GUID id, Set(Hit) hits) {
ec:i # j A connected(i,j) A id € Q[i,j] A id € HJ[j,i];
ac: HRevd][i,j] := HRevd][i,j] U {id};
}

/I Srv i transmits hits to srv |.
/I Srv i may send multiple replies to the same query (if the set of replies exceeds the MTU of a msg).
dnw TxHit (Node i, GUID id, Set(Hit) hits) {

ec:i # j A connected(i,j) A id € QIi,j] A id & H[i,j] U HRevd][i,j];

ac: H[i,j] := HIi,jJ U {id};

I If i receives a query with "id” and i has a hit, it eventually answers or the connection is closed.
progress-obligationSP1 {

(id € QHasHit[i,j]) leadsto(id € H[i,j] vV gonnected(i,j))
}

Figure 10.27: Query component Ghu_TCP service in SeSF

164

Chapter 11

Conclusions and Future Work

We have integrated the SeSF framework for concurrent amidldited systems into Java.
The resulting framework, called SeSFJava, can be used twedefecutable services (i.e.,
external specification) of concurrent and distributed eayst.

We have also implemented a Harness for testing systemssagaiwices and against
safety and progress assertions, where systems, servickgsaertions are specified in
SeSFJava. SeSFJava Harness is able to handle generalnmspgeneral services, and
general safety and progress assertions. SeSFJava Haandssicsystems on their actual
platforms. It can handle both multi-threaded systems anlti4process systems.

Finally, we have presented two major applications of Se&Faad the Harness.
The first was to the TCP transport protocol, and the second evasanutella network.
We wrote the intended services of Gnutella, and tested an-sperce implementation,
namely Furi, against the services.

The TCP transport protocol application was also done in thmestd of a senior-
level undergraduate introductory networking course avehsity of Maryland (CMSC417).

The use of SeSF significantly increased the percentage dérstsi who completed the

165

projects, reduced their email queries about the speciticaind reduced the grading
time.

There are several possible areas of future work. One is tndxb web services.
Web services, such as stock tickers and inventory checkcssipvare packaged as pub-
licly accessible software components that are invoked bgnams. XML is the standard
format used for data transmission of web services, and XMéryjlanguages are used
for manipulation of the data. W3C, in addition to companieg.(éMicrosoft, IBM), is
pushing to standardize the web services.

Researchers have used model checkers to check the corseattigsse services [60,
24]. But model checkers, while appropriate for finite stateges, do not capture the
tree-structure of XML data and the high expressiveness of XjMery languages. In ad-
dition, most of these methods require the translation ofwthle services into intermediate
languages suitable for analysis. We propose to integr&&€ Sad the testing harness with
the WSDL [2] interface specification of web services and whithiit behavioral descrip-
tions (e.g., BPEL [23], WSCI [1]).

Another possible area of work is in testing device driverdie Thain reason of
crashes of commercial operating systems is the malfuncfiaevice drivers, for exam-
ple, 85% of crashes of Windows XP are due to errors in deviseidf83]. Techniques
can be developed to check the correctness of these drivér®amevent a failed driver
from corrupting the kernel. Ours could define SeSF execwsgregices for the interface
between the operating system kernel and the device driveh Services should capture
not only the syntax of the interface but also its behavioisTould permit OS developers

to test the drivers against their services and thus redcettmber of crashes of the OS.

166

Appendix A

Preprocessed Code of\ccountExample

A.1 BankSystem.java

import java.util.*;

import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

class BankSystem extends UnicastRemoteObject implements Bankinterface {
final static int MANUAL =0;
final static int VIEW_AND_AUTOMATIC = 1;

final static int AUTOMATIC =2;
final static int VIEW =3;
final static int END =4;
final static int WAIT =5;

void breakpoint(String breakpointName, int mode) {
breakpoint(breakpointName, null, mode);

void breakpoint(String breakpointName, String comment, int mode) {
try {
Hashtable watches = null;
Hashtable assertions = checkAssertions(true);
Marshalledinformation breakpointData =
new Marshalledinformation("BankSystem”, MarshalledInformation.SYSTEM,
breakpointName, mode, comment, watches, assertions);
breakpointData.threadName = Thread.currentThread().getName();
tester.breakpoint(breakpointData);
} catch(RemoteException re){
re.printStackTrace();
}
}

Hashtable checkAssertions(boolean debuglinfo){
Hashtable assertions = new Hashtable();
/I Assertion: balanceCheck
balanceCheck(debuglinfo);
if (balanceCheckResult)
assertions.put("balanceCheck”, "(true)”);
else
assertions.put("balanceCheck”, "(false)”);
return assertions;

}

167

static Accountinterface account;
static TesterInterface tester;

static int balance;//init to 0

static final int N =10;

static BankSystem bank;

static Object lock =new Object();

static Clientinterface client [[=new Clientinterface [N];//init to null

BankSystem()throws RemoteException {
account.BankSystem();
breakpoint("Bank.constructor”, VIEW_AND_AUTOMATIC);
}

public static void main(String argv [])throws Exception ,RemoteException {
tester =(TesterInterface) Naming.lookup("AccountTester");
account =(Accountinterface) Naming.lookup("Account”);
System.out.printin("Everything found in rmiregistry”);
bank =new BankSystem();
Naming.rebind("Bank”, bank);

}

public void update(int id,int n,String loc) throws RemoteException {
try {
account.update(id, n, loc);
breakpoint("xc_event: update”, "params:("+")", VIEW);
if (!(id >= 0 &&id < N &&client [id] == null))
throw new Error("Enabled Condition Failure: update ”);
synchronized(lock) {
try {
client [id] =(Clientinterface) Naming.lookup(loc);
}catch(Exception e) {
e.printStackTrace();

new DecThread(id,n).start();

} catch(RemoteException re) {
re.printStackTrace();

