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Leaf Area Index (LAI) is an important land surface biophysical variable that is used 

to characterize vegetation amount and activity. Current satellite LAI products, 

however, do not satisfy the requirements of the modeling community due to their 

large uncertainties and frequent missing values. Each LAI product is currently 

generated from only one satellite sensor data. There is an urgent need for advanced 

methods to integrate multiple LAI products to improve the product’s accuracy and 

integrality for various applications. To meet this need, this study proposes four 

methods, including the Optimal Interpolation (OI), Bayesian Maximum Entropy 

(BME), Multi-Resolution Tree (MRT) and Empirical Orthogonal Function (EOF), to 

integrate multiple LAI products. Three LAI products have been considered in this 

study: Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle 

Imaging SpectroRadiometer (MISR) and Carbon cYcle and Change in Land 

Observational Products from an Ensemble of Satellites (CYCLOPES) LAI. 

 

As the basis of data integration, this dissertation first validates and intercompares 



 

MODIS and CYCLOPES LAI products and also evaluates their geometric accuracies.  

The CYCLOPES LAI product has smoother temporal profiles and fewer spatial 

variations, but tends to produce spurious large errors in winter. The Locally Adjusted 

Cubic-spline Capping algorithm is revised to smooth multiple years' average and 

variance.  

 

Although OI, BME and MRT based methods have been used in other fields, this is the 

first research to employ them in integrating multiple LAI products. This dissertation 

also presents a new integration method based on EOF to solve the problem of large 

data volume and inconsistent temporal resolution of different datasets. High 

resolution LAI reference maps generated with ground measurements are used to 

validate these algorithms. Validation results show that all of these four methods can 

fill data gaps and reduce the errors of the existing LAI products. The data gaps are 

filled with information from adjacent pixels and background. These algorithms 

remove the spurious large temporal and spatial variation of the original LAI products. 

The combination of multiple satellite products significantly reduces bias. OI and 

BME can reduce the RMSE from 1.0 (MODIS) to 0.7 and reduce the bias from +0.3 

(MODIS) and -0.2 (CYCLOPES) to -0.1. MRT can produce similar results with OI 

but with significantly improved efficiency. EOF also generates the results with the 

RMSE of 0.7 but zero bias. 

 



 

Limited ground measurement data hardly prove which methods outperform the others. 

OI and BME theoretically produce statistically optimal results. BME relaxes OI's 

linear and Gaussian assumption and explicitly considers data error, but bears a much 

higher computational burden. MRT has improved efficiency but needs strict 

assumptions on the scale transfer function. EOF requires simpler model identification, 

while it is more "empirical" than "statistical".  

 

The original contributions of this study mainly include: 1) a new application of 

several different integration methods to incorporate multiple satellite LAI products to 

reduce uncertainties and improve integrality, 2) an enhancement of the Locally 

Adjusted Cubic-spline Capping by revising the end condition, 3) a novel 

comprehensive comparison of MODIS C5 LAI product with other satellite products, 

4) the development of a new LAI normalization scheme by assuming the linear 

relationship between measurement error and LAI natural variance to account for the 

inconsistency between products, and finally, 5) the creation of a new data integration 

method based on EOF. 
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Chapter 1  Introduction  

 

Leaf Area Index (LAI), defined as the one-sided leaf area per unit of ground area 

(Chen and Black 1992), is a very important land surface biophysical variable used to 

describe vegetation amount and activity. Since vegetation plays a significant role in 

controlling terrestrial productivity, hydrological cycling, and surface energy balance, 

LAI is required as a key input for various ecosystem productivity models and land 

process models, especially under the changing climate. Moreover, vegetation is also 

affected by the anthropogenic activities and climate change. The change of LAI is one 

of the most direct indicators of how terrestrial ecosystems respond to climate change. 

This topic has received increasing attentions recently (Myneni et al. 1998; Yang et al. 

1998; Badeck et al. 2004; Zhang et al. 2004a; Zhang et al. 2004b; Pettorelli et al. 

2005; Notaro et al. 2006; Piao et al. 2006a; Piao et al. 2006b; Myneni et al. 2007). A 

reliable, consistent and accurate dataset of LAI would be the basis of such 

investigations. 

 

Remote sensing is the ideal way to map biophysical variables globally on a regular 

basis. The historical Advanced Very High Resolution Radiometer (AVHRR) 

Vegetation Index (VI) products date from the early 1980s. However, due to problems 
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such as atmospheric correction, onboard calibration and orbit drift, the quality of 

AVHRR data are in question (Vermote and Kaufman 1995; Gutman 1999; Kaufmann 

et al. 2000). The new generation of moderate resolution optical sensors, such as 

Moderate Resolution Imaging Spectroradiometer (MODIS), and VEGETATION, 

provides finer spatial resolutions, more spectral channels, and better bandwidths and 

radiometric calibration (Townshend and Justice 2002). Multi-angular sensors (e.g. 

Polarization and Directionality of Earth Reflectances (POLDER), Multi-angle 

Imaging SpectroRadiometer (MISR)) observe the Earth from several viewing angles 

and are thought to improve the accuracy of surface characterization. With the launch 

of the new generation of these instruments, we have entered a new era to generate 

LAI and other biophysical products. Various sophisticated algorithms have been 

developed to produce LAI products from several sensors or projects, for example, 

MODIS, Carbon cYcle and Change in Land Observational Products from an 

Ensemble of Satellites (CYCLOPES) and MISR LAI. However, many issues 

associated with the current LAI products limit their applications in understanding the 

dynamic environment. Specifically, the problems include the following: 

 

First, there are many gaps or missing data due to instrumental malfunction, cloud 

contamination and other factors (Fang et al. 2008). For instance, the gaps in MODIS 

LAI data can be as high as 80% in the winter at high latitudes. 
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Second, LAI estimation from satellite imagery has large uncertainties. For the given 

time and location, different products often have significantly different LAI values. 

Figure 1-1 shows the discrepancy between CYCLOPES LAI, MODIS/Terra and 

MODIS/Aqua LAI products at temperate forest. Although MODIS/Terra and 

MODIS/Aqua LAI products are derived from the same type of sensors and using the 

same inversion algorithm, significant differences exist between them. Phenology 

determination from LAI time series data is difficult due to large uncertainties. Brut et 

al. (2009) showed that there are also significant discrepancies between satellite data 

and model simulated LAI both in absolute values and in derived phenological 

parameters. 

 
Figure 1-1 Time series of MODIS/Terra, MODIS/Aqua and CYCLOPES LAI 

products in 2003 at a temperate forest pixel (39.04 N, 79.86W) 
 

Third, multiple LAI products are typically incompatible in spatial and temporal 

resolution, map projection and spatial ground coverage. For example, MODIS has a 

swath of more than 2000 km while MISR’s swath is as narrow as 400 km. The 

difference between geometric and orbital properties among various sensors increases 
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the difficulty in applying and incorporating multiple-source LAI data. 

 

The accuracy of current LAI products does not satisfy the systematic requirements for 

climate study and other applications. GCOS requires an accuracy of 0.5 and a spatial 

resolution of 1 km and a temporal resolution of 1 day for climate study (WMO 2006). 

Even more accurate estimation of LAI is required for other purposes. According to 

Francois et al. (1997), estimating leaf temperature at the accuracy of 0.5 requires less 

than 10% error of LAI and accurate retrieval of soil temperature needs a higher 

accuracy of LAI within 5% error. However, MODIS LAI is a 8-day composite 

product and has a 12% overestimation and RMSE of 0.66 (Yang et al. 2006), while 

CYCYLOPES LAI has a 10-day temporal resolution and RMSE of 0.84 (Weiss et al. 

2007). These uncertainties may produce substantial errors when driving various 

numerical models. 

 

These problems must be resolved. Data assimilation that combines the remotely 

sensed observations with dynamic models may be an effective way to address these 

issues. However, considerable errors exist in models prognosticating the dynamic leaf, 

which usually link the vegetation growth to climate variability and nutrient 

availability. The errors come both from the imperfect parameterization of vegetation 

growth and the uncertainties with the forcing data. Land data assimilation is an 
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emerging field and many issues remain (Liang 2004). Alternative solutions must be 

explored. In this study, I focus on developing algorithms based on integration 

methods to incorporate multiple LAI products and other ancillary data to improve the 

quality of existing products. 

 

1.1 Literature review 

The discontinuity or inconsistency of scientific data records is a universal 

phenomenon, in both in situ measurements (Falge et al. 2001; Ooba et al. 2006) and  

satellite observations (Moody et al. 2005; Fang et al. 2008), such as land surface 

datasets (Moody et al. 2005; Fang et al. 2008), atmospheric products (Zhang et al. 

2007), and oceanic data archives (Pottier et al. 2008). Spatially, this discontinuity or 

inconsistency prevents forming an integrated map and conducting spatial analysis; 

temporally, it limits the ability to make time series analysis and obtain trend and 

change information. There are numerous investigations on developing algorithms to 

build spatially and temporally continuous scientific datasets and to improve the 

quality of these products (Sellers et al. 1994; Gregg and Conkright 2001; Buermann 

et al. 2002; Beckers and Rixen 2003; Kwiatkowska and Fargion 2003; Chen et al. 

2004; Chen et al. 2006; Gu et al. 2006; Fang et al. 2008). However in terms of 

improving satellite vegetation products, temporal curve fitting is still the most 

common method. Besides, there are also several attempts to use spatiotemporal 
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statistical methods to incorporate more information. 

 

Temporal curve fitting methods have been extensively used to smooth LAI and other 

biophysical variables. Due to the phenological cycles of terrestrial ecosystems, most 

biophysical variables derived from satellite imagery reveal some types of annual 

patterns. Different methods have been proposed, which vary in the selection of curve 

shape and fitting algorithms (See Table 1-1). Because atmospheric contamination 

usually leads to underestimating these biophysical variables, most algorithms adapt to 

the upper envelopes of annual curves. In order to achieve the upper envelopes, a 

recursive algorithm is usually used. The observations are replaced by filtered values 

to form new time series if they are smaller than filtered values. The filter is then 

carried out on the newly constructed time series until convergence. In addition to the 

use of least squares regression, the Kalman filter is used to estimate the parameters of 

the structural time series models (Young et al. 1999). The parameters of this type of 

time series model are also time-dependent variables, but change slower compared 

with the model outputs. Parameters are treated as state variables and model outputs 

are taken as measurements in the Kalman filter. The Kalman filter is used to estimate 

the state variables and so correct measurements. Alavi et al. (2006) applied this 

method to fill the gaps of evapotranspiration data. Jonsson and Eklundh (2004) 

developed a program called TIMESAT to fill gaps in satellite data and extract 

phenology information from time series analysis, which is used by Gao et al.(2008) to 



 7 

produce continuous MODIS LAI data. 

 

In temporal methods, additional information other than observations of the variable of 

interest itself may be included as well. In filling gaps of Normalized Difference 

Vegetation Index (NDVI) data, the data quality of NDVI (cloud mask etc) was used to 

group NDVI observations and assign them different weights in regression (Chen et al. 

2004). Alavi et al.(2006) incorporated the relationship between evapotranspiration 

and other variables such as latent heat flux, available energy, and vapor pressure 

deficit to estimate evapotranspiration when no evapotranspiration observations are 

available.  

 
Table 1-1 Major curve fitting methods used for filtering satellite vegetation products 

 

Methods References 
Trigonometric function Sellers et al.(1994) 
Gaussian-type function Jonsson and Eklundh (2002) 

Logistic curve Zhang et al. (2003) 
Savitzky-Glay filter Chen et al. (2004) 

Cubic spline Chen et al. (2006) 
Wavelet Lu et al.(2007) 

 

Temporal methods are able to analyze the time series at the mean time filling gaps, 

and would be good choices for investigating the trend or phenology of vegetation 

activities (Zhang et al. 2003; Sakamoto et al. 2005; Piao et al. 2006b; Zhang et al. 

