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Leaf Area Index (LAI) is an important land surfdziephysical variable that is used
to characterize vegetation amount and activity. r€hr satellite LAl products,
however, do not satisfy the requirements of the efind community due to their
large uncertainties and frequent missing valuexhEBAI product is currently
generated from only one satellite sensor data.elfeean urgent need for advanced
methods to integrate multiple LAl products to imyeathe product’s accuracy and
integrality for various applications. To meet theed, this study proposes four
methods, including the Optimal Interpolation (OBayesian Maximum Entropy
(BME), Multi-Resolution Tree (MRT) and Empirical tbogonal Function (EOF), to
integrate multiple LAI products. Three LAI produdiave been considered in this
study: Moderate Resolution Imaging SpectroradiomgtdODIS), Multi-angle
Imaging SpectroRadiometer (MISR) and Carbon cYche a&€hange in Land

Observational Products from an Ensemble of Sasl(iCYCLOPES) LAI.

As the basis of data integration, this dissertafiest validates and intercompares



MODIS and CYCLOPES LAl products and also evalu#ttes geometric accuracies.
The CYCLOPES LAI product has smoother temporal ifgefand fewer spatial
variations, but tends to produce spurious largerernin winter. The Locally Adjusted
Cubic-spline Capping algorithm is revised to smoothbltiple years' average and

variance.

Although OI, BME and MRT based methods have beexd us other fields, this is the
first research to employ them in integrating mudipAl products. This dissertation
also presents a new integration method based ont&@blve the problem of large
data volume and inconsistent temporal resolution ddferent datasets. High
resolution LAI reference maps generated with grommelasurements are used to
validate these algorithms. Validation results stibet all of these four methods can
fill data gaps and reduce the errors of the exgstiAl products. The data gaps are
filled with information from adjacent pixels and dkground. These algorithms
remove the spurious large temporal and spatiahiran of the original LAl products.
The combination of multiple satellite products siigantly reduces bias. Ol and
BME can reduce the RMSE from 1.0 (MODIS) to 0.7 aeduce the bias from +0.3
(MODIS) and -0.2 (CYCLOPES) to -0.1. MRT can proéwsmilar results with Ol
but with significantly improved efficiency. EOF alggenerates the results with the

RMSE of 0.7 but zero bias.



Limited ground measurement data hardly prove whielthods outperform the others.
Ol and BME theoretically produce statistically opaél results. BME relaxes Ol's
linear and Gaussian assumption and explicitly a@rsidata error, but bears a much
higher computational burden. MRT has improved &fficy but needs strict
assumptions on the scale transfer function. EOHires) simpler model identification,

while it is more "empirical” than "statistical”.

The original contributions of this study mainly inde: 1)a new application of

several different integration methods to incorpematultiple satellite LAl products to
reduce uncertainties and improve integrality, 2) eathancement of the Locally
Adjusted Cubic-spline Capping by revising the endndition, 3) a novel

comprehensive comparison of MODIS C5 LAI producthmother satellite products,
4) the development of a new LAI normalization sckeby assuming the linear
relationship between measurement error and LAlrahttariance to account for the
inconsistency between products, and finally, 5)dfeation of a new data integration

method based on EOF.
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Chapter 1 Introduction

Leaf Area Index (LAI), defined as the one-sidedf lagea per unit of ground area
(Chen and Black 1992), is a very important landam# biophysical variable used to
describe vegetation amount and activity. Since t&ga plays a significant role in
controlling terrestrial productivity, hydrologicalcling, and surface energy balance,
LAl is required as a key input for various ecosgsteroductivity models and land
process models, especially under the changing tdinMoreover, vegetation is also
affected by the anthropogenic activities and claratange. The change of LAl is one
of the most direct indicators of how terrestriabg®gstems respond to climate change.
This topic has received increasing attentions ribjg€llyneni et al. 1998; Yanget al.
1998; Badeclet al. 2004; Zhanget al. 2004a; Zhangt al. 2004b; Pettorellet al.
2005; Notarcet al. 2006; Piacet al. 2006a; Pia@t al. 2006b; Mynengt al. 2007). A
reliable, consistent and accurate dataset of LAluldiobe the basis of such

investigations.

Remote sensing is the ideal way to map biophysiaahbles globally on a regular
basis. The historical Advanced Very High Resoluti®adiometer (AVHRR)

Vegetation Index (V1) products date from the ed®80s. However, due to problems



such as atmospheric correction, onboard calibragiod orbit drift, the quality of
AVHRR data are in question (Vermote and Kaufman5]¥@utman 1999; Kaufmann
et al. 2000). The new generation of moderate resolutiptical sensors, such as
Moderate Resolution Imaging Spectroradiometer (M®Dland VEGETATION,
provides finer spatial resolutions, more specthanmels, and better bandwidths and
radiometric calibration (Townshend and Justice 2002ulti-angular sensors (e.g.
Polarization and Directionality of Earth Reflectaac (POLDER), Multi-angle
Imaging SpectroRadiometer (MISR)) observe the E@din several viewing angles
and are thought to improve the accuracy of surtd@gacterization. With the launch
of the new generation of these instruments, we lemtered a new era to generate
LAl and other biophysical products. Various sophatd algorithms have been
developed to produce LAI products from several sensr projects, for example,
MODIS, Carbon cYcle and Change in Land ObservatidAeducts from an
Ensemble of Satellites (CYCLOPES) and MISR LAl Hwm&r, many issues
associated with the current LAI products limit thepplications in understanding the

dynamic environment. Specifically, the problemdude the following:

First, there are many gaps or missing data duadtvtumental malfunction, cloud
contamination and other factors (Fasi@l. 2008). For instance, the gaps in MODIS

LAl data can be as high as 80% in the winter al tédgjtudes.



Second, LAI estimation from satellite imagery haggé uncertainties. For the given
time and location, different products often havgngicantly different LAI values.
Figure 1-1 shows the discrepancy between CYCLOPEBE MODIS/Terra and
MODIS/Aqua LAl products at temperate forest. Altgbu MODIS/Terra and
MODIS/Aqua LAI products are derived from the saryeet of sensors and using the
same inversion algorithm, significant differencedse between them. Phenology
determination from LAI time series data is difficdue to large uncertainties. Breit
al. (2009) showed that there are also significant djz@ncies between satellite data
and model simulated LAl both in absolute values amdderived phenological

parameters.

sl ; ----- MODIS/Terra
i MODIS/Aqua
S| CYCLOPES

0 50 100 150 200 250 300 350
Day of Year

Figure 1-1 Time series of MODIS/Terra, MODIS/AqualaZCYCLOPES LAl
products in 2003 at a temperate forest pixel (38049.86W)
Third, multiple LAl products are typically incomplale in spatial and temporal
resolution, map projection and spatial ground cager For example, MODIS has a
swath of more than 2000 km while MISR’s swath isnasrow as 400 km. The

difference between geometric and orbital propedi®®ng various sensors increases



the difficulty in applying and incorporating mullgsource LAI data.

The accuracy of current LAl products does not Batlsee systematic requirements for
climate study and other applications. GCOS requareaccuracy of 0.5 and a spatial
resolution of 1 km and a temporal resolution ofay tr climate study (WMO 2006).
Even more accurate estimation of LAI is required dther purposes. According to
Francoiset al. (1997), estimating leaf temperature at the acquod®.5 requires less
than 10% error of LAI and accurate retrieval ofl gemperature needs a higher
accuracy of LAl within 5% error. However, MODIS LAk a 8-day composite
product and has a 12% overestimation and RMSEGH (ranget al. 2006), while
CYCYLOPES LAI has a 10-day temporal resolution &SE of 0.84 (Weisst al.
2007). These uncertainties may produce substaati@rs when driving various

numerical models.

These problems must be resolved. Data assimilahah combines the remotely
sensed observations with dynamic models may bdfactige way to address these
issues. However, considerable errors exist in nsoplkelgnosticating the dynamic leaf,
which usually link the vegetation growth to climatariability and nutrient

availability. The errors come both from the impetfparameterization of vegetation

growth and the uncertainties with the forcing ddtand data assimilation is an



emerging field and many issues remain (Liang 2084ternative solutions must be
explored. In this study, | focus on developing ailfpons based on integration
methods to incorporate multiple LAI products andestancillary data to improve the

quality of existing products.

1.1 Literature review

The discontinuity or inconsistency of scientific talarecords is a universal
phenomenon, in botim situ measurements (Falgeal. 2001; Oobeet al. 2006) and
satellite observationfVoody et al. 2005; Fanget al. 2008), such as land surface
datasets (Moodwt al. 2005; Fanget al. 2008), atmospheric products (Zhagtgal.
2007), and oceanic data archives (Pottteal. 2008). Spatially, this discontinuity or
inconsistency prevents forming an integrated magph @nducting spatial analysis;
temporally, it limits the ability to make time sesi analysis and obtain trend and
change information. There are numerous investigatmn developing algorithms to
build spatially and temporally continuous scientifilatasets and to improve the
guality of these products (Sellegsal. 1994; Gregg and Conkright 2001; Buermann
et al. 2002; Beckers and Rixen 2003; Kwiatkowska and ibar@003; Cheret al.
2004; Chenet al. 2006; Guet al. 2006; Fanget al. 2008). However in terms of
improving satellite vegetation products, temporalve fitting is still the most

common method. Besides, there are also severahgteto use spatiotemporal



statistical methods to incorporate more information

Temporal curve fitting methodsave been extensively used to smooth LAI and other

biophysical variables. Due to the phenological eyabf terrestrial ecosystems, most
biophysical variables derived from satellite imageeveal some types of annual
patterns. Different methods have been proposed;hwiary in the selection of curve
shape and fitting algorithms (See Table 1-1). Beeaatmospheric contamination
usually leads to underestimating these biophysiaahbles, most algorithms adapt to
the upper envelopes of annual curves. In orderctoese the upper envelopes, a
recursive algorithm is usually used. The obserwatiare replaced by filtered values
to form new time series if they are smaller thdterfed values. The filter is then
carried out on the newly constructed time seridfi aonvergence. In addition to the
use of least squares regression, the Kalman ifltesed to estimate the parameters of
the structural time series models (Yowstcgl. 1999). The parameters of this type of
time series model are also time-dependent varialbless change slower compared
with the model outputs. Parameters are treatedass gariables and model outputs
are taken as measurements in the Kalman filter.Kidiman filter is used to estimate
the state variables and so correct measuremenssi & al. (2006) applied this
method to fill the gaps of evapotranspiration dalansson and Eklundh (2004)
developed a program called TIMESAT to fill gaps satellite data and extract

phenology information from time series analysisjolihis used by Gaet al.(2008) to



produce continuous MODIS LAI data.

In temporal methods, additional information otheart observations of the variable of
interest itself may be included as well. In fillirgaps of Normalized Difference
Vegetation Index (NDVI) data, the data quality dW (cloud mask etc) was used to
group NDVI observations and assign them differeaigivts in regression (Chenal.
2004). Alavi et al.(2006) incorporated the relationship between evapspiration
and other variables such as latent heat flux, ablEl energy, and vapor pressure
deficit to estimate evapotranspiration when no eur@mspiration observations are

available.

Table 1-1 Major curve fitting methods used fordlilhg satellite vegetation products

Methods References
Trigonometric function Sellerst al.(1994)
Gaussian-type function Jonsson and Eklundh (2002)

Logistic curve Zhang et al. (2003)
Savitzky-Glay filter Chert al. (2004)
Cubic spline Cheet al. (2006)
Wavelet Luet al.(2007)

Temporal methods are able to analyze the time sati¢he mean time filling gaps,
and would be good choices for investigating thedrer phenology of vegetation
activities (Zhanget al. 2003; Sakamotet al. 2005; Piaocet al. 2006b; Zhangt al.

2006). However, temporal methods usually do ndizatithe spatial information.