}
}
class DecThread extends Thread {
intid;
intn;
DecThread(int id ,int n) {
this.n =n;
this.id =id;
}
public void run(){
try {

breakpoint("Bank.breakpointl”, MANUAL);
synchronized(lock) {
if (n >= 0 ||balance >= —n) {
balance + = n;
client [id].ack(id);
} else
client [id].nack(id);
client [id] =null;

breakpoint("Bank.breakpointEnd”, END);

}catch(RemoteException re) {
re.printStackTrace();

}
}
HIEnd Thread

static boolean balanceCheckAntecedentl;

168

static boolean balanceCheckConsequentl;
static boolean balanceCheckPending1;
static boolean balanceCheckAssertion1;
static boolean initialPreprocessingl = true;
static void initbalanceCheck(){
balanceCheckAntecedentl=false;
balanceCheckConsequentl=false;
balanceCheckPendingl=false;
balanceCheckAssertionl=false;
}
static boolean balanceCheckResult = true;
void balanceCheck(boolean debuginfo) {
if(initialPreprocessingl)
initbalanceCheck();
balanceCheckAssertionl = ((balance >= 0));
initialPreprocessingl = false;
balanceCheckResult = true;
if (balanceCheckAssertionl)
System.out.printin((debuginfo)? "Assertion(” + "balanceCheckAssertion1” + ") is valid” : ™);
else
balanceCheckResult = false;

}
HIEnd system

A.2 Accountwrt_Bank.java

import java.util.*;

import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.RMISecurityManager;

import java.rmi.server.UnicastRemoteObject;

class Account_-wrt_Bank extends UnicastRemoteObject implements Clientinterface {
final static int MANUAL = 0;
final static int VIEW_AND_AUTOMATIC = 1;

final static int AUTOMATIC = 2;
final static int VIEW = 3;
final static int END = 4
final static int WAIT = 5;

void breakpoint(String breakpointName, int mode) {
breakpoint(breakpointName, null, mode);

}

void breakpoint(String breakpointName, String comment, int mode) {

try {
Hashtable watches = null;
Hashtable assertions = new Hashtable();
Marshalledinformation breakpointData =

new Marshalledinformation(”Account_wrt_Bank”, MarshalledInformation.SYSTEM,
breakpointName, mode, comment, watches, assertions);

breakpointData.threadName = Thread.currentThread().getName();
tester.breakpoint(breakpointData);

} catch(RemoteException re){
re.printStackTrace();

}

}

static Accountlinterface account; //Remote pointer to counter s user.’
static TesterInterface tester;

Object lock = new Object();
BankInterface bank;

169

static final int N = 5; //Number of clients
int balance = 0;

boolean pending [J= new boolean[N];

int amount []= new int[N];

Account_wrt_Bank() throws RemoteException {

try {
//Binding "Account”.
Naming.rebind("Account_wrt_Bank”,this);
System.out.printin("Account bound to registry”);
bank = (Bankinterface) Naming.lookup("Bank”);
new Whirl().start();

}catch(Exception e) {
e.printStackTrace();
throw new RemoteException();

}
}

public static void main(String argv [])throws Exception, RemoteException {
if (System.getSecurityManager()==null)
System.setSecurityManager(new RMISecurityManager());
tester = (TesterInterface) Naming.lookup("AccountTester”);
account = (Accountinterface) Naming.lookup("Account”);
Account_wrt_Bank client = new Account_-wrt_Bank();

}

public void update(int id, int n, String loc) throws RemoteException {
synchronized(lock) {
amount[id] = n;
pending([id] = true;
bank.update(id, n, "Account_wrt_Bank”);

}

class Whirl extends Thread {
Random r = new Random();
public void run(){
while(true) {
try {
synchronized(lock) {
int id = r.nextInt(5);
if (id >=0 &&id <N &&!pending [id]) {
update(id, r.nextInt(80) -40, "Account_wrt_Bank”);

}
sleep(10);
yield();

}catch(Exception e) {
e.printStackTrace();

}

}
}
}

public void ack(int id) throws RemoteException {
try {

account.ack(id);

breakpoint("xc_event: ack”, "params:("+")", VIEW);

synchronized(lock) {
if(!(id >= 0 &&id < N && pending[id] && (amount [id] >= 0 || balance >= —amount][id])))

throw new Error("Account_wrt_Bank.ack Enabling Condition failed.”);

pending][id] = false;
balance = balance + amount [id];

} catch(RemoteException re) {
re.printStackTrace();

}
}

170

public void nack(int id) throws RemoteException {
try {

account.nack(id);

breakpoint("xc_event: nack”, "params:("+")", VIEW);

synchronized(lock) {
if (I(id >= 0 && id < N && pending]id] && balance < —amount [id]))

throw new Error("Account_wrt_Bank.nack Enabling Condition failed.”);

pending [id] = false;

} catch(RemoteException re) {
re.printStackTrace();
}
}
}

171

Appendix B

Conversion versus Embedded Markup Language

In this dissertation, we have implemented a preprocesabatitepts files written in SeS-
FJava, that is, Java files with SeSF markup tags embeddethwiBrior to this, we
designed a converter that accepts files written in a SeSFupgmogramming language
and converts them to Java files. Figures B.1, B.2 and B.3 illiesthee SeSF version of
the BankSystem, ClientSystem andAccountService in the AccountExample of chapter 4.

We notice the following:
e The files cannot be compiled using a standard Java compiler.

e The systems make calls to upper and lower services only. Eaasof communi-

cation from a system to another (upper or lower) is not spaetifi
e Exception handling and synchronization methods are natifspe explicitly.

