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The prevailing view of the evolutionary history of proteins has been that all protein 

domains are descendents of distinct evolutionary lines, and that these lines are all 

relatively ancient families. The primary basis for that view was that known protein 

structures could be grouped by similarity of topology into a small number of folds. 

However, two lines of evidence challenge that view of protein evolution.  First, 

analysis of sequence relationships within and between sets of complete genomes has 

established that a large proportion of protein sequence families are narrowly 

distributed in phylogenetic space and so appear to be relatively recent in origin. 

Second, analysis of the relationship between known protein structures shows that 

there are many more than a 1000 distinct folds, appearing to imply many more 

evolutionary lines. There are four hypotheses for the discrepancy between the 

traditional view and the observed structural and sequence distributions within protein 

families. Specifically, these are that apparently young protein families may arise from 

(1) previously non-coding DNA, or frame-shifted from existing coding sequence, (2) 



  

recombination of structural fragments between proteins or recombination with non-

coding DNA, (3) older families where the rapid rate of sequence change makes 

relatives hard to detect, and (4) lateral gene transfer (LGT) from other organisms. In 

the investigation of these hypotheses, phylogenetic analysis provides a means of 

estimating the relative age of protein families and of detecting lateral gene transfer 

effects. Phylogeny based investigation of prokaryotic species divergence has 

generally been performed using a small number of families resulting in significant 

bias that affects age analysis. Therefore, we decided to use information from many 

protein families for constructing a species tree, utilizing a new procedure for 

combining these diverse sources. The resulting tree for 66 Prokaryotic species 

incorporates information from 1,379 protein families. The families were selected on 

the basis of consistent family evolutionary rates obtained using three different 

methods. Noise resistant methods were used to combat the effects of lateral gene 

transfer and some inevitable errors in protein sequence alignment and identification 

of orthologous families.  Most topological features of the tree are robust as assessed 

by bootstrap testing, and previous distortions of inter-kingdom distances and poor 

determination of short branch lengths have been corrected. The tree is used to obtain 

estimates of the age of all protein families, key to the investigation of all four 

hypotheses. Proteins affected by LGT events were detected using a previously 

developed method, and removed before the age calculation.  

 

We used the estimated family ages obtained from the phylogenetic analysis to 

examine five properties of proteins as a function of the age of the corresponding 



  

families. The goal here is to ascertain whether the age dependence of these properties 

supports hypotheses (1) and (2) for the origin of apparently young families – that is, 

these are truly new open reading frames. The five properties are the mRNA 

expression level, relative evolutionary rate, predicted percentage of structural 

disorder, number of protein interaction partners and codon composition bias.  The 

results are consistent with the new open reading frame model: Expression is found to 

increase substantially as a function of family age, suggesting that young proteins are 

not yet adapted sufficiently to tolerate high concentration conditions. The rate of 

change of amino acid change is faster for young proteins, consistent with overall 

positive selection for improved structural and functional properties. The fraction of 

predicted disorder is highest in the youngest proteins, consistent with immature 

structural properties. The number of known protein-protein interactions increases 

steadily with age, with low levels for young proteins, suggesting an ongoing process 

of increasing functional complexity. Analysis of these four factors is reported in 

Chapter 3.  

Results for the final factor, codon compositional bias, are reported in Chapter 4. Here 

we found that the codon composition of young proteins is markedly different from 

that of old proteins and similar to that of proteins constructed with random codon 

assignment. Thus the results are consistent with a model of many young proteins 

having newly formed open reading frames, and that during the subsequent evolution 

process, the codon composition is gradually optimized to fit the specific genomic 

conditions of the organism concerned.  

 



  

Overall, results for all five properties lend statistical support to the new open reading 

frame hypotheses. Further investigation is needed however. In particular, examination 

of the structural properties of young proteins, such as super-secondary structure 

composition and the distribution of use of rare and common structural fragments, 

should be useful.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

INVESTIGATION OF SOME POSSIBLE ORIGINS OF PROTEIN FAMILIES.    

 

 

 

By 

 

 

Nuttinee Teerakulkittipong 

 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2013 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Professor John Moult, Chair 

Professor Catherine Fenselau 

Professor James Culver 

Associate Professor Kevin Mclver 

Professor Leslie Pick 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Nuttinee Teerakulkittipong 

2013 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ii 

 

Dedication 

To my family 



 

 iii 

 

Acknowledgements 

My foremost gratitude is dedicated to my academic advisor, Professor John Moult. I 

still remember six years and a half ago when I started my third lab rotation in John’s 

group, I was very new to computational biology. He led me into this fascinating 

world of protein evolution and made enthusiastic me about my project. His guidance 

has made this a thoughtful and rewarding journey. I appreciate very much his great 

insight and guidance for my Ph.D. work, his great sense of humor, his energetic and 

nice way of demanding high quality work. Without him, I can’t imagine how I 

achieved so much after six years’ study.  

I also would like to express my appreciation to my candidacy and dissertation 

committee members: Professor Catherine Fenselau, Professor Leslie Pick, Associate 

Professor Kevin Mclver and Professor James Culver. They are knowledgeable, 

professional and kind.  They have given me a lot of excellent advice. This work won’t 

be the same without their help and encouragement. 

I would like to acknowledge all the help from Dr.Lipika Ray, a Post-doc in the Moult 

group. She provided needed encouragement and insight, especially in her critical 

reading of my paper and thesis. I would like to thank to all people in the Moult group: 

Dr. Eugene Melamud, Xijun (Ethan) Zhang, Dr. Zhen Shi, Maya Zuhl, Albert (Chen-

Hsin) Yu, Chen Cao, and Yizhou Yin, for much valuable scientific discussion and for 

sharing their personal lives with me. 

I also own great thank to my parents for their endless love, support and sacrifice. 

Although far from here, they have given me priceless support. I know their hearts are 



 

 iv 

 

always with me. My special thanks is for my husband, Mr. Worawit 

Teerakulkittipong. I thank him for always being there to support me.  



 

 v 

 

Table of Contents 
 

 

Dedication              

iii 

Acknowledgements           iii 

 

Table of Contents                                      v 

List of Tables                     viii 

 

List of Figures            ix 

Chapter 1: Introduction             1 

Section 1 An Integrated View of Protein Evolution, the Presence of Single-Member 

Families and the Possible Origin of Young Proteins…………………………….…1  

Subsection 1.Views of Proein Emergence and Change ........................................ 1 

Subsection 2. Possible Explanations of the origin of apparently young proteins..5 

Section 2 Studies of Prokaryotic Species Trees…………………………………….6 

Subsection 1. Reconstruction of Phylogenetic trees of Prokaryotic Organisms…6 

Subsection 2. Lateral gene transfer……………………………………………....9 

Section 3 Properties of proteins as a function of age…………………………...…11 

Subsection 1. The estimation of relative age of each orthologous protein family...    

……….………………………………………………………………………….11 

Subsection 2. mRNA Expression level as a function of family age……………12 

Subsection 3. Protein family evolutionary rate and relative family age………..13 

Subsection 4. Correlation of number of protein- protein interactions and family 

age………………………………………………………………………………13 

Subsection 5. Relationship of predicted percentage protein disorder and family 

age………………………………………………………………………………14 

Subsection 6. Composition bias in different organisms and the  correlation with 

family age ..……………………………………………………………………..15 

Chapter 2: Construction of Phylogenetic trees using complete genome information.16 

 

Section 1 Abstract…………………………………………………………………16 

Section 2 Introduction……………………………………………………………..18 

Section 3 Results………………………………………………………………..…20 

Subsection 1. Comparison of family evolutionary rates from different methods20 

Subsection 2. Comparison of intergenome distances derived with different 

methods..………………………………………………………………………..23 

Subsection 3. Comparison of intergenome distances obtained with a few versus 

many families…………………………………………………………………...26 



 

 vi 

 

Subsection 4. Construction of an evolutionary tree for prokaryotic species using 

information from many families..........................................................................28 

Subsection 5. Comparison with species trees based on a small number of protein 

families.................................................................................................................28 

Section 4 Discussion………………………………………………………………31 

Section 5 Materials and Methods………………………………………………….34 

Subsection 1. Orthologous protein domain families……………………………34 

Subsection 2. Calculation of the average accepted amino acid substitutions per 

site between each pair of domains ‘i’ and ‘j’ in each orthologous family ‘u’, 

S(i,j,u)..…………………………………………………………………………35 

Subsection 3. Initial intergenome distances derived from a set of 14 highly 

conserved families……………………………………………………………...35 

Subsection 4. Calculation of relative evolutionary rates for each orthologous 

protein sub-family……………..…………………………………………….….36 

Subsection 5. Estimation of intergenome distances using information from many 

protein families…………………………...…………………………………….40 

Subsection 6. Construction of a species tree based on multi-family intergenome 

distances…..………………………………………………...………………….46 

Chapter  3:  Molecular evolution of protein families: The properties of proteins as a 

function of age……………………………………………………………………….47 

 

Section 1 Abstract…………………………………………………………………47 

Section 2 Introduction……………………………………………………………..49 

Section 3 Results…………………………………………………………………..51 

Subsection 1. Orthologous protein domain families……………………………51 

Subsection 2. Family age……………………………………………………….51 

Subsection 3. Relationship between Expression level and apparent family age.52 

Subsection 4. Relationship between relative rates of amino acid change and 

apparent family age……………..........................................................................55 

Subsection 5. Relationship between the number of protein-protein interactions 

and apparent family age.......................................................................................58 

Subsection 6. Relationship between intrinsic disorder and apparent family age.61 

Subsection 7. Cross-correlations among the observations……………………...64 

Section 4 Discussion………………………………………………………………66 

Section 5 Materials and Methods………………………………………………….72 

Subsection 1. Orthologous protein domain families……………………………72 

Subsection 2. Calculation of the relative age of each orthologous family……...72 

Subsection 3. E.coli mRNA Expression level data sources…………………….74 

Subsection 4. Estimation of protein families’ evolutionary rates.……….……..74 

Subsection 5. Determination of predicted percentage protein disorder...………75 

Subsection 6. Protein- protein interaction dataset……………………………...75 

Subsection 7. Statistical analysis…………………………………………….....76 

Chapter 4: Composition bias and the origin of ORFan genes……………………….77 

Section 1 Abstract…………………………………………………….…………...77 

Section 2 Introduction……………………………………………………………..78 



 

 vii 

 

Section 3 Results…………………………………………………………………..81 

Section 4 Discussion………………………………………………………………87 

Section 5 Materials and Methods………………………………………………….89 

Subsection 1. Dataset…………………………………………………………...89 

Subsection 2. Real and random proteins………………………………………..90 

Subsection 3. Translating proteins from intergenic regions…..………………..90 

Subsection 4. Translating anti-sense proteins…………………...……….……..90 

Subsection 5. Calculating Composition Bias…………………………...………91 

Subsection 6. Calculating the difference between histograms of composition 

biases …………………………………………………………………………...92 

Subsection 7. Phylogenetic tree construction and measuring the relative age of        

ORFans analysis……………………………………………………………...…92 

Section 6 Acknowledgement……………………………………………………...94 

Chapter 5:  Conclusion and Future perspectives….………………………………….95 

 

Section 1 Overview.……………………………………………………………….95 

Section 2 Use of noise resistant methods………………………………………….96 

Section 3 Determination and analysis of relative evolutionary rates..…………….99 

Section 4 Development and application of multifamily phylogenetic methods ...100 

Section 5 Analysis of protein properties as a function of age….………………...101 

Section 6 Future prospects……………………………………………………….103 

Subsection 1. Phylogeneticanalysis…............…………………………….......103 

Subsection 2. Further studies of apparently young proteins…………………..104 

Appendices: Supplementary figures and tables………………………………....…106 

Bibliography..............................................................................................................116 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 viii 

 

List of Tables 
 

Table 1. Comparison of Pearson correlation analysis (Pearson P value) between pairs 

of protein properties (x and y) and the corresponding Partial correlation 

analysis……………………………………………………………………………..64 

Supplementary Table S1 List of genomes studied..................................................115



 

 ix 

 

List of Figures 

Figure 1. Distribution of protein fold use in biology…………………………………2 

Figure 2. Distribution of domain family size in a set of 66 genomes………………...3 

Figure 3. Singleton Proteins in other organisms and orders………………………….4 

Figure 4. Lateral gene transfer possible mechanisms………………………………..10 

Figure 5. 3D scatter plot showing the comparison of estimated evolutionary rates 

from three methods .....................................................................................................21 

Figure 6. Distribution of protein family relative evolutionary rates of 1,379 families, 

RAVG(u)........................................................................................................................22 

Figure 7. Orthologous family evolutionary rates as a function of family size............23 

Figure 8. Comparison of inter-genome distances derived using three different 

methods.......................................................................................................................24 

Figure 9. Distribution of percentage different in intergenome distances derived from 

three methods………………………………………………………………………..25 

Figure 10. Comparison of inter-kingdom distances obtained using many families and 

only using 14 conserved protein families……………………………………………27 

Figure 11. Neighbor Joining tree for 66 Bacterial and Archaeal genomes, derived 

from 1,379 well-behaved orthologous protein families..............................................30  

Figure 12. Flowchart of the procedure used to estimate the evolutionary rates of 

orthologous protein families and Intergenome distances...........................................39 

Figure 13. . Example of determining the relative evolutionary rate for the mercuric 

resistance operon repressor protein (merR) family using least median squares (LMS) 

...................................................................................................................................42 



 

 x 

 

Figure 14. Example of determining the relative evolutionary rate for mercuric 

resistance operon repressor protein (merR) family using a Gaussian kernel density 

estimator.....................................................................................................................43 

Figure 15. Example of determining the intergenome distance between a pair of 

species (Haemophilus influenzae and Pasteurella multocida) using least median 

squares (LMS)............................................................................................................44 

Figure 16. Example of determining the intergenome distance between two species 

(Haemophilus influenzae and Pasteurella multocida) using a Gaussian kernel density 

estimator.....................................................................................................................45 

Figure 17. Distribution of relative family ages……………………………………..52 

Figure 18. Distribution of expression levels for 971 E.coli proteins…………….....53 

Figure 19. Improvement in estimates of protein family age by partial removal of 

Lateral Gene Transfer (LGT) events and comparison of average log2 mRNA 

expression level as a function of apparent family age for 971 E.coli proteins in the 

orthologous subfamilies………………………………………………………….…54 

Figure 20. Distribution of relative evolutionary rates for a set of 514 orthologous 

protein families..........................................................................................................56 

Figure 21. Average relative evolutionary rates in 514 orthologous families as a 

function of apparent age …………………………………………………………..57 

Figure 22. Distribution of the number of known protein-protein interaction partners 

for 1,196 E.coli proteins……………………………………………………………59 

Figure 23. Number of known protein interaction partners in 1,196 Escherichia coli 

proteins as a function of the apparent age of the corresponding families………….60 



 

 xi 

 

Figure 24. Distribution of predicted percentage structural disordered residues in 1,196 

E.coli proteins ……………………………………………………………………….62 

Figure 25. Average predicted % of structurally disordered residues in E.coli K12 

proteins as a function of family age………………………………………………….63 

Figure 26. Comparison of relative evolutionary rates of sequence change in 

orthologous families and mRNA expression level for 514 proteins in E.coli K12….70 

Figure 27. Phylogeny based estimation of protein family age………………………73 

Figure 28. Histograms showing the composition bias for six organisms of several sets 

of proteins……………………………………………………………………………82 

Figure 29. Histograms of the composition bias of the set of ORFan proteins  

compared with the composition bias of all proteins and of random proteins for six 

organisms…………………………………………………………………………….84 

Figure 30. The correlation between the relative age of ORFans and various measures 

related to their codon usage bias.………………………………………..…………..86 

Supplementary Figure S1. Examples of determining the relative evolutionary rate for 

four protein families using least median squares (LMS), for cases where the rate is 

less than 1...................................................................................................................107 

Supplementary Figure S2. Examples of determining the relative evolutionary rate for 

four protein families using least median squares (LMS), for cases where the relative 

rate is greater than 5...................................................................................................108 

Supplementary Figure S3 Relative age of ORFan proteins…………………...……111 

 



 

 xii 

 

Supplementary Figure S4 The correlation between the relative age of ORFans and 

various measures related to their composition bias……………………………….. 112 

Supplementary Figure S5 The composition of the ORFan proteins in each organism is 

dissimilar to that of the bacteriophage…………………………………………….114



 

 1 

 

Chapter 1: Introduction 

 

Section 1 An Integrated View of Protein Evolution, the Presence of Single-Member 

Families and the Possible Origin of Young Proteins  

 

The prevailing view of the evolutionary history of proteins has been that all belong to 

a relatively small number of ancient families. Chothia
1
 argued that there are about 

1000 such families. The latest version of the Structural Classification of Proteins 

(SCOP) 1.75 release (June 2009)
2
, containing 110,800 domains and with structures 

organized into 3,902 families, 1,962 super-families and 1,195 folds, also supports 

this. The rapid accumulation of new structural data and rapidly increasing knowledge 

of the complete genome sequences provides a basis for a broader based analysis. As a 

result, two lines of evidence, one based on structure and the other on sequence, now 

suggest the traditional view of protein evolution is not correct.   