When continuous gaps exist, they may not produdiabte results. Borak and
Jasinski (2009) compared several methods of inkatipg LAl and found the
incorporation of spatial information would improtee results. Borak and Jasinski
(2009) expanded Kang al. (2005)’'s method of utilizing spatial informationhere
the average of adjacent pixels with the same lawercwas used to fill the missing
data. Moodyet al. (2005) used a similar method to fill gaps in MODahedo
product by adjusting the ecosystem dependent pbgnaurve according to pixel to
pixel variation. These methods utilize temporal apdtial information in a simple

way, and the results are not statistically optirdize

The spatiotemporal statistical methodave also been employed to improve the

consistency and accuracy of existing LAl and othegetation products to some
extent (Guet al. 2006; Fanget al. 2008; Guet al. 2009). Guet al. (2006) averaged
the observational LAl value with the multiple ygaean according to their relative
variance. Their method cannot be used for intetfmridbecause it doesn’t incorporate
spatial or temporal covariance. Gai al. (2009) used a similar but even more
simplified method to reconstruct MODIS NDVI. In thestudy, the weights were
given empirically according to the quality contiaformation of NDVI products.
Fanget al. (2008) designed a temporal spatial filter to repladssing or low quality
values of MODIS LAI products. In Fang al.’'s method, data from temporally

adjacent images were used to interpolate when atatanissing. The weights were



given empirically according to the time distancawsen the points. Fang al.’s
method is not statistically optimal in a strict wddang et al.’s approach is based on
Cressman (1959)'s method. Chet al. (2008) has shown Cressman’s method
performs consistently worse than the geostatistiethod Optimal Interpolation (Ol)
for the case of interpolating gauge rainfall d&tarthermore, all these methods have
some generic problems: 1) limited information isarporated; 2) only one product is

used; and 3) errors of observations are not rigdyoeonsidered or fully utilized.

Besides geostatistical methods, the Empirical @ohal function (EOF)based

method is another choice to fill gaps and reduceeso In EOF, the leading
eigenvector components of the covariance matrixuaesl to reconstruct the original
matrix. Because the leading components are supptsecbntain most of the
information, EOF is expected to reduce errors (ldahnet al. 2007). We employed
an EOF based method to improve MODIS LAI produatwidver, only one source
was used in our previous investigation (Wang arah§i2008) and this method is not

suitable for large datasets due to storage and atatipnal limitations.

1.2 Objective of this dissertation

The objective of this dissertation is to improve #tcuracy and integrality of the LAI

products by developing advanced methods to integatitthe available information



from the incompatible sources of satellite LAl puots and any prior knowledge.

Several issues must be solved in developing tlegiation methods:

Multiple products have irregular spatiotemporaldgribecause they are using
different map projections and temporal compositgops.

Different products have variable support size dral/ tare usually incompatible

in spatial and/or temporal resolutions.

Different products have different biases and trstesyatic inconsistency must be
taken into account in data integration.

Little ground truth data are available to model suament error, correct

systematic bias and validate working algorithm

Moderate resolution LAl products have huge dataumd. The designed

algorithm needs to be computationally efficient.

In order to achieve this objective, four methodsluding OIl, Bayesian Maximum

Entropy (BME), Multi-Resolution Tree (MRT) and EO#ie presented to integrate

MODIS, CYCLOPES and MISR LAl products in this dids¢éion. Ol and EOF are

selected, because they have been extensively assalvie missing data problem in

meteorology.

Ol is able to take irregular inputs and employs tispamporal covariance to

interpolate variables at non-measured points addceserrors at measured points. Ol

10



will give the best estimation for the Gaussian pssc Guet al. (2006) tried Ol to
improve MODIS LAI. This dissertation improves themwwethod by using data at

adjacent points and combing MODIS with CYCLOPES.

Compared with the geostatistics method OI, EOFireguittle input on measurement
error and covariance structure. EOF methods catilee covariance matrix of the
datasets and use their leading components to reaonsoisy and gap-prone data.
Aimed to process large datasets, | develop a lieical EOF approach to both
reduce high dimension matrix to multiple smalleresnand incorporate data
information on higher levels. | also develop a sebeto incorporate multiple

products with different temporal resolutions.

Besides the Ol approach, LAI integration based @dem geostatistics BME is also
proposed. Different from the linear estimator OMB doesn't have the Gaussian
assumption but explicitly incorporates the measer@nerror in a strict way. BME

has been used to improve satellite ozone produnctother limited applications, but
has never been applied to LAI products. LAI intéigra based on BME is proposed

in this dissertation to combine MODIS and CYCLOR®$a.

Both Ol and BME need to inverse a matrix, whicltasnputationally expensive. In

addition, BME involves high dimensional integralhel computational cost limits
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their applications for large datasets. MRT effitigremploys the Kalman filter on a
tree structured data. MRT has been applied to aeatyany geophysical data. This
dissertation presents a method based on MRT tgriaie MODIS and MISR L3 LAI

products.

To my best knowledge, curve fitting or a one-dimenal (1D) temporal filter is still
the most common method of improving satellite vatieh products. There are few
attempts to employ spatiotemporal statistics, wharle based on “traditional”
geostatistics, with only limited information. Naternpts to combine more than one
source of LAl datasets have been made. This d&gertaddresses these problems of
current LAI products described in the previous isectlt is the first attempt to apply
sophisticated integration methods to combine mieltipAl products with variable
resolutions and uncertainties. The newly develdp@#& integration method is able to
handle large datasets and multiple incompatibla.d&te improved mapping of LAI
will improve modeling of vegetation dynamics andilenting terrestrial productivity
with higher accuracy and more integrality. The @sga methods can also be applied

in other satellite land products with similar pretis.

1.3 Structure of this dissertation

Chapter 2 summaries the datasets used in thisri@igea, including three satellite
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products andn situ measurements collected at Bigfoot and other progrdasides
the direct validation, the relative geometric aecyr of MODIS and CYCLOPES
LAI products is also evaluated. Multiple years’ mesnd variance are calculated as
the background of data integration. A periodic Iycadjusted cubic-spline capping

algorithm is improved to filter the multiple yearsean and variance data.

Chapter 3 presents two geostatistics based meti@dsnd BME, and analyzes the
results of integrating MODIS and CYCLOPES data.a%adnormalization scheme is
developed to take into account the systematic isistancy between the two products.

Improvement is shown on points, 2D image and tierees.

Chapter 4 applies the method based on MRT to iategflODIS and MISR L3 LAl,
which have different spatial resolutions. Ol isoatarried out at the same experiment
area to compare with MRT. MRT shows the similarulssbut with significantly

improved computational speed.

Chapter 5 develops a new integration method basdeGF to solve the problem of
large data volume and inconsistent temporal resoiudf different datasets, and

applies this method to integrate MODIS and CYCLORRBSdata.

Chapter 6 gives a general conclusion. The meritsshortcomings of each method
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are discussed and the main original contributiohsthgs dissertation study are

summarized and remaining problems are identifieduture study.
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Chapter 2 Data and preliminary analysis

This chapter first describes the main datasets irsélais study and then calculates
LAl climatology (multiple years’ mean and varianceyvhich are important
background knowledge for data integration. A redisersion of locally adjusted
cubic spline capping algorithm is developed to stihogatellite LAI climatology.
Preliminary analysis results on geometric errorgasarement uncertainties and gaps

distribution are also presented in this chapter.

2.1 Datasets

Both satellite andn situ LAl data are used in this study. Satellite da& the object
of this study and the input of proposed data irgtgn methods.n situ LAI
measurements are used to evaluate satellite psdactl validate integration
algorithms. Two moderate resolution satellite LAdtal MODIS and CYCLOPES
LAl products and one coarse LAl data, MISR L3 LAdoguct will be used to
illustrate the algorithms’ ability of integratinguttiple data with varied accuracy and
spatiotemporal resolutions. High resolution LAl rmagalibrated within situ LAI

measurements are employed to take into accounththege of support problem in
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validating satellite LAl products.

2.1.1 Satellite LAl products

Global LAI products have been routinely produceairfrdifferent sensors, such as
MODIS (Myneni et al. 2002), CYCLOPES (Bare¢t al. 2007), GLOBCARBON
(Denget al. 2006), MISR (Huet al. 2007), POLDERBicheronet al. 1998) (See
Table 2-1). Among them, MODIS, CYCLOPES and MISRILake produced over
multiple years and easy to access. MODIS twin gsnaboard Terra and Aqua
satellites were launched in 1999 and 2002 respgtiMODIS has 36 spectral bands,
among which red and NIR bands are the input of M®DAI algorithm. This
algorithm is biome dependent, using the six biontssification system. The
vegetation is classified as Grasses/Cereal cropmdBeaf crops, Shrubs, Savannah,
Broadleaf forest and Needleleaf forgEtriedl et al. 2002). A three dimensional
radiative transfer (RT) model was run offline totaib look-up tables (LUT) to
improve computation efficiency (Tian et al. 2000yMéni et al. 2002). An empirical
algorithm based on the relationship between LAI BVI1 is used as backup when
the main RT algorithm fails. To get sufficient adledata, MODIS LAI products are
composed at 8-day time step. For each composiiedydghe LAI value where the
Fraction of Absorbed Photosynthetically Active Rddin (fPAR) is largest is chosen

as the LAI for that period. MODIS LAI products apeoduced at 1 km spatial
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resolution in the MODIS sinusoidal projection ahe tatest version of MODIS LAI
is collection 5, available from February 18, 20@0present. Compared with the
previous versions, Collection 5 data improve theieeal percentage at woody area
and correct the overestimation problem over thedleeéorests(Shabanovet al.
2007) . LAI products are produced using both Tét@DIS (MOD15A2) and Aqua
MODIS (MYD15A2). Started from collection 5, a newrfa and Aqua combined LAI
product is available (MCD15A2). Similar to other \C5 products, MODIS LAl
provides detailed Quality Control (QC) informatiaith the LAI values. The QC data
of LAl Collection 5 contains two bytes, “FparLai_QGnd “FparExtra_QC”.
FparLai_QC mainly gives the retrieval path, whilpaFExtra_QC contains the

information of acquisition conditions.

CYCLOPES LAl uses three bands (red, NIR and sharwanfrared) of

VEGETATION, a sensor onboard the European SPOTM5asatellites, as the input
data. Instead of the radiative transfer model isioer method, CYCLOPES algorithm
uses the nonparametric regression based on neaivebnk (Bacour et al. 2003; Baret
et al. 2007). The training data are obtained thinosignulation of the PROSPECT
(Jacquemoud and Baret 1990) and Scattering by rarbyt Inclined Leave (SAIL)

(Verhoef 1984) models. All reflectance values asemalized to nadir geometry using
the Roujean BRDF model (Roujean et al. 1992). CYEES LAl is produced at 10

day temporal sampling intervals, however, cloue freflectance within 30 days may
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be used to fit the BRDF model. CYCLOPES LAl datagmnerated at a spatial
resolution of 1/112 degrees in the plate carrée prajection. The latest version is

3.1, covering from year 1999 to 2003.

Table 2-1 Characteristics of major current satellifl products

Product Spatial Map

; Temporal resolution Composite method S Availability
name resolution projection
February
8 days, starting from  Maximal value of Sinusoidal 2000-present
MODIS 1km the data da fPAR (Terra)
y July 2002
—present (Aqua)
CYCLOPES 1/112 10 days, centered at Temporal smoothing Plate carrée 1999-2003
degree the data day of reflectance WGS-84
1km,
GLOBCAR- 10km, 0.25 Temporal smoothing Plate carrée
BON degree, 0.5 10 days or monthly using cubic spline WGS-84 1998-2007
degree
SOM
Every 2 days at polar projection Februar
MISR L2 1km region and every 9 Not applicable (Space y
. 2000-present
days at equator Oblique
Mercator)
. . February
MISR L3 0.5 degree Monthly Simple average Geographi 2000-present
November 1996
POLDER 1/18 10 days Gaussian tgmporal Sinusoidal - \_June 1997
degree averaging April- October
2003

MISR is a multi-angular radiometer onboard Terrasesyving the entire Earth from
nine angles at four bands every 16 days. The MI8Ralgorithm chooses the most
probable LAI from all possible values by comparmgdeled reflectance and MISR
directional reflectanc@Knyazikhinet al. 1998). MISR LAI products are distributed at

two different resolutions, L2 1.1km moderate resoluand L3 0.5 degree coarse
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resolution. The L3 product will be used in thisdstuo facilitate the development of
the algorithm for integrating LAI data of differerg@solutions. MISR LAI will be only
used in Chapter 4, and the following analysis isinlgaon the two moderate

resolution LAI products, MODIS and CYCLOPES.

