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1 IntroductionGiven a complete graph with edge weights satisfying the triangle inequality and a degree boundfor each vertex, we consider the problem of computing a low-weight spanning tree in which thedegree of each vertex is at most its given bound. In general, it is NP-hard to �nd such a tree.There are various practical motivations: the problem arises in the context of VLSI layout andnetwork design [8, 12, 20] (such as in the Bellcore software FIBER OPTIONS, used for designingsurvivable optimal �ber networks). The special case of only one vertex with a degree-constraint hasbeen examined [5, 6, 9]; A polynomial time algorithm for the case of a �xed number of nodes witha constrained degree was given by Brezovec et al. [2]. Computational results for some heuristicsfor the general problem are presented in [14, 19, 21]. Papadimitriou and Vazirani [15] raised theproblem of �nding the complexity of computing a minimum-weight degree-4 spanning tree of pointsin the plane. Some geometric aspects are considered in [10, 13, 17].In this paper, we consider modifying a given spanning tree T , to meet the degree constraints.We introduce a novel network-
ow based algorithm that does this optimally in the following sense:if for some algorithm a worst-case performance guarantee can be proved that is solely a function ofthe topology and edge weights of T , then that performance guarantee also holds for our algorithm.We prove this by showing that our algorithm �nds the optimal solution for graphs in which theweight of each edge (u; v) equals the cost of the u; v path in T .We also show the following more concrete performance guarantee: If the degree constraint d(v)for each v is at least 2, our algorithm �nds a tree whose weight is at most the weight of the T times2�minn d(v) � 2degT (v) � 2 : degT (v) > 2o;where degT (v) is the initial degree of v. For instance, the degree of each vertex v can be reducedby nearly half, to 1 + ddegT (v)=2e, without increasing the weight of the tree by more than 50%.For comparison, note that a factor of 2 is straightforward with standard shortcutting techniques.We also describe linear-time algorithms that achieve this ratio.This performance guarantee is optimal in the sense that for any D � d � 2, if T is a completerooted (D � 1)-ary tree with unit edge weights and the edge weights in G are those induced bypaths in T , then the weight of any spanning tree with maximum degree d is at least the weight ofT times 2� d�2D�2 � o(1).The restriction d(v) � 2 is necessary to obtain constant performance bounds. Consider the casewhen T is a simple path of unit weight edges, with the remaining edge weights again induced byT . Any spanning tree in which all but one vertex has degree one is heavier than T by a factor of2




(n), the number of vertices in T .For many metric spaces, graphs induced by points in the space have minimum spanning treesof bounded maximum degree. In such cases our algorithms can be used to �nd spanning trees ofeven smaller degree with weight bounded by a factor strictly smaller than 2 times the weight of aminimum spanning tree (MST). For example, in the L1 metric, a degree-4 MST can be found [17],so that we can �nd a degree-3 tree with weight at most 1:5 times the weight of an MST. We discusssimilar results for the L1, L2, and L1 norms. For some of these norms, this improves the bestcurrent performance guarantees.Finally, we disprove the following conjecture of [11]: \In Euclidean graphs, perhaps a TravelingSalesman path of weight at most (2� ") times the minimum spanning-tree weight always exists..."Our algorithms modify the given tree by performing a sequence of adoptions. Our polynomial-time algorithm performs an optimal sequence of adoptions. Adoptions have been previously usedto obtain bounded-degree trees in weighted graphs [10, 16, 18]. The main contributions of thispaper are a careful analysis of the power of adoptions and a network-