Subsection 1. Views of Protein Emergence and Change 

There have been several more recent analyses of the accumulation of structural 

diversity in the Protein Data Bank (PDB)
3, 4 

usually suggesting that there are many 

more than a 1000 natural folds that fit the SCOP definition. Previous work in our lab
5
 

classified folds into three classes: superfolds, which are adopted by very many protein 

families and are highly recurrent within proteomes; mesofolds, which have an 

intermediate number of protein families associated with them; and unifolds, found for  



 

 2 

 

single narrowly distributed sequence families. The resulting estimate is that there are 

at least 10,000 folds, and probably many more (figure 1).  

 

Figure 1. Distribution of protein fold use in biology
5
. There are a large number of 

folds narrowly distributed in sequence space (unifolds, left bar, few with structure), a 

moderate number of folds found in a few sequence families (mesofolds, center bar, 

most with structure), and a very small number of very common folds (superfolds, 

right bar, all with structure). 

 

Large-scale genome sequencing projects enable us to analyze the sequence 

relationships within and between sets of complete genomes. One interesting finding is 

that a substantial percentage of each newly sequenced genome consists of protein 

coding ORFs (Open reading frames) that do not resemble any other sequences in the 

sequence databases. Some of these families have still so far been found in only a 

single genome, and have only one member, and so are often referred to as singletons 

or ORFans
6, 7

.  An analysis of 66 bacterial and archaeal genomes
8
 found that 20,992 
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of the protein families apparently have members in only a single one of these 

genomes, about two-thirds of the total (figure 2). Thus, as with structure, the 

sequence view shows most protein families are narrowly distributed in phylogenetic 

space, and so apparently of recent origin, suggesting the continuous emergence of 

new, independent evolutionary lines. 

 

Figure 2. Distribution of domain family size in a set of 66 genomes
8
. There is an 

approximately power-law relationship between family size and the number of 

families, with very many small families, and only a few large ones. There are 20,992 

singletons (families with only one member), about 2/3 of the total, and 4,810 

doubletons (family size 2). At the other end of the spectrum, there are 263 families 

larger than 100. 

 

Apparent singleton genes and proteins have been investigated across other sets of 

organisms, revealing different fractions of these in different species and phyla, as 
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illustrated in the figure 3. Across primates (human, chimpanzee and macaque), 

around 1.3 % of genes are singletons
9
. In Fungi, Drosophila, Nucleocytoplasmic large 

DNA viruses, Rickettsia genus and another microbial genome the fraction of 

singletons is 2.0%, 18%, 2.8%, 30.0% and 14% respectively
10, 11, 12, 13, 14

  

 

 

Figure 3. Singleton Proteins in other organisms and orders. 

 

The presence of so many singletons suggests that protein diversity in nature may be 

greater than previously expected. However, because little can be learned about 

singletons via homology, each of them represents a mystery, awaiting interpretation. 

All of these new data provide us the opportunity to examine possible explanations for 

the discrepancy between prevailing wisdom and experimental fact, and so produce a 

new and coherent model of protein evolution. 
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Subsection 2. Possible Explanations of the origin of apparently young proteins 

The mechanisms that lead to the emergence of young proteins are not fully 

understood. Several possible explanations were given in many previous studies for 

this phenomenon, including by us. As part of an NIH funded project (R01GM81511, 

Mechanisms of Protein Structure Evolution), we have proposed four possible 

hypotheses to account for the wealth of phylogenetically narrowly distributed 

proteins: 

1. Apparently young proteins are coded for by new genes, formed from previously 

non-coding DNA, or frame-shifted from existing coding sequence. If it is true that 

new open reading frames play a significant role in generating young protein families, 

it should be possible to identify cases where this has occurred. Some examples from 

Eukaryotes are known, for instance a recently evolved antifreeze protein, originating 

from a short partly intronic sequence
15

. A more general study has found over a 1,000 

instances of intronic sequences converting to exons in the period between the 

divergence of Human and rodent
16

. Additionally, a study in Drosophila has identified 

five new D. melanogaster genes that are derived from noncoding DNA
17

. These 

limited examples provide indirect support for the explanation that many apparently 

young proteins in prokaryotes emerged from non-coding regions of each genome.  

2. Protein structure changes continuously, through a process of local conformational 

change, recombining structural fragments between proteins, and recombination with 

non-coding DNA, so that distant evolutionary relationships are unrecognizable at the 

structure level. The composite nature of proteins is well established, with components 
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ranging from small indels of a few residues to mixing and matching of semi-

autonomous domains. Shuffling of complete domains has been extensively 

analyzed
18

, and proposed as a primary mechanism for the emergence of new function, 

particularly in eukaryotes. 

3. Apparently young proteins are a result of lateral gene transfer from other 

organisms. Lateral gene transfer (LGT), also called horizontal gene transfer, is the 

process of transfer of genes between different species. There are several LGT 

mechanisms, such as transduction by viral and phage genomes and conjugation with 

exchanging their plasmid
22

. 

4. Apparently young protein families are in fact often much older, but rapidly 

evolving rates of sequence changes make relatives hard to detect. This possibility has 

been suggested by Long et al
21

.  

 

In this work, we have investigated the first hypothesis, that apparently young proteins 

are coded for by new genes, formed from previously non-coding DNA, or frame-

shifted from existing coding sequence. To this end, we have examined five relevant 

protein properties: protein expression level, relative evolutionary rate, number of 

protein-protein interaction partners, predicted intrinsic disorder region, and codon 

usage; as a function of age. Chapters 3 and 4 describe this work.   

 

Section 2 Studies of Prokaryotic Species Trees  

Subsection 1. Reconstruction of Phylogenetic trees of Prokaryotic Organisms 
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Phylogenetic analysis of DNA or protein sequences has become an important tool for 

studying the evolutionary history of organisms from bacteria to humans. Since the 

rate of sequence evolution varies extensively over genes and DNA segments
23, 24

, one 

can study the evolutionary relationships of virtually all levels of classification of 

organisms by using different genes or proteins. There are many statistical methods 

that can be used for reconstructing phylogenetic trees from molecular data
25

. The true 

tree is almost always unknown, and it is difficult to test the accuracy of the trees 

obtained by different tree building methods.  Temporal information concerning 

prokaryote evolution has come from diverse sources and is difficult to integrate due 

to a limited fossil record and the complexities associated with the molecular clock 

and deep divergences.  For instance, phylogenetic analysis of genes, and, more 

recently, information contained in completely sequenced genomes, contribute to our 

view of how widespread LGT must be in evolution. Interpretations of these data have 

led to arguments that rampant LGT would erase phylogenetic history especially in 

terms of changing protein family age
26, 27, 28

. Early work focused on building trees 

using sequence relationships between orthologous ribosomal 16s RNA genes, which 

are ancient and distributed over all lineages of life with little or no lateral gene 

transfer
29

 , for example resulting in a ribosomal RNA based tree covering the three 

domains of life including the two prokaryotic kingdoms
29

. Therefore rRNAs are 

commonly recommended as the principal molecular phylogenetic marker
26

. However, 

the opposing view is that 16s rRNA genes can lead to erroneous tree topology as 

unrelated phylogenetic relationships are placed close in phylogenetic trees due to 

similarity in nucleotide composition of evolutionarily distant 16s rRNA genes
30

. As a 
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result, many researchers turned to protein coding genes, such as in the study of 

metagenomic bacterial ecology
30

. Phylogenetic analyses of protein amino acid 

sequences are in general less prone to the nucleotide compositional bias seen in 16s 

rRNA gene and in protein coding genes
30, 31

. The evolutionary history of prokaryotic 

species divergence has previously been investigated using protein families that have 

members in all fully sequenced genomes (21 - 31 protein families)
26, 32, 33, 34, 35, 36, 37

.   

In our lab, Yongpan Yan built a reference tree with distances derived from the 

average sequence identities over a set of fourteen conserved orthologous protein 

families (most are ribosomal proteins) that have members in each of 66 prokaryotic 

genomes. He used this reference tree to obtain a preliminary estimate of the extent of 

LGT, and found that 18% of the genes have undergone transfer within their 

orthologous family
38

. Analysis of this tree shows some deficiencies. In particular, 

intergenome distances between some strains of bacteria are related by very short 

branch lengths and intergenome distances between bacteria and archaeal species are 

too long
38

. This result suggests that ribosomal proteins are atypical in a number of 

respects.  

Determination of the relationship between species using phylogenetic trees based on a 

single or small set of genes or proteins encounters three main problems: a limited 

number of sequences, variability of evolutionary rates in different lineages, and the 

effect of lateral gene transfer. The first two factors add uncertainty to tree 

reconstruction; the last factor leads to protein phylogenies being genuinely different 

from species phylogeny. The determination of complete genome sequences of many 

bacteria and archaea created the opportunity for a new level of phylogenetic analysis 
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that is based not on a phylogenetic tree for selected molecules but rather on the entire 

body of information contained in the genomes or on a rationally selected, substantial 

part of this information
32

.  We expect the topology and branch lengths of such trees to 

be better determined than for trees based on few families. Since these properties are 

important in studying the protein family age, we decided to construct a prokaryotic 

species tree, utilizing information from all protein families. Chapter 2 describes this 

work.  

 

Subsection 2. Lateral gene transfer 

Lateral gene transfer, also called horizontal gene transfer, is a process whereby 

genetic material contained in small packets of DNA can be transferred between 

individual organisms
38

. For many years it was the common belief that lateral gene 

transfer was rare, and did not play a significant role in evolution. As sequence-based 

genomics has developed, it has become more and more obvious that the process is 

very common and plays an important role in evolution
39

. There are three possible 

mechanisms of LGT (figure 4). These are transduction, transformation and 

conjugation. Transduction occurs when bacteria-specific viruses or bacteriophages 

transfer DNA between two closely related bacteria. Phages can exchange genes with 

their hosts, by integrating them as prophages or by exchanging individual genes with 

their hosts via recombination
40, 41

. Phages exchange genes with other phages mostly 

when they are inside the same host cell and with prophages residing in the host 

genome
42, 43

.  
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Figure 4. Lateral gene transfer possible mechanisms taken from
44

 (Yim, G. 2009). 

 

Transformation is a process where parts of DNA are taken up by the bacteria from the 

external environment. This DNA is normally present in the external environment due 

to the death of another bacterium. Conjugation occurs when there is direct cell-cell 

contact between two bacteria (which need not be closely related) and transfer of small 

pieces of DNA called mobile genetic elements takes place, including plasmids, 

transposons, integrons, and other integrative conjugative elements (ICEs) that 

mediate the movement of DNA within genomes and between genomes
45, 46, 47

.  It has 

been estimated that between 8% and 18% of the E.coli genome was acquired by 

lateral gene transfer
41

. 

 

In other genomes, the estimated extent of transfer varies over a wide range, from 

almost none in small genomes such as Mycoplasma genitalium, Rickettsia prowazekii 
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and Borrelia burgdorferi, to about 24% in Thermotoga maritime
48, 49

. Studies have 

shown that lateral gene transfer events can happen across large phylogenetic 

distances, for example, isoleucyl-tRNA synthetases, whose acquisition from 

eukaryotes by several bacteria is linked to antibiotic resistance
50

. Clearly, the 

mechanisms for transferring genes in nature are abundant, but the frequency with 

which these elements overcome barriers to transfer to attain successful integration 

into new environments needs further elucidation and is still under debate
46

. In this 

project, we are interested in LGT because these events may cause protein family ages 

to appear larger than they really are. For this reason, in Chapter 3, we identify likely 

LGT events within the prokaryotic kingdom and eliminate the transferred genes from 

our calculation of family ages.  

 

 

Section 3 Properties of proteins as a function of age   

 

The hypothesis that most young proteins are composed of newly created open reading 

frames implies a number of properties may be different between young and old 

proteins. We explored five of these properties: the level of mRNA expression, the 

relative rate of amino acid sequence change within a family, the level of structural 

disorder, the number of protein-protein interactions, and the codon usage.  

Subsection 1. The estimation of relative age of each orthologous protein family  

All genomes are collections of genes and proteins that widely differ with respect to 

their histories and their intrinsic characteristics. In many studies the age of a protein is 
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mostly defined by considering the taxonomic distribution of the proteins in the 

family, analyzing the presence or absence of members in diverse lineages
51, 52, 53, 54, 55, 

56, 57
. For example, some proteins in an organism are ‘‘old,’’ in the sense that they 

have identifiable orthologs across a diverse range of species spanning vast 

evolutionary distance. Other proteins are ‘‘young’’ in the sense that orthologs are 

identifiable only in one species or closely related species
51, 52, 53, 54, 55, 56, 57

. For our 

study, we deduce the age of each orthologous protein family from the species tree 

constructed in Chapter 2), using the method described in Chapter 3.  

 

Subsection 2. mRNA Expression level as a function of family age 

A previous study in yeast
56

 observed a positive correlation between mRNA 

expression level and gene age. We also observed sharp increase in expression level 

from the youngest to the oldest families, as described in Chapter 3. It was also 

observed previously that there is a strong negative correlation between gene 

expression level and the rate of sequence change in some organisms, such as yeast 

(Saccharomyces cerevisiae)
55, 56, 58

 and E.coli
59

. Drummond and Wilke have proposed 

this correlation is a consequence of mutations in more highly expressed genes having 

a greater effect on fitness, as a result of being more prone to causing aggregation or 

overwhelming the chaperone machinery
61, 62, 63

. This phenomenon has also been 

explained by Yang et al. in term of mutations in highly expressed proteins being more 

likely to result in incorrect interactions that are wasteful and potentially toxic
64

.  As 

described in Chapter 3, we observed that the apparent correlation between E.coli K12 
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mRNA expression and family evolutionary rate is in fact an artifact of both these 

quantities correlating with age.  

 

Subsection 3. Protein family evolutionary rate and relative family age  

Variation in the rate and pattern of amino acid substitution in proteins is a 

fundamental property of protein evolution. The rate of amino acid substitution varies 

considerably among different protein families
65

.  Changes in protein sequences are 

constrained by selection pressure and so accumulate at different rates
53

.  For higher 

Eukaryotes such as human, fugu, fly and worm, it has already been reported that 

young proteins are under strong positive selection
53, 56, 65

. Young proteins evolve 

under variable selection pressure and their evolutionary rates are faster than older 

proteins
53, 54, 55, 66

. We find a strong decreasing trend for evolutionary rate as a 

function of increasing age for E. coli K12 proteins, as described in Chapter 3. 

 

Subsection 4. Correlation of number of protein- protein interactions and 

family age  

In recent years, with the explosive development of high-throughput experimental 

technologies, the number of reported protein–protein interactions (PPIs) has increased 

substantially. Large collections of PPIs produce “omic” scale views of protein 

partners and protein membership in complexes and assemblies in many organisms
67

 . 

However, there are very few publications that investigate the relationship between 

physical protein-protein interactions and age of the protein. Two studies have been 

performed in yeast and a strong and positive correlation of protein-protein interaction 
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and age of a protein was found
68

. Other studies by Kunin et al. also investigated the 

relationship that proteins of different ages have different connectivity levels in 

interaction networks
69

. In this work we also observed a steady increase in the number 

of reported protein-protein interactions for E. coli K12 proteins with increase in 

family age, as described in Chapter 3.  

 

Subsection 5. Relationship of predicted percentage protein disorder and family  

age 

Many proteins contain regions without well-defined structure (intrinsically disordered 

regions) and it has been suggested that these are associated with particular functions, 

including cell regulation, nuclear localization, chaperone activity, antibody creation, 

signaling, as well as binding to proteins, DNA, and other ligands
70, 71, 72, 73

. Protein 

disorder is more prevalent in complex organisms, by some estimates accounting for 

33 % of the residues in human proteome, but only a few percent of residues in E.coli, 

leading to the suggestion that it may play a major role in the evolution of 

complexity
70

. We observed a steady decrease in predicted structural disorder for E. 

coli K12 proteins with increasing age, followed by slight increase again for the oldest 

subset of families, as described in Chapter 3. It has been observed that disorder 

increases with the number of protein interactions
71, 72, 73, 74

, and we suggest the cause 

of the late age increase is that as the number of interactions increases, segments of 

proteins become more disordered to allow interaction with multiple partners.  