Both MODIS and CYCLOPES LAl have been validaf¥eng et al. 2006; Weisst

al. 2007). A summary of validating MODIS LAI can beufad in Yanget al. (2006).
They are also intercompared (Weasal. 2007; Garriguest al. 2008; Vergeret al.
2008). The general conclusion is that both prodcatsrepresent reasonable temporal
and spatial variations when compared wiilsitu measurement or an LAI reference
map. Compared with MODIS collection 4 LAI, CYCYLOBH.AI appears more
accurate, with a smaller RMSE. CYCYLOPES LAI shaavsmoother temporal and
spatial profile. However, the highest value of CICOPES LAl is 6, which cannot

characterize the highly vegetated area like demssfs.

All five years (1999-2003) of CYCLOPES LAI, 2000 MODIS LAI over North
America and 2000-2008 MISR L3 monthly data are doatted from their respective
data centers. Forty MODIS tiles and 73 CYCLOPESstibetween 0 N and 80 N

covering the North America continent are used. {Fég2-1).
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Figure 2-1 Tile systems used for a) MODIS LAl protn) CYCLOPES LAI product.
The yellow tiles covering North America are usedhis dissertation.

2.1.2 In situ LAl measurements

Besides the satellite LAI products, field measumeimef LAl is also needed to
evaluate the satellite products and validate tgerahms. Although more and more
global satellite LAl products are becoming avakgbLAl is not frequently and
regularly measured at the field experimental siksvertheless, in order to validate
or cross compare specific products or provide kmgildata for other research,
several LAI validation campaigns or programs haeerbestablished (Cheat al.
2002; Morisetteet al. 2002; Coheret al. 2003; Morisetteet al. 2006). The spatial
resolution of moderate resolution satellite produstaround one kilometer, while the
in situ measurements represent only a much smaller ateatdthe heterogeneous of
vegetation cover, the problem of change of supmadt be considered in the process
of using field measurements. Well designed fielohglang strategies can be used to
down scale field measurement so that the scalelof measurement can match the

pixel size of high resolution of satellite data (Bwvs et al. 2002; Berterretchet al.
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2005). Then in order to account for the differentecale between field measurement
and moderate or coarse resolution products, vaaising LAI reference maps
derived from high resolution satellite imagery amdlibrated with in situ
measurement is suggested (Cleeal. 2002; Coheret al. 2003; Coheret al. 2006).
Twenty-eight high resolution LAI reference mapslatsites are collected to validate
original LAl data and the integration algorithmdEre 2-2). Four of these maps have

a large spatial extent and more than one pointch enap is chosen.

Figure 2-2 Location of 12 LAI field measurement gangn sites over North America
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Table 2-2 Brief description of the collected LAlligation data

Images

Site Name . Vegetation Network Reference
available
ARGO 2 cropland Bigfoot (Cohest al. 2006)
CHEQ 1 mixed forest Bigfoot (Cohenal. 2006)
HARV 4 mixed forest Bigfoot (Cohest al. 2006)
KONZ 4 tall grass Bigfoot (Cohest al. 2006)
METL 1 ponderosa pine Bigfoot (Cohenal. 2006)
NOBS 3 black spruce Bigfoot (Cohenal. 2006)
SEVI 8 short grass Bigfoot (Cohehal. 2006)
TUND 1 tundra Bigfoot (Cohed al. 2006)
Larose 1 mixed forest VALERI  (Fernandasal. 2003)
Watson Lake 1 mixed forest Canada (Fernamrtak 2003)
Kejimikujik 1 mixed forest Canada (Fernanaesl. 2003)
Thompson 1 mixed forest Canada (Fernamtiak 2003)

2.2 Climatology and temporal filter

Multiple years’ mean and variance of the LAI prottuare needed as the background
knowledge for data integration. Actually, multiplears’ mean may be more accurate
than satellite retrieval for the case where intarual variation of LAl is smaller than
the measurement error of satellite LAI productsSRIL3 data at one day is used
only by the MRT method and no temporal informatisrincorporated. So, temporal

filter is only carried out on MODIS and CYCLOPESala

Even after multiple years’ data are used, it i$ gtissible in some cases that there are
no enough data to compute mean or variance. The ¢enies of mean and variance

also tend to show spurious fluctuation due to ermororiginal data. It is necessary to
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apply some smoothing technique to filter the mead ®ariance to obtain more
plausible climatology. Chesrt al. (2006) proposed to use cubic spline to smooth
MODIS NDVI products. In their paper, a left freedecondition is used to keep the
time series linear at the starting and ending paBuch cubic spline is called
“natural” spline. For the time series of LAI, it it necessarily left free. On the
contrary, the time series of climatology data stdwdve the periodic constraints since
the climatology repeat itself from year to years&a on the method developed by
Chenet al. (2006), the locally adjusted cubic spline cappimgthod with periodic
end conditions is developed to assure the smoathettology has the following

properties:

® The spurious low value is removed.

® The seasonal curve of vegetation is kept.

® The periodicity of LAl phenology is considered.

® The method is able to interpolate at no observdiioe in order to match two

products with different temporal resolutions.

The same set of notations from Cletral.(2006)’s paper is used here. For one pixel,

there are N original LAI climatology valuek(t),t =12..N (N = 47 for MODIS
and N=37 for CYCLOPES). The length of time seriéd.Al used here is one time

span longer than the annual climatology. The fieth is added after the last data to
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keep the time series periodic. A piecewise cubiyrmmial curve is used to fit the
LAI climatology.
LMty =a(t-t) +b(t-t)*+c(t-t)+d ,i=12.N 2-1
The continuous conditions at the boundaries are:
L®)=L.®,L =L, ®,L ®=L., ®,i=12.N-1 2.2
L) =L().L, ©=LO,L, ©=L, @t 2.3
The equations 2-3 make sure the curve is peri@liapplying these conditions, one

can get a group of linear equations

(M +Q'TQb=Q"L 2-4
where
poh 0 0 h
h p, h o 0
0 h 0 0
M = ? pf : 2-5
0 0 O Pna Py
hN O O hN—l pN
f, n O 0 o
r f, 0 0
Q" = o r, f 0 0 26
0O 0 O fuss e
r« 0 O rva T
Vo .- O
r=l: . 2-7
0 Vin
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b and L is the vector ofb and L,, respectively. # and y; is respectively used

to adjust the smoothness of curve globally andlipca
h =t,-ti=212.N 2-8

The periodicity of the time series leads kp=nh,.,,; and kis a natural number.

Specifically, there existd, = hy,

P = Z(hi—l + hi) 2-9
2.3 10
h, h
r = —i 2-11
h

The coefficientb is obtained by solve the linear equations.
b=(M+QTQ)*Q"L 2-12

M, Q and I' are all symmetric and cyclic matrices, which mattes coefficientb

cyclic and the time series periodic. Them, ¢ and d are obtained by inserting

into the continuous conditions.

2.2.1 Results

Figure 2-3 shows the LAI climatology on July 20-@alculated from MODIS/Terra
and MODIS/Aqua LAI products. The images before aftdr temporal smoothing do
not show a large difference. Nevertheless, the @nafier cubic spline filter is

smoother if zoomed in. This can be better noticechfthe time series at one selected
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point (Figure 2-4). The random error is reduceatlyh the smoothing procedure and
the smoothed climatology is more likely to reprasire natural phenology curve.
The climatology calculated from CYCLOPES data isoashown in Figure 2-5. In

order to compare the two data, | interpolate CYCESPFclimatology to MODIS

observation time at the same time of smoothinggusubic spline. The difference
between the two products is obvious. This diffeeestrongly correlates with land
cover type (Figure 2-6). The difference is largerhighly vegetated forest than

grassland or shrub. The evergreen broadleaf foessthe largest discrepancy.

0 2 4 6 8 10
Figure 2-3 North America LAI climatology calculattdm multiple years’ MODIS

data on July 20-27 a) original b) after temporabsthing.

2.3 Geometric accuracy

Both MODIS and CYCLOPES LAI products are believed d@chieve very high

geometric accuracy. Through sophisticatedly desigogentation systems and a
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global network of ground control points, MODIS obsgions are expected to have
sub-pixel accuracies (Wolfe et al. 2002). The geamerror of CYCLOPES could be
less than one pixel, since the VEGETATION data n@@ma very accurate record. In
terms of multiple scenes registration, VEGETATIONas 95% points with error
smaller than 450m, and the error for VEGETATION2320 m (Sylvandegt al.
2003). The high coregistration accuracy is the qumeisite for data integration.
Nevertheless, there is little work on investigatihg relative geometric error of the

two products.

50 100 150 200 250 300 350
Day of Year

..............

50 100 150 200 250 300 350
Day of Year

Figure 2-4 MODIS climatology at CHEQ before anceaftubic spline filter.

The common way to evaluate the geometric accurmty compare the pairs of the
ground control points. It is highly subjective atwhtains large error to manually pick
up ground control points from these kinds of coamssolution satellite products,
especially when the large errors of missing valas large errors of LAI estimations
exist. Both products provide water mask informatibne water mask data are used to

evaluate the relative geometric accuracy of thepvealucts.
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Figure 2-5 Smoothed CYCLOPES LAl climatology iqtelated to MODIS

temporal resolution on July 20-27 and its diffeeefrom MODIS climatology

Land Cover Type

- water :l deciduous needleleaf tree - grass I:I urban and bulit-up
— vee [ broadieat tree [ corealcrop [ ] snowand ice
I < eroreen broadieattree [ | shrub I broadieat crop [ | barren o sparsely vegetated

Figure 2-6 Land cover map over North America detifrem the MODIS land cover
product (MOD12Q1)

2.3.1 Geometric registration

There are two types of image registration methadsrelation based and feature
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based. Since it is computationally burdensome toutate the correlation of such
large images, feature based method is selectedh tBetpoint feature (centroids of
small islands) and line feature (shorelines) arneaeied and used for evaluating the

geometric accuracy.

Method 1:Semi-automated coregistration of centroidsmnall islands

a. Select pairs of islands from the two images rmadk one point on each island (as
shown in Figure 2-7).

b. Use these points as seeds to segment imagesthsinegion growth algorithm and
obtain all points of each island.

c. Compute the centroid’s coordinate of each island

d. Project the coordinates of the CYCLOPES imagéedSinusoidal projection.

e. Calculate the RMSE of the pairs of centroid dowates.

Figure 2-7 Seeds of small islands, used to segislamids from the water mask of
satellite LAl products
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The results are shown in Table 2-3. Overall the prnaducts match well. The errors
between most point pairs are less than one pixalthe mean error is 0.92 pixels.
Besides the geometric error of each product, anqbssible reason for the mismatch
is that the two products use different water masWsich have variable mapping

accuracy for water/land boundary.

