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ABSTRACT

This paper presents a problem of optimal flow control for discrete M|M|1 queues. The
problem is cast as a constrained Markov decision process, where the throughput is maximized
with a bound on the average queue size. By Lagrangian arguments, the optimal strategy is
shown to be of threshold type and to saturate the constraint. The method of analysis proceeds
through the discounted version of the Lagrangian problems for which the corresponding value
functions are shown to be integer-concave. Dynamic Programming and stochastic comparison

ideas constitute the main ingredients of the solution.
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1. Introduction

Consider a synchronous communication channel between two entities, a transmitter and a
receiver which are both equipped with buffers of infinite capacity. Information is formatted in
packets and time is slotted so that the duration of a time slot coincides with the transmission
time of a packet. Packet transmissions are initiated at the beginning of a slot. The channel
is assumed noisy in that a packet transmission may not be successful with probability 1 — p
in which case retransmission is attempted in the next slot. This scenario is repeated until
successful transmission occurs, at which time the packet is deleted from the transmitter’s
buffer. The transmission failures are assumed independent from slot to slot, and independent
of the arrival process. Packets arrive at the transmitter one at a time according to a Bernoulli

sequence with rate A, i.e., A is the probability that a packet will arrive in any time slot.

The system described above may experience congestion and it may be desirable to take
certain actions in order to guarantee an expected performance level. One possible approach
consists in restricting access to the communication system, i.e., new packets which are about
to enter the transmitter’s buffer may be denied entrance on the basis of information reflecting
system congestion. This is often referred to as flow control and should be done on the basis of
some performance criterion [6]. Here, an approach similar to the one of Lazar [8] is adopted in
that a flow control strategy is sought that maximizes the channel throughput with a constraint
on the long-run average number of packets in the system.

Under the statistical assumptions given earlier, the uncontrolled system can be modelled
as a discrete-time M|M]|1 queue, and the problem of finding good flow control schemes can
be cast as a Markov decision process (MDP) with constraint. Analysis shows that this con-
strained flow control problem admits a solution within the class of threshold policies which are
parametrized by an integer-valued threshold level L (=0, 1,---) and an acceptance probability
n (0 <7 < 1). A threshold policy (L,7n) has a simple structure in that at the beginning of
each time slot, a new packet is accepted (resp. rejected) if the buffer content is strictly below
L (resp. strictly above L), while if there are ezactly L packets in the buffer, this new packet
is accepted (resp. rejected) with probability # (resp. 1 — 7).

The constrained MDP considered here has a countably infinite state space, since the
problem is formulated for an open system, as opposed to the approach taken by Lazar [8]

or by Beutler and Ross [3]. Therefore, the results on constrained MDP’s given by Ross and
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co-workers [2,3,14] are not directly applicable for they were derived under the assumption that
the state space is finite. However, the optimality result obtained here is in the same spirit
as Corollary 3.5 of [3, pp.353| since the optimal threshold policy (L*,n*) can be naturally
interpreted as a simple randomization with bias n* between the pure policies (L*,0) and
(L*,1) which are identical in all but one state, the state where L* packets are present in the

system.

As in other constrained MDP’s treated in the literature, the discussion proceeds along
a standard Lagrangian argument, and most of the paper deals with a thorough study of the
corresponding Lagrangian problems which are unconstrained MDP’s with a long-run average
cost criterion. These auxiliary problems are analyzed through their discounted counterpart
by a standard Tauberian argument. The technical contributions of this study concern the
discounted problem and lie in two areas: Use of stochastic comparison ideas is made to show
that the search of optimal discounted policies need to be performed within a much smaller
subset of admissible flow control policies, thus in essence reducing the problem to a finite-
state one. Moreover, the tnteger-concavity of the value function for the discounted problems
is established by showing that integer-concavity cum growth conditions propagates under the
Dynamic Programming operator.

The work presented here provides ample evidence of the usefulness of several ideas and
techniques for solving certain MDP’s. Moreover, the thorough analysis given in the forthcom-
ing sections should be viewed as a necessary step towards the discussion of some aspects of
adaptive flow control reported in the companion papers [10,11].

Throughout the years, several authors have studied problems of flow control (or control of
arrivals) in the context of simple queueing systems, and a good discussion of such work can be
found in the survey paper of Stidham [18]. It should be pointed out that previous papers dealt
exclusively with continuous-time models, and that concavity of the value function for the single
node situation could be obtained fairly easily through standard arguments. Here, establishing
the concavity of the value functions of interest turns out to be a much more cumbersome
task; this can possibly be explained by the fact that multiple transitions can be realized,
a phenomenon which precludes use of the homogeneization technique for the discrete-time
situation [7].

