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AbstratIn this paper we onsider the problem of moving a large amount of data from several di�erent hosts to asingle destination in a wide-area network. Often, due to ongestion onditions, the hoie of paths by thenetwork may be poor. By hoosing an indiret route at the appliation level, we may be able to obtainsubstantially higher performane in moving data through the network. We formulate this data transfer(olletion) problem as a network ow problem. We show that by using a min-ost ow algorithm on anappropriately de�ned time-expanded (network) graph, we an obtain a data transfer shedule. We show thatsuh shedules an be an order of magnitude better than shedules obtained by transferring data diretlyfrom eah host to the destination. In fat, this holds, even though we make no assumptions about knowledgeof the topology of the network or the apaity available on individual links of the network. We simply useend-to-end type information and ompute a shedule for transferring the data. Finally, we also study theshortomings of this approah in terms of the gap between the network ow formulation and data transfersin a wide-area network.1 IntrodutionLarge-sale data olletion problems or uploads orrespond to a set of important appliations. Theseappliations inlude online submission of inome tax forms, submission of papers to onferenes,submission of proposals to granting agenies, Internet-based storage, and many more. In the past,muh researh has foused on downloads or data dissemination appliations; in ontrast, large-salewide-area uploads have largely been negleted. However, upload appliations are likely to beomesigni�ant ontributors to Internet traÆ in the near future, as digital government programs as wellas other large sale data transfer appliations take advantage of the proliferation of the Internetin soiety and industry. For instane, onsider the online submission of inome tax forms. USCongress has mandated that 80% of tax returns to be �led eletronially by 2007. With (on theorder of) 100 million individual tax returns �led in US yearly, where eah return is on the order of100 KBytes [17℄, salability issues are a major onern.Reently, a salable and seure appliation-level arhiteture for wide-area upload appliationswas proposed [1℄. This upload arhiteture is termed Bistro, and hosts whih partiipate in thisarhiteture are termed bistros. Given a large number of lients that need to upload their data bya given deadline to a given destination server, Bistro breaks the upload proess into three steps:(a) a timestamp step whih ensures that the data is submitted on-time without having to atuallytransfer the data, (b) a data transfer step, where lients push data to intermediate hosts (bistros),whih ensures fast response time for the lients, and () a data olletion step, where a destinationserver (termed destination bistro) pulls data from bistros, i.e., the destination server determineshow and when the data is transferred from the bistros. We note that during step (b) reeiptsorresponding to lients' transfers are sent by the (intermediate) bistros to the destination bistro;hene the destination bistro knows where to �nd all the data whih needs to be olleted duringstep (). (A more detailed desription of Bistro is inluded in the Appendix for ompleteness).Performane of the data olletion step is the fous of this paper.1



Spei�ally, we fous on the olletion of reasonably large amounts of data, suh as in the onlinetax submission example given above whih an easily result in approximately 10 Terabytes of dataorresponding to individual tax forms alone (business tax returns an be signi�antly larger). Insuh appliations, long transfer times between one or more of the hosts (holding this data) andthe destination server an signi�antly prolong the amount of time it takes to omplete the dataolletion proess. Suh long transfer times an be the result of poor onnetivity between a pair ofhosts, or it an be due to wide-area network ongestion onditions, e.g., due to having to transferdata over one or more (so-alled) peering points whose ongestion is often ited as ause of delayin wide-area data transfers [21℄. Given the urrent state of IP routing, ongestion onditions maynot neessarily result in a hange of routes between a pair of hosts, even if alternate routes exist.Thus, we onsider appliation-level approahes to improving performane of large-sale dataolletion. We do this in the ontext of the Bistro upload framework. However, one ould on-sider other appliations where suh improvements in data transfer times is an important problem.One example is high-performane omputing appliations where large amounts of data need to betransferred from one or more data repositories to one or more destinations, where omputation onthat data is performed [9℄. Another example is data mining appliations where large amounts ofdata may need to be transferred to a partiular server for analysis purposes.Consequently, in this paper we onsider large-sale data olletion from a set of soure hosts(bistros) to the destination host (destination bistro) where our data olletion problem an be statedas follows.Givena set of soure hosts, the amount of data to be olleted from eah host, anda ommon destination host for the dataour goal is toonstrut a data transfer shedule whih spei�es on whih path, in whatorder, and at what time should eah \piee" of data be transferred to thedestination hostwhere the objetive is tominimize the time it takes to ollet all data from the soure hosts, usuallyreferred to as makespan.The data olletion problem is a non-trivial one beause the issue is not only to avoid ongestedlink(s), but to devise a oordinated transfer shedule whih would a�ord maximum possible uti-lization of available network resoures between multiple soures and the destination. We formulatethis notion more formally in the remainder of the paper.We note that the hoie of the makespan metri is ditated by the appliations stated at thebeginning of this setion, i.e., there is no lients in the data olletion problem and hene metris2



that are onerned with interative response time (suh as mean transfer times) are not of as muhinterest here. Sine the above mentioned appliations usually proess the olleted data, the totaltime it takes to ollet it (or some large fration of it) is of greater signi�ane. We also note thatin our ase there is no need for a distributed algorithm for the above stated problem sine Bistroemploys a server pull approah, with all information needed to solve the data olletion problemavailable at the destination server. Also not all hosts partiipating in the data transfer need to besoures of data; this does not hange the formulation of our problem sine suh hosts an simplybe treated as soures with zero amounts of data to send to the destination. In the remainder of thepaper we use the terms hosts, bistros, and nodes interhangeably.There are, of ourse, simple approahes to solving the data olletion problem; for instane:� transfer the data from all soure hosts to the destination host in parallel, or� transfer the data from the soure hosts to the destination host sequentially in some order, or� transfer the data in parallel from a onstant number of soure hosts at a time and possiblyduring a predetermined time slot,as well as other variants. These methods are all \diret", in the sense that they send data diretlyfrom the soure hosts to the destination host. In this paper, we show that \indiret" methodswhih re-route data through other hosts an result in a signi�ant performane improvement asompared to \diret" methods (refer to Setion 3 for details of diret methods used for ompari-son purposes). Consequently, our fous in this work is on development of algorithms for indiretoordinated transfer methods for the data olletion problem.Sine we are fousing on appliation-level solutions, a path (in the above stated data olletionproblem) is de�ned as a sequene of hosts, where the �rst host on the path is the soure of the data,intermediate hosts are other bistros in the system, and the last host on the path is the destinationhost. The transfer of data between any pair of hosts is performed over TCP/IP, i.e., the path thedata takes between any pair of hosts is determined by IP routing.Given the above stated problem, additional possible onstraints inlude (a) ability to splithunks of data into smaller piees, (b) ability to merge hunks of data into larger piees, and ()storage onstraints at the hosts. To fous the disussion, we onsider the following onstraints. Foreah hunk of data we allow (a) and (b) to be performed only by the soure host of that data andthe destination host. We also do not plae storage onstraints on hosts but rather explore storagerequirements as one of the performane metris in evaluation of indiret methods (refer to Setion7). We note that a more general problem where there are multiple destination hosts is also ofsigni�ant importane, e.g., when the same set of bistros is simultaneously used for multiple uploadappliations or events. For the experiments in this paper, we only onsider the single destinationase, for ease of exposition. However, by employing multiommodity ow algorithms [2℄, rather3