Table 2-3 Coordinate of small islands’ centroid#®DIS and CYCLOPES images

Island No MODIS X MODISY CYCLOPES X CYCLOPESY [rr

1 4045.30 1993.37 4046.17 1993.26 0.88
2 9713.36 505.58 9714.05 505.13 0.83
3 9859.49 1449.52 9859.82 1448.96 0.65
4 8289.11 3662.27 8289.75 3661.48 1.02
5 1262.58 5652.30 1262.98 5652.09 0.45
6 4385.19 7421.99 4385.11 7420.83 1.16
7 4785.13 6596.38 4784.74 6595.91 0.61
8 6841.74 4633.80 6841.61 4633.03 0.78
9 3536.20 3642.26 3537.89 3641.35 1.92
10 8710.54 2156.81 8711.09 2156.05 0.93
11 3429.13 7147.46 3428.84 7146.61 0.90
12 1311.21 7005.21 1311.51 7004.23 1.02
13 7378.74 1250.31 7379.38 1249.85 0.79
14 3247.64 2388.51 3248.37 2388.01 0.88

Method 2: Shoreline matching based on Chamfer nraigch

1. Extract shorelines from both images.

2. Calculate the Euclidean distance transform ef gltoreline image (Figure 2-8).

3. Chamfer match another image to this distancestoam, supposed that only
translation error is present.

4. The best match position which minimizes the afise error represents the
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coregistration error of the two images.

Figure 2-8 Euclidean distance transform of shoeeéirtracted from CYCLOPES

The water mask of CYCLOPES data doesn’t contairiritamd water. The shorelines

extracted from the two products cannot exactly mafthe chamfer distance is

minimal when the offset is one pixel (Figure 2-9).

Geometric accuracy of MODIS and CYCLOPES

a

‘ ‘
§7L
_

Chamfer distance
N

Northing

Easting
Figure 2-9 Chamfer distance as a function of egstitd northing offsets
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2.3.2 Influence of geometric error

Both methods show that the relative geometric ersomround one pixel. The
following will show how the one pixel error may inénce the integration results.
The CYCLOPES LAI product is used since it is bedi¢vto have higher accuracy.
The LAl values at the origin and the mean of LAlues at this point and at one pixel
lag are compared. The data from the growth seaserclaosen when LAl have
maximal values. Because the original product costéarge uncertainties and gaps,
the multiple years’ mean values are used. Theapadriation apparently determines
the impact of geometric errors on LAl accuracy. Tihuence is calculated at
different land cover types. The results on fouldgpvegetation regions are shown in

Figure 2-10.

Temperate forest has the largest error, with theSEMf 0.13. Grassland has the
smallest error, where the overall LAl is smallewr Bl the land cover types, the error
due to misregistration is small, compared with thecertainties of the retrieval
algorithms. In the following data integration, tdata in their original geographic
coordinate are used to avoid the new errors intteduby inaccurate registration

parameters.
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Figure 2-10 Impact of geometric errors on integratccuracy

a) temperate forest b)boreal c)tropical forestaygland

2.4 Impact of atmospheric condition on data quality

Error in satellite LAl products can be twofold: oisesystematic, which is related to
the shortcoming of retrieval algorithm, the ina@ter prior knowledge, i.e. the
incorrect land classification input; the other adom, which comes from random

input error such as atmospheric correction or BRifiects. The systematic error
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cannot be reduced through statistics without b@section. | mainly focus on the
random error. For retrieval of LAI, the atmospherandition is an important factor
determining the data quality. Comprehensive fieleasurements are unavailable to
examine the impact of atmospheric condition on datality. Here | take advantage
of the twin sensors of MODIS to evaluate this isslige actual LAl values in the
morning and afternoon are similar. The differencgtwieen MODIS/Terra and
MODIS/Aqua LAI should come mainly from the randomog of LAI retrieval. The
best LAI retrievals from one of the two sensorshwilie highest quality are used to
evaluate the LAI from the other sensor. Here th&t Data are referred to those from
the radiative transfer method and not contaminbtedloud, aerosol, snow, cirrus or
cloud shadow. Limiting the atmospheric conditiontlué second retrieval to different

categories, one can see their impact on LAl dataracy (Figure 2-11).

Clouds reduce the data quality most seriously. d&ta under cloud contamination
have a significant negative bias and a very largeiance (1.57). The error
distribution is far from normal. The data underutdshadow also has a non-normally
distributed error and with large variance (1.03Al Lretrievals when significant
aerosol is present have almost no bias. The accwsaaso much better than that of
cloud shadow. The data from empirical backup athorialso have an unbiased error

and a slightly higher variance than data undersar@ntamination.
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Figure 2-11 Impact of atmospheric condition on ldata quality. The second column
shows the histograms of LAI error distribution, ahd first number is mean and the
second number is variance.
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2.5 Intercomparison of MODIS and CYCLOPES LAI protiu

Data quality such as measurement error is a drifigput of data integration
algorithms. This section compares two moderatelugea products: MODIS and
CYCLOPES LAI. The exploratory analysis of the relatdata quality will serve as
the basis of data integration. The two productseaeduated in terms of retrieval rates,
absolute accuracy and relative bias. MODIS hasehmigétrieval rates in winter and
smaller in summer than CYCLOPES. Intercomparisawshsystematic discrepancy
exists between the two products. CYCLOPES has higbeuracy but may generate

spurious large values in winter.

2.5.1 Retrieval rate

Many factors may cause failure of retrieving LAurfaice snow cover and high cloud
frequency within the observation period are the tlgading causes. Adverse
atmospheric conditions, unfavorable observationngeoy, instrumental failure and

NIR reflectance saturation induced by dense veigetaamong other reasons, may
also lead to missing data or low retrieval qualitige retrieval rate, which is the ratio
between the number of successfully retrieved daditlae number of expected data, is
used to evaluate the distribution of missing daéth.data downloaded are used to

calculate this rate in terms of different land aotyges and different seasons. The
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results are shown in Figure 2-12.
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Figure 2-12 Retrieval rates of CYCLOPES and MODAS products. Blue lines
represent CYCLOPES, solid red lines are MODIS ahdd red lines mean MODIS
with the highest data quality.

Generally, MODIS has higher retrieval rates in winand smaller in summer than
CYCLOPES. Both of the satellite data have extremielyw retrieval rate for
needleleaf tree in winter season, which is distedumainly at high latitudes. The

retrieval rates for evergreen broadleaf tree ase &w across the whole year and
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especially lower in summer due to the high atmosphmoisture. For all the
vegetation type and seasons, the percentage of B@Bta with highest quality is
low, generally smaller than 50%. The rates for bleaf trees are extremely low in

the growth season due to saturation and high atineogpmoisture.

2.5.2 Direct validation

Direct comparison of the two satellite LAl produet#h high resolution LAl maps
has been done by Garrigues al.(2008). However, they are not using the latest
version of MODIS and their results are based oregratied temporal and spatial
resolution. Here, | use the latest version of MO data and evaluate the two
satellite products at their original resolution.eTlbAl reference maps are aggregated
to 1km to match the satellite products. Accordingthie time and location of the
aggregated maps, a single closest pixel of thdlisaggroducts is chosen to compare
with the reference data. Figure 2-13 shows the COBES LAl performs a little
better in terms of R square and RMSE. MODIS overedes LAl with a positive
bias of 0.28, while CYCLOPES has a negative bid@8.0The overall data quality of
these two satellite LAI products is expected tonmese than the shown results. The
availability of a high resolution LAl reference mapdicates the atmospheric
condition is ideal, which means possible high duabtf satellite LAl products.

Twenty-two out of 31 available MODIS observatiorsvé the QC value of zero,

38



much higher than the overall MODIS LAI product gtyal

R?=0.75 . R®=0.80
6/  Bias=0.28 . 6  Bias=-0.20
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Figure 2-13 Direct validation of MODIS and CYCLOPEAI products using high
resolution LAI reference data

The relation between data quality and QC is furtheestigated. When applying the
QC of MODIS, data with better quality control dotradways mean higher accuracy
(Table 2-4). The bias and RMSE decreases from laality to high quality. However,
excluding data from the backup algorithm and datataminated by cloud fails to
improve R square and relative RMSE. This indicdtesretrieved LAl with lower
quality may contain large systematic errors. Threloen errors are degrading the data

quality seriously even for retrieved data with hgginfidence.

Table 2-4 Validation results of MODIS LAI when apiplg different quality control

R2 Bias RMSE Relative RMSE
All data 0.75 0.28 1.04 44%
Data from RT  0.65 0.08 0.96 44%

Datafrom RT -5 503 044 51%
without cloud
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Visual examination shows CYCLOPES has smoother teabpprofiles and
CYCLOPES LAI maps appear smoother than MODIS image®rder to evaluate
which product better expresses the spatial hetamtye of LAI, | calculate the
coefficient of variation within selected sites (kti). The reference maps are
aggregated to 1km resolution, then used to deheebefficient. Because the original
satellite products may contain too many randomrsyrihe coefficients of variation
are also computed on multiple years’ average of pdducts (Table 2-5). The spatial
variations of MODIS data are closer to referencepsnavhile CYCLOPES has
overall smaller values. The multiple years’ meanCMLOPES has similar results
with the original CYCLOPES data, which indicate t6& CLOPES LAl is stable
over years. The random errors in MODIS originaladatte reduced to make MODIS

climatology have much smaller variation.

Table 2-5 Coefficients of variation within a 7*7 kmagion at validation sites

Site Date Reference Terra Modis CYCLOPES  Cyclopes
Map Climatology Climatology

ARGO 2000 07 04 0.21 0.19 0.06 0.03 0.03
CHEQ 2002 08 01 0.21 0.15 0.17 0.00 0.01
HARV 2002 08 24 0.08 0.09 0.06 0.04 0.01
KONz 2000 06 07 0.09 0.14 0.08 0.01 0.00
METL 2002 09 24 0.16 0.25 0.07 0.04 0.04
NOBS 2000 07 14 0.17 0.10 0.06 0.03 0.02
SEVI 2002 07 26 0.01 0.00 0.00 0.00 0.00

2.5.3 Intercomparison

Direct comparison of the two products shows lamggtering. Even after land cover
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types are considered, the relationship between CQYRHES and MODIS LAl is not

significantly improved (Figure 2-14). The large tbeang may come from both the
systematic bias of the two products and their retspee random errors. In order to
further investigate the consistency between thegmaucts, multiple years’ averages

for each land cover type are compared.
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1:1 Line e

CYCLOPES LAl
R L * a2

3
MODIS LAI

CYCLOPES LAI
N w EN &)

CYCLOPES LAl

0 05 1 1.5 2 25 3 0 1 2 3 4 5 6
MODIS LAI MODIS LAI

Figure 2-14 Relationship between CYCLOPES LAI an@IMS LAl at a
mid-latitude location near the Beltsville AgriculeuResearch Center, MD a) all pixels
b) broadleaf crop c) deciduous broadleaf tree

The two products agree more closely because traonarerrors are reduced greatly
through multiple years’ averaging and averaging rgrmoultiple pixels with the same

land cover type. Especially for grass, shrub, deteap, deciduous needleleaf tree
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and evergreen needleleaf tree, the two products baémost the same results. For
broadleaf tree and sparsely vegetated area, MODd8upes much larger values.
There is only one case, broadleaf crop, where MOBISmaller than CYCLOPES.
The MODIS LAl is almost twice that of the CYCLOPIES&I for evergreen broadleaf
tree. There are two possible reasons for this daugprio Weisset al. (2007): LAI
saturation is worse for CYCLOPES and MODIS data eoerected for some
clumping effects. This systematic mismatch betw€sCLOPES and MODIS must
be addressed in the integration of the two proddatsther problem worthy of notice
is that CYLCOPES has some spurious high LAI vainesinter (Figure 2-16). One
possible explanation is that CYLCOPES has bad imfuteflectance under snow

contamination.
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Chapter 3 Geostatistical methods for integrating MODIS and

CYCLOPES LAl products

This chapter applies both “traditional” geosta@sicmethod Ol and modern
geostatisical method BME to integrate MODIS and COPES LAI products. After
a brief introduction to the two methods, a nornatian scheme to account for the
systematic biases of the two satellite productieigeloped. The integrated results are

validated and analyzed in both time series anddmweensional images.