All of these protein properties correlate well with family age, but mere correlation 

does not establish a causal relationship with age. In order to better understand which 
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underlying effects cause which observations, we performed a set of partial correlation 

analyses
75

, examining the effect of removing the influence of each factor on 

correlations between each pair of variables for E.coli K12 proteins, as explained in 

Chapter 3.   

Subsection 6. Composition bias in different organisms and its relationship to 

protein age   

Codon usage bias refers to differences in the relative frequency of occurrence of 

synonymous codons in coding DNA. The redundancy in the number of codons for 

most amino acids can result in different codon compositions in different organisms
77

. 

How these organism specific preferences arise is a much debated area of molecular 

evolution
76, 77, 78

. Different factors have been proposed as related to codon usage bias, 

including gene expression level (reflecting selection for optimizing the translation 

process with respect to tRNA abundance), %G+C composition (reflecting horizontal 

gene transfer or mutational bias), amino acid conservation, transcriptional selection, 

RNA stability, optimal growth temperature and hypersaline adaptation
78, 79, 80

. To 

investigate further the hypothesis that ORFan proteins originate from non-coding 

regions, we explored the codon composition bias of 47 prokaryotic organisms by 

comparing the composition bias of the set of all proteins, of random proteins, and of 

ORFan proteins in each genome. We investigated the codon usage of ORFan proteins 

with the evolutionary age of the ORFans, and we discuss the evolutionary 

implications of this observation in Chapter 4. 
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Chapter 2: Construction of Phylogenetic trees using complete genome 

information 

 

Section 1 Abstract 

Knowledge of complete genome sequences for many organisms provides an 

opportunity to assess phylogenetic relationships between species on a much broader 

basis than previously possible. In particular, combining information from the 

phylogenetic history of many genes may yield a less biased view of species 

phylogeny. Appropriate combinations of genes can also be used to study the 

evolution of particular processes. Utilizing these pan-genome data requires the 

development of new methods that effectively combine information from sequence 

relationships across a large number of protein families. In turn, combining these data 

requires estimates of the relative rate of sequence change among families. Particularly 

among prokaryotes, ambiguities from possible lateral gene transfer events, as well as 

issues with correctly identifying orthologous relationships and potential errors in 

sequence alignments necessitate the use of noise resistant methods.  

Three noise resistant methods have been used to estimate the relative evolutionary 

rates of amino acid change within orthologous protein families: least median squares, 

a Gaussian kernel estimator, and an iterative outlier filtering procedure. Families 

where the three methods gave consistent rates were normalized to a common rate 

scale. Intergenome distances were then estimated using the average amino acid 

substitutions per site information for these families together with the three noise 
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resistant methods. Standard neighbor joining methods were then used to build a 

phylogenetic tree from these distances.  

Relative evolutionary rates were determined for 2,262 orthologous families extracted 

from a set of 66 prokaryotic genomes. Rates span a range of about two orders of 

magnitude, with highest rates typically found for small, phylogenetically narrow 

families. Data for the 1,379 orthologous families with consistent rates determined by 

the three different methods were used to estimate the set of all intergenome distances, 

and these distances in turn were used to obtain a species tree. Bootstrap testing with a 

1000 replicates found 75% of the nodes to be determined with 95% or better 

confidence, and only 10% to be below 50% confidence. Comparison of the tree 

topology with that obtained using information from a small number of protein 

families shows a high level of overall agreement, but with specific differences, 

including separation of the three included bacterial hyperthermophiles in the new tree. 

Relative branch lengths are also different, particularly showing reduced separation of 

the bacterial and archaeal kingdoms, as a consequence of reduced reliance on 

ribosomal proteins. Overall, the results demonstrate the potential of including many 

protein families in phylogenetic analysis, and in future, choosing sets of families 

appropriate to a particular biological question.  
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Section 2 Introduction 

 

Phylogenetic analysis of the relationships between species using molecular and 

genome level data has become an important tool for studying the evolutionary history 

of organisms from bacteria to humans
25

. In previous work, we built a prokaryote 

reference tree with distances derived from the average sequence identities over a set 

of 14 conserved orthologous protein families that have members in each of 66 

prokaryotic genomes. In common with other analyses that use protein families with 

members in all included species, most of these are ribosomal proteins
27, 32, 33, 34, 35, 36

. 

Analysis of this tree shows two primary deficiencies
37

. First, intergenome distances 

between some strains in bacteria are related by very short branch lengths. Likely this 

is a consequence of the rate of sequence change in conserved families being too slow 

to properly estimate such short distances. Second, intergenome distances between 

bacteria and archaeal species appear systematically too long compared with the intra-

kingdom distances. That likely arises from the extensive differences between 

bacterial and archaeal ribosomes
81, 82

, resulting in correspondingly abnormally large 

sequence differences between their proteins across the two kingdoms. The 

determination of complete genome sequences of many bacterial and archaeal species 

has created the opportunity for a new level of phylogenetic analysis that is based not 

on a phylogenetic tree for selected molecules but rather on the entire body of 

information contained in the genomes or on a rationally selected, substantial part of 

this information. Here we explore a strategy for utilizing these new data.  
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All gene family based species tree construction methods must contend with 

difficulties of identifying orthologous families, and of producing reliable multiple 

sequence alignments. Prokaryotes present additional problems in the construction of 

species trees. The fossil record is very limited, providing little useful data against 

which to validate the results
26, 27

. Lateral gene transfer is very extensive
26, 27, 28

, 

resulting in many genes not representing the evolutionary history of the species they 

are found in. Indeed, it has been argued that rampant LGT has erased phylogenetic 

history at the molecular level
26, 27, 28

.  We address these difficulties in three ways. 

First, noise resistant methods are used to combine information from multiple families. 

Second, results from three different noise resistant methods are compared, so 

identifying those families where consistent results are obtained. Third, the use of 

many families allows us to reject any doubtful results, and still have a large and 

representative set with which to build the final species tree.  

Tree building methods fall into two main categories: those that build a tree based on a 

matrix of distances between entities, and those that build a tree directly from a set of 

features characterizing each entity. For the construction of species trees, features in 

the latter method are generally the specific bases or amino acids found at each 

position in a multiple sequence alignment. A search is made over the space of 

possible trees, as far as possible finding the tree that satisfies some optimization 

criterion, such as Maximum parsimony (MP)
83

, Maximum Likelihood (ML)
83, 84, 85

 

and maximum posterior probability
86

. These methods are  conceptually appealing, 

and make use of information from all individual substitutions in the sequences 

included
86, 87

.  On the other hand, the methods are very compute intensive, and so 
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cannot be scaled to include many sequences. As a result, most species trees built to 

date are based on information from a small number of gene families
27, 32, 33, 34, 35, 36

, 

and do not utilize the wealth of data provided by complete geneome sequences. 

Distance-based tree building methods estimate the relative pair-wise distances 

between each pair of species, and construct a phylogenetic tree from the resultant 

distance matrix usually by the Neighbor Joining (NJ) method
86, 88

.  These methods are 

not computationally demanding, so there is no limit of number of sequences that can 

considered. In this work, we develop distance-based tree construction methods that 

take advantage of the complete genome information available for prokaryotic species.  

 

Section 3 Results 

Subsection 1.Comparison of family evolutionary rates from different methods 

Family evolutionary rates were calculated as described in Section 5 Methods. Least 

median squares provided solution for 2,403 out of 4,856 orthologous families 

included, and the Gaussian kernel estimator, 2,264. Most poorly determined rates are 

for families with less than five members, and arise from insufficiently distinct points.  

Figure 5 shows a comparison of family evolutionary rates obtained using three 

different methods for the 2,264 families where all three methods returned a value. 

There is good agreement between the Gaussian kernel density estimator and least 

median squares (x axis and y axis), while the recursive filtering method tends to 

return higher values for families with low rates (z axis). The correlation coefficient 

between the LMS and GKDE is 0.92, between LMS and RF it is 0.57, and between 

GKDE and RF, 0.56. 
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Figure 5. 3D scatter plot showing the comparison of estimated evolutionary rates 

from three methods: least median squares (x), Gaussian kernel density estimator (y) 

and recursive filtering with three iterations (z). (Redder points are closer to the x-z 

plane.)  

Of the 2,264 families where the three methods provided values, consistent rates (as 

defined (in Section 5 Methods) were obtained for 1,379 families. Figure 6 shows the 

distribution of rates for these families. The peak of the distribution is at slightly 

higher rate than that of the conserved reference families (relative rate 1.0). There is 

long tail of significantly higher rates than 4. As figure 7 shows, many of these high 

rates are for apparently small families with less than 10 members. 
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Figure 6. Distribution of protein family relative evolutionary rates of 1,379 families, 

RAVG(u). A rate of 1.0 corresponds to the average for 14 highly conserved families, 

with members in all 66 genomes considered. 

There are also 124 families with lower rates than the reference ones (see examples in 

Supplementary figure S1). 33 of these are ribosomal proteins. Among the others with 

evolutionary rates slower than 1.0, 67 are annotated as metabolism enzymes, or 

involved in transcription and translation control, sporulation, and cell division 

(www.ncbi.nlm.nih.gov/protein) and these categories are 3.74 times enriched (chi-

square P-value < 0.0001) in the slow rate group compared to the fast rate (> 1.0) 

group. The remaining 24 slow rate families are annotated as conserved hypothetical 

proteins or proteins of unknown function. These categories are not significantly 

enhanced in the slower rate group compared to the fast one (chi-square P-value = 

0.12).  

 

http://www.ncbi.nlm.nih.gov/protein
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Figure 7. Orthologous family evolutionary rates as a function of family size. Some 

small families exhibit anomalously high rates.  

We also found 85 families where relative rates are greater than 5.0 compared to the 

14 conserved protein families, with maximum of 42. As figure 7 shows, all these high 

rate families have less than 10 members.  

 

Subsection 2. Comparison of intergenome distances derived with different 

methods 

Multi-family based intergenome distances, D(i,j) between each pair of species ‘i’ and 

‘j’ were calculated with the three noise resistant methods including all contributions 

from the 1,379 protein families with consistent evolutionary rates. Comparison of the 
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intergenome distances derived with the three different methods (figures 8 and 9) 

shows generally high agreement. More specifically, 96.9% of all intergenome 

distances satisfy the less than 20% deviation criterion set out in Section 5 Methods. 

The remaining 67 genome pairs are from very closely related species. For these, 

intergenome distances as calculated by the LMS method are used in the subsequent 

tree building.  

 

Figure 8. Comparison of inter-genome distances derived using three different 

methods: least median squares (x), Gaussian kernel density estimator (y) and the 

recursive filtering (z). (Redder points are closer to the x-z plane.)  
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9 b. 
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Figure 9. Distribution of percentage different in intergenome distances derived from 

three methods: least median squares (LMS) and the Gaussian kernel density 

estimator (GKDE) (9a.), least median squares and recursive filtering (RF) (9b.) and 

the Gaussian kernel density estimator and recursive filtering methods (9c).  

Agreement between methods is generally high.  

 

Subsection 3. Comparison of intergenome distances obtained with a few 

versus many families 

Figure 10 shows a comparison of inter-kingdom distances derived with the data from 

only the set of 14 conserved families and those obtained using information from 

1,379 families. The result shows a consistent reduction in inter-kingdom distances in 

the new set of distances: The average fractional change in inter-kingdom distances 

9c. 
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between the new multifamily intergenome distances and the previous 14 family set is 

-0.081 consistent with reduction of the bias from ribosomal proteins.  

 

Figure 10. Comparison of inter-kingdom distances obtained using many families (X 

axis) and only using 14 conserved protein families (Y axis).  
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Subsection 4. Construction of an evolutionary tree for prokaryotic species 

using information from many families 

A species tree was built from the intergenome distance matrix derived with the three 

methods, incorporating information from all 1,379 protein families, using Neighbor 

Joining
88 

as implemented in PHYLIP. Figure 11 shows the resulting tree. 1,000 

bootstrap tree replicates were generated and used to evaluate the robustness of the 

topology. Bootstrap scores for the nodes with less than 95% confidence are shown. 49 

(75%) of the 65 nodes in the tree have  95% confidence. Seven nodes have  50% 

confidence. Five of these seven nodes represent deep divergences, for example the 

42% bootstrap support between the subtrees of Mollicutes, Firmicutes with 

Thermatoga. 

 

Subsection 5. Comparison with species trees based on a small number of 

protein families 

Comparison of the multifamily tree (Figure 11), with the previous 14 conserved 

family tree
37

 and that in the Tree of life, based on thirty-one protein families with 

members in all included bacteria
35, 36

, shows that the topologies of these trees are 

similar with the positions of two subgroups differing slightly. For example, the 

Bacillales subgroup (Bacillus halodurans and Bacillus subtilis) are adjacent in the 

multifamily tree (66% bootstrap score) and the tree of life, while they were grouped 

with two Listeria species in the 14 family tree (figure 11). We observe notable 

differences with respect to Deinococus radiodurans, Thermotoga maritima and 

Aquifex aeolicus.  In the new tree D. radiodurans is grouped with the Actinobacteria 
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(93% bootstrap score), T. Maritima with Firmicutes (42% Bootstrap score) and A. 

aeolicus is grouped with Epsilon-proteobacteria (45% bootstrap score). In both trees 

based on a small number of families, these three organisms are grouped together. All 

are hyperthermophiles, and evidently that property dominates when only sequences 

from highly conserved protein families are considered, while a broader view suggests 

they are less closely related, although some of the relevant nodes are of lower 

confidence. Compared to the previous tree based on 14 highly conserved families, the 

branch lengths related to closely related species and strains are on average longer as a 

result of inclusion of faster changing sequences: The average fractional change in 

intergenome distance for 28 pairs of closely related species (those with distances less 

than 0.15 in the14 conserved protein family tree) in new multifamily tree compared to  

the 14 conserved family tree is +0.5293. (Seven pairs of genomes are still so close 

that the distances are not well resolved).  
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 We also compared the multifamily tree with a more specialized Alphaproteobacteria 

tree
89

 which was built using 104 families present in all 72 included species. The 

topology of the seven of these organisms included in our 66 genome set is identical 

with that in multifamily tree and the tree of life, but different from that in the 14 

conserved family tree. For the archaeal kingdom, the multifamily tree topology is 

same as the 14 conserved protein family tree and as that of a thirty one conserved 

protein family archaea tree
90

. All 11 nodes of this kingdom have greater than 50% 

bootstrap confidence and eight out of 11 nodes have bootstrap scores greater than 

95% confidence, indicating strong support for the topology. 

 

Section 4 Discussion 

Availability of many complete genome sequences provides new opportunities for 

reconstructing the relationship between species using a broad base of information. To 

exploit these opportunities, we have developed a method of utilizing information 

from a large number of protein families in constructing species trees. There are two 

major challenges to be overcome in incorporating the data from diverse protein 

families. First, as most families do not have members in all genomes and evolve at 

substantially different rates, a means of integrating the signals must be found. We 

address this by obtaining a relative evolutionary rate for each family, so providing a 

means of normalizing to a common evolutionary scale. Then, for each pair of 

genomes, we combine information from all the families with members in both to 

obtain an estimate of the evolutionary distance between that pair.  Second, there are 

multiple sources of noise in the data that must be adequately contained. All gene level 
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phylogenetic reconstruction methods contend with problems of imperfect sequence 

alignment and the difficulties of reliably identifying appropriate orthologous 

relationships. We use state of the art methods for sequence alignment and orthologous 

family construction, but recognize these are imperfect. Additionally, for prokaryotes, 

analysis is greatly complicated by wide spread lateral gene transfer, for some families 

making the concept of linear descent from a common ancestor almost meaningless
26, 

27, 28
. Our strategy for dealing with these three issues is two fold. First we use noise 

resistant methods for deriving relative evolutionary rates and intergenome distances, 

allowing robust determination of these quantities in many cases. Second, we identify 

families where the data are not consistent with linear descent by comparing the results 

from three methods, and discard the inconsistent families. The availability of 

information from thousands of families makes this approach practical. As a result, we 

obtain intergenome distances based on information from 1,379 orthologous families 

with evolutionary rates varying by an order of magnitude and orthologous family 

members present in from four to 66 genomes.  

A disadvantage of the approach is that the large numbers of sequences involved 

preclude the use of character based descriptions and associated optimization 

methods
86

. On the other hand, the new method is scalable to the inclusion of very 

large numbers of genomes. Inclusion of information from a large number of diverse 

families also allows a broader and less biased view of the differences between 

species. 