than a single ommodity min-ost ow algorithm (refer to Setion 5) we an solve this problem aswell. In other words, there is nothing about our approah that would fail for the ase of multipledestinations for di�erent piees of data.The ontributions of this work are as follows. We propose novel algorithms, whih we term\indiret" methods in ontrast to the diret methods mentioned above, for the large-sale dataolletion problem de�ned above, intended for an IP-type network. The main bene�t of thesemethods is appliation-level oordinated re-routing of large-sale data transfers around ongestionspots or poor onnetivity between a soure of data and its �nal destination. We evaluate theperformane of these algorithms in a simulation setting (using ns2 [15℄). We show that the indiretmethods perform signi�antly better than diret methods. Spei�ally we show one to two orders ofmagnitude improvement under high ongestion onditions (without losses in performane under noongestion onditions). These improvements are ahieved under low storage requirement overheadsand without signi�ant detrimental e�ets on other network traÆ (refer to Setion 7 for details).We note that it is not the purpose of this work to propose novel tehniques for identifyingongestion onditions or determining available apaity or bottlenek link apaity. Rather, ourgoal is to propose algorithms for onstruting data transfer shedules (as de�ned above) under theassumption that suh tehniques are (or will beome) available (e.g., as in [4, 7℄) and show thatsigni�ant bene�ts an be gained from suh algorithms.The remainder of the paper is organized as follows. In Setion 2 we briey survey relatedwork. Setion 3 gives several simple diret methods for the data olletion problem as desribedabove; these are used for omparison purposes. Setion 4 gives an overview of our approah foronstruting indiret methods for solving this problem, and Setions 5 and 6 give the details of thisapproah. In Setion 7 we give a quantitative evaluation of our approah to the data olletionproblem. Setion 8 gives onluding remarks. (We also inlude an Appendix at the end of thepaper, whih briey desribes the Bistro arhiteture. We note that it is inluded for reviewers'bene�t only .)2 Related WorkAs stated in Setion 1, in this paper we fous on algorithms for large-sale data transfers overwide-area networks, in the ontext of upload appliations. In [1℄ an appliation-level frameworkfor large-sale upload appliations, termed Bistro, is proposed. To the best of our knowledge noother large-sale upload arhiteture exists to date. Hene, we do this work in the ontext ofBistro, although as noted above, other types of appliations an bene�t as well. Spei�ally, wefous on the performane of the data olletion step as desribed in Setion 1 where our goal is toonstrut algorithms for oordinated data transfers from multiple soure hosts to the destinationhost. Moreover, we fous on methods whih re-route data, in a oordinated fashion, through otherhosts at the appliation-level. Hene, below we briey survey works whih onsider appliation-level4



re-routing issues.Re-routing at the appliation level has been used to provide better end-to-end performane oreÆient fault detetion and reovery for wide-area appliations. For instane, in [27℄ the authorsperform a measurement-based study of omparing end-to-end quality of default routing vs alternatepath routing (using metris suh as round-trip time, loss rate, and bandwidth). Their results showthat in 30% to 80% of the ases onsidered, there is an alternate path with signi�antly superiorquality. This work provides evidene for existene of alternate paths whih an outperform defaultInternet paths.Other frameworks or arhitetures whih onsider re-routing issues inlude Detour [26℄ and RON[3℄. The Detour framework [26℄ is an informed transport protool. It uses sharing of ongestioninformation between hosts to provide a better \detour path" (via another node) for appliationsin order to improve the performane of eah ow and the overall eÆieny of the network. Detourrouters are interonneted by using tunnels (i.e., a virtual point-to-point link); hene Detour isan in-kernel IP-in-IP paket enapsulation and routing arhiteture designed to support alternate-path routing. This work also provides evidene of potential long-term bene�ts of \detouring"pakets via another node by omparing the long-term average properties of detoured paths againstInternet-hosen paths.The Resilient Overlay Network (RON) [3℄ is an arhiteture whih allows distributed Internetappliations to detet failure of paths (and periods of degraded performane) and reover fairlyquikly by routing data through other (than soure and destination) hosts. It also provides aframework for the implementation of expressive routing poliies.We note that the above mentioned re-routing works, for the most part, fous on arhitetures,protools, and mehanisms for aomplishing appliation-level re-routing through the use of overlaynetworks. These works also provide evidene that suh approahes an result in signi�ant perfor-mane bene�ts. In this work, we onsider a similar environment (i.e., appliation-level tehniquesin an IP-type wide-area network). However, in ontrast we fous on algorithms for large-saletransfers when re-routing opportunities exist. Another important distintion here is that the abovementioned works do not onsider oordination of multiple data transfers. That is, all data transfersare treated independently, and hene eah takes the \best" appliation-level route available. Inontrast, our work fouses on oordination of multiple data transfers destined for the same host.(As noted earlier, our approah an also be extended to multiple destination hosts.) As pointed outin Setion 1, this additional onsideration, whih ontributes to the diÆulty of our data olletionproblem, is a result of the appliations motivating this work.
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3 Diret MethodsIn this setion we give the details of the diret methods used for omparison purposes (as desribedin Setion 1). Spei�ally, we onsider the following diret methods:� All-at-one. Data from all soure hosts is transferred simultaneously to the destination server.This ontinues until all transfers are omplete.� One-by-one. The destination server randomly selets one soure host from a set of hosts whihstill have data to send; all data from that soure host is then transferred to the destinationserver. One this transfer ompletes, the destination server then randomly hooses anothersoure host for transferring its data. This ontinues until all soure hosts have their datatransferred to the destination server.� Spread-in-time-GT . The destination server hooses values for two parameters: (1) group size(G) and (2) time slot length (T ). At the beginning of eah time slot, the destination serverrandomly selets one group (of size G) and then the data from all soure hosts in that groupis transferred to the destination server; these transfers ontinue beyond the time slot lengthT , if neessary. At the end of a time slot (of length T ), the destination server selets anothergroup of size G and the transfer of data from that group begins regardless of whether the datatransfers from the previous time slot have ompleted or not. (That is, data transfers whihstarted during di�erent time slots might overlap in time.) This ontinues until all sourehosts have ompleted their data transfer.� Conurrent-G. The destination server hooses a group size (G). It then randomly selets G ofthe soure hosts and begins transfer of data from these hosts. The destination server alwaysmaintains a onstant number, G, of hosts transferring data, i.e., as soon as one of these hostsompletes its transfer, the destination server randomly selets another soure host and itsdata transfer begins. This ontinues until the last soure host ompletes its data transfer.Clearly, there are a number of other diret methods that ould be onstruted as well as variationson the above ones. However, this set of diret methods is reasonably representative for us to makeomparisons to indiret methods (refer to Setion 7).We note, that eah of the above methods has its own shortomings. For instane, if the bot-tlenek link is not shared by all onnetions, then diret methods whih explore some form ofparallelism in data transfer (suh as the all-at-one method) might be able to better utilize ex-isting resoures and hene perform better than those that do not exploit parallelism (suh as theone-by-one method). On the other hand, methods suh as all-at-one might result in worse e�etson (perhaps already poor) ongestion onditions. Methods suh as onurrent and spread-in-timerequire proper hoies of parameters and their performane is sensitive to these hoies.Regardless of the spei�s of a diret method, due to their diret nature, none of them areable to take advantage of network resoures whih are available on routes to the destination server6