2006). However, temporal methods usually do not utilize the spatial information. 
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When continuous gaps exist, they may not produce reliable results. Borak and 

Jasinski (2009) compared several methods of interpolating LAI and found the 

incorporation of spatial information would improve the results. Borak and Jasinski 

(2009) expanded Kang et al. (2005)’s method of utilizing spatial information, where 

the average of adjacent pixels with the same land cover was used to fill the missing 

data. Moody et al. (2005) used a similar method to fill gaps in MODIS albedo 

product by adjusting the ecosystem dependent phenology curve according to pixel to 

pixel variation. These methods utilize temporal and spatial information in a simple 

way, and the results are not statistically optimized. 

 

The spatiotemporal statistical methods have also been employed to improve the 

consistency and accuracy of existing LAI and other vegetation products to some 

extent (Gu et al. 2006; Fang et al. 2008; Gu et al. 2009). Gu et al. (2006) averaged 

the observational LAI value with the multiple year mean according to their relative 

variance. Their method cannot be used for interpolation because it doesn’t incorporate 

spatial or temporal covariance. Gu et al. (2009) used a similar but even more 

simplified method to reconstruct MODIS NDVI. In their study, the weights were 

given empirically according to the quality control information of NDVI products. 

Fang et al. (2008) designed a temporal spatial filter to replace missing or low quality 

values of MODIS LAI products. In Fang et al.’s method, data from temporally 

adjacent images were used to interpolate when data are missing. The weights were 
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given empirically according to the time distance between the points. Fang et al.’s 

method is not statistically optimal in a strict way. Fang et al.’s approach is based on 

Cressman (1959)’s method. Chen et al. (2008) has shown Cressman’s method 

performs consistently worse than the geostatistics method Optimal Interpolation (OI) 

for the case of interpolating gauge rainfall data. Furthermore, all these methods have 

some generic problems: 1) limited information is incorporated; 2) only one product is 

used; and 3) errors of observations are not rigorously considered or fully utilized.  

 

Besides geostatistical methods, the Empirical orthogonal function (EOF) based 

method is another choice to fill gaps and reduce noises. In EOF, the leading 

eigenvector components of the covariance matrix are used to reconstruct the original 

matrix. Because the leading components are supposed to contain most of the 

information, EOF is expected to reduce errors (Hannachi et al. 2007). We employed 

an EOF based method to improve MODIS LAI product. However, only one source 

was used in our previous investigation (Wang and Liang 2008) and this method is not 

suitable for large datasets due to storage and computational limitations. 

 

1.2 Objective of this dissertation 

The objective of this dissertation is to improve the accuracy and integrality of the LAI 

products by developing advanced methods to integrate all the available information 
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from the incompatible sources of satellite LAI products and any prior knowledge. 

Several issues must be solved in developing the integration methods: 

� Multiple products have irregular spatiotemporal grids because they are using 

different map projections and temporal composite periods. 

� Different products have variable support size and they are usually incompatible 

in spatial and/or temporal resolutions. 

� Different products have different biases and the systematic inconsistency must be 

taken into account in data integration. 

� Little ground truth data are available to model measurement error, correct 

systematic bias and validate working algorithm 

� Moderate resolution LAI products have huge data volume. The designed 

algorithm needs to be computationally efficient. 

 

In order to achieve this objective, four methods including OI, Bayesian Maximum 

Entropy (BME), Multi-Resolution Tree (MRT) and EOF, are presented to integrate 

MODIS, CYCLOPES and MISR LAI products in this dissertation. OI and EOF are 

selected, because they have been extensively used to solve missing data problem in 

meteorology.  

 

OI is able to take irregular inputs and employs spatiotemporal covariance to 

interpolate variables at non-measured points and reduce errors at measured points. OI 



 11

will give the best estimation for the Gaussian process. Gu et al. (2006) tried OI to 

improve MODIS LAI. This dissertation improves their method by using data at 

adjacent points and combing MODIS with CYCLOPES. 

 

Compared with the geostatistics method OI, EOF requires little input on measurement 

error and covariance structure. EOF methods calculate the covariance matrix of the 

datasets and use their leading components to reconstruct noisy and gap-prone data. 

Aimed to process large datasets, I develop a hierarchical EOF approach to both 

reduce high dimension matrix to multiple smaller ones and incorporate data 

information on higher levels. I also develop a scheme to incorporate multiple 

products with different temporal resolutions. 

 

Besides the OI approach, LAI integration based on modern geostatistics BME is also 

proposed. Different from the linear estimator OI, BME doesn’t have the Gaussian 

assumption but explicitly incorporates the measurement error in a strict way. BME 

has been used to improve satellite ozone products and other limited applications, but 

has never been applied to LAI products. LAI integration based on BME is proposed 

in this dissertation to combine MODIS and CYCLOPES data. 

 

Both OI and BME need to inverse a matrix, which is computationally expensive. In 

addition, BME involves high dimensional integral. The computational cost limits 
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their applications for large datasets. MRT efficiently employs the Kalman filter on a 

tree structured data. MRT has been applied to analyze many geophysical data. This 

dissertation presents a method based on MRT to integrate MODIS and MISR L3 LAI 

products. 

 

To my best knowledge, curve fitting or a one-dimensional (1D) temporal filter is still 

the most common method of improving satellite vegetation products. There are few 

attempts to employ spatiotemporal statistics, which are based on “traditional” 

geostatistics, with only limited information. No attempts to combine more than one 

source of LAI datasets have been made. This dissertation addresses these problems of 

current LAI products described in the previous section. It is the first attempt to apply 

sophisticated integration methods to combine multiple LAI products with variable 

resolutions and uncertainties. The newly developed EOF integration method is able to 

handle large datasets and multiple incompatible data. The improved mapping of LAI 

will improve modeling of vegetation dynamics and evaluating terrestrial productivity 

with higher accuracy and more integrality. The proposed methods can also be applied 

in other satellite land products with similar problems. 

 

1.3 Structure of this dissertation 

Chapter 2 summaries the datasets used in this dissertation, including three satellite 
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products and in situ measurements collected at Bigfoot and other programs. Besides 

the direct validation, the relative geometric accuracy of MODIS and CYCLOPES 

LAI products is also evaluated. Multiple years’ mean and variance are calculated as 

the background of data integration. A periodic locally adjusted cubic-spline capping 

algorithm is improved to filter the multiple years’ mean and variance data. 

 

Chapter 3 presents two geostatistics based methods: OI and BME, and analyzes the 

results of integrating MODIS and CYCLOPES data. A data normalization scheme is 

developed to take into account the systematic inconsistency between the two products. 

Improvement is shown on points, 2D image and time series. 

 

Chapter 4 applies the method based on MRT to integrate MODIS and MISR L3 LAI, 

which have different spatial resolutions. OI is also carried out at the same experiment 

area to compare with MRT. MRT shows the similar results but with significantly 

improved computational speed. 

 

Chapter 5 develops a new integration method based on EOF to solve the problem of 

large data volume and inconsistent temporal resolution of different datasets, and 

applies this method to integrate MODIS and CYCLOPES LAI data. 

 

Chapter 6 gives a general conclusion. The merits and shortcomings of each method 
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are discussed and the main original contributions of this dissertation study are 

summarized and remaining problems are identified for future study. 
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Chapter 2  Data and preliminary analysis 

 

This chapter first describes the main datasets used in this study and then calculates 

LAI climatology (multiple years’ mean and variance), which are important 

background knowledge for data integration. A revised version of locally adjusted 

cubic spline capping algorithm is developed to smooth satellite LAI climatology. 

Preliminary analysis results on geometric errors, measurement uncertainties and gaps 

distribution are also presented in this chapter. 

 

2.1 Datasets 

Both satellite and in situ LAI data are used in this study. Satellite data are the object 

of this study and the input of proposed data integration methods. In situ LAI 

measurements are used to evaluate satellite products and validate integration 

algorithms. Two moderate resolution satellite LAI data, MODIS and CYCLOPES 

LAI products and one coarse LAI data, MISR L3 LAI product will be used to 

illustrate the algorithms’ ability of integrating multiple data with varied accuracy and 

spatiotemporal resolutions. High resolution LAI maps calibrated with in situ LAI 

measurements are employed to take into account the change of support problem in 
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validating satellite LAI products.  

 

2.1.1 Satellite LAI products 

Global LAI products have been routinely produced from different sensors, such as 

MODIS (Myneni et al. 2002), CYCLOPES (Baret et al. 2007), GLOBCARBON 

(Deng et al. 2006), MISR (Hu et al. 2007), POLDER (Bicheron et al. 1998) (See 

Table 2-1). Among them, MODIS, CYCLOPES and MISR LAI are produced over 

multiple years and easy to access. MODIS twin sensors aboard Terra and Aqua 

satellites were launched in 1999 and 2002 respectively. MODIS has 36 spectral bands, 

among which red and NIR bands are the input of MODIS LAI algorithm. This 

algorithm is biome dependent, using the six biome classification system. The 

vegetation is classified as Grasses/Cereal crops, Broadleaf crops, Shrubs, Savannah, 

Broadleaf forest and Needleleaf forest (Friedl et al. 2002). A three dimensional 

radiative transfer (RT) model was run offline to obtain look-up tables (LUT) to 

improve computation efficiency (Tian et al. 2000; Myneni et al. 2002). An empirical 

algorithm based on the relationship between LAI and NDVI is used as backup when 

the main RT algorithm fails. To get sufficient clear data, MODIS LAI products are 

composed at 8-day time step. For each composite period, the LAI value where the 

Fraction of Absorbed Photosynthetically Active Radiation (fPAR) is largest is chosen 

as the LAI for that period. MODIS LAI products are produced at 1 km spatial 
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resolution in the MODIS sinusoidal projection and the latest version of MODIS LAI 

is collection 5, available from February 18, 2000 to present. Compared with the 

previous versions, Collection 5 data improve the retrieval percentage at woody area 

and correct the overestimation problem over the needle forests (Shabanov et al. 

2007) . LAI products are produced using both Terra MODIS (MOD15A2) and Aqua 

MODIS (MYD15A2). Started from collection 5, a new Terra and Aqua combined LAI 

product is available (MCD15A2). Similar to other MODIS products, MODIS LAI 

provides detailed Quality Control (QC) information with the LAI values. The QC data 

of LAI Collection 5 contains two bytes, “FparLai_QC” and “FparExtra_QC”. 

FparLai_QC mainly gives the retrieval path, while FparExtra_QC contains the 

information of acquisition conditions. 

 

CYCLOPES LAI uses three bands (red, NIR and shortwave infrared) of 

VEGETATION, a sensor onboard the European SPOT 4 and 5 satellites, as the input 

data. Instead of the radiative transfer model inversion method, CYCLOPES algorithm 

uses the nonparametric regression based on neural network (Bacour et al. 2003; Baret 

et al. 2007). The training data are obtained through simulation of the PROSPECT 

(Jacquemoud and Baret 1990) and Scattering by Arbitrarily Inclined Leave (SAIL) 

(Verhoef 1984) models. All reflectance values are normalized to nadir geometry using 

the Roujean BRDF model (Roujean et al. 1992). CYCLOPES LAI is produced at 10 

day temporal sampling intervals, however, cloud free reflectance within 30 days may 
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be used to fit the BRDF model. CYCLOPES LAI data is generated at a spatial 

resolution of 1/112 degrees in the plate carrée map projection. The latest version is 

3.1, covering from year 1999 to 2003. 