3.1 Methodology

This section first gives the basic concepts ofdpace time stochastic process. Then,
two geostatistical mapping methods and their appba are reviewed. Ol will give
the best linear unbiased prediction for the Gaunspracess, while BME relaxes the

linear and Gaussian assumption of Ol.

3.1.1 Introduction to space time stochastic process

In the context of spatiotemporal statistics, LAltisated as a space-time stochastic

process, a collection of random variablegs,t oyer probability spacgQ,F,P .)
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The index here contains location and timet:
{sOR?tOR 3-1
For every realization df(s,t ,)its probability can be denoted using the cumwudati
distribution function CDFF :
(s (X) = Probability(L(s,t) < X) 3-2
The derivative of CDF defines another function bfs,t pjobability density
function df) f:

dFL(s,t) (x)
dx

fL(s,t) (x) = 3-3

Givenpdf, the mean of this stochastic process can be eadzliby
U (st) = j X OF 5 (X)X 3-4
For two points (s,t ) and (s',t"), their covariance is defined by
C.(st,s,t) = J'(L(s,t) — {4 (SO TL(S, ) = 4 (SN F gy e (X X)dXdX 3-5

fL(s,t) 1L(s 1) (x,X)

where is multivariate pdf of random variable L(sY)  and

L(s,t"). The covariance function must be positively dedirntb keep it valid. For a

covariance function to be positively definite, iist satisfy:

> > aaC.(s.t,s;,t;)>0 givenanya 3-6

i=1 j=1
For the sake of simplicity, the random field usyadl assumed to have the property of
stationarity. A strict stationarity is defined blget multivariate CDF. The CDF is

invariant with the temporal lag and spatial lag.niost cases, only weak stationary

(wide sense stationary) is required, which hagdhewing properties:
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U (st)=c 3.7

C. (st,s,t)=C, (s-s,t-t) 3-8
This means the mean is a constant and the covariaranly the function of distance
in space-time domain. According to its definiti@nstationary random field cannot
contain non-constant space-time trend. One impbrtask of geostatistics is to
remove large-scale trendd and get homogenous zero-mean small scale variation

L(s,t) =T(st) +V(5,1) 3-9
T is assumed to be deterministic aNd is space-time stochastic field is the

real target of spatiotemporal geostatistics.

| start the data integration theory with a very giencase: the point to be estimated
coincides with the point measured. Without losgerferality, supposing that there
are two LAl observations,, L, from two satellite products at the same space-time
point with errorse, and e,, and the real LAI value at this space-time coaathns
L,, there are two measurement equations:

L, =L, +g 3-10

L, =L, +e, 3-11
Assume both of the satellite products are unbiabed is

E(L) = E(L,) =L, 3-12

Because the two observations are independenthevett from different sensors

using different algorithms, the errors of the tweooqucts are assumed to be
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uncorrelated, that is

Cov(e,e,) =0 3-13
The variance of the two observationsdg’ and o,”. Under such assumption, an
estimation of L, can be expected in the linear form:

L, =al, +a,lL, 3-14
Whether in terms of the least square, variationathod or Bayesian theorem, the
best estimator has the same parameter:

a; __ o

a, = 3-15
2 og?+o?

Y
So, starting from either theory, for a Gaussiancess, the final result will be the
same (Lorenc 1986; Wikle and Berliner 2007).&Bal.(2006)’s method of improving
MODIS LAl is based on this simple one point optirrgerpolation. However, in data
integration of LAI, usually there is no reliable sglovation available in the same
spatiotemporal point of estimation. Information nfrotemporally and spatially

adjacent points is needed to improve the estimafdaoordingly, temporal or spatial

methods with the ability of interpolating are negde

3.1.2 Optimal interpolation

Ol, also known as objective analysis, is the giatismethod of spatial interpolation

on the Gaussian process. Ol was invented in tiek dienumerical weather prediction
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by Gandin (1965). In geostatistics, a very simigmt of theories, Kriging, was
independently developed almost at the same pelfadheron 1963). Ol is designed
for spatial interpolation, however it is naturaladd time as another dimension of
space and extend Ol to the spatiotemporal domainséme variables, this extension
is plausible. These variables evolve in both spatia temporal domains and have
both spatial and temporal dependency. For exampsglation can be modeled
through a spatiotemporal covariance matrix and ipted using Kriging in the
spatiotemporal domain (Huangt al. 2007). However, some variables show
significantly variable properties in spatial anthporal domains. Uz and Yoder (2004)
found temporal correlation barely exists in oceawgitiorophyll concentration
although spatial correlations were found, so Potieal. (2006) used only spatial
dependency in merging MODIS and SeaWIFS chloropbrgtlucts. Without loss of

generality, LAl is treated as both spatially anahperally indexed.

Given the mean and covariance function of this Giams process, we have

observationsL(s,t; )of LAl at a set of space time poin{s,t, , and we want to

predict the value of LAI at a poins,,t, . )OI pursues the linear predictd}(so,to)

of L(s,,t,) inthe form of:

L(Sp.t0) = M(Sp,te) + D A OL(S ,t) = (s, 4)] 3-16

through minimizing the err([)E(sO,tO) - L(s,,t,)]°. To minimize the cost function, we
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take the first order condition and get the paramsetgin the form (Brethertort al.

1976) :

N

N
DN CHICRB I CHNERS 317

i=1 j=1

Recently, Ol was extensively used to reconstrutellge products. Reynolds and
Smith (1994) used Ol to fuse situ measurement and AVHRR data and produce a
gridded sea surface temperature product at 1 delgee€raonet al. (1998) improved
sea level anomaly mapping by integrating TOPEX/Rioseand ERS-1 altimeter data.
Pottier et al. (2006) combined SeaWIFS and MODISeolmtions together to
enhance the mapping area of chlorophyll and rechessurement error. Sapiagtaal.
(2008) blended Special Sensor Microwave/lmager (8SMata with ERA-40
reanalysis to generate 2.5 degree global predipitatata. Chaet al. (2009) used an
Ol equivalent two-dimensional variational data @askition to merge five satellite
SST data. In reconstructing LAI products, both @eet al. (2006) and Fangt al.
(2008) methods used the concept of Ol in a singalifiorm. Guet al. (2006) used
only the data at one point and didn’t consider ispathporal covariance among
different points. Fangt al. (2008) empirically calculated the weights of aejaic

observations instead of optimally inversing covac@matrix.

Ol is a linear predictor on the Gaussian process.néw epistemological
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spatiotemporal mapping method, BME, has been ricatdveloped. Uncertain
observations are treated as soft data in BME a@cattors are rigorously considered.
Unlike the “traditional” geostastitics, Kriging, Bi¥ makes no restrictive modeling
assumption such as linearity and normality (Semé &hristakos 1999). BME is
different from the linear interpolation used in ¢irig in that a flexible form is

incorporated. Under some scenarios, BME is singalifo Kriging.

3.1.3 Bayesian Maximum Entropy

Christakos's (2000) monograph systematically desesrthe BME theory. BME treats
spatiotemporal stochastic processes in a diffenexyt from traditional geostatistics
(e.g. Kriging) by incorporating physical knowledgeo the spatiotemporal analysis
instead of using a “pure inductive” framework (Giakos 1990; Serre and
Christakos 1999). Under the BME's framework, “ttimhial” geostatistical methods

are a special case of BME.

BME has been successfully applied to solve manglpros. For example, Christakos
et al. (2004) employed a nonlinear estimator based on BMEombine both the
satellite ozone product and the empirical relatgms between ozone and tropopause
pressure to produce high spatial resolution ozaomelycts with greater accuracy.

Douaiket al.(2005) used BME to map soil salinity and found tieet BME approach
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produced less biased and more accurate predictiwans the traditional Kriging
approach. Kolovogt al. (2002) combined site-specific observations andhststic

partial differential equations into an assimilatmfithe advection-reaction process.

BME is capable of incorporating both general knalgle and site-specific
information. The general knowledge could be eitpéysical laws or statistical
moments. Both are expressed in the form of teleoleguations. There are generally
three stages for applying BMIgrior, meta-prior andposterior (Serre and Christakos
1999; Christakos 2000):

In theprior stage, the general knowledge, related withgg function, is expressed by

the representation ofG-operator:

[ e G(90) fo ) =0 (@ =1...,N) 3-18

The prior pdf f;(X,,) is obtained by maximizing the informative entropy
constrained by this equationy,,,, represents all the data points, including observed
data x,. andthe datay, to be predicted at unobserved poitin themeta-prior
stage, the available site-specific data can be dividei itrue (hard) datay,, or
uncertain (soft) datg., . The uncertainties with soft data will be conseder
explicitly in a rigorous way at this stage. In thesterior stage, the posteriompdf

f (x,)of predicted pointsy, is given by:

f Or) = A7 e fo (Ximp) 3-19
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where A= ID X goa fo Xaaa) 1S the normalization coefficient. When the physical
knowledge is the statistical moments of underl\stmchastic process, tli&operator

of the prior stage takes the form of multivariatauSsian function and the posterior
pdf leads tqSerre and Christakos 1999):

f (%) = A7, By Xnard » Cigpn )J- AX e Fs (Keor J Xt s B Xt » Ceen) 3-20

where, ¢(x,X,c) is the multivariate Gaussian function of variabte with the mean
X and covariance; c,, is the covariance matrix of predicted points ctindal to
hard data;cy,, is the covariance matrix of soft data points ctindal to predicted

points and hard data pointd,, is defined asc,,C,, and By IS defined as
Cs,khclzfil,kh'

Based on the posteripdf, the estimatesx« and the errors of estimatioa; can be
expressed as:
X = [ %, fyc (%), 3-21

o2 = j(xk — )2, (%, )dx, 3-22

Under this framework, all the information is intaggd into the Bayesian inference to
maximize the information. The results are expededoe more informative and
accurate. These properties of BME can addressrtitdegms the land remote sensing
community is faced with and can make BME ideallitale for data integration of

satellite LAI products.
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3.2 Normalizing LAl anomaly

Theoretically, both BME and OI can take irregulabservations as input.
Consequently, the mismatched spatiotemporal grfidseotwo LAI products will not
be a problem and the proposed methods should walk far the case of two
products. However, the two products are found tsigaificantly different. Besides
the random measurement error, the bias and otségrsgtic measurement error also
need to be considered. Comprehensive field measntsnwill be the ideal way to
remove the systematic bias or mismatch betweehmbgroducts. However, such an
observation network of LAl is not available. | poge to remove the mismatch by

working on normalized anomalies of the two sateltitoducts.

Assume the error of satellite LAl products couldex@ressed in a linear model:

L, =a, [, +b, +e, 3.23
L,, is MODIS estimated LAIL, is the true LAl a, and b, are constants,
dependent on the location and time of yeay. and b,, together with random error
e, can represent different sources of measuremeotsera,, represents the ratio
of dynamic range between the estimation and adtddlvalues, b,, depicts the

estimation bias, andg, is the normally distributed random error with aamce

O,. . If MODIS LAI has the same dynamic range and noreion bias, this
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measurement error model will reduce to the simmienf
Ly =L, +e, 3-24

Since current satellite LAl products have largeartainties, the dynamic error and
bias cannot be ignored here. For the CYCLOPES mtodhere exists the similar
equation:

L. =a. O, +b. +e. 3-25
If the dynamic error and bias of these two prodigtsnown, the satellite retrieved
values can be corrected before these two produetmarged to obtain an improved
product without bias and with consistency. The sparsitu measurements make this
approach infeasible. Although it is hard to remtive bias without independent LAI
measurements, | need to at least try and developcihanism to make sure the results

have consistent bias and dynamic range.