other than the \diret" ones (i.e., those ditated by IP). Taking advantage of suh resoures anbe espeially important when the \diret" routes to the destination server are poor or ongested.Indiret methods proposed in this paper are able to take advantage of suh resoures and thereforeresult in signi�antly better performane, as illustrated in Setion 7.4 Overview of Our ApproahAn overview of our approah to the problem stated in Setion 1 and the subsequent evaluation ofthat approah is as follows:� Step 1. Construt a graph representation of the hosts and the orresponding ommunia-tion network. This inludes spei�ation of nodes, onnetivity between nodes, (estimated)apaities of the orresponding onnetions, and so on.� Step 2. Generate a time-expanded version of the graph onstruted in Step 1.� Step 3. Determine a data transfer shedule on the time-expanded graph by optimizing a givenobjetive funtion under the appropriate set of onstraints. In this paper, we fous on theobjetive of minimizing the total amount of time it takes to ollet the data from the sourehosts, i.e., makespan, and we plae some onstraints on splitting and merging of data hunks.� Step 4. Convert the solution produed in Step 3 under the graph theoreti formulation to adata transfer shedule for a ommuniation network, taking into onsideration the networkprotools to be used for the transfers (e.g., TCP/IP). As stated in Setion 1, this shedulemust speify on what path and in what order should eah \piee" of data be transferred tothe destination host, where a path is de�ned as a sequene of hosts, with the �rst host on thepath being the soure of the data, intermediate hosts on the path being other hosts, and thelast host on the path being the destination host.� Step 5. Exeute the data transfer shedule produed in Step 4 using ns2 [15℄ in order toevaluate the \goodness" of this data transfer shedule (i.e., this step is performed to evaluateour approah).The details of Steps 1 through 3 are given in Setion 5. The details of Step 4 are given in Setion6. Lastly, the details of Step 5 (as well as determination of parameters needed in Step 1) and theorresponding performane evaluation results are given in Setion 7.5 Graph Theoreti Formulation of the Data Colletion ProblemWe assume that the network topology is spei�ed by a graph GN = (VN ; EN ). There are two kindsof nodes in the network, namely end-hosts and routers. The soures S1; : : : Sk and destination Dare a subset of the end-hosts. There is a apaity funtion  that spei�es the apaity on the linksin the network. In addition, bakground traÆ exists, whih e�ets the available apaity on thelinks. 7



In a wide-area network suh as the Internet, we may not be aware of the exat topology ofthe entire network or the exat apaity funtion . We will model the network by an overlaygraph onsisting of the set of soure hosts and the destination host. (For ease of presentationbelow we disuss our methodology in the ontext of soure hosts and destination host; however,any end-host an be part of the overlay graph, if it is partiipating in the Bistro arhiteture. Inthat ase, the node orresponding to this host would simply have zero amount of data to send inthe exposition below.) We refer to the overlay graph as GH = (VH ; EH). The overlay graph is adireted (omplete) graph where VH = fS1; : : : ; Skg [ fDg. (See Figure 1 for an example wherewe do not show outgoing edges from D sine they are never used.) The apaity funtion modelsavailable apaity 0 on eah edge and is assigned as the bandwidth that is available for data transferbetween end-hosts. (This takes into aount the bakground traÆ, but not any traÆ that we areinjeting into the network for the movement of data from the soures to the destination.) In otherwords, this is the bandwidth that is available to us on the path that the network provides us inthe graph GN , subjet to the bakground traÆ. Note that sine we may not know the underlyingtopology or the routes that the paths take, we may not be able to properly model onits betweenows. In other words, node S2 may not simultaneously be able to send data at rate 1 to eah of Dand S3 sine the paths that are provided by the network share a ongested link and ompete forbandwidth. Suh knowledge (if available) ould be used to speify a apaity funtion on sets ofedges, and one ould use Linear Programming [5℄ to obtain an optimal ow under those onstraints.
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Figure 1: Network topology and the overlay graph.From the overlay graph GH we onstrut the \time-expanded" graph GT [8, 13℄ (see Figure 2)whih is the graph that our algorithms will use for omputing a shedule to route the data fromthe soures to the destination. Given a non-negative integer T , we onstrut this graph as follows:for eah node u we reate a set of T +1 verties u(i) for i = 0 : : : T . We pik a unit of time t (referto Setion 7 for the hoie of t) and add edges in GT from u(i) to v(i+1) with apaity t � 0(u; v).8



(For example, suppose we have available apaity between u and v of 20 Kbps and de�ne a unit oftime t to be 2 seonds. In this ase, we an transfer 40 Kb from u to v in \one unit of time".) Wede�ne the apaity of the edge from u(i) to v(i+ 1) as the amount of data that an be transferredfrom u to v in one unit of time. In addition, we have edges from u(0) to u(i) whih are referred toas the \holdover" edges. This just orresponds to keeping the data at that node without sendingit anywhere. We also add edges from D(i) to a virtual destination D0. Eah soure Si(0) has aertain amount of ow available at time 0. All the ow has to be shipped to the virtual destinationD0. Note that by disallowing edges from u(i) to u(i+1) for i > 0, we hold ow at the soure nodesuntil it is ready to be shipped. In other words, ow is sent from S2(0) to S2(1) and then to S1(2),rather than from S2(0) to S1(1) to S1(2) (whih is not allowed sine there is no edge from S1(1)to S1(2)). This has the advantage that the storage required at the intermediate nodes is lower.Hoppe and Tardos [14℄ argue that allowing edges of the form u(i) to u(i+1) does not derease theminimum value of T .
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Figure 2: Time-expanded graph.Our �rst goal then is to ompute the minimum value T suh that we an route all the data tothe destination D0. We an �nd T , in O(log T ) time by doing a \doubling" searh, followed by abinary searh one we �nd an interval that ontains the minimum T for whih a feasible solutionexists.One we �nd the minimum value T , we �nd a min-ost ow [2℄ in the graph as follows. Weassoiate a ost of C1 �C2 � 0(u; v) with every transfer edge u(i) to v(i+ 1), where C1 and C2 areonstants and C1 � C2 � 1. Our solution would prefer sending data over high apaity links if9



