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ON INFINITELY MANY ALGORITHMS
FOR SOLVING EQUATIONS

ERNST SCHRODER

Translated by
G. W. Stewart

TRANSLATOR’S INTRODUCTION

Schroder begins his remarkable paper on the solution of a nonlinear
equation in a single unknown by thanking a certain H. Eggers for
communicating most of the important results in the paper. There is
a whiff of mystery here. At some point before Schréder’s paper ap-
peared, Dr. Eggers emigrated to America, and in 1876 he published
two short papers in The Analyst [2, 3] on the solution of nonlinear
equations. The mystery is that the papers are inconsequential, and it
is difficult to reconcile them with Schrioder’s sweeping acknowledge-
ment. By way of contrast, Schréder went on to publish important,
if somewhat neglected, work in mathematical logic [9]. It would be
nice to know if Schroder was simply being overgenerous in his ac-
knowledgement.

In any event, Schroder had a great deal to be generous about.
A. S. Householder used to claim you could evaluate a paper on
root finding by looking for a citation of Schréder’s paper. If it was
missing, the author had probably rediscovered something already
known to Schréder. This observation was intended as mild hyper-
bole, since much was done after Schréder; however, it is safe to say
that Schréder’s paper contains the first systematic, general deriva-
tion and analysis of algorithms for solving equations.

Unfortunately, Schréder is only a middling expositor. Line by line
he is a considerate writer, giving his reader all the hints necessary
to follow his reasoning. But at a higher level he often plows into
a thicket of details without bothering to tell one where he is going.
For this reason, [ will now give a summary of the main ideas in the
paper —a sort of road map of the territory.

Schroder’s goal is to find the roots of the equation
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where fis analytic about the roots in question. (Although Schréder’s

mathematical language is not quite ours—for example, he writes

hm instead of hm — he is rigorous, even by today’s standards.) He
=00

begms by dlstmgulshmg two kinds of methods. The first is typified
by Newton’s method and consists of the successive substitution of
iterates in a fixed formula. Schréder calls such methods algorithms,
a usage more restricted than ours today. The essence of the second
kind of method consists in constructing a sequence of functions F,(z)
having the property that wh_{%o F,(z) is a root of the equation, the
particular root depending on the choice of z. Bernoulli’s method can
be regarded as a method of the second kind.

At this point Schréder’s paper divides naturally into two parts.
The first consists of a general treatment of both kinds of methods.
The second consists of a systematic way of deriving a two dimensional
table of functions (actually two such tables) that can be used to
construct algorithms of both kinds. In the second part, Schroder
restricts himself to polynomial equations, but as he notes his results
are more widely applicable. We will treat each part in turn.

Schroder begins the first part with a careful discussion of the
properties of iterations of the form 2/ = F(z). He derives the now
classical result that for such an iteration to converge to a root zy, the
root must be a fixed point of I, and the absolute value of F’(z;) must
be less than one (actually, convergence can occur when |F'(z)| = 1,
a case missed by Schréder). For the case 0 < |F'(z1)| < 1, he calls
the rate of convergence linear, as we do today. He then goes on
to give the usual conditions for quadratic, cubic, and general wth
order convergence, observing that in the limit each iteration of an
wth order method increases the number of correct digits by a factor
of w.

Schroder now turns to the problem of writing down the most
general form of an algorithm with convergence of order w. He first
proceeds by special cases, showing, for example, that the most gen-
eral quadratically converging algorithm has the form

f 2
F=s_ _
z n Joe2,

where fy is the first derivative of f and (9 is arbitrary. He then
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writes down the remarkable formula

a=w—1 fa 1 a—1 1
rear el (fo) 2o
a=1 al  \ i fi
for the general wth order algorithm and establishes that it has the
required convergence rate.

A class of methods of the second kind can be obtained by taking
the limit as w — oo in the above expression, provided the limit
exists. Schroder gives a recurrence for the individual terms of the
series and an alternative representation. He does not investigate the
convergence of the series in general; however, he treats the case of a
quadratic equation in tedious detail.

Schréder now moves to the second part of his paper, in which he
gives a uniform treatment of a class of algorithms of the first and
second kinds. Today the natural approach to these results would be
through Koénig’s theorem, and it will clarify things if we so describe
them.

Konig’s theorem states that if an analytic function has a single,
simple pole at the radius of convergence of its power series, then the
ratios of the coefficients of its power series converge to that pole. The
application to root finding is as follows. The function

= AP+ AV G+ AV ) 4

flz—¢)

has a pole at € = z — z1, where z; is a root of f(z) = 0 that is nearest
z. If z; is unique and simple, then by Koénig’s theorem

Now consider the related expansion

Z—¢€

flz—¢)

= AP+ A+ AV 4
It is easily verified that

AN (z) = 240 (z) - A (2)

w—1
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(0)

(here we assume A7 (z) = 0). Hence if we set

AD(2) A (2)

T ADG) T DGy

Fo(z)
it follows that

lim F,(z) = 2z,

W—00

which, in Schréder’s terminology, is a method of the second kind.
Moreover, it can be shown that the iteration

7= F,(2)

is locally convergent with order w; i.e., it is a method of the first
kind.

This is Schréder’s development, or might have been if he had
known Ko6nig’s theorem. Lacking it, he proceeds indirectly. First, he
restricts himself to a rational function f whose roots are zq, 2o, ...,
zn. He then introduces the functions

a=n A
C(/\) _ Zq X(ZG) 7
(Z) aZ::I (Z - Za)w-l—l
where y is an essentially arbitrary function. Because he has an ex-
plicit formula for the functions €', Schréder is able to define
_ e
P

Fu(2)

and establish the properties mentioned above. He then defines func-

tions A((UA) by taking x(z) = TR and shows that the functions A
are essentially the same as the functions A from the power series. In
other words, Schroder passes from certain functions, the A’s, whose
properties he can establish but which he cannot compute (because
he does not actually know the roots) to certain functions, the A’s,
whose properties he cannot establish but which he can compute (be-
cause he knows the function f and its derivatives). The proof of the
identity of the two completes his development.

Incidentally, this description does not do justice to Schroder’s
virtuosity in finding elegant representations and recurrences for his

functions.
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The rest of the paper, which is largely devoted to determining
convergence regions, is an anticlimax. The task is almost trivial
for Schroder’s methods of the second kind. For his algorithms the
difficulties are almost insuperable, and he is able to obtain results
only for the quadratic equation. (Curiously, a few years later Cay-
ley [1] proposed essentially the same problem for Newton’s method,
commenting that, “The solution is easy and elegant in the case of
a quadric equation, but the succeeding case of the cubic equation
appears to present considerable difficulty.”)

Schréder wrote one more paper on root finding, or rather on iter-
ated functions [8], and then turned his attentions elsewhere. He does
not seem to have had much influence on his contemporaries. He is
one of a group of people — Koénig [6] and Hadamard [4] among oth-
ers — who were concerned with extracting the information contained
in the coeflicients of power series. Yet he is not cited by these people,
and there is no evidence that he influenced subsequent developments
by Aitkin and Rutishauser that lead to the qd, and ultimately to the
QR algorithm (for a survey of this development see [5]). Certainly
Schroder deserves credit for the polynomial case of Konig’s theorem.
He was also the first to show how by successive origin shifts the ratios
of coeflicients in a power series could be made to yield algorithms of
high order convergence. And the generality of his approach makes
him the rediscoverer of some iterative methods but the discover of
infinitely many more.

A word on the translation. The page layout and notation is
roughly that of the original, as it appeared in Mathematische An-
nalen. Schroder wrote in a style that is convoluted, even by nine-
teenth century standards, and I have not labored to conceal his short-
comings. On the other hand, I have not attempted to render him in
the prose of a century ago. Instead I have looked to the English of
our own day, with a little musty elaboration.

Acknowledgement. [ am indebted to Thomas Scavo for a de-
tailed reading of the text and many useful suggestions.

College Park 1992
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On Infinitely Many Algorithms for Solving
Equations

By Dr. E. ScuroDER at PForRZHEIM

In this paper the frequently treated problem of solving an equa-
tion will be considered from what to my knowledge is a new view-
point, one which is the common source of the various well-known
solution methods and of infinitely many others that have not yet
been considered. The investigations are concerned with equations
in one unknown, not only algebraic equations but also transcenden-
tal. T was inspired to this work in 1867 by some communications of
Dr. HEinrIcH Ecairs of Meklenburg, who was formerly Professor at
the Gymnasium at Schaffhausen and has now emigrated to America.
Specifically, T thank him for the knowledge of a great part of the
results in §§ 2, 3, 7, 8, 11, 12, and 15, as well as the results I have
obviously derived from them.

§ 1.
The Nature of the Solution Methods and the Condition
for Their Applicability.

Let f(z) be any single-valued function of the complex argument z =
z + 1y (which we shall always think of as represented by a point in
the complex plane). Then the problem that forms the object of the
following deliberations consists of solving the equation

(1) f(z)=0;
that is, of finding some number (root) z; with the property that
(2) f(z1) =0.

We will only consider those roots of the arbitrary algebraic or tran-
scendental equation (1) at and about which the function f(z) is con-
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tinuous and for which the zero is of finite order.! If we take the
symbols z; to denote any such root, then the function f(z) will be
single-valued, continuous, and finite in some neighborhood T con-
taining the point z;, and in addition the function will be zero with
finite order.

Now it is well known from the theory of functions®) that the
degree of multiplicity of the root z; —i.e., the order of the zero of
f(2) or the pole of the reciprocal function o must be a (positive)

(2)

integer p, so that we may write

(3) [(z) = (2 = 21)"y(2),

where (z) is single-valued in 7" and the limit

lim ()

zZ=z
is different from 0 and oo. Further, since the derivative d i (z) =
p((2) is itself single-valued and since™)

(4) lim (2 — 21)¥(2) = 0,

zZ=z

it follows easily from the relation

(5) FO) = (2= 2P Hpe() + (2 = 200 W(2)},

obtained by differentiating (3), that the derivative f()(2) of our func-
tion has a zero of order p — 1 at z;.
Hence the equation

" 1,

fO(2)
must have the same roots as equation (1), only these roots are simple.
The function f has additional roots at those points in T—and only
those points—where f becomes infinite.

!Translator’s note: Schrdder is evidently using the word continuous in its older
sense of differentiable or analytic.

*) For example, see B. DUREGE, Elemente der Theorie der Functionen einer
complexen veranderlichen Grosse, Leipzit, 1864, § 29.

“*) Ibid. § 24. and 27.
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Under these assumptions, one has a choice of different methods
for solving the equation (1). Now there are a large number and,
as we shall show, even an infinite number of solution methods, all
characterized by the fact that one begins calculating in a fixed way
with an almost completely arbitrary number z and by a sufficiently
extended sequence of operations arrives at a result that comes as near
to the root z; as desired. The starting value z can often be regarded
as a first (or zero-th) approximation of the root z;, from which the
algorithm of the solution method generates successively better, more
precise approximations. But often it is not necessary to proceed by
means of successive approximations. In both cases, which root of the
equation f(z) = 0 is found depends on choice of the starting value.
Otherwise, the starting value appears as a constant, arbitrary within
some region, whose influence on the final result diminishes as the
calculations proceed. Solution methods of both kinds are the object
of the following investigation.