In dealing with more than one variable with differ@nits, normalization is crucial to
make variable commensurable. A straightforward westandardize the LAl data is

Ls= M 3-26
Owm

UM2 and y,, are the product variance and mean calculatedttjirfom data, as
illustrated in Chapter 2. However, through thisedir standardization, one cannot

obtain a variable with the property of bias free da the existence of measurement

errors. Given the existence of measurement ertbescalculated product variance
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contains two parts:

o, =a,’c’+a,.’ 3-27
where o,° is the variance of true LAl Instead of standaedizLAl using the
calculated product variance, | need to construoew variable (a,, ,)* using the
product variance without measurement error:

LM ~ Hn
ay 0,

Ls = 3-28

The normalized anomalyLs' will be dynamic error and bias free:

Ls(MODIS) = Ls/(CYCLOPES) = - —# 3-29

t

In order to obtain the product variance without theasurement error from the
product variance, | need to make some simplificetiol assume the variance of
measurement errors is proportional to the variaote Al. This assumption is
reasonable because larger retrieval error is eggdaghen LAI has larger variation:
Owe = kyay o, 3-30

Under this assumption, the normalized anomaly hasmgple relationship with the
standardized anomaly

Ls =1+k,,’Ls 3-31
The derivation of k will be given in the next secti Thus, the normalized anomaly
will be free of dynamic error and bias. Ol or BMBEosild be carried out on the
normalized anomalyLs instead of LAl observation itself. Given the inpat

unbiased normalized anomalies, the output of dd&gration is expected to also be
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bias-free:
s = f(Ls) 3-32
The true LAl variance,” and meany, of LAl are needed to reconstruct LAI from

the integrated results .
L=Ls*g, +u 3-33
They can be estimated by averaging the producaweg without measurement error

and the multiple years’ mean of MODIS and CYCLOPES:

+
,[lt _:UM :UC 3-34
2
5 = 9u! 1+k,, > + 0. [{1+k.*

t 3-35
2

3.3 Analysis of results

3.3.1 Modeling spatiotemporal dependency

The assumption of second order stationarity is ligavdlid throughout the earth.
However, the normalized anomaly of LAl can be thdugp be stationary within a
small region. Smaller window size can better chi@réae vegetation heterogeneity,
but can not model large scale dependency. | baldmedy setting the window size to
300km and model spatiotemporal dependency in e@bhb$ 300 window. It is still

impractical to compute the spatiotemporal covaansing all available data within

the window, although | segment the data to 300 ®y Bm windows. A stratified
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sampling strategy is designed to obtain both sstle and large scale dependency

within the window (Figure 3-1).
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Figure 3-1 Points used to compute covariance w300 by 300 window

Exponential models are frequently ug€thristakoset al. 2004; Douaiket al. 2005). |
use them to fit the temporal covariance. To mokelgpatial dependency at both short
distance and long distance, a nested exponentiariemce model is chosen. Due to

the existence of measurement error, the model t@nganugget effect.

C(s,t) =[c, exp(—ﬁ) +C, exp(—i)] exp(—%) s>0t>0 3-36

sl s2
C(s,t) = Cyygee s=0t= 0
where ¢ , ¢, and c,,, are coefficients, representing short-distance,
long-distance spatial covariance and covariancietzero-lag point;a, and a,,
are spatial range while, is temporal range. Assume the covariance funaiaine
underlying field is continuous. Thus, the discoutipn at the zero lag point is solely

from the measurement error. The variance of measemeerror would be:
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O = Crugget ~ (C1 + Cz)

2

3-37

Recalling the ratiok between the variance of measurement error angbribeuct

variance without measurement error defined in tlewipus section, we can calculate

k by:

k=402, +c,)

Figure 3-2 shows the fitted and calculated covaeaat the Beltsville Agriculture

Research Center (BARC). Figure 3-3 shows the fafgtiotemporal covariance at all

validation sites. At most sites, correlation in tigdadomain is stronger than the

temporal domain, which means spatially adjacenglpiwill have large influence on

integrated results than temporally adjacent pixels.
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Figure 3-3 Modeled spatiotemporal covariance atallbation sites

3.3.2 Considering measurement error

Ol and BME treat measurement errors in differenysvdleasurement errors change
the weight of the linear estimator through changiogariance between observations
in Ol. The measurement errors are represented diy Yariance. The measurement
error in Ol is usually assumed to follow normaltdimition, so measurement error
can be completely characterized by its variance raedn (always zero). BME has
two ways of incorporating measurement error. Onte igse the interval data and the
other is to use thpdf of measurement error as the soft data. gdi¢ype soft data are

chosen here. Given the variance, thdf can be constructed by assuming

measurement errors follow the normal distribution.

Variance of measurement error for CYCLOPES and M®Dhata with the best
guality is set as the value aﬁ‘ez, given in the previous section. The uncertainties

MODIS good data are estimated from the relativeugsmy between best and good
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data. The RMSE of Terra and Aqua good data is dritbthe RMSE of the best data
is 2.56 (Figure 3-4), indicating the relative a@my of good and best data.

Accordingly, the variance of MODIS good data &70,)>.

Some outliers may still exist, although ancillagtal quality information is used to
exclude data with large uncertainties. The datdityuaill be further controlled in
preparing soft data. The data with absolute valagger than three times standard

deviation will not be used as input.
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Figure 3-4 Scatter plots of MODIS LAI good data et data.

3.3.3 Integration results

The proposed method is carried out at 12 refersites. The integrated results are
validated using reference maps (Figure 3-5). BdthEBand Ol improve the original
data significantly. The integrated LAl has strongerrelation with reference LAI and
the bias is reduced. The improvement of RMSE afiiloRh CYCLOPES LAl to the

integrated one is slight, but very significant ODIS LAI.

62



R=0.79 R?=0.80
6  Bias=-0.13 6  Bias=-0.14
RMSE=0.73 . RMSE=0.72

(52
T

BME LAl
@ &

2 3 4 6 0 1 2 3 4 5 6
High resolution LAl map High resolution LAl map

Figure 3-5 Validation results of BME and Ol intetg@ LAl using high resolution
LAI reference maps at collected sites

However, the computation cost of BME and Ol woutd dn obstacle for applying
them to large datasets. Small neighbors are useavda this problem, since the
pixels far away from the pixel to be estimated higttle influence. This cost for BME
is especially heavy, which needs multidimensiomaégral in addition to matrix
inversion. Therefore, only Ol will be used to shaoke results of geostatistical

methods on time series and two dimensional images.

Figure 3-6 shows two examples of integrated resualtsne series. The time series at
ARGO is very smooth since the original data haslé data quality. Results at
BARC are slightly worse. The integrated time sers#¥ has some unexpected
fluctuations, but are significantly smoother thae original data. Although the two
source data have apparent biases, the integratatisrare systematically consistent.

The integrated results are smaller than CYCLOPES &mger than MODIS,
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mitigating their respective underestimation andresemation problems. Integration
methods based on geostatistics can also genetategsn errors together with the
absolute estimated values. Figure 3-7 indicate®tigr bar at the ARGO site. In the
growth season, one has large errors because dathe uncertainties of original
retrieval. Only CYCLOPES data is produced in 1991 aMODIS/Aqua is not
available until 2002. The error of 2002 and 2003nsaller than the previous years

because more observations are available from MOYjEE.

| ,
05} i

£ ¥
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. i i .3 . > O . %
2001 2002 2003 1999 2000 2001 2002
Year Year

Figure 3-6 Five years’ LAl time series at a) ARGBARC. The solid lines:

integrated results by Ol, dashed lines: climatolaggrs: CYCLOPES, green circles:
MODIS/Terra, red circles: MODIS/Aqua.

2000 2003

To illustrate the approach at a regional scaleQhbased integration is also applied
to the greater Washington DC area. The high spatsdlution of ETM+ LAI on
August 5 2001 is estimated using the hybrid alpamitand calibrated with field
measurements (Fang and Liang 2005). Compared WIh+ELAI, MODIS LAI has
two main problems. MODIS overestimates LAI, espécia woody area. Data gaps

pose the second problem. If zooming in the MODI$ htme can see a lot of gaps.
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There are no gaps in the integrated map. The iatiegr algorithm excludes most
spurious high values; therefore, the histogramhefinhtegrated map is closer to the

histogram of the ETM+ map.

5
<
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0 | | | 1 1
1999 2000 2001 2002 2003
Year
Figure 3-7 Integrated LAI and its error at ARGO
3.4 Summary

This chapter applies two geostatistical methoda@l BME to integrate MODIS and
CYCLOPES LAl products. These two methods cannatatly operate on original
LAI values because of their large discrepanciatevelop a framework to normalize
anomaly and solve the problem that the two prodbhetge inconsistent bias and
dynamic range. The anomaly can be normalized bynaisg the linear relationship
between the variance of measurement errors andvdhance of true LAI. The
integrated result has improved accuracy and noimgisgalues. LAI time series is
smoother and more reliable. It is hard to remov&esyatic error when there is no
sufficient ground true data to evaluate the perforoe of retrieval algorithms. | make

the integrated results consistent through the megalgorithm.
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Figure 3-8 Ol integrated result on a region neaREBAon August 5 2001
Besides the statistically optimal integrated valuke geostatistical methods are also
able to produce the estimation error. However, astioned earlier, one shortcoming
of geostatistics based methods is their heavy ctatipnal cost. There are some
solutions on improving the efficiency, for examplB: using the Kalman filter on
multiresolution tree (Fiegutét al. 1995; Huanget al. 2002; Johannessahal. 2007)

2) introducing the predictive process model, whies a lower dimension (Banerjee
et al. 2008) 3) approximating covariance matrixotiyh sparse matrix technique
(Barry and Pace 1997), tapering (Furrer et al. 206@ectral domain(Fuentes 2007)
or wavelet basis functions (Nychka et al. 2002uding the random effect model,
expressing covariance matrix in the forms of limitbasic function with much

smaller dimension (Cressie and Johannesson 2008). show the results using the

multiresolution efficient interpolation algorithm the next chapter.
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Chapter 4 Multiresolution tree method for integrating MODIS and

MISR L3 LAI products

Optimal interpolation or BME cannot be applied onlaage dataset due to the
inefficient inversion of large covariance functio3ne way to solve this problem is
through a scale recursive filter of MRT based ddtacture. This method was first
introduced by Chou (1991) and has been extensivedg to interpolate and filter
satellite altimetry datgFieguth et al. 1995; Fieguthet al. 1998), temperature
(Menemenlist al. 1997), soil moistur@Parada and Liang 2004), aeroddliang et al.
2002), topographySlattonet al. 2001) and so on. MRT not only carries out spatial
interpolation efficiently but also is able to takeeasurements with different spatial
resolutions. For example, de VWver and Roulin (2088:d this approach to fuse two
remotely sensed precipitation datasets with diffespatial resolutions. In order to
show its ability to integrate data with various tsgaresolutions, MRT will be

explored to integrate MISR L3 LAI and MODIS LAl this chapter.

4.1 Methodology

The basic concept of multiresolution optimal intdgtion is to organize data in a tree

structure (Figure 4-1). Using similar notationshwiituettgen (1993), the data between
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different resolutions can be expressed in a lis&gte model:
X(s) = A(s)x(ps) +w(s) 4-1
x(s) and x(ps )are the variable of interest respectively at seard its parent scale
ps. w(s) is the white noise, having a Gaussian distributiif0, Q(s)) . A is the state
transition matrix from parent to children. Accorgdliyy the state transition matrix F
from children to parent can be calculated by (Lgett1993):
F(s) = P(ps)A(s)P(s) 4-2
where P(s) is the variance at scale s. Thus, dregpstate equation can be obtained:
X(ps) = F(s)x(s) + W (s) 4-3
Besides these two state equations, there is amwalties equation:
y(S) = HXx(s) + v(s) 4-4
H is the observation matrix. Because the satghiiteluct is the same as the variable
of interest and the satellite data at the sametitotaare used, H is taken as the

identity matrix. v(s) represents the measurement ertd(O,R(s . ))
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Figure 4-1 Framework of multiresolution tree method
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This three equation system is similar to the stptece model in time series, where the
Kalman filter is proposed to incorporate the dynamiodel and observational data.
Similarly, the Kalman filter could also be applied this tree-based model. From
children to parents, the Kalman filter is employedderive estimator at scale sl
X(sl]|s2) by incorporating observations up to scale szhdfé¢ is no observation, the
process evolves purely according to the state smuaiVhen observations are
available, the system is updated (Luettgen 1993):
X(ps| ps) = X(ps|s) + K(ps)(y(ps) —Hx(ps|s))  4-5
where K(s) is the Kalman gain and given by:
K(ps) = P(ps|s)HV *(ps) 4-6
where V(s) is the innovation covariance:
V(ps) = HP(ps|S)H T + R(ps) 4-7
After the root of the tree is achieved by the upivirop, the Kalman smoother is

applied from parent to children to incorporate dheservations at all levels.