two solutions have the same total number of transfers. This also provides a more regular patternin the ow solution (whih an be useful in the PathMerge algorithm desribed in Setion 6). Toevery holdover edge u(0) to u(i), we assign a ost of i. This ensures that data is sent as soon aspossible. In other words, one we �nd the minimum T , there ould be several feasible ows thatroute the data. Among suh ows we prefer the ones with the property that the data arrives earlierat D0. The ost is 0 for all other edges. The ost funtion is hosen so as to obtain a feasible owwith ertain properties, as opposed to an arbitrary ow. Imposing osts simply guides the solutionso that we �nd a solution that sends the ow earlier rather than later and prefers larger apaityedges to smaller apaity edges. Modi�ations to this ost funtion an be made if other propertiesare desired (e.g., based on network and/or protool harateristis).In our problem T is not very large so it is feasible to build the entire time-expanded graph andto run a min-ost ow algorithm on it. If T is extremely large, then one ould use other algorithms(see Hoppe and Tardos [13, 14℄) whih are faster.The min-ost ow algorithm omputes a ow funtion fT that spei�es the ow in the timeexpanded graph GT . (For omputing the min-ost ow, we used Goldberg's ode [11, 12℄.) We nowneed to onvert this ow into a shedule for transferring data in the real network.Remark 1: An alternative to our formulation above is to use the overlay graph, GH , to omputethe \best" path in GH from eah host to the desination, independently. For instane, S2 mayhoose the path (S2; S1;D) sine it is the maximum apaity path to D, and send all of its dataalong this path. This alternative would orrespond to the appliation level re-routing mehanismssurveyed in Setion 2, and hene we refer to it as ALR below. However, note that this optiondoes not permit for (a) any oordination between transfers from di�erent soure hosts, (b) expliitload balaning as eah node makes its own deision as to whih route to send the data on, and ()maximum possible utilization of available network resoures between a soure and the destination.More formally, in our time-expanded graph, ALR orresponds to a feasible ow in a graph GTifor some Ti. Note that in fat Ti � Tmin where Tmin is the solution obtained by our algorithm,whih allows for sending of data along multiple paths between a soure and the destination. Infat, by sending the data along several paths, our algorithm obtains a better solution than ALR (asdesribed above). This di�erene beomes espeially signi�ant, if several good appliation levelroutes exist, but ALR strategies send their data along the \best" path, thus ausing ongestionalong this path.Remark 2: Note that in our formulation, we ompute the apaity funtion one initially (referto Setion 7), to estimate the available apaity between pairs of hosts. One we do this we willassume this as the available bandwidth for the entire duration of the transfer. Of ourse, if thetransfer is going to take a long time, we annot assume that the network onditions are stati. Inthis ase, we an always ompute a new estimate of available bandwidth during the sheduling ofthe transfer and ompute a new transfer shedule for the remaining data. (Our algorithm itself10



is very fast, and so this does not ause a problem even if the urrent transfer is stopped, and theshedule is hanged.) In fat, the algorithm itself an detet when transfer times are not behavingas predited and ompute a new estimate of apaities.Also note that we are dealing with the network at the appliation layer, where we an ontrolthe route within the overlay network that the data takes to the destination without any hange tothe network protools (suh as IP or TCP).Finally, the formulation above is quite robust and we an use it to model situations where datamay be available at di�erent soures at di�erent times.6 Constrution of Network Transfer SheduleWhat remains is to onstrut a data transfer shedule, fN (de�ned as the goal of our data ol-letion problem in Setion 1), from the ow funtion fT omputed in Setion 5, while taking intoonsideration harateristis of wide-area networks suh as the TCP/IP protool used to transferthe data. This onversion is non-trivial partly due to the disrepanies between the graph theoretiabstration used in Setion 5 and the way a TCP/IP network works. (Below we assume that eahdata transfer is done using a TCP onnetion.)One suh disrepany is the lak of variane in data transfers in the graph theoreti formulation,i.e., a transfer of X units of data always takes a �xed amount of time over a partiular link. Thisis not the ase for data transferred over TCP in a wide-area network, partly due to ongestionharateristis at the time of transfer and partly due to TCP's ongestion avoidane mehanisms(e.g., dereases in sending rate when losses are enountered). Another disrepany in the graphtheoreti formulation is that it does not matter (from the solution's point of view) whether the Xunits are transferred as a single ow, or as multiple ows in parallel, or as multiple ows in sequene.However, all these fators a�et the makespan metri when transferring data over TCP/IP. Again,these distintions are partly due to TCP's ongestion avoidane mehanisms.Thus, we believe that the following fators should be onsidered in onstruting fN , given fT :(a) size of eah transfer, (b) parallelism in ows between a pair of hosts, () data split and mergeonstraints, and (d) synhronization of ows. In this paper, we propose several di�erent tehniquesfor onstruting fN from fT , whih di�er in how they address issues (a) and (d). We �rst give amore detailed explanation of these issues and then desribe our tehniques. Note that, we use theterm \transfer" to mean the data transferred between two hosts during a single TCP onnetion.Size of eah transfer.If the size of eah transfer is \too large" we ould unneessarily inrease makespan due to lakof pipelining in transferring the data along the path from soure to destination (in other words,inreased delay in eah stage of the indiret routing). For example, suppose fT ditates a transfer11