 

Table 2-1 Characteristics of major current satellite LAI products 
 

Product 
name 

Spatial 
resolution Temporal resolution Composite method Map 

projection Availability 

MODIS 1km 
8 days, starting from 

the data day 
Maximal value of 

fPAR 
Sinusoidal 

 

February 
2000-present 

(Terra) 
July 2002 

–present (Aqua) 

CYCLOPES 
1/112 
degree 

10 days, centered at 
the data day 

Temporal smoothing 
of reflectance 

Plate carrée 
WGS-84 

1999-2003 
 

GLOBCAR-
BON 

1km, 
10km, 0.25 
degree, 0.5 

degree 

10 days or monthly 
Temporal smoothing 
using cubic spline 

Plate carrée 
WGS-84 

1998-2007 

MISR L2 1 km 
Every 2 days at polar 
region and every 9 

days at equator 
Not applicable 

SOM 
projection 

(Space 
Oblique 

Mercator) 

February 
2000-present 

MISR L3 0.5 degree Monthly Simple average Geographic 
February 

2000-present 

POLDER 
1/18 

degree 
10 days 

Gaussian temporal 
averaging 

Sinusoidal 

November 1996 
– June 1997 

April- October 
2003 

 

MISR is a multi-angular radiometer onboard Terra, observing the entire Earth from 

nine angles at four bands every 16 days. The MISR LAI algorithm chooses the most 

probable LAI from all possible values by comparing modeled reflectance and MISR 

directional reflectance (Knyazikhin et al. 1998). MISR LAI products are distributed at 

two different resolutions, L2 1.1km moderate resolution and L3 0.5 degree coarse 
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resolution. The L3 product will be used in this study to facilitate the development of 

the algorithm for integrating LAI data of different resolutions. MISR LAI will be only 

used in Chapter 4, and the following analysis is mainly on the two moderate 

resolution LAI products, MODIS and CYCLOPES. 

 

Both MODIS and CYCLOPES LAI have been validated (Yang et al. 2006; Weiss et 

al. 2007). A summary of validating MODIS LAI can be found in Yang et al. (2006). 

They are also intercompared (Weiss et al. 2007; Garrigues et al. 2008; Verger et al. 

2008). The general conclusion is that both products can represent reasonable temporal 

and spatial variations when compared with in situ measurement or an LAI reference 

map. Compared with MODIS collection 4 LAI, CYCYLOPES LAI appears more 

accurate, with a smaller RMSE. CYCYLOPES LAI shows a smoother temporal and 

spatial profile. However, the highest value of CYCYLOPES LAI is 6, which cannot 

characterize the highly vegetated area like dense forests. 

 

All five years (1999-2003) of CYCLOPES LAI, 2000-2008 MODIS LAI over North 

America and 2000-2008 MISR L3 monthly data are downloaded from their respective 

data centers. Forty MODIS tiles and 73 CYCLOPES tiles between 0 N and 80 N 

covering the North America continent are used. (Figure 2-1). 
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Figure 2-1 Tile systems used for a) MODIS LAI product b) CYCLOPES LAI product. 
The yellow tiles covering North America are used in this dissertation. 

 

2.1.2 In situ LAI measurements  

Besides the satellite LAI products, field measurement of LAI is also needed to 

evaluate the satellite products and validate the algorithms. Although more and more 

global satellite LAI products are becoming available, LAI is not frequently and 

regularly measured at the field experimental sites. Nevertheless, in order to validate 

or cross compare specific products or provide ancillary data for other research, 

several LAI validation campaigns or programs have been established (Chen et al. 

2002; Morisette et al. 2002; Cohen et al. 2003; Morisette et al. 2006). The spatial 

resolution of moderate resolution satellite products is around one kilometer, while the 

in situ measurements represent only a much smaller area. Due to the heterogeneous of 

vegetation cover, the problem of change of support must be considered in the process 

of using field measurements. Well designed field sampling strategies can be used to 

down scale field measurement so that the scale of field measurement can match the 

pixel size of high resolution of satellite data (Burrows et al. 2002; Berterretche et al. 
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2005). Then in order to account for the difference of scale between field measurement 

and moderate or coarse resolution products, validation using LAI reference maps 

derived from high resolution satellite imagery and calibrated with in situ 

measurement is suggested (Chen et al. 2002; Cohen et al. 2003; Cohen et al. 2006). 

Twenty-eight high resolution LAI reference maps at 12 sites are collected to validate 

original LAI data and the integration algorithm (Figure 2-2). Four of these maps have 

a large spatial extent and more than one point on each map is chosen. 

 

 

Figure 2-2 Location of 12 LAI field measurement campaign sites over North America 
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Table 2-2 Brief description of the collected LAI validation data 
 

Site Name 
Images 

available 
Vegetation Network Reference 

ARGO 2 cropland Bigfoot (Cohen et al. 2006) 

CHEQ 1 mixed forest Bigfoot (Cohen et al. 2006) 

HARV 4 mixed forest Bigfoot (Cohen et al. 2006) 
KONZ 4 tall grass Bigfoot (Cohen et al. 2006) 
METL 1 ponderosa pine Bigfoot (Cohen et al. 2006) 
NOBS 3 black spruce Bigfoot (Cohen et al. 2006) 
SEVI 8 short grass Bigfoot (Cohen et al. 2006) 

TUND 1 tundra Bigfoot (Cohen et al. 2006) 
Larose 1 mixed forest VALERI (Fernandes et al. 2003) 

Watson Lake 1 mixed forest Canada (Fernandes et al. 2003) 
Kejimikujik 1 mixed forest Canada (Fernandes et al. 2003) 
Thompson 1 mixed forest Canada (Fernandes et al. 2003) 

 

2.2 Climatology and temporal filter 

Multiple years’ mean and variance of the LAI products are needed as the background 

knowledge for data integration. Actually, multiple years’ mean may be more accurate 

than satellite retrieval for the case where inter-annual variation of LAI is smaller than 

the measurement error of satellite LAI products. MISR L3 data at one day is used 

only by the MRT method and no temporal information is incorporated. So, temporal 

filter is only carried out on MODIS and CYCLOPES data.  

 

Even after multiple years’ data are used, it is still possible in some cases that there are 

no enough data to compute mean or variance. The time series of mean and variance 

also tend to show spurious fluctuation due to errors in original data. It is necessary to 
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apply some smoothing technique to filter the mean and variance to obtain more 

plausible climatology. Chen et al. (2006) proposed to use cubic spline to smooth 

MODIS NDVI products. In their paper, a left free end condition is used to keep the 

time series linear at the starting and ending point. Such cubic spline is called 

“natural” spline. For the time series of LAI, it is not necessarily left free. On the 

contrary, the time series of climatology data should have the periodic constraints since 

the climatology repeat itself from year to year. Based on the method developed by 

Chen et al. (2006), the locally adjusted cubic spline capping method with periodic 

end conditions is developed to assure the smoothed climatology has the following 

properties: 

 

� The spurious low value is removed. 

� The seasonal curve of vegetation is kept. 

� The periodicity of LAI phenology is considered. 

� The method is able to interpolate at no observation time in order to match two 

products with different temporal resolutions. 

 

The same set of notations from Chen et al.(2006)’s paper is used here. For one pixel, 

there are N original LAI climatology values )(tL , Nt ,..2,1=  (N = 47 for MODIS 

and N=37 for CYCLOPES). The length of time series of LAI used here is one time 

span longer than the annual climatology. The first data is added after the last data to 
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keep the time series periodic. A piecewise cubic polynomial curve is used to fit the 

LAI climatology. 

iiiiiiii dttcttbttatL +−+−+−= )()()()( 23 , Ni ,..2,1=             2-1 

The continuous conditions at the boundaries are: 

)()( 1 tLtL ii += , )()( 1 tLtL ii
′=′

+ , )()( 1 tLtL ii
″=″

+ , 1,..2,1 −= Ni        2-2  

)()( 1 tLtLN = , )()( 1 tLtLN
′=′

, )()( 1 tLtLN
″=″

            2-3 

The equations 2-3 make sure the curve is periodic. By applying these conditions, one 

can get a group of linear equations 

LQbQQM TT =Γ+ )( µ            2-4 
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b  and L  is the vector of ib and iL , respectively. µ  and iiγ  is respectively used 

to adjust the smoothness of curve globally and locally.  

iii tth −= +1 Ni ,..2,1=                  2-8 

The periodicity of the time series leads to iNki hh +•=  and k is a natural number. 

Specifically, there exists Nhh =0  

( )iii hhp += −12                       2-9 
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The coefficient b  is obtained by solve the linear equations.  

LQQQMb TT 1)( −Γ+= µ               2-12 

M, Q and Γ  are all symmetric and cyclic matrices, which makes the coefficient b  

cyclic and the time series periodic. Then, a , c  and d  are obtained by inserting b  

into the continuous conditions. 

 

2.2.1 Results 

Figure 2-3 shows the LAI climatology on July 20-27 calculated from MODIS/Terra 

and MODIS/Aqua LAI products. The images before and after temporal smoothing do 

not show a large difference. Nevertheless, the image after cubic spline filter is 

smoother if zoomed in. This can be better noticed from the time series at one selected 
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point (Figure 2-4). The random error is reduced through the smoothing procedure and 

the smoothed climatology is more likely to represent the natural phenology curve. 

The climatology calculated from CYCLOPES data is also shown in Figure 2-5. In 

order to compare the two data, I interpolate CYCLOPES climatology to MODIS 

observation time at the same time of smoothing using cubic spline. The difference 

between the two products is obvious. This difference strongly correlates with land 

cover type (Figure 2-6). The difference is larger in highly vegetated forest than 

grassland or shrub. The evergreen broadleaf forest has the largest discrepancy. 

 
 

 
Figure 2-3 North America LAI climatology calculated from multiple years’ MODIS 

data on July 20-27 a) original b) after temporal smoothing. 

2.3 Geometric accuracy 

Both MODIS and CYCLOPES LAI products are believed to achieve very high 

geometric accuracy. Through sophisticatedly designed orientation systems and a 
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global network of ground control points, MODIS observations are expected to have 

sub-pixel accuracies (Wolfe et al. 2002). The geometric error of CYCLOPES could be 

less than one pixel, since the VEGETATION data maintain a very accurate record. In 

terms of multiple scenes registration, VEGETATION1 has 95% points with error 

smaller than 450m, and the error for VEGETATION2 is 320 m (Sylvander et al. 

2003). The high coregistration accuracy is the prerequisite for data integration. 

Nevertheless, there is little work on investigating the relative geometric error of the 

two products. 

 

 
Figure 2-4 MODIS climatology at CHEQ before and after cubic spline filter. 

 

The common way to evaluate the geometric accuracy is to compare the pairs of the 

ground control points. It is highly subjective and contains large error to manually pick 

up ground control points from these kinds of coarse resolution satellite products, 

especially when the large errors of missing values and large errors of LAI estimations 

exist. Both products provide water mask information. The water mask data are used to 

evaluate the relative geometric accuracy of the two products. 
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Figure 2-5  Smoothed CYCLOPES LAI climatology interpolated to MODIS 
temporal resolution on July 20-27 and its difference from MODIS climatology 

 
Figure 2-6 Land cover map over North America derived from the MODIS land cover 

product (MOD12Q1) 

2.3.1 Geometric registration  

There are two types of image registration methods: correlation based and feature 
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based. Since it is computationally burdensome to calculate the correlation of such 

large images, feature based method is selected. Both the point feature (centroids of 

small islands) and line feature (shorelines) are extracted and used for evaluating the 

geometric accuracy. 

 

Method 1:Semi-automated coregistration of centroids of small islands 

a. Select pairs of islands from the two images and mark one point on each island (as 

shown in Figure 2-7). 

b. Use these points as seeds to segment images using the region growth algorithm and 

obtain all points of each island. 

c. Compute the centroid’s coordinate of each island. 

d. Project the coordinates of the CYCLOPES image to the Sinusoidal projection. 

e. Calculate the RMSE of the pairs of centroid coordinates. 

 

Figure 2-7 Seeds of small islands, used to segment islands from the water mask of 
satellite LAI products 
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The results are shown in Table 2-3. Overall the two products match well. The errors 

between most point pairs are less than one pixel and the mean error is 0.92 pixels. 

Besides the geometric error of each product, another possible reason for the mismatch 

is that the two products use different water masks, which have variable mapping 

accuracy for water/land boundary. 