§ 2.
Methods of the First Kind (Algorithms).

Without assuming anything for now about the nature of the func-
tion f, we shall first solve the equation (1) by an algorithm whose
repeated application, starting from a zero-th approximation, yields
successively more precise approximations to the root z. Within cer-
tain limits, the zero-th approximation can be chosen or estimated
arbitrarily. Our problem then is to find a function F’ for which the
equation

(7) 7= F(z)

always gives a point 2’ lying nearer the root z; than the original point
z.

If we suppose that we already know such a function, then the
calculation of

Z// — F(Z/)

gives us a new point which is even nearer the desired root z; than
its two predecessors z and z’. In general, if we define

(3) A = F),
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then because of the assumptions concerning F' the distance of the
last point z(") from the root z; will be smaller than that of each of
the preceding points

ey =),

In other words the absolute values of the differences

"

z—zm, 2=, 2 =, .., 207D

— oz, 2 -y
form a decreasing sequence. We may call these differences the errors
in the approximations.

An additional condition that must be imposed on the function
F is that the distances do not just decrease monotonically with in-
creasing r but that they actually approach zero, so that

i (r) —

(9) lim 2 z1.

If this condition along with the previous condition, which can be
written analytically in the form

(10) mod. {z(") — 2} < mod. {z0""1) — 2},

is satisfied for all values of r, or at least from a certain value on to
r = o0, then in fact (7) gives an algorithm of the kind desired. By
successive application of the algorithm, we may determine the root
z of equation (1) to arbitrary precision. We shall say simply that
the algorithm converges to the root z; from the starting value z.
The solution of the equation f(z) = 0 may be represented sym-
bolically as
(11) 7 = lim F"(2),

7=00

where we write

(12) FAEA L (2] = F(2)

for the r-fold repeated or iterated function.
The conditions (9) and (10) that the function /' must satisfy may
be recast in a more useful way.
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Specifically, the starting value is to be any value in a certain
region U surrounding the root 27, a region which we may call the
convergence region of the algorithm for the root z;. Thus, if z = z14€
represents a starting value, chosen near enough z; so that it lies in
this convergence region and we calculate the next approximation

F(zi+e)=2+¢,

then by (10) we always have |¢/| < |¢|]. Consequently, if € tends
toward 0 in any manner, so must ¢, and we must have

liE%F(zl +€) = 2.

This equation shows first that the function F* must be continuous at
z1 and second that it must satisfy the condition

(13) F(z) = =.

Of course if the function F' were continued in several branches,
a line of discontinuity or a cut could proceed from the point zi.
However, we shall restrict our investigations to functions /' that are
single valued in the convergence region U, or at least in a part of it
surrounding the point z;.

In this case, F'(2) or F(z1 +¢) can be developed in a Taylor series

2
F(z 4 ¢) = F(z) + eFO(2) + %F@)(ZI) T

inside of some circle with center zq; i.e., for all sufficiently small e.
From (7) and (13) it follows that

2
(14) 2/221+€F(1)(21)+%F(z)(21)—|—"',

If we now assume that F(V)(z) is different from zero, then for
sufficiently small € the term eF(M)(z;) will dominate all the following
terms, and for infinitely small € we can write

2=z = cFW ().

According to the requirement (10), the absolute value of this
difference is to be smaller than that of 2 — ;. Thus we obtain a
second condition which the function £’ must satisfy:

(15) mod. FM(z) < 1.
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If F(M(z) were zero, then this condition would automatically be
satisfied.

Now in general if the condition (15) is satisfied, then the absolute
value of the error in the first approximation, i.e. 2’ — 21, will be only
a fraction of the absolute value of the previously hypothesized error,
i.e. z — 21 = €. Since any number can be brought arbitrarily close to
zero by repeated multiplication by a constant proper fraction, it is
not difficult to prove that with repeated application of the algorithm
the error in the approximation actually tends to zero, or in other
words that the requirement (9) is satisfied.

Thus if we confine ourselves to a single-valued function F, we
may replace the two conditions (9) and (10) by (13) and (15), and,
incidentally, state the following theorem.

If F(z) is a function that is single valued about z; and satisfies
the conditions (13) and (15), then for any number z close enough to
z1 equation (11) is satisfied. In other words, for all points z lying in
a certain neighborhood about the point zy, the unboundedly iterated
function F(z) tends in the limit to the root z1 of the equation F(z) =
z.

We have found that under the assumptions (13) and (15) equation
(7) gives an algorithm of the kind we desire.

If the case F()(21) = 0 is excluded, the convergence of the cor-
responding algorithm may be called linear or of the first order, be-
cause the error in the approximation is nearly proportional to the
first power of the error in the starting value. The smaller the error
in the starting value, the stricter the proportionality.

We obtain a much more useful algorithm by choosing the function
F so that in addition to the previous conditions we have

(16) FO () =o0.

In this case, if the next highest derivative F(?)(z;) is not zero, then
for infinitely small € the error in first approximation

2

2 -z = %F(z)(zl)

is proportional to the square of the original error. Since the error is
of the order of the square, we may call the approximation quadratic.
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Similarly, if F is defined so that
(17) FO(z)=0, FO(z) =0, ..., F“D(z) =0,

while F(“)(z) is not zero, we get an algorithm that produces an
approximation of the wth order. For then

Ew

/ w
2 -z = mF( (1)

when ¢ is infinitely small, and the error in the approximation is pro-
portional to the wth power of the error in the starting value.

In practice if the zero-th approximation or starting value is exact
to s places beyond the decimal point in absolute value, then for a
quadratically convergent algorithm the following value or first ap-
proximation will be exact to 2s places, and for an algorithm of the
wth order it will be exact to approximately ws places. More precisely,
the number s can be taken so large that for it and any larger number
the assertion is strictly true.

We may now recapitulate our results.

Let z; be a root of an equation f(z) = 0, and let F(z) be a
function that is single valued in a region surrounding z1 and takes
on the value z at the point z, so that equation (13),

F(Zl) = Z1,

is satisfied. Then equation (7),

defines an algorithm that converges to zy from any point in some
region surrounding z1, provided that (15),

O] < 1,

holds. If |F(1)(21)| > 0, the convergence is only linear, whereas it is
of the wth order when (17),

FOG) =0, FO(z) =0, ..., F@ () =0, [F®(z) >0,

holds.
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§ 3.
Examples of Algorithms.

We will suppose that the assumption mentioned in § 1 that f is single
valued holds here.

I. Newton’s method is the most famous algorithm of the kind
considered here for solving an equation f(z) = 0. It is given by the
formula

U f(z)
f(l)(z)’
and its function F is therefore
Fo._
f(l)

where the argument z has been omitted for the sake of brevity.
Now if the root 2z is of multiplicity p and we set

Z— 2z =€,
then according to § 1

f=ev,  fO = pp+epM),
and

L
py + ey

whence

U
po+ et gy et

From this we immediately see that when z = 2y, i.e., when € = 0,

F =1

F=z, FY=1--
and consequently mod. F() < 1. Hence Newton’s method satisfies
the fundamental conditions we have derived for an algorithm.
When p > 1, F() is different from zero. Thus the algorithm only
converges linearly when it is used to find a multiple root; and the
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higher the multiplicity, the poorer the convergence. However, if p =
1, i.e., the root is simple, then the Newton algorithm is quadratically
convergent, since F()(z) = 0 while F(?)(z;) is in general different
from zero.

If we wish to obtain a quadratically convergent algorithm for the
first case and the multiplicity of the root is known, we need only set

f
FIZ—pW

This same algorithm could be used to advantage for p nearly equal
roots.

In the special case when f(z) = (#—21)P and hence ¥(z) = 1, this
last algorithm yields the correct root immediately for any starting
value z, since 2/ = 2 — € = z1.

II. Let

p(z)
P(2)

denote an arbitrary function that is single valued about z; and is not
infinite at z;. Then the equation

A fZ)e(z) or F— s !
p(2) D (2) = 1)V (2)

F 0
Fooe
yields an algorithm for finding the root z; which in general converges
linearly when z; is a multiple root but converges quadratically when
z1 18 a simple root.
The same algorithm results if we construct the Newton algorithm

for solving the equation

that is, if in the formulas in I the function f is everywhere replaced
by i For if, as is implicit in the above assumption, f and ¢ do not

¥
vanish simultaneously at z;, the above equation has the root z; and
can be solved in place of the equation f(z)=0.
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We may also show that this is a legitimate algorithm directly,
without deriving it from Newton’s method, by substituting e’ for
f to get

€

MO
+é—— —€e—
Py 12

and differentiating this expression with respect to z.

Because of the arbitrariness of the function ¢, this general algo-
rithm includes infinitely many special algorithms. For example, we
get back Newton’s method itself by taking

¢(z) = const.

II. The function ¢ may be chosen so that the algorithm remains
quadratically convergent, even for multiple roots—and this is the
most noteworthy special case of the general algorithm. According to
the remarks about equation (6), this will happen if we take ¢ = F,
Here, after an easy reduction, we find that

and for e = 0 it follows immediately that (1) = 0. Hence

g e
OGP = 1)

is an algorithm that always converges quadratically.

§ 4.
The Most General Algorithms with a Given Rate
of Convergence.

I will now proceed to show in complete generality how to easily con-
struct algorithms 2z’ = F(z) that converge to a root of the equation
f(2) = 0 at an arbitrary given rate.
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We will let the function f be subject to the condition of § 1 that
it be single valued and the function F' be subject to the conditions
of § 2.

For the sake of brevity we will omit the starting value z (which
must be chosen sufficiently near z; but is otherwise arbitrary) when-
ever it appears as an argument of a function. However, to distin-
guish the case where the special argument z; is to be understood in
a formula instead of the general argument z, we will write z = z
nearby—or what is equivalent for our purposes, f(z) = 0. Deriva-
tives like

02 f(2) = f(z)

of the function f, which occur especially often, will be denoted by f,;
however, any other differentiation with respect to z will be indicated
by the symbols 0, or 97, or for short 9 or 9*. The scope of these
symbols extends to the next 4+ or — sign.

By ¢, 1, ¢2, ... I will denote arbitrary functions that are single
valued about the point z; and do not become infinite there.

Finally, without loss of generality we can restrict ourselves to the
assumption that the root z; of the equation to be solved, i.e. f =0,
is simple. For as we have already mentioned, if this equation has

multiple roots, the equation s = 0 has the same roots, only each is
1

simple. In order to obtain results for the second case that correspond

to the first case, one has only to substitute i for f in the first.