of 100 units of data from node S2 to S3 to D. S3 does not start sending data to D until all 100units of data from S2 have arrived. If the size of eah transfer is 10 units, S3 an start sendingsome data to D after the �rst 10 units of data have arrived. On the other hand, if the size of eahdata transfer is \too small" then the overheads of establishing a onnetion and the time spent inTCP's slow start ould ontribute signi�antly to makespan.In this work, we address the \too small" problem in two ways. First, we ensure that eah transferis of a reasonably large size by arefully piking the time unit and data unit size parameters in thegraph onstrution step (refer to Setion 7 for details). Seond, we provide a mehanism for mergingdata transfers whih are deemed \too small" (details given below in the PathMerge algorithm). The\too large" problem is addressed by a proper hoie of the time unit parameter (as desribed inSetion 7).Parallelism between ows.One ould try to obtain a greater share of a bottlenek link for an appliation by transferringits data, between a pair of hosts, over multiple parallel TCP onnetions. However, we do notexplore this option here, mainly beause it is not as useful (based on our simulation experiments)in illustrating the di�erene between the diret methods and the indiret methods sine both typesof methods an bene�t from this. In fat, we made a omparison between the all-at-one methodemploying parallel onnetions and our indiret methods without parallel onnetions, and theresult was that indiret methods ould still ahieve an order of magnitude better performane.Data split and merge onstraints.The fT solution of Setion 5 allows for arbitrary (although disrete) splitting and merging of databeing transferred. However, in a real implementation, suh splitting and merging (of data whihrepresents uploads oming from many di�erent lients) an be ostly. For instane, in the inometax submission forms example, if we were to arbitrarily split a user's inome tax forms along thedata transfer path, we would need to inlude some meta-data whih would allow pieing it baktogether at the destination server. Sine there is a ost assoiated with splitting and merging ofdata, in this paper we allow it only at the soure of that data and the destination, i.e., we do notallow intermediate hosts, through whih the data is transferred, to split or merge data. To ensurethis onstraint is met, the �rst step in our fN onstrution tehniques is to deompose fT into owpaths (see details below).Evaluation of potential additional bene�ts of splitting and merging is ongoing work. For in-stane, if we do not want to allow any splitting of the data, we ould onsider formulating the prob-lem as an unsplittable ow problem. Unfortunately, unsplittable ow problems are NP-omplete[19℄. Good heuristis for these have been developed reently, and ould be used [6℄.Synhronization of ows.The fT solution of Setion 5 essentially synhronizes all the data transfers on a per time step ba-sis, whih leads to proper utilization of link apaities. This synhronization omes for free given12



our graph theoreti formulation of the data olletion problem. However, in a real network, suhsynhronization will not our naturally. In general, we ould implement some form of synhro-nization in data transfers at the ost of additional, out-of-band, messages between bistros. Sinethe Bistro arhiteture employs a server pull of the data (refer to Setion 1), this is a reasonableapproah, assuming that some form of synhronization is bene�ial. Thus, in this paper we explorethe bene�ts of synhronization.Splitting the ow into paths.Given that splitting and merging of data is restrited, we now give details of deomposing fT intopaths, whih is the �rst step in onstruting fN from fT . To obtain a path from fT , we traverse thetime-expanded graph (based on fT ) and onstrut a path from the nodes we enounter during thetraversal as follows. We start from a soure host whih has the smallest index number. Considernow all hosts that reeive non-zero ows from it. Among those we then hoose the one with thesmallest index number, and then proeed to onsider all hosts that reeive non-zero ows from it.We ontinue in this manner until the virtual destination is reahed. The data transfered over theresulting path p is the maximum amount of data that an be sent through p (i.e., the minimumof ow volume over all edges of p). We note that a path spei�es how a �xed amount of data istransfered from a soure to the destination. For example (see Figure 2), a path an be spei�ed as(S2(0); S2(1); S1(2);D(3);D0), whih says that a �xed amount of data is transferred from node S2to node S1 at time 1, and then from node S1 to the destination D at time 2 (and D0 is the virtualdestination). In fat, for this path the value of the ow is 4.To split the ow network into paths, we �rst obtain a path using the proedure desribed above.We then subtrat this path from fT . We then obtain another path from what remains of fT andontinue in this manner until there are no more ows left in fT . At the end of this proedure, wehave deomposed fT into a olletion of paths. (An example of this ow deomposition is givenunder the desription of the PathSyn algorithm below and in Figure 3.)Imposing Synhronization Constraints.What remains now is to onstrut a shedule for transferring the appropriate amounts of data alongeah path. We propose the following methods for onstruting this shedule whih di�er in howthey attempt to preserve the time synhronization information produed by the time-expandedgraph solution given in Setion 5.The PathSyn Method.In this method we employ omplete synhronization as presribed by the time-expanded graphsolution obtained in Setion 5. That is, we �rst begin all the data transfers whih are supposed tostart at time step 0. We wait for all transfers belonging to time step 0 to omplete before beginningany of the transfers belonging to time step 1. When all transfers from time step 0 omplete, webegin all transfers from time step 1. We ontinue in this manner until all data transfers in thelast time step are omplete. We term this approah PathSyn100 (meaning that it attempts 100%13



synhronization as ditated by fT ).Reall that the apaity of an edge in the time-expanded graph is the volume of data that anbe sent over it during one time unit. Sine estimates of available apaity may not be aurate(refer to Setion 7), and sine we may not know whih transfers do or do not share the samebottlenek link (unless, e.g., we employ tehniques in [25℄), it is possible, that some transfers maytake a signi�antly longer time to �nish than ditated by fT . Given the strit synhronization rulesabove, one or two slow transfers ould greatly a�et makespan. An alternative is to synhronizeonly X% of the transfers. That is, as long as a ertain perentage of the data transfers haveompleted, we an begin all the transfers orresponding to the next time step, exept, of ourse,those that are waiting for the previous hop on the same path to omplete. We term this alternativePathSynX where X indiates the perentage of transfers needed to satisfy the synhronizationonstraints, e.g., PathSyn90 requires that 90% of transfers from time step i to omplete beforetransfers from time step i+ 1 an begin.An example of PathSyn is depited in Figure 3 whih shows a olletion of paths obtainedfrom deomposing fT . At time step 0, PathSyn100 starts the transfer from S1(0) to D(1), S2(0)to S3(1), S2(0) to D(1), and S3(0) to D(1), sine all these transfers belong to time step 0. Whenall these transfers have �nished, PathSyn100 starts the transfers belonging to time step 1, namelyS1(1) to D(2), S2(1) to S1(2), S2(1) to S3(2), et.
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,Figure 3: Solution obtained after ow deomposition.We will show in Setion 5 that the PathSyn method performs quite well, espeially when the14