Amongst the models covered in Stidham’s survey paper, only the work of Lazar [8] for-
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mulates the problem as a constrained problem. However, the approach taken here is different
from the one used by Lazar in that he considers a closed system from the onset with a fized
number of packets, while the work discussed here assumes an open system. Of course, both

approaches lead to similar results, as expected.

The paper is organized as follows. The model is described in Section 2 and the constrained
flow control problem is posed in Section 3, where the optimality results are summarized and the
necessary Lagrangian are briefly outlined. Section 4 is devoted to the study of the discounted
version of the Lagrangian problems, for which threshold policies are identified to be optimal.
Their properties are discussed in Section 5, and used in Section 6 to find the solution to
the long-run version of the Lagrangian problems. A useful comparison result is given in
Appendix I, while the propagation of integer-concavity in the backward induction of Dynamic

Programming is studied in Appendix IL
A word on the notation: The set of real numbers is denoted by IR, while IN denotes the
set of all non-negative integers. For any z in IR, it is convenient to pose Z = 1 — z. The

Kronecker delta (e, ) is defined as usual by é6(a,b) = 1 if @ = b and 6(a,bd) = O otherwise.
The characteristic function of any set E is denoted simply by 1[E].

2. Model

In order to formally define a flow control model for discrete-time M|M|1 systems, start
with the sample space }: = IN x ({0, 1}3)°<> which acts as the canonical space for the Markov
decision problem under consideration. The information spaces {IH,}$° are recursively gener-
ated by Ho:= IN and Hpy1:= IH, x {0,1}® for all n = 0, 1,---, and with a slight abuse of
notation, {2 is naturally identified with IH ..

An element w of 1 is viewed as a sequence (z,wo,ws,-++) with z in IN and w, in {0,1}3
for all n = 0,1,---. Each block component w,, is written in the form (un,an,bn), With u,,
an and by, being all elements in {0,1}. An element h,, in IH,, is uniquely associated with the
sample w by hyn:= (z,wo, -+ ,wn—1) With ho:= z.

Let the sample w = (z,wo, w1, ) be realized. The initial queue size is set at 2. During
each time slot [n,n + 1), a, = 1 (resp. a,=0) indicates that a customer (resp. no customer)
has arrived into the queue, b, = 1 (resp. b,=0) encodes a successful (resp. unsuccessful)

completion of service in that slot, whereas control action u,, is selected at the beginning of
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the time slot [n,n+1), with u,=1 (resp. u,=0) for admitting (resp. rejecting) the incoming
customer during that slot. If z,, denotes the queue size at the beginning of the slot [n,n+1),

its successive values are determined through the recursion
Tpt1 = Tp + UnGp — 1|z, 7# O0by, n=0,1,---

with zg: = z.

The coordinate mappings B, {U(n)}3°, {A(n)}$ and {B(n)}§® are defined on the sample
space {1 by posing

43

(w):=z, U(n,w):=un, A(n,w):=a, and B(n,w):= b, n=0,1,---(2.1)
for every w in 1, with the information mappings {H(n)}$ given by
H(n,w):= (z,wo, w1, yWn—1): = hy. n=0,1,---(2.2)

For each n = 0,1,---, let IF,, be the o-field generated by the mapping H(n) on the
sample space (1. Clearly, IF, C IF,1, and with standard notation, IF:= v  IF,, is sim-
ply the natural o-field on the infinite cartesian product IH,, generated by the mappings 2
and {U(n), A(n), B(n)}$°. Thus, on the space (2, IF), the mappings E, {U(n)}3, {A(n)}&,
{B(n)}s and {H(n)}$° are all random variables (RV) taking values in IN, {0,1}, {0,1},
{0,1} and IH,,, respectively. The queue sizes {X(n)}§ are IN-valued RV’s which are defined

recursively by
X(n+1) = X(n) +U(n)A(n) — 1{X(n) # 0|B(n) n=0,1,---(2.3)

with X(0): = E. Each RV X(n) is clearly IF',-measurable.

Since randomization is allowed, an admissible policy = is defined as any collection {m,}§°
of mappings my: IH,, — [0, 1], with the interpretation that the potential arrival during the slot
[n,n + 1) is admitted (resp. rejected) with probability mn(h»,) (resp. 1 — 7y (hs)) whenever
the information h, is available to the decision-maker. In the sequel, denote the collection of

all such admissible policies by P.