1

Now the first-stated requirement on the function F’ was that /' =
z1 for z = 2 or f = 0. This requirement will be satisfied with
greatest generality if we set

F=z—9p

where the arbitrary function ¢ vanishes when f = 0, in addition to
satisfying previous conditions. The present condition will be satis-
fied, again with greatest generality, if we set

e=fe1.
Hence, as long as ¢ remains free, the function

F=z—-f-y
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is of the most general form that satisfies the first requirement.

Now if this algorithm is to have at least quadratic convergence —
we are unable to write down a convenient general form for a linearly
converging algorithm, which only has to satisfy a single inequality,
namely mod. F < 1 when f = 0; but such algorithms are much

less useful in practice —then we have a second requirement, namely
OF = 0 when f = 0. This gives

fier + fOopr =1 when f=0.

Since dipy can no more become infinite at the point z; than ¢y can,
we must have

fip1 =1 when f=0.

And finally, since the assumption of a simple root implies that f;
cannot vanish along with f, we must have

1

w1 = — when f=0.

J1
If we allow this equation, which has to hold only when z = z, to
hold for arbitrary z and append an arbitrary term that vanishes with
f, that is if we set

1
Y1 =+ f@?v
J1
then the second requirement will be satisfied with greatest generality.
Thus the equation

F=z- i - f29927
J1
in which 9 remains free, includes all algorithms of the second order
or of quadratic convergence.

[In fact, it is easy to determine ¢y so that the algorithm turns
into the equally general algorithm given as an example in II of the
previous section. To do this, we need only equate the two expressions
for I, and by means of this equation express o in terms of the
function ¢ of that section.]

If further the algorithm is to converge cubically, the function F
must satisfy the additional requirement that 9*F = 0 when f = 0. If
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we expand the equation 9?F = 0 and set f = 0, but do not restrict
the argument z to be z;, we can determine the most general form
of the function o that satisfies the requirement by appending an
arbitrary term that vanishes with f. After an easy calculation we
obtain

T/
99222—23+f993

1

Consequently the function

VN 3
F R A
foo2f} ¢

gives the general algorithm with cubic convergence.

If we continue reasoning in this way, we arrive at the following
result.

The most general algorithm z' = F(z) whose convergence is of
the wth order is obtained by taking

R N SR B T & (1 )21
o4l gL [ Z9) —4...
TR ATV nT
I L\ 1
_1W 1 (—8) — - f“ W
) no e

where @, s an arbitrary function. In more compact notation

=z—

a=w—1 a a—1
(18) F=z4 5 (—1>“f—-(ia) L g
= ! f1 f1

By way of explanation I must note that for brevity I have used
here (and in the sequel) the symbol a!, introduced by SCHLOMILCH,
to denote the factorial 1-2-3---(a—1)-a. Moreover, the expression

1 a—1
()
J1
does not represent a quantity but an operator. It directs that the

1
object — of the operator be successively differentiated and then mul-
1

1
tiplied by f—, the process being repeated a — 1 times. For example,
1

4
(7) &
f fi
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has the meaning

Tolololol
H h i ho h
In order to establish the truth of the above theorem, one has
only to show that all the derivatives of the function F up to and
including the (w—1)th vanish when f = 0. For this purpose, however,
it is unnecessary to calculate all these derivatives; it is sufficient to
differentiate the equation (18) a single time. If we do so for all terms,
first differentiating the factor before the - sign and then the factor
after, but merely indicating the second differentiation, we get

a=w—1 a—1 1 a—1 1
or=1+"% (—1)a7“fa! fi, (EG) =l
a=w—1 fa 1 a—1 1
—1)r 9 (—a) == 00,
* aZ::I ( ) al <f1 ) 1 f 7

Now in the first sum the general term simplifies to

fa—l (1 )(1—2 1
—1)° a(=0) =
(=1) (a—1)! h i’

and one sees right away that the first term of this sum cancels the
the first term. Similarly, the following terms of this sum cancel the
first w — 2 terms of the second sum, so that only the last term of the
second sum remains along with the two terms outside the scope of
the summations.

Therefore, we have

1wl w—=2
oF = ! {((wl_) s0(50) F-whe.- fa%} .

This function contains the factor f“~! and has an (w — 1)-fold zero
where f vanishes. Hence, its higher derivatives, up to and including
the (w — 2)th vanish when f = 0, which is what was to be shown.

§ 5.
Solution Methods of the Second Kind as Limiting Cases
of Algorithms.

We have now arrived at a general expression (18) for algorithms of
order w, and it is natural to think of taking w = oc.
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In this case the function I’ takes the form of the infinite series

a=00 afa ( 1 )a—l 1
) LT w

provided we eliminate the missing term f“¢, by assuming that ¢, =
0. Obviously this function has meaning only to the extent that the
series converges. In a large number of cases the series will actually
converge in a certain neighborhood of z, since for f = 0 it reduces to
the starting value z = z; and since the quantity f, in whose powers
the series is expanded, can be made arbitrarily small by taking =z
sufficiently near z;. [However, if this neighborhood should reduce to
the point zq, it not infrequently happens that by a suitable choice
of ¢, one can replace the divergent series with a limit that remains
finite.]

In the case of convergence, the series (19) represents a function
whose derivatives all vanish when f = 0. Therefore, the value of
this function for a starting value z chosen sufficiently near z; gives
an approximation z’ to the root z; whose error is proportional to an
infinitely high power of the error in the starting value; i.e., the error
is zero. Indeed, for this case equation (14) gives F or

(20) 2= .

The algorithm with infinitely swift convergence therefore gives
the true root of the equation immediately as its first approximation.
It no longer has the nature of a real algorithm; i.e., a computational
method that is to be repeatedly applied. Instead it constitutes an
algorithm of the second kind mentioned in § 1, in which we do not
need to use approximations to solve the equation.

Let us now actually perform the differentiations in the first terms
of the series as indicated. The series then reads

o S S S (O S ¥ EA £
ZI_F_Z__.___.___.i
T R TR Y /7
_f_4 ‘ 15f5 —10f1f2fs + F12 fofa
A! i
S 053 — 10541 f5 f3 + 10F1 f5 + 151 fa = f s

5! i

(21)
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This form of the series has been derived by THEREMIN®) in a different
way and without reference to the algorithms considered here.
If we denote the general term by

WA

al ) fZa—l ?

the numbers y, can be easily computed by the recurrence

(22) Xat1 = (2a — 1) foXa — f10Xa-

The series can also be represented more concisely as follows

7 = F(2)
BT I e (£ A 0)
a=1 a! e=0 €
Alternatively,
a=oco (—1 af P a .
(24) a="T B
since we have the identity
1 a—1 1 (_1)a_1Xa
<_8) e Ta—1
(25) fi fi i .
=lim 3f_1 {f(z i 6) - f(Z) } = 8;(2)27
e=0 €

which can easily be proven from the well-known theorem on the ex-
change of independent variables.

§ 6.
An Example: the Quadratic Equation.

In order to give an example of the results of the last section, I will
apply them to the quadratic equation. This example has already
been treated by THEREMIN (loc. cit.), but not with satisfactory rigor
and completeness.

*) Crelle’s Journal, V. 49, pp. 187-243: Reserches sur la résolution des
équations de tous les dégrés.
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Let
f(e)=(z—21)z—2)=2"—2(21+ 22) + 2122 =0

be the equation to be solved in the manner given above. Then

fet+9- 1)

€

=€+2z— 21 — 29,

and

1 _ (=1)*"*(2a — 2)!

aa—l . — .
¢ (e+2z— 2z — 29)° (a—Dle+2z—2 —zz)za_l

If we substitute the value of this expression with ¢ = 0 for the
corresponding value in equation (23), it follows that

g a=co (2a — 2)! ‘ (z = 21)%(z — z2)°

a=1 (Cl - 1)'&' (22 -z — 22)2(1—1 .

If we denote the binomial coefficient

s!

al(s —a)!

by (), then since

(20 —2)! _ (_1)a—122a—1 (%)a

(a — D)la!

we have

a=0c0 1 — —
2 =24 (Z -2 +Z2) (=1 (—) o) z) Zzg
a ( 21 + Zz)
y
2
If we subtract one from the sum on the right, we may take its

lower index to be zero. But then the sum represents the binomial
series with exponent % developed in powers of the quantity

(z —21)(z — z2)

Z_Z1+Zz :
2

t=—
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Now ABEL*) has shown that the binomial series

a=00

> (8)at"

a=0
converges and represents one of the values of (1 + ¢)°, whenever
mod. t < 1. Provided the real part of s is greater than —1, the

series even converges when mod. ¢ = 1, with the exception of the
1
special value t = —1 with real. s < 0. Since in our case s equals 2

our series converges for mod. ¢ < 1 and is equal to

z’:z+<z—z1+zz){:{:\/1——|—15—1}

2 +
Z1 Z9
+
. 21 + 22 9
_z—|—<z— 5 ) z1+z2_1
PR L)
2
Hence
o 21-1-22:‘:21—22;
2 2

that is, 2 = 2, for the plus sign and 2’ = 2z, for the minus sign.
However, we have yet to discuss which of these two cases holds.
Equivalently, we need to consider the disposition of the convergence
region.

If we set

9, 95 21+ 22 W
b b

P = e

z—z1 = pre’ z — z9 = pae’

then pq, p2, and p are the distances of z from the points 21, 29, and
zZ1 + 22

, the last lying midway between the first two points. The

convergence condition for the series now reads

pip2 < p°.

If 2F denotes the distance between the two roots z; and 29, then by
a well known theorem on the median of a triangle we have

2 Pitps
2

*) Oeuvres Complétes, T. 1. No. VII, Christiania 1839, p. 66.

- EZ
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Our convergence condition thus becomes
(p1—p2)* > 2E*  or +(p1 — p2) = EV2.

The convergence region is therefore bounded by an equilateral hy-
perbola, whose foci are the roots z; and z9 of the quadratic equation.
Moreover the region is that part of the plane that contains these foci,
and the hyperbola itself belongs to the convergence region.