perentage of transfers that satisfy the synhronization requirements is a bit lower than 100%. Thisis an indiation that it is worth while to attempt to preserve the timing onstraints presribed bythe solution of the time-expanded graph (as long as these bene�ts are not subsumed by the harmfule�ets of potentially high variane in the transfers). Sine synhronization between bistros is notfree in a real implementation, we also onsider a method whih does not require it.The PathDelay Method.In the PathDelay method we do not attempt any synhronization between transfers one a transferalong a partiular path begins. That is, as long as a partiular data transfer along one hop ofa path ompletes, the transfer of that data begins along the next hop of that path. The onlysynhronization performed in this method is to delay the transfer of that data from the sourenode until an appropriate time, as ditated by fT . For example, after the deomposition of fT intopaths, there is a path (S2(0); S2(2); S1(3);D(4);D0) of size 4 (see Figure 3). Sine the data is heldat the soure S2 until time step 2 in fT , we shedule the S2(2) to S1(3) transfer at \real" time 2 � t,where t is our time unit (refer to Setion 7).One ould also reate variations on PathDelay by expanding or ontrating the time unit, usedin omputing fT , when onstruting fN , again to aount for variane in data transfer in a realnetwork as ompared to the graph theoreti formulation. For instane, PathDelayX would refer toa variation where the time unit t in fT is modi�ed to be Xt in fN .The PathMerge Method.We onsider one more variant in onstrution of fN as ompared to PathDelay. We �rst observethat after we split fT into paths, some paths may visit exatly the same sequene of hosts, but atdi�erent time steps. For instane, in Figure 3 we have a path arrying 1 unit of ow from S2(0) toS3(1) to D(2), and another path arrying one unit of ow from S2(1) to S3(2) to D(3). Sine thesetwo paths are transferring the ow along the same path, we ould ombine them into a single transferif the amount of data in eah one is too small. We all two suh paths onseutive sine the data istraveling on the same route, just shifted in time by 1 unit of time. PathMerge merges all onseutivepaths before initiating data transfers. After that it behaves just like PathDelay. An example ofPathMerge is given in Figure 4. Consider S1 whih sends 5, 5, 1, and 1 units of data to D at timesteps 0, 1, 2, and 3, respetively (refer to Figure 3). Sine these are onseutive paths, PathMergemerges all of them into a single transfer of size 12, whih starts at time 0 from S1 to D. Moreover,note that path (S2(0); S2(1); S1(2);D(3);D0) of size 4 and path (S2(0); S2(2); S1(3);D(4);D0) ofsize 4 are also onseutive (also in Figure 3). PathMerge merges them into a path of size 8, whihstarts at time step 1, from S2 to S1 to D.We have observed from our simulation experiments that data transfer sizes an e�et themakespan metri in a TCP/IP network (e.g., when these sizes are \too small' as desribed above).In general, one might try to optimize the size of eah data transfer, after obtaining fT , and thePathMerge tehnique failitates suh optimization. For instane, suh an optimization might be15
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Figure 4: Solution obtained after merging paths.done by taking into onsideration the path taken by the transfer and through the use of TCPthroughput equations [24℄ or possibly by using the pipelining optimization work in [30℄. One anappropriate data size is obtained, the PathMerge tehnique an be used to merge onseutive pathsuntil a proper data transfer size is reahed (i.e., the aggressiveness of PathMerge an be ontrolled).This is an ongoing e�ort. Current experiments show that only if the volume of data is too small,or too large, this auses an inrease in the makespan sine typially, we are re-routing the datathrough relatively few intermediate hosts.Note that we do not perform path merging in onjuntion with the PathSyn tehnique sinemerging of paths along the time dimension and synhronization of transfers are essentially opposinggoals.7 Validation and Performane EvaluationIn this setion we evaluate the performane of diret and indiret methods to illustrate the bene�tsof using indiret approahes. (Refer to Setion 3 for a detailed desription of diret methods; referto Setions 4 through 6 for a detailed desription of our indiret methods.) This evaluation is donethrough simulation; all results are given with at least 90%� 10% on�dene.Experimental SetupWe use ns2 [15℄ for all simulation results reported below. In onjuntion with ns2, we use theGT-ITM topology generator [16℄ to generate a transit-stub type graph for our network topology.Spei�ally, we use GT-ITM to reate a transit-stub graph with 152 nodes. The number of transitdomains is 2, where eah transit domain has, on the average, 4 transit nodes with there beingan edge between eah pair of nodes with probability of 0:6. Eah node in a transit domain has,on the average, 3 stub domains onneted to it; there are no additional transit-stub edges andno additional stub-stub edges. Eah stub domain has, on the average, 6 nodes with there beingan edge between every pair of nodes with probability of 0:2. A subset of our simulation topology(i.e., without stub domain details) is shown in Figure 5. The apaity of a \transit node to transit16
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link to stub domain:Figure 5: The simulation topology.node" edge within the same transit domain is 1 Mbps. The apaity of a \transit node to transitnode" edge aross di�erent transit domains is 512 Kbps. The apaity for a \transit node to stubnode" edge or a \stub node to stub node" edge is 256 Kbps. Our motivation for assigning a lowerapaity to the \transit node to transit node" edge aross di�erent transit domains is to emulatepoorer performane onditions that exist at the so-alled peering points [21℄. Note that, the sizeand parameters of our network model and the following experimental setup are motivated by whatis pratial to simulate with ns2 in a reasonable amount of time. However, sine our goal is toillustrate bene�ts of indiret methods, this will suÆe.We loate the destination server in the stub domain onneted to A1, and we loate 7 otherbistros in stub domains onneted to other transit nodes. Eah bistro holds a total amount of datawhih is uniformly distributed between 25 MBytes and 75 MBytes with an additional onstraintthat the total amount of data in all bistros is 350 MBytes. In addition to the upload traÆ, wegenerate bakground traÆ onsisting of in�nite ftp ows, where the number of suh ows is variedfrom 0 (i.e., no bakground traÆ) to 120. The in�nite ftp ows all traverse the B1 to A1 link. Wehoose this simple ongestion pattern for larity of illustration. Let x be the number of in�nite ftpows in a partiular experiment. Then, the bakground traÆ is generated by randomly hoosing xsoure stub domain nodes (onneted to either B1, B2, or B3 transit nodes) as well as x destinationstub domain nodes (onneted to either A1, A2, or A3 transit nodes) to partiipate in the in�niteftp ows. To illustrate a reasonably interesting senario, all nodes partiipating in bakgroundtraÆ are loated in stub domains that are di�erent from those holding the bistros partiipatingin upload traÆ. This hoie avoids the non-interesting ases (at least for makespan) where asingle bistro ends up with an extremely poor available bandwidth to all other bistros (inludingthe destination server) and hene dominates the makespan results (regardless of the data transfermethod used).Constrution of Corresponding GraphWe now give details of onstruting graph GH of Setion 5 from the above network. The eight17