The critical step in using MRT is to assign the mlogarameters. Following the
method used by Tzeng al. (2005), | use identity matrix for the state traiosit

matrix. The measurement error is dependent on sehaoacteristics and the retrieval
algorithm, which can be obtained through validatiblowever the acquisition of the

state parameter is still a research topic. Huetng.(2002) calculated the variance
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parameter from the covariance function. Some usd & -like stochastic model,
since many natural phenomena display a self-sinpitaperty(Fieguthet al. 1995;
Fieguth and Willsky 1996; Fiegutkt al. 1998). Kannanet al. (2000) used an
expectation-maximization algorithm to estimate plagameters. de VWver and Roulin

(2009) directly calculated the parameters fromaterage radar measurement.

4.2 Data

In addition to having the high efficiency, MRT albas the advantage of integrating
incompatible data with different spatial resoluBoMRT is applied here to integrate
MODIS and MISR L3 LAI. Due to its narrow swath, MRSs less frequent to cover
the entire Earth surface than MODIS. MISR LAI data aggregated to 0.5 degree to
generate L3 monthly data to enhance the surfacerage. MODIS Tile H1OV5S is
selected, most of which is over land. MISR L3 datae-projected to the sinusoidal
projection with the pixel size of 64 km. | use eetwith 6 levels and every node has
sixteen children. MODIS LAl is the finest level aMISR takes the level 3. LAI
anomaly instead of LAI is used as the input of MBTchieve the goal of zero prior.
Compared with the original values, the anomaly eslof the two products match
more closely (Figure 4-2). MISR L3 monthly LAl dataas different temporal
resolution from MODIS LAI. The temporal mismatchirgysimplified by assuming

LAl anomaly doesn’t change too much during the MI8Rraging period. Day 217
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2001 MODIS data and August 2001 MISR data is used.

From the direct validation in Section 2.5.2, the &Mof MODIS LAl is 1.04. | use
its square, 1.08, as the variance of the measuteenenr of MODIS data. MISR L3
has a resolution of 0.5 degree. The available héglblution LAl maps cannot cover
the size of one MISR pixel. Instead, the aggreg@DIS LAl is used to validate

MISR L3 LAI (Figure 4-3). The square of RMSE is dsas the variance of MISR

data.

MISR L3 LAl MODIS LAI

«l

MISR L3 LAl Anomaly MODIS LAl Anomaly

- ':Illl-'

Figure 4-2 MISR, MODIS/Terra LAI and their anomalfyAugust 2001 at tile H10V5
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Figure 4-3 Validation results of MISR L3 LAI usirggregated MODIS LAI data

4.3 Results

In addition to the measurement error, another patanis the variance when data are
transferred from the parent to children. This pagtenis empirically calculated using

aggregated MODIS data at different levels (TablB.4-

Table 4-1 Variance of LAl anomaly at different s=al

Scale 1km 4km 16km 64km 256km

Variance 1.48 0.79 0.58 0.44 0.36

MRT integrated results are shown in Figure 4-4. IRT integrated results are
gap-free and smoother than the original anomaly. mhp inconsistency among input

data at different levels is mitigated through tlgadntegration process. All the results
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are consistent across the scales. The MRT err@salso shown, which depend
mainly on the availability of input data and thewaacy of available data. Judging
from MODIS QC, the left lower part of the image Hawer data quality, and thus
larger MRT error. However, the estimation errore aeduced through MRT,

compared with the original measurement error.

MODIS Anomaly After MRT MISR Anomaly After MRT

o - N
< —_ N

ey
ey

0
N

. o
=

MRT Error

Figure 4-4 MRT integrated LAl anomaly and its eradMODIS and MISR scales

4.3.1 Comparison with Ol

Ol is also carried out over the same image to coenpath the MRT method. The
modeled spatial covariance is shown in Figure 46der the same computation

facility (Pentium D 3.20GHz, 3.25Gb Memory), Ol ¢&k4.5 hours when using an
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11*11 small neighbor, while MRT needs only 6.5 set MRT produces similar
results with Ol (Figure 4-6). Large differences @g@pin the left lower part of the map,

where the original products have large errors.
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Figure 4-5 Modeled covariance at tile H10V5 usiegted exponential covariance
function

LAl Anomaly After Ol Difference between Ol and MRT

Figure 4-6 Ol processed LAl anomaly and its differe with MRT results
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Chapter 5 Empirical orthogonal function method for integrating

MODIS and CYCLOPES LAI products

Empirical orthogonal function (EOF) methods deathwihe matrix formed by the
space-time variable, solving the eigenvector pmobtéd data’s covariance matrix to
reduce data dimension and remove measurement ndisew data integration
method based on Kondrashov and Ghil (2006)’s itexadlgorithm is developed in
this chapter. Then this method is applied to iraeyMODIS and CYCLOPES LAl

products.

5.1 Introduction

EOF is one of the most extensively used methodgasciences (Preisendorfer 1988;
Hannachiet al. 2007). EOF sometimes is also called Principal Camepts Analysis
(PCA). Singular Spectrum Analysis (SSA) also betotmthe EOF family, but deals
with the temporal correlations of short and noisyet series (Vautard and Ghil 1989).
Multi-channel SSA (MSSA) may handle multivariatmé series and these different
channels can be the same variable at differeniatgatations, so MSSA has the
ability of processing both temporal and spatiabinfation. Similarly, an extended

version of EOF deals with both spatial and tempomatelation by using a sliding
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window to incorporate the lagged information in ttime domain (Weare and
Nasstrom 1982). In the atmospheric literature, thchnique is called extended EOF

(EEOF), which can be treated as the synonym of MSSA

Through a regression and using information on apB®OF of existing data, Smit
al. (1996) predicted data for places with no obserwatittondrashov and Ghil (2006)
introduced an iterative algorithm based on SSAiltariissing data points and test it
in multiple geophysical datasets. latial. (2005) fit thein situ aerosol measurement
with the leading EOF of satellite retrievals anddelosimulation in order to merge
the information from three sources. Zhagigal.(2007) used EOF to improve poor
guality insolation data to generate homogenous mBpskers and Rixen (2003)
developed a “self-consistent” and “parameter fr@sgta Interpolating Empirical
Orthogonal Functions (DINEOF). Alvera-Azcarateal. (2005) and Alvera-Azcarate
et al.(2007) applied this method in real oceanographita dar univariate and
multivariate cases respectively. Diegal. (2009) improved DINEOF by considering

the influence of extreme values.

5.2 Methodology

The basic theories of all EOF based methods ardasinteconstruct noisy and

gap-prone data using the leading components of Gav@n a N*P matrixL formed

76



by the LAI retrievalsL,, at time t and Iocations,tD [LN] ,SD[]* P], there are
two ways to compute the EOFs &f. One is to solve the eigenvalue problem of
covariance matrixC, :

c =L"L 5-1
The other way is to apply singular value decompmsidirectly on matrix L :

L =USV' 5-2
The diagonal matrixS contains the singular values sorted in descenalidgrs. The
left singular vectors are usually called EOFs (gbaibmain), while the right singular
vectors are hamed principal components (PCs, teathdomain). By this means, the
original data field is divided into spatial and f@wnal components. The original data
field could be reconstructed if all the EOFs andsP&e used. The leading
components contain most of the information throughch the patterns of complex
spatiotemporal geophysical datasets can be anabizédhe original noisy data can
be filtered. This is the basic idea of EOF methddstead of working directly on the
original matrix L , EOF could also be extended if the window of thegth W is
moved on the original matrix to emphasize temporrmation. A new matrixL’
with the dimension(N -W +1) xWP can be formed by incorporating the lagged

information (Hannachgt al. 2007):

L11 L2,1 o va,l LLZ o LW,P
L L e . L e .
L' = 21 31 ) va: 11 22 ) LW: 1,P 5.3
LN—W+L1 LN—W+2,1 LN,l LN—W+L2 LN,P
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The temporal information is emphasized this wayisTinethod has the name of

EEOF or MSSA.

Usually, iterative algorithms are proposed whenlypg EOF methods to fill data
gaps (Schoellhamer 2001; Beckers and Rixen 2003idishov and Ghil 2006;
Zhang et al. 2007). Schoellhamer (2001) calculated the covaeansing only
existing data. This may lead to a non-positivel§irdie matrix (Beckers and Rixen
2003). Therefore, the missing points are usuallgdiwith mean before applying
iteration. Zhanget al. (2007) used a simple single loop iteration. In eiéetation, the
same number of EOFs is used. Other authors (BeeketdRixen 2003; Kondrashov
and Ghil 2006) used a double loop. In the outempjoihe number of EOFs is
increased from 1 to a preset number. The inner isogimilar with Zhanget al’s
method where EOF decomposition and reconstructioa eomputed until

convergence happens. | will use the latter strategy

5.2.1 Hierarchical EOF

Two problems have to be solved before EOF can bd te integrate multiple LAI
products. The first problem is computational costl dhe second is that the two
products to be integrated have different tempaondl gpatial resolutions. | propose to

use two runs of Hierarchical EOF (HEOF) to solvesthproblems.
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The usual solution for large datasets is to ditigen into multiple small sub-datasets
and apply EOF on each of them. However, the inftiongrom other parts cannot be
used this way and there will be inconsistent edggween different sub-datasets. To
overcome these problems, a hierarchical EOF alguris proposed. EOF is applied
at two levels: coarse resolution aggregated datad multiple fine resolution
sub-datasets, both of which have a small dimenfgagible for EOF. The data are
first aggregated to coarse resolution. EOF is ttegnied out on coarse resolution data.
The poor quality block will be replaced during tB®F procedure. The improved
coarse resolution data are used as the mean terdbetfine resolution subsets. For
the fine resolution subsets, two adjacent bloclks iatentionally overlapped. After
EOF is applied, the mean of the overlapping areeaisulated as the final filtered

values to reduce the “blocky effect” (See Figurg)5-

Coarse level

Figure 5-1 Two level hierarchical data structureE®F. Overlapping is intentionally
designed to reduce “blocky effect”.

For each level, an iterative method revised frormdtashov and Ghil (2006)’s

method is used. Kondrashov and Ghil (2006) centdredriginal data by subtracting
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the mean and filled the missing points with zeroy Bpproach applies the same
strategy at the coarse resolution, while the recocted values of coarse resolution
are used to center the corresponding fine resolutiata. Then, a double-loop
iteration of EOF is applied on the filled matrixhd inner loop replaces the missing
points using the leading components of the filledtn® to form a new matrix, on
which new leading components are computed to refreatoop until the results
converge. The outer loop increases the number ading components used for
reconstruction from 1 to a predefined value andfgoers the inner loop. In
Kondrashov and Ghil (2006)’s algorithm, the orididata are treated as the true data
and kept intact. In the case of LAI, some existolggervations may contain large
uncertainties. | revise Kondrashov and Ghil's mdtby replacing these data as well
with the reconstructed values to filter out theseoand reduce uncertainties in the last

set of inner loop.

5.2.2 Multivariate HEOF

DINEOF is able to take more than one variablesnasits. Alvera-Azcaratet al.