 

Table 2-3 Coordinate of small islands’ centroids in MODIS and CYCLOPES images 
 

Island No MODIS X MODIS Y CYCLOPES X CYCLOPES Y Error 
1 4045.30 1993.37 4046.17 1993.26 0.88 
2 9713.36 505.58 9714.05 505.13 0.83 
3 9859.49 1449.52 9859.82 1448.96 0.65 
4 8289.11 3662.27 8289.75 3661.48 1.02 
5 1262.58 5652.30 1262.98 5652.09 0.45 
6 4385.19 7421.99 4385.11 7420.83 1.16 
7 4785.13 6596.38 4784.74 6595.91 0.61 
8 6841.74 4633.80 6841.61 4633.03 0.78 
9 3536.20 3642.26 3537.89 3641.35 1.92 
10 8710.54 2156.81 8711.09 2156.05 0.93 
11 3429.13 7147.46 3428.84 7146.61 0.90 
12 1311.21 7005.21 1311.51 7004.23 1.02 
13 7378.74 1250.31 7379.38 1249.85 0.79 
14 3247.64 2388.51 3248.37 2388.01 0.88 

 

Method 2: Shoreline matching based on Chamfer matching 

1. Extract shorelines from both images. 

2. Calculate the Euclidean distance transform of one shoreline image (Figure 2-8). 

3. Chamfer match another image to this distance transform, supposed that only 

translation error is present. 

4. The best match position which minimizes the distance error represents the 
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coregistration error of the two images. 

 
 

Figure 2-8 Euclidean distance transform of shoreline extracted from CYCLOPES 

 

The water mask of CYCLOPES data doesn’t contain the inland water. The shorelines 

extracted from the two products cannot exactly match. The chamfer distance is 

minimal when the offset is one pixel (Figure 2-9). 

 

 
Figure 2-9 Chamfer distance as a function of easting and northing offsets 
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2.3.2 Influence of geometric error 

 

Both methods show that the relative geometric error is around one pixel. The 

following will show how the one pixel error may influence the integration results. 

The CYCLOPES LAI product is used since it is believed to have higher accuracy. 

The LAI values at the origin and the mean of LAI values at this point and at one pixel 

lag are compared. The data from the growth season are chosen when LAI have 

maximal values. Because the original product contains large uncertainties and gaps, 

the multiple years’ mean values are used. The spatial variation apparently determines 

the impact of geometric errors on LAI accuracy. The influence is calculated at 

different land cover types. The results on four typical vegetation regions are shown in 

Figure 2-10. 

 

Temperate forest has the largest error, with the RMSE of 0.13. Grassland has the 

smallest error, where the overall LAI is smaller. For all the land cover types, the error 

due to misregistration is small, compared with the uncertainties of the retrieval 

algorithms. In the following data integration, the data in their original geographic 

coordinate are used to avoid the new errors introduced by inaccurate registration 

parameters. 
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Figure 2-10 Impact of geometric errors on integration accuracy 

a) temperate forest b)boreal c)tropical forest d)grassland 

 

2.4 Impact of atmospheric condition on data quality 

 

Error in satellite LAI products can be twofold: one is systematic, which is related to 

the shortcoming of retrieval algorithm, the inaccurate prior knowledge, i.e. the 

incorrect land classification input; the other is random, which comes from random 

input error such as atmospheric correction or BRDF effects. The systematic error 
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cannot be reduced through statistics without bias correction. I mainly focus on the 

random error. For retrieval of LAI, the atmospheric condition is an important factor 

determining the data quality. Comprehensive field measurements are unavailable to 

examine the impact of atmospheric condition on data quality. Here I take advantage 

of the twin sensors of MODIS to evaluate this issue. The actual LAI values in the 

morning and afternoon are similar. The difference between MODIS/Terra and 

MODIS/Aqua LAI should come mainly from the random error of LAI retrieval. The 

best LAI retrievals from one of the two sensors with the highest quality are used to 

evaluate the LAI from the other sensor. Here the best data are referred to those from 

the radiative transfer method and not contaminated by cloud, aerosol, snow, cirrus or 

cloud shadow. Limiting the atmospheric condition of the second retrieval to different 

categories, one can see their impact on LAI data accuracy (Figure 2-11). 

 

Clouds reduce the data quality most seriously. The data under cloud contamination 

have a significant negative bias and a very large variance (1.57). The error 

distribution is far from normal. The data under cloud shadow also has a non-normally 

distributed error and with large variance (1.03). LAI retrievals when significant 

aerosol is present have almost no bias. The accuracy is also much better than that of 

cloud shadow. The data from empirical backup algorithm also have an unbiased error 

and a slightly higher variance than data under aerosol contamination. 
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Figure 2-11 Impact of atmospheric condition on LAI data quality. The second column 
shows the histograms of LAI error distribution, and the first number is mean and the 

second number is variance. 
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2.5 Intercomparison of MODIS and CYCLOPES LAI products 

Data quality such as measurement error is a critical input of data integration 

algorithms. This section compares two moderate resolution products: MODIS and 

CYCLOPES LAI. The exploratory analysis of the relative data quality will serve as 

the basis of data integration. The two products are evaluated in terms of retrieval rates, 

absolute accuracy and relative bias. MODIS has higher retrieval rates in winter and 

smaller in summer than CYCLOPES. Intercomparison shows systematic discrepancy 

exists between the two products. CYCLOPES has higher accuracy but may generate 

spurious large values in winter. 

 

2.5.1 Retrieval rate 

Many factors may cause failure of retrieving LAI. Surface snow cover and high cloud 

frequency within the observation period are the two leading causes. Adverse 

atmospheric conditions, unfavorable observation geometry, instrumental failure and 

NIR reflectance saturation induced by dense vegetation, among other reasons, may 

also lead to missing data or low retrieval quality. The retrieval rate, which is the ratio 

between the number of successfully retrieved data and the number of expected data, is 

used to evaluate the distribution of missing data. All data downloaded are used to 

calculate this rate in terms of different land cover types and different seasons. The 
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results are shown in Figure 2-12. 

 

 

 
Figure 2-12  Retrieval rates of CYCLOPES and MODIS LAI products. Blue lines 

represent CYCLOPES, solid red lines are MODIS and dashed red lines mean MODIS 
with the highest data quality. 

 

Generally, MODIS has higher retrieval rates in winter and smaller in summer than 

CYCLOPES. Both of the satellite data have extremely low retrieval rate for 

needleleaf tree in winter season, which is distributed mainly at high latitudes. The 

retrieval rates for evergreen broadleaf tree are also low across the whole year and 
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especially lower in summer due to the high atmospheric moisture. For all the 

vegetation type and seasons, the percentage of MODIS data with highest quality is 

low, generally smaller than 50%. The rates for broadleaf trees are extremely low in 

the growth season due to saturation and high atmospheric moisture. 

 

2.5.2 Direct validation 

Direct comparison of the two satellite LAI products with high resolution LAI maps 

has been done by Garrigues et al.(2008). However, they are not using the latest 

version of MODIS and their results are based on a degraded temporal and spatial 

resolution. Here, I use the latest version of MODIS LAI data and evaluate the two 

satellite products at their original resolution. The LAI reference maps are aggregated 

to 1km to match the satellite products. According to the time and location of the 

aggregated maps, a single closest pixel of the satellite products is chosen to compare 

with the reference data. Figure 2-13 shows the CYCLOPES LAI performs a little 

better in terms of R square and RMSE. MODIS overestimates LAI with a positive 

bias of 0.28, while CYCLOPES has a negative bias 0.20. The overall data quality of 

these two satellite LAI products is expected to be worse than the shown results. The 

availability of a high resolution LAI reference map indicates the atmospheric 

condition is ideal, which means possible high quality of satellite LAI products. 

Twenty-two out of 31 available MODIS observations have the QC value of zero, 
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much higher than the overall MODIS LAI product quality. 

 

 
Figure 2-13 Direct validation of MODIS and CYCLOPES LAI products using high 

resolution LAI reference data 

 

The relation between data quality and QC is further investigated. When applying the 

QC of MODIS, data with better quality control do not always mean higher accuracy 

(Table 2-4). The bias and RMSE decreases from low quality to high quality. However, 

excluding data from the backup algorithm and data contaminated by cloud fails to 

improve R square and relative RMSE. This indicates the retrieved LAI with lower 

quality may contain large systematic errors. The random errors are degrading the data 

quality seriously even for retrieved data with high confidence. 

 

Table 2-4 Validation results of MODIS LAI when applying different quality control 
 

 R2 Bias RMSE Relative RMSE 
All data 0.75 0.28 1.04 44% 

Data from RT 0.65 0.08 0.96 44% 
Data from RT 
without cloud 

0.72 -0.03 0.44 51% 
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Visual examination shows CYCLOPES has smoother temporal profiles and 

CYCLOPES LAI maps appear smoother than MODIS images. In order to evaluate 

which product better expresses the spatial heterogeneity of LAI, I calculate the 

coefficient of variation within selected sites (7*7km). The reference maps are 

aggregated to 1km resolution, then used to derive the coefficient. Because the original 

satellite products may contain too many random errors, the coefficients of variation 

are also computed on multiple years’ average of LAI products (Table 2-5). The spatial 

variations of MODIS data are closer to reference maps, while CYCLOPES has 

overall smaller values. The multiple years’ mean of CYLOPES has similar results 

with the original CYCLOPES data, which indicate the CYCLOPES LAI is stable 

over years. The random errors in MODIS original data are reduced to make MODIS 

climatology have much smaller variation. 

 
Table 2-5 Coefficients of variation within a 7*7 km region at validation sites 

 
Site Date Reference 

Map 
Terra Modis  

Climatology 
CYCLOPES Cyclopes 

Climatology 
ARGO 2000 07 04 0.21 0.19 0.06 0.03 0.03 

CHEQ 2002 08 01 0.21 0.15 0.17 0.00 0.01 

HARV 2002 08 24 0.08 0.09 0.06 0.04 0.01 

KONZ 2000 06 07 0.09 0.14 0.08 0.01 0.00 

METL 2002 09 24 0.16 0.25 0.07 0.04 0.04 

NOBS 2000 07 14 0.17 0.10 0.06 0.03 0.02 

SEVI 2002 07 26 0.01 0.00 0.00 0.00 0.00 

2.5.3 Intercomparison 

Direct comparison of the two products shows large scattering. Even after land cover 
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types are considered, the relationship between CYCLOPES and MODIS LAI is not 

significantly improved (Figure 2-14). The large scattering may come from both the 

systematic bias of the two products and their respective random errors. In order to 

further investigate the consistency between the two products, multiple years’ averages 

for each land cover type are compared. 

 

 
Figure 2-14 Relationship between CYCLOPES LAI and MODIS LAI at a 

mid-latitude location near the Beltsville Agriculture Research Center, MD a) all pixels 
b) broadleaf crop c) deciduous broadleaf tree 

 

The two products agree more closely because the random errors are reduced greatly 

through multiple years’ averaging and averaging among multiple pixels with the same 

land cover type. Especially for grass, shrub, cereal crop, deciduous needleleaf tree 
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and evergreen needleleaf tree, the two products have almost the same results. For 

broadleaf tree and sparsely vegetated area, MODIS produces much larger values. 

There is only one case, broadleaf crop, where MODIS is smaller than CYCLOPES. 

The MODIS LAI is almost twice that of the CYCLOPES LAI for evergreen broadleaf 

tree. There are two possible reasons for this according to Weiss et al. (2007): LAI 

saturation is worse for CYCLOPES and MODIS data are corrected for some 

clumping effects. This systematic mismatch between CYCLOPES and MODIS must 

be addressed in the integration of the two products. Another problem worthy of notice 

is that CYLCOPES has some spurious high LAI values in winter (Figure 2-16). One 

possible explanation is that CYLCOPES has bad input of reflectance under snow 

contamination. 
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Figure 2-15 Comparison of multiple years mean of MODIS and CYCLOPES 
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Figure 2-16 Spurious large values of CYLCOPES LAI in winter. Examples are shown 

at a) METL, b) NOBS c) Thompson d)HARV 
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Chapter 3  Geostatistical methods for integrating MODIS and 

CYCLOPES LAI products 

 

This chapter applies both “traditional” geostatisical method OI and modern 

geostatisical method BME to integrate MODIS and CYCLOPES LAI products. After 

a brief introduction to the two methods, a normalization scheme to account for the 

systematic biases of the two satellite products is developed. The integrated results are 

validated and analyzed in both time series and two dimensional images. 

 

3.1 Methodology 

This section first gives the basic concepts of the space time stochastic process. Then, 

two geostatistical mapping methods and their application are reviewed. OI will give 

the best linear unbiased prediction for the Gaussian process, while BME relaxes the 

linear and Gaussian assumption of OI. 