ow technique for selectingan optimal sequence of adoptions. The method yields a stronger performance guarantee and mayyield better results in practice. The analysis of adoptions shows that di�erent techniques will benecessary if better bounds are to be obtained.In the full version of their paper, Ravi et al. [16, Thm. 1.9] (if slightly generalized and improved1)gave an algorithm with a performance guarantee of2�min� d(v)� 2degT (v)� 1 : v 2 V;degT (v) > 2�provided each d(v) � 3. The performance guarantee of our algorithm is better.In Euclidean graphs (induced by points in IRd), minimum spanning trees are known to havebounded degree. For such graphs, Khuller, Raghavachari and Young [10] gave a linear-time al-gorithm to �nd a degree-3 spanning tree of weight at most 5=3 times the weight of a minimumspanning tree. For points in the plane, the performance guarantee of their algorithm improves to1:5; if the tree is allowed to have degree four, the ratio improves further to 1:25.In unweighted graphs, Furer and Raghavachari [4] gave a polynomial-time algorithm to �nd aspanning tree of maximum degree exceeding the minimum possible by at most one. In arbitraryweighted graphs, Fischer [3] showed that a minimum spanning tree with maximum degree O(�� +log n) can be computed in polynomial time, where �� is the minimum maximum degree of any1To obtain the improved bound one has to change the proof slightly by upperbounding c(v1v2)� c(vv2) by c(vv1)and not c(vv2) as is done in [16]. 3



minimum spanning tree. He also provided an algorithm that �nds a minimum spanning tree withdegree k(�� + 1) where k is the number of distinct edge weights.2 AdoptionFix the graph G = (V; V � V ) and the edge weights w : V � V ! IR. The algorithm starts witha given tree T and modi�es it by performing a sequence of adoptions. The adoption operation(illustrated in Figure 1) is as follows:Adopt(u; v)Precondition: Vertex v has degree at least two in the current tree.1 Choose a neighbor x of v in the current tree other than the neighbor on the current u; v path.2 Modify the current tree by replacing edge (v; x) by (u; x).
u vx x vu

Figure 1: Vertex u adopts a neighbor of vAdopt(u; v) decreases the degree of v by one, at the expense of increasing the degree of u byone and increasing the weight of the tree by w(x; u) � w(x; v) � w(u; v).2.1 The Adoption NetworkDe�nitions 1 The de�cit of vertex v with respect to T is degT (v)� d(v).Starting with a given tree, consider a sequence of adoptions Adopt(u1; v1);Adopt(u2; v2); : : :.� The sequence is legal if the precondition for each adoption is met.� A sequence is feasible if, for each vertex, the change in its degree, i.e., its new degree minusits old degree, is at least its de�cit.� The cost of the sequence is Pi w(ui; vi). 4



The legal, feasible adoption sequences are precisely those that yield a tree meeting the degreeconstraints. The cost of a sequence is an upper bound on the resulting increase in the weight ofthe tree. Our goal is to �nd a feasible legal sequence of minimum cost. For brevity, we call such asequence a minimum-cost sequence.The problem reduces to a minimum-cost 
ow problem [1] in a 
ow network that we call theadoption network for T . The adoption network is de�ned as follows. Starting with G, replace eachedge (u; v) by two directed edges (u; v) and (v; u), each with cost w(u; v) and in�nite capacity.Assign each vertex a demand equal to its de�cit.A 
ow is an assignment of a non-negative real value (called the 
ow on the edge) to each edgeof the network. For each vertex v, the surplus at v is the net 
ow assigned to incoming edges minusthe net 
ow assigned to outgoing edges. A 
ow is legal if the surplus at each vertex is at most oneless than its degree. A 
ow is feasible if the surplus at each vertex is at least its demand. The costof the 
ow is the sum, over all edges, of the cost of the edge times the 
ow on the edge.Since the demands are integers, there exists an integer-valued minimum-cost feasible 
ow [1].Assuming that each degree constraint is at least 1, their exists such a 
ow that is also legal. Forbrevity, we call such a 
ow a minimum-cost 
ow.Lemma 1 The following statements are true:1. The adoption sequences correspond to integer-valued 
ows. The correspondence preserveslegality, feasibility, and cost.2. The integer-valued 
ows correspond to adoption sequences. The correspondence preserveslegality and feasibility; it does not increase cost.Proof: Given a sequence of adoptions, the corresponding 
ow f assigns a 
ow to each edge (u; v)equal to the number of times u adopts a neighbor of v. It can be veri�ed that this correspondencepreserves legality, feasibility, and cost.Conversely, given an integer-valued 
ow f , modify it if necessary (by canceling 
ow aroundcycles) so that the set of edges with positive 
ow is acyclic. This does not increase the cost. Next,order the vertices so that, for each directed edge (u; v) with positive 
ow, u precedes v in the order.Consider the vertices in reverse order. For each vertex u, for each edge (u; v) with positive 
ow,have u adopt f(u; v) neighbors of v. It can be veri�ed that this sequence of adoptions preserveslegality and feasibility, and does not increase cost.