Abel (loc. cit.) has also shown which value of the infinitely mul-
tiple valued function (1 + ¢)® is given by the binomial series when
it converges. However, since the sum is unambiguously known for
real arguments, we can obtain this part of Abel’s result more easily
from the theorem of function theory that says that a power series
is a single-valued and continuous function of its argument and that
such a function can be continued in the plane—or at least in a sector
of the plane—in only one way. As turns out to be suitable in many
investigations, the function log z can be defined to be single valued in
the entire complex plane by the stipulation that it be taken real for
positive z and that it be continued from the axis of positive numbers
to the axis of negative numbers in such a way that the imaginary
part of log z is +77 on the negative axis, while infinitely close below
the negative axis it is —m¢. Thus the function has a discontinuity
along the axis of negative numbers. The sum of the binomial series
can then be represented unambiguously by the expression eslog(1+t)
Now for our example

o \ 2 2
141¢= Eew - (E) ¢2i(Po=0)
pe p

where ¥y denotes the argument of the number

Z1 — %2

2

= Ee'to,
Hence,

ge Liog 21(90 =) ‘

p

e % log(1+¢)

Note that

log " = i(y + 2h7),
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where the positive or negative integer h must be chosen so that y +
2h7 lies between —7 (exclusive) and 7 (inclusive). It follows that

21 + 22
orlogitt) _ F i(wo—o4hm) _ 2 . hri
o o Z21 + 22 ’
P y—
2

where h is to be chosen so that 9o — ¥ + h7 lies between _I (exclu-

sive) and g (inclusive). Now the ray p from the point z forms two

supplementary angles with the line connecting z; and z,. Let the one
lying on the side of the point z; be written wy and the other wy, and
let them be taken between 0 and 7. If we take the arguments Jg, 9,
etc. to be between —7 and 7, then it is easy to express the difference
Yo — ¥ in terms of wy and wy using the theorem on the exterior angle
of a triangle. We then find that if wy < g then A is the even number

0 or 2 and consequently "™ = 1. On the other hand if wy < g then

h is the odd number £1 and consequently "™ = —1. In the first
case the formula for z has a plus sign, and z’ = z;. In the second
case it has a minus sign and 2z’ = z3. The series thus yields a sum
that is the root of the polynomial that is the focus of the hyperbola
lying on the same side of the minor axis as the point z; i.e., the point
that z can approach without crossing the curve.

§ 7.
Introduction of the Symmetric Functions A and B
of the Roots.

Since the derivation of the most general algorithms for solving the
equation f(z) = 0 has been completed, I will go on to present the
most noteworthy special algorithms. My theme will be algebraic
equations, and in the sequel I will confine myself to the case where
f(#) is a rational function, even though the final results for the most
part extend to arbitrary single-valued functions.

Let the roots of the equation, which are different from zero and
o0, be z1, 22, 23, ..., 2. Our sole concern will be with finding these
roots.

The algorithms considered here are based on the properties of
certain symmetric functions of all the roots, functions which have
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the form

A a=n z3x(za)
) = E 2
Here w and A denote arbitrary positive integers, and y is a function
of a single variable that does not contain the the arbitrary starting
value z and does not become zero or co for any of the roots z, of the
equation.
The next thing we will consider are the properties of this function

(26).
If we set
_ OO
(27) F(z) = W?

where h again denotes a natural number, then we can state the fol-
lowing theorem.

1. If the argument of the function F is a root of the equation
f(z) = 0, then the value of the function is the hth power of this root;
i.e.,

(28) F(Zl) = Z{L.

Here zy, which is the symbol introduced for the first root, obviously
represents an arbitrary root.

To prove this theorem, multiply the numerator and denominator
of the fraction (27), so that it does not become oo for z = 2. From

this we get
a=n _ w+l
5 et (222
(29) P(z) = =0 e
A -
5t (22

If the root z; is p-fold (where p can be one), e.g., if
(30) 21 = 2= = 2,

then for 2 = #; all terms in the numerator and denominator which
follow the pth vanish (i.e., all terms for which the summation variable
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a is greater than p). In the other terms, for which @ has the values

1,2,3, ..., p, the factor
(z—zl)‘” 1
Z— Zg

assumes the value one. Since all the terms are equal, their sum comes
to p times the first. Hence

A+h
F(Zl) _pH X(Zl)

Copex(z)

which amounts to (28).

Under the assumption that h = 1, the function F satisfies the
first fundamental condition F(z1) = 21, which, as we have seen, any
function that gives an algorithm must obey.

1. If the point z lies nearer the root zy than any of the other
roots, i.e., if mod. (z — z1) is the smallest of the distinct moduli of
the differences z — z1, z — z3, ..., 2 — 2z,, So that

(31) mod. (2 — #) < mod. (z — z,), a=p+Lp+2,....n,

then
(32) Jim F(z) = 27
For
mod. =2t
z— 2z,

is a proper fraction for all @ > p, and hence

_ w+1
lim (Z Zl) =0, a>p.

Ww=00 \ 7 — Z4

On the other hand, the same limit is equal to one fora = 1,2,3,....p.
Hence, in the numerator and denominator of (29) all terms following
the pth vanish for w = oo, and the rest combine exactly as in the
previous theorem, where z was set equal to 2.

III. When z becomes equal to a root zy, the derivative 0,F(z)
becomes 0 with order w; i.e., we can write

(33) 0.F(z)=(z— =) - V¥(z),
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where Y(z) is a function that is not infinite for z = z and, as long
no special relations between the roots are assumed, does not vanish.
For the proof differentiate (27) to get

_ CM(2)0:C0H(e) = GO ()0, 6V (2)
{CV(=))

and then substitute the expressions derived from (26) for the func-
tions C'. However, to keep things straight replace the summation
index a by another letter b in the functions to be differentiated be-
fore performing the differentiations. After an easy simplification, it
follows that

9. F ()

CON2 0 F(2) = —(wt 1) S bi” aax(zax(n) oz -z

a=1 b=1 (Z - Za)w-l—l(z - Zb)w+1 Z—Zp ’

The expression in the double sum on the right-hand side is unsym-
metric with respect to the summation indices a and b because of the
factors

h h
2y — Zq

Z— Zp

However, these factors can be cast in symmetric form, if we take into
consideration the fact that all the terms in which the summation
indices @ and b are equal fall out of the double sum owing to the
numerators zf — 2. Among the remaining factors, for each combi-
nation a, b we find a corresponding combination b, a¢. This allows us

to write

2

2 (z—zg)(z — =) '

1{,2,?—,22 _I_zg—z,]f}_ l(zg—z,]f)(za—zb)

Z—2p Z— 24

for the factors in the double sum. Hence we finally get

h h
o = %)% = %)
w1 = (Z _ Za)w+2(z _ Zb)w+2 X(Za)X(Zb)

b

in which we may regard a and b as any two distinct integers from the
integers 1, 2, 3, ..., n.
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We now will multiply the numerator and denominator of (34) by
a power of z— 2z in such a way that they do not become infinite when
z = z1. The question is what power of this difference is required.

First of all, if the root z; is simple, we obviously must augment
the fraction by the factor

{(z =212 = (2 — 22 *?

because of the common denominator. However, to obtain the re-
quired result in the numerator it would suffice to multiply by (z —
21)¥*2, since by the distinctness of @ and b no higher power of z — z;
can appear in the denominators of the individual terms. Therefore,
there remains the factor

(Z _ Zl)2w—|—2—(w-|—2) _ (Z _ Zl)w

which multiplies a function that no longer becomes oo or 0 when
Z=2Z1.

In the case of a multiple, say p-fold, root one easily finds that the
same factor works by considering that certain terms in the numer-
ator of the formula (34) vanish, while others in the numerator and
denominator combine.

Since the derivative 0,F(z) vanishes with order w when z = 2,
the higher differential quotients of F', up to an including the wth,
must also vanish. In other words, the function F(z) satisfies the
second fundamental condition that a function yielding an algorithm
of order w + 1 must obey.

IV. It remains to state the relation
(35) CV(z) = T (=1 (b))

c=0 B

as a fourth property of the function €. Here (h). denotes the bi-
!

nomial coefficient - The proof is easily effected. For if one

cl(h—¢)

substitutes the expressions from the definition (26) in the relation,
it reduces to the equation

c=h
= L (=)o (2 = z)f

c=0

which by the binomial theorem is an identity.
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We should mention the most notable special case of the relation
(35), which results from setting h = A:
c=A
(36) CVE) = T (=10 ().
c=0
By means of this equation the functions €' with exponent A can be
reduced to the same functions with just the exponent zero.
Finally, if we replace A by A + h, the relation takes a form which
we write down for the case h = 1, a case that will be especially
important in the sequel:

(37) COM(z) = 20V (z) - ¢ ().

Regarding the arbitrary functions y that enter in the expression
(M)

(26) for the symmetric function C;7(2), two special choices will turn
out to be particularly valuable in the sequel. The first choice is

1
)
and the second is
x(z) = 1.

If we choose these two expressions for y, we obtain two functions
from (26), which we shall call A and B to distinguish them from the
general function C'. Specifically,

a=n A
AN = “a
(38) w aZ::I (Z _ Za)w-l—lf(l)(za)?
and
— A
O _ a=n 2,
(39) Bw aZ::I (Z _ Za)w+1 .

For the function A it is clear that that the case of multiple roots must
be excluded. Otherwise, some terms of the sum will become infinite
owing to the vanishing of the derivative of f. For the function B this
case is permitted. In general, the properties of these two functions
exhibit such deep analogies that it is highly advisable to investigate
them together.
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In fact, the function A becomes the function B when f(z) is re-
f(2) [(=)

fO(2) FY(z2)

0 has the same finite roots as the equation f(z) = 0, but each of these

(V)

roots is simple. Therefore, we are allowed to form the function Ay

placed by . Specifically, according to § 1 the equation =

1
for the first equation, which may be done by replacing 1) with
L f(z
1 B f(2)?
o JC) T )= fe) )
fO(2)

It is easy to show that this expression takes the value p for z = 2.
Hence the sum (38) extending over all the finite roots of the equation

f(j;()z()) = 0—that is all the distinct roots of the equation f(z)=0—
4

goes over into the sum (39) ranging over all the roots of the equation
f(z)=0.

If we think of f(z) as not just a rational function, but an entire
function, say

J(2) =702+ 712" P+ 22"t vz

(40) =q0( = 21)(2 = 22) -+ (2 = 2),

then, as is well known, we can express any symmetric function of all
the roots (here presupposed to be finite) in terms of the coefficients
of this equation or the derivatives of the polynomial f(z) for z = 0.
Consequently, we can express our functions A and B in this way.
Our immediate problem is to construct these expressions. We have
two ways at hand to derive the expressions systematically. On the
one hand, starting from the definitions (38) and (39) we can obtain
obtain recursions (like the equations (47) and (48) of the following
section), from which we see that our expressions are the coefficients
of a recurrent series, which we then sum. On the other hand, we
can decompose the symmetric functions into homogeneous (entire
rational) parts and determine the latter according to the method
of WARING, GaUss, and CAUCHY. Better yet, we can seek the
generating functions themselves, as explained by BORCHARDT and
BETTL)

*) Crelle’s Journal, V. 53, p. 193 and V. 54, p. 98 ff.
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Because these derivations are intricate, I will content myself with
simply stating and verifying the results.

§ 8.
Derivation of Related Functions A and B from a
Generating Function.

We shall now define two brand new functions of z by the following
equations:

(41) Mwbr““],

flz—¢)
(42) B(/\)(Z) _ l(z — e)Af(l)(z — E)] ‘
‘ e .