 

3.1.1 Introduction to space time stochastic process 

In the context of spatiotemporal statistics, LAI is treated as a space-time stochastic 

process, a collection of random variables ),( tsL  over probability space ),,( PFΩ . 
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The index here contains location s  and time t : 

},{ 2 RtRs ∈∈                       3-1 

For every realization of ),( tsL , its probability can be denoted using the cumulative 

distribution function CDF F : 

)),(()(),( xtsLyProbabilitxF tsL <=              3-2 

The derivative of CDF defines another function of ),( tsL  probability density 

function (pdf) f : 

dx

xdF
xf tsL

tsL

)(
)( ),(

),( =                     3-3 

Given pdf, the mean of this stochastic process can be calculated by 

∫ ⋅= dxxfxts tsLL )(),( ),(µ                   3-4 

For two points ),( ts  and ),( ts ′′ , their covariance is defined by 

xddxxxftstsLtstsLtstsC tsLtsLLLL ′′′′−′′⋅−=′′ ∫ ′′ ),(,)),(),(()),(),((),,,( ),(),(µµ    3-5 

where 
),(, ),(),( xxf tsLtsL ′′′  is multivariate pdf of random variable ),( tsL  and 

),( tsL ′′ . The covariance function must be positively definite to keep it valid. For a 

covariance function to be positively definite, it must satisfy: 

0),,,(
1 1

>∑∑
= =

n

i

n

j
jjiiLji tstsCaa  given any a    3-6 

For the sake of simplicity, the random field usually is assumed to have the property of 

stationarity. A strict stationarity is defined by the multivariate CDF. The CDF is 

invariant with the temporal lag and spatial lag. In most cases, only weak stationary 

(wide sense stationary) is required, which has the following properties: 
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ctsL =),(µ                    3-7 

),(),,,( ttssCtstsC LL ′−′−=′′                 3-8 

This means the mean is a constant and the covariance is only the function of distance 

in space-time domain. According to its definition, a stationary random field cannot 

contain non-constant space-time trend. One important task of geostatistics is to 

remove large-scale trend T  and get homogenous zero-mean small scale variationV : 

),(),(),( tsVtsTtsL +=                       3-9 

T  is assumed to be deterministic and V  is space-time stochastic field. V  is the 

real target of spatiotemporal geostatistics. 

 

I start the data integration theory with a very simple case: the point to be estimated 

coincides with the point measured.  Without loss of generality, supposing that there 

are two LAI observations1L , 2L  from two satellite products at the same space-time 

point with errors 1e  and 2e , and the real LAI value at this space-time coordinate is 

tL , there are two measurement equations: 

11 eLL t +=                       3-10 

22 eLL t +=                       3-11 

Assume both of the satellite products are unbiased, that is 

tLLELE == )()( 21                   3-12 

Because the two observations are independently retrieved from different sensors 

using different algorithms, the errors of the two products are assumed to be 
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uncorrelated, that is 

0),( 21 =eeCov                  3-13 

The variance of the two observations is 21σ  and 2
2σ . Under such assumption, an 

estimation of tL  can be expected in the linear form: 

2211 LaLaLt +=                  3-14 

Whether in terms of the least square, variational method or Bayesian theorem, the 

best estimator has the same parameter: 

2
2

2
1

2
2

1 σσ
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+

=a  
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1
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2 σσ
σ
+

=a           3-15 

So, starting from either theory, for a Gaussian process, the final result will be the 

same (Lorenc 1986; Wikle and Berliner 2007). Gu et al.(2006)’s method of improving 

MODIS LAI is based on this simple one point optimal interpolation. However, in data 

integration of LAI, usually there is no reliable observation available in the same 

spatiotemporal point of estimation. Information from temporally and spatially 

adjacent points is needed to improve the estimation. Accordingly, temporal or spatial 

methods with the ability of interpolating are needed. 

 

3.1.2 Optimal interpolation 

 

OI, also known as objective analysis, is the statistical method of spatial interpolation 

on the Gaussian process. OI was invented in the field of numerical weather prediction 
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by Gandin (1965). In geostatistics, a very similar set of theories, Kriging, was 

independently developed almost at the same period (Matheron 1963). OI is designed 

for spatial interpolation, however it is natural to add time as another dimension of 

space and extend OI to the spatiotemporal domain. For some variables, this extension 

is plausible. These variables evolve in both spatial and temporal domains and have 

both spatial and temporal dependency. For example, insolation can be modeled 

through a spatiotemporal covariance matrix and predicted using Kriging in the 

spatiotemporal domain (Huang et al. 2007). However, some variables show 

significantly variable properties in spatial and temporal domains. Uz and Yoder (2004) 

found temporal correlation barely exists in oceanic chlorophyll concentration 

although spatial correlations were found, so Pottier et al. (2006) used only spatial 

dependency in merging MODIS and SeaWIFS chlorophyll products. Without loss of 

generality, LAI is treated as both spatially and temporally indexed. 

 

Given the mean and covariance function of this Gaussian process, we have 

observations ),( ii tsL  of LAI at a set of space time points ),( ii ts , and we want to 

predict the value of LAI at a point ),( 00 ts . OI pursues the linear predictor ),(ˆ 00 tsL  

of ),( 00 tsL  in the form of: 

∑ −⋅+= )],(),([),(),(ˆ 0000 iiiii tstsLtstsL µλµ                 3-16 

through minimizing the error 2
0000 )],(),(ˆ[ tsLtsL − . To minimize the cost function, we 
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take the first order condition and get the parameters iλ in the form (Bretherton et al. 

1976) : 

          ∑∑
= =

−=
N

i

N

j
iijjiii tstsCtstsC

1 1
00

1 ),,,(),,,(λ        3-17 

 

Recently, OI was extensively used to reconstruct satellite products. Reynolds and 

Smith (1994) used OI to fuse in situ measurement and AVHRR data and produce a 

gridded sea surface temperature product at 1 degree. Le Traon et al. (1998) improved 

sea level anomaly mapping by integrating TOPEX/Poseidon and ERS-1 altimeter data. 

Pottier et al. (2006) combined SeaWIFS and MODIS observations together to 

enhance the mapping area of chlorophyll and reduce measurement error. Sapiano et al. 

(2008) blended Special Sensor Microwave/Imager (SSM/I) data with ERA-40 

reanalysis to generate 2.5 degree global precipitation data. Chao et al. (2009) used an 

OI equivalent two-dimensional variational data assimilation to merge five satellite 

SST data. In reconstructing LAI products, both the Gu et al. (2006) and Fang et al. 

(2008) methods used the concept of OI in a simplified form. Gu et al. (2006) used 

only the data at one point and didn’t consider spatiotemporal covariance among 

different points. Fang et al. (2008) empirically calculated the weights of adjacent 

observations instead of optimally inversing covariance matrix.  

 

OI is a linear predictor on the Gaussian process. A new epistemological 



 51

spatiotemporal mapping method, BME, has been recently developed. Uncertain 

observations are treated as soft data in BME and the errors are rigorously considered. 

Unlike the “traditional” geostastitics, Kriging, BME makes no restrictive modeling 

assumption such as linearity and normality (Serre and Christakos 1999). BME is 

different from the linear interpolation used in Kriging in that a flexible form is 

incorporated. Under some scenarios, BME is simplified to Kriging. 

 

3.1.3 Bayesian Maximum Entropy 

Christakos's (2000) monograph systematically describes the BME theory. BME treats 

spatiotemporal stochastic processes in a different way from traditional geostatistics 

(e.g. Kriging) by incorporating physical knowledge into the spatiotemporal analysis 

instead of using a “pure inductive” framework (Christakos 1990; Serre and 

Christakos 1999). Under the BME's framework, “traditional” geostatistical methods 

are a special case of BME. 

 

BME has been successfully applied to solve many problems. For example, Christakos 

et al. (2004) employed a nonlinear estimator based on BME to combine both the 

satellite ozone product and the empirical relationships between ozone and tropopause 

pressure to produce high spatial resolution ozone products with greater accuracy. 

Douaik et al.(2005) used BME to map soil salinity and found that the BME approach 
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produced less biased and more accurate predictions than the traditional Kriging 

approach. Kolovos et al. (2002) combined site-specific observations and stochastic 

partial differential equations into an assimilation of the advection-reaction process. 

 

BME is capable of incorporating both general knowledge and site-specific 

information. The general knowledge could be either physical laws or statistical 

moments. Both are expressed in the form of teleologic equations. There are generally 

three stages for applying BME: prior, meta-prior and posterior (Serre and Christakos 

1999; Christakos 2000): 

In the prior stage, the general knowledge, related with a αg function, is expressed by 

the representation of a G-operator: 

∫ = 0)()( mapGmap fgGd χχ α  ),...,1( N=α                 3-18 

The prior pdf )( mapGf χ  is obtained by maximizing the informative entropy 

constrained by this equation. mapχ  represents all the data points, including observed 

data dataχ  and the data kχ  to be predicted at unobserved points k. In the meta-prior 

stage, the available site-specific data can be divided into true (hard) data hardχ or 

uncertain (soft) data softχ . The uncertainties with soft data will be considered 

explicitly in a rigorous way at this stage. In the posterior stage, the posterior pdf 

)( kKf χ of predicted points kχ  is given by:  

∫
−=

D mapGsoftkK fdAf )()( 1 χχχ                  3-19 
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where ∫=
D dataGdata fdA )(χχ is the normalization coefficient. When the physical 

knowledge is the statistical moments of underlying stochastic process, the G-operator 

of the prior stage takes the form of multivariate Gaussian function and the posterior 

pdf leads to (Serre and Christakos 1999): 

),;()(),;()( ||||
1

khskhkhssoftsoftSsofthkhardhkkkK cxBxxfdxcxBxAxf φφ ∫
−=         3-20 

where, ),,( cxxφ  is the multivariate Gaussian function of variable x  with the mean 

x and covariancec ; hkc |  is the covariance matrix of predicted points conditional to 

hard data; khsc |  is the covariance matrix of soft data points conditional to predicted 

points and hard data points; hkB | is defined as 1
,,

−
hhhk cc  and khsB | is defined as 

1
,,

−
khkhkhs cc . 

Based on the posterior pdf, the estimates kx  and the errors of estimation 2kσ  can be 

expressed as: 

∫= kkKkk dxxfxx )(              3-21 

∫ −= kkKkkk dxxfxx )()( 22σ          3-22 

Under this framework, all the information is integrated into the Bayesian inference to 

maximize the information. The results are expected to be more informative and 

accurate. These properties of BME can address the problems the land remote sensing 

community is faced with and can make BME ideally suitable for data integration of 

satellite LAI products. 
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3.2 Normalizing LAI anomaly 

 

Theoretically, both BME and OI can take irregular observations as input. 

Consequently, the mismatched spatiotemporal grids of the two LAI products will not 

be a problem and the proposed methods should work well for the case of two 

products. However, the two products are found to be significantly different. Besides 

the random measurement error, the bias and other systematic measurement error also 

need to be considered. Comprehensive field measurements will be the ideal way to 

remove the systematic bias or mismatch between the two products. However, such an 

observation network of LAI is not available. I propose to remove the mismatch by 

working on normalized anomalies of the two satellite products.  

 

Assume the error of satellite LAI products could be expressed in a linear model: 

MMtMM ebLaL ++⋅=                     3-23 

ML  is MODIS estimated LAI, tL  is the true LAI, Ma  and Mb  are constants, 

dependent on the location and time of year. Ma  and Mb  together with random error 

Me  can represent different sources of measurement errors. Ma  represents the ratio 

of dynamic range between the estimation and actual LAI values, Mb  depicts the 

estimation bias, and Me  is the normally distributed random error with variance 

2
Meσ . If MODIS LAI has the same dynamic range and no estimation bias, this 
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measurement error model will reduce to the simple form: 

MtM eLL +=                 3-24 

Since current satellite LAI products have large uncertainties, the dynamic error and 

bias cannot be ignored here. For the CYCLOPES product, there exists the similar 

equation: 

CCtCC ebLaL ++⋅=                3-25 

If the dynamic error and bias of these two products is known, the satellite retrieved 

values can be corrected before these two products are merged to obtain an improved 

product without bias and with consistency. The sparse in situ measurements make this 

approach infeasible. Although it is hard to remove the bias without independent LAI 

measurements, I need to at least try and develop a mechanism to make sure the results 

have consistent bias and dynamic range. 