The converter has to insert an RMI call from a system to anpfoerexample,
wheneveiBankSystem calls eventick in AccountService, the call is replaced by an RMI
call to the corresponding eventk in systemClientSystem. The converter handles syn-

chronization and exceptions. The programmer is limitedily emall templates of code,

172

systemprogram BankSystem {
UpperService: AccountService;
static int balance;
static final int N = 10; /I number of clients
int client[] = new client[N]; /I true if the client[i] has pending update

BankSystem() {}

xc-eventvoid update(int id, int n) {
ec:id >= 0 && id < N && !client[id];
ac: client[id] = true;
start UpdateThread(id, n);

}

Thread UpdateThread (int id, int n) {
try {
breakpoint("Bank.bpBegin”, BEGIN);
beginAtomic
if (n >= 0 || balance >= -n) {
balance + = n;
AccountService.ack(id);
} else
AccountService.nack(id);
client[id] = false;
endAtomic
breakpoint("Bank.bpEnd”, END);
} catch (RemoteException re) { re.printStackTrace(); }
} //IEnd Thread
} //End System

Figure B.1: BankSystem SeSF system program
otherwise the converter cannot convert the files to Javého#ityh the converter mirrors
faithfully the SeSF theory, it has many drawbacks:

e The correctness proof of the conversion from SeSF to Javenssaimpossible.

e The converter cannot cope with the diversity and dynamianeadf programming
languages. For example, when we implemented the convedatiés,where limited
to RMI calls only, which ignores other possibilities like TCRdaMPI (Message
Passing Interface) calls. Also, we used simple synchrtioizaemplates which

limited the programmers from using more sophisticated oeith

e The performance of the generated code and its readabidityustionable.

173

system-programClientSystem {
LowerService: AccountService;
Random r = new Random(); /I random number generator
boolean wait = false; /I true if it has pending requests, false otherwise

public static void main(String argv([]) throws Exception {
ClientSystem client = new ClientSystem();
client.execute(Intger.parselnt(argv[0]));

}

void execute(int id) throws Exception {
for(inti=0;i < 50; i++){
breakpoint("Client.bpinc”, MANUAL);
wait = true;
AccountService.update(id, r.nextInt(80) - 40);
/I Wait for ack or nack
beginAtomic
while (wait){
breakpoint("Client.bpWait”, WAIT);
wait;

beginAtomic

}
breakpoint("Client.opEnd”, END);

}
xc-eventvoid ack(int id) {
ec:true;
ac: wait = false;
notify;
}
xc-eventvoid nack(int id) {
ec:true;
ac: wait = false;
notify;
}
}

Figure B.2: ClientSystem SeSF system program

174

service-program AccountService {
/l# Harness harness;

static final int N = 10; /I number of clients

int balance;

boolean pending[] = new boolean[N]; /I pending[i] is false if it has no pending request

int amount[] = new int[N]; /I amount]i] is the update value of user i last request

dnw-eventvoid BankSystem:update(int id, int n) {
ec:id >= 0 && id < N && !pending]id];
ac: amount[id] =n;
pending([id] = true;

upw-eventvoid ClientSystem:ack(int id) {
ec:id >= 0 && id < N && pending][id] && (amount[id] >= 0 || balance >= -amount[id]);
ac: pending[id] = false;
balance + = amount[id];
}

upw-eventvoid ClientSystem:nack(int id) {
ec:id >= 0 && id < N && pending][id] && balance < -amount[id];
ac: pending([id] = false;

}

progress-obligationpA {
forall i: 0 — > (N-1)
beginAssertion
pending]i] leadsto !pending]i]
endAssertion
endfor

}
}

Figure B.3: AccountService SeSF service program

175

These drawbacks are common to all frameworks that implethemonversion method [81,

85, 22, 84, 28, 66]. This convinced us to favor the markuplagg methodology.

176

Appendix C

Complete SeSFJava Programs of Data Transfer Protocol

C.1 SW._Source.java

import java.net.*;

import java.lang.*;

import java.io.*;

import java.util.*;

[l# import java.rmi.RemoteException;

/1# import java.rmi.server.UnicastRemoteObject;
/[# import java.rmi.*;

[l# system_program: SW_Source
class SW_Source{
/l# HarnesslInterface harness = SourceUser.harness;
[[# varOf(DT) dt; /I Tells the harness that variable dt is an alias of DT
[1# static DTInterface dt;
11 {
I# try {
/l# dt = (DTlInterface) Naming.lookup("DT");
[I# } catch(Exception e) {System.out.printin("Error”);}
11#}
[1# final static int mode = VIEW_AND_AUTOMATIC;

SourceUser dtsource;

NetworkSocket nSocket;

Vector sendBuf = new Vector ();

final static int msgSize = 128;

final static int bufSize = 32*1024;

final static int SW = bufSize / msgSize;
int bufUsed, ns, na, sw = SW,

Timer rTimer = new Timer();

volatile boolean contWork = true ;

Object lock = new Object(); // lock object
final static byte D = (byte) 1;

final static byte ACK = (byte) 2;

final static int headerSize = 3;

final static int msgTypeByte = 0;

final static int seqNoByteO = 1;

final static int seqNoBytel = 2;

/l# watch ns,na,sw; // Harness monitor any changes in these variables

SW_Source(int localPort, String remoteDN, int remotePort){

nSocket = new NetworkSocket(localPort, remoteDN, remotePort);
new SourceReceiver().start ();

177

new DataSender().start();

}

Il# xc_event;
public void sendData(byte [Jdata) {
[# breakpoint("breakpoint. SW_Source.sendData(’+data.length +")", mode);
synchronized(lock){
/l# ec: bufUsed + data.length <= bufSize && data.length = 0 && data.length % msgSize == 0;
int length = data.length;
int pos = 0;
while (length > 0){
int effPayload = (length > msgSize)? msgSize : length;
byte[] msgBuf = new byte[effPayload];
System.arraycopy(data, pos, msgBuf, 0, effPayload);
sendBuf.addElement(msgBuf);
ns =ns+1;
pos = pos + effPayload;
length = length - effPayload;

}
bufUsed + = data.length;

}
}

public void closeSource() {
[1# breakpoint("breakpoint. SW_Source.closeSource”, mode);
synchronized(lock){
sendBuf.clear();
contWork = false;
rTimer.cancel();
nSocket.close();

