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On Infinitely Many Algorithmsfor Solving EquationsErnst Schr�oderTranslated byG. W. StewartTRANSLATOR'S INTRODUCTIONSchr�oder begins his remarkable paper on the solution of a nonlinearequation in a single unknown by thanking a certain H. Eggers forcommunicating most of the important results in the paper. There isa whi� of mystery here. At some point before Schr�oder's paper ap-peared, Dr. Eggers emigrated to America, and in 1876 he publishedtwo short papers in The Analyst [2, 3] on the solution of nonlinearequations. The mystery is that the papers are inconsequential, and itis di�cult to reconcile them with Schr�oder's sweeping acknowledge-ment. By way of contrast, Schr�oder went on to publish important,if somewhat neglected, work in mathematical logic [9]. It would benice to know if Schr�oder was simply being overgenerous in his ac-knowledgement.In any event, Schr�oder had a great deal to be generous about.A. S. Householder used to claim you could evaluate a paper onroot �nding by looking for a citation of Schr�oder's paper. If it wasmissing, the author had probably rediscovered something alreadyknown to Schr�oder. This observation was intended as mild hyper-bole, since much was done after Schr�oder; however, it is safe to saythat Schr�oder's paper contains the �rst systematic, general deriva-tion and analysis of algorithms for solving equations.Unfortunately, Schr�oder is only a middling expositor. Line by linehe is a considerate writer, giving his reader all the hints necessaryto follow his reasoning. But at a higher level he often plows intoa thicket of details without bothering to tell one where he is going.For this reason, I will now give a summary of the main ideas in thepaper|a sort of road map of the territory.Schr�oder's goal is to �nd the roots of the equationf(z) = 0;i



ii Schr�oderwhere f is analytic about the roots in question. (Although Schr�oder'smathematical language is not quite ours| for example, he writeslim!=1 instead of lim!!1|he is rigorous, even by today's standards.) Hebegins by distinguishing two kinds of methods. The �rst is typi�edby Newton's method and consists of the successive substitution ofiterates in a �xed formula. Schr�oder calls such methods algorithms,a usage more restricted than ours today. The essence of the secondkind of method consists in constructing a sequence of functions F!(z)having the property that lim!!1F!(z) is a root of the equation, theparticular root depending on the choice of z. Bernoulli's method canbe regarded as a method of the second kind.At this point Schr�oder's paper divides naturally into two parts.The �rst consists of a general treatment of both kinds of methods.The second consists of a systematic way of deriving a two dimensionaltable of functions (actually two such tables) that can be used toconstruct algorithms of both kinds. In the second part, Schr�oderrestricts himself to polynomial equations, but as he notes his resultsare more widely applicable. We will treat each part in turn.Schr�oder begins the �rst part with a careful discussion of theproperties of iterations of the form z0 = F (z). He derives the nowclassical result that for such an iteration to converge to a root z1, theroot must be a �xed point of F , and the absolute value of F 0(z1) mustbe less than one (actually, convergence can occur when jF 0(z)j = 1,a case missed by Schr�oder). For the case 0 < jF 0(z1)j < 1, he callsthe rate of convergence linear, as we do today. He then goes onto give the usual conditions for quadratic, cubic, and general !thorder convergence, observing that in the limit each iteration of an!th order method increases the number of correct digits by a factorof !.Schr�oder now turns to the problem of writing down the mostgeneral form of an algorithm with convergence of order !. He �rstproceeds by special cases, showing, for example, that the most gen-eral quadratically converging algorithm has the formF = z � ff1 � f2'2;where f1 is the �rst derivative of f and '2 is arbitrary. He then



Translator's Introduction iiiwrites down the remarkable formulaF = z + a=!�1Pa=1 (�1)afaa! � � 1f1@�a�1 1f1 � f! � '!:for the general !th order algorithm and establishes that it has therequired convergence rate.A class of methods of the second kind can be obtained by takingthe limit as ! ! 1 in the above expression, provided the limitexists. Schr�oder gives a recurrence for the individual terms of theseries and an alternative representation. He does not investigate theconvergence of the series in general; however, he treats the case of aquadratic equation in tedious detail.Schr�oder now moves to the second part of his paper, in which hegives a uniform treatment of a class of algorithms of the �rst andsecond kinds. Today the natural approach to these results would bethrough K�onig's theorem, and it will clarify things if we so describethem.K�onig's theorem states that if an analytic function has a single,simple pole at the radius of convergence of its power series, then theratios of the coe�cients of its power series converge to that pole. Theapplication to root �nding is as follows. The function1f(z � �) = A(0)0 (z) + A(0)1 (z)�+ A(0)2 (z)�2 + � � �has a pole at � = z�z1, where z1 is a root of f(z) = 0 that is nearestz. If z1 is unique and simple, then by K�onig's theoremA(0)!�1(z)A(0)! (z) ! z � z1:Now consider the related expansionz � �f(z � �) = A(1)0 (z) + A(1)1 (z)�+ A(1)2 (z)�2 + � � �It is easily veri�ed thatA(1)! (z) = zA(0)! (z)�A(0)!�1(z)



iv Schr�oder(here we assume A(0)�1(z) = 0). Hence if we setF!(z) = A(1)! (z)A(0)! (z) = z � A(0)!�1(z)A(0)! (z) ;it follows that lim!!1F!(z) = z1;which, in Schr�oder's terminology, is a method of the second kind.Moreover, it can be shown that the iterationz0 = F!(z)is locally convergent with order !; i.e., it is a method of the �rstkind.This is Schr�oder's development, or might have been if he hadknown K�onig's theorem. Lacking it, he proceeds indirectly. First, herestricts himself to a rational function f whose roots are z1, z2, : : : ,zn. He then introduces the functionsC(�)! (z) = a=nPa=1 z�a�(za)(z � za)!+1 ;where � is an essentially arbitrary function. Because he has an ex-plicit formula for the functions C, Schr�oder is able to de�neF!(z) = C(1)! (z)C(0)! (z)and establish the properties mentioned above. He then de�nes func-tions A(�)! by taking �(z) = 1f 0(z) , and shows that the functions Aare essentially the same as the functions A from the power series. Inother words, Schr�oder passes from certain functions, the A's, whoseproperties he can establish but which he cannot compute (becausehe does not actually know the roots) to certain functions, the A's,whose properties he cannot establish but which he can compute (be-cause he knows the function f and its derivatives). The proof of theidentity of the two completes his development.Incidentally, this description does not do justice to Schr�oder'svirtuosity in �nding elegant representations and recurrences for hisfunctions.



Translator's Introduction vThe rest of the paper, which is largely devoted to determiningconvergence regions, is an anticlimax. The task is almost trivialfor Schr�oder's methods of the second kind. For his algorithms thedi�culties are almost insuperable, and he is able to obtain resultsonly for the quadratic equation. (Curiously, a few years later Cay-ley [1] proposed essentially the same problem for Newton's method,commenting that, \The solution is easy and elegant in the case ofa quadric equation, but the succeeding case of the cubic equationappears to present considerable di�culty.")Schr�oder wrote one more paper on root �nding, or rather on iter-ated functions [8], and then turned his attentions elsewhere. He doesnot seem to have had much in
uence on his contemporaries. He isone of a group of people|K�onig [6] and Hadamard [4] among oth-ers|who were concerned with extracting the information containedin the coe�cients of power series. Yet he is not cited by these people,and there is no evidence that he in
uenced subsequent developmentsby Aitkin and Rutishauser that lead to the qd, and ultimately to theQR algorithm (for a survey of this development see [5]). CertainlySchr�oder deserves credit for the polynomial case of K�onig's theorem.He was also the �rst to show how by successive origin shifts the ratiosof coe�cients in a power series could be made to yield algorithms ofhigh order convergence. And the generality of his approach makeshim the rediscoverer of some iterative methods but the discover ofin�nitely many more.A word on the translation. The page layout and notation isroughly that of the original, as it appeared in Mathematische An-nalen. Schr�oder wrote in a style that is convoluted, even by nine-teenth century standards, and I have not labored to conceal his short-comings. On the other hand, I have not attempted to render him inthe prose of a century ago. Instead I have looked to the English ofour own day, with a little musty elaboration.Acknowledgement. I am indebted to Thomas Scavo for a de-tailed reading of the text and many useful suggestions.College Park 1992References[1] A. Cayley. The Newton{Fourier imaginary problem. American



vi Schr�oderJournal of Mathematics, 2:97, 1897.[2] H. Eggers. Calculation of radicals. The Analyst, 3:100{102, 1876.[3] H. Eggers. A new method of solving numerical equations. TheAnalyst, 3:100{102, 1876.[4] M. J. Hadamard. Essai sur l'�etude des fonctions donn�ees par leurd�eveloppement de taylor. Journ. de Math. (4e s�erie), 8:101{186,1892.[5] A. S. Householder. The Numerical Treatment of a Single Non-linear Equation. McGraw{Hill, New York, 1970.[6] J. K�onig. �Uber eine Eigenschaft der Potenzreihen. MathematischeAnnalen, 23:447{449, 1884.[7] E. Schr�oder. �Uber unendliche viele Algorithmen zur Au
�osungder Gleichungen. Mathematische Annalen, 2:317{365, 1870.Dated Pforzheim, January 1869.[8] E. Schr�oder. Ueber iterirte Functionen. Mathematische Annalen,3:296{322, 1871. Dated Pforzheim, June 1869.[9] H. Wussing. Schr�oder, Friedrich Wilhelm Karl Ernst. In C. C.Gillispe, editor, Dictionary of Scienti�c Biography, XII. CharlesScribner's Sons, New York, 1973.



On In�nitely Many Algorithms for SolvingEquationsBy Dr. E. Schr�oder at PforzheimIn this paper the frequently treated problem of solving an equa-tion will be considered from what to my knowledge is a new view-point, one which is the common source of the various well-knownsolution methods and of in�nitely many others that have not yetbeen considered. The investigations are concerned with equationsin one unknown, not only algebraic equations but also transcenden-tal. I was inspired to this work in 1867 by some communications ofDr. Heinrich Eggers of Meklenburg, who was formerly Professor atthe Gymnasium at Scha�hausen and has now emigrated to America.Speci�cally, I thank him for the knowledge of a great part of theresults in xx 2, 3, 7, 8, 11, 12, and 15, as well as the results I haveobviously derived from them. x 1.The Nature of the Solution Methods and the Conditionfor Their Applicability.Let f(z) be any single-valued function of the complex argument z =x + iy (which we shall always think of as represented by a point inthe complex plane). Then the problem that forms the object of thefollowing deliberations consists of solving the equationf(z) = 0;(1)that is, of �nding some number (root) z1 with the property thatf(z1) = 0:(2)We will only consider those roots of the arbitrary algebraic or tran-scendental equation (1) at and about which the function f(z) is con-1



2 Schr�odertinuous and for which the zero is of �nite order.1 If we take thesymbols z1 to denote any such root, then the function f(z) will besingle-valued, continuous, and �nite in some neighborhood T con-taining the point z1, and in addition the function will be zero with�nite order.Now it is well known from the theory of functions�) that thedegree of multiplicity of the root z1|i.e., the order of the zero off(z) or the pole of the reciprocal function 1f(z) |must be a (positive)integer p, so that we may writef(z) = (z � z1)p (z);(3)where  (z) is single-valued in T and the limitlimz=z1  (z)is di�erent from 0 and 1. Further, since the derivative dz (z) = (1)(z) is itself single-valued and since��)limz=z1(z � z1) (z) = 0;(4)it follows easily from the relationf (1)(z) = (z � z1)p�1fp (z) + (z � z1) (1)(z)g;(5)obtained by di�erentiating (3), that the derivative f (1)(z) of our func-tion has a zero of order p� 1 at z1.Hence the equation f(z)f (1)(z) = 0(6)must have the same roots as equation (1), only these roots are simple.The function f has additional roots at those points in T|and onlythose points|where f becomes in�nite.1Translator's note: Schr�oder is evidently using the word continuous in its oldersense of di�erentiable or analytic.�) For example, see B. Dur�ege, Elemente der Theorie der Functionen einercomplexen ver�anderlichen Gr�osse, Leipzit, 1864, x 29.��) Ibid. x 24. and 27.