Here (following JAacoBI) the symbol [®(¢)].w represents the coefficient
of € in the development of the bracketed function ®(z) in increasing
powers of ¢, a development which is valid for sufficiently small €. Thus
the function in brackets would be called by Laplace the generating
function (fonction génératrice) of the coefficients it defines. To put
it otherwise, the above equations are equivalent to the following;:

Moy = L aw(z= 0
(43) A=) = S lim 02—,
(44) Bz = L g G0

w! e=0 flz—¢)

If these definitions are to make sense, the Taylor series

(=" _ " ),y o
(45) oo pay A (=) - €,

(== MM —o)
flz—¢)
must converge for sufficiently small €. In fact it is easy to see that

this expansion is always valid for sufficiently small ¢ provided that z
is not exactly equal to a root z; of the equation f(z) = 0.

(46) = Bz e
a=0
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In this section we will be concerned with recurrent and closed
representations of the functions A and B in terms of the function
f(#) and its derivatives. For the sake of brevity we will once again
omit all arguments z and denote the derivatives of f(z) as in § 4.

If we multiply equations (45) and (46) by the expansion of the
function f(z—e¢) in increasing powers of € (an expansion which always
exists) and order both sides by powers of €, then by equating the
coefficients of (—¢)¥ in the right and left-hand sides we get

(47) (A = T C e

a=0 (w—a)!

A,

(48) aiw (A)a'z)\_afw—a+1 _ a=w (_1)afw—a (/\)

a=0 (w—a)! =0 (w—a T

™

By means of these equations the functions A and B can be calculated
recursively.

Before doing this, it is appropriate to give closed representations
of the functions A and B. We can easily obtain such expressions
by writing down the system of equations that result from setting
w=0,1,2,3,...in (47) or (48) and then solving the system for the
unknowns (—1)‘*’A£,A) or (—1)‘”89).

Since all the elements above the diagonal of the determinant of
the system are zero, the determinant is the product of its diagonal
elements and takes the value f“t!. If we write this denominator as
a factor on the other side, we get the following formulas:

Wl 4(N) _ r—e Joo Jen i
(49) [T AY H(/\)CZ ,c!,(c_l)!,...U,f,(),(),...,() ,
fw-I—IB(A) _
(50) a=c (/\)a;;)\—afc—a+17£7 fc—l 7”‘£7f70707‘”70H‘
a=0 (¢ —a)! el (e = 1)! 1!

Here I have only written down the (¢+1)th rows of each determinant,
which is of order (w+1). The individual rows are obtained by setting
c=0,1, 2, ..., w, where obviously we take only the first w + 1
elements from the sequence.
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In the especially important case A = 0, the first element of the row

given for the second equation simplifies to fc_-|'-1 Moreover, the order

of the first equation can be reduced by one,céince the initial element
is one and the remaining elements in the first column become zero. If
we multiply the rows of this simplified determinant in order by 1, f,
L, f2, ..., f¢ and divide the columns by the same quantities, we can
make the elements above the diagonal (which remains unchanged)

e

equal to one, while any other element f—T becomes —

C. C.
We shall now show that the functions .4 and B with the exponent
A can be easily expressed in terms of of the corresponding functions

for A = 0. The most suitable representations of our functions for
this purpose are the ones in terms of differential quotients that have
already been given in (43) and (44). Specifically, it follows from
Leibnitz’s theorem on the repeated differentiation of products that

= L S afs N oaw—a L
Ay " leli% go(w)aae (2 —¢)" X 0 e
a=w Wy =
BY = i'lim S (w)a0 (2 =€) x 8?’_“M.
wle=0 ;-0 flz—¢)

By the binomial theorem

lim 9%(z — ) = (=1)%a!(N)a2" 7"

e=0

Hence considering the equations (43) and (44) in the case where
A = 0, we see that

(51) A =S (= Dal(h), A,
a=0

(52) Bl="% (~1)al(\),* B,
a=0

which is what was to be derived.
In addition, the functions B(®) can be readily expressed in terms
of the functions A©). Specifically, proceeding as above we have
a=w 1

BO = Ltim S (0,07 F0 (= — ) x 92

w! e=0 4= f(Z_G)'
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Thus since
lim 08 fW (2 — €) = (=1)" fuq1,

we have

(53) B =T S )

a=0 a!

More generally, we can write the formula

c=w a=c A—a
(54 BOY = T (C1ya®@, 5 N e
c=0 a=0 (C — a)!

which results from combining (52) and (53).

Thus, it is only necessary to calculate the functions .A() by recur-
rences, since then the functions AM and B™ can be easily formed
from equations (51) and (54).

In order to actually carry out this calculation, we consider the
recursion formula (47) for A = 0. In this case the left-hand side
vanishes for w > 0 and takes the value one for w = 0. Thus the
equation splits into two equations, which we write in a fractionless
form that seems best suited to our application:

JAS =1,
et A0 = aiw DT

a=1 a!

(55) A0 s,

w—a?

We can now build a table of the function fw+1A£,0) in the following
manner.

First we compute the values (for the argument z) of

f7f17f27f37"'7

from which we obtain

flv_%ff27éf2f37_21_4f3f4,. -
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Then we proceede to multiply horizontally and add vertically accord-
ing to the following scheme, which requires no further explanation:

f.AéO) =1 Xf1
72A9 = p | s

L] x— %ffz
PAY = - 31f | xh
Alx-1ff
1| xgf*f3

(D

f4d4§>0) =ff-fhf+ éfzf:a X f1
B=3f | x=51f

bil ><%fo:a
I x— 21—4f3f4
A = gy L L L2z L3y,
etc.

In order to compute the functions B(E,O) we proceed as above and
cast the relation (53) in a more convenient form:

(56) fw-|-13£}0) _ aiw (=1)f% fazr ‘fw—a-l—lA(O)

1 w—a-*
a=0 a.

Then we need only to combine the expressions we just found for the

functions fw+1A£,0) with the appropriate multipliers

S A Yo
to obtain
B = p,
B0 = f2— 1o,
(1) fSBgO):ff— %ff1f2‘|‘ %f2f37
FIBY = [ 2f 24 22 f fa+ L1221 13 L,
etc.

In addition to the closed representation by determinants that we
have already stated for the functions A and B, we can also derive
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the following expressions, which I will content myself just to note.
Specifically,

o0 FRA = s T ) (B ) ()

alas!. . . a,! \0O! 1! 2! w!

where the sum extends over all positive integers together with zero
that satisfy the pair of simultaneous equations

(58) at+at+art---+a,=w
Oca+l-a14+2 a0+ +w-a, =w.
If we multiply the general term in the above sum (57) by then
Ww—a
the sum represents the value of f‘*’BL )1, namely
wip(0) (=D)*(w—a—1)! iaﬁm é@‘” f_waw
(99) [*Bomy = WS P (0!) (1!) (2!) (w!)

The following relations also hold:

e A (R B AL
R “ZO< e e {f(+€) f()}“7

w O) . w—a z ) — z

[oBumy = azoa'(w a) 13 0 { € }

§ 9.
The Relation between the Functions A and .A.

I will now proceed to show that the functions A((UA) and A((UA) of the
last two sections are equal for any argument z, provided only that
the integers w and A satisfy a certain inequality.
It is well known that if the equation f(z) = 0 has no multiple
roots then we have the partial fraction decomposition
1 a=n 1

(61) f(2) - aZ::1 m

If z is not equal to a root z,, we can replace z by z — ¢ and for

sufficiently small ¢ expand each term of the sum on the right in
a MacLaurin series in increasing powers of €. To get the generating
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function of A on the left we multiply the equation by the development
of (# — €)" in an (infinite) binomial series. We then order the right-
hand side according to powers of e. If we compare the result with
equation (45), it follows on equating coefficients of € that

(62) = 1 c=w e Z/\—C 2 —2,)°
izt (2= 20)“T D (20) ;:0( 1)*(A)e ( a)C.

(V)

This expresses the function A}’ as a symmetric function of the roots
zq of the equation f(z) = 0, just as the function A((UA) has been
expressed.

Now if w > A, we can obviously write A for w in the upper bound
of the second sum on the right, since the binomial coefficient ().
vanishes for all ¢ between A (exclusive) and w (inclusive). But by the
binomial theorem, the sum is then {z — (2 — 2,)}* = 2. Considering

the definition (38) of the function A, we have

which is what we were seeking to prove.
However, this relation still holds for w < A, provided A < w + n.
Specifically, if w < A we can decompose the sum

> -3 .

c=0 c=w+1

The sum of all the terms from the first part of this decomposition
gives, as above, the function A((UA), so that

c=A a=n c—w—1
M(z) = AN (2) = (e S E )T
ADE) - ADG) = T (1T T S

Now it is well known that

a=n X(Za)
a=1 f(l)(za)

=0,
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whenever x(z,) is an entire rational function of z, whose degree does
not exceed n — 2. But the numerator (z — z,)°"% 1
double sum can be regarded as such a function y, provided

in the above

0<e—w—-1<n-2

for all relevant values of ¢. Since the first part of this inequality is
automatically satisfied and since A is the largest value that ¢ assumes,
the only remaining condition for the vanishing of the double sum is
that \—w<n—-1lorA—w<n.

Therefore, under the assumption that either w > A or w < A <
w + n, the functions A((UA) and A((UA) agree completely. Since these two
conditions combine to form one, we have the following theorem:

(63) ANy = ANG), A—w <.

If the side condition is not satisfied, then the above expression for
the difference of the two functions takes the place of this theorem.
However, since all the terms in the first double sum for which ¢ lies
between w 4 1 (inclusive) and w + n (exclusive) vanish as above, the
expression simplifies to

(64) c=A . = (Z _ Za)c—w—l
c:%:—l_n(—l) (A)CZ aZ::I W, A—w > n.

It would not be an uninteresting problem to express this last
symmetric function of the roots in terms of the coefficients of the
equation f(z) = 0, just as, in view of § 8, we have now done above

(V)

for the symmetric function Ay .

§ 10.
The Relation between the Functions B and 5.

Under the conditions for which it holds, the identity of the functions
B and B is easier to recognize than that of A and A. To see this,
we will once again seek to develop the generating function (of B) in
a series of increasing powers of € whose coeflicients are expressed in
terms of the roots of the equation f(z) = 0 rather than its coefficients.
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As before, we use a partial-fraction decomposition. Specifically, we
have
f(l)(z) a=n 1

(65) f(2) N aZ::I z—z,

which holds whether or not the equation f(z) = 0 has multiple roots.
If we replace z in this equation by z — ¢, develop the right-hand side
in increasing powers of ¢, and multiply the equation by the binomial
expansion of (z — 6)/\, then on comparing coefficients with those in
(46) we obtain as above

(66) Tl N -

a=1 (Z - Za)w c=0

A

2, since A can be written

Now if w > A, the last sum becomes z
instead of w for the upper limit of the sum. Thus

(67) BW(z)=BW(z), A-w<o,

w

which is what we wanted to show. On the other hand, if w < A, we
can decompose the sum in the preceding equation in the form

c=w c=A c=A
o= r = X
c=0 c=0 c=w+1

The sum of the terms in the first part turns out to be the same as
B(E,/\)(Z), so that we have

(68) c=A Vo 4=P w1
Yo (=D N)e2 T (2 ze) T, A—w>0.
c=w+1 a=1

This double sum, which in general is different from zero, can easily
be expressed in terms of the coefficients of the equation f(z) = 0
instead of its roots.