}
}

void sendDataMsg(int j) {
synchronized(lock){
if ('sendBuf.isEmpty() && (j — na) < (ns — na) && (j - na) < sw){
/I Make buffer
byte tS [] = (byte []) sendBuf.elementAt(j - na);
int length = tS.length + headerSize ;
byte[] datablock = new byte [length];
System.arraycopy(tS, 0, datablock, headerSize, tS.length);
datablock[msgTypeByte] =D ;
datablock[segNoByte0] = (byte) (j & OxFF);
datablock[seqNoBytel] = (byte) (j >> 8);
nSocket.send(datablock, datablock.length);
rTimer.schedule(new Retransmission(j), new Date((new Date()).getTime()+ 4000));

}
}
}

void receiveACK(int seqNo,int w) {
boolean ackTheData = false;
int ackedBytes = 0;
synchronized(lock){
int tmp = seqNo — na;
if (tmp >= 1){ // && tmp <= (ns — na)){
for (inti = 0; i < tmp; i++){
ackedBytes + = ((byte [])sendBuf.elementAt(0)).length;
sendBuf.removeElementAt(0);

}
na = na -+ tmp;
SW =W,

bufUsed — = ackedBytes;
ackTheData = true;
sendDataMsg(seqNo);

} else if (tmp == 0)
SW=SW >W?SsSW:Ww,;

178

if (ackTheData)
dtsource.ackData(ackedBytes);
}

class DataSender extends Thread {
public void run() {
Thread.currentThread().setName("SW_Source.DataSender”);
intj=0;
while (contWork){
[1# breakpoint("breakpoint. SW_Source.DataSender.run("+ j +)", mode);
sendDataMsqg(j);
synchronized(lock){
if (!sendBuf.isEmpty() && (j — na) < sw && (j — na) < (ns — na))
i=i+1
}

I1# breakpoint("SW_Source.DataSender”, END);

}

class Retransmission extends TimerTask {
int earlyJ ;
Retransmission (int aJ){
earlyJ =aJ ;
Thread.currentThread().setName("SW_Source.Retransmission”);

}
public void run (){
/1# breakpoint("breakpoint. SW_Source.Retransmission("+ earlyJ+")", mode);
sendDataMsg(earlyJ);
I1# breakpoint("breakpoint. SW_Source.Retransmission.End”, END);
}
}

class SourceReceiver extends Thread {
public void run(){
Thread.currentThread().setName("SW_Source.SourceReceiver”);
[1# breakpoint("breakpoint. SW_Source.SourceReceiver.start)”, mode);
while (contWork){
byte recBuf[] = new byte [100];
DatagramPacket dp = new DatagramPacket (recBuf, 100);
try {
I1# breakpoint("breakpoint. SW_Source.SourceReceiver.wait”, WAIT);
nSocket.receive (dp, 1000);
int segNo = ((int) (recBuf[seqNoBytel] & OxFF) << 8) +
(int) (recBuf[seqgNoByte0] & OxFF);
int w =(int) recBuf[headerSize];
I1# breakpoint("breakpoint. SW_Source.SourceReceiver("+seqNo + ", ” + w +")", mode);
receiveACK (seqNo, w);
}catch (InterruptedlOException iiooe){
/I Handle Congestion if needed
}catch(Exception e){
e.printStackTrace();

}

[1# breakpoint("SW_Source.SourceReceiver.End”, END);
}
}
}

C.2 SW.Sink.java

import java.util.*;

179

import java.net.*;

import java.lang.*;

import java.io.*;

import java.rmi.*;

[1# import java.rmi.RemoteException;

[/l# import java.rmi.server.UnicastRemoteObiject;
/1# import java.rmi.Naming;

[l# system_program: SW_Sink
class SW_Sink {
/l# Harnesslnterface harness = SinkUser.harness;
[# varOf(DT) dt; /I Tells the harness that variable dt is an alias of DT
[1# static DTInterface dt;
11 {
I1# try {
/l# dt = (DTInterface) Naming.lookup("DT");
/# } catch(Exception e) {System.out.printin("Error”); }
I1#}
[1# final static int mode = VIEW_AND_AUTOMATIC;
SinkUser dtsink;
NetworkSocket nSocket;
Vector recvBuf = new Vector ();
final static int bufSize = 32 * 1024;
final int msgSize = 128;
final int RW = bufSize / msgSize;
int nr, allowedBytes = bufSize;
Timer dataTimer = new Timer ();
Timer ackTimer = new Timer();
volatile boolean receiverWork = true;

Object lock = new Object();
final static byte NULL = (byte) O;

final static byte D = (byte) 1;
final static byte ACK = (byte) 2;

final static int headerSize = 3;
final static int msgTypeByte = 0;
final static int seqByte0 =1;
final static int seqBytel =2;

final static int windowSizeByte = 3;
/l# watch nr, allowedBytes; // Harness monitor any changes in these variables

SW_Sink (int localPort, String remoteDN, int remotePort){
nSocket = new NetworkSocket(localPort, remoteDN, remotePort);

for (inti = 0;i < RW; i++)
recvBuf.addElement (null);
new SinkReceiver().start();
dataTimer.scheduleAtFixedRate (new DataDelivery(), new Date(), 300);
ackTimer.scheduleAtFixedRate (new AckSender(), new Date(), 400);

}

Il# xc_event;

void readyToAccept(int n) {
[1# breakpoint("breakpoint. SW_Sink.readyToAccept(” + n + ")”, mode);
I# ec: true;
allowedBytes = n;

}

void receiveD(int cj,byte [Jdata) {
synchronized(lock){
if ((cj — nr >=0) && (cj — nr) < RW && data.length ! = 0) {
inttmp =cj — nr;
if (recvBuf.elementAt(tmp) == null)
recvBuf.set(tmp, data);