 

In dealing with more than one variable with different units, normalization is crucial to 

make variable commensurable. A straightforward way to standardize the LAI data is 

M

MML
Ls

σ
µ−=                        3-26 

2
Mσ  and Mµ  are the product variance and mean calculated directly from data, as 

illustrated in Chapter 2. However, through this direct standardization, one cannot 

obtain a variable with the property of bias free due to the existence of measurement 

errors. Given the existence of measurement errors, the calculated product variance 
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contains two parts: 

2222
MetMM a σσσ +=              3-27 

where 2
tσ  is the variance of true LAI. Instead of standardized LAI using the 

calculated product variance, I need to construct a new variable 2)( tMa σ  using the 

product variance without measurement error: 

tM

MM

a

L
sL

σ
µ−

=′                  3-28 

The normalized anomaly sL ′  will be dynamic error and bias free: 

t

ttL
CYCLOPESsLMODISsL

σ
µ−

=′=′ )()(              3-29 

In order to obtain the product variance without the measurement error from the 

product variance, I need to make some simplifications. I assume the variance of 

measurement errors is proportional to the variance of LAI. This assumption is 

reasonable because larger retrieval error is expected when LAI has larger variation:  

tMMMe ak σσ =                    3-30 

Under this assumption, the normalized anomaly has a simple relationship with the 

standardized anomaly 

LsksL M
21+=′                     3-31 

The derivation of k will be given in the next section. Thus, the normalized anomaly 

will be free of dynamic error and bias. OI or BME should be carried out on the 

normalized anomaly sL ′  instead of LAI observation itself. Given the input of 

unbiased normalized anomalies, the output of data integration is expected to also be 
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bias-free: 

)(ˆ '
iLsfsL =′                 3-32 

The true LAI variance 2
tσ  and mean tµ  of LAI are needed to reconstruct LAI from 

the integrated result sL ′ˆ .  

ttsLL µσ +′= *ˆˆ             3-33 

They can be estimated by averaging the product variance without measurement error 

and the multiple years’ mean of MODIS and CYCLOPES: 

2
ˆ CM

t

µµµ +
=                      3-34 
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3.3 Analysis of results 

3.3.1 Modeling spatiotemporal dependency 

The assumption of second order stationarity is hardly valid throughout the earth. 

However, the normalized anomaly of LAI can be thought to be stationary within a 

small region. Smaller window size can better characterize vegetation heterogeneity, 

but can not model large scale dependency. I balance this by setting the window size to 

300km and model spatiotemporal dependency in each 300 by 300 window. It is still 

impractical to compute the spatiotemporal covariance using all available data within 

the window, although I segment the data to 300 by 300 km windows. A stratified 
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sampling strategy is designed to obtain both small scale and large scale dependency 

within the window (Figure 3-1). 

 
Figure 3-1 Points used to compute covariance within a 300 by 300 window 

 

Exponential models are frequently used (Christakos et al. 2004; Douaik et al. 2005). I 

use them to fit the temporal covariance. To model the spatial dependency at both short 

distance and long distance, a nested exponential covariance model is chosen. Due to 

the existence of measurement error, the model contains a nugget effect.  

)
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s
ctsC −−+−=        0,0 >> ts    3-36 

    NuggetctsC =),(                                    0,0 == ts  

where 1c , 2c  and Nuggetc  are coefficients, representing short-distance, 

long-distance spatial covariance and covariance at the zero-lag point; 1sa  and 2sa  

are spatial range while ta  is temporal range. Assume the covariance function of the 

underlying field is continuous. Thus, the discontinuity at the zero lag point is solely 

from the measurement error. The variance of measurement error would be: 
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)( 21
2 cccNuggete +−=σ    3-37 

Recalling the ratio k  between the variance of measurement error and the product 

variance without measurement error defined in the previous section, we can calculate 

k  by: 

)/( 21
2 cck e += σ  

Figure 3-2 shows the fitted and calculated covariance at the Beltsville Agriculture 

Research Center (BARC). Figure 3-3 shows the fitted spatiotemporal covariance at all 

validation sites. At most sites, correlation in spatial domain is stronger than the 

temporal domain, which means spatially adjacent pixels will have large influence on 

integrated results than temporally adjacent pixels.  

 
Figure 3-2 Estimated and fitted covariance at the Beltsville Agriculture Research 

Center. a) spatial covariance b) temporal covariance 
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Figure 3-3 Modeled spatiotemporal covariance at all validation sites 
 

3.3.2 Considering measurement error 

OI and BME treat measurement errors in different ways. Measurement errors change 

the weight of the linear estimator through changing covariance between observations 

in OI. The measurement errors are represented by their variance. The measurement 

error in OI is usually assumed to follow normal distribution, so measurement error 

can be completely characterized by its variance and mean (always zero). BME has 

two ways of incorporating measurement error. One is to use the interval data and the 

other is to use the pdf of measurement error as the soft data. The pdf type soft data are 

chosen here. Given the variance, the pdf can be constructed by assuming 

measurement errors follow the normal distribution. 

 

Variance of measurement error for CYCLOPES and MODIS data with the best 

quality is set as the value of 2
eσ , given in the previous section. The uncertainties of 

MODIS good data are estimated from the relative accuracy between best and good 
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data. The RMSE of Terra and Aqua good data is 4.25 and the RMSE of the best data 

is 2.56 (Figure 3-4), indicating the relative accuracy of good and best data. 

Accordingly, the variance of MODIS good data is 2)7.1( eσ . 

 

Some outliers may still exist, although ancillary data quality information is used to 

exclude data with large uncertainties. The data quality will be further controlled in 

preparing soft data. The data with absolute values larger than three times standard 

deviation will not be used as input. 

 
Figure 3-4 Scatter plots of MODIS LAI good data and best data. 

3.3.3 Integration results 

The proposed method is carried out at 12 reference sites. The integrated results are 

validated using reference maps (Figure 3-5). Both BME and OI improve the original 

data significantly. The integrated LAI has stronger correlation with reference LAI and 

the bias is reduced. The improvement of RMSE and R2 from CYCLOPES LAI to the 

integrated one is slight, but very significant for MODIS LAI. 
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Figure 3-5 Validation results of BME and OI integrated LAI using high resolution 

LAI reference maps at collected sites 

 

However, the computation cost of BME and OI would be an obstacle for applying 

them to large datasets. Small neighbors are used to avoid this problem, since the 

pixels far away from the pixel to be estimated have little influence. This cost for BME 

is especially heavy, which needs multidimensional integral in addition to matrix 

inversion. Therefore, only OI will be used to show the results of geostatistical 

methods on time series and two dimensional images. 

 

Figure 3-6 shows two examples of integrated results in time series. The time series at 

ARGO is very smooth since the original data has reliable data quality. Results at 

BARC are slightly worse. The integrated time series still has some unexpected 

fluctuations, but are significantly smoother than the original data. Although the two 

source data have apparent biases, the integrated results are systematically consistent. 

The integrated results are smaller than CYCLOPES and larger than MODIS, 



 64

mitigating their respective underestimation and overestimation problems. Integration 

methods based on geostatistics can also generate estimation errors together with the 

absolute estimated values. Figure 3-7 indicates the error bar at the ARGO site. In the 

growth season, one has large errors because of the large uncertainties of original 

retrieval. Only CYCLOPES data is produced in 1999 and MODIS/Aqua is not 

available until 2002. The error of 2002 and 2003 is smaller than the previous years 

because more observations are available from MODIS/Aqua. 

 
Figure 3-6 Five years’ LAI time series at a) ARGO b)BARC. The solid lines: 

integrated results by OI, dashed lines: climatology, stars: CYCLOPES, green circles: 
MODIS/Terra, red circles: MODIS/Aqua. 

 

To illustrate the approach at a regional scale, the OI based integration is also applied 

to the greater Washington DC area. The high spatial resolution of ETM+ LAI on 

August 5 2001 is estimated using the hybrid algorithm and calibrated with field 

measurements (Fang and Liang 2005). Compared with ETM+ LAI, MODIS LAI has 

two main problems. MODIS overestimates LAI, especially in woody area. Data gaps 

pose the second problem. If zooming in the MODIS map, one can see a lot of gaps. 
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There are no gaps in the integrated map. The integration algorithm excludes most 

spurious high values; therefore, the histogram of the integrated map is closer to the 

histogram of the ETM+ map. 

 
Figure 3-7 Integrated LAI and its error at ARGO 

 

3.4 Summary 

This chapter applies two geostatistical methods OI and BME to integrate MODIS and 

CYCLOPES LAI products. These two methods cannot directly operate on original 

LAI values because of their large discrepancies. I develop a framework to normalize 

anomaly and solve the problem that the two products have inconsistent bias and 

dynamic range. The anomaly can be normalized by assuming the linear relationship 

between the variance of measurement errors and the variance of true LAI. The 

integrated result has improved accuracy and no missing values. LAI time series is 

smoother and more reliable. It is hard to remove systematic error when there is no 

sufficient ground true data to evaluate the performance of retrieval algorithms. I make 

the integrated results consistent through the proposed algorithm.  
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Figure 3-8 OI integrated result on a region near BARC on August 5 2001 

Besides the statistically optimal integrated values, the geostatistical methods are also 

able to produce the estimation error. However, as mentioned earlier, one shortcoming 

of geostatistics based methods is their heavy computational cost. There are some 

solutions on improving the efficiency, for example: 1) using the Kalman filter on 

multiresolution tree (Fieguth et al. 1995; Huang et al. 2002; Johannesson et al. 2007) 

2) introducing the predictive process model, which has a lower dimension (Banerjee 

et al. 2008) 3) approximating covariance matrix, through sparse matrix technique 

(Barry and Pace 1997), tapering (Furrer et al. 2006), spectral domain(Fuentes 2007) 

or wavelet basis functions (Nychka et al. 2002) 4) using the random effect model, 

expressing covariance matrix in the forms of limited basic function with much 

smaller dimension (Cressie and Johannesson 2008). I will show the results using the 

multiresolution efficient interpolation algorithm in the next chapter. 
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Chapter 4   Multiresolution tree method for integrating MODIS and 

MISR L3 LAI products 

 

Optimal interpolation or BME cannot be applied on a large dataset due to the 

inefficient inversion of large covariance functions. One way to solve this problem is 

through a scale recursive filter of MRT based data structure. This method was first 

introduced by Chou (1991) and has been extensively used to interpolate and filter 

satellite altimetry data (Fieguth et al. 1995; Fieguth et al. 1998), temperature 

(Menemenlis et al. 1997), soil moisture (Parada and Liang 2004), aerosol (Huang et al. 

2002), topography (Slatton et al. 2001) and so on. MRT not only carries out spatial 

interpolation efficiently but also is able to take measurements with different spatial 

resolutions. For example, de Vyver and Roulin (2009) used this approach to fuse two 

remotely sensed precipitation datasets with different spatial resolutions. In order to 

show its ability to integrate data with various spatial resolutions, MRT will be 

explored to integrate MISR L3 LAI and MODIS LAI in this chapter. 

 

4.1 Methodology 

The basic concept of multiresolution optimal interpolation is to organize data in a tree 

structure (Figure 4-1). Using similar notations with Luettgen (1993), the data between 
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different resolutions can be expressed in a linear state model: 

)()()()( swpsxsAsx +=     4-1 

)(sx  and )( psx are the variable of interest respectively at scale s and its parent scale 

ps. )(sw  is the white noise, having a Gaussian distribution ))(,0( sQN . A is the state 

transition matrix from parent to children. Accordingly, the state transition matrix F 

from children to parent can be calculated by (Luettgen 1993): 

)()()()( 1 sPsApsPsF −=               4-2 

where P(s) is the variance at scale s. Thus, an up tree state equation can be obtained: 

)()()()( swsxsFpsx ′+=             4-3 

Besides these two state equations, there is an observation equation: 

)()()( svsHxsy +=           4-4 

H is the observation matrix. Because the satellite product is the same as the variable 

of interest and the satellite data at the same location are used, H is taken as the 

identity matrix. )(sv  represents the measurement error ))(,0( sRN .  