We have now expressed the symmetric functions A and B —
which we introduced in § 7 as the most noteworthy cases of the
general function €' and have made the object of our study —in terms
of the coefficients of the equation f(z) = 0. Specifically, they have
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been represented in the form of simply generated determinants whose
elements consist of the the polynomial f(z) and its derivatives —
assuming, of course, that w and A satisfy the above inequalities
(which is always the case when w = o0). This understood, we may
write A for A and B for B (just as earlier we could write A or B for
C' in the formulas of § 7). Moreover, it is worth noting that several
expressions derived for A and A (or B and B) in two ways—e.g.,
the relation (36) of § 7 and (51) and (52) of § 8 —have the same
formulas but differ in their upper summation limits, one being A and
the other w. To the extent that the Latin functions correspond to the
script functions, we can obviously choose either of the limits, e.g. the
smaller, since the extra terms by which one sum exceeds the other
will cancel.

§11.
Resulting Solution Methods of the Second Kind.

I will now go on to consider solution methods for higher equations
that can be derived from the investigations of §§ 7-10. As we pointed
out in § 1, we must distinguish between two kinds of methods.

A solution method of the second kind, as characterized in § 1,
follows directly from Theorem (II) of § 7. This theorem states that
if we set

AEU)\+h) B£A+h)
F(Z)IW or F(Z)Iw,

then whenever z; is a root of the equation f(z) = 0 lying nearer the
arbitrarily chosen point z than any other root we have
: h

lergoF(z) =zt
In § 8 we gave ways to recursively calculate the functions A and B for
ever larger values of w, as well as to form them independently from
the polynomial f(z) and the numbers z, A, h, and w. In this way the
hth power of the root z; (or, if you will, the root itself when h = 1)
can be determined as precisely as one wishes. And because of the
arbitrariness of the numbers listed above, the method — two methods
actually, depending on whether the function A or B is chosen — can
be applied in an infinite variety of ways.
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In the very special case where A is set to zero and h to one in
the function A, our method includes a solution technique recently
proposed by FURSTENAU,*) a technique he derived from an entirely
different point of view. The method is also on the one hand a gener-
alization and on the other a specialization of the method of DANIEL
BERNOULLI.

Concerning the starting value z, if one just wants to find some
unspecified root —not a particular root — by our method, the start-
ing value may be chosen arbitrarily in the entire complex plane, with
the exception of a certain one-dimensional manifold, the exceptional
manifold, which consists of connected lines, line segments, and rays.
If m denotes the number of distinct roots (which must naturally be
equal to n for the function A, in which multiple roots are excluded),
the exceptional manifold divides the entire plane into m distinct re-
gions, each of which contains a single root, be it simple or multiple.
Each region has the property that for any point z chosen within it our
algorithm yields the root contained within the region. The bound-
ary of each convergence region is a polygon. The polygon is open to
infinity whenever the root lies on a corner of the polygon containing
the straight lines connecting the roots to one another. Otherwise,
the region is a finite, closed polygon. The sides of the polygon pass
at right angles through the middle of the lines connecting two roots.
The corners, at which at least three polygons meet, and therefore at
which the exceptional manifold splits, are the centers of circles that
pass through at least three points but do not contain any other roots.
All this follows easily from the requirement that if the point z is not
to be an exceptional point it must not be equally removed from the
nearest roots. Because of this, there is no difficulty in constructing
the exceptional manifold when the roots are given.

m(m — 1)

through the middle of the lines connecting two roots. These lines
contain all the exceptional points, though in general they will not all
belong in their entirety to the exceptional manifold. Specifically, a
point on one of these normal lines, which is symmetric to two roots, is
an exceptional point only when there is no third root that lies nearer

First we construct the lines that pass at right angles

*)Darstellung der reellen Wurzeln algebraischer Gleichungen durch Determi-
nanten der Coefficienten, Marburg, 1860.
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(m — 1)(m - 2)

than the other two. These lines are divided by the o

centers of the circles that pass through each triplet of roots. Throw
out the centers of any circles that contain additional roots and con-

m(m — 1)
2

from the outermost of these points draw infinite rays perpendicular
to the polygon containing the roots (and therefore along our lines).
The exceptional manifold consists of these rays and connecting lines.

If the roots are not given, the exceptional line will be unknown.
In this case, however, if we take the starting value at random, the
probability of its falling on the exceptional set is zero. Of course if the
equation f(z) = 0 has only real coefficients, and therefore complex
conjugate roots, we clearly cannot choose z to lie on the real line and
hope to find complex roots. Indeed in this case it is clear a priori
that we can never arrive at a complex result by a sequence of rational
operations involving only real numbers.

If the point z is taken on the exceptional manifold, F(z) will not
in general approach a fixed limit with increasing w, though it will

nect the remaining points along the lines. Finally starting

remain bounded.

§12.
Resulting Algorithms.

By taking A~ = 1 in Theorems (I) and (III) of § 7, we get solution
methods that were called of methods the first kind in § 1; i.e., algo-
rithms.

Specifically, if we set

_ A _ BI'(9)

(69) F(z)= T(z) or F(z)= T(z)’

then in § 7 we showed first that F(z1) = z; and second that the
derivatives

0. F(2), 02F(2), ..., 0“F(z)

are zero for z = z;. According to the results of § 2, these properties
imply that the equation
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represents an algorithm of the (w+ 1)th order, by means of which we
can find any root z; of the equation f(z) = 0 as accurately as we want
from a starting point that has only to be chosen sufficiently near z;.
Moreover, the modulus of each approximation will eventually have
w + 1 times as many accurate decimal places as the modulus of the
preceding approximation.

Because the nonnegative integers w and A are undetermined and
the starting value z is arbitrary this method includes infinitely many
algorithms, and it is worth while to write them down for the sim-
plest values of w and A. I will label each of the algorithms with the
denominators (A2}) or (B) in (69), which characterize the function

F.

Once again recall that if the algorithms (A}) are actually to have
convergence of order w 4+ 1, we must exclude multiple roots of the
equation f(z) = 0. On the other hand, the multiplicity of the roots
makes no difference when it comes to the rate of convergence of the
algorithms (B2).

Finally, if A and B are to be represented by the expressions we
have previously given, the function A must satisfy the the inequality
A —w < n, and the function B the inequality A — w < 0.

From equation (37) in Theorem (IV) of § 7, we see that our
algorithms can be represented in the form

A(A) (Z) fwA(A)
A f_ o, eI\ p L TTwed
(Aw) 2=z AO‘)(Z) =z—f fw+1A(>\) 0
o “ w > 0.
(A) w p(A)
B, 2(2) fYB”
B/\ P, _ Pw-1 — . . w—1
) TR e T e

Here the second term on the right can be regarded as a correction,
which for each algorithm is to be added to the starting value to form
the next approximation. (It is not to be confused with the error in
the starting value or approximation, that was defined in § 2.)

In these equations we now substitute the values of A and B as
we expressed them in terms of A and B(®) in (36) of § 7 and (51)
and (52) of § 8. To do this we write these relations in the following
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fractionless form:

A,w
( ) fw—l—lA :Z( )() /\afa fw a—I—lA(_)a7
70 a=0
By §< ANz 7 f - o B,

in which we always choose the smaller of the upper summation limits
A, w. Hence for w = 0,1,2,... we have

FAQ) = f AP,
szg/\) — Z/\ . f2A§0) _ /\Z/\—lf . fAéO),
fSA(Q/\) — Z/\ . fSA(QO) _ /\Z/\—lf . f2A§0)

etc.

1 ’\(’\2_ 1)2/\—2f2 . fAéO),

For A =1,2,... (the case A = 0 is an identity), we have

w (1) w (0) w 4 (0
Fortall) = - f 140 _ gy Ai,_(lo,

fAaR =2 pertal) —gp . peal) g2 pemtal)

etc. The corresponding equations for the functions B have exactly
the same form and may easily be obtained by writing B for A above.

Since we are unable to express A((UO) or B(E,O) generally in a simple
manner, we instead obtain simple and easily computable formulas of
a general character from the original equations — the ones in which
A is arbitrary — by substituting the functions A and B©) from
formulas (I) and (II) of § 8. Specifically,

fay) =2
szg/\) — Z/\fl _ /\Z/\_lf,

A = A = L) A 4 AR

/\ 2f2
etc. Moreover,

FBYY =2,
FEBY =N[R2 = f1) = AP

etc. In this way it would be easy to construct two-dimensional tables
of the functions A((UA) or B(E,A).
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Finally, we can very easily proceed exhibit the simplest algo-
rithms themselves.
First of all, if we try to take w = 0, we get the degenerate case

(43) or (BY) d=2

as an algorithm with linear convergence. Since the correction here
is zero, the error in the approximation is not only proportional to
the first power of the error in the starting value; it is equal to it.
thus we might allow the attribute “linear” here, but the designation
“algorithm” no longer applies, since 9, F(z) is not strictly less than
one but equals one.

For w = 1 we get the most general second order or quadratically
converging algorithm that can come from this source: namely,

A N |
(Al) =2z Zfl_/\fv
z2ff1

B/\ - — .
(B1) T T A fh) - MA

For the simplest case A = 0 we get Newton’s algorithm

f

AO 7=z )

(49) /

on the one hand and on the other an equally worthy algorithm
Jh

BY 2=z ’

(B1) = 1f

which to my knowledge has not previously been considered. Besides
being almost as simple, this latter algorithm (which we have already
mentioned in § 3) has the advantage that it converges quadratically
even for multiple roots.

For w = 2 we get the general algorithms of the third order, that
is, cubically convergent algorithms; e.g.,

zh=Af
2= i) = ep o+ 2D

(A3) 2 =z—zf :
f2
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For the simplest case A = 0 we have

(A9) T
fi- §ff2
L= fr

(Bg) d=z—f 3 i .
f=5thl+ 5 s

Of these algorithms the first (A9) is noteworthy because of its sim-
ilarity to (BY), from which it differs only by the factor % in the
denominator.

One can easily continue in this way to construct algorithms of
quartic and higher convergence. However, proceeding further has
little to recommend it, since in practice the disadvantage of having
to evaluate a much more complicated expression more than outweighs
the advantages of faster convergence.

As an example, for the binomial or pure equation of the nth
degree

we get the following algorithms:

—A-1D2"+ A+ 1)y
m o, A 1
(A1) S (n—=X):2" + Ay ’ <nth

+A)y — A"
B} P A< 2.
(By) T A D — (=D <

Here the two B-algorithms are included among the n + 1 A-algo-
rithms: namely, (BY) is the same as (A7™") and (B]) the same as
(A7).