All methods for deriving these evolutionary relationships assume that the values of 

some feature or features are correlated with speciation and time. Before the 
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availability of molecular and genome level data, these features were often 

morphological. Morphological features may vary under environmental and other 

selective pressures in a manner that is not directly correlated with speciation 

processes, for example converging to similar values for bacteria and archaea
91

. Non-

speciation related variation of molecular properties also occurs, for example, repeated 

switching back and forth of enzyme specificity within orthologous families, as in the 

case of malate and lactate dehydrogenase
92

. Sequence based phylogenetic methods 

assume that overall sequence identity relationships within orthologous families are 

not substantially distorted by these sorts of effects. While generally true, there may be 

exceptions. For example, adaption to a specific environmental condition, such as 

temperature, may cause selection of particular amino acid types, and so constrain 

sequence similarity in a manner not directly related to speciation. We see evidence of 

that among the bacterial hyperthermophiles. The three hyperthermophylic species 

included in our analysis grouped in the same sub-tree in two previous phylogenetic 

analyses using a small number of protein families
34, 35, 37

, but are in three separate 

sub-trees with the larger number of families used in this work. That result suggests 

highly conserved families may exhibit temperature correlated sequence similarities, 

or simply that a small sample of families is more likely to be unrepresentative of the 

time course than a large number.  

Particular processes may change more rapidly in some periods than others, resulting 

in atypical rates of sequences change for the proteins involved.  For example, 

archaeal and bacterial ribosomes are markedly different in overall structure and 

composition
81, 82

, and that appears to be reflected in relatively large sequence 
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differences between their orthologous proteins.  Because there are so few protein 

families with members in all genomes, methods that rely on that feature include a 

large fraction of ribosomal proteins, for example 21 of the 31 families in the Tree of 

Life
27, 32, 33, 34, 35, 35

 are ribosomal. Thus, our previous 14 family tree shows larger 

distances between the archaeal and bacterial kingdoms than the new many family 

tree, likely reflecting the bias introduced by the ribosomal proteins. The new tree also 

has better resolved branch lengths for closely related species and strains, reflecting 

the fact that inclusion of families with faster changing sequences provides a better 

numerical basis for determining these. Other differences between trees built with a 

small versus a large number of protein families, such as B.subtilis and B.Halodurans 

are adjacent in the new multifamily tree and similar to the tree of life, are less easily 

traced to specific effects. In general, though, the more families included the less 

impact from effects that are not closely coupled to speciation.  

A wide choice of families to include also opens up the possibility of examining the 

rate of evolution and adaptation of particular processes and functions – all families 

involved in a particular GO
93

 process, such as cell division, might be considered, for 

example.  

 

 

Section 5 Materials and Methods 

Subsection 1.Orthologous protein domain families  

The work utilized a set of 31,874 protein domain families previously compiled from 

the complete genome sequences of 66 representative prokaryotic genomes
8
. These 
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families include 20,992 singletons (families with only one member), 4,810 

doubletons and 6,072 protein families containing three or more members. 4,856 

primary orthologous families were extracted from the 6,072 domain protein families 

with three or more members
38

. All analysis was performed on this orthologous set.  

 

Subsection 2. Calculation of the average accepted amino acid substitutions per 

site between each pair of domains ‘i’ and ‘j’ in each orthologous family ‘u’, 

S(i,j,u)  

Multiple sequence alignments for each family were generated using MUSCLE
94

. The 

maximum likelihood average accepted amino acid substitutions per site between each 

pair of domains ‘i’ and ‘j’ in each family ‘u’, S(i,j,u), were obtained from these 

alignments using the PROTDIST module in PHYLIP
95

 with  the Jones-Taylor-

Thornton (JTT) amino acid substitution matrix
96

. 

 

Subsection 3. Initial intergenome distances derived from a set of 14 highly 

conserved families 

Initial intergenome distances between all pairs of the 66 genomes were derived using 

a set of 14 conserved orthologous protein families, all with members in each genome. 

12 of these are the ribosomal proteins (L2, L5, L10, L13, L14, L15, S2, S3, S5, S11, 

S13, and S17). The other two protein families are the DNA-directed RNA polymerase 

(alpha subunit) and the Preprotein translocase secY subunit.  Intergenome distances, 

S14(i,j), between genomes ‘i’ and ‘j’ were calculated by averaging accepted amino 
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acid substitutions per site between each pair of domains ‘i’ and ‘j’ in each of the 14 

families ‘u’, S(i,j,u).  

 

S14(i,j) = < S(i,j,u)>u 

 

 

Subsection 4. Calculation of relative evolutionary rates for each orthologous 

protein sub-family 

Within a family ‘u’, the relative rate of sequence change between any pair of 

genomes ‘i’ and ‘j’ is expressed as: 

 

r(i,j,u) = S(i,j,u)/ S14(i,j) 

 

Averaging over all pairs of genomes with members in the family then provides an 

estimate of the rate of sequence change, relative to the rate for the conserved families, 

R(u).  

R(u) =  <r(i,j,u)>i,j 

 

r(i,j,u) values are noisy because of the effect of lateral gene transfer, possible errors in 

sequence alignment, and possible errors in identification of orthologous relationships, 

so that a straight average of this form is unreliable. We use three different methods 

designed to handle such noisy data: least median squares
97, 98

, a Gaussian kernel 

density estimator
99

, and a recursive filtering method.  
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1. Least median squares (LMS)
97, 98

 was used to find the value RLMS(u) with the 

minimum median square value of the residual set, {δ(i,j,u)
2
} where  

δ(i,j,u)
 
 =  r(i,j,u) - RLMS(u) 

and the set includes contributions from all pairs of genomes ‘i’ and ‘j’ with members 

in family ‘u’. Median squares are much less sensitive to outliers than the more usual 

least squares procedure. Formally, for conventional least squares the breakdown point 

(the smallest fraction of contamination that can falsify the linear estimator, where 

“falsify” is defined as changing the regression line by 90 degrees) is 1/n, where n is 

the number of data. For median squares the breakdown point is 50%, the highest 

breakdown point theoretically possible
100

. Inspection of the value of RLMS(u) for many 

families shows effective robustness to obvious outliers for the family rate data.  

2. A Gaussian kernel density estimator (GKDE)
99, 101

 was used to represent the 

probability density of R(u) as a sum of gaussians, one gaussian centred at each value 

of ‘r’.  For each family ‘u’, Gaussian kernel density distributions were compiled with 

the KernSmooth in R
101

 using the set of {r(i,j,u)} values  for all ‘n’ pairs of genomes 

‘i’ and ‘j’ containing members of the family. The total rate density ρ(r’) at any value 

of ‘r’ is:  

 

h is the bandwidth set equal to  , where  = min(s, Q/1.34),  

and Q is the interquantile range of the data
102

. The maximum value of  corresponds 
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to the maximum empirical likelihood value of r’(u), taken to be the GKDE estimate 

of the relative evolutionary rate for this family (RG(u)). 

3. A simple recursion filtering procedure (RFP) was used to iteratively estimate the 

value of the relative rate of sequence change for family u, (RRF(u)), as <r(u)>n 

rejecting outliers (those differing by more than 0.5 substitutions per site from the 

current average) at each iteration. In practice, this procedure converges after three 

iterations.   

An initial combined estimate of the relative evolutionary rate RAVG(u)  for each family 

‘u’ was obtained by averaging over the values obtained by the three methods.  The 

subset of families with consistent rates across the methods (rates differing by 20% or 

less), that is:  

 

|RLMS (u) - RG(u)| ≤ 0.2RAVG(u)  and |RLMS (u) - RRF(u)| ≤ 0.2RAVG(u)  

was used for subsequent analysis. 
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Figure 12.  Flowchart of the procedure used to estimate the evolutionary rates of 

orthologous protein families and Intergenome distances. Three methods are used: 

least median squares, a Gaussian kernel density estimator, and a recursive filtering 

method. The final set of intergenome distances was used to reconstruct a phylogenetic 

tree. 

 

Subsection 5. Estimation of intergenome distances using information from 

many protein families 

Each member of the set of S(i,j,u) values with members in genomes ‘i’ and ‘j’   

provides information concerning the relative intergenome distance D(i,j) between 

those species. In order to combine the information from all contributing families, the 

intergenome distances S(i,j,u)  are placed on the same scale by normalizing with the 

relative evolutionary rate for that family: 

 

S’(i,j,u)  = S(i,j,u) /RAVG(u) 

Information from the set of S’(i,j,u) values for a pair of genomes ‘i’ and ‘j’ is 

combined to provide an estimate of  the relative intergenome distance, D(i,j).   To 

combat noise in the S(i,j,u)  values we make use of the same three robust methods 

described above. For least median squares, the value of DLMS(i,j) with the  minimum 

median square value of the residual set, {δ(i,j,u)
2
} is found, where  

δ(i,j,u)
 
 = S’(i,j,u) -  DLMS(i,j) 

and the set includes contributions from all families that have members in genomes ‘i’ 

and ‘j’ that have consistent evolutionary rates. For the Gaussian kernel density 
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estimator
99

, Gaussian kernel density distributions were compiled for the set of S’(i,j,u) 

values for all families with members in genomes ‘i’ and ‘j’  that have consistent 

evolutionary rates and the value of S’ with maximum density (S’) taken as  the 

maximum empirical likelihood of value the intergenome distance DG(i, j). For 

recursive filtering, three rounds were performed, rejecting contributions in the second 

and third rounds for which  

|DRF(i,j)) - S’(i,j,u)| > 0.5       

A final combined estimate of the intergenome distance DAVG(i,j)  for each pair of 

genomes ‘i’ and ‘j’ was obtained by averaging over the values obtained by the three 

methods.  For those pairs of genomes with consistent intergenome distances across 

the methods, that is where:  

 

|DLMS(i,j) –DG(i,j) ≤ 0.2 DAVG(i,j) and |DLMS(i,j) –SRF(i,j)| ≤ 0.2 DAVG(i,j) 

 

DAVG(i,j) values were used to provide the elements of the distance matrix for 

reconstructing a species tree. For genome pairs where inconsistent distances were 

obtained, DLMS(i,j), judged to be the most reliable single method, was used.  

 

An example of determination of a family evolutionary rate using least median 

squares, for the mercuric resistance operon repressor protein (merR) family, is shown 

in Figure 13.    This family has members in 39 genomes, providing amino acid 

substitution values from 1,482 pairs of genomes, each contributing to the 

determination of its relative evolutionary rate. There is a substantial scatter of 
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contributions to S(i,j,u) values contributed by different genome pairs, but a group of 

points, colored green, and all having one member in Archaeoglobus fulgidus (aful) 

are clearly separated from the rest, consistent with the member in that genome being 

the result of lateral gene transfer. Least median squares produce the red line, 

successfully ignoring these outliers.   

Figure 13. Example of determining the relative evolutionary rate for the mercuric 

resistance operon repressor protein (merR) family using least median squares (LMS). 

The LMS line is shown in red, and the slope (2.49) gives the relative rate, RLMS(u).  

Green points are for intergenome distances apparently involving a lateral gene 

transfer event. The LMS fit (red line) effectively ignores these and other outliers. 
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Figure 14. Example of determining the relative evolutionary rate for mercuric 

resistance operon repressor protein (merR) family using a Gaussian kernel density 

estimator. The red line indicates the highest density, taken to be the relative 

evolutionary rate for the family, RG(u) at 2.77. Outliers caused by LGT contribute the 

small sub-peak at ~1.0. Other outliers form a high value tail to the distribution. 

 

Figure 14 shows the corresponding Gaussian kernel density distribution, with the 

LGT affected points forming a small sub-peak at about ~1.0, and other outliers with 

anomalously high values producing a tail from the main peak. The peak has a value of 

2.77, close to that obtained with the LMS analysis. 
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Figure 15. Example of determining the intergenome distance between a pair of 

species (Haemophilus influenzae and Pasteurella multocida) using least median 

squares (LMS). The LMS line is shown in red, and the slope (0.11) gives the 

intergenome distance, DLMS(i,j). The anomalously large s(I,j,u) values have a little 

effect on the derived distance. 

 

An example of estimation of an intergenome distance using least median squares. 

DLMS(i,j), is shown in figure 15. 330 families with consistent evolutionary rate 

estimates have members in these two genomes and so contribute to determining this 

distance. Figure 15 shows there are a number of outliers, effectively ignored by the 

LMS fit. 
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Figure 16. Example of determining the intergenome distance between two species 

(Haemophilus influenzae and Pasteurella multocida) using a Gaussian kernel density 

estimator.  The red line indicates the highest density, at 0.09, taken to be the 

estimated intergenome distance for this pair of genomes, DG(i,j). The anomalously 

high values in the distribution result in an asymmetric peak, but have no effect on the 

maximum. 

Figure 16 shows the Gaussian kernel estimator result for the same pair of genomes. 

Here the outliers form a tail from the main peak, not significantly influencing the 

peak value. In this case, the three methods all return similar values:  least median 

squares, 0.11, Gausssin kernel estimator, 0.09 and recursive filtering, 0.12 
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Subsection 6. Construction of a species tree based on multi-family intergenome 

distances  

Phylogenetic trees were built from the matrix of intergenome distances using the 

Neighbor Joining method
88

 as implemented in PHYLIP. The tree topology robustness 

was evaluated using a bootstrap procedure
103

. 1,000 trees were built. For each tree, N 

families were randomly selected, with repetition, where N the number of families 

included. For each selected set of families, intergenome distances were re-determined 

as described above. These distances were then used to build a tree. A Consensus Tree 

procedure
95

 was used to compare the topology of these thousand trees and to obtain 

confidence values for each subtree. 
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Chapter 3: Molecular evolution of protein families: The 

properties of proteins as a function of age 

 

Section 1Abstract 

Phylogenetic analysis of sets of complete genomes has revealed that most protein 

families appear to have recently emerged. One hypothesis for the origin of these 

families is that they represent new open reading frames that have been created either 

from previously noncoding DNA, by frame-shifting from older open-reading frames, 

or are the result of recombination of sub-domain fragments from older proteins. A test 

of this hypothesis is whether or not proteins in young families have substantially 

different properties from those in older families, consistent with a recent origin. To 

this end, we have examined four properties of protein families to determine whether 

or not there is evidence to support the new open reading frame hypothesis. 

 

Methods: A set of 66 prokaryotic genomes is used for the analysis. Orthologous 

protein family age was estimated from the phylogenetic distribution of family 

members in a previously compiled species tree. Age distortion arising from lateral 

gene transfer was reduced by removing proteins with anomalous rates of sequence 

change.  Four quantities were considered as a function of family age: mRNA 

expression level, relative rate of change of amino acid sequence within each family, 

level of predicted intrinsic structural disorder, and the number of known protein-

protein interactions.  A partial correlation analysis was used to control for interaction 

between variables.  
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Results: A strong correlation was found between each of the four quantities 

considered and the apparent age of the families. The partial correlation analysis 

results are consistent with age as the driving variable for all four.  Average expression 

level increases 16 fold between the youngest and the oldest families; average 

evolutionary rate is five times slower for the oldest families than for the youngest, 

and the average number of protein partners is five times as large for the oldest 

families as for the youngest. Average predicted structural disorder also decreases with 

age, reaching a level two times lower than that of the youngest families, before rising 

slightly for the oldest subset of families. All these observations are consistent with 

structural and functional immaturity for the majority of proteins in young families, 

and thus consistent with recent origins of their open reading frames. An interesting 

additional observation is that the apparent correlation between E.coli K12 mRNA 

expression and family evolutionary rate, noted by others for this and several 

additional species, is an artifact of both these quantities correlating with age. Thus the 

often proposed explanation that the expression/rate correlation arises as a result of 

negative selection of variants in highly expressed proteins may not be correct. 
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Section 2 Introduction 

Prior to the advent of the first fully sequenced genomes the prevailing model of protein 

evolution was that all proteins have descended from a relatively few ancient ancestors.  

That is, all protein families are old on an evolutionary time scale, and that there are of 

the order of only 1000 independent evolutionary lines
1
. Once complete sequences were 

available for a number of genomes, it became clear that the data are not consistent with 

this model, with a substantial fraction of open reading frames in each genome 

apparently unrelated to any previously sequenced proteins (so called singletons or 

Orphans)
6
. As more genomes have been sequenced, this picture has refined into a view 

that many protein families are phylogenetically narrow in distribution, in a manner 

consistent with a relatively recent origin
104

.  There are a number of possible origins of 

these apparently young families: (1) these proteins may in fact belong to ancient 

families, but have diverged sufficiently fast in sequence that sequence relationships are 

not powerful enough to detect relatives. Two lines of evidence suggest this is not the 

case. First, as more and more genomes are sequenced, most of these families remain 

apparently young. Second, an analysis of protein structures suggests that by this more 

sensitive measure there are a large number of independent evolutionary lines
4
.  (2) In 

prokaryotes, these proteins may belong to ancient families populating so far unexplored 

phylogenetic regions, and have recently undergone lateral gene transfer (LGT) to their 

present relatively isolated locations. Although LGT within the prokaryotic kingdom is 

very common
29, 30, 31

, the addition of many more prokaryotic genomes (now over 

10,000 (http://www.ncbi.nlm.nih.gov/genome/browse/) has not revealed extensive 

origins of this type. A significant fraction of apparently young families (about 25% by 
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one estimate
25 

do appear to have transferred from phages, but that does affect the 

apparent age distribution significantly. (3) These proteins are in some sense really new, 

either created by frame-shifting of a previous open reading frame, or occurring in 

previously non-coding DNA, or arising from recombination of fragments from two or 

more older proteins. Recombination of domains to form new multi-domain proteins is 

very common, especially in Eukaryotes
105

, but evidence of sub-domain recombination 

is rare. Experimentally, proteins belonging to apparently young families have proven 

difficult to study, with low success in purification and crystallization for X-ray studies 

(for example, Vitkup D. et al paper
106

), suggesting less robust structural and stability 

properties than most proteins, as might be expected for recently established new open  

reading frames .  