 

 
Figure 4-1 Framework of multiresolution tree method 
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This three equation system is similar to the state space model in time series, where the 

Kalman filter is proposed to incorporate the dynamic model and observational data. 

Similarly, the Kalman filter could also be applied on this tree-based model. From 

children to parents, the Kalman filter is employed to derive estimator at scale s1 

)2|1(ˆ ssx  by incorporating observations up to scale s2. If there is no observation, the 

process evolves purely according to the state equation. When observations are 

available, the system is updated (Luettgen 1993):  

))|(ˆ)()(()|(ˆ)|(ˆ spsxHpsypsKspsxpspsx −+=    4-5 

where )(sK  is the Kalman gain and given by: 

)()|()( 1 psHVspsPpsK −=           4-6 

where V(s) is the innovation covariance: 

)()|()( psRHspsHPpsV T +=     4-7 

After the root of the tree is achieved by the upward loop, the Kalman smoother is 

applied from parent to children to incorporate the observations at all levels. 

 

The critical step in using MRT is to assign the model parameters. Following the 

method used by Tzeng et al. (2005), I use identity matrix for the state transition 

matrix. The measurement error is dependent on sensor characteristics and the retrieval 

algorithm, which can be obtained through validation. However the acquisition of the 

state parameter is still a research topic. Huang et al.(2002) calculated the variance 
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parameter from the covariance function. Some use a µf/1 -like stochastic model, 

since many natural phenomena display a self-similar property (Fieguth et al. 1995; 

Fieguth and Willsky 1996; Fieguth et al. 1998). Kannan et al. (2000) used an 

expectation-maximization algorithm to estimate the parameters. de Vyver and Roulin 

(2009) directly calculated the parameters from the average radar measurement. 

 

4.2 Data 

In addition to having the high efficiency, MRT also has the advantage of integrating 

incompatible data with different spatial resolutions. MRT is applied here to integrate 

MODIS and MISR L3 LAI. Due to its narrow swath, MISR is less frequent to cover 

the entire Earth surface than MODIS. MISR LAI data are aggregated to 0.5 degree to 

generate L3 monthly data to enhance the surface coverage. MODIS Tile H10V5 is 

selected, most of which is over land. MISR L3 data is re-projected to the sinusoidal 

projection with the pixel size of 64 km. I use a tree with 6 levels and every node has 

sixteen children. MODIS LAI is the finest level and MISR takes the level 3. LAI 

anomaly instead of LAI is used as the input of MRT to achieve the goal of zero prior. 

Compared with the original values, the anomaly values of the two products match 

more closely (Figure 4-2). MISR L3 monthly LAI data has different temporal 

resolution from MODIS LAI. The temporal mismatching is simplified by assuming 

LAI anomaly doesn’t change too much during the MISR averaging period. Day 217 
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2001 MODIS data and August 2001 MISR data is used. 

 

From the direct validation in Section 2.5.2, the RMSE of MODIS LAI is 1.04. I use 

its square, 1.08, as the variance of the measurement error of MODIS data. MISR L3 

has a resolution of 0.5 degree. The available high resolution LAI maps cannot cover 

the size of one MISR pixel. Instead, the aggregated MODIS LAI is used to validate 

MISR L3 LAI (Figure 4-3). The square of RMSE is used as the variance of MISR 

data. 

 
Figure 4-2 MISR, MODIS/Terra LAI and their anomaly of August 2001 at tile H10V5  
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Figure 4-3 Validation results of MISR L3 LAI using aggregated MODIS LAI data 

 

4.3 Results 

In addition to the measurement error, another parameter is the variance when data are 

transferred from the parent to children. This parameter is empirically calculated using 

aggregated MODIS data at different levels (Table 4-1). 

 

Table 4-1 Variance of LAI anomaly at different scales 
 

Scale 1km 4km 16km 64km 256km 

Variance 1.48 0.79 0.58 0.44 0.36 

 

MRT integrated results are shown in Figure 4-4. The MRT integrated results are 

gap-free and smoother than the original anomaly map. The inconsistency among input 

data at different levels is mitigated through the data integration process. All the results 
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are consistent across the scales. The MRT errors are also shown, which depend 

mainly on the availability of input data and the accuracy of available data. Judging 

from MODIS QC, the left lower part of the image has lower data quality, and thus 

larger MRT error. However, the estimation errors are reduced through MRT, 

compared with the original measurement error. 

 

Figure 4-4 MRT integrated LAI anomaly and its error at MODIS and MISR scales 
 

4.3.1 Comparison with OI 

OI is also carried out over the same image to compare with the MRT method. The 

modeled spatial covariance is shown in Figure 4-5. Under the same computation 

facility (Pentium D 3.20GHz, 3.25Gb Memory), OI takes 4.5 hours when using an 
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11*11 small neighbor, while MRT needs only 6.5 seconds. MRT produces similar 

results with OI (Figure 4-6). Large differences appear in the left lower part of the map, 

where the original products have large errors. 

 

 
Figure 4-5 Modeled covariance at tile H10V5 using nested exponential covariance 

function 

 

 

Figure 4-6 OI processed LAI anomaly and its difference with MRT results 
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Chapter 5  Empirical orthogonal function method for integrating 

MODIS and CYCLOPES LAI products 

 

Empirical orthogonal function (EOF) methods deal with the matrix formed by the 

space-time variable, solving the eigenvector problem of data’s covariance matrix to 

reduce data dimension and remove measurement noise. A new data integration 

method based on Kondrashov and Ghil (2006)’s iterative algorithm is developed in 

this chapter. Then this method is applied to integrate MODIS and CYCLOPES LAI 

products. 

 

5.1 Introduction 

EOF is one of the most extensively used methods in geosciences (Preisendorfer 1988; 

Hannachi et al. 2007). EOF sometimes is also called Principal Components Analysis 

(PCA). Singular Spectrum Analysis (SSA) also belongs to the EOF family, but deals 

with the temporal correlations of short and noisy time series (Vautard and Ghil 1989). 

Multi-channel SSA (MSSA) may handle multivariate time series and these different 

channels can be the same variable at different spatial locations, so MSSA has the 

ability of processing both temporal and spatial information. Similarly, an extended 

version of EOF deals with both spatial and temporal correlation by using a sliding 
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window to incorporate the lagged information in the time domain (Weare and 

Nasstrom 1982). In the atmospheric literature, this technique is called extended EOF 

(EEOF), which can be treated as the synonym of MSSA.  

 

Through a regression and using information on spatial EOF of existing data, Smith et 

al. (1996) predicted data for places with no observations. Kondrashov and Ghil (2006) 

introduced an iterative algorithm based on SSA to fill missing data points and test it 

in multiple geophysical datasets. Liu et al. (2005) fit the in situ aerosol measurement 

with the leading EOF of satellite retrievals and model simulation in order to merge 

the information from three sources. Zhang et al.(2007) used EOF to improve poor 

quality insolation data to generate homogenous maps. Beckers and Rixen (2003) 

developed a “self-consistent” and “parameter free” Data Interpolating Empirical 

Orthogonal Functions (DINEOF). Alvera-Azcarate et al. (2005) and Alvera-Azcarate 

et al.(2007) applied this method in real oceanographic data for univariate and 

multivariate cases respectively. Ding et al. (2009) improved DINEOF by considering 

the influence of extreme values. 

 

5.2 Methodology 

The basic theories of all EOF based methods are similar: reconstruct noisy and 

gap-prone data using the leading components of data. Given a N*P matrix L formed 
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by the LAI retrievals stL ,  at time t  and location s , ],1[ Nt ∈ , ],1[ Ps ∈ , there are 

two ways to compute the EOFs of L . One is to solve the eigenvalue problem of 

covariance matrix LC : 

LLCL
T=        5-1 

The other way is to apply singular value decomposition directly on matrix L : 

TUSVL =       5-2 

The diagonal matrix S contains the singular values sorted in descending orders. The 

left singular vectors are usually called EOFs (spatial domain), while the right singular 

vectors are named principal components (PCs, temporal domain). By this means, the 

original data field is divided into spatial and temporal components. The original data 

field could be reconstructed if all the EOFs and PCs are used. The leading 

components contain most of the information through which the patterns of complex 

spatiotemporal geophysical datasets can be analyzed and the original noisy data can 

be filtered. This is the basic idea of EOF methods. Instead of working directly on the 

original matrix L , EOF could also be extended if the window of the length W  is 

moved on the original matrix to emphasize temporal information. A new matrix L ′  

with the dimension WPWN ×+− )1( can be formed by incorporating the lagged 

information (Hannachi et al. 2007): 
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The temporal information is emphasized this way. This method has the name of 

EEOF or MSSA. 

 

Usually, iterative algorithms are proposed when applying EOF methods to fill data 

gaps (Schoellhamer 2001; Beckers and Rixen 2003; Kondrashov and Ghil 2006; 

Zhang et al. 2007). Schoellhamer (2001) calculated the covariance using only 

existing data. This may lead to a non-positively definite matrix (Beckers and Rixen 

2003). Therefore, the missing points are usually filled with mean before applying 

iteration. Zhang et al. (2007) used a simple single loop iteration. In each iteration, the 

same number of EOFs is used. Other authors (Beckers and Rixen 2003; Kondrashov 

and Ghil 2006) used a double loop. In the outer loop, the number of EOFs is 

increased from 1 to a preset number. The inner loop is similar with Zhang et al’s 

method where EOF decomposition and reconstruction are computed until 

convergence happens. I will use the latter strategy.  

 

5.2.1 Hierarchical EOF 

Two problems have to be solved before EOF can be used to integrate multiple LAI 

products. The first problem is computational cost and the second is that the two 

products to be integrated have different temporal and spatial resolutions. I propose to 

use two runs of Hierarchical EOF (HEOF) to solve these problems. 
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The usual solution for large datasets is to divide them into multiple small sub-datasets 

and apply EOF on each of them. However, the information from other parts cannot be 

used this way and there will be inconsistent edges between different sub-datasets. To 

overcome these problems, a hierarchical EOF algorithm is proposed. EOF is applied 

at two levels: coarse resolution aggregated data and multiple fine resolution 

sub-datasets, both of which have a small dimension feasible for EOF. The data are 

first aggregated to coarse resolution. EOF is then carried out on coarse resolution data. 

The poor quality block will be replaced during the EOF procedure. The improved 

coarse resolution data are used as the mean to center the fine resolution subsets. For 

the fine resolution subsets, two adjacent blocks are intentionally overlapped. After 

EOF is applied, the mean of the overlapping area is calculated as the final filtered 

values to reduce the “blocky effect” (See Figure 5-1). 

 

 

Figure 5-1 Two level hierarchical data structure for EOF. Overlapping is intentionally 
designed to reduce “blocky effect”. 

 

For each level, an iterative method revised from Kondrashov and Ghil (2006)’s 

method is used. Kondrashov and Ghil (2006) centered the original data by subtracting 
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the mean and filled the missing points with zero. My approach applies the same 

strategy at the coarse resolution, while the reconstructed values of coarse resolution 

are used to center the corresponding fine resolution data. Then, a double-loop 

iteration of EOF is applied on the filled matrix. The inner loop replaces the missing 

points using the leading components of the filled matrix to form a new matrix, on 

which new leading components are computed to repeat the loop until the results 

converge. The outer loop increases the number of leading components used for 

reconstruction from 1 to a predefined value and performs the inner loop. In 

Kondrashov and Ghil (2006)’s algorithm, the original data are treated as the true data 

and kept intact. In the case of LAI, some existing observations may contain large 

uncertainties. I revise Kondrashov and Ghil’s method by replacing these data as well 

with the reconstructed values to filter out the noise and reduce uncertainties in the last 

set of inner loop. 

 

5.2.2 Multivariate HEOF 

DINEOF is able to take more than one variables as inputs. Alvera-Azcarate et al. 