Algorithms for Solving Equations 3Under these assumptions, one has a choice of di�erent methodsfor solving the equation (1). Now there are a large number and,as we shall show, even an in�nite number of solution methods, allcharacterized by the fact that one begins calculating in a �xed waywith an almost completely arbitrary number z and by a su�cientlyextended sequence of operations arrives at a result that comes as nearto the root z1 as desired. The starting value z can often be regardedas a �rst (or zero-th) approximation of the root z1, from which thealgorithm of the solution method generates successively better, moreprecise approximations. But often it is not necessary to proceed bymeans of successive approximations. In both cases, which root of theequation f(z) = 0 is found depends on choice of the starting value.Otherwise, the starting value appears as a constant, arbitrary withinsome region, whose in
uence on the �nal result diminishes as thecalculations proceed. Solution methods of both kinds are the objectof the following investigation. x 2.Methods of the First Kind (Algorithms).Without assuming anything for now about the nature of the func-tion f , we shall �rst solve the equation (1) by an algorithm whoserepeated application, starting from a zero-th approximation, yieldssuccessively more precise approximations to the root z. Within cer-tain limits, the zero-th approximation can be chosen or estimatedarbitrarily. Our problem then is to �nd a function F for which theequation z0 = F (z)(7)always gives a point z0 lying nearer the root z1 than the original pointz. If we suppose that we already know such a function, then thecalculation of z00 = F (z0)gives us a new point which is even nearer the desired root z1 thanits two predecessors z and z0. In general, if we de�nez(r) = F (z(r�1));(8)



4 Schr�oderthen because of the assumptions concerning F the distance of thelast point z(r) from the root z1 will be smaller than that of each ofthe preceding pointsz(0) = z; z(1) = z0; z(2) = z00; : : : ; z(r�1):In other words the absolute values of the di�erencesz � z1; z0 � z1; z00 � z1; : : : ; z(r�1) � z1; z(r) � z1form a decreasing sequence. We may call these di�erences the errorsin the approximations.An additional condition that must be imposed on the functionF is that the distances do not just decrease monotonically with in-creasing r but that they actually approach zero, so thatlimr=1 z(r) = z1:(9) If this condition along with the previous condition, which can bewritten analytically in the formmod: fz(r) � z1g < mod: fz(r�1) � z1g;(10)is satis�ed for all values of r, or at least from a certain value on tor = 1, then in fact (7) gives an algorithm of the kind desired. Bysuccessive application of the algorithm, we may determine the rootz1 of equation (1) to arbitrary precision. We shall say simply thatthe algorithm converges to the root z1 from the starting value z.The solution of the equation f(z) = 0 may be represented sym-bolically as z1 = limr=1 F r(z);(11)where we write F|{z}1 ( F|{z}2 f� � � F|{z}r�1 [ F|{z}r (z)] � � �g) = F r(z)(12)for the r-fold repeated or iterated function.The conditions (9) and (10) that the function F must satisfy maybe recast in a more useful way.



Algorithms for Solving Equations 5Speci�cally, the starting value is to be any value in a certainregion U surrounding the root z1, a region which we may call theconvergence region of the algorithm for the root z1. Thus, if z = z1+�represents a starting value, chosen near enough z1 so that it lies inthis convergence region and we calculate the next approximationF (z1 + �) = z1 + �0;then by (10) we always have j�0j < j�j. Consequently, if � tendstoward 0 in any manner, so must �0, and we must havelim�=0 F (z1 + �) = z1:This equation shows �rst that the function F must be continuous atz1 and second that it must satisfy the conditionF (z1) = z1:(13)Of course if the function F were continued in several branches,a line of discontinuity or a cut could proceed from the point z1.However, we shall restrict our investigations to functions F that aresingle valued in the convergence region U , or at least in a part of itsurrounding the point z1.In this case, F (z) or F (z1+�) can be developed in a Taylor seriesF (z1 + �) = F (z1) + �F (1)(z1) + �22 F (2)(z1) + � � �inside of some circle with center z1; i.e., for all su�ciently small �.From (7) and (13) it follows thatz0 = z1 + �F (1)(z1) + �22 F (2)(z1) + � � � :(14)If we now assume that F (1)(z1) is di�erent from zero, then forsu�ciently small � the term �F (1)(z1) will dominate all the followingterms, and for in�nitely small � we can writez0 � z1 = �F (1)(z1):According to the requirement (10), the absolute value of thisdi�erence is to be smaller than that of z � z1. Thus we obtain asecond condition which the function F must satisfy:mod: F (1)(z1) < 1:(15)



6 Schr�oderIf F (1)(z1) were zero, then this condition would automatically besatis�ed.Now in general if the condition (15) is satis�ed, then the absolutevalue of the error in the �rst approximation, i.e. z0� z1, will be onlya fraction of the absolute value of the previously hypothesized error,i.e. z � z1 = �. Since any number can be brought arbitrarily close tozero by repeated multiplication by a constant proper fraction, it isnot di�cult to prove that with repeated application of the algorithmthe error in the approximation actually tends to zero, or in otherwords that the requirement (9) is satis�ed.Thus if we con�ne ourselves to a single-valued function F , wemay replace the two conditions (9) and (10) by (13) and (15), and,incidentally, state the following theorem.If F (z) is a function that is single valued about z1 and satis�esthe conditions (13) and (15), then for any number z close enough toz1 equation (11) is satis�ed. In other words, for all points z lying ina certain neighborhood about the point z1, the unboundedly iteratedfunction F (z) tends in the limit to the root z1 of the equation F (z) =z. We have found that under the assumptions (13) and (15) equation(7) gives an algorithm of the kind we desire.If the case F (1)(z1) = 0 is excluded, the convergence of the cor-responding algorithm may be called linear or of the �rst order, be-cause the error in the approximation is nearly proportional to the�rst power of the error in the starting value. The smaller the errorin the starting value, the stricter the proportionality.We obtain a much more useful algorithm by choosing the functionF so that in addition to the previous conditions we haveF (1)(z1) = 0:(16)In this case, if the next highest derivative F (2)(z1) is not zero, thenfor in�nitely small � the error in �rst approximationz0 � z1 = �22 F (2)(z1)is proportional to the square of the original error. Since the error isof the order of the square, we may call the approximation quadratic.



Algorithms for Solving Equations 7Similarly, if F is de�ned so thatF (1)(z1) = 0; F (2)(z1) = 0; : : : ; F (!�1)(z1) = 0;(17)while F (!)(z1) is not zero, we get an algorithm that produces anapproximation of the !th order. For thenz0 � z1 = �!2 � 3 � � �!F (!)(z1)when � is in�nitely small, and the error in the approximation is pro-portional to the !th power of the error in the starting value.In practice if the zero-th approximation or starting value is exactto s places beyond the decimal point in absolute value, then for aquadratically convergent algorithm the following value or �rst ap-proximation will be exact to 2s places, and for an algorithm of the!th order it will be exact to approximately !s places. More precisely,the number s can be taken so large that for it and any larger numberthe assertion is strictly true.We may now recapitulate our results.Let z1 be a root of an equation f(z) = 0, and let F (z) be afunction that is single valued in a region surrounding z1 and takeson the value z1 at the point z1, so that equation (13),F (z1) = z1;is satis�ed. Then equation (7),z0 = F (z);de�nes an algorithm that converges to z1 from any point in someregion surrounding z1, provided that (15),jF (1)(z1)j < 1;holds. If jF (1)(z1)j > 0, the convergence is only linear, whereas it isof the !th order when (17),F (1)(z1) = 0; F (2)(z1) = 0; : : : ; F (!�1)(z1) = 0; jF (!)(z1)j > 0;holds.



8 Schr�oderx 3.Examples of Algorithms.We will suppose that the assumption mentioned in x 1 that f is singlevalued holds here.I. Newton's method is the most famous algorithm of the kindconsidered here for solving an equation f(z) = 0. It is given by theformula z0 = z � f(z)f (1)(z) ;and its function F is thereforeF = z � ff (1) ;where the argument z has been omitted for the sake of brevity.Now if the root z1 is of multiplicity p and we setz � z1 = �;then according to x 1f = �p ; f (1) = �p�1(p + � (1));and F = z � � p + � (1) ;whence F (1) = 1�  p + � (1) � �@z  p + � (1) :From this we immediately see that when z = z1, i.e., when � = 0,F = z1; F (1) = 1� 1p ;and consequently mod: F (1) < 1. Hence Newton's method satis�esthe fundamental conditions we have derived for an algorithm.When p > 1, F (1) is di�erent from zero. Thus the algorithm onlyconverges linearly when it is used to �nd a multiple root; and the



Algorithms for Solving Equations 9higher the multiplicity, the poorer the convergence. However, if p =1, i.e., the root is simple, then the Newton algorithm is quadraticallyconvergent, since F (1)(z1) = 0 while F (2)(z1) is in general di�erentfrom zero.If we wish to obtain a quadratically convergent algorithm for the�rst case and the multiplicity of the root is known, we need only setF = z � p ff (1) :This same algorithm could be used to advantage for p nearly equalroots.In the special case when f(z) = (z�z1)p and hence  (z) = 1, thislast algorithm yields the correct root immediately for any startingvalue z, since z0 = z � � = z1.II. Let '(1)(z)'(z)denote an arbitrary function that is single valued about z1 and is notin�nite at z1. Then the equationz0 = z � f(z)'(z)'(z)f (1)(z) � f(z)'(1)(z) or F = z � 1f (1)f � '(1)'yields an algorithm for �nding the root z1 which in general convergeslinearly when z1 is a multiple root but converges quadratically whenz1 is a simple root.The same algorithm results if we construct the Newton algorithmfor solving the equation f(z)'(z) = 0;that is, if in the formulas in I the function f is everywhere replacedby f' . For if, as is implicit in the above assumption, f and ' do notvanish simultaneously at z1, the above equation has the root z1 andcan be solved in place of the equation f(z) = 0.



10 Schr�oderWe may also show that this is a legitimate algorithm directly,without deriving it from Newton's method, by substituting �p forf to get F = z � �p+ � (1) � �'(1)'and di�erentiating this expression with respect to z.Because of the arbitrariness of the function ', this general algo-rithm includes in�nitely many special algorithms. For example, weget back Newton's method itself by taking'(z) = const:III. The function ' may be chosen so that the algorithm remainsquadratically convergent, even for multiple roots|and this is themost noteworthy special case of the general algorithm. According tothe remarks about equation (6), this will happen if we take ' = f (1).Here, after an easy reduction, we �nd thatF = z � � p+ � (1) p+ �2  (1) !2 � �2 (2) ;and for � = 0 it follows immediately that F (1) = 0. Hencez0 = z � f(z)f (1)(z)f (1)(z)2 � f(z)f (2)(z)is an algorithm that always converges quadratically.x 4.The Most General Algorithms with a Given Rateof Convergence.I will now proceed to show in complete generality how to easily con-struct algorithms z0 = F (z) that converge to a root of the equationf(z) = 0 at an arbitrary given rate.