Let g(e) be a probability distribution on IV, and let A and u be fixed constants in (0,1).
Given any policy m in P, there exists an unique probability measure P™ on IF, with corre-

sponding expectation operator E™, satisfying the requirements (R1)-(R3), where
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(R1): For all zin IN,

(R2): For all @ and b in {0,1},

P"[A(n) = a,B(n) = b|IF, V o{U(n)}]:= P"[A(n) = a|P"[B(n) = b] ot
:= (aX + @A) (bu + bR) -
(R3):
P™[U(n) = 1|IF,]:= P"[U(n) = 1|H(n)]: = m,(H(n)). n=0,1,---

This notation is specialized to PT and ET, respectively, when g(e) is the point mass distribution
at z in IN; it is plain that P™[A|X(0) = z] = PJ[A] for every A in IF.
It readily follows from (R1)-(R3) that under each probability measure P7,
(P1): The IN-valued RV E is independent of the sequences of RV’s {A(n)}$° and {B(n)}$,
(P2): The sequences {A(n)}& and {B(n)}$° of {0,1}-valued RV’s are mutually indepen-
dent Bernoulli sequences with parameters A and p, respectively, and

(P3): The transition probabilities take the form

P"[X(n + 1) = y|IF,] = p[X(n), y; 7o (H (n))] n=0,1,---(2.4)
where
plz, y;n): = nQ'(z,y) + 71Q°(z,y) (2.5)
with
Q*(z,y):= P"[z +iA(n) — 1(z #0)B(n) = y], i=0,1 (2.6)

for all z and y in IN, and all 9 in [0,1].
The right-hand sides of (2.6) depend neither on n nor on the policy = owing to the assumptions

(R1)-(R3) made earlier. It is assumed throughout this paper that for every m in P,
(e ¢]

E"[E] =) zq(z) < oo. (2.7)

=0

Several subclasses of policies in P will be of interest in the sequel.
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A policy 7 in P is said to be a Markov policy if there exists a family {g,}5° of mappings
gn: IN — [0,1] such that

Tn(H(n)) = gn(X(n)) P™ - a.s. n=0,1,---(2.8)

In the event g,=g for all n = 0,1,---, the Markov policy m is called stationary and can be

identified with the mapping ¢ itself.
A policy 7 in P is said to be a pure (or non-randomized) policy if there exists a family
{fn}& of mappings fn: H, — {0,1} such that
o (H(n)) = 6(1, fu(H(n))) P™ - a.s. n=0,1,---(2.9)
A pure Markov stationary policy = is thus fully characterized by a single mapping f: IN —
{0,1}.

A stationary policy g is said to be of threshold type if there exists a pair (L,7), with L
an integer in IN and 7 in [0, 1], such that

1 if z< L
g(z)=4qn if z=1L; (2.10)
0 if z> L.

Such a threshold policy is denoted by (L, 7), and note that (L,1) = (L+1,0). For convenience,
the Markov stationary policy that admits every single customer, i.e., g(z) = 1 for all z in IN,

is simply denoted by (oo, 1).

3. The optimal control problems

For any admissible policy 7 in P, pose

n

E™ ) ul[X(t) #0] (3.1)

t=0

T'(m):= liminf !

ntoo n+1

and

1
N(w):=1i
() oo n+1

E" i X(t). (3.2)

These quantities 7'(7) and N(r) are readily interpreted as the throughput and the long-run

average queue size, respectively, when the policy 7 is used.
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Given V > 0, denote by Py the collection of all admissible policies 7 in P which satisfy
the constraint

N(r) <V. (3.3)

The problem discussed in this paper is the following constrained optimization problems (Py),
where

(Py): maximize T'(r) over Py.

If the constraint (3.3) is satisfied when admitting every single customer, then Py = P. In

that case, the constrained optimization problem (Py) reduces to an unconstrained optimization

problem and has a trivial solution as shown below.

Theorem 3.1 If N((o0,1)) <V, then Py = P and the policy (o0,1) solves problem (Py).

Proof: For any policy 7 in P, the relations m, (H(n)) < 1 = (00,1)(X(n)) hold forn = 0,1,---,

and therefore ({X(t)}$°, P™) <. ({X(2)}$°, P(>1)) by Theorem 1.3 of Appendix I. Use of

(I.2) now shows that N(r) < N((oc0,1)) < V and T(r) < T'((o0, 1)), and the optimality of

the policy (oo, 1) follows. |
If N((o0,1)) > V, the solution to the constrained problem (Py) is no longer trivial and it

is the main objective of this paper to identify its structure. The main result is summarized in

Theorem 3.2 If N((o0,1)) > V, then there ezists a threshold policy (L*,n*) which solves
problem (Py) with N((L*,n*)) =V.