 

In this work, we have investigated the hypothesis that these apparently young proteins 

are immature by examining a number of properties as a function of the apparent age of 

the corresponding orthologous family. Specifically, we investigate rates of sequence 

change within families, mRNA expression levels, amount of structural disorder, and 

complexity from a functional standpoint, as monitored by the number of interactions 

with other proteins. We examine the level of each of these properties as a function of 

the apparent age of the orthologous protein family concerned. ‘Age’ is defined in terms 

of the phylogenetic distribution of members of the family in a species tree. The tree was 

previously built using information from many protein families, and so is expected to 

have more robustly determined branch lengths than trees based on data for just a few 

families. We use a set of 66 prokaryotic genomes for this analysis, and reduce the 



 

 51 

 

distortion of apparent age arising from lateral gene transfer by omitting proteins most 

likely to have been involved in that process.  

 

Section 3 Results  

Subsection 1. Orthologous protein domain families  

As described in methods (Section 5), the analysis was performed on the set of 1,196 

primary orthologous families from 66 prokaryotic genomes that have a member from 

E.coli K12
8
. Of these families, 94, 151 and 951 are singletons (families with only one 

member), doubletons (families with two members) and multitons (families containing 

three or more members) respectively.  

 

Subsection 2. Family age 

The relative age of each protein family was derived from the species tree, as 

described in Methods (Section 5). Figure 17 shows the distribution of relative family 

age for the 1,196 orthologous families. Ages are in units of accepted substitutions per 

site in the reference set of 14 highly conserved slowly evolving families (Chapter 2) 

and are calculated after removing proteins most likely involved in lateral gene 

transfer events (see Section 5 Methods). Ages range from 0.00158 for singletons of 

Escherichia coli K12 to 0.978 for families with apparent origins at the base of the 

tree.   
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Figure 17. Distribution of relative family ages. Age is in units of accepted 

substitutions per site in a reference set of 14 conserved families.  

 

Subsection 3. Relationship between Expression level and apparent family age 

Figure 18 shows the distribution of RNA expression level for the E.coli members of 

the 971 of the 1,196 E.coli proteins for which measurements are available. Red bars 

show the distribution for the family age less than and equal to 0.15 (all are singletons 

and doubletons with family ages ranging from 0.00158 to 0.152. Blue bars show the 

distribution for remainder. Relative log2 mRNA expression levels vary widely, 

ranging from -7.97 to 5.76. Although the average expression level for the youngest 

proteins is lower than the older ones, most do have clearly detectable expression, 

providing confidence that they are in fact Bona Vida open reading frames in the 

genome.  
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Figure 18. Distribution of expression levels for 971 E.coli proteins.  Red bars show 

the distribution for singletons and doubletons, and blue bars show the distribution for 

multitons. Y-axis is the fraction of E.coli proteins in each expression level bin 

(expression data are from http://www.genome.wisc.edu/, log phase growth on 

glucose). X- axis shows log2 relative mRNA level. 
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Figure 19. Improvement in estimates of protein family age by partial removal of 

Lateral Gene Transfer (LGT) events. (a) Comparison of average log2 mRNA 

expression level as a function of apparent family age for 971 E.coli proteins in the 

orthologous subfamilies, and (b) the same, omitting the 15% of proteins most likely to 

have undergone LGT. There is a steady increase in mRNA level with age (expression 

data are from http://www.genome.wisc.edu/, log phase growth on glucose). Y-axis 

shows average of log2 relative mRNA level, bars show 95% confidence intervals 

19a. 

19b. 



 

 55 

 

(approximately 2 sigma). Equal points per age bin, ‘age’ in units of average accepted 

substitutions per site in a set of conserved protein families. 

 

Figure 19 shows the comparison of E.coli K12 mRNA expression with family age, 

including all proteins in the 971 families with E.coli members and expression 

measurements. There is a very strong correlation between apparent family age and 

E.coli K12 expression level (P values   < 2.2e-16 by both Pearson Correlation and 

Kendall Tau). There is a steady increase in average expression level with family age, 

with average expression level of the oldest and youngest families differing by a factor 

of about 16.  

 

Subsection 4. Relationship between relative rates of amino acid change and 

apparent family age 

The relative rates of evolutionary change of each family, as reflected in the rates of 

amino acid change, were taken from our previous analysis (Chapter 2). Figure 20 

shows the distribution of these rates for the 514 out of the 1,196 primary orthologous 

families for which reliable rates were obtained. Most rates lie in the range from 0.39 

to 10, with a long tail up to 30.5 times that of the average rate of the reference 14 

conserved protein families.  
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Figure 20. Distribution of relative evolutionary rates for a set of 514 orthologous 

protein families. 1.0 corresponds to the average rate of amino acid substitutions for 

14 highly conserved families that have members in all 66 genomes considered. 
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Figure 21. Average relative evolutionary rates in 514 orthologous families as a 

function of apparent age. ‘Age’ in units of average accepted substitutions per site in 

14 conserved families, rate relative to the average rate of sequence change in those 

families. Rates in the youngest set of families are more than twice the overall 

average, and there is a decrease in average rate of approximately two fold over the 

remainder of the age range. (Bars show 95% confidence intervals, equal points per 

bin). 

 

Figure 21 shows the comparison of relative evolutionary rates with family age. There 

is an obvious strong negative correlation between these variables (P-value < 2.2e-16 

by both Pearson Correlation and Kendall Tau), and the largest rates observed to the 

youngest families, and an overall five-fold spread in average rates. 
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Subsection 5. Relationship between the number of protein-protein interactions 

and apparent family age 

 

Many proteins are involved in interactions with other proteins, and we are interested 

in the extent to which the number of such interactions evolves with age. For this 

purpose, we retrieved a curated set of experimentally determined E.coli K12 protein-

protein interactions
107

 (see Section 5 methods). The distribution of the known number 

of protein-protein interaction partners ranges from 0 to 33 (Figure 22). Although this 

type of data is plagued by high false positive and false negative rates, we do not 

expect the extent of these errors to correlate with the other properties, such as age, 

that we are interested in. 
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Figure 22. Distribution of the number of known protein-protein interaction partners 

for 1,196 E.coli proteins
98

.  
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Figure 23. Number of known protein interaction partners in 1,196 Escherichia coli 

proteins as a function of the apparent age of the corresponding families. There is 

increasing the number of interaction partners with increasing family age. (Bars show 

95% confidence intervals, equal points per bin. 

 

Figure 23 shows that E.coli K12 proteins in young families have the fewest known interaction 

partners (with an average of about 1). The number of partners steadily increases with age, so 

that the proteins in the oldest families have an average of more than 5 times as many partners 

(P-value = 6.45e-07 by Pearson correlation and P-value < 2.2 e-16 by Kendall Tau 

correlation). This result is consistent with the idea that the longer a protein is present in the 

interactome, the more partners it acquires. However, as always, correlation is not cause, and 

we will see later that other explanations are possible.  
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Subsection 6. Relationship between intrinsic disorder and apparent family age 

To address the question of variation of the amount of intrinsic disorder in proteins as 

a function of family age, we calculated predicted percentage of disordered residues in 

all included 1,196 E.coli protein sequences using DISOPRED2
73

. Figure 24 shows the 

distribution of % predicted disorder. Contrary to an earlier study of E.coil proteins
108

, 

the large majority of proteins have less than 20% of disorder, and very few have more 

than 50%. These results differ from an earlier study that predicted 50% of E.coli 

proteins to have greater than 40% disorder. We attribute this difference to the 

tendency of the alternative method
109

 to over-predict
110

.  
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Figure 24. Distribution of predicted percentage structural disordered residues in 

1,196 E.coli proteins. Y-axis is the number of E.coli proteins in each bin.  

 

 

 

 

 

 

 



 

 63 

 

 

Figure 25. Average predicted % of structurally disordered residues in E.coli K12 

proteins as a function of family age. 

 

Figure 25 shows the predicted disorder in these 1,196 E.coli K12 proteins as a function of the 

relative age of their families. Variances here are high, but the proteins in the youngest 

families are predicted to have the greatest amount of disorder. Disorder falls off with age, by 

a total factor of about 2, before rising again for proteins in the oldest families (P-value = 8e-

02 by Pearson correlation and P-value = 7 e-02 by Kendall Tau correlation).  
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Subsection 7. Cross-correlations among the observations  

Table 1. Comparison of Pearson correlation analysis (Pearson P value) between two 

pair of protein properties (x and y) and the corresponding Partial correlation 

analysis result. For each pair of variables, the Pearson correlation P value is given 

(between x and y), followed by the P value after controlling for a third variable (z). 

The next column notes the type of correlation (positive, negative or no correlation). 

The last two columns note when the control variable was masking the extent of the 

correlation between the other two variables, or artificially enhancing it. Partial 

correlation values, indicating that the simple correlation is to some degree an artifact 

of correlation with a third variable, are in red  

 

Pair of correlation 

(x and y) 

control variable 

(z) 

Pearson 

P  value 

Partial 

Correlation 

P value 

Correlation 

(+/-) 

Masked by 

Artifact of 

Age -expression   < 2.2*10-16  +    

 Disorder  1.5*10-8     

 Rate  9.7*10-23  Rate   

 PPIs  7.1*10-56  PPIs   

Age-Rate  <2.2*10-16  -    

 Disorder  4.9*10-19     

 Expression  4.9*10-13     

 PPIs  1.2*10-19     

Age-Disorder  8*10-2  none    

 Rate  9.0*10-2     

 Expression  3.4*10-5  (weak) expression   

 PPIs  5.0*10-3     

Age-PPI  6.45*10-7  +    

 Disorder  4.6*10-12  Disorder   

 Rate  1.76*10-7     

 Expression  9.0*10-4   expression 

Expression-Disorder  2.03*10-10  +    
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 Age  1.0*10-8     

 Rate  1.6*10-11     

 PPIs  2.5*10-3   PPIs 

Expression-Rate  2.39*10-7  -    

 Age  0.11   Age 

 Rate  2.4*10-8     

 PPIs  1.2*10-7     

Expression-PPI  3.03*10-9  +    

 Age  2.4*10-7   Age 

 Rate  1.4*10-9     

 Disorder  2.1*10-12  (weak) disorder   

Rate-Disorder  1.18*10-5  (weak)-    

 Age  0.17   Age 

 Expression  0.02   Expression 

 PPIs  0.4   PPIs 

Rate-PPI  6.73*10-7  +    

 Age  0.06   Age 

 Expression  0.18   Expression 

 Disorder  0.87   Disorder 

Disorder-PPI  1.8*10-10  (noisy)+    

 Age  1.6*10-9     

 Expression  4.7   Expression 

 Rate  2.7*10-6     

 

 

The analysis so far has established correlations between four quantities (expression, 

evolutionary rate, disorder, and number of protein interactions) with apparent family 

age. However, correlations of these quantities do not prove that in some sense age is 

the determinant of these effects. In particular it may be that correlations of some of 

these properties with age are artifacts of age and the property of interest being 

correlated with a third property. To investigate this possibility, we determined the 

partial correlation of each pair of variables when the effect of a third is removed
76

. 

Table 1 shows the results.  
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As the table shows, in addition to the correlations already discussed, there are a 

number of others between pairs of variables. For example, expression correlates 

strongly with evolutionary rate, disorder and protein interactions. Examination of the 

partial correlations reveals two main points: First, the correlations between age and 

the other four variables - expression level, evolutionary rate, disorder and protein 

interactions (PPIs) – are not weakened when controlling for cross-correlations, with 

the exception of a moderate weakening of age/PPI when controlling for expression. In 

fact the age/expression correlation becomes substantially stronger when the effects of 

cross-correlation with rate and PPIs are removed. Secondly, all other simple 

correlations are substantially weakened when one or more of the other variables is 

controlled for. Most strikingly, the correlations of rate with disorder, expression, 

disorder and PPI are all seen to be a complete artifact of cross-correlation with third 

variable, particularly age. Overall, the results are consistent with ‘age’ as the driving 

valuable in the observed set of correlations. 

 

Section 4 Discussion 

We have examined the relationship of four properties related to the structural and 

functional maturity of proteins, as a function of the age of the corresponding protein 

families. The results are consistent with the hypothesis that by these measures, 

overall, apparently young proteins are immature, and support a model in which 

maturation of new proteins is slow on an evolutionary time scale.  

We find that average mRNA expression levels in E.coli K12 are strongly dependent 

on family age, with expression 16 fold larger in the oldest 1/8 of families compared 
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with the youngest 1/8 of families. This observation is consistent with young proteins 

being poorly adapted to high concentrations. It also offers an explanation of why 

young proteins are difficult to work with experimentally
106

, since expression is 

normally done at high concentrations. A previous study in yeast
57

 also observed a 

positive correlation of expression and apparent age. 

 

We also find that the rate of sequence change in the youngest families is on average 

substantially larger than in the oldest ones, by a factor of five, with the rate in the 

youngest 1/8 of families more than a factor of two faster than the next youngest set. 

This observation is consistent with the view that the youngest proteins are under 

strong positive selection, and still maturing in terms of structure and function. A 

similar relationship between family age and evolutionary rate has been noted in 

higher Eukaryotes
53, 56, 65

. Variable rates of sequence change in young proteins have 

also been interpreted as indicating more variable selective pressures than in older 

proteins
, 54, 55, 66

. 

 

The number of known protein-protein interactions (PPIs) increases substantially with 

age, from an average of  about one for the youngest families up to more than five 

times as much for the oldest subset. Generally, each new protein-protein interaction 

represents a new function of the protein, so that the data suggest an ongoing 

acquisition of function that is likely not yet complete in many cases. Kunin et al. also 

noted that proteins of different ages have different connectivity levels in interaction 

networks in yeast
69

. 
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Finally, there is a more complex dependence on the fraction of predicted structural 

disorder and age. E.coli K 12 proteins belonging to the youngest protein families do 

exhibit the highest levels of disorder, consistent with incomplete evolution of the 

tertiary structure. There is a steady decrease with increasing age to the point where 

the average fraction of disorder is halved. But the oldest families have an intermediate 

average fraction of disorder. It has been observed that disorder increases with the 

number of protein interactions
73

, and the suggested cause is that as the number of 

interactions increases, segments of proteins become more disordered to allow 

interaction with multiple partners. For example, a short disordered segment in Human 

P53 interacts with four different partners, in each case adopting a different 

conformation in the complex
69

.  

While these four measures of protein maturity all correlate with the corresponding 

family age, correlation does not establish a causal relationship with age. In particular, 

since there are significant correlations between the four properties as well (Table 1), it 

is not clear which underlying effects cause which observations. To address this point, 

we performed a set of partial correlation analyses
74

, examining the effect of removing 

the influence of each factor on correlations between each pair of variables. The 

correlations of each of the four factors with age are largely unaffected by the removal 

of the influence of the other variables. (Although the correlation of the number of 

protein interactions with age is slightly weakened when controlling for expression, it 

is still strong). Others have noted that rate and age remain correlated when controlling 

for expression level
54

. Conversely, apparent correlations between rate and expression, 

rate and disorder, and rate and PPIs are all seen to be an artifact of the correlations of 
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each of these variables with age. A previous study found a weak positive correlation 

between predicted disorder and expression level
108

. These results suggest that is an 

artifact of correlations with age.   

Of particular interest is the observation that the negative correlation of expression and 

evolutionary rate is an artifact of each of those quantities correlating with age. Figure 

26 shows the relationship between expression and rate. A negative correlation of 

expression with evolutionary rate has been found for a number of species
57

, and gene 

expression level has been described as an important constraint on the evolutionary 

rate of proteins
58

. Several hypotheses have been proposed to explain this observation. 

Drummond and Wilke have asserted this relationship is a result of selective pressure 

for translational robustness because levels of mistranslated protein increase as gene 

expression level increases
61, 62, 63

. While attractive, there is little data to support this 

explanation. At least for these E.coli proteins, it appears that the correlation between 

expression and rate is derivative on the correlations of both with age, suggesting that 

the ‘negative selection because of difficult folding’ hypothesis may not be correct. 