Algorithms for Solving Equations 11We will let the function f be subject to the condition of x 1 thatit be single valued and the function F be subject to the conditionsof x 2.For the sake of brevity we will omit the starting value z (whichmust be chosen su�ciently near z1 but is otherwise arbitrary) when-ever it appears as an argument of a function. However, to distin-guish the case where the special argument z1 is to be understood ina formula instead of the general argument z, we will write z = z1nearby|or what is equivalent for our purposes, f(z) = 0. Deriva-tives like @az f(z) = f (a)(z)of the function f , which occur especially often, will be denoted by fa;however, any other di�erentiation with respect to z will be indicatedby the symbols @z or @az , or for short @ or @a. The scope of thesesymbols extends to the next + or � sign.By ', '1, '2, : : : I will denote arbitrary functions that are singlevalued about the point z1 and do not become in�nite there.Finally, without loss of generality we can restrict ourselves to theassumption that the root z1 of the equation to be solved, i.e. f = 0,is simple. For as we have already mentioned, if this equation hasmultiple roots, the equation ff1 = 0 has the same roots, only each issimple. In order to obtain results for the second case that correspondto the �rst case, one has only to substitute ff1 for f in the �rst.Now the �rst-stated requirement on the function F was that F =z1 for z = z1 or f = 0. This requirement will be satis�ed withgreatest generality if we set F = z � 'where the arbitrary function ' vanishes when f = 0, in addition tosatisfying previous conditions. The present condition will be satis-�ed, again with greatest generality, if we set' = f � '1:Hence, as long as '1 remains free, the functionF = z � f � '1



12 Schr�oderis of the most general form that satis�es the �rst requirement.Now if this algorithm is to have at least quadratic convergence|we are unable to write down a convenient general form for a linearlyconverging algorithm, which only has to satisfy a single inequality,namely mod: F < 1 when f = 0; but such algorithms are muchless useful in practice| then we have a second requirement, namely@F = 0 when f = 0. This givesf1'1 + f@'1 = 1 when f = 0:Since @'1 can no more become in�nite at the point z1 than '1 can,we must have f1'1 = 1 when f = 0:And �nally, since the assumption of a simple root implies that f1cannot vanish along with f , we must have'1 = 1f1 when f = 0:If we allow this equation, which has to hold only when z = z1, tohold for arbitrary z and append an arbitrary term that vanishes withf , that is if we set '1 = 1f1 + f'2;then the second requirement will be satis�ed with greatest generality.Thus the equation F = z � ff1 � f2'2;in which '2 remains free, includes all algorithms of the second orderor of quadratic convergence.[In fact, it is easy to determine '2 so that the algorithm turnsinto the equally general algorithm given as an example in II of theprevious section. To do this, we need only equate the two expressionsfor F , and by means of this equation express '2 in terms of thefunction ' of that section.]If further the algorithm is to converge cubically, the function Fmust satisfy the additional requirement that @2F = 0 when f = 0. If



Algorithms for Solving Equations 13we expand the equation @2F = 0 and set f = 0, but do not restrictthe argument z to be z1, we can determine the most general formof the function '2 that satis�es the requirement by appending anarbitrary term that vanishes with f . After an easy calculation weobtain '2 = f22f31 + f'3Consequently the functionF = z � ff1 � f2f22f31 � f3'3:gives the general algorithm with cubic convergence.If we continue reasoning in this way, we arrive at the followingresult.The most general algorithm z0 = F (z) whose convergence is ofthe !th order is obtained by takingF = z � f1! � 1f1 + f22! � 1f1@ 1f1 � f33! � � 1f1@�2 1f1 + � � �� � �+ (�1)!�1 f!�1(! � 1)! � � 1f1@�!�2 1f1 � f!'!;where '! is an arbitrary function. In more compact notationF = z + a=!�1Pa=1 (�1)afaa! � � 1f1@�a�1 1f1 � f! � '!:(18)By way of explanation I must note that for brevity I have usedhere (and in the sequel) the symbol a!, introduced by Schl�omilch,to denote the factorial 1 � 2 � 3 � � �(a� 1) �a. Moreover, the expression� 1f1@�a�1does not represent a quantity but an operator. It directs that theobject 1f1 of the operator be successively di�erentiated and then mul-tiplied by 1f1 , the process being repeated a� 1 times. For example,� 1f1@�4 1f1



14 Schr�oderhas the meaning 1f1@ 1f1@ 1f1@ 1f1@ 1f1 :In order to establish the truth of the above theorem, one hasonly to show that all the derivatives of the function F up to andincluding the (!�1)th vanish when f = 0. For this purpose, however,it is unnecessary to calculate all these derivatives; it is su�cient todi�erentiate the equation (18) a single time. If we do so for all terms,�rst di�erentiating the factor before the � sign and then the factorafter, but merely indicating the second di�erentiation, we get@F = 1 + a=!�1Pa=1 (�1)a afa�1f1a! � � 1f1@�a�1 1f1 � !f!�1f1 � '!+ a=!�1Pa=1 (�1)a faa! � @ � 1f1@�a�1 1f1 � f! � @'!:Now in the �rst sum the general term simpli�es to(�1)a fa�1(a� 1)! � @ � 1f1@�a�2 1f1 ;and one sees right away that the �rst term of this sum cancels thethe �rst term. Similarly, the following terms of this sum cancel the�rst !� 2 terms of the second sum, so that only the last term of thesecond sum remains along with the two terms outside the scope ofthe summations.Therefore, we have@F = f!�1 ( (�1)!�1(! � 1)! @ � 1f1@�!�2 1f1 � !f1'! � f@'!) :This function contains the factor f!�1 and has an (! � 1)-fold zerowhere f vanishes. Hence, its higher derivatives, up to and includingthe (! � 2)th vanish when f = 0, which is what was to be shown.x 5.Solution Methods of the Second Kind as Limiting Casesof Algorithms.We have now arrived at a general expression (18) for algorithms oforder !, and it is natural to think of taking ! =1.



Algorithms for Solving Equations 15In this case the function F takes the form of the in�nite seriesF = z + a=1Pa=1 (�1)a faa! �� 1f1@�a�1 1f1 ;(19)provided we eliminate the missing term f!�! by assuming that �! =0. Obviously this function has meaning only to the extent that theseries converges. In a large number of cases the series will actuallyconverge in a certain neighborhood of z, since for f = 0 it reduces tothe starting value z = z1 and since the quantity f , in whose powersthe series is expanded, can be made arbitrarily small by taking zsu�ciently near z1. [However, if this neighborhood should reduce tothe point z1, it not infrequently happens that by a suitable choiceof �! one can replace the divergent series with a limit that remains�nite.]In the case of convergence, the series (19) represents a functionwhose derivatives all vanish when f = 0. Therefore, the value ofthis function for a starting value z chosen su�ciently near z1 givesan approximation z0 to the root z1 whose error is proportional to anin�nitely high power of the error in the starting value; i.e., the erroris zero. Indeed, for this case equation (14) gives F orz0 = z1:(20)The algorithm with in�nitely swift convergence therefore givesthe true root of the equation immediately as its �rst approximation.It no longer has the nature of a real algorithm; i.e., a computationalmethod that is to be repeatedly applied. Instead it constitutes analgorithm of the second kind mentioned in x 1, in which we do notneed to use approximations to solve the equation.Let us now actually perform the di�erentiations in the �rst termsof the series as indicated. The series then readsz1 = F = z � f1! � 1f1 � f22! � f2f31 � f33! � 3f22 � f1f3f51�f44! � 15f32 � 10f1f2f3 + f12f2f4f71�f55! � 105f42 � 105f1f22 f3 + 10f21 f23 + 15f21f4 � f31 f5f91 � � � � :(21)



16 Schr�oderThis form of the series has been derived by Theremin�) in a di�erentway and without reference to the algorithms considered here.If we denote the general term by�faa! � �af2a�1 ;the numbers �a can be easily computed by the recurrence�a+1 = (2a� 1)f2�a � f1@�a:(22)The series can also be represented more concisely as followsz1 = F (z)= z + a=1Pa=1 (�1)af(z)aa! lim�=0 @a�1� �f(z + �)� f(z)� ��a :(23)Alternatively, z1 = a=1Pa=0 (�1)af(z)aa! @af(z)z;(24)since we have the identity� 1f1@�a�1 1f1 = (�1)a�1�af2a�11= lim�=0 @a�1� �f(z + �)� f(z)� ��a = @af(z)z;(25)which can easily be proven from the well-known theorem on the ex-change of independent variables.x 6.An Example: the Quadratic Equation.In order to give an example of the results of the last section, I willapply them to the quadratic equation. This example has alreadybeen treated by Theremin (loc. cit.), but not with satisfactory rigorand completeness.�) Crelle's Journal, V. 49, pp. 187{243: Reserches sur la r�esolution des�equations de tous les d�egr�es.



Algorithms for Solving Equations 17Let f(z) = (z � z1)(z � z2) = z2 � z(z1 + z2) + z1z2 = 0be the equation to be solved in the manner given above. Thenf(z + �) � f(z)� = � + 2z � z1 � z2;and @a�1� � 1(�+ 2z � z1 � z2)a = (�1)a�1(2a� 2)!(a� 1)!(�+ 2z � z1 � z2)2a�1 :If we substitute the value of this expression with � = 0 for thecorresponding value in equation (23), it follows thatz0 = z � a=1Pa=1 (2a� 2)!(a� 1)!a! � (z � z1)a(z � z2)a(2z � z1 � z2)2a�1 :If we denote the binomial coe�cients!a!(s � a)!by (s)a, then since (2a� 2)!(a � 1)!a! = (�1)a�122a�1�12�awe havez0 = z + �z � z1 + z22 � a=1Pa=1 (�1)a�12�a8>>><>>>: (z � z1)(z � z2)�z � z1 + z22 �29>>>=>>>;a :If we subtract one from the sum on the right, we may take itslower index to be zero. But then the sum represents the binomialseries with exponent 12 developed in powers of the quantityt = � (z � z1)(z � z2)�z � z1 + z22 �2



18 Schr�oderNow Abel�) has shown that the binomial seriesa=1Pa=0 (s)ataconverges and represents one of the values of (1 + t)s, whenevermod: t < 1. Provided the real part of s is greater than �1, theseries even converges when mod: t = 1, with the exception of thespecial value t = �1 with real: s � 0. Since in our case s equals 12 ,our series converges for mod: t � 1 and is equal toz0 = z + �z � z1 + z22 �n�p1 + t � 1o= z + �z � z1 + z22 �8><>: �z1 + z22z � z1 + z22 � 19>=>; :Hence z0 = z1 + z22 � z1 � z22 ;that is, z0 = z1 for the plus sign and z0 = z2 for the minus sign.However, we have yet to discuss which of these two cases holds.Equivalently, we need to consider the disposition of the convergenceregion.If we setz � z1 = �1ei#1 ; z � z2 = �2ei#2 ; z � z1 + z22 = �ei#;then �1, �2, and � are the distances of z from the points z1, z2, andz1 + z22 , the last lying midway between the �rst two points. Theconvergence condition for the series now reads�1�2 � �2:If 2E denotes the distance between the two roots z1 and z2, then bya well known theorem on the median of a triangle we have�2 = �21 + �222 � E2:�) Oeuvres Compl�etes, T. I. No. VII, Christiania 1839, p. 66.