180

}
}
}

1# xc_event;
public void closeSink() {
11# breakpoint("breakpoint. SW_Sink.closeSink”, mode);
Il# ec: true;
receiverWork = false;
nSocket.close();
ackTimer.cancel();
dataTimer.cancel();

}
class AckSender extends TimerTask {
AckSender() {
Thread.currentThread().setName("SW_Sink.AckSender”);

public void run() {

/I SendACK

[1# breakpoint("breakpoint. SW_Sink.AckSender(” + nr +)", mode);
byte reply [] = new byte [headerSize + 1];

reply[msgTypeByte] = ACK;

reply[seqByte0] = (byte) (nr & OXFF);

reply[seqBytel] = (byte) (nr >> 8);

reply[windowSizeByte]= (byte) RW;
nSocket.send(reply, headerSize + 1);
[1# breakpoint("breakpoint.SW_Sink.AckSender.End”, END);
}
}

class DataDelivery extends TimerTask {
DataDelivery() {
Thread.currentThread().setName("SW_Sink.DataDelivery”);

}
public void run() {
byte[] delData;
[# breakpoint("breakpoint. SW_Sink.DataDelivery.start”, mode);
for(;;) {
I1# breakpoint("breakpoint. SW_Sink.DataDelivery.loop(” 4+ nr + ”)”, mode);
synchronized(lock){
if (!(recvBuf.elementAt(0) != null && allowedBytes > 0))
break;
byte data [J=(byte [J)recvBuf.firstElement ();
if (data.length <= allowedBytes){
recvBuf.removeElementAt(0);
recvBuf.addElement(null);
nr=nr+1;
allowedBytes — = data.length;
delData = data;
Jelse {
byte rec[] = new byte [(int) allowedBytes];
byte residue[] = new byte [data.length — (int)allowedBytes];
System.arraycopy(data, 0, rec, O, rec.length);
System.arraycopy(data, rec.length, residue, 0, residue.length);
recvBuf.removeElementAt(0);
recvBuf.add(0, residue);
allowedBytes = allowedBytes — rec.length;
delData = rec;

}

dtsink.deliverData(delData);
}
[1# breakpoint("breakpoint. SW_Sink.DataDelivery.End”, END);

}

class SinkReceiver extends Thread {

181

C.

SinkReceiver(){
setName("SW_Sink.SinkReceiver”);

}

public void run() {
[1# breakpoint("breakpoint. SW_Sink.SinkReceiverStart”, mode);
while (receiverWork) {
byte recBuf [|[= new byte [headerSize + msgSize];
DatagramPacket dp = new DatagramPacket(recBuf, headerSize + msgSize);
try {
/1# breakpoint("breakpoint. SW_Sink.SinkReceiver.waitForMsg”, WAIT);
nSocket.receive(dp, headerSize + msgSize);
int cj =((int) (recBuf[seqBytel] & OxFF) << 8) + (int) (recBuf[seqByte0] & OxFF);
byte data[] = new byte[dp.getLength() — headerSize];
System.arraycopy(recBuf, headerSize, data, 0, data.length);
/1# breakpoint("breakpoint.SW_Sink.SinkReceiver.MsgRcvd(” + ¢j +)", mode);
receiveD(cj, data);
}catch (InterruptedIOException iioe) {
/I Do Nothing congestion control
}catch (IOException ioe){
ioe.printStackTrace(); }
/] this.yield ();

[1# breakpoint("breakpoint. SW_Sink.SinkReceiver.END”, END);

3 DT.java

import java.util.*;

import java.io.*;

import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.RMISecurityManager;

import java.rmi.server.UnicastRemoteObject;

[# service_program: DT
class DT extends UnicastRemoteObject implements DTInterface

The following part describes Data Transfer (DT) service.
DT service specifies a reliable data transfer service from a
source entity to a sink entity, that is,
- Safety: data is delivered in the same sequence without loss or
duplication.
DT assumes that source and sink are always connected and correctly
initialized.

DT has two groups corresponding to source and sink entities
and events associated with each group.
- Group "Source” :

Four events are associated with Source:

- constructor(localPort, remoteDN, remotePort, availBufSize)
constructs source entity with parameters: entity’s local
port, remote domain name, remote port and entity’s buffer
size (in bytes).

- sendData (data)
sends data from local user to source entity to be
delivered to remote user.

- ackData (n)
notifies the entity user that "n” bytes have been acked by
remote user.

- close();

182

1 closes the entity.
/I - Group "Sink” :

1 It has four events:

1 - constructor(localPort, remoteDN, remotePort, sinkBufAvail)
1 constructs sink entity with parameters: entity’s local

1 port, remote domain name, remote port and entity user
1 avail buffer size (in bytes).

1 - readyToAccept (n)

1 informs sink entity that its user can accept cumulative
1 amount of data (in bytes) equals to "n”.

1 - deliverData(data)

1 delivers "data” to local user, such that, data is

1 delivered in sequence without loss or duplication.

1 - close();

1 closes the entity.

1

/I Variables :

e

Il srcHist : source entity history (<=4GB).

=

/I srcBufSize : srcBuf size in bytes.

/I srcBufUsed : occupied portion of srcBuf in bytes.

/I srcNumSent : number of bytes accepted from source’s local user.
/I srcNumAcked : number of acked bytes (at source entity).

/I sinkBufAvail : number of bytes that sink user can accept.

/I sinkNumDelivered : number of bytes delivered to sink user.

1

=

==

final static int msgSize = 128;

/I Source entity variables.