Examination of these relationships for other organisms is required to further 

substantiate this point.  
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Figure 26. Comparison of relative evolutionary rates of sequence change in 

orthologous families and mRNA expression level for 514 proteins in E.coli K12. 

(Expression data are from http://www.genome.wisc.edu/, log phase growth on 

glucose. Y axis shows relative evolutionary rates in orthologous families, bars show 

95% confidence intervals (approximately 2 sigma). X axis has equal points per 

expression bin). 

 

The analysis was performed on a set of prokaryotic genomes, and as expected
29, 30, 31

, 

the level of lateral gene transfer among these organisms is substantial. We have 

partially corrected for the influence of this process on apparent family age using a 

procedure that removes proteins for which the sequence relationship to other family 
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members is inconsistent with linear evolutionary descent. As figures 19a illustrates, 

the correction generally leads to a smoother relationship between age and each of the 

four factors considered. It is clear that the conservative removal process used does not 

come close to completely eliminating the effects of LGT. Nevertheless, in spite of the 

remaining noise, reasonably straightforward relationships with age are revealed.  

 

There are other possible causes of artifacts in the data. For example, it is more 

difficult to experimentally detect protein complexes for less highly expressed 

proteins, and since expression increases with age, this could account for the apparent 

increase in PPIs with age. Table 1 shows there is a correlation of expression and PPIs, 

but that this is an artifact of both correlating with age. As noted earlier, the PPI/age 

correlation is only slightly weakened by removal of the effect of expression. Both 

observations support the view that there is a real dependence of PPI level with age.   

In summary, for the properties examined, there is strong case for a substantial fraction 

of proteins in apparently young families indeed being of recent origin, and of a slow 

maturation of both the functional and structural properties of many proteins. Further 

studies are desirable to reinforce these findings, particularly including a larger 

number of genomes, examining the properties of Eukaryotic families, and extending 

the factors considered to include aspects of tertiary structure, such as fold class and 

use of local structural motifs.  
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Section 5 Material and Methods 

 

Subsection 1. Orthologous protein domain families  

The analysis was based on a previously compiled set of 30,658 primary orthologous 

protein domain families (of which 4,856 have three or more members) compiled from 

all annotated open reading frames in a set of 66 prokaryotic genomes
8
. We use the 

subset of 1,196 of these families which have a member in E.coli K12. These families 

include 94 singletons (families with only one member), 151 doubletons (families with 

two members) and 951 primary orthologous families containing three or more 

members. All analysis was performed on this orthologous set.  

 

Subsection 2. Calculation of the relative age of each orthologous family 

The relative age of each of the 1,196 orthologous protein families was deduced from 

a previously constructed species tree (Chapter 2). The tree was built using 

information from a large number of the orthologous domain families, rather than the 

more common procedure of incorporating data from only a few highly conserved 

families. As a result, the tree branch lengths are expected to be better determined and 

exhibit less bias, providing a stronger foundation for the present analysis. Branch 

lengths are in units of amino acid substitutions per site in a reference set of 14 

conserved protein families, thus a branch length of 0.1 is the interval in which an 

average of 1 substitution per 10 residues will have occurred in those families.  
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Figure 27 Phylogeny based estimation of protein family age. The most likely origin of 

each family is assumed to be at the mid-point of branch below the sub-tree that 

includes all family members. Thus, a family with members only in genomes C and D 

is considered to have an origin at the point ‘X’, and the apparent age is the average 

total branch length from that point the top of the tree (in this case, 0.0095 

substitutions per site). A family with members in, say species in A, C and D has its 

most likely origin at the point Y, and so an apparent age of 0.033). In this example, 

species A, B, C, D and E are S. typhimurium, S.enterica, E.coli O157, E.coli K12 and 

Y. pestis respectively, in the current species tree. 

 

The apparent age of each orthologous family was estimated from its phylogenetic 

distribution, as illustrated in figure 27. Lateral gene transfer can result in an apparent 

increase in family age. Consider a family that originated somewhere along the 

ABCDE-to-ABCD branch, with members in species A, B, C and D. The most likely 

94 

47 
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age is 0.033, the average total branch lengths from Y to the top of termini of branches 

A, B, C and D.  

If there is a gene duplication and transfer to species E, the apparent age will be at the 

root of the tree, and so greater than 0.058, nearly twice as old. To partially correct for 

distortion of apparent age by LGT we applied a previously developed method that 

detects which genes have most likely undergone LGT. The principle of the method is 

that lateral gene transfer of a gene will result in the sequence differences between it 

and other members of the same orthologous family being inconsistent with those 

expected from the species phylogeny
10

. The method is applicable to protein families 

with five or more members. Proteins with such anomalous rates were removed from 

each family before the calculation of family age. In all, 4,675 proteins were removed 

from 528 families, affecting their apparent age.  

Subsection 3. E.coli mRNA Expression level data sources 

A dataset of log2 mRNA expression level for E. coli K12 genes was retrieved from a 

set of E.coli MG1655 microarray-based gene expression profiles obtained under 

normal growth conditions (LB medium with 0.4% glucose at 37C) 

(http://www.genome.wisc.edu/ Wei Y et al. paper
111

). 971 of the 1,196 families 

included in the analysis have measured E.coli K12 mRNA expression levels, and so 

are used in the expression related work.  

 

Subsection 4. Estimation of protein families’ evolutionary rates 

Previously calculated relative evolutionary rates (Chapter 2) are used in the analysis.  

As discussed in Chapter 2, rates are restricted to those where consistent values were 
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obtained using three different noise resistant methods, to increase the reliability of the 

results. 514 families out of the 1,196 primary orthologous families with member from 

E.coli K12 have reliable rates by this criterion.  

 

Subsection 5. Determination of predicted percentage protein disorder 

For each of the included 1,196 E.coli K12 proteins, the percentage of disordered 

amino acids was estimated using DISOPRED2
73

, with the default setting of a 3% 

false positive rate. DISOPRED2 is trained with experimental observations of 

disordered and ordered residues in protein crystal structures. The predictor uses 

protein sequence as the input and returns. DISOPRED2 initially runs a PSI-BLAST 

search of the query sequence over a filtered sequence database. The position-specific 

scoring matrix at the final iteration of PSI-BLAST is used to generate inputs to the 

support vector machine (SVM) classifier, returning an assignment of disordered 

(positive) or ordered for each residue .The method has been assessed in blind tests 

and found to have a false positive rate close to that claimed
110

. 

 

Subsection 6. Protein- protein interaction dataset 

Two datasets of experimentally observed physical protein-protein interactions 

obtained from a high throughput screen using TAP-TAG technology were 

downloaded from www.bacteriome.org
112

.  These consist of a ‘core’ dataset of 4,863 

interactions between 1,100 proteins and an ‘extended’ dataset of 9,860 interactions 

between 2,131 proteins which includes the ‘core’ set and an additional set protein-

http://www.bacteriome.org/
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protein interaction deemed to be of slightly lower quality than the core set. The 

extended set was used for our analysis.  

 

Subsection 7. Statistical analysis 

Pearson correlation
113

 and Kendall Tau correlation
114

 were used to estimate of the 

strength of the linear dependence between each pair of variables. Partial correlations
76

 

were used to assess the degree of association of each pair of variables, removing the 

effect of a third. Statistical analysis was carried out in the R package.  
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Chapter 4: Composition bias and the origin of ORFan 

genes 

Section 1 Abstract 

Motivation: Intriguingly, sequence analysis of genomes reveals that a large number of 

genes are unique to each organism. The origin of these genes, termed ORFans, is not 

known. Here, we explore the origin of ORFan genes by defining a simple measure 

called “composition bias”, based on the deviation of the amino acid composition of a 

given sequence from the average composition of all proteins of a given genome.  

Results: For a set of 47 prokaryotic genomes, we show that the amino acid 

composition bias of real proteins, random "proteins" (created by using the nucleotide 

frequencies of each genome), and “proteins” translated from intergenic regions are 

distinct. For ORFans, we observed a correlation between their composition bias and 

their relative evolutionary age. Recent ORFan proteins have compositions more 

similar to those of random “proteins”, while the compositions of more ancient ORFan 

proteins are more similar to those of the set of all proteins of the organism. This 

observation is consistent with an evolutionary scenario wherein ORFan genes 

emerged and underwent a large number of random mutations and selection, 

eventually adapting to the composition preference of their organism over time. 
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Section 2 Introduction 

The work was done with our collaborator, Dr. Ron Unger, from The Minaand Everard 

Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel and his 

former student, Inbal Yomtovian at the Department of Computer Sciences, Bar-Ilan 

University, Ramat-Gan, Israel. The main idea of this work is to investigate the origin 

of the ORFan genes or singletons in terms of the composition bias properties of 

proteins as a function of their age. Regarding my contribution to the work in this 

publication:  all phylogenetic tree construction and estimation of the relative age of 

ORFans (Supplementary figure S3) was done using my phylogenetic tree analysis, an 

earlier version of that described in Chapter 2, using many proteins families, but only 

least median squares to determine relative evolutionary rates and the recursive 

filtering method to determine intergenome distances.  My work also included the 

calculation of the Pearson correlation coefficient between two properties (number of 

ORFans and percentage of ORFan genes with relative age) as shown in figure 30a 

and 30b. My third contribution was the correlation between the relative ages of the 

ORFans with various measures related to composition bias of ORFans with either 

regular proteins (Supplementary figure S4a) or random proteins (Supplementary 

figure S4b) in particular species. We also compared the correlation between the 

relative age and the ratio of the overlap of ORFans with either real proteins or random 

proteins (Supplementary figure S4c). The result and discussion part of this 

publication have been done during Dr. Ron Unger sabbatical in our lab during 2009 at 

Institute for Bioscience and Biotechnology research under University of Maryland, 

College Park, so that I was involved in those aspects of the work as well.  
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One of the consistent and intriguing observations that emerged from the extensive 

availability of whole genome sequences is the large number of genes that seem to 

encode unique proteins that do not exist in other organisms, or exist only in very 

closely related organisms. This appears to be the case even when using sophisticated 

sequence comparison methods like psi-blast. These genes are commonly called 

ORFan genes
6
 and the resulting proteins are called ORFan proteins. It was 

estimated
14

 that 20-30% of the open reading frames in a given genome are ORFans. 

These observations were made early in the history of genome analysis, when only the 

first organisms had been sequenced. At that time, the common explanation was that 

these "unique" genes were not unique at all, but that not enough organisms had been 

sequenced to follow the evolution of these genes. However, while the fraction of 

ORFan genes has somewhat decreased as more genomes became available, it also 

became clear that the phenomenon is not a mere artifact of a small sample size; rather, 

even with the availability of the complete sequence of close to a thousand genomes, there 

remain a large number of genes whose evolutionary history is not accounted for. 

Several possible explanations were given over the years for this phenomenon (for a 

review see reference
19, 115

. One explanation is that those sequences are not real genes; 

rather they may represent open reading frames that are never expressed. However, 

several studies have shown
118

 that these genes are expressed, and some of the 

resulting proteins have even been subjected to 3D structure analysis (x-ray or 

NMR)
14

. Another possible explanation is that these genes came from lateral gene 

transfer (LGT). In order for this explanation to be logically relevant, the transfer 

should have come from genomes whose sampling is sparse and thus can serve as a 

reservoir for the unique genes. Viral and phage genomes have been suggested as such 
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a reservoir
25

, although other recent studies
7
 have indicated that LGT cannot be the 

source for most of these genes. Another possibility that has been suggested
19

 is that 

ORFan genes originated from ancestral genes, but because of fast evolutionary rate, 

these genes have mutated their sequence to such an extent that their ancestors are no 

longer recognizable. Yet another possibility is that some ORFan genes emerged de 

novo from non-coding regions of each genome without being inherited in the regular 

evolutionary path, for example by shifting the reading frame, a phenomenon called 

overprinting (see e.g. in reference
18

) or by mutations that change non-coding regions 

to open reading frames
19

. 

It is well known that protein sequences have different amino acids compositions, i.e. 

not all of the 20 amino acids appear in proteins with the same frequency of 5%. The 

composition is different for different organisms
75

 and has both evolutionary and 

functional origin and consequences. Furthermore, within genomes, different 

sequences have different compositions, and we term the deviation of each sequence 

from the average composition of the organism as composition bias. The composition 

of sequences has been used as one of the main considerations in predicting the sub-

cellular localization of proteins
117

. Furthermore, it was observed
118

 that proteins of the 

same fold but with unrelated sequences have similar amino acid composition, and 

thus it was suggested that amino acid composition can help to predict structural folds. 

In an attempt to shed light on the evolutionary history of ORFan proteins, we 

explored the composition bias of 47 prokaryotic organisms. Using a simple measure, 

we compared the composition bias of the set of all proteins, of random proteins and of 

ORFan proteins in each genome. We show that the tendency of ORFan proteins to 
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behave like the rest of the proteins increases with the evolutionary age of the ORFans, 

and we discuss the evolutionary implications of this observation. 

 

Section 3 Results 

The list of the genomes and the number of proteins and ORFan proteins in each 

genome is given in Supplementary material table S1. We started by calculating the 

composition bias of the proteins translated from the coding genes, from random 

“genes” (based on the nucleotide frequency of the entire genome, from the antisense 

strands of the coding genes, and from the intergenic regions of the genome. The 

histograms of the composition biases are shown in figure 28 for six organisms: 

E.Coli. Rickettsia conorii, Treponema pallidum, Corynebacterium glutamicum, 

Aeropyrum pernix and Clostridium acetobutylicum. As the number of sequences in 

the intergenic sets is 1/3 of those of the other sets (see Section 5 Methods), their 

histograms were normalized by multiplying each value by 3. The real proteins have 

smaller composition bias (as is evident from the fact that their histogram is the 

leftmost) than the composition bias of the random proteins.  This is expected since the 

compositions are compared with the average compositions of the real proteins. 

Surprisingly, the composition bias of the antisense proteins is greater than that of the 

random proteins. We also note that for all organisms the composition bias histogram 

of “proteins” translated from intergenic regions are further shifted to the right. 



 

 82 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Histograms showing the composition bias for six organisms of several sets 

of proteins. All histograms were computed by using the average composition vector of 

the real proteins as the reference, and the composition bias of each protein relative to 

that reference was calculated. As expected, the real proteins have the smallest bias. 

Surprisingly, the composition bias of intergenic “proteins” is significantly larger 

than that of random or anti-sense proteins. For the random genes, very similar 

results were obtained when using either the genome’s coding or non-coding 

frequencies. (This work has been done by Inbal Yomtovian and Dr. Ron Unger.) 

We next compared the composition bias of ORFan proteins to that of the other 

datasets. Figure 29 shows the composition bias histograms of real proteins, random 

proteins and ORFan proteins (scaled up to the size of the other groups) for several 
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genomes. We noticed that ORFan proteins from different species behave differently 

in their similarity to either the coding or the random groups. The ORFans of E.Coli 

and Rickettsia conorii look like random proteins (figure 29a) the ORFans of 

Treponema pallidum and Aeropyrum pernix resemble real proteins (figure 29c) while 

the ORFan proteins of Corynebacterium glutamicum and Clostridium acetobutylicum 

have intermediate assignments (figure 29b). 

From the results of the calculations for all 47 organisms, we noticed that indeed there 

is a range in the similarity of the composition bias between the ORFan proteins and 

the real and random proteins. In an effort to understand this range, we looked at the 

relative age of the ORFans, as determined by the phylogenetic tree (see Section 5 

Methods), as a possible explanation.    

First, we checked the correlation between the number of ORFans in each genome and 

their relative age, and found a weak correlation (0.36). A more significant correlation 

(0.5) was found between the relative age of the ORFans and the percentage of ORFan 

genes from the total number of coding genes in the organism (see scatter plots in 

figure 30).    
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Figure 29. Histograms of the composition bias of the set of ORFan proteins are 

compared with the composition bias of all proteins and of random proteins for six 

organisms. Since there are fewer ORFan proteins, their histograms were scaled up 

accordingly (the results were validated to ensure that they are not due to sampling 

effects). In the two examples in the top panel (a), the ORFan proteins behave like 

random proteins; in the two examples in the bottom panel (c), the ORFans behave 

like the real proteins; and the behavior of the examples in the middle panel (b) is 

intermediate. (This work has been done by Inbal Yomtovian and Dr. Ron Unger) 
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Next, we found a surprising strong correlation coefficient of 0.59 between the relative 

age of the ORFans and the distance between the average composition bias of the 

ORFan and the random proteins. Similarly, the correlation coefficient between the 

relative age and the distance between the average composition bias of the ORFan and 

the real proteins is −0.66 (see scatter plots in Supplementary figures S4a and b). To 

make sure that these high correlations are not dependent on the particular way of 

comparing the composition bias, we also calculated the correlation between the 

relative age and the ratio of the overlaps (and got similar results (correlation 

coefficient of −0.58, see Supplementary figure S4c). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 86 

 

    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. We observed (30a) a weak trend of correlation between the relative age of 

ORFans and the number of ORFan of the organisms (correlation coefficient of 0.36). 