Algorithms for Solving Equations 19Our convergence condition thus becomes(�1 � �2)2 � 2E2 or � (�1 � �2) � Ep2:The convergence region is therefore bounded by an equilateral hy-perbola, whose foci are the roots z1 and z2 of the quadratic equation.Moreover the region is that part of the plane that contains these foci,and the hyperbola itself belongs to the convergence region.Abel (loc. cit.) has also shown which value of the in�nitely mul-tiple valued function (1 + t)s is given by the binomial series whenit converges. However, since the sum is unambiguously known forreal arguments, we can obtain this part of Abel's result more easilyfrom the theorem of function theory that says that a power seriesis a single-valued and continuous function of its argument and thatsuch a function can be continued in the plane|or at least in a sectorof the plane|in only one way. As turns out to be suitable in manyinvestigations, the function log z can be de�ned to be single valued inthe entire complex plane by the stipulation that it be taken real forpositive z and that it be continued from the axis of positive numbersto the axis of negative numbers in such a way that the imaginarypart of log z is +�i on the negative axis, while in�nitely close belowthe negative axis it is ��i. Thus the function has a discontinuityalong the axis of negative numbers. The sum of the binomial seriescan then be represented unambiguously by the expression es log(1+t).Now for our example1 + t =  Eei#0�ei# !2 = �E� �2 e2i(#0�#);where #0 denotes the argument of the numberz1 � z22 = Eei#0 :Hence, e 12 log(1+t) = E� e 12 log e2i(#0�#) :Note that log eiy = i(y + 2h�);



20 Schr�oderwhere the positive or negative integer h must be chosen so that y +2h� lies between �� (exclusive) and � (inclusive). It follows thate 12 log(1+t) = E� ei(#0�#+h�) = z1 + z22z � z1 + z22 � eh�i;where h is to be chosen so that #0� #+ h� lies between ��2 (exclu-sive) and �2 (inclusive). Now the ray � from the point z forms twosupplementary angles with the line connecting z1 and z2. Let the onelying on the side of the point z1 be written !1 and the other !2, andlet them be taken between 0 and �. If we take the arguments #0, #,etc. to be between �� and �, then it is easy to express the di�erence#0�# in terms of !1 and !2 using the theorem on the exterior angleof a triangle. We then �nd that if !1 < �2 then h is the even number0 or 2 and consequently eh�i = 1. On the other hand if !2 < �2 thenh is the odd number �1 and consequently eh�i = �1. In the �rstcase the formula for z has a plus sign, and z0 = z1. In the secondcase it has a minus sign and z0 = z2. The series thus yields a sumthat is the root of the polynomial that is the focus of the hyperbolalying on the same side of the minor axis as the point z; i.e., the pointthat z can approach without crossing the curve.x 7.Introduction of the Symmetric Functions A and Bof the Roots.Since the derivation of the most general algorithms for solving theequation f(z) = 0 has been completed, I will go on to present themost noteworthy special algorithms. My theme will be algebraicequations, and in the sequel I will con�ne myself to the case wheref(z) is a rational function, even though the �nal results for the mostpart extend to arbitrary single-valued functions.Let the roots of the equation, which are di�erent from zero and1, be z1, z2, z3, : : : , zn. Our sole concern will be with �nding theseroots.The algorithms considered here are based on the properties ofcertain symmetric functions of all the roots, functions which have



Algorithms for Solving Equations 21the form C(�)! (z) = a=nPa=1 z�a�(za)(z � za)!+1 :(26)Here ! and � denote arbitrary positive integers, and � is a functionof a single variable that does not contain the the arbitrary startingvalue z and does not become zero or1 for any of the roots za of theequation.The next thing we will consider are the properties of this function(26).If we set F (z) = C(�+h)! (z)C(�)! (z) ;(27)where h again denotes a natural number, then we can state the fol-lowing theorem.I. If the argument of the function F is a root of the equationf(z) = 0, then the value of the function is the hth power of this root;i.e., F (z1) = zh1 :(28)Here z1, which is the symbol introduced for the �rst root, obviouslyrepresents an arbitrary root.To prove this theorem, multiply the numerator and denominatorof the fraction (27), so that it does not become 1 for z = z1. Fromthis we get F (z) = a=nPa=1 z�+ha �(za)� z � z1z � za�!+1a=nPa=1 z�a�(za)�z � z1z � za�!+1 :(29)If the root z1 is p-fold (where p can be one), e.g., ifz1 = z2 = � � �= zp;(30)then for z = z1 all terms in the numerator and denominator whichfollow the pth vanish (i.e., all terms for which the summation variable



22 Schr�odera is greater than p). In the other terms, for which a has the values1, 2, 3, : : : , p, the factor �z � z1z � za�!+1assumes the value one. Since all the terms are equal, their sum comesto p times the �rst. HenceF (z1) = pz�+h1 �(z1)pz�1�(z1) ;which amounts to (28).Under the assumption that h = 1, the function F satis�es the�rst fundamental condition F (z1) = z1, which, as we have seen, anyfunction that gives an algorithm must obey.II. If the point z lies nearer the root z1 than any of the otherroots, i.e., if mod: (z � z1) is the smallest of the distinct moduli ofthe di�erences z � z1, z � z2, : : : , z � zn, so thatmod: (z � z1) < mod: (z � za); a = p+ 1; p+ 2; : : : ; n;(31)then lim!=1F (z) = zh1 :(32)For mod: z � z1z � zais a proper fraction for all a > p, and hencelim!=1�z � z1z � za�!+1 = 0; a > p:On the other hand, the same limit is equal to one for a = 1; 2; 3; : : : ; p.Hence, in the numerator and denominator of (29) all terms followingthe pth vanish for ! = 1, and the rest combine exactly as in theprevious theorem, where z was set equal to z1.III. When z becomes equal to a root z1, the derivative @zF (z)becomes 0 with order !; i.e., we can write@zF (z) = (z � z1)! �	(z);(33)



Algorithms for Solving Equations 23where 	(z) is a function that is not in�nite for z = z1 and, as longno special relations between the roots are assumed, does not vanish.For the proof di�erentiate (27) to get@zF (z) = C(�)! (z)@zC(�+h)! (z)� C(�+h)! (z)@zC(�)! (z)fC(�)! (z)g2and then substitute the expressions derived from (26) for the func-tions C. However, to keep things straight replace the summationindex a by another letter b in the functions to be di�erentiated be-fore performing the di�erentiations. After an easy simpli�cation, itfollows thatC(�)! (z)2 � @zF (z) = �(! + 1) a=nPa=1 b=nPb=1 z�a z�b �(za)�(zb)(z � za)!+1(z � zb)!+1 � zhb � zhaz � zb :The expression in the double sum on the right-hand side is unsym-metric with respect to the summation indices a and b because of thefactors zhb � zhaz � zb :However, these factors can be cast in symmetric form, if we take intoconsideration the fact that all the terms in which the summationindices a and b are equal fall out of the double sum owing to thenumerators zhb � zha . Among the remaining factors, for each combi-nation a, b we �nd a corresponding combination b, a. This allows usto write 12 (zhb � zhaz � zb + zha � zhbz � za ) = 12 (zha � zhb )(za � zb)(z � za)(z � zb) :for the factors in the double sum. Hence we �nally get@zF (z) = �! + 12 � a=nPa=1 b=nPb=1 z�az�b (zha � zhb )(za � zb)(z � za)!+2(z � zb)!+2 �(za)�(zb)�c=nPc=1 z�c �(zc)(z � zc)!+1�2 ;(34)in which we may regard a and b as any two distinct integers from theintegers 1, 2, 3, : : : , n.



24 Schr�oderWe now will multiply the numerator and denominator of (34) bya power of z�z1 in such a way that they do not become in�nite whenz = z1. The question is what power of this di�erence is required.First of all, if the root z1 is simple, we obviously must augmentthe fraction by the factorf(z � z1)!+1g2 = (z � z1)2!+2because of the common denominator. However, to obtain the re-quired result in the numerator it would su�ce to multiply by (z �z1)!+2, since by the distinctness of a and b no higher power of z� z1can appear in the denominators of the individual terms. Therefore,there remains the factor(z � z1)2!+2�(!+2) = (z � z1)!which multiplies a function that no longer becomes 1 or 0 whenz = z1.In the case of a multiple, say p-fold, root one easily �nds that thesame factor works by considering that certain terms in the numer-ator of the formula (34) vanish, while others in the numerator anddenominator combine.Since the derivative @zF (z) vanishes with order ! when z = z1,the higher di�erential quotients of F , up to an including the !th,must also vanish. In other words, the function F (z) satis�es thesecond fundamental condition that a function yielding an algorithmof order ! + 1 must obey.IV. It remains to state the relationC(�)! (z) = c=hPc=0(�1)c(h)czh�cC(��h)!�c (z)(35)as a fourth property of the function C. Here (h)c denotes the bi-nomial coe�cient h!c!(h� c)! . The proof is easily e�ected. For if onesubstitutes the expressions from the de�nition (26) in the relation,it reduces to the equationz�a = c=hPc=0(�1)c(h)czh�c(z � za)c;which by the binomial theorem is an identity.



Algorithms for Solving Equations 25We should mention the most notable special case of the relation(35), which results from setting h = �:C(�)! (z) = c=�Pc=0(�1)c(�)cz��cC(0)!�c(z):(36)By means of this equation the functions C with exponent � can bereduced to the same functions with just the exponent zero.Finally, if we replace � by �+ h, the relation takes a form whichwe write down for the case h = 1, a case that will be especiallyimportant in the sequel:C(�+1)! (z) = zC(�)! (z)� C(�)!�1(z):(37)Regarding the arbitrary functions � that enter in the expression(26) for the symmetric function C(�)! (z), two special choices will turnout to be particularly valuable in the sequel. The �rst choice is�(z) = 1f (1)(z) ;and the second is �(z) = 1:If we choose these two expressions for �, we obtain two functionsfrom (26), which we shall call A and B to distinguish them from thegeneral function C. Speci�cally,A(�)! = a=nPa=1 z�a(z � za)!+1f (1)(za) ;(38)and B(�)! = a=nPa=1 z�a(z � za)!+1 :(39)For the function A it is clear that that the case of multiple roots mustbe excluded. Otherwise, some terms of the sum will become in�niteowing to the vanishing of the derivative of f . For the function B thiscase is permitted. In general, the properties of these two functionsexhibit such deep analogies that it is highly advisable to investigatethem together.



26 Schr�oderIn fact, the function A becomes the function B when f(z) is re-placed by f(z)f (1)(z) . Speci�cally, according to x 1 the equation f(z)f (1)(z) =0 has the same �nite roots as the equation f(z) = 0, but each of theseroots is simple. Therefore, we are allowed to form the function A(�)!for the �rst equation, which may be done by replacing 1@zf(z) with1@z f(z)f (1)(z) = f (1)(z)2f (1)(z)2 � f(z)f (2)(z) :It is easy to show that this expression takes the value p for z = z1.Hence the sum (38) extending over all the �nite roots of the equationf(z)f (1)(z) = 0|that is all the distinct roots of the equation f(z) = 0|goes over into the sum (39) ranging over all the roots of the equationf(z) = 0.If we think of f(z) as not just a rational function, but an entirefunction, sayf(z) = 
0zn + 
1zn�1 + 
2zn�2 + � � �
n�1z + 
n= 
0(z � z1)(z � z2) � � �(z � zn);(40)then, as is well known, we can express any symmetric function of allthe roots (here presupposed to be �nite) in terms of the coe�cientsof this equation or the derivatives of the polynomial f(z) for z = 0.Consequently, we can express our functions A and B in this way.Our immediate problem is to construct these expressions. We havetwo ways at hand to derive the expressions systematically. On theone hand, starting from the de�nitions (38) and (39) we can obtainobtain recursions (like the equations (47) and (48) of the followingsection), from which we see that our expressions are the coe�cientsof a recurrent series, which we then sum. On the other hand, wecan decompose the symmetric functions into homogeneous (entirerational) parts and determine the latter according to the methodof Waring, Gauss, and Cauchy. Better yet, we can seek thegenerating functions themselves, as explained by Borchardt andBetti.�)�) Crelle's Journal, V. 53, p. 193 and V. 54, p. 98 �.