(2007) tried this to reconstruct the combination of sea surface temperature, 

chlorophyll a and wind data. Their validation results show combining other 

information improved the data quality of reconstructed SST. In the case of integrating 

LAI, multiple LAI products cannot be directly used as different variables of 
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multivariate EOF. Although EOF doesn’t require all the variables to bear the same 

spatial location, their temporal resolution must be identical in order to form one 

matrix. In the case of integrating MODIS and CYCLOPES LAI, this prerequisite 

condition cannot be satisfied. Two runs of EOF are proposed to mitigate this problem. 

 

In the first run, only MODIS LAI is filtered by EOF. Then, MODIS LAI is temporally 

smoothed to match with CYCLOPES’s temporal knots using: 

∑
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)( itL  is the MODIS data after EOF. I choose N=4 and )(tf  to be Gaussian function, 

because similar parameters are used by Baret et al. (2007) to smooth VEGEATAION 

reflectance, which is ultimately used to generate the CYCLOPES LAI product. Then 

multivariate EOF is carried out on the smoothed MODIS data and CYCLOPES data. 

Before running multivariate EOF, two LAI anomalies will be normalized using their 

standard deviations over the whole dataset. After the multivariate EOF is done, the 

output MODIS and CYCLOPES data are averaged to obtain the final result. 

 

5.3 Analysis of results 

In the proposed EOF method, two parameters, the number of leading components and 

window length, need to be optimized. Zhang et al. (2007) used an empirical method, 
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simply choosing the EOF which could represent 80% of total variance. The explained 

variance of LAI anomaly is shown in Figure 5-2. A total of 5 leading EOF modes 

contain 80% of LAI covariance. In addition to this subjective method, cross 

validation may also be used to derive the parameters. Kondrashov and Ghil (2006) 

used cross-validation to determine the optimum parameters. The satellite LAI product 

cannot be directly used to carry out the cross validation because the original product 

contains large errors. Instead, the OI interpolated LAI anomaly is used as the true 

value to carry out cross validation. OI is applied on a 40*40 window around BARC 

for a whole year. EOF with varied parameters is used to reconstruct the same dataset. 

The relative errors of the reconstructed datasets are then calculated to determine the 

optimum parameters. 

 

Figure 5-2 Variance explained by EOF modes of one year CYCLPOES LAI anomaly 
data. 

 

The results of cross validation are shown in Figure 5-3. When the window length is 1, 

which means no temporal information is used and EEOF is simplified to simple EOF, 
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the relative error is very high. When the window length is increased to 2, significant 

improvement of the results can be noticed. After that, the change of window length 

has little influence on the relative errors. The estimation error first decreases with the 

increase in the number of EOF modes used for the reconstruction. However, 

continuous increase of EOFs leads to a large error of LAI estimation due to the large 

uncertainties of the satellite LAI products. The optimal number depends on the 

window length. The dimension of the working matrix WPWN ×+− )1(  is 

proportional to the window size. I set window size to 2 to reduce the computational 

time. 

 

Figure 5-3 Relative errors of cross validation using CYCLOPES LAI anomaly, as the 
function of window length W and the number of leading components. 

 

The proposed method is carried out at 12 reference sites. The integrated results are 

validated using reference maps (Figure 5-4). The quality of MODIS has been 

improved significantly in terms of R2 and RMSE, while the reconstructed 

CYCLOPES data is slightly worse than the original ones. Nevertheless, the final 
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integrated results have much higher quality than the original products. The estimation 

bias is significantly reduced by combing two data sources. 

  

 
Figure 5-4 Direct validation of EOF methods at collected sites 

 

The proposed method is also carried out at a region with 390*240 km around BARC. 

For one year data, EOF cannot directly operate on such a large image under a 32 bit 

Matlab® environmental due to the limitation of memory. By hierarchical EOF, one 

can work on any size datasets. Figure 5-5 shows the results of three consecutive maps. 

The missing data in the left upper corner of CYCLOPES data at Day 227 2001 are 

filled with information from existing data. The EOF’s ability of gap filling is further 

illustrated in Figure 5-6. There are no MODIS data available in Day 169 and Day 177 
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2001. EOF generates continuous maps through data covariance calculated from 

existing data. The reconstructed MODIS LAI anomaly maps at missing days show 

similar patterns with the existing maps. The EOF reconstructed results appear 

smoother than the original one. Actually, the EOF integrated data also appear 

smoother in temporal domain (Figure 5-7). The spurious data values are removed 

through EOF. Thus the EOF integrated results show higher accuracy. 

 

 

 

Figure 5-5 EOF results on three consecutive maps from July 25 to August 15 2001 
around BARC. Each row shows the data at one day. The four columns respectively 
are the filtered and original CYCLOPES anomaly, the filtered and original MODIS 

anomaly. 
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Figure 5-6 Four consecutive maps of MODIS LAI anomaly after and before EOF. 

Blue area means missing data. 
 

 

 

 

Figure 5-7 One year time series of LAI anomaly at one selected point. Blue lines 
mean CYCLOPES data and red ones represent MODIS data. The dashed lines are 

original anomalies and the solid lines are reconstructed results by EOF 
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Chapter 6   Conclusions 

 

Accurate LAI products with high temporal and of different spatial resolutions are 

greatly needed to support climatological and ecological research efforts. None of the 

existing LAI datasets satisfies these requirements. Data assimilation may be a choice 

to address this issue. Nevertheless, independent observational data without 

incorporating physical dynamic models are essential to drive and validate all kinds of 

physical models. However, investigations on integration of high quality LAI from 

multiple existing LAI products are still not well established. This dissertation 

examined four methods based on OI, BME, MRT and EOF to integrate multiple LAI 

products and improve their accuracy.  

 

6.1 Major findings 

When validating and comparing MODIS and CYCLOPES LAI products that was the 

necessary step in the data integration analysis, I found that MODIS and CYCLOPES 

LAI have the relative geometric accuracy of around one pixel. Validation using LAI 

reference maps shows CYCLOPES underestimates LAI with a bias of -0.2 while 

MODIS overestimates LAI with a positive bias of 0.3. CYCLOPES may produce 

spurious large errors in winter. The direct comparison of the two datasets at pixel 
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level shows very large scattering. Multiple years’ mean over each land cover type 

shows the two products have similar values over shrub, grass, cereal crop and 

needleleaf tree but great discrepancy on broadleaf tree, sparsely vegetated area and 

broadleaf crop. Besides these systematic biases, atmospheric condition affects the 

retrieval quality of LAI. Cloud contamination produces non-Gaussian negative error 

and cloud shadow may also seriously degrade data quality. 

 

All of these four methods can fill gaps and reduce errors with existing data. After 

integration, all the data gaps are filled with information from adjacent pixels and prior 

knowledge. The integration process removes the spurious large temporal and spatial 

variation over the original data. Validation results indicate that the combination of two 

data sources reduces the bias and random error. The EOF method produces the 

integrated results with zero bias. The geostatistical methods reduce bias from +0.3 

(MODIS) or -0.2 (CYCLOPES) to -0.1. The data quality has been improved through 

data integration. The integrated results’ improvement from MODIS product is 

significant: R2 increases from 0.75 to 0.8 and RMSE decreases from 1.0 to 0.7. 

Limited in situ measurements hardly prove which methods outperform the others. 

However, the four methods do have their own pros and cons. 

 

Two geostatistics methods (both “traditional” OI and modern BME) have a solid 

theoretical basis. They generate statistically optimal results by incorporating both the 
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dependency among data and the data errors. In theory, BME will be the best choice 

for the integration of multiple data, since it doesn’t assume the Gaussian process and 

linear summation of data. If the data obey the prerequisite conditions of the 

Gauss-Markov theory, OI is the best unbiased estimator. However, the computational 

cost of applying BME and OI would be an obstacle for handling large datasets. The 

dataset for the North America has the magnitude of 108. Inversion of the covariance 

matrix with such a large dimension is still impractical. This is even worse for BME 

which needs multidimensional integral in addition to matrix inversion. 

 

MRT outperforms BME and OI in terms of algorithm efficiency. Besides, MRT also 

has the ability of integrating data with different spatial resolutions and generating 

consistent results at different resolutions. However, MRT usually assumes a simple 

linear state transfer function from coarse to fine resolution and vice versa and it is 

hard to verify if the real data satisfy such an equation. 

 

A hierarchical two-run EOF is proposed to handle large datasets and integrate data 

with different temporal knots. The new algorithm divides a large dataset into a set of 

overlapping small subsets. The information from different subsets is used at the 

aggregated coarse resolution. Compared with the aforementioned three methods, EOF 

requires less model assumption and parameter identification. However, EOF lacks a 

mechanism to explicitly consider the measurement error. 
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6.2 Major contributions 

This is the first study to apply several different integration methods to combine 

multiple satellite LAI products to reduce uncertainties and improve integrality. 

Existing methods (e.g., temporal filtering) usually work on one single product. Spatial 

temporal statistical based methods are hardly explored in previous investigations. 

Although BME, OI and MRT based methods have been used in other fields, this is the 

first time they have been applied to the integration of multiple LAI products.  

 

This dissertation has enhanced the locally adjusted cubic-spline capping method by 

revising the end condition. The proposed periodic end condition is more reasonable to 

filter multiple years’ LAI mean and variance. 

 

This dissertation presents a new comprehensive comparison of MODIS C5 LAI 

product with other satellite products. Besides examining the LAI values, this work 

has also evaluated the relative geometric accuracy of MODIS and CYCLOPES LAI 

products. By taking advantage of the MODIS twin sensors, this dissertation has 

quantified the influence of atmospheric conditions on data quality.  

 

In order to account for the inconsistency between products, a new LAI normalization 

scheme is developed by assuming the linear relationship between measurement error 
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and LAI natural variance. Although this scheme cannot remove systematic bias, it is 

able to generate LAI results with consistent bias. 

 

A new data integration method based on Kondrashov and Ghil (2006)’s iterative EOF 

algorithm is developed. The new algorithm has the ability of handling large datasets 

by working on two different levels and integrating multiple data with different 

temporal resolutions. EOF is carried out on both coarse resolution aggregated data 

and fine resolution small sub-datasets. Results from coarse resolution are used as 

prior knowledge in filtering the fine resolution data. This approach is first run as a 

univariate case on MODIS data only. The filtered MODIS data is interpolated to 

match with CYCLOPES by a Gaussian function. Then, EOF is run as a multivariate 

case on MODIS and CYCLOPES. The intermediate data are averaged to obtain the 

final integration results. Besides filling gaps, validation shows this method 

significantly improves the data accuracy, reducing the bias to 0, improving R2 to 0.81 

and reducing RMSE to 0.71. 

 

6.3 Suggestions for future study 

This dissertation presents the initial efforts to use four different methods to integrate 

LAI products. Several issues need to be addressed in future studies. First of all, 

additional in situ measurements are required to evaluate existing LAI products and 
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correct the systematic bias with each product. The spatiotemporal correlation of LAI 

and the distribution of its measurement error will be the basis of various data 

integration methods. Comprehensive field measurements provide a way to better 

characterize them. Furthermore, in situ measurements are also needed to validate the 

integrated results and refine the developed algorithms. 

 

A stationary spatiotemporal covariance function is currently used to model the 

dependency of LAI anomaly data. More flexible models need to be developed to 

account for the heterogeneity of LAI. Geostatistical methods are promising because 

they have a strict theoretical basis. However, more research efforts are needed to 

reduce their computational cost and make them suitable for large datasets. 

 

Two products are integrated in each of the four methods used in this dissertation, 

although these methods are able to employ more than two products. Future research 

could focus on more LAI products. Attempts could also be made to incorporate 

variables other than LAI to improve LAI estimation through multivariate methods, 

such as Co-Kriging, multivariate BME or multivariate EOF. 

 

In addition to LAI, other satellite products, such as albedo and insolation, suffer from 

similar problems. For example, geostationary satellites have more observations but 

are unable to map polar areas, while polar orbit satellites observe there frequently. 
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None of them can map the whole Earth at dense temporal intervals. The presented 

methods could be applied to integrate the geostationary GOES insolation product 

with polar orbit MODIS insolation information to solve this problem. 
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