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3 Polynomial-Time AlgorithmAn acyclic, integer, minimum-cost 
ow can be found in polynomial time [1]. The correspondinglegal, feasible adoption sequence can be performed in polynomial time as described in the proof ofthe second part of Lemma 1. This gives a polynomial-time algorithm.3.1 Optimality in Tree-Induced MetricsThe following lemma shows that this algorithm is optimal among algorithms that examine only theweights of edges of the given tree.Lemma 2 Given a weighted graph G = (V;E) and a spanning tree T such that the weight of eachedge in G equals the weight of the corresponding path in T , a minimum-cost sequence of adoptionsyields an optimal tree.Proof: Fix an optimal tree. Note that the degree of v in the optimal tree is at most d(v); assumewithout loss of generality that it is exactly d(v). For each subset S of vertices, let degT (S) and d(S)denote the sum of the degrees of vertices in S in T and in the optimal tree, respectively. De�ne a
ow on the edges of T as follows: for each edge (u; v) in T , let f(u; v) = d(Su)�degT (Su), where Suis the set of vertices that are reachable from u using edges in T other than (u; v), provided f(u; v)as de�ned is non-negative. Inductively it can be shown that for each vertex v, the net 
ow into itis degT (v)� d(v), so that the adoption sequence determined by the 
ow f achieves a tree with thesame degrees as the optimal tree.We will show that the cost of the 
ow, and therefore the cost of the adoption sequence, is atmost the di�erence in the weights of the two trees. This implies that the tree obtained by theadoption sequence is also an optimal tree.To bound the cost of the 
ow, we claim that the 
ow is \necessary" in the following sense:for each edge (u; v) in T , at least f(u; v) + 1 edges in the optimal tree have one endpoint in Suand the other in V � Su. To prove this, let c be the number of edges in the optimal tree crossingthe cut (Su; V � Su). Note that degT (Su) = 2(jSuj � 1) + 1. Since the optimal tree is acyclic,the number of edges in the optimal tree with both endpoints in Su is at most jSuj � 1. Thusd(Su) � 2(jSuj� 1)+ c = degT (Su)� 1+ c. Rewriting gives c � d(Su)�degT (Su)+1 = f(u; v)+1.This proves the claim.To bound the cost of the 
ow, for each edge (u; v), charge w(u; v) units to each edge in theoptimal tree crossing the cut (Su; V �Su). By the claim, at least the cost of the 
ow, plus the costof T , is charged. However, since the cost of each edge in the optimal tree equals the weight of the6



corresponding path in T , each edge in the optimal tree is charged at most its weight. Thus, thenet charge is bounded by the cost of the optimal tree.Note that given the exact degrees of the desired tree (for instance, if the degree constraints sumto 2(jV j � 1)), the optimal 