Suppose we want to find, say, the square root of a number to
a very large number of decimal places, e.g. 24. Then after after
finding a very good approximation (exact to twelve digits) by the
usual root extraction by synthetic division, we should use one of
the above formulas to determine a subsequent approximation that is
exact to 24 digits. An advantage of this method is that one can make
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a finite number of arbitrary mistakes in the calculation and (provided
one does not jump out of the convergence region) still arrive sooner or
later at the correct final value. Moreover, one has a reliable estimate
of the current precision; the method has attained the twice number
of digits to which the current approximation agrees with the previous
one.

An answer to the following question would be of interest. For a
particular root extraction what value of A is the most suitable; i.e.,
gives the fastest convergence?

One could perhaps combine different algorithms to good effect.
For example, one might substitute the value obtained from the al-
gorithm (A?) for z in the formula for (A}) in order to find find the
second approximation, and substitute this value in the formula for
(A?), and the resulting third approximation in the formula for (A3),
and so on. Thus instead of an iteration or the repeated execution of
substitutions of the same kind, one must perform a given sequence
substitutions of different kinds to approximate the desired root.

Finally it would be worth while to investigate the limits attained
by these algorithms when A is not a positive integer.

§13.
On the Convergence Regions of These Algorithms.

There remains the problem of finding the convergence regions of the
algorithms we have just given; i.e., the problem of determining the
boundaries of the regions, at least when the roots of the equation
f(z) = 0 are given. Though this problem was easily dispatched in
§ 11 for solution methods of the second kind, it appears to be com-
paratively difficult for solution methods of the first kind or the algo-
rithms presented in the previous section. I have succeeded in settling
the question of the boundaries of the convergence domains only for
the simplest cases: namely, for linear equations — or more generally
for equations with one root —and for the quadratic equation.

For the case A = 0 the following theorem will help with the
solution of the problem.

The contours of the convergence domains of the algorithms (AY)
or (BY) depend only on the mutual (relative) positions of the m dis-
tinct roots z1, z2, ..., Zm. But they do not depend on the positions
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of this system of points with respect to the points 0 and 1, or more
generally with respect to the real and imaginary axes. In other words:
If one replaces the system of roots with another similar system posi-
tioned arbitrarily, then the contours of new convergence domains will
be similar to the old and similarly positioned with respect to the new

roots.

Proof. Imagine two complex planes. The roots z1, 29, ..., 2
of the equation f(z) = 0 are represented as points in the first; the
same number of roots (1, (2, ..., (n of another equation ¢({) = 0

are represented in the second. Moreover, let z in the first plane and
¢ in the second be arbitrary starting points. Let the corresponding
approximations from our algorithms be

. )

(=)

where (' is formed for the function f, and

C/ — C _ Cc(uo—)l(c)
SN
where C' is formed for the function ¢. Here, as previously, C' denotes
either the function A or B. If we fix the relation

C=pztv
and also assume that
Ca::uza—l'l/v a=1,2,3,...,m,

then it is easy to see that for arbitrary complex numbers p and v the
system of points {, (, in the second plane is similar to the system z,
Zg in the first, although the second system is positioned arbitrarily
with respect to the real and complex axes. For if u = pe'V, then
multiplication of the number z by p effects a transformation of the
point system into a similar system, similarly situated with respect to
the axes, whose homologous dimension is p times as large as that of
the first. The multiplication by €'’ effects a common rotation of the
system of points through the arbitrary angle 9. Finally the addition
of v to the product pz = pe'’z corresponds to a translation of the
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entire system in the direction of the number v and of length equal
to the modulus of v.

The proof of our theorem will now be complete if we can show that
the approximations 2’ and ¢’ are homologous points of the two similar
systems of points. For this conclusion can easily be extended to all
following and preceding approximations, right up the the boundary
of the convergence region.

Now the equation whose roots are (, = pz, + v is obviously

0 =1 (=) =0,

Hence

SO =1 ().

and more generally

for every natural number ¢. Since

P(O) = £(2), pM(¢) = if“)(Z)a 90 = %f@(z)-

Moreover, in all terms of the equation (57) of § 8 for the function
f“’+1A£,O) and in the corresponding equation for f‘*’B(E}O_)1 the sums of
the the products of the exponents and the derivative indices are the
same, namely w. Hence the expressions

P(O“F1AO(C) and (¢)*BY(¢)

1
formed for the function ¢ are equal to the product of the factor —

7
with the expressions

FEADG) and - f(2)7BOL(2)
formed for the function f. From the second of the two equations

Aee® (,
f( ) Cw—l( ) [C formed fOT f]v

T emae
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and
(=¢- @(C)Mm, [C formed for ¢],
p(¢) ()
it follows that
: F()° 0 ()
(=pz4+v—pf(z) f(z)“’"’l(]fué)(z)’ [C' formed for f].

Hence from the first equation,
¢ =ps to,

which is what was to be shown.

The contours of the convergence domains in the similar systems
of z and ( are therefore similar curves with the same ratio p for
their homologous dimensions and situated similarly with respect to
their systems of points. Thus, when it comes to the study of these
contours, one can work in the system ( as well as in the system z.
For example, without loss of generality we can take two of the roots
of the equation in question to be arbitrary, say one equal to zero
and the other equal to one, since it is only a matter of the relative
position of the roots. We can also take all the roots to be as near as
we like to each other as well as to the origin, since we can imagine
the ratio p to be arbitrarily small. An so on.

Incidentally, one important consequence of all this is that the
exclusion of a root of zero of the equation f(z) = 0, which was
necessary for many of our theorems, is irrelevant for the conclusions
about the algorithms (A%) and (B?).

The above theorem does not hold for algorithms (A2)) or (B)),
where A > 0. If one attempts to carry out the line of argument in
the proof of the theorem for this case, it becomes evident that one
must take the number v to be zero for the new approximation to be
a homologous point of the system that is similar to the old system.
Thus one can change the fundamental unit of the system; i.e., one
can replace the system of roots by another similar system that is
similarly positioned with respect to the axes. One can also rotate
the system about the origin by an arbitrary angle. However, one
cannot translate the system. In other words, we have the following
theorem.



ALGORITHMS FOR SOLVING EQUATIONS 47

For the algorithms (A}) and (B)) the relative position of the
contours of the convergence domain with respect to the roots depends
only on the ratio of the distance of the center of gravity of all the roots
(the midpoint of their mean distances) from the origin to the common
distances among these roots. But in general it is independent of the
absolute position of the roots and of the fundamental unit.

So much for the convergence regions in general.

§ 14.
The Principal Algorithms Applied to Very Simple
Examples.

In order to get a closer look at the nature of our algorithms, we will
now write down the two most useful ones, namely
(AD) 2 =z2— s and (BY) 2 =z2- 72ff1 ,
fi fi=1r
for a simple example and arrange them for practical calculation.

To take care of the simplest case, namely where the equation
f(2) = 0 has only one root, so that it is either of the first degree or
as a polynomial is the power of a binomial, we note that according
to what has gone before we can set z; = 0 without loss of generality.
Thus we can assume that

flz) =2".
Hence

(AD) 2 = (1 — l)z and (BY) 2 =0.

n

The algorithm (BY) thus gives the correct root (0) of the equation
right away. On the other hand for the algorithm (A{) it is easily seen
that

2= (1 - l)22’, ey ) = (1 - l)Tz,

from which it follows that
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whatever the starting value. Thus we have the following theorem.
For an equation with a single root the convergence region of the two
algorithms (AY) and (BY) is the entire complex plane. There are no
finite exceptional points.

The next simple case is the quadratic equation. The case of two
equal roots is subsumed in the above case and has already been
dealt with. Thus we can assume that the roots are distinct. To
gain symmetry it is advisable to take the roots to be z; = +1 and

zg = —1, which, as we have said, we can do without loss of generality.
Then

f)=CE-1(=z+1)= 22— 1,

and the algorithms become

1422 217 2 2
(A) =T = By S T

2z 2 A
z

Thus we see that for the same starting value the approximation for
one algorithm is always the reciprocal of the approximation for the
other.

Now if we want to actually compute the approximation 2z’ =
2’ + iy’ corresponding to some complex starting value z = x + 7y,
we must decompose the complex algorithm into two combined real
algorithms. In general we have to do this for any algorithm 2z’ = F(2)
whenever the coefficients and roots, not to mention the starting value,
are not all real. This algorithmic decomposition, which results from
separating and equating real and imaginary parts on both sides of
the equation z' = F(z), would be easy to write down for any one
of our algorithms after we take the coeflicients g, v1, ..., 7, of the
equation f(z) =0 in the form

7a:aa+iﬁa7 a:(),l,...,n.
Now for our example,

(A9) S Lk iy -y
i =3 21y Yy = 9 2+
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2 =2 Lo 4y’
(BY) [2* + (y+ D*][e” + (y — D)’
1 1 22 _ o2
/ L Y
y =

R PN P Py

from which the first approximation corresponding to any starting
value is easily computed. If we want to find the next approximation,
we need only replace z and y by 2’ and ¥’ in the above equations to
obtain 2 and 3”; i.e., the elements of 2/ = 2" + iy”. And so on.

Many conclusions can be drawn from these equations. To express
them it will be convenient to regard the passage from the starting
value to the approximation as a jump of the argument z from its
position in the complex plane to the position of the approximation.
For example, since 4’ = 0 whenever 224+y? = 1, we have the following
theorem. From the periphery of the unit circle about the origin the
argument always jumps to the real axis.

Moreover, since 3’ = 0 for y = 0, the approximations for a real
starting value are all real: the argument never jumps away from
the real axis. Similarly, for a purely imaginary argument all the
approximations remain purely imaginary. Therefore, the argument
never jumps away from the imaginary axis, and it is impossible for
the algorithm to converge to the points +1 from such a starting point.
The y axis in its entirety belongs to the divergence region; that is,
it consists entirely of exceptional points. In addition, by looking
for values of z for which the correction vanishes or tends to infinity
we can find individual exceptional points for an arbitrary algorithm.
Also we can look for values of z for which at some

r=1,2.3,...

the rth approximation z(") becomes equal to the starting value, so
that the algorithm repeats itself, i.e., is periodic. It would not be
difficult to even discover exceptional curves in general —though it
would not be easy to determine whether they actually contained all
the exceptional points and whether they perhaps fill in an entire
region of the plane.

If the sign of z or y or both is changed, the corresponding changes
occur in the approximations z’ and g’. Thus the algorithm proceeds
symmetrically in the four quadrants of the complex plane. The argu-
ment will never jump over the imaginary axis, since =’ and x always
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have the same sign. However, the argument can jump the real axis.
This happens for the algorithm (AY) when the argument lies within
the circle mentioned above, since then 3" and y are of opposite signs.
If the argument is outside the circle, its jump leaves it on the same
side of the z-axis. Exactly the opposite happens for the algorithm
BY.