ByteArrayOutputStream srcHist = new ByteArrayOutputStream ();
long srcBufSize = 32 *1024;

int srcBufUsed =0;

long srcNumSent = 0;

long srcNumAcked = 0;

/I Sink entity variables.
long sinkNumDelivered; // = 0
int sinkBufAvail = 32 *1024 ;

[I# Tester tester;
DT() throws RemoteException
try
Naming.rebind("DT", this);
catch (Exception e)
throw new RemoteException();

I
/I Methods called by source side (SW_SourceUser.java and SW_Source.java)
I

/I Sends data from source user to source entity to deliver it to
/I remote user.
/l# dnw_event: SW_Source;
public synchronized void sendData(byte [Jdata) throws RemoteException
I1# ec: srcBufUsed + data.length <= srcBufSize && data.length > 0 && data.length % msgSize == 0;
srcHist.write(data, 0, data.length);
srcNumSent + = data.length;
srcBufUsed + = data.length;

/l# dnw_event: SW_Source;
public synchronized void closeSource() throws RemoteException
I# ec: true;

183

/l# upw_event: SW_SourceUser;
public synchronized void ackData(int n) throws RemoteException
/1# ec: srcNumAcked + n <= srcNumSent;
/I Notifies user that n bytes have been acked.
srcBufUsed = srcBufUsed — n;
srcNumAcked = srcNumAcked + n ;

Il
/I Methods called by sink side (SW_SinkUser.java and SW_Sink.java)
I

/I# dnw_event: SW_Sink;

public synchronized void readyToAccept(int n) throws RemoteException
[I# ec: true;
/I Informs the entity that user can accept n more bytes of data.
sinkBufAvail = n;

/l# dnw_event: SW_Sink
public synchronized void closeSink() throws RemoteException
Il# ec: true;

Il# upw_event: SW_SinkUser;
public synchronized void deliverData(byte [Jdata) throws RemoteException
/l# ec: sinkNumDelivered + data.length <= srcNumSent && data.length <= sinkBufAvail && data.length > 0 && cor-
rectData (data);
sinkNumDelivered = sinkNumDelivered +data.length ;
/I Delivers "data” received to entity user.
sinkBufAvail = sinkBufAvail —data.length ;

boolean correctData (byte[] data)
byte[] srcData = srcHist.toByteArray();
for (inti = 0; i < data.length; i++)
if (srcData [((int) sinkNumDelivered) + i] != data [i])
return false ;
return true ;

/l# progress_obligation allDataAcked
/l# beginAssertion

11# ((sinkNumbDelivered > srcNumAcked) leadsto (srcNumAcked == sinkNumDelivered))
/I# endAssertion
11#

[1# progress_obligation dataDelivered

Il# beginAssertion

11# ((srcNumSent > sinkNumDelivered) && (sinkBufAvail > 0)) leadsto (sinkNumDelivered == srcNumSent)
Il# endAssertion

11#

184

BIBLIOGRAPHY

[1] Web Service Choreography Interface (WSCI) 1.0.

http://www.w3.0rg/TR/2002/NOTE-wsci-20020808/.

[2] Web Services Description Language (WSDL) 1.1. http:Amw3.org/TR/wsdl.

[3]

[4]

[5]

B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Chend.JChoi, A. Coc-
chi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, \itvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.1ghdpS. E. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapen@Vimachine.|BM

Systems JournaB9(1), 2000.

Bowen Alpern, Jong-Deok Choi, Ton Ngo, and Manu SridharBejaVu: Deter-
ministic Java replay debugger for Jalapeno JVM.AlGM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, amdicagons (OOP-

SLA’00) (Demag)October 2000.

Paul C. Attie and Nancy A. Lynch. Dynamic input/output@uiata: a formal model
for dynamic systems. I@ONCUR’01, the International Conference on Concur-

rency TheoryAalborg, Denmark, August 2001.

185

[6]

[7]

[8]

[9]

[10]

[11]

[12]

R.J.R. Back and R. Kurki-Suonio. Decentralization of pr@caests with a cen-
tralized control. InSecond ACM SIGACT-SIGCOPS Symposium on Principles of

Distributed Computingpages 131-142, Montreal, August 1983.

R.J.R. Back and R. Kurki-Suonio. Distributed cooperatiothvaction systems.
ACM Transactions on Programming Languages and Systed{$):513-554, Octo-

ber 1988.

S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalpblecation layer mul-

ticast, 2002.

Saddek Bensalem, Vijay Genesh, Yassine Lakhnech, Cesapi/&am Owre, Her-
ald Rues, John Rushby, Vlad Rusu, Hassan Saidi, N. Shankanngergan, and
Ashish Tiwari. An overview of SAL. IrFifth NASA Langley Formal Methods Work-

shop Williamsburg, VA, June 2000.

D. Brand and P. Zafiropulo. On communicating finite stat@chines. J. ACM

30(2):323-342, April 1983,

Tevfik Bultan, Richard Gerber, and William Pugh. Modekcking concurrent sys-
tems with unbounded integer variables: Symbolic repregems, approximations,
and experimental resultd\CM Transactions on Programming Languages and Sys-

tems 21(4):747-789, July 1999.

K.M. Chandy and J. MisraA Foundation of Parallel Program DesignAddison-

Wesley, Reading, MA., 1988.

186

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Jong-Deok Choi, Bowen Alpern, Ton Ngo, Manu Sridharam, dohn Vlissides. A
perturbation-free replay platform for cross-optimizeditittreaded application. In

15th International Parallel and Distributed Processingngyosium April 2001.

Jong-Deok Choi and Andreas Zeller. Isolating failuneticing thread schedules.
Proceedings of the International Symposium on Softwarentesind Analysis

pages 210-220, 2002.

Edmund M. Clarke and David E. Long. Model checking andti@ation. ACM

Transactions on Programming Languag24(4), July 1994.

lan Clarke, Oskar Sandberg, Brandon Wiley, and Theodarélddg. Freenet: A
distributed anonymous information storage and retrieyafesn. Lecture Notes in

Computer Scien¢c009:46+, 2001.

R. Cleaveland, J. Gada, P. Lewis, S. Smolka, O. Sokolskg, & Zhang. The

Concurrency Factory - practical tools for specification,4.99

Rance Cleaveland, Joachim Parrow, and Bernhard SteffemConcurrency Work-
bench: A semantics-based tool for the verification of coremtrsystems.ACM

Transactions on Programming Languages and Syst&B{4):36—72, January 1993.