A stronger correlation (0.5) was found when the relative age of the ORFan was 

plotted not against the absolute number of ORFan genes but against the percentage 

of ORFan genes from the total number of genes of the organism (30b). (Relative age 

of ORFans in this result was from my phylogenetic tree work analysis) 
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Section 4 Discussion 

The main finding of this study is the correlation between the relative age of the 

ORFans and the degree of similarity of their composition to that of the real proteins 

of the organism. We found a significant correlation (correlation coefficients between 

0.58 and 0.66) between the relative age of the ORFans and their composition bias, as 

determined by various measures of the composition distance between the set of the 

ORFan proteins and the set of real proteins. Thus, the older the ORFans, i.e., the more 

ancient the organism, the more the amino acid composition of its ORFans resembles 

that of the rest of the proteins. Young organisms, i.e. organisms that split from their 

ancestor organisms more recently, tend to have ORFan genes with composition that is 

more different from that of the rest of the proteins, and more similar to that of the 

random genes. 

We tested to see if there are other factors that correlate with the relative age of the 

ORFan proteins and with the composition bias. As expected, we found that the 

fraction of ORFan genes among all coding genes in each organism is correlated with 

the evolutionary age of the organism (correlation coefficient of 0.5). Older organisms 

that have, almost by definition, fewer close relatives, tend to have more ORFan 

genes. No other factors that we tested, including the GC content of the organism, the 

size of the genome and the ratio of coding to intergenic regions, showed a strong 

correlation (< 0.3) with the ORFan behavior. 

Thus, our data are consistent with a model wherein ORFan genes emerged with a 

composition that was similar to the random composition of the genome. Then, during 

evolution and due to the selective pressures that shape the composition bias of each 
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organism, the composition of ORFan genes gradually converged to be more similar to 

the composition of the rest of the proteins of the genome. 

We may examine the three possible explanations for the origin of ORFan genes in 

light of this observation. The first explanation is that ORFan genes originated from 

bacteriophages (see a review in Daubin and Ochman paper
115

). We think that this is 

unlikely. First, note that bacterial genes that have known homologues in 

bacteriophage are not considered ORFans by our definition. Second, for six bacteria 

for which sufficient bacteriophages have been sequenced, we compared the 

composition of the ORFan genes with the composition of bacteriophage proteins and 

found that the composition of the ORFan genes of the bacteria is not similar to the 

composition of the bacteriophage proteins (see Supplementary figure S5). 

The second possible explanation is that ORFan genes emerged de novo from non-

coding regions of the genome (see a review in reference
19

). This is also not consistent 

with our observation that protein created from intergenic sequences are distinct 

(further to the right in figure. 28) from the random proteins, while the ORFan proteins 

fall between the random and the real proteins. If ORFan proteins emerged from 

intergenic regions, then we would expect the ORFan genes to behave more closely to 

intergenic non-coding regions of the genome, and not like random sequences. 

The third explanation is that ORFan genes result from a very fast evolutionary clock 

rate of mutations operating on genes that are under positive selection
19

. This 

explanation is the most consistent with our observations. Random mutations are likely 

to create nucleotide sequences that have A/C/G/T frequencies that are similar to 

random sequences, thus creating novel proteins whose amino acid sequences have 
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composition bias similar to the random proteins that we have created. Over time, the 

sequences underwent further mutations and selection that changed their composition 

and brought their composition bias to be more similar to that of the rest of the 

proteins. 

Section 5 Material and Methods 

Subsection 1: Dataset 

Our dataset started with a collection of 66 representative prokaryotic genomes
10

. For 

these genomes, the sequences and annotations were taken from NCBI. In each 

organism, ORFan genes were defined as genes that appear only in their genome-of-

origin, and do not have any similar genes based on a Blast run against the entire 

NCBI-NR database. The parameters used to define a hit were E-value < 0.05, and 

match-length that covers at least 50% of the ORFan length. Three organisms were 

found to have another related organism with which they share many proteins 

(Escherichia coli with Shigella, Methanococcus and Nostoc sp PCC 7120 

with Anabaena). For these organisms, we considered genes as ORFans if they 

appeared only in their original genome and in the very close relative. 

The analysis presented here included the 47 genomes (out of the 66) that have at least 

25 ORFan genes each. The list includes 38 bacteria and 9 archaea (see Supplementary 

Table S1). All together, we identified 8812 ORFan genes out of 123 444 genes (∼7%) 

in our ensemble (Supplementary table S1). 
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Subsection 2: Real and random proteins 

We called the set of all proteins in an organism the set of ‘real proteins’. For each 

organism, three sets of random sequences were created. Each set was matched to the 

set of real proteins in terms of the number of proteins and the length of each protein. 

The three sets of random sequences were created based on the nucleotide frequency 

(i.e. the A/C/G/T ratios) of (i) the entire genome, (ii) of only the coding regions and 

(iii) only of the non-coding regions. The nucleotide sequences were translated to 

amino acid sequences. All sequences started with ATG, and to maintain protein 

length, stop codons, when generated, were replaced by other random codons. 

 

Subsection 3: Translating proteins from intergenic regions 

Nucleotide sequences that came from intergenic regions of the genome (i.e. regions 

that are between genes and do not reside on the opposite strand of coding regions) 

were translated into proteins. Stop codons were skipped over and the subsequent 

nucleotides were used to create additional codons such that the lengths of these 

‘proteins’ match those of the real proteins. Since the number of intergenic regions in 

prokaryotic genomes is limited, the set sampled was 1/3 the number of proteins in 

each genome.  

 

Subsection 4: Translating anti-sense proteins 

For each protein, the antisense sequence (i.e. its reverse complement sequence) was 

also translated. Thus, the size of this set of proteins was the same as that of the real 

proteins in each genome. Stop codons were skipped over. 
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Subsection 5: Calculating Composition Bias 

For each organism, a reference composition vector was calculated by averaging the 

percentage of each of the 20 amino acids in each protein over all real proteins of the 

genome according to NCBI annotation. For each amino acid, the SD about the 

average composition was also determined. For each amino acid sequence s, the 

composition bias c
s 
was calculated by comparing its composition vector to the 

reference composition vector according to:  

(1)  



i SD

ff
c

r

i

r

i

s

is ||
 

Where i ranges over the 20 amino acids, fi
s
 is the i

th
 component of the composition 

vector of the given sequence, fi
r
 is the i

th
 component of the reference composition 

vector, and SDi
r
 is the standard deviation of the reference composition of the ith 

amino acid about its average. Thus, each “protein” is assigned a composition bias, 

and for a set of “proteins” in a given organism, we created a histogram of these 

composition biases. For the ORFan proteins, the histogram was scaled up by a factor 

based on the fraction of ORFan proteins. For example if an organism has 4000 

proteins of which 400 are ORFans, then the values in the ORFan histogram were 

scaled up by a factor of 10 (4000/400). 

We have also compared the frequency vector of the given sequence to that of the 

reference vector using a root mean square (RMS) measure. The RMS measure square 

the difference in the frequency of corresponding amino acids without normalization 

to the SD weight that appear in Equation (1). The results of using these two measures 

were similar and thus in this article we show only the results of the first measure. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853687/#M1
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Subsection 6: Calculating the difference between histograms of composition 

biases 

The difference between the histograms was calculated as the difference between the 

average values of each histogram. We also measured the difference by computing the 

overlap between the two histograms. We then calculated the ratio between the overlap 

of the ORFans and real protein and the overlap of the ORFans and the random 

proteins. This ratio reflects the relatedness between the ORFan proteins to either the 

real proteins (low ratio values) or the random proteins (high ratio values). 

Subsection 7: Phylogenetic tree construction and measuring the relative age of 

ORFans (This result was from my phylogenetic tree work analysis) 

Since ORFan genes are found in only a single branch of the phylogenetic tree, they 

must have emerged subsequent to the split of that branch. The maximum age of the 

ORFan genes must be smaller than the age of the organism, and thus it assumed to be 

proportional to the relative length of their terminal branch (Supplementary Figure 

S3). This length was used to estimate the approximate relative age of the ORFan. 

The tree was constructed incorporating information from accepted amino acid 

substitutions per site between species in a large set of protein families, to avoid bias 

issues encountered in methods where only a small number of families is used. The set 

of orthologous protein domain families previously constructed
8
 from 66 prokaryotic 

genomes was used. Multiple sequence alignments for each family were generated 

using MUSCLE
94

. The estimated accepted amino acid substitutions per site between 

each pair of domains ‘i’ and ‘j’ in each family ‘u’, S(i, j, u) were then obtained using 
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the PROTDIST module in PHYLIP
95

 with the Jones–Taylor–Thornton amino acid 

substitution matrix
96

. 

The numbers of accepted substitutions per site for each family were placed on the 

same scale by comparison with the average rates of substitution Sref(i, j) between 

genomes ‘i’ and ‘j’ in a set of 14 highly conserved families. The rate of sequence 

change for each family, C(u), relative the reference set was obtained using a robust 

least median square procedure
97, 98

, finding the C(u) which minimizes the median 

value of the set (r(i, j, u)
2
), where 

 

r(i,j,u)
2
  = {S(i,j,u)/C(u) - Sref(i,j)}

2
 

and the set includes contributions from all pairs of genomes ‘i’ and ‘j’ with members 

in family ‘u’ 
38

. A robust method was necessary to avoid distortions of C(u) arising 

from anomalous S(i, j, u) values caused by LGT and other factors. 

The intergenome distance, D(i, j), between each pair of genomes ‘i’ and ‘j’ was 

estimated using D(i, j) =< S(i, j, u)/C(u)>u where the average includes contributions 

from all families with members in genomes ‘i’ and ‘j’. A phylogenetic tree was then 

built from this distance matrix, using the neighbor joining method 
88

, as implemented 

in PHYLIP. 

Correlations were calculated using the standard Pearson correlation coefficient 

comparing the two properties of interest (e.g. number of ORFans and relative age) for 

each of the 47 genomes. 
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Chapter 5:  Conclusions and Future Perspectives 
 

Section 1 Overview 

This thesis reports results of studies of some evolution mechanisms for the possible 

origin of apparently young protein families found in 66 Prokaryotic organisms. Four 

possible hypotheses were proposed to account for the emergence of these families: 

They may arise from (1) previously non-coding DNA, or by a frame-shift in an 

existing coding sequence; (2) recombination of structural fragments between proteins 

or recombination with non-coding DNA; (3) older families where the rapid rate of 

sequence change make relatives hard to detect; and (4) as a consequence of lateral 

gene transfer (LGT) from other organisms.   

 

The work focuses on obtaining and assessing data relevant to hypothesis (1): that 

these young families are in some sense new open reading frames, occurring in 

previously non-coding DNA or as a result of a frame-shift within an existing open 

reading frame. The basis of the approach is that proteins that have recently arisen in 

this way will have properties that distinguish them from more established proteins. 

Thus, we examined five relevant properties as a function of apparent family age. A 

necessary prerequisite for the analysis is a means of estimating protein family age. 

The absences of a fossil record as well as the high prevalence of lateral gene transfer 

make age determination for prokaryotic entities challenging. From previous work, we 

had established that for our purposes existing phylogenetic methods had significant 
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deficiencies, as a consequence of only utilizing information from a small number of 

protein families. We therefore undertook to develop a new method for the 

construction of species tree that makes use of information from a large number of 

protein families. The new approach required two major hurdles to be surmounted. 

First, integrating information from many families required a means of normalizing 

across the widely varying rates of sequence change among families. Second, the 

effects of lateral gene transfer and inevitable errors in assigning proteins to 

orthologous families as well as in sequence alignment introduce large amounts of 

noise into the data. To overcome these problems, we introduced a combination of 

noise resistant methods to calculate relative evolutionary rates for each family, and to 

determine inter-genome distances. With this scope of work, the conclusions presented 

below fall into five parts: (a) Effectiveness of noise resistant methods; (b) 

determination and analysis of relative evolutionary rates; (c) development and 

application of a multifamily phylogenetic method; (d) analysis of protein properties 

as a function of age; and (e) future prospects.  

 

Section 2 Use of noise resistant methods. 

Relative evolutionary rates of sequence change for each orthologous family were 

based on the ratio of the number of accepted substitutions per amino acid between a 

pair of family members in two of the genomes included to the corresponding number 

of average number of amino acid changes between members of 14 highly conserved 

families. Thus, for a particular family, each pair of genomes that contain members of 

the family provides one estimate of the rate. Three primary factors introduce noise. 
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First, if one of the members of a family has recently undergone lateral gene transfer, 

it will have sequence differences to members in other genomes largely reflecting its 

original phylogenetic location, not the current one. Second, the method assumes that 

all the family members included are orthologs. Paralogous protein pairs will typically 

have larger sequence differences than orthologs in the same species because of 

adaption to different functions
8, 119

. Many methods have been developed to identify 

orthologous subfamilies, but none are prefect
8, 120, 121, 122

. Third, obtaining an accurate 

count of amino acid differences between a pair of proteins requires a correct amino 

acid sequence alignment. Although alignment methods have improved dramatically in 

recent years
8, 123, 124, 125, 126

, there are still inevitable errors at low sequence identities. 

Therefore, a straight average of relative rates over all the contributing genome pairs is 

likely to be seriously distorted by errors of one sort or another. A least squares fit of a 

rate to the data is also problematic, because of sensitivity of that method to outliers
100

. 

We used three methods that are more noise resistant to obtain the evolutionary rates. 

First, least median squares, which is less sensitive to outliers than least squares
97, 98

. 

Second, a Gaussian Kernel estimator
99

. Gaussian Kernel estimator methods represent 

each observation with a Gaussian probability density centered at that value, with a 

variance related to the fuzziness of the data. The sum of Gaussian probability 

densities for all observations then provides an overall likelihood distribution for the 

data, and the maximum value is the maximum likelihood estimate. The third method 

is a recursive filtering procedure, in which a simple average ratio is first calculated. 

The individual values most different from that average are then removed from the 

data, and a new average calculated. The process is repeated until the ratio converges 
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to a constant value, in practice not more than three iterations with these data. None of 

these methods can deal with the worst cases of noise in these data, most likely arising 

for families where many lateral gene transfer events have occurred. But for such 

cases, the errors distort the calculated rates differently for the different methods. We 

exploited this principle, and selected just those families where the three methods 

provided closely similar results. 1,379 families out of the 2,264 with more than three 

members met the consistency criteria used. Least median squares and the Gaussian 

kernel estimator method agreed for a substantially higher fraction of families than 

this, with the recursive filtering approach usually being the outlier. The deficiency of 

that approach is that if the initial average is too much distorted by the noise, 

inappropriate contributors will be filtered out in the next iteration, and so the initial 

error is locked in. This particularly tended to be the case for families with few 

members. The average evolutionary rates were used as weights in combining the data 

from many families in order to obtain intergenome distances. The same three noise 

resistant methods and consistency criteria were used in these calculations. The 

primary source of noise here is errors in the evolutionary rates, and since only the 

most reliable are included, consistent results should be found in most cases. 

Reassuringly, this was the case, with 96.9% of the distances meeting the consistency 

criteria. Based on experience in this work, we conclude that least median squares and 

the Gaussian kernel estimator are very robust to large amounts of noise in the data 

and further, the use of a consistency test is effective for identifying those cases where 

one or both methods are overwhelmed by noise.  
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Section 3 Determination and analysis of relative evolutionary rates 

As others have also observed
53, 55, 58, 59

, we found a wide variation in evolutionary 

rates among the families – well over an order of magnitude difference between the 

highest and the lowest rates. At present, factors determining the rate of sequence 

change of different families are relatively poorly understood. An important 

conclusion from our analysis of correlations of various factors with rate of sequence 

change (Chapter 3) is that, at least for these data and contrary to what others have 

asserted
55, 58, 59

, the level of gene expression is not a significant controller of 

evolutionary rate. Instead, it appears that on average, the younger the protein family, 

the more rapid the rate of sequence change. There are two possible explanations for 

this. One is simply that there are few functional constraints on young proteins because 

they have no or weak function. While that could be the case for a small fraction, we 

have seen (figure 18) that most are significantly expressed, implying it is unlikely that 

they have no function. More probably, function is still emerging or undergoing fine-

tuning, leading to positive selection, resulting in a higher rate of acceptance of 

substitutions.  