bistros make up the nodes of GH , with the destination bistro being the destination node (D) andthe remaining bistros being the soure nodes (Si) with orresponding amounts of data to transfer.The link apaities between any pair of nodes in GH is determined by estimating the end-to-endmean TCP throughput between the orresponding bistros in the network. In our experiments thesethroughputs are estimated in a separate simulation run, by measuring the TCP throughput betweeneah pair of bistros while sending a 2 MByte �le between these bistros. These measurements areperformed with bakground traÆ onditions orresponding to a partiular experiment of interestbut without any upload traÆ or measurement traÆ orresponding to other bistro pairs. We dothis in order to have a reasonably aurate and simple estimate of ongestion onditions. However,we note, that it is not our intent to advoate partiular measurement and available bandwidthestimation tehniques. Rather, in a real implementation, we intend to use whatever tehniques areavailable at the time, suh as: (a) omputing link bandwidth by atively sending probe pakets[7, 18, 22, 4℄, (b) omputing link bandwidth through paket pairs and potential bandwidth �lteringtehniques [20℄, or () obtaining link bandwidth information by keeping some shared passive mea-surements [29℄. Potential soures of suh information in the future might also be servies suh asSONAR [23℄, Internet Distane Map Servie (IDMaps) [10℄, Network Weather Servie (NWS) [31℄,and so on.In order to onstrut GT from GH we need to determine the time unit and the data unit size.The bigger the time unit is, the less ostly is the omputation of the min-ost ow solution butpotentially (a) the less aurate is our abstration of the network (due to disretization e�ets) and(b) the higher is the potential for large transfer sizes (whih in turn ontribute to lak of pipelininge�ets as disussed in Setion 6). The smaller the time unit is, the greater is the potential forreating solutions with transfer sizes that are \too small" to be eÆient (as disussed in Setion6). Similarly, the data unit size should be hosen large enough to avoid reation of small transfersizes and small enough to avoid signi�ant errors due to disretization (as disussed in Setion 6).In the experiments presented here we use a time unit whih is an order of magnitude larger thanthe maximum round trip time (RTT) on the longest path, as generated by the GT-ITM topologygenerator [16℄ (we note that sine we use GT-ITM these delay parameters are not under our ontrol).Spei�ally, in the experiments of this setion, this RTT is 6:9 se, and hene we use a time unitof 69 se. The data unit size is hosen to ensure that the smallest transfer is large enough to getpast the slow start phase and reah maximum available bandwidth without ongestion onditions.Sine without bakground traÆ a bistro an transmit at a maximum window size of 256 Kbps �6:9 se (on the longest path), we use a data unit size a bit larger than that, spei�ally 256 KBytes.Performane Metris.The performane metris used in the remainder of this setion are: (a) makespan and makespanX,i.e., the time needed to omplete transfer of at least X perent of the total amount of data from allbistros, (b) maximum storage requirements averaged over all bistros (not inluding the destinationbistro sine it must ollet all the data), and () mean throughput of bakground traÆ during the18



data olletion proess, i.e., we also onsider the e�et of upload traÆ on other network traÆ.We believe that these metris reet the quality-of-servie harateristis that would be of interestto large-sale data olletion appliations. (As noted in Setion 1, we do not onsider the meanbistro transfer times sine there are no lients in the data olletion problem and hene interativeresponse time related metris are not an issue.)Evaluation Under the Makespan Metri.We �rst evaluate the diret methods desribed in Setion 3 using the makespan metri. As illus-trated in Figure 6(a) diret methods whih take advantage of parallelism in data delivery (suhas all-at-one) perform better under our experimental setup. Intuitively, this an be explained asfollows. Given the makespan metri, the slowest bistro to destination server transfer dominates the
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Figure 6: Diret and Indiret Methods under the Makespan Metri.makespan metri. Sine in our ase, the bottlenek whih determines the slowest transfer in diretmethods is not shared by all bistros, it makes intuitive sense to transfer as muh data as possible,through bottleneks whih are di�erent from the one used by the slowest transfer, in parallel withthe slowest transfer.Sine all-at-one is a simple method and it performs better than or as well as any of the otherdiret methods desribed in Setion 3 under the makespan metri in our experiments, we nowompare just the all-at-one method to our indiret methods (as desribed in Setions 4 through6). This omparison is illustrated in Figure 6(b) where we an make the following observations.All shemes give omparable performane when there is no other traÆ in the network (this makesintuitive sense sine the apaity near the server is the limiting resoure in this ase). When there isongestion in the network and some bistros have signi�antly better onnetions to the destinationserver than others, our indiret methods do result in a signi�ant improvement in performane,espeially as this ongestion (due to other traÆ in the network) inreases. For instane, in Figure6(b) we observe improvements from more than 2 times under 20 bakground ows as high as 7519



times when the bakground traÆ is suÆiently high (in this ase at 120 ows).It is diÆult to observe di�erenes between the indiret methods in Figure 6(b) sine the per-formane of the diret methods is so muh worse. Hene, we now fous on the indiret methodsonly, and we note the di�erenes between them under the makespan and the makespan90 met-ris. This is illustrated in Figure 7(a) where we make the following observations. Enforing full
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Figure 7: Indiret Methods under the Makespan Metri.synhronization (as in PathSyn100) an be harmful whih is not surprising sine a single slowstream an lead to (a) signi�ant inreases in overall data olletion time (although nowhere assigni�ant as the use of diret methods) and (b) inreased sensitivity to apaity funtion estimatesand parameter hoies in GH and GT . We an observe (a), for instane, by omparing the overallperformane of PathSyn100 and PathSyn95 in Figure 7(a). We an observe (b), for instane, bynoting the di�erene in performane of PathSyn100 and PathSyn95 at 60 vs 80 bakground owsor 100 vs 120 bakground ows (in Figure 7(a)). Intuitively, we expet the makespan metri to bemonotonially non-dereasing as a funtion of inreasing bakground ows. What happens here isthat due to disretization and apaity estimation errors in onstrution of GH and GT , the highlyongested link is set to zero at 80 and 120 ows and it is set to a very small apaity at 60 and100 ows. Hene, in the latter ase, a very small amount of traÆ is still routed by the min-ostow algorithm through the highly ongested link. This results in poorer performane of the indi-ret methods whih are more sensitive to varianes in data transfers, i.e., suh as PathSyn100.However, by relaxing the synhronization onstraints, e.g., as in PathSyn95, one an signi�antlyredue suh sensitivity.We note that we made small modi�ations to the bakground traÆ from the time the apaityestimates were done to the time the upload traÆ was run (these hanges were in sizes of paketsused for bakground traÆ). When suh hanges were not made, PathSyn100 performed anywherefrom almost identially to � 50% better (although in most ases improvements were more modest);20