Algorithms for Solving Equations 27Because these derivations are intricate, I will content myself withsimply stating and verifying the results.x 8.Derivation of Related Functions A and B from aGenerating Function.We shall now de�ne two brand new functions of z by the followingequations: A(�)! (z) = " (z � �)�f(z � �)#�! ;(41) B(�)! (z) = " (z � �)�f (1)(z � �)f(z � �) #�! :(42)Here (following Jacobi) the symbol [�(�)]�! represents the coe�cientof �! in the development of the bracketed function �(z) in increasingpowers of �, a development which is valid for su�ciently small �. Thusthe function in brackets would be called by Laplace the generatingfunction (fonction g�en�eratrice) of the coe�cients it de�nes. To putit otherwise, the above equations are equivalent to the following:A(�)! (z) = 1!! lim�=0 @!� (z � �)�f(z � �) ;(43) B(�)! (z) = 1!! lim�=0 @!� (z � �)�f (1)(z � �)f(z � �) :(44)If these de�nitions are to make sense, the Taylor series(z � �)�f(z � �) = a=1Pa=0 A(�)a (z) � �a;(45) (z � �)�f (1)(z � �)f(z � �) = a=1Pa=0 B(�)a (z) � �a(46)must converge for su�ciently small �. In fact it is easy to see thatthis expansion is always valid for su�ciently small � provided that zis not exactly equal to a root z1 of the equation f(z) = 0.



28 Schr�oderIn this section we will be concerned with recurrent and closedrepresentations of the functions A and B in terms of the functionf(z) and its derivatives. For the sake of brevity we will once againomit all arguments z and denote the derivatives of f(z) as in x 4.If we multiply equations (45) and (46) by the expansion of thefunction f(z��) in increasing powers of � (an expansion which alwaysexists) and order both sides by powers of �, then by equating thecoe�cients of (��)! in the right and left-hand sides we get(�)!z��! = a=!Pa=0 (�1)af!�a(! � a)! A(�)a ;(47) a=!Pa=0 (�)az��af!�a+1(! � a)! = a=!Pa=0 (�1)af!�a(! � a)! B(�)a :(48)By means of these equations the functions A and B can be calculatedrecursively.Before doing this, it is appropriate to give closed representationsof the functions A and B. We can easily obtain such expressionsby writing down the system of equations that result from setting! = 0; 1; 2; 3; : : : in (47) or (48) and then solving the system for theunknowns (�1)!A(�)! or (�1)!B(�)! .Since all the elements above the diagonal of the determinant ofthe system are zero, the determinant is the product of its diagonalelements and takes the value f!+1. If we write this denominator asa factor on the other side, we get the following formulas:f!+1A(�)! = 



(�)cz��c; fcc! ; fc�1(c� 1)! ; : : : f11! ; f; 0; 0; : : : ; 0



 ;(49) f!+1B(�)! =




a=cPa=0 (�)az��afc�a+1(c � a)! ; fcc! ; fc�1(c � 1)! ; : : : f11! ; f; 0; 0; : : : ; 0




 :(50)Here I have only written down the (c+1)th rows of each determinant,which is of order (!+1). The individual rows are obtained by settingc = 0, 1, 2, : : : , !, where obviously we take only the �rst ! + 1elements from the sequence.



Algorithms for Solving Equations 29In the especially important case � = 0, the �rst element of the rowgiven for the second equation simpli�es to fc+1c! . Moreover, the orderof the �rst equation can be reduced by one, since the initial elementis one and the remaining elements in the �rst column become zero. Ifwe multiply the rows of this simpli�ed determinant in order by 1, f ,f1, f2, : : : , f! and divide the columns by the same quantities, we canmake the elements above the diagonal (which remains unchanged)equal to one, while any other element fcc! becomes fc�1fcc! .We shall now show that the functions A and B with the exponent� can be easily expressed in terms of of the corresponding functionsfor � = 0. The most suitable representations of our functions forthis purpose are the ones in terms of di�erential quotients that havealready been given in (43) and (44). Speci�cally, it follows fromLeibnitz's theorem on the repeated di�erentiation of products thatA(�)! = 1!! lim�=0 a=!Pa=0(!)a@a� (z � �)� � @!�a� 1f(z � �) ;B(�)! = 1!! lim�=0 a=!Pa=0(!)a@a� (z � �)� � @!�a� f (1)(z � �)f(z � �) :By the binomial theoremlim�=0 @a� (z � �)� = (�1)aa!(�)az��a:Hence considering the equations (43) and (44) in the case where� = 0, we see thatA�! = a=!Pa=0(�1)aa!(�)az��aA(0)!�a;(51) B�! = a=!Pa=0(�1)aa!(�)az��aB(0)!�a;(52)which is what was to be derived.In addition, the functions B(0) can be readily expressed in termsof the functions A(0). Speci�cally, proceeding as above we haveB(0)! = 1!! lim�=0 a=!Pa=0(!)a@a� f (1)(z � �)� @!�a� 1f(z � �) :



30 Schr�oderThus since lim�=0 @a� f (1)(z � �) = (�1)afa+1;we have B(0)! = a=!Pa=0 (�1)afa+1a! A(0)!�a:(53)More generally, we can write the formulaB(�)! = c=!Pc=0(�1)cA(0)!�c a=cPa=0 (�)az��afc�a+1(c � a)! ;(54)which results from combining (52) and (53).Thus, it is only necessary to calculate the functions A(0) by recur-rences, since then the functions A(�) and B(�) can be easily formedfrom equations (51) and (54).In order to actually carry out this calculation, we consider therecursion formula (47) for � = 0. In this case the left-hand sidevanishes for ! > 0 and takes the value one for ! = 0. Thus theequation splits into two equations, which we write in a fractionlessform that seems best suited to our application:8><>: fA(0)0 = 1;f!+1A(0)! = a=!Pa=1 (�1)a�1fa�1faa! � f!�a+1A(0)!�a; ! > 0:(55)We can now build a table of the function f!+1A(0)! in the followingmanner.First we compute the values (for the argument z) off; f1; f2; f3; : : : ;from which we obtainf1;�12ff2; 16f2f3;� 124f3f4; : : : :



Algorithms for Solving Equations 31Then we proceede to multiply horizontally and add vertically accord-ing to the following scheme, which requires no further explanation:(I) fA(0)0 = 1 �f1f2A(0)1 = f1 �f11 �� 12ff2f3A(0)2 = f21 � 12ff2 �f1f1 �� 12ff21 �16f2f3f4A(0)3 = f31 � ff1f2 + 16f2f3 �f1f21 � 12ff2 � � 12ff2f1 �16f2f31 � � 124f3f4f5A(0)4 = f41 � 32ff21 f2 + 13f2f1f3 + 14f2f22 � 124f3f4etc:In order to compute the functions B(0)! we proceed as above andcast the relation (53) in a more convenient form:f!+1B(0)! = a=!Pa=0 (�1)afafa+1a! � f!�a+1A(0)!�a:(56)Then we need only to combine the expressions we just found for thefunctions f!+1A(0)! with the appropriate multipliersf1; �ff2; 12f2f3; �16f3f4to obtain(II) fB(0)0 = f1;f2B(0)1 = f21 � ff2;f3B(0)2 = f31 � 32ff1f2 + 12f2f3;f4B(0)3 = f41 � 2ff21 f2 + 23f2f1f3 + 12f2f22 � 16f3f4;etc:In addition to the closed representation by determinants that wehave already stated for the functions A and B, we can also derive



32 Schr�oderthe following expressions, which I will content myself just to note.Speci�cally,f!+1A(0)! = S (�1)a(! � a)!a1!a2! : : :a!! � f0!�a�f11! �a1�f22! �a2 � � ��f!!!�a! ;(57)where the sum extends over all positive integers together with zerothat satisfy the pair of simultaneous equations( a+ a1 + a2 + � � �+ a! = !0 � a+ 1 � a1 + 2 � a2 + � � �+ ! � a! = !:(58)If we multiply the general term in the above sum (57) by !! � a thenthe sum represents the value of f!B(0)!�1; namelyf!B(0)!�1 = !S (�1)a(! � a� 1)!a1!a2! : : :a!! � f0!�a�f11! �a1�f22! �a2 � � ��f!!!�a! :(59)The following relations also hold:8>><>>: f!+1A(0)! = a=!Pa=0 (�1)afaa! lim�=0 @!�a� �f(z + �) � f(z)� �a ;f!B(0)!�1 = !a=!Pa=0 (�1)afaa!(! � a) lim�=0 @!�a� �f(z + �)� f(z)� �a :(60) x 9.The Relation between the Functions A and A.I will now proceed to show that the functions A(�)! and A(�)! of thelast two sections are equal for any argument z, provided only thatthe integers ! and � satisfy a certain inequality.It is well known that if the equation f(z) = 0 has no multipleroots then we have the partial fraction decomposition1f(z) = a=nPa=1 1(z � za)f (1)(za) :(61)If z is not equal to a root za, we can replace z by z � � and forsu�ciently small � expand each term of the sum on the right ina MacLaurin series in increasing powers of �. To get the generating



Algorithms for Solving Equations 33function of A on the left we multiply the equation by the developmentof (z � �)� in an (in�nite) binomial series. We then order the right-hand side according to powers of �. If we compare the result withequation (45), it follows on equating coe�cients of �! thatA(�)! (z) =a=nPa=1 1(z � za)!+1f (1)(za) c=!Pc=0(�1)c(�)cz��c(z � za)c:(62)This expresses the function A(�)! as a symmetric function of the rootsza of the equation f(z) = 0, just as the function A(�)! has beenexpressed.Now if ! � �, we can obviously write � for ! in the upper boundof the second sum on the right, since the binomial coe�cient (�)cvanishes for all c between � (exclusive) and ! (inclusive). But by thebinomial theorem, the sum is then fz� (z�za)g� = z�a . Consideringthe de�nition (38) of the function A, we haveA(�)! (z) = A(�)! (z); ! � �;which is what we were seeking to prove.However, this relation still holds for ! < �, provided � < ! + n.Speci�cally, if ! < � we can decompose the sumc=!Pc=0in the expression (62) for A(�)! intoc=�Pc=0 � c=�Pc=!+1 :The sum of all the terms from the �rst part of this decompositiongives, as above, the function A(�)! , so thatA(�)! (z)� A(�)! (z) = c=�Pc=!+1(�1)c(�)cz��c a=nPa=1 (z � za)c�!�1f (1)(za) :Now it is well known thata=nPa=1 �(za)f (1)(za) = 0;



34 Schr�oderwhenever �(za) is an entire rational function of za whose degree doesnot exceed n � 2. But the numerator (z � za)c�!�1 in the abovedouble sum can be regarded as such a function �, provided0 � c� ! � 1 � n� 2for all relevant values of c. Since the �rst part of this inequality isautomatically satis�ed and since � is the largest value that c assumes,the only remaining condition for the vanishing of the double sum isthat �� ! � n� 1 or �� ! < n.Therefore, under the assumption that either ! � � or ! < � <!+n, the functions A(�)! and A(�)! agree completely. Since these twoconditions combine to form one, we have the following theorem:A(�)! (z) = A(�)! (z); �� ! < n:(63)If the side condition is not satis�ed, then the above expression forthe di�erence of the two functions takes the place of this theorem.However, since all the terms in the �rst double sum for which c liesbetween !+ 1 (inclusive) and ! + n (exclusive) vanish as above, theexpression simpli�es toA(�)! (z)� A(�)! (z) =c=�Pc=!+n(�1)c(�)cz��c a=nPa=1 (z � za)c�!�1f (1)(za) ; �� ! � n:(64)It would not be an uninteresting problem to express this lastsymmetric function of the roots in terms of the coe�cients of theequation f(z) = 0, just as, in view of x 8, we have now done abovefor the symmetric function A(�)! .x 10.The Relation between the Functions B and B.Under the conditions for which it holds, the identity of the functionsB and B is easier to recognize than that of A and A. To see this,we will once again seek to develop the generating function (of B) ina series of increasing powers of � whose coe�cients are expressed interms of the roots of the equation f(z) = 0 rather than its coe�cients.