 

         We also found one unexpected factor related to evolutionary rate: E.coli K12 

proteins in 17 families out of 58 families with rates higher than 5.0 have increased 

expression (1.05-6.68 relative log2 mRNA expression level) under stress conditions 

(cold (16C), heat (50C), oxidative stress and glucose-lactose shift) compared to 

normal growth conditions (glucose)
127, 128

. In contrast to that, only 60 such families 

with E.coli K12 members out of the 456 in the lower rate group (rate less than 5.0) 
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have a reported increase in expression under stress conditions, a more than two fold 

lower level, and significantly different by a chi-squared test (P-value < 0.0012).  

Some examples of these high rate E.coli proteins are as follows: trimethylamine N-

oxide reductase also called energy metabolism cytochrome C type protein, chitoporin 

protein, which regulates the uptake of chitosugar and Ner-like regulatory protein 

expression.  Further details are given in Supplementary Figure S2. The reasons for the 

tendency for stress regulated proteins to have higher rates of sequence change are not 

clear at this point, and the phenomenon requires further investigation.  

 

Section 4 Development and application of multifamily phylogenetic methods 

Many methodological advances for sequence based reconstruction of phylogenetic 

relationships have been introduced
129

. The most popular methods at present use 

maximum likelihood approaches in which each amino acid position in a multiple 

sequence alignment is treated as a feature included in the optimization. While 

powerful, these methods are very computationally demanding, and so are unable to 

deal with alignments for a large number of families. Hence, in this work we used 

older methods, first calculating intergenome distances based on average differences 

between sequences, and then using standard neighbor joining tree-building methods
88

. 

The result is successful in the sense that the new tree corrected the two primary 

defects we are aware of in the previous trees constructed using a small number of 

families – short branch lengths are better resolved because of the inclusion of fast 

evolving families, and distortion of the relationship between bacteria and archaea is 

reduced through reduced reliance on ribosomal proteins. The topology of the new tree 
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is generally robust as assessed by bootstrapping, demonstrating the new method 

produces stable results. The topology obtained is similar to that of the earlier trees, 

with a few interesting differences. In particular, the three included hyperthermophiles, 

which previously clustered together, become separated. We hypothesize that this is in 

fact a better representation of the true relationship between the species concerned, and 

that earlier results were artifacts resulting from temperature based amino acid 

composition bias. This idea requires further investigation.  

 

Section 5 Analysis of protein properties as a function of age 

All five of the protein properties examined show significant variation as a function of 

apparent family age. The extent of correlation was enhanced by use of a technique 

developed by a previous student
38

 to remove the more easily detectable instances of 

lateral gene transfer that distorted family age. While this treatment is only partial, we 

have clearly demonstrated its value in phylogenetic age analysis. The principal 

conclusions from the property/age analysis are as follows: (a) There is strong (16 

fold) increase in average expression level as function of family age, consistent with 

young proteins being as yet poorly adapted. (b) As discussed above, the dependence 

of average family evolutionary rate on family age is consistent with positive selection 

for still emerging structural and functional properties, as would be expected for new 

open reading frames. (c) The average number of known protein binding partners also 

increases with age, consistent with newly formed young proteins having limited 

function, and a gradual increase in functional complexity with age. (d) The picture for 

intrinsic structural disorder is more complex, but is consistent with young proteins 
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having poorly ordered tertiary structure that gradually becomes better defined with 

age. Then, as older proteins acquire multiple binding partners this process is partially 

reversed
70, 72

. (e) Codon usage of the youngest orphans is close to that of random 

proteins (Chapter 4), as would be expected for new open reading frames. Notoriously, 

correlation does not imply causation. However, the partial correlation analysis we 

performed does suggest that age is the driving variable for the behavior of these 

properties.  

 

While these five results are consistent with the new open reading frames hypothesis, 

they do not provide conclusive proof. In particular, it is necessary to examine to what 

extent the observations provide evidence against the other hypotheses: Hypothesis 

(2), that the apparently young proteins are the result of recombination of parts of 

older proteins and partially from recombination of these with non-coding DNA could 

produce some tendency for some of the observed dependencies on age – newly 

combined structure might exhibit more disorder, initially have higher rates of 

sequence change as a result of positive selection for new structural features, and also 

be insufficiently adapted for high expression levels. The very strong resemblance of 

codon use to that of random proteins would not be expected, though. Also, many 

previously existing protein interactions would likely be mostly preserved in the 

recombination process, inconsistent with observed strong dependence of number of 

binding partners on apparent age. Hypothesis (3), that these are old proteins that have 

fast rates of sequence change so more distance relatives cannot be detected is fully 

consistent with the observed dependence of rate on apparent age, but not with any of 
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the other four factors. Hypothesis (4), that these young proteins are largely the result 

of lateral gene transfer, is inconsistent with all five observations. That said, it is clear 

that some fraction of these apparently young proteins are the result of lateral gene 

transfer from phage – using a PSI-BLAST search against phage sequences in the NR 

database
130

, we find 7.2% of singletons to have a detectable relationship to phage. 

Indeed, it is likely that all four hypotheses have some validity, but that new open 

reading frames play the major role.  

 

Section 6 future prospects 

Subsection 1. Phylogenetic analysis 

The new tools for the utilization of large numbers of families and removal of lateral 

gene transfer effects in building phylogenetic trees open the way for several 

interesting studies that were previously difficult, if not impossible. First, the 

robustness conferred by many families should make it possible to look at the 

distribution of evolutionary rates for all families in each branch of a species tree. The 

resulting insight into which proteins changed most as each speciation event occurred 

should shed new light on the adaptations involved. Related to that, it should also be 

possible to examine how rapidly each family changed in different parts of the species 

tree – where did substantial adaptation to new conditions or function occur within 

each family. A third possibility is to build trees based on the families involved in a 

particular pathway or GO
93

 process: is it now possible to see where these higher level 

functional entities underwent most change? We also expect that the combined noise 
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resistant methods strategy developed in this work will find wider application in 

bioinformatics.  

 

Subsection 2. Further studies of apparently young proteins. 

There is still much to be done in investigating the origins of apparently young 

proteins. First, the new methods are computationally efficient, and can easily be 

extended to a much larger set of prokaryotic genomes, providing a better quality 

species tree than those now available.  Second, it will be informative to apply the new 

methods to age dependency for Eukaryotic proteins. Do the same trends as a function 

of age hold? If so, this would lend further support to the new reading frames 

hypothesis. Second, new reading frames must come from some where, and an 

aggressive focus on mapping to previously non-coding or frame-shifted origins is an 

obvious next step that if successful will provide very strong support for the new frame 

hypothesis. Third, an additional factor that should be related to protein age is protein 

structure, so far only examined in terms of intrinsic disorder. We expect that new 

proteins will exhibit additional structural immaturity, especially in the use of 

energetically sub-optimal and therefore relatively rare local structural motifs. The 

difficulty here is that it has proven very difficult to experimentally determine the 

structures for young proteins
106

.  An alternative approach is provided by fragment 

modeling methods
131

, which should be directly applicable to this problem. Finally, if 

these proteins are new, what type of functional roles do they play? In many cases, of 

course, function is not known, but as more data accumulate our new ability to more 
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reliably assign family age will provide a better means of tracking the functional 

classes of young proteins. 
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Appendices: Supplementary tables 
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Supplementary Figure S1. Examples of determining the relative evolutionary rate for 

four protein families using least median squares (LMS), for cases where the rate is 

less than 1. The LMS line is shown in red, and the slope gives the relative rate, 

RLMS(u).  

 

1a. Family of Ribosomal proteins L7/L12, with an average relative evolutionary rate 

of 0.86 (LMS 0.83, GDKE 0.86 and RF 0.89) and 54 members in the family. 

1b. Family of translation initiation factor SUI1, with an average relative evolutionary 

rate of 0.95 (LMS 0.95, GDKE 0.93 and RF 0.98) and 21 members in the family. 
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1c. Family of Succinyl-CoA synthase, alpha subunit, with an average relative 

evolutionary rate of 0.61 (LMS 0.59, GDKE 0.59 and RF 0.64) and 49 members in 

the family. 

1d. Family of Uriease (gamma subunit), with an average relative evolutionary rate of 

0.58 (LMS 0.57, GDKE 0.59 and RF 0.59) and 23 members in the family. 

 

 
Supplementary Figure S2. Examples of determining the relative evolutionary rate for 

four protein families using least median squares (LMS), for cases where the relative 

rate is greater than 5. The LMS line is shown in red, and the slope gives the relative 

rate, RLMS(u).  
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2a. Family of Cell division initiation protein, require for vegative and sporulation 

septum formation, with an average relative evolutionary rate of 6.15 (LMS 6.21, 

GDKE 6.07 and RF 6.17) and 9 members in the family. The log2 of mRNA 

expression level of this protein in B. Subtilis under normal growth conditions 

(glucose) is -1.22 while under  stress conditions of acid, heat, salt, and cell envelope 

stresses, the expression level is increases by 1.8, 1.5, 2.7 ,and 2.8 folds respectively 

(Eiamphungporn W. and Helmann J.D. 2008).  

2b. Family of Trimethylamin N-oxide reductase, energy metabolism, cytochrome C 

type protein, with an average relative evolutionary rate of 9.75 (LMS 9.66, GDKE 

9.97 and RF 9.64) and 7 members in the family. The log2 of mRNA expression level 

of this protein in E.coli K12 under normal growth conditions (glucose) is -2.21 while 

under stress conditions of cold and oxidative stress, the expression level increases 

0.98 and 1.05 fold respectively (Kang Y. et al. 2005; Jozefczuk S. et al. 2010).  

2c. Family of Outer membrane protein slp precursor, with an average relative 

evolutionary rate of 9.82 (LMS 9.79, GDKE 9.37 and RF 10.30), and 9 members in 

the family. The log2 of mRNA expression level of this protein in E.coli K12 under 

normal growth conditions is -0.66 while under  stress conditions of cold and heat 

stress, the expression level increases 3.24 and 3.54 fold respectively (Kang Y. et al. 

2005; Jozefczuk S. et al. 2010). 

2d. Family of Ner-like regulatory protein and Ner repressor protein of phage Mu, 

with an average relative evolutionary rate of 8.07 (LMS 8.07, GDKE 8.05 and RF 

8.08), with 8 members in the family. The log2 of mRNA expression level of this 

protein in E.coli K12 under normal growth conditions is -1.22 while under stress 
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conditions of  heat and cold stress, the expression level increases 1.60 and 2.04 fold 

respectively (Kang, Y. et al. 2005; Jozefczuk, S. et al. 2010). 

 

Supplementary figure S1 and S2 References 

Eiamphungporn W. and Helmann J.D. (2008).”The Bacillus subtilis σM  Regulon and 

its Contribution to Cell Envelope Stress Responses.” Mol Microbiol.; 67(4), 830–848. 

Jozefczuk, S., Klie, S., Catchpole, G., Szymanski, J., Cuadros, I.A., Steinhauser, D., 

Selbig, J. and Willmitzer, L. (2010). “ Metabolomic and transcriptomic stress 

response of Escherchia coli.” 6(364), 1-16. 

Kang Y., Weber K.D., Qiu Y.,Kiley P.J., and Blattner F. R. (2005) “Genome-wide 

expression analysis indicates that FNR of Escherichia coli K-12 regulates a large 

number of genes of unknown function.” J Bacteriol 187(3), 1135-1160.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 111 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S3. Relative age of ORFan proteins. ORFan genes found only 

in organism A are assumed to have emerged subsequent to the A/B speciation event. 

Thus, the maximum age of these ORFan proteins is proportional to the relative 

terminal branch length r. (Relative age of ORFans estimation was calculated from my 

phylogenetic tree work analysis) 
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  4a. ORFans versus Regular proteins             4b. ORFans versus Random proteins       

 

 

 

 

 

 

 

 

    4c. The ratio measure 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S4: The correlation between the relative age of the ORFans 

and various measures related to their composition bias. For each organism, the 

figure shows the correlation between the relative age of its ORFans and the 

difference between the average composition bias of the ORFans and either real 

proteins (4a), or random proteins (4b).  In both cases there is a significant 

correlation of -0.66 and 0.59, respectively.  (4c) shows similar results by using the 

correlation between the relative age and the ratio of the overlap of the ORFans and 

real protein and the overlap of the ORFans and the random proteins (See Section 5 
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Methods) This ratio reflects the relatedness between the ORFan proteins to either the 

real proteins (low ratio values) or the random proteins (high ratio values).  A 

correlation coefficient of -0.58 was found. (Relationship of Relative age of ORFans 

with three different measurements in this result was part of my analysis work.) 
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Supplementary Figure S5: We selected six bacteria (Bacillus subtilis, Listeria 

innocua, Lactococcus lactis, Mycobacterium leprae, Streptococcus pneumoniae, and 

Vibrio cholerae) for which several phages have been sequenced. For each bacterium, 

we created a set of all the corresponding phage proteins and used it to calculate the 

composition bias of its bacteriophages. For these six bacteria the averaged 

composition vector of all the phages associated with each bacterium was calculated. 

Then, the composition bias of all the proteins (red) and the ORFan proteins (blue) 

were calculated using the bacteriophage as reference. The results show that the 

composition of the ORFan proteins in each organism is dissimilar to that of the 

bacteriophage.    (This work has been done by Inbal Yomtovian and Dr. Ron Unger) 

 

 

 

Supplementary Table S1. List of genomes studied.  Sequences were taken in July 2008 

from (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/) 

 

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
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Full Name Type 
Number of Proteins Number of 

ORFans 
Relative age of 
ORFans 

Aeropyrum pernix Archaea 1700 85 0.27246 

Archaeoglobus fulgidus Archaea 2420 269 0.25659 

Aquifex aeolicus Bacteria 1529 69 0.22724 

Agrobacterium tumefaciens str C58 Bacteria 2765 135 0.08291 

Borrelia burgdorferi Bacteria 851 124 0.19832 

Bacillus halodurans Bacteria 4066 285 0.11475 

Brucella melitensis Bacteria 2059 96 0.09113 

Bacillus subtilis Bacteria 4103 240 0.10794 

Clostridium acetobutylicum Bacteria 3672 438 0.12082 

Caulobacter crescentus Bacteria 3737 340 0.15084 

Corynebacterium glutamicum Bacteria 2993 138 0.13731 

Campylobacter jejuni Bacteria 1634 113 0.13967 

Clostridium perfringens Bacteria 2660 269 0.11886 

Chlamydophila pneumoniae AR39 Bacteria 1112 40 0.00013 

Chlamydia muridarum Bacteria 904 55 0.06978 

Deinococcus radiodurans Bacteria 2629 455 0.22898 

Escherichia coli O157 H7 Bacteria 5230 133 0.00882 

Halobacterium sp NRC 1 Archaea 2075 152 0.28623 

Helicobacter pylori 26695 Bacteria 1576 40 0.00932 

Listeria innocua Bacteria 2968 46 0.00817 

Lactococcus lactis subsp lactis Bacteria 2321 144 0.10036 

Listeria monocytogenes EGD e Bacteria 2846 51 0.00917 

Methanococcus jannaschii Archaea 1729 231 0.23841 

Mycobacterium leprae Bacteria 1605 92 0.04065 

Mesorhizobium loti Bacteria 6743 517 0.09650 

Mycoplasma pulmonis Bacteria 782 179 0.21454 

Mycobacterium tuberculosis Bacteria 3989 34 0.00590 

Neisseria meningitides Bacteria 2011 158 0.00507 

Nostoc sp PCC 7120 Bacteria 5366 440 0.11484 

Pseudomonas aeruginosa Bacteria 5568 218 0.14244 

Pyrobaculum aerophilum Archaea 2605 424 0.28444 

Pasteurella multocida Bacteria 2015 33 0.05332 

Pyrococcus horikoshii Archaea 1955 73 0.04826 

Rickettsia conorii Bacteria 1374 277 0.01802 

Ralstonia solanacearum Bacteria 3440 158 0.14499 

Streptococcus pneumoniae Bacteria 2105 197 0.06680 

Streptococcus pyogenes Bacteria 1697 112 0.07036 

Sulfolobus solfataricus Archaea 2977 210 0.11047 

Sulfolobus tokodaii Archaea 2825 270 0.11595 

Salmonella typhimurium LT2 Bacteria 4425 25 0.00465 

Thermoplasma acidophilum Archaea 1482 50 0.08494 

Thermotoga maritime Bacteria 1858 104 0.22227 

Treponema pallidum Bacteria 1036 223 0.18505 

Ureaplasma urealyticum Bacteria 614 127 0.18326 

Vibrio cholerae Bacteria 2742 137 0.11300 

Xylella fastidiosa Bacteria 2766 626 0.16211 

Yersinia pestis Bacteria 3885 180 0.05344 
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