It is also informative to transform the algorithm to polar coordi-
nates, so that the the radius and polar angle of the approximation
can be calculated from those of the starting value. If we set

4y =pe? and a2’ +iy = ple?,
then from the equations

N Lot o e Vi I e A B0 St et

A9 2" -
(A7) =" +y 42+ 9) v r 1+t

we get the combined algorithms

1 1—p?
(AY) pl = %\/1{—2,02(:05219{—,04, tan 9’ = gy tan 9.

In the case of (BY) we take the reciprocal value for p’ and the value

of opposite sign for tanv'.
2

1-—
The factor 1.7 is always a proper fraction, and hence the nu-

2

merical value of tan ' is always less than the value of tan ¢, exclu-
sive of the cases tand = 0 or oc. Since we can confine ourselves to
acute angles, the angle ¥’ is itself less than ¥. In other words: with
each jump the radius vector rotates toward the polar axis and as
the iteration is continued swings almost like a pendulum toward this
equilibrium position.

One can also ask what curve separates the regions whose points
jump nearer to or farther from zero, which is the mean of the roots.
It is the curve whose equation results from requiring that p? = p2.
In the case of (BY), for example, the equation reads

(22 + (y+ 1) 2? + (y—1)2) =4

(2® + 9 +1)* = 4(1+ ),
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from which we get

x_:l:\/Q\/ —(14+y?) and y::l:\/l—x2+2\/1—x2.

In polar coordinates

pt + 2p% cos 20 = 3.

More interesting than questions about polar coordinates is the
question of the distances py1, p2 and p), p) of z and 2’ from the
points +1 and —1. These distances can be regarded as the radii of
the points in a bipolar coordinate system, whose poles are the two
roots 1. In particular, from the expressions we are seeking we can
learn whether the argument jumps nearer a root or not.

Now we have the equations

pl=y*+(z—1)7% pi=y*+(z+1)

(and the same for quantities p, , y equipped with primes). Hence
by inversion
ps — pi

1
T== Y= E(Q‘l'ﬂl-l-ﬂz)(ﬂl-I-Pz—2)(P2+2—P1)(2+P1—P2)-

If we substitute these values in the equations

[v* + (= = 1)*)°

0 2 s —1)? =
(A7) ¥+ 1) 4(902—1—3/2)

(and the same with +1 replaced by —1)

0 2 roN2 [v* + (2 = 1)*)°
B e e - )

(and the same with +1 replaced by —1)
we get the combined algorithms

(AO) ,0/2 _ pil ,0/2 _ pg
! LUl 4-2)" T 20 45— 2)
(BO) pl2 2p411 12 _ 2P§
1 1

. Py = -
(P =27+ (-2 " (1 -2+ (3 —2)°
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The equation of the curve that separates the region of points
that jump toward the point +1 from the region of points that jump
away is now determined by the condition that pf? = p?. Tor the
algorithms (A?) it is p? + 2p2 — 4 = 0 in bipolar coordinates or
3y + 322+ 22 -1 =0in rectangular coordinates. In other words,
the curve is the circle of radius % and center —%. For the algorithm
(BY), the equation of the corresponding curve is of the fourth degree,
which is easily solved for y. The curve itself contains all points that
merely rotate about about the point one with a step of the algorithm.

Finally, in order to compute the starting value backward from
the approximation —that is, compute the predecessor of an arbitrary

approximation — one has only to solve the following equations for z:
2
(A% 22-2:41=0, (B 2-Z41=0.
4

Since these equations are of the second degree, corresponding to each
approximation z’ there are two starting values [z]; and [z], that come
together at 2’ and remain united for all subsequent steps. Thus the
points of the convergence region form an infinite family of points,
all of which sooner or later jump toward the root and cluster about
it with infinite density. It is easy to give formulas by which these
operations can be extended backwards or forwards.

In a subsequent treatise on iterated functions 1 will give a proof
that for the above algorithms and equations the entire complex plane
decomposes into two convergence regions separated by the imaginary
axis, which is the only exceptional line. Moreover, I entertain the
conjecture that for any algebraic equation the region of exceptional
points of these algorithms is only one dimensional and reduces to the
boundary lines of the convergence domains.

In the same place other questions concerning the above example
of the two algorithms will be answered. Nonetheless, the considera-
tions of this section will turn out not to be superfluous.

§ 15.
APPENDIX:

A Theorem on the Function A.

In this appendix I will communicate another theorem —one that
formed the original starting point for the development of the algo-
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rithms of § 12. It would seem to be of interest because the functions
A2 play a role in it.
As previously, let

(M) =T 9 = 0(z = )z ) (= ),

and let the roots z1, 29, ..., z, be distinct from one another and
hence simple.

The function f(z) can be divided without remainder by the dif-
ference z — z,. From the usual division algorithm, one obtains a
result of the form

- O
=0

Z— Zq b

z”_b_lfb(za).

This equation defines certain entire rational functions F3(z,). On
multiplying the equation by z—z, and equating coefficients we obtain
the recursion

fO(Za) = 7o,
(73) fb(za) :Zafb—l(za)‘l"Wn b= 1,2,3,...,%—1,
0 = Zafn—l(za) + Tns

by means of which the functions can be computed. The next-to-
last of the recursions will also hold for b = n if we define F,(z) =
f(2). With the help of these recursions we obtain the well-known
representation

c=b
(74) Fo(za) = 3 7e207, b=0,1,...,n.
c=0

We will allow this representation to hold for arbitrary values of the
argument z other than z,, and eventually for b > n, in which case
we let the coefficients vy,41, Vnt2, - ..be arbitrary.

If in equation (72) we first substitute z, for z, where ¢ denotes a
number from 1, 2, ..., n that is different from a, and next substitute
z, for z, then from

f(z)=0 and lim /)

B=Z2a 2 — Zg

— f(l)(za)
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we have the following important relations:

b=n-—1
> Z?_b_lfb(za) =0, c#ta
(75) by
2 Fy(za) = S )
b=0

We can now state the following theorem, which is based on these
relations.
In the two systems of linear equations

c=n—1

Yo T X = Yo fW(z),  a=1,2,...,n,

X = Z::fc(za)yay CIO,l,...,n—l

a=1

or the two systems

c=n—1
Yo Faee1(22)Ye = Xaf(l)(zl), a=1,2,...,n,
(77) =0 a=n
Vo= 20X, ¢=0,1,...,n-1
a=1
one is always the solution of the other.

For if we substitute the values from second of these equations into
the first, where obviously the summation index ¢ must be replaced
by another, say b, then (75) implies that the result is an identity.

If for the converse we substitute the expressions from the from
the first equations into the second, the truth of the theorem is not
immediately evident from what has gone before. Instead we are led
in this way to the relation

a=n 20 F (2,) 0, when b+c¢#n—1,
(78) azzjl fP(z) | 1, when b+e=n—-1,
which can be easily derived from a relation given by Cavcny.*) The
solution of systems (76) and (77) has also be carried out by BALTZER
from determinantal considerations.**)

Further we now have the following theorem.

*) Cf. BALTZER, Determ. 2nd Edition, p. 79
*) Ibid., p. 81 .
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Any positive integer power of a linear function of the quantities
fO(Za)vfl(Za)v .. '7fn—1(2a)7

say

c=n—1

P = Z:O y(;Fn—c—l(Za)v

in which the coefficients are arbitrary constants, can be expressed as
a linear function of the same n quantities. The coefficients of this
linear function are symmetric functions of all the roots and therefore
contain only the coefficients Y' and the coefficients v of the polyno-
mial f(z), but not the roots z,.

The simplest way of seeing this is the following. Imagine that the
expressions for the functions F formed from the scheme in equation
(74) have been substituted in the expression for P**1. It is clear that
this expression can be ordered according to powers of the root z,.
By means of the equation f(z) = 0 the powers of z, whose exponent
is greater than n — 1 can be expressed in terms of the lower powers
of z,. This exhibits P“*T! as a linear function of the quantities

0 .1 n—1
ZgsBgy s Zyq

By solving the system of equations (74), we can represent these latter
quantities by means of the original quantities

fo(Za),fl(Za), .. .,fn_l(Za),

and when these representations are substituted we indeed obtain
Pvtl ag a linear combination of the quantities F.

However, the following proof may be worth noting.

If we imagine the (w + 1)th power of the sum P developed ac-
cording to the binomial theorem, then we get a sum of terms, each
of which is a product of factors that are the powers of the individual
functions Fo(z,), F1(2a), - ., Fuo1(24). Such a product, and hence
the entire sum, can be expressed linearly in terms of the function F,
provided we are able to solve the same problem for the product of
any two of these functions.

Thus we pose ourselves the general problem: for any two natural
numbers a and b, express the product

fa(Z)fb(Z)
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linearly in terms of the quantities Fo(2), Fi(z), .... Here we can
dispense with the unchanging argument z of the functions F. If we
multiply the equation (74) by F, and extract the term multiplied by
the zero power of z on the right, we get
c=b—1
FiFy=mnFat 2F. 32 72277 or FoFy=yFa+ 2FuFy_s.

c=0

Moreover, since by (73)
2Fa = Fat1 = Yat1,
it follows by substitution that
FoFy = Far1Fo—1 = 1Fa — Yat1Fp-1-

If we write a + ¢ for @ and b — ¢ for b and sum over ¢ from 0 to b— 1,
then, recalling that Fy = 7o, we get by a suitable reordering of the
terms

c=b
(79) fafb = ’}/bfa + Z_:l (’)/b—cfa—l—c — 7a+cfb—c) .

This is the desired representation.
This theorem, which we have proved in two ways, will now be
applied to the case where P is the expression (72) itself: namely,

f(z) — C:i_l Zn_c_lfc(Za),

Z— Zq c=0

in which Y/ = 2°. As we have shown, the (w + 1)th power of this
expression may be represented linearly in terms of the functions F.
Our problem is to actually construct the representation

{@F =% v

This can be done directly with the help of the Theorem (77). Specif-
ically, imagine the last equation has been written down for ¢ =
1,2,...,n,in which we take

G
PPz = za)e




ALGORITHMS FOR SOLVING EQUATIONS 57

for X'. Then considering definition (38) of the function A, we imme-
diately see that the solution of the system of equations is

Yo = J(z)H1AP(2).

By substituting these values and deleting the common factor f(z)~*!

we get the identity

1

(2 — 24

c=n—1
(80) = > ALFT ).
c=0

)w+1

Thus we can state the following theorem.

If the (w + 1)th power of
f(2)

Z— Zg

is expressed linearly in terms of the functions Fo(zqa), -, Fu-1(%a),
then as w grows unboundedly the ratio of the coefficients of any suc-
cessive pairs of these functions approaches the root of the equation
f(2) = 0 that lies nearest the arbitrary value z.

To compute the coefficients f“’+1A£,c) one can also use the poly-
nomial theorem along with the relation (79).

ProrzHEIM, January 1869