Algorithms for Solving Equations 35As before, we use a partial-fraction decomposition. Speci�cally, wehave f (1)(z)f(z) = a=nPa=1 1z � za ;(65)which holds whether or not the equation f(z) = 0 has multiple roots.If we replace z in this equation by z � �, develop the right-hand sidein increasing powers of �, and multiply the equation by the binomialexpansion of (z � �)�, then on comparing coe�cients with those in(46) we obtain as aboveB(�)! (z) =a=nPa=1 1(z � za)!+1 c=!Pc=0(�1)c(�)cz��c(z � za)c:(66)Now if ! � �, the last sum becomes z�a , since � can be writteninstead of ! for the upper limit of the sum. ThusB(�)! (z) = B(�)! (z); �� ! � 0;(67)which is what we wanted to show. On the other hand, if ! < �, wecan decompose the sum in the preceding equation in the formc=!Pc=0 = c=�Pc=0 � c=�Pc=!+1 :The sum of the terms in the �rst part turns out to be the same asB(�)! (z), so that we haveB(�)! (z)� B(�)! (z) =c=�Pc=!+1(�1)c(�)cz��c a=nPa=1(z � za)c�!�1; �� ! > 0:(68)This double sum, which in general is di�erent from zero, can easilybe expressed in terms of the coe�cients of the equation f(z) = 0instead of its roots.We have now expressed the symmetric functions A and B|which we introduced in x 7 as the most noteworthy cases of thegeneral function C and have made the object of our study| in termsof the coe�cients of the equation f(z) = 0. Speci�cally, they have



36 Schr�oderbeen represented in the form of simply generated determinants whoseelements consist of the the polynomial f(z) and its derivatives|assuming, of course, that ! and � satisfy the above inequalities(which is always the case when ! = 1). This understood, we maywrite A for A and B for B (just as earlier we could write A or B forC in the formulas of x 7). Moreover, it is worth noting that severalexpressions derived for A and A (or B and B) in two ways| e.g.,the relation (36) of x 7 and (51) and (52) of x 8|have the sameformulas but di�er in their upper summation limits, one being � andthe other !. To the extent that the Latin functions correspond to thescript functions, we can obviously choose either of the limits, e.g. thesmaller, since the extra terms by which one sum exceeds the otherwill cancel. x 11.Resulting Solution Methods of the Second Kind.I will now go on to consider solution methods for higher equationsthat can be derived from the investigations of xx 7{10. As we pointedout in x 1, we must distinguish between two kinds of methods.A solution method of the second kind, as characterized in x 1,follows directly from Theorem (II) of x 7. This theorem states thatif we set F (z) = A(�+h)!A(�)! or F (z) = B(�+h)!B(�)! ;then whenever z1 is a root of the equation f(z) = 0 lying nearer thearbitrarily chosen point z than any other root we havelim!=1 : F (z) = zh1 :In x 8 we gave ways to recursively calculate the functions A and B forever larger values of !, as well as to form them independently fromthe polynomial f(z) and the numbers z, �, h, and !. In this way thehth power of the root z1 (or, if you will, the root itself when h = 1)can be determined as precisely as one wishes. And because of thearbitrariness of the numbers listed above, the method| two methodsactually, depending on whether the function A or B is chosen|canbe applied in an in�nite variety of ways.



Algorithms for Solving Equations 37In the very special case where � is set to zero and h to one inthe function A, our method includes a solution technique recentlyproposed by F�urstenau,�) a technique he derived from an entirelydi�erent point of view. The method is also on the one hand a gener-alization and on the other a specialization of the method of DanielBernoulli.Concerning the starting value z, if one just wants to �nd someunspeci�ed root|not a particular root|by our method, the start-ing value may be chosen arbitrarily in the entire complex plane, withthe exception of a certain one-dimensional manifold, the exceptionalmanifold, which consists of connected lines, line segments, and rays.If m denotes the number of distinct roots (which must naturally beequal to n for the function A, in which multiple roots are excluded),the exceptional manifold divides the entire plane into m distinct re-gions, each of which contains a single root, be it simple or multiple.Each region has the property that for any point z chosen within it ouralgorithm yields the root contained within the region. The bound-ary of each convergence region is a polygon. The polygon is open toin�nity whenever the root lies on a corner of the polygon containingthe straight lines connecting the roots to one another. Otherwise,the region is a �nite, closed polygon. The sides of the polygon passat right angles through the middle of the lines connecting two roots.The corners, at which at least three polygons meet, and therefore atwhich the exceptional manifold splits, are the centers of circles thatpass through at least three points but do not contain any other roots.All this follows easily from the requirement that if the point z is notto be an exceptional point it must not be equally removed from thenearest roots. Because of this, there is no di�culty in constructingthe exceptional manifold when the roots are given.First we construct the m(m � 1)2 lines that pass at right anglesthrough the middle of the lines connecting two roots. These linescontain all the exceptional points, though in general they will not allbelong in their entirety to the exceptional manifold. Speci�cally, apoint on one of these normal lines, which is symmetric to two roots, isan exceptional point only when there is no third root that lies nearer�)Darstellung der reellen Wurzeln algebraischer Gleichungen durch Determi-nanten der Coe�cienten, Marburg, 1860.



38 Schr�oderthan the other two. These lines are divided by the m(m � 1)(m � 2)6centers of the circles that pass through each triplet of roots. Throwout the centers of any circles that contain additional roots and con-nect the remaining points along the m(m � 1)2 lines. Finally startingfrom the outermost of these points draw in�nite rays perpendicularto the polygon containing the roots (and therefore along our lines).The exceptional manifold consists of these rays and connecting lines.If the roots are not given, the exceptional line will be unknown.In this case, however, if we take the starting value at random, theprobability of its falling on the exceptional set is zero. Of course if theequation f(z) = 0 has only real coe�cients, and therefore complexconjugate roots, we clearly cannot choose z to lie on the real line andhope to �nd complex roots. Indeed in this case it is clear a priorithat we can never arrive at a complex result by a sequence of rationaloperations involving only real numbers.If the point z is taken on the exceptional manifold, F (z) will notin general approach a �xed limit with increasing !, though it willremain bounded. x 12.Resulting Algorithms.By taking h = 1 in Theorems (I) and (III) of x 7, we get solutionmethods that were called of methods the �rst kind in x 1; i.e., algo-rithms.Speci�cally, if we setF (z) = A�+1! (z)A�!(z) or F (z) = B�+1! (z)B�!(z) ;(69)then in x 7 we showed �rst that F (z1) = z1 and second that thederivatives @zF (z); @2zF (z); : : : ; @!z F (z)are zero for z = z1. According to the results of x 2, these propertiesimply that the equation z0 = F (z)



Algorithms for Solving Equations 39represents an algorithm of the (!+1)th order, by means of which wecan �nd any root z1 of the equation f(z) = 0 as accurately as we wantfrom a starting point that has only to be chosen su�ciently near z1.Moreover, the modulus of each approximation will eventually have! + 1 times as many accurate decimal places as the modulus of thepreceding approximation.Because the nonnegative integers ! and � are undetermined andthe starting value z is arbitrary this method includes in�nitely manyalgorithms, and it is worth while to write them down for the sim-plest values of ! and �. I will label each of the algorithms with thedenominators (A�!) or (B�!) in (69), which characterize the functionF . Once again recall that if the algorithms (A�!) are actually to haveconvergence of order ! + 1, we must exclude multiple roots of theequation f(z) = 0. On the other hand, the multiplicity of the rootsmakes no di�erence when it comes to the rate of convergence of thealgorithms (B�!).Finally, if A and B are to be represented by the expressions wehave previously given, the function A must satisfy the the inequality�� ! < n, and the function B the inequality �� ! � 0.From equation (37) in Theorem (IV) of x 7, we see that ouralgorithms can be represented in the form(A�!)(B�!) z0 = z � A(�)!�1(z)A(�)! (z) = z � f � f!A(�)!�1f!+1A(�)!z0 = z � B(�)!�1(z)B(�)! (z) = z � f � f!B(�)!�1f!+1B(�)! 9>>>>=>>>>; ! > 0:Here the second term on the right can be regarded as a correction,which for each algorithm is to be added to the starting value to formthe next approximation. (It is not to be confused with the error inthe starting value or approximation, that was de�ned in x 2.)In these equations we now substitute the values of A and B aswe expressed them in terms of A(0) and B(0) in (36) of x 7 and (51)and (52) of x 8. To do this we write these relations in the following



40 Schr�oderfractionless form:8>>><>>>: f!+1A(�)! = �;!Pa=0(�1)a(�)az��afa � f!�a+1A(0)!�a;f!+1B(�)! = �;!Pa=0(�1)a(�)az��afa � f!�a+1B(0)!�a;(70)in which we always choose the smaller of the upper summation limits�, !. Hence for ! = 0; 1; 2; : : : we havef A(�)0 = z� � f A(0)0 ;f2A(�)1 = z� � f2A(0)1 � �z��1f � fA(0)0 ;f3A(�)2 = z� � f3A(0)2 � �z��1f � f2A(0)1 + �(� � 1)2 z��2f2 � fA(0)0 ;etc:For � = 1; 2; : : : (the case � = 0 is an identity), we havef!+1A(1)! = z � f!+1A(0)! � f � f!A(0)!�1;f!+1A(2)! = z2 � f!+1A(0)! � 2zf � f!A(0)!�1 + f2 � f!�1A(0)!�2;etc. The corresponding equations for the functions B have exactlythe same form and may easily be obtained by writing B for A above.Since we are unable to express A(0)! or B(0)! generally in a simplemanner, we instead obtain simple and easily computable formulas ofa general character from the original equations| the ones in which� is arbitrary|by substituting the functions A(0) and B(0) fromformulas (I) and (II) of x 8. Speci�cally,f A(�)0 = z�;f2A(�)1 = z�f1 � �z��1f;f3A(�)2 = z�(f21 � 12ff2)� �z��1ff1 + �(� � 1)2 z��2f2;etc. Moreover, f B(�)0 = z�f1;f2B(�)1 = z�(f21 � ff2)� �z��1ff1;etc. In this way it would be easy to construct two-dimensional tablesof the functions A(�)! or B(�)! .