ow in Lemma 2 can be computed in linear time.3.2 Worst-Case Performance GuaranteeThe next theorem establishes a worst-case performance guarantee for the algorithm in generalgraphs satisfying the triangle inequality.Theorem 3 Given a graph G = (V;E) with edge weights satisfying the triangle inequality, a span-ning tree T , and, for each vertex v, a degree constraint d(v) � 2, the algorithm produces a treewhose weight is at most the weight of T times2�min� d(v) � 2degT (v) � 2 : v 2 V;degT (v) > 2� :Proof: The increase in the cost of the tree is at most the cost of the best sequence. By Lemma 1,this is bounded by the cost of the minimum-cost 
ow. We exhibit a fractional feasible, legal 
owwhose cost is appropriately bounded. The minimum-cost 
ow is guaranteed to be at least as good.Root the tree T at an arbitrary vertex r. Push a uniform amount of 
ow along each edgetowards the root as follows. Let p(v) be the parent of each non-root vertex v. For a constant c tobe determined later, de�ne f(u; v) = ( c if v = p(u)0 otherwise.The cost of the 
ow is c times the weight of T . Let v be any vertex. The surplus at v is at leastc(degT (v) � 2). We choose c just large enough so that the 
ow is feasible.There are three cases. If degT (v) = 1, the de�cit at v will be satis�ed provided c � 1 andd(v) � 2. If degT (v) = 2, the de�cit at v will be satis�ed provided d(v) � 2. For degT (v) > 2, thede�cit will be satis�ed providedc � degT (v)� d(v)degT (v)� 2 = 1� d(v)� 2degT (v)� 2 :Thus, taking c = 1�min� d(v)� 2degT (v)� 2 : v 2 V;degT (v) > 2�gives the result. 7



4 Optimality of Performance GuaranteeIn this section, we show that the worst-case performance guarantee established in Theorem 3 is thebest obtainable.Lemma 4 Consider an n-vertex weighted graph G with a spanning tree T such that the weight ofeach edge in T is 1 and the weight of each remaining edge is the weight of the corresponding pathin T . If T corresponds to a complete rooted (D � 1)-ary tree, then the weight of any spanning treewith maximum degree d is at least the weight of T times2� d� 2D � 2 � o(1);where o(1) tends to 0 as n grows.Proof: Fix any spanning tree T 0 of maximum degree d. Let Si denote the vertices at distance ifrom the root in T . Consider the 
ow on the edges of T corresponding to T 0, as de�ned in the proofof Lemma 2. The proof shows that at least jSij(d�D)� 1 units of 
ow cross the cut (V � Si; Si).Thus the net cost of the 
ow is at least Pk�1i=0 jSij(d �D)� 1. The cost of T is Pk�1i=0 jSi+1j � jSij.Since jSi+1j = jSij(D� 1) + 1, so jSi+1j � jSij = jSij(D� 2) + 1, the ratio of the cost of the 
ow tothe cost of T is at least Pk�1i=0 jSij(d �D)� 1Pk�1i=0 jSij(D � 2) + 1 :Simplifying shows that the ratio is at least (d �D)=(D � 2) � o(1). Since the ratio of the cost ofT 0 to the cost of T is 1 more than this, the result follows.Next we observe that the d(v) � 2 constraint is necessary to obtain any constant performanceguarantee:Lemma 5 Consider an n-vertex weighted graph G with a spanning tree T such that the weight ofeach edge in T is 1 and the weight of each remaining edge is the weight of the corresponding pathin T . If T corresponds to a path of length n with endpoint r, then the weight of any spanning treein which each vertex other than r has degree 1 is at least the weight of T times n=2.The proof is straightforward.