this is another indiation that it is sensitive to apaity funtion estimates. We also tried modi�-ations to data unit size (during the disretization step in onstruting GH and GT ) and observedsimilar e�ets on PathSyn100, for reasons similar to those given above. (We do not inlude thesegraphs here due to lak of spae).Suh sensitivity is exhibited by the PathMerge algorithm as well. We believe that this is dueto the fat that in these experiments PathMerge ended up being more aggressive in a few ases inmerging paths than was neessary. This is evident, for instane, from observing the di�erene inPathMerge under the makespan metri in Figure 7(a) and the makespan90 metri in Figure 7(b) aswell as by observing the di�erene between PathMerge and PathDelay. However, other experimentswith smaller initial amounts of data per bistro indiate that PathMerge an perform better thanPathDelay (we do not inlude them here due to lak of spae). Hene we believe there is a needfor more \ontrolled" path merging; this is an ongoing e�ort.Above observations raise another question, whih is how muh synhronization is really neededin the data olletion shedule. By omparing PathDelay with PathSyn (and its variants) onemight say that ensuring that transfers are initiated at the appropriate times (and then not syn-hronizing them along the way) is suÆient, sine PathDelay performs well in the experiments ofFigure 7. However, the experiments in this �gure are relatively small sale and hene have rela-tively few hops in the paths onstruted from fT . Other experiments indiate that as the numberof hops on a path (in GT ) inreases, PathDelay begins to su�er from getting out of syn with theshedule omputed in fT and performs worse than PathSyn95, for instane. (We do not inludethese �gures due to lak of spae as well as due to the fat that they are also relatively small saleexperiments.)Another question might be whether the notion of simply assigning time slots (to bistros) duringwhih to transfer data is a reasonable approah, whih is essentially the idea behind diret methodssuh as spread-in-time. We note that the good performane of PathDelay seems to indiate thatthis idea is on the right trak, as long as it is done in the ontext of indiret methods. Of ourse,this type of a omparison between spread-in-time and PathDelay is not entirely fair sine diret vsindiret is not the only di�erene between them. However, we still believe that this is an indiationthat lever approahes to spreading load in time without onsidering the bene�ts of re-routing thatan be obtained from indiret methods do not lead to suÆiently good solutions.In order to estimate how muh room is left for improvement, we onstrut a lower bound onthe makespan metri in the ontext of our experimental setup as follows. We assume that all thedata that needs to be olleted is loated at the \best" bistro, i.e., one with the best onnetion tothe destination server, without bakground traÆ. We then simulate the transfer of all data fromthe \best" bistro to the destination server without any other traÆ on the network and observethe resulting performane using the makespan metri. The result of this experiment is depited inFigure 7(a) along with our indiret methods whih illustrates that there is relatively little room21



left for improvement in this ase. We observe less than a 3% di�erene between the lower boundand the best performing indiret method (at any one point).However, we note that this is not a general lower bound. Spei�ally, it works as a lower boundin our ase, beause we have a fairly symmetri setup and without bakground traÆ all bistrosexperiene a bottlenek at the same plae (near the server). Hene, no bene�t would be gained fromparallelism (i.e., splitting the data between multiple bistros and sending it in parallel) under theseonditions (as an also be seen from Figure 6(a) when there is no bakground traÆ). Therefore,in general, there may be room for improvement.Evaluation Under the Storage Metri.Next, we evaluate the indiret methods with respet to the storage requirements metri. We notethat the diret methods (e.g., as those desribed in Setion 3) do not require additional storage, i.e.,beyond what is oupied by the original data itself. In ontrast, indiret methods do, in general,require additional storage, sine eah bistro might have to store not only its own data but also thedata being re-routed through it to the destination server.Figure 8 illustrates the normalized maximum per bistro storage requirements, averaged over allbistros (other than the destination), of the indiret methods as a funtion of inreasing ongestiononditions. These storage requirements are normalized by those of the diret methods. We use the
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Figure 8: The Storage Metri.diret methods as a baseline sine they represent the inherent storage requirements of the problem asnoted above. As an be seen from this �gure, the additional storage requirements of our algorithmsare small. In all experiments performed by us, storage overheads of all PathSyn variations wereno more than 4%. PathMerge and PathDelay resulted in storage overheads of no more than 41%(this makes sense sine greater storage is needed when less stringent ow synhronization is used).We believe these are reasonable given improvements in overall data olletion times as high as one22



to two orders of magnitude (and, also given the urrent storage osts).Evaluation Under the Throughput Metri.Lastly, we evaluate the indiret methods under the normalized mean throughput metri, i.e., howthey a�et the throughput of the bakground traÆ whih represents other traÆ in the network.The results are normalized by the throughput ahieved by the bakground traÆ without preseneof the data olletion traÆ.We �rst evaluate the throughput of the diret methods. As illustrated in Figure 9(a), the one-by-one heuristi allows for the highest bakground traÆ throughput. This is not surprising, sine
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Appendix: Bakground on BistroIn this appendix we give a more detailed desription of the Bistro framework. This is inluded forthe reviewers' bene�t only (i.e., it is not intended as part of the paper or its ontributions). In thisexposition we fous on upload appliations with reasonably large data transfers and deadlines forlients to submit their data, e.g., suh as the online inome tax submission appliation mentionedin Setion 1. However, we note that deadlines are not a fator in this work sine the fous of thispaper is on the performane of Step 3 below, whih would typially be performed after the deadline.Hene, there is no deadline assoiated with this step, but its performane is still ruial sine thedata annot be proessed by the appliation until it is olleted.Briey, the Bistro upload arhiteture works as follows (refer to [1℄ for details). Given a large
bistros

Bistro System
Destination bistro

(a) upload without the Bistro System (b) upload with the Bistro System

Server

Clients

...
Clients

...

...
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Figure 10: Upload Problem.number of lients that need to upload their data by a given deadline to a given destination server(refer to Figure 10(a)), the Bistro arhiteture breaks the upload problem into three steps (asillustrated in Figure 10(b)):� Step 1, the timestamp step, whih must be aomplished prior to the deadline for lients tosubmit their data to the destination server. In this step, eah lient sends to the server amessage digest of their data [28℄ and in return reeives a timestamp tiket from the destinationserver as a reeipt indiating that the lient made the deadline for data submission. Thepurpose of this step is to ensure that the lient makes the deadline without having to transfertheir data whih is signi�antly larger than a message digest and might take a long time totransfer during high loads whih are bound to our around the deadline time. It is alsointended to ensure that the lient (or an intermediate bistro used in Step 2 below) does nothange their data after reeiving the timestamp tiket (hene the sending of the messagedigest to the destination server). All other steps an our before or after the deadline.� Step 2, the transfer of data from lients to intermediate hosts, termed bistros. This results ina low data transfer response time for lients sine (a) the load of many lients is distributedamong multiple bistros and (b) a good or near-by bistro an be seleted for eah lient toimprove data transfer performane. Sine the bistros are not trusted entities (unlike the26



destination server), the data is enrypted by the lient prior to the transfer.� Step 3, the olletion of data by the destination server from the bistros. The destinationserver determines when and how the data is olleted in order to avoid hotspots around thedestination server (i.e., the original problem of having many soures transfer their data tothe same server around the same time). One the destination server ollets all the data, itan derypt it, reompute message digests, and verify that no hanges were made to a lient'sdata (either by the lient or by one of the intermediate bistros) after the timestamp tiketwas issued.A summary of main advantages of this arhiteture is as follows: (1) hotspots an be eliminatedaround the server beause the transfer of data is deoupled from making of the deadline, (2) lientsan reeive good performane sine they an be dispersed among many bistros and eah one an bediret to the \best" bistro for that lient, and (3) the destination server an minimize the amountof time it takes to ollet all the data sine now it is in ontrol of when and how to do it (i.e.,Bistro employs a server pull). Algorithms for performane improvement of Step 3 is the fous ofthis paper.
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