Algorithms for Solving Equations 41Finally, we can very easily proceed exhibit the simplest algo-rithms themselves.First of all, if we try to take ! = 0, we get the degenerate case(A�0) or (B�0 ) z0 = zas an algorithm with linear convergence. Since the correction hereis zero, the error in the approximation is not only proportional tothe �rst power of the error in the starting value; it is equal to it.thus we might allow the attribute \linear" here, but the designation\algorithm" no longer applies, since @zF (z) is not strictly less thanone but equals one.For ! = 1 we get the most general second order or quadraticallyconverging algorithm that can come from this source: namely,(A�1) z0 = z � zfzf1 � �f ;(B�1 ) z0 = z � zff1z(f21 � ff2)� �ff1 :For the simplest case � = 0 we get Newton's algorithm(A01) z0 = z � ff1 ;on the one hand and on the other an equally worthy algorithm(B01) z0 = z � ff1f21 � ff2 ;which to my knowledge has not previously been considered. Besidesbeing almost as simple, this latter algorithm (which we have alreadymentioned in x 3) has the advantage that it converges quadraticallyeven for multiple roots.For ! = 2 we get the general algorithms of the third order, thatis, cubically convergent algorithms; e.g.,(A�2) z0 = z � zf zf1 � �fz2(f21 � 12ff2)� �zff1 + �(�� 1)2 f2 :



42 Schr�oderFor the simplest case � = 0 we have(A02) z0 = z � ff1f21 � 12ff2 ;(B02) z0 = z � f f21 � ff2f31 � 32ff1f2 + 12f2f3 :Of these algorithms the �rst (A02) is noteworthy because of its sim-ilarity to (B01), from which it di�ers only by the factor 12 in thedenominator.One can easily continue in this way to construct algorithms ofquartic and higher convergence. However, proceeding further haslittle to recommend it, since in practice the disadvantage of havingto evaluate a much more complicated expression more than outweighsthe advantages of faster convergence.As an example, for the binomial or pure equation of the nthdegree f(z) = zn � 
 = 0;we get the following algorithms:(A�1) z0 = z � (n� � � 1)zn + (�+ 1)
(n� �)zn + �
 ; � < n+ 1;(B�1 ) z0 = z � (n+ �)
 � �zn(n+ �� 1)
 � (� � 1)zn ; � < 2:Here the two B-algorithms are included among the n + 1 A-algo-rithms: namely, (B01) is the same as (An�11 ) and (B11) the same as(An1).Suppose we want to �nd, say, the square root of a number toa very large number of decimal places, e.g. 24. Then after after�nding a very good approximation (exact to twelve digits) by theusual root extraction by synthetic division, we should use one ofthe above formulas to determine a subsequent approximation that isexact to 24 digits. An advantage of this method is that one can make



Algorithms for Solving Equations 43a �nite number of arbitrary mistakes in the calculation and (providedone does not jump out of the convergence region) still arrive sooner orlater at the correct �nal value. Moreover, one has a reliable estimateof the current precision; the method has attained the twice numberof digits to which the current approximation agrees with the previousone.An answer to the following question would be of interest. For aparticular root extraction what value of � is the most suitable; i.e.,gives the fastest convergence?One could perhaps combine di�erent algorithms to good e�ect.For example, one might substitute the value obtained from the al-gorithm (A01) for z in the formula for (A11) in order to �nd �nd thesecond approximation, and substitute this value in the formula for(A21), and the resulting third approximation in the formula for (A31),and so on. Thus instead of an iteration or the repeated execution ofsubstitutions of the same kind, one must perform a given sequencesubstitutions of di�erent kinds to approximate the desired root.Finally it would be worth while to investigate the limits attainedby these algorithms when � is not a positive integer.x 13.On the Convergence Regions of These Algorithms.There remains the problem of �nding the convergence regions of thealgorithms we have just given; i.e., the problem of determining theboundaries of the regions, at least when the roots of the equationf(z) = 0 are given. Though this problem was easily dispatched inx 11 for solution methods of the second kind, it appears to be com-paratively di�cult for solution methods of the �rst kind or the algo-rithms presented in the previous section. I have succeeded in settlingthe question of the boundaries of the convergence domains only forthe simplest cases: namely, for linear equations|or more generallyfor equations with one root|and for the quadratic equation.For the case � = 0 the following theorem will help with thesolution of the problem.The contours of the convergence domains of the algorithms (A0!)or (B0!) depend only on the mutual (relative) positions of the m dis-tinct roots z1, z2, : : : , zm. But they do not depend on the positions



44 Schr�oderof this system of points with respect to the points 0 and 1, or moregenerally with respect to the real and imaginary axes. In other words:If one replaces the system of roots with another similar system posi-tioned arbitrarily, then the contours of new convergence domains willbe similar to the old and similarly positioned with respect to the newroots.Proof. Imagine two complex planes. The roots z1, z2, : : : , zmof the equation f(z) = 0 are represented as points in the �rst; thesame number of roots �1, �2, : : : , �m of another equation '(�) = 0are represented in the second. Moreover, let z in the �rst plane and� in the second be arbitrary starting points. Let the correspondingapproximations from our algorithms bez0 = z � C(0)!�1(z)C(0)! (z) ;where C is formed for the function f , and�0 = � � C(0)!�1(�)C(0)! (�) ;where C is formed for the function '. Here, as previously, C denoteseither the function A or B. If we �x the relation� = �z + �and also assume that�a = �za + �; a = 1; 2; 3; : : : ; m;then it is easy to see that for arbitrary complex numbers � and � thesystem of points �, �a in the second plane is similar to the system z,za in the �rst, although the second system is positioned arbitrarilywith respect to the real and complex axes. For if � = �ei#, thenmultiplication of the number z by � e�ects a transformation of thepoint system into a similar system, similarly situated with respect tothe axes, whose homologous dimension is � times as large as that ofthe �rst. The multiplication by ei# e�ects a common rotation of thesystem of points through the arbitrary angle #. Finally the additionof � to the product �z = �ei#z corresponds to a translation of the



Algorithms for Solving Equations 45entire system in the direction of the number � and of length equalto the modulus of �.The proof of our theorem will now be complete if we can show thatthe approximations z0 and �0 are homologous points of the two similarsystems of points. For this conclusion can easily be extended to allfollowing and preceding approximations, right up the the boundaryof the convergence region.Now the equation whose roots are �a = �za + � is obviously'(�) = f �� � �� � = 0:Hence '(1)(�) = 1�f (1)�� � �� � ;and more generally '(c)(�) = 1�c f (c)�� � �� � ;for every natural number c. Since � � �� = z,'(�) = f(z); '(1)(�) = 1�f (1)(z); : : : ; '(c)(�) = 1�c f (c)(z):Moreover, in all terms of the equation (57) of x 8 for the functionf!+1A(0)! and in the corresponding equation for f!B(0)!�1 the sums ofthe the products of the exponents and the derivative indices are thesame, namely !. Hence the expressions'(�)!+1A(0)! (�) and '(�)!B(0)!�1(�)formed for the function ' are equal to the product of the factor 1�!with the expressionsf(z)!+1A(0)! (z) and f(z)!B(0)!�1(z)formed for the function f . From the second of the two equationsz0 = z � f(z) f(z)!C(0)!�1(z)f(z)!+1C(0)! (z) ; [C formed for f ];



46 Schr�oderand �0 = � � '(�) '(�)!C(0)!�1(�)'(�)!+1C(0)! (�) ; [C formed for '];it follows that�0 = �z + � � �f(z) f(z)!C(0)!�1(z)f(z)!+1C(0)! (z) ; [C formed for f ]:Hence from the �rst equation,� 0 = �z0 + �;which is what was to be shown.The contours of the convergence domains in the similar systemsof z and � are therefore similar curves with the same ratio � fortheir homologous dimensions and situated similarly with respect totheir systems of points. Thus, when it comes to the study of thesecontours, one can work in the system � as well as in the system z.For example, without loss of generality we can take two of the rootsof the equation in question to be arbitrary, say one equal to zeroand the other equal to one, since it is only a matter of the relativeposition of the roots. We can also take all the roots to be as near aswe like to each other as well as to the origin, since we can imaginethe ratio � to be arbitrarily small. An so on.Incidentally, one important consequence of all this is that theexclusion of a root of zero of the equation f(z) = 0, which wasnecessary for many of our theorems, is irrelevant for the conclusionsabout the algorithms (A0!) and (B0!).The above theorem does not hold for algorithms (A�!) or (B�!),where � > 0. If one attempts to carry out the line of argument inthe proof of the theorem for this case, it becomes evident that onemust take the number � to be zero for the new approximation to bea homologous point of the system that is similar to the old system.Thus one can change the fundamental unit of the system; i.e., onecan replace the system of roots by another similar system that issimilarly positioned with respect to the axes. One can also rotatethe system about the origin by an arbitrary angle. However, onecannot translate the system. In other words, we have the followingtheorem.



Algorithms for Solving Equations 47For the algorithms (A�!) and (B�!) the relative position of thecontours of the convergence domain with respect to the roots dependsonly on the ratio of the distance of the center of gravity of all the roots(the midpoint of their mean distances) from the origin to the commondistances among these roots. But in general it is independent of theabsolute position of the roots and of the fundamental unit.So much for the convergence regions in general.x 14.The Principal Algorithms Applied to Very SimpleExamples.In order to get a closer look at the nature of our algorithms, we willnow write down the two most useful ones, namely(A01) z0 = z � ff1 and (B01) z0 = z � ff1f21 � ff2 ;for a simple example and arrange them for practical calculation.To take care of the simplest case, namely where the equationf(z) = 0 has only one root, so that it is either of the �rst degree oras a polynomial is the power of a binomial, we note that accordingto what has gone before we can set z1 = 0 without loss of generality.Thus we can assume that f(z) = zn:Hence (A01) z0 = �1� 1n�z and (B01) z0 = 0:The algorithm (B01) thus gives the correct root (0) of the equationright away. On the other hand for the algorithm (A01) it is easily seenthat z00 = �1� 1n�2z0; : : : ; z(r) = �1� 1n�rz;from which it follows that limr=1 z(r) = 0;



48 Schr�oderwhatever the starting value. Thus we have the following theorem.For an equation with a single root the convergence region of the twoalgorithms (A01) and (B01) is the entire complex plane. There are no�nite exceptional points.The next simple case is the quadratic equation. The case of twoequal roots is subsumed in the above case and has already beendealt with. Thus we can assume that the roots are distinct. Togain symmetry it is advisable to take the roots to be z1 = +1 andz2 = �1, which, as we have said, we can do without loss of generality.Then f(z) = (z � 1)(z + 1) = z2 � 1;and the algorithms become(A01) z0 = 1 + z22z = z + 1z2 ; (B01) z0 = 2z1 + z2 = 2z + 1z :Thus we see that for the same starting value the approximation forone algorithm is always the reciprocal of the approximation for theother.Now if we want to actually compute the approximation z0 =x0 + iy0 corresponding to some complex starting value z = x + iy,we must decompose the complex algorithm into two combined realalgorithms. In general we have to do this for any algorithm z0 = F (z)whenever the coe�cients and roots, not to mention the starting value,are not all real. This algorithmic decomposition, which results fromseparating and equating real and imaginary parts on both sides ofthe equation z0 = F (z), would be easy to write down for any oneof our algorithms after we take the coe�cients 
0, 
1, : : : , 
n of theequation f(z) = 0 in the form
a = �a + i�a; a = 0; 1; : : : ; n:Now for our example,(A01) x0 = x2 � 1 + x2 + y2x2 + y2 ; y0 = �y2 � 1� x2 � y2x2 + y2 ;



Algorithms for Solving Equations 49(B01) x0 = 2x � 1 + x2 + y2[x2 + (y + 1)2][x2 + (y � 1)2] ;y0 = 2y � 1� x2 � y2[x2 + (y + 1)2][x2 + (y � 1)2] :from which the �rst approximation corresponding to any startingvalue is easily computed. If we want to �nd the next approximation,we need only replace x and y by x0 and y0 in the above equations toobtain x00 and y00; i.e., the elements of z00 = x00 + iy00. And so on.Many conclusions can be drawn from these equations. To expressthem it will be convenient to regard the passage from the startingvalue to the approximation as a jump of the argument z from itsposition in the complex plane to the position of the approximation.For example, since y0 = 0 whenever x2+y2 = 1, we have the followingtheorem. From the periphery of the unit circle about the origin theargument always jumps to the real axis.Moreover, since y0 = 0 for y = 0, the approximations for a realstarting value are all real: the argument never jumps away fromthe real axis. Similarly, for a purely imaginary argument all theapproximations remain purely imaginary. Therefore, the argumentnever jumps away from the imaginary axis, and it is impossible forthe algorithm to converge to the points �1 from such a starting point.The y axis in its entirety belongs to the divergence region; that is,it consists entirely of exceptional points. In addition, by lookingfor values of z for which the correction vanishes or tends to in�nitywe can �nd individual exceptional points for an arbitrary algorithm.Also we can look for values of z for which at somer = 1; 2; 3; : : :the rth approximation z(r) becomes equal to the starting value, sothat the algorithm repeats itself, i.e., is periodic. It would not bedi�cult to even discover exceptional curves in general| though itwould not be easy to determine whether they actually contained allthe exceptional points and whether they perhaps �ll in an entireregion of the plane.If the sign of x or y or both is changed, the corresponding changesoccur in the approximations x0 and y0. Thus the algorithm proceedssymmetrically in the four quadrants of the complex plane. The argu-ment will never jump over the imaginary axis, since x0 and x always