Clip2.com. The Gnutella protocol specification v.0.4, afgh 2001.

http://www.clip2.com/ GnutellaProtocol04.pdf.

James Corbett, Matthew Dwyer, John Hatcliff, Corina Peaau, Shawn Laubach,

and Hongjun Zheng. Bandera: Extracting finite-state modets flava source code.

187

[21]

[22]

[23]

[24]

[25]

[26]

[27]

In Proceedings of the 22nd International Conference on Soft&aggneering June

2000.

Doron Drusinsky. The temporal rover and the ATG roverSPIN pages 323-330,
2000.

R. Eschbach, U. Gkser, R. Golzhein, M. Lwis, and A. Prinz. Formal defintion of

SDL-2000 - compiling and running SDL specifications as asndet® Journal of

Universal Computer Sciencé(11), 2001.

Business Process Execution Language for Web ServicesEl(BP1.1.

http://www.ibm.com/developerworks/library/ws-bpel.

Xiang Fu, Tevfik Bultan, and Jianwen Su. WSAT: A tool forriwal analysis of web
services. Inl6th International Conference on Computer Aided Verificgtidudy

2004.

Stephen J. Garland and Nancy Lynch. IOA: A languagepecgying programming

and validating distributed systems, December 2000.

Kenneth J. Goldmann, Bala Swaminathan, T. Paul McCarivéhael D. Ander-
son, and Ram Sethuraman. The programmers’ playground: Beation for user-
configurable distributed applicationEEEE Transactions on Software Engineering

21(9):735-746, September 1995.

Alex Groce and William Visser. Model checking Java pangs using structural

heuristics. Innternational Symposium on Software Testing and Anglyaly 2002.

188

[28] David Hansel, Rance Cleaveland, and Scott A. Smolka. ribiged prototyping
from validated specificationd.2th International Workshop on Rapid System Proto-

typing June 2001.

[29] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnudiichal Politi, Rivi
Sherman, Aharon Shtull-Trauring, and Mark Trakhtenbr@GATEMATE: A work-
ing environment for the development of complex reactivaesys. IEEE Transac-

tions on Software Engineering6(4), April 1990.

[30] John Hatcliff and Matthew Dwyer. Using the Bandera tagilte model-check prop-

erties of concurrent Java software.Rroceedings of CONCUR 200dune 2001.

[31] K. Havelund and T. Pressburger. Model checking Javagnamas using Java
PathFinderInternational Journal on Software Tools for Technology Bfen 2(4),

April 2000.

[32] Dennis Heimbigner. Adapting publish/subscribe meldire to achieve gnutella-
like functionality. INSAC '01: Proceedings of the 2001 ACM symposium on Applied

computing pages 176-181. ACM Press, 2001.

[33] C.A.R. Hoare.Communicating Sequential Procességentice Hall International,

1985.

[34] Gerard Holzmann. The model checker SPIEEE Transactions on Software Engi-

neering 23(5), May 1997.

[35] Gerard J. HolzmanrnDesign and Validation of Computer ProtocoBrentice Hall,

November 1990.

189

[36] KaZaa homepage. http://lwww.kazaa.com/.

[37] Limewire homepage. http://www.limewire.com/.

[38] Napster homepage. http://www.napster.com/.

[39] Phex homepage. http://phex.kouk.de/.

[40] Igor Ivkovic. Improving gnutella protocol: Protocahalysis and research proposals.

Technical report, LimeWire LLC, 2001.

[41] M. Kim, M. Viswanathan, |. Lee, H. Ben-Abdellah, S. Kamand O. Sokolsky.
Formally specified monitoring of temporal properties.Proceedings of the Euro-

pean Conference on Real-Time SysteYosk, UK, June 1999.

[42] James Kurose and Keith RosSomputer Networking: A Top-Down Approach Fea-

turing the Internet Addison-Wesley, 2001.

[43] Simon. S. Lam and A.Udaya Shankar. A relational notafior state transition

systemsIEEE Transactions on Software Engineerii®:755-775, July 1990.

[44] Leslie Lamport. The temporal logic of actions. Teclatieport, DEC SRC Report

57, 1991. April 1990, Revised April 1991.

[45] Leslie Lamport. The temporal logic of actio’SCM Transactions on Programming

Languages and Systend$(3):872-923, May 1994.

[46] I. Lee, S. Kim, O. Sokolsky, and M. Viswanathan. Runtinsswance based on
formal specifications. IfProceedings of International Conference on Parallel and

Distributed Processing Techniques and Applicatidress Vegas, June 1999.

190

[47] Seungjoon Lee, Rob Sherwood, and Bobby Bhattacharjee. Zatbge peer groups

in nice. INIEEE Infocom April 2003.

[48] Tal Lev-Ami, Thomas W. Reps, Shmuel Sagiv, and Reinharth&ifn. Putting
static analysis to work for verification: A case study. 2000, Proceedings of the
International Symposium on Software Testing and Analysiges 26—-38, August

2000.

[49] N.A. Lynch and M.R. Tuttle. Hierarchical correctnessqis for distributed algo-
rithms. InProceedings of the ACM Symposium on Principles of Distrdb@em-

puting Vancouver, B.C., August 1987.

[50] Z. Manna and A. Pnueli. Adequate proof principles fovanance and liveness
properties of concurrent prograntScience of Computer Programming257-289,

1984.

[51] Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Systems:

Specification Springer-Verlag, New York, 1992.

[52] Jeremy Manson and William Pugh. The Java memory modualligitor. InWWorkshop
on Formal Techniques for Java-like Programs, in Assocratiath ECOOR June

2002.

[53] Ken McCrary. JTella, 2000. http://jtella.sourceforyet/.

[54] K. L. McMillan. The SMV system, February 1992.