(2007) tried this to reconstruct the combination sda surface temperature,
chlorophyll a and wind data. Their validation résulshow combining other
information improved the data quality of reconsteacSST. In the case of integrating

LAI, multiple LAI products cannot be directly useak different variables of
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multivariate EOF. Although EOF doesn'’t require thié variables to bear the same
spatial location, their temporal resolution mustitientical in order to form one
matrix. In the case of integrating MODIS and CYCLES LAI, this prerequisite

condition cannot be satisfied. Two runs of EOFm@mposed to mitigate this problem.

In the first run, only MODIS LAl is filtered by EORFhen, MODIS LAl is temporally

smoothed to match with CYCLOPES's temporal knotagis

L(t.) = i L(t,) ) 5-4

N

= Z f(t;)
i1

L(t,) is the MODIS data after EOF. | choose N=4 ah@ to)oe Gaussian function,
because similar parameters are used by Bagét (2007) to smooth VEGEATAION
reflectance, which isitimately used to generate the CYCLOPES LAI product. Then
multivariate EOF is carried out on the smoothed M®Data and CYCLOPES data.
Before running multivariate EOF, two LAl anomalwdl be normalized using their
standard deviations over the whole dataset. Aftermultivariate EOF is done, the

output MODIS and CYCLOPES data are averaged tarobia final result.

5.3 Analysis of results

In the proposed EOF method, two parameters, théoauof leading components and

window length, need to be optimized. Zhat@l. (2007) used an empirical method,
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simply choosing the EOF which could represent 8@%btal variance. The explained
variance of LAl anomaly is shown in Figure 5-2. &al of 5 leading EOF modes
contain 80% of LAI covariance. In addition to thsubjective method, cross
validation may also be used to derive the parametéondrashov and Ghil (2006)
used cross-validation to determine the optimumrpatars. The satellite LAI product
cannot be directly used to carry out the crossdadibbn because the original product
contains large errors. Instead, the Ol interpoldt&dl anomaly is used as the true
value to carry out cross validation. Ol is appl@da 40*40 window around BARC
for a whole year. EOF with varied parameters islusereconstruct the same dataset.
The relative errors of the reconstructed datasetsheen calculated to determine the

optimum parameters.
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Figure 5-2 Variance explained by EOF modes of e £ YCLPOES LAI anomaly
data.

The results of cross validation are shown in Figue When the window length is 1,

which means no temporal information is used and EE3implified to simple EOF,
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the relative error is very high. When the windowdth is increased to 2, significant
improvement of the results can be noticed. Aftat,tthe change of window length
has little influence on the relative errors. Thaneation error first decreases with the
increase in the number of EOF modes used for tlwenstruction. However,
continuous increase of EOFs leads to a large efrbAl estimation due to the large
uncertainties of the satellite LAl products. Thetio@l number depends on the
window length. The dimension of the working matriN —W +1) xWP is
proportional to the window size. | set window sire? to reduce the computational

time.

o
-
[o}

o
20
~

T 1

T | R [ 1}
A WN =

n
sss:s¢=

0 5 10 15 20
Number of leading EOFs

Figure 5-3 Relative errors of cross validation gty CLOPES LAl anomaly, as the
function of window length W and the number of legglcomponents.

The proposed method is carried out at 12 refersites. The integrated results are
validated using reference maps (Figure 5-4). Thalityuof MODIS has been
improved significantly in terms of Rand RMSE, while the reconstructed

CYCLOPES data is slightly worse than the originak®. Nevertheless, the final
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integrated results have much higher quality tha&natfiginal products. The estimation

bias is significantly reduced by combing two daiarses.
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Figure 5-4 Direct validation of EOF methods at ectéd sites

The proposed method is also carried out at a regitin390*240 km around BARC.
For one year data, EOF cannot directly operateuch s large image under a 32 bit
Matlab® environmental due to the limitation of memory. Bigrarchical EOF, one
can work on any size datasets. Figure 5-5 showeethdts of three consecutive maps.
The missing data in the left upper corner of CYCE3Pdata at Day 227 2001 are
filled with information from existing data. The EGFRability of gap filling is further

illustrated in Figure 5-6. There are no MODIS datailable in Day 169 and Day 177

84



2001. EOF generates continuous maps through datariance calculated from
existing data. The reconstructed MODIS LAl anomalgips at missing days show
similar patterns with the existing maps. The EOFRonstructed results appear
smoother than the original one. Actually, the EORegrated data also appear
smoother in temporal domain (Figure 5-7). The sugidata values are removed

through EOF. Thus the EOF integrated results shgheh accuracy.

MOD Anomaly

Filtered CYC CYC Anomaly Filtered MOD

Day 206

Day 217

Day 227

Figure 5-5 EOF results on three consecutive maps fluly 25 to August 15 2001

around BARC. Each row shows the data at one dag/fdir columns respectively

are the filtered and original CYCLOPES anomaly, fthered and original MODIS
anomaly.
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Figure 5-6 Four consecutive maps of MODIS LAl anbnadter and before EOF.
Blue area means missing data.
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Figure 5-7 One year time series of LAl anomalyrag eelected point. Blue lines
mean CYCLOPES data and red ones represent MOD#5 Ha¢ dashed lines are
original anomalies and the solid lines are recoics&d results by EOF
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Chapter 6 Conclusions

Accurate LAI products with high temporal and offeient spatial resolutions are
greatly needed to support climatological and edoklgesearch efforts. None of the
existing LAl datasets satisfies these requiremddéga assimilation may be a choice
to address this issue. Nevertheless, independesenadional data without
incorporating physical dynamic models are essetuidrive and validate all kinds of
physical models. However, investigations on inteégraof high quality LAI from
multiple existing LAl products are still not wells&blished. This dissertation
examined four methods based on Ol, BME, MRT and E®DiRtegrate multiple LAI

products and improve their accuracy.

6.1 Major findings

When validating and comparing MODIS and CYCLOPES pfoducts that was the
necessary step in the data integration analy$myrid that MODIS and CYCLOPES
LAl have the relative geometric accuracy of arowne pixel. Validation using LAl
reference maps shows CYCLOPES underestimates L&l wibias of -0.2 while
MODIS overestimates LAl with a positive bias of 0QYCLOPES may produce

spurious large errors in winter. The direct comgami of the two datasets at pixel
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level shows very large scattering. Multiple yearsgan over each land cover type
shows the two products have similar values oveulshgrass, cereal crop and
needleleaf tree but great discrepancy on broadieaf sparsely vegetated area and
broadleaf crop. Besides these systematic biasemsaheric condition affects the
retrieval quality of LAI. Cloud contamination procks non-Gaussian negative error

and cloud shadow may also seriously degrade datygu

All of these four methods can fill gaps and redecers with existing data. After
integration, all the data gaps are filled with mh@tion from adjacent pixels and prior
knowledge. The integration process removes thei@mitarge temporal and spatial
variation over the original data. Validation restuitidicate that the combination of two
data sources reduces the bias and random error.EQO%e method produces the
integrated results with zero bias. The geostasisticethods reduce bias from +0.3
(MODIS) or -0.2 (CYCLOPES) to -0.1. The data quahtis been improved through
data integration. The integrated results’ improvem&om MODIS product is
significant: R increases from 0.75 to 0.8 and RMSE decreases frénto 0.7.
Limited in situ measurements hardly prove which methods outperfibenothers.

However, the four methods do have their own prasams.

Two geostatistics methods (both “traditional” Oldamodern BME) have a solid

theoretical basis. They generate statisticallyrogtiresults by incorporating both the
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dependency among data and the data errors. InytH@btE will be the best choice
for the integration of multiple data, since it dogésssume the Gaussian process and
linear summation of data. If the data obey the qmeisite conditions of the
Gauss-Markov theory, Ol is the best unbiased estimeowever, the computational
cost of applying BME and Ol would be an obstaclerfandling large datasets. The
dataset for the North America has the magnitude®df Inversion of the covariance
matrix with such a large dimension is still impieat. This is even worse for BME

which needs multidimensional integral in additiomtatrix inversion.

MRT outperforms BME and Ol in terms of algorithnfi@éncy. Besides, MRT also

has the ability of integrating data with differespatial resolutions and generating
consistent results at different resolutions. HoweMRT usually assumes a simple
linear state transfer function from coarse to fieeolution and vice versa and it is

hard to verify if the real data satisfy such anagun.

A hierarchical two-run EOF is proposed to handikgdadatasets and integrate data
with different temporal knots. The new algorithnvides a large dataset into a set of
overlapping small subsets. The information fromfedént subsets is used at the
aggregated coarse resolution. Compared with thementioned three methods, EOF
requires less model assumption and parameter igation. However, EOF lacks a

mechanism to explicitly consider the measuremenot.er
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6.2 Major contributions

This is the first study to apply several differantegration methods to combine
multiple satellite LAI products to reduce uncert@s and improve integrality.
Existing methods (e.g., temporal filtering) usuallgrk on one single product. Spatial
temporal statistical based methods are hardly egglon previous investigations.
Although BME, Ol and MRT based methods have beex us other fields, this is the

first time they have been applied to the integrabdmultiple LAI products.

This dissertation has enhanced the locally adjustdxic-spline capping method by
revising the end condition. The proposed periodit eondition is more reasonable to

filter multiple years’ LAl mean and variance.

This dissertation presents a new comprehensive aosgn of MODIS C5 LAl
product with other satellite products. Besides dararg the LAI values, this work
has also evaluated the relative geometric accusd®yODIS and CYCLOPES LAl
products. By taking advantage of the MODIS twin ss#g, this dissertation has

guantified the influence of atmospheric conditionsdata quality.

In order to account for the inconsistency betwesdpcts, a new LAI normalization

scheme is developed by assuming the linear rekdtiprbetween measurement error
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and LAI natural variance. Although this scheme carmemove systematic bias, it is

able to generate LAl results with consistent bias.

A new data integration method based on KondrashdvGhil (2006)’s iterative EOF
algorithm is developed. The new algorithm has thiéta of handling large datasets
by working on two different levels and integratimgultiple data with different
temporal resolutions. EOF is carried out on bothrse resolution aggregated data
and fine resolution small sub-datasets. Results) fomarse resolution are used as
prior knowledge in filtering the fine resolutiontda This approach is first run as a
univariate case on MODIS data only. The filtered MO data is interpolated to
match with CYCLOPES by a Gaussian function. ThedFE&s run as a multivariate
case on MODIS and CYCLOPES. The intermediate dataageraged to obtain the
final integration results. Besides filling gaps, lidation shows this method
significantly improves the data accuracy, redudtmgbias to 0, improving &o 0.81

and reducing RMSE to 0.71.

6.3 Suggestions for future study

This dissertation presents the initial efforts s@ dour different methods to integrate
LAl products. Several issues need to be addressddture studies. First of all,

additionalin situ measurements are required to evaluate existingdrAdlucts and
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correct the systematic bias with each product. §egiotemporal correlation of LAI
and the distribution of its measurement error Viaé the basis of various data
integration methods. Comprehensive field measuré&énprovide a way to better
characterize them. Furthermore,situ measurements are also needed to validate the

integrated results and refine the developed alyost

A stationary spatiotemporal covariance functioncigrently used to model the
dependency of LAl anomaly data. More flexible madeked to be developed to
account for the heterogeneity of LAI. Geostatidtiveethods are promising because
they have a strict theoretical basis. However, nresearch efforts are needed to

reduce their computational cost and make themldeifar large datasets.

Two products are integrated in each of the fourhm@s$ used in this dissertation,
although these methods are able to employ morettharproducts. Future research
could focus on more LAI products. Attempts couldoabe made to incorporate
variables other than LAI to improve LAI estimatitmrough multivariate methods,

such as Co-Kriging, multivariate BME or multivaeaEOF.

In addition to LAI, other satellite products, suah albedo and insolation, suffer from
similar problems. For example, geostationary stasllhave more observations but

are unable to map polar areas, while polar orkilig@s observe there frequently.
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None of them can map the whole Earth at dense teahpuervals. The presented
methods could be applied to integrate the geosiatyo GOES insolation product

with polar orbit MODIS insolation information toIse this problem.
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