50 Schr�oderhave the same sign. However, the argument can jump the real axis.This happens for the algorithm (A01) when the argument lies withinthe circle mentioned above, since then y0 and y are of opposite signs.If the argument is outside the circle, its jump leaves it on the sameside of the x-axis. Exactly the opposite happens for the algorithmB01.It is also informative to transform the algorithm to polar coordi-nates, so that the the radius and polar angle of the approximationcan be calculated from those of the starting value. If we setx+ iy = �ei# and x0 + iy0 = �0ei#0 ;then from the equations(A01) x02+y02 = [x2 + (y + 1)2][x2 + (y � 1)2]4(x2 + y2) ; y0x0 = �yx � 1� x2 � y21 + x2 + y2we get the combined algorithms(A01) �0 = 12�q1 + 2�2 cos 2#+ �4; tan#0 = �1� �21 + �2 tan#:In the case of (B01) we take the reciprocal value for �0 and the valueof opposite sign for tan#0.The factor 1� �21 + �2 is always a proper fraction, and hence the nu-merical value of tan#0 is always less than the value of tan#, exclu-sive of the cases tan# = 0 or 1. Since we can con�ne ourselves toacute angles, the angle #0 is itself less than #. In other words: witheach jump the radius vector rotates toward the polar axis and asthe iteration is continued swings almost like a pendulum toward thisequilibrium position.One can also ask what curve separates the regions whose pointsjump nearer to or farther from zero, which is the mean of the roots.It is the curve whose equation results from requiring that �02 = �2.In the case of (B01), for example, the equation reads[x2 + (y + 1)2][x2 + (y � 1)2] = 4or (x2 + y2 + 1)2 = 4(1 + y2);



Algorithms for Solving Equations 51from which we getx = �q2p1 + y2 � (1 + y2) and y = �q1� x2 + 2p1� x2:In polar coordinates �4 + 2�2 cos 2# = 3:More interesting than questions about polar coordinates is thequestion of the distances �1, �2 and �01, �02 of z and z0 from thepoints +1 and �1. These distances can be regarded as the radii ofthe points in a bipolar coordinate system, whose poles are the tworoots �1. In particular, from the expressions we are seeking we canlearn whether the argument jumps nearer a root or not.Now we have the equations�21 = y2 + (x� 1)2; �22 = y2 + (x+ 1)2(and the same for quantities �, x, y equipped with primes). Henceby inversionx = �22 � �214 ; y = 116(2+�1+�2)(�1+�2�2)(�2+2��1)(2+�1��2):If we substitute these values in the equations(A01) y02 + (x0 � 1)2 = [y2 + (x� 1)2]24(x2 + y2)(and the same with +1 replaced by �1)(B01) y02 + (x0 � 1)2 = [y2 + (x� 1)2]2[x2 + (y + 1)2][x2+ (y � 1)2](and the same with +1 replaced by �1)we get the combined algorithms(A01) �021 = �412(�21 + �22 � 2) ; �022 = �422(�21 + �22 � 2) ;(B01) �021 = 2�41(�21 � 2)2 + (�22 � 2)2 ; �022 = 2�42(�21 � 2)2 + (�22 � 2)2 :



52 Schr�oderThe equation of the curve that separates the region of pointsthat jump toward the point +1 from the region of points that jumpaway is now determined by the condition that �021 = �21. For thealgorithms (A01) it is �21 + 2�22 � 4 = 0 in bipolar coordinates or3y2 + 3x2 + 2x � 1 = 0 in rectangular coordinates. In other words,the curve is the circle of radius 23 and center �13 . For the algorithm(B01), the equation of the corresponding curve is of the fourth degree,which is easily solved for y. The curve itself contains all points thatmerely rotate about about the point one with a step of the algorithm.Finally, in order to compute the starting value backward fromthe approximation| that is, compute the predecessor of an arbitraryapproximation|one has only to solve the following equations for z:(A01) z2 � 2zz0 + 1 = 0; (B01) z2 � 2zz0 + 1 = 0:Since these equations are of the second degree, corresponding to eachapproximation z0 there are two starting values [z]1 and [z]2 that cometogether at z0 and remain united for all subsequent steps. Thus thepoints of the convergence region form an in�nite family of points,all of which sooner or later jump toward the root and cluster aboutit with in�nite density. It is easy to give formulas by which theseoperations can be extended backwards or forwards.In a subsequent treatise on iterated functions I will give a proofthat for the above algorithms and equations the entire complex planedecomposes into two convergence regions separated by the imaginaryaxis, which is the only exceptional line. Moreover, I entertain theconjecture that for any algebraic equation the region of exceptionalpoints of these algorithms is only one dimensional and reduces to theboundary lines of the convergence domains.In the same place other questions concerning the above exampleof the two algorithms will be answered. Nonetheless, the considera-tions of this section will turn out not to be super
uous.x 15.Appendix:A Theorem on the Function A.In this appendix I will communicate another theorem|one thatformed the original starting point for the development of the algo-



Algorithms for Solving Equations 53rithms of x 12. It would seem to be of interest because the functionsA�! play a role in it.As previously, letf(z) = a=nPa=0 
azn�a = 
0(z � z1)(z � z2) � � �(z � zn);(71)and let the roots z1, z2, : : : , zn be distinct from one another andhence simple.The function f(z) can be divided without remainder by the dif-ference z � za. From the usual division algorithm, one obtains aresult of the form f(z)z � za = b=n�1Pb=0 zn�b�1Fb(za):(72)This equation de�nes certain entire rational functions Fb(za). Onmultiplying the equation by z�za and equating coe�cients we obtainthe recursion8><>: F0(za) = 
0;Fb(za) = zaFb�1(za) + 
b; b = 1; 2; 3; : : : ; n� 1;0 = zaFn�1(za) + 
n;(73)by means of which the functions can be computed. The next-to-last of the recursions will also hold for b = n if we de�ne Fn(z) =f(z). With the help of these recursions we obtain the well-knownrepresentationFb(za) = c=bPc=0 
czb�ca ; b = 0; 1; : : : ; n:(74)We will allow this representation to hold for arbitrary values of theargument z other than za, and eventually for b > n, in which casewe let the coe�cients 
n+1, 
n+2, : : :be arbitrary.If in equation (72) we �rst substitute zc for z, where c denotes anumber from 1, 2, : : : , n that is di�erent from a, and next substituteza for z, then fromf(zc) = 0 and limz=za f(z)z � za = f (1)(za)



54 Schr�oderwe have the following important relations:8>>><>>>: b=n�1Pb=0 zn�b�1c Fb(za) = 0; c 6= ab=n�1Pb=0 zn�b�1a Fb(za) = f (1)(za)(75)We can now state the following theorem, which is based on theserelations.In the two systems of linear equations8>><>>: c=n�1Pc=0 zn�c�1a Xc = Yaf (1)(z1); a = 1; 2; : : : ; n;Xc = a=nPa=1Fc(za)Ya; c = 0; 1; : : : ; n� 1(76)or the two systems8>><>>: c=n�1Pc=0 Fn�c�1(za)Yc = Xaf (1)(z1); a = 1; 2; : : : ; n;Yc = a=nPa=1 zcaXa; c = 0; 1; : : : ; n� 1(77)one is always the solution of the other.For if we substitute the values from second of these equations intothe �rst, where obviously the summation index a must be replacedby another, say b, then (75) implies that the result is an identity.If for the converse we substitute the expressions from the fromthe �rst equations into the second, the truth of the theorem is notimmediately evident from what has gone before. Instead we are ledin this way to the relationa=nPa=1 zbaFc(za)f (1)(za) = ( 0; when b+ c 6= n� 1;1; when b+ c = n� 1;(78)which can be easily derived from a relation given by Cauchy.�) Thesolution of systems (76) and (77) has also be carried out by Baltzerfrom determinantal considerations.��)Further we now have the following theorem.�) Cf. Baltzer, Determ. 2nd Edition, p. 79��) Ibid., p. 81 �.



Algorithms for Solving Equations 55Any positive integer power of a linear function of the quantitiesF0(za);F1(za); : : : ;Fn�1(za);say P = c=n�1Pc=0 Y 0aFn�c�1(za);in which the coe�cients are arbitrary constants, can be expressed asa linear function of the same n quantities. The coe�cients of thislinear function are symmetric functions of all the roots and thereforecontain only the coe�cients Y 0 and the coe�cients 
 of the polyno-mial f(z), but not the roots za.The simplest way of seeing this is the following. Imagine that theexpressions for the functions F formed from the scheme in equation(74) have been substituted in the expression for P!+1. It is clear thatthis expression can be ordered according to powers of the root za.By means of the equation f(z) = 0 the powers of za whose exponentis greater than n � 1 can be expressed in terms of the lower powersof za. This exhibits P!+1 as a linear function of the quantitiesz0a; z1a; : : : ; zn�1a :By solving the system of equations (74), we can represent these latterquantities by means of the original quantitiesF0(za);F1(za); : : : ;Fn�1(za);and when these representations are substituted we indeed obtainP!+1 as a linear combination of the quantities F .However, the following proof may be worth noting.If we imagine the (! + 1)th power of the sum P developed ac-cording to the binomial theorem, then we get a sum of terms, eachof which is a product of factors that are the powers of the individualfunctions F0(za), F1(za), : : : , Fn�1(za). Such a product, and hencethe entire sum, can be expressed linearly in terms of the function F ,provided we are able to solve the same problem for the product ofany two of these functions.Thus we pose ourselves the general problem: for any two naturalnumbers a and b, express the productFa(z)Fb(z)



56 Schr�oderlinearly in terms of the quantities F0(z), F1(z), : : : . Here we candispense with the unchanging argument z of the functions F . If wemultiply the equation (74) by Fa and extract the term multiplied bythe zero power of z on the right, we getFaFb = 
bFa + zFz c=b�1Pc=0 
czb�c�1 or FaFb = 
bFa + zFaFb�1:Moreover, since by (73) zFa = Fa+1 � 
a+1;it follows by substitution thatFaFb �Fa+1Fb�1 = 
bFa � 
a+1Fb�1:If we write a+ c for a and b� c for b and sum over c from 0 to b� 1,then, recalling that F0 = 
0, we get by a suitable reordering of theterms FaFb = 
bFa + c=bPc=1 (
b�cFa+c � 
a+cFb�c) :(79)This is the desired representation.This theorem, which we have proved in two ways, will now beapplied to the case where P is the expression (72) itself: namely,f(z)z � za = c=n�1Pc=0 zn�c�1Fc(za);in which Y 0c = zc. As we have shown, the (! + 1)th power of thisexpression may be represented linearly in terms of the functions F .Our problem is to actually construct the representation� f(z)z � za�!+1 = c=n�1Pc=0 YcFc(za):This can be done directly with the help of the Theorem (77). Specif-ically, imagine the last equation has been written down for a =1; 2; : : : ; n, in which we take f(z)!+1f (1)(z)(z � za)!+1



Algorithms for Solving Equations 57for X . Then considering de�nition (38) of the function A, we imme-diately see that the solution of the system of equations isYc = f(z)!+1A(c)c (z):By substituting these values and deleting the common factor f(z)!+1we get the identity 1(z � za)!+1 = c=n�1Pc=0 A(c)! Fn�c�a(za):(80)Thus we can state the following theorem.If the (! + 1)th power of f(z)z � zais expressed linearly in terms of the functions F0(za), : : : , Fn�1(za),then as ! grows unboundedly the ratio of the coe�cients of any suc-cessive pairs of these functions approaches the root of the equationf(z) = 0 that lies nearest the arbitrary value z.To compute the coe�cients f!+1A(c)! one can also use the poly-nomial theorem along with the relation (79).Pforzheim, January 1869