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5 Linear-Time AlgorithmsNote that to obtain the worst-case performance guarantee a minimum-cost 
ow is not required. Itsu�ces to �nd a feasible integer 
ow of cost bounded by the cost of the fractional 
ow f de�nedin the proof of Theorem 3. We describe two methods to �nd such a 
ow, and to implement thecorresponding sequence of adoptions, in linear time.Algorithm 1: Let f be the fractional 
ow de�ned in Theorem 3. Modify f by repeatedly per-forming the following short-cutting step: choose a maximal path in the set of edges with positive
ow; replace the (c units of) 
ow on the path by (c units of) 
ow on the single new edge (u; v),where the path goes from u to v. Let q(u) be the child of v on the path. Stop when all pathshave been replaced by new edges. This phase requires linear time, because each step requires timeproportional to the number of edges short-cut.In the resulting 
ow, the only edges with positive 
ow are edges from leaves of the (rooted) treeT to interior vertices. Round the 
ow to an integer 
ow as follows. Consider each vertex v withpositive de�cit, say D. Using a linear-time selection algorithm, among the edges (u; v) sending 
owto v, �nd the D smallest-weighted edges. Assign one unit of 
ow to each of these D edges. Theresulting 
ow is integer-valued, feasible, legal, and has cost bounded by the cost of f . This phaserequires linear time.Assume that each vertex maintains a doubly linked list of its children. Given a pointer to anyvertex, we can obtain its sibling in constant time. As adoptions are done, this list is maintaineddynamically. Perform the adoptions corresponding to the 
ow in any order: for each edge (u; v)with a unit of 
ow, have u adopt the right sibling of q(u) (in the original tree T ). The tree remainsconnected because d(v) � 2, so at least one child of v is not adopted.Algorithm 2: Consider the following restricted adoption network. Root the tree T as in theproof of Theorem 3. Direct each edge (u; v) of the tree towards the root. (Non-tree edges are notused.) Assign each edge a capacity of 1 and a cost equal to its weight. Assign each vertex a demandequal to its de�cit.We show below that an integer-valued minimum-cost 
ow in this network can be found in lineartime. Because the fractional 
ow de�ned in the proof of Theorem 3 is a feasible legal 
ow in thisnetwork, the minimum-cost 
ow that we �nd is at least as good.Find the 
ow via dynamic programming. For each vertex v, consider the subnetwork correspond-ing to the subtree rooted at v. Let Cj(v) denote the minimum cost of a 
ow in this subnetworksuch that the surplus at v exceeds its demand D by j, for j = 0; 1. For each child u of v, Let �(u)9



denote w(u; v) +C1(u)�C0(u) | the additional cost incurred for v to obtain a unit of 
ow alongedge (u; v). Let Uj denote the D + j children with smallest �(u), for j = 0; 1. Then, for j = 0; 1,Cj(v) = Xu2Uj �(u) +Xu C0(u):Using this equation, compute the Cj's bottom-up in linear time. The cost of the minimum-cost 
owin the restricted network is given by C0(r), where r is the root. The 
ow itself is easily recoveredin linear time.To �nish, shortcut the 
ow as in the �rst phase of the previous algorithm and perform theadoptions as in the last phase of that algorithm.6 Geometric ProblemsOur general result has several implications for cases of particular distance functions where it ispossible to give a priori bounds on the maximum degree of an MST. For the case of L2 distancesin the plane, there always is an MST of maximum degree 5[13]; for the case of L1 or L1 distancesthere always exists a MST of maximum degree 4 [13, 17]. Without using any speci�c structure ofthe involved distance functions, we note as a corollary:Corollary 6.1 Let Tmin be an MST and Tk be a tree whose maximal degree is at most k. For L1or L1 distances in IR2, we get a degree-3 tree T3 with� w(T3) < 32w(Tmin).For the case of Euclidean distances in the plane, we get bounded degree trees that satisfy� w(T3) < 53w(Tmin)� w(T4) < 43w(Tmin).The latter two bounds are worse than those shown by Khuller, Raghavachari and Young [10] usingthe geometry of point arrangements. (It was shown that 32 and 54 are upper bounds.) We conjecturethat the following are the optimal ratios:Conjecture 6.2 For the case of Euclidean distances in the plane, we conjecture that there existbounded degree trees that satisfy� w(T3)w(Tmin) � p2+34 � 1:103 : : : 10



� w(T4)w(Tmin) � 2 sin( �10 )+45 � 1:035 : : :For L1 and L1 distances in IR2, we conjecture� w(T3)w(Tmin) � 54The best known lower bounds (yielding the ratios of Conjecture 6.2) are shown in Figure 2.(Note that the example for L1 metric is obtained by rotating the arrangement in (c) by 45 degrees.)
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