191

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Raymond Miller. Passive testing of networks using a a Cispkrtification. IlEEE
International Performance, Computing and Communications fé&ence pages

111-116, February 1998.

Raymond E. Miller and Khaled A. Arisha. Fault coveragengtworks by passive

testing. Ininternational Conference on Internet Computipgges 413—-419, 2001.

R. Milner. Communication and Concurrencirentice-Hall, 1989.

Jaydev MisraA Discipline of MultiprogrammingSpringer-Verlag, 2001.

Sandra Murphy and A. Udaya Shankar. Connection managgeimethe transport
layer: Service specification and protocol verificatidBEE Transactions on Com-

munications39(12):1762-1775, December 1991.

Shin Nakajima. Verification of web service flows with medathecking techniques.
In Proceedingsof the First International Symposium on Cyberd&ppages 378 —

385, November 2002.

S. Owicki and L. Lamport. Proving liveness propertidsconcurrent programs.

ACM TOPLAS$4:455-495, July 1982.

S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. SriviR¥S: combining
specification, proof checking, and model checking. In Rajslew and Thomas A.
Henzinger, editorsComputer-Aided Verification, CAV '9@umber 1102 in Lecture
Notes in Computer Science, pages 411-414, New BrunswickuiNJAligust 1996.

Springer-Verlag.

192

[63] JunCheol Park and Raymond Miller. A compositional apphofar designing mul-
tifunction time-dependent protocols. IBEE International Conference on Network

Protocols pages 105-112, October 1997.

[64] Amir Pnueli. The temporal logic of programs. Rroceedings of the 18th ACM

Symposium on the Foundation of Computer Scigpages 46-57, November 1977.

[65] Amir Pnueli. The Temporal Semantics of Concurrent Prograsmdume 70, pages

1-20. Springer-Verlag, July 1979.

[66] Andreas Prinz and Martin Lwis. Generating a compilar L from the formal
language definition. Ih.ecture Notes in Computer Sciena®lume 2708, pages

150-165. Springer-Verlag Heidelberg, January 2003.

[67] William Pugh. The Java memory model is fatally flawegdoncurrency: Practice

and Experiencel2(6):445-455, 2000.

[68] Nicholas Rescher and Alsadair Urquhaffiemporal Logic Springer-Verlag, New

York, 1971.

[69] A.W. Roscoe. The Theory and Practice of Concurrencfrentice Hall Series in

Computer Science, 1998.

[70] John Rushby. Specification, proof checking, and modetkimg for protocols and
distributed systems with PVS. Tutorial presented at FORTESXV XVII '97,

November 1997.

193

[71] Sriram Sankar and Manas Mandal. Concurrent runtime taong of formally spec-

ified programsIEEE Computer26(3), March 1993.

[72] Stefan Savage, Michael Burrows, Greg Nelson, PatrickaB@rro, and Thomas
Anderson. Eraser: A dynamic data race detector for mudtettied programsACM

Transactions on Computer Systerhis(4):391-411, 1997.

[73] F.B. Schneider and G.R. Andrews. Concepts for concurneagramming. InCur-
rent Trends in Concurrency, LNCS 220ages 669—-716. Springer-Verlag, New York,

1986.

[74] Steve Schneider. Abstraction and testing. FM’'99, Vol. I, LNCS 1708 pages

738-757. Springer-Verlag Berlin Heidelberg, 1999.

[75] Beth A. Schroeder. On-line monitoring: A tutoridEEE Computer28(6):72—78,

June 1995.

[76] A.Udaya Shankar. Verified data transfer protocols wahable flow control ACM

Transactions on Computer Systemg3):281-316, August 1989.

[77] A. Udaya Shankar. Modular design principles for pratsovith an application to

the transport layeProceedings of IEEE79(12):1687-1707, December 1991.

[78] A. Udaya Shankar.Concurrent Systems and Services: Design, Verification and

Testing in preparation, 2005.

[79] N. Shankar. PVS: combining specification, proof chagkiand model checking.

In Mandayam Srivas and Albert Camilleri, editoFgrmal Methods in Computer-

194

[80]

[81]

[82]

[83]

[84]

[85]

Aided Design (FMCAD '96)volume 1166 ol_ecture Notes in Computer Science

pages 257—-264, Palo Alto, CA, November 1996. Springer-gerla

Natarajan Shankar. Combining theorem proving and modetking through sym-
bolic analysis. ICONCUR’00: Concurrency Theory, Lecture Notes in Computer
Science, Number 187pages 1-16. Springer-Verlag, State College, PA., August

2000.

R. Sijelmassi and B. Strausser. The pet and dingo toolsléoiving distributed
implementations from Estell€omputer Networks and ISDN Syste@t841-851,

1993.

lon Stoica, Robert Morris, David Karger, M. Francs Kaaesk, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for meteapplications. In

Proceedings of SIGCOMM 200fages 149-160. ACM Press, 2001.

Michael Swift, Muthukaruppan Annamalai, Brian N. Berdhand Henry M. Levy.
Recovering device drivers. IRroceedings of the 6th ACM/USENIX Symposium on
Operating Systems Design and Implementation (OSElh) Francisco, CA, Decem-

ber 2004.

Joshua TaubebMerifiable Code Generation from Abstract I/O Automata Modieds
Distributed Computing PhD thesis, Massachusetts Institute of Technology, March

2001.

J. Thees and R. Golzhein. The eXperimental Estelle Canp#&utomatic genera-

tion of implementations from formal specifications.Rroceedings of the 2nd Work-

195

shop on Formal Methods in Software Practi€@earwater Beach, Florida, March

1998.

[86] Tomas E. Uribe. Combinations of model checking and teeoproving. InFrontiers

of Combining Systempages 151-170, 2000.

[87] William Wong. Furi homepage, 2003. http://schnadhtvgnutelladev/source/furi/.

[88] Pamela Zave. An insider’s evaluation of PAISLéizEE Transactions on Software

Engineering 17:212-225, 1991.

196