The proof of Theorem 3.2 is given in Section 6. The solution method for these constrained
optimization problems uses Lagrangian arguments similar to the ones given in [2,3,12,13]. The

appropriate Lagrangian functional is defined for any admissible policy = in P to be

J"('/r):zlif‘r%gxf n:— ]

n
E™)  pl[X(t) # 0] — vX(t) (3.4)
t=0
with ¥ > 0 denoting the Lagrange multiplier. The corresponding Lagrangian problem (LP7)
is then the unconstrained problem

(LP"): maximize J7(r) over P.

Under the properties (P1)-(P3), each unconstrained problem (LP"),~ > 0, can be viewed

as a Markov decision problem under the long-run average cost criterion, with state process
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{X(n)}&°, cost per stage ¢7: IN — IR given by

()= il £ 0] — 2 (3.5
for all z in IN, and information pattern { H(n)}$°. This information pattern H(n) is richer than
the state feedback information pattern {E,U(k), X(k + 1),0 < k < n}, used in the standard
formulation of Markov decision processes [15]. The richer information pattern incorporates
the RV’s {(A(k), B(k))}5~! into the state feedback information pattern [7, Chap. 4].

The following result indicates in what sense the Lagrangian problems (LP7), v > 0, are
useful for solving the constrained problem (Py).
Theorem 3.3 Any policy 7* in P which
(C1): yields the expressions T'(w*) and N(n*) as limits,
(C2): meets the constraint with N(r*) =V, and
(C3): solves the unconstrained problem (LP7) for some value v = (V) > 0,

necessarily solves the constrained problem (Py).

Its proof is elementary and is omitted for sake of brevity. Details are available in [12].

4. The discounted problems

Solving problem (Py) reduces to the search of a policy in P satisfying conditions (C1)-
(C3) of Theorem 3.3. Since this involves the solutions to the long-run average problems (LP"),
~ > 0, it is natural to investigate the corresponding discounted problems, for they often provide
the key to solving the long-run average cost problems. Let v > 0 and 0 < 8 < 1 held fixed
throughout this section. The expected B-discounted Lagrangian cost J g (m) associated with an

admissible policy « in P is then defined by
JJ(m):= E™ ) B (X(t)), (4.1)
t=0

and the corresponding discounted optimization problem (LPg ) is simply
(LPg): maximize Jg () over P.

Since at most one arrival can be admitted in each time slot, the pathwise bound X(n) < E+n

holds for all n = 0,1,--- and yields the estimate

E™[E
w4y []+ 074

IJE(W)IS 1-8 (1— B)?

< oo. (4.2)



by elementary calculations. The bound (4.2) is independent of the policy x in P, and the
quantity Jg () is thus well-defined and uniformly bounded over P.

As customary with the Dynamic Programming methodology, the §-discounted cost-to-go

associated with any policy 7 in P is the mapping Jg ‘"IN — IR defined by

T3 (@)= B[y 8 X(0) (4.3)

for all z in IV, while the corresponding value function V[;’ :IN — IR is given by

V(z):=sup JI"™(z).
ﬂ() WGI}: 8 (z)

Let the RV’s A and B be generic elements in {A(n)}§° and {B(n)}$°, respectively, and
for all z in IN, define the IN-valued RV’s A%(z) and Al(z) by

A'(z)=x+1A— 1z #0|B, {=0,1. (4.4)

For any mapping f: IV — IR, define the mapping T f: IN — IR by

(T55)(2) = ¢"(2) + B _max {nE[f(A(2))] + 7E[f(A°(2))]} (4.5)

0<n<1

for all = in IN. Here, for each i = 0,1, E[f(A*(z))):= E™[f(A*())] for all w in P owing to
(2.6), with

1 _JAf@) +Af(0 if z=0;
O R A TAR P R EEVWRI SS S

and

E[f(4°(2))] = {f ©) if 2=0 (160)

pflz—1)+af(z) if z>1.

For future reference, for any mapping f: IN — IR, pose

_ (1) -10) it a=0
910 ={ /(0 Y-y atse s sy ¥ 251 )

and observe that
E[f(A'(2))] - E[f(A°(2))] = AV f(2) (4.8)
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for all z in IN.

The backward induction of Dynamic Programming produces the sequence {VB”}8° of map-

pings Vi IN — IR through the recursion
n+41 n
Vet =TgVv; n=0,1,---(4.9)

with Vﬁ?: = ¢7. The cost ¢? being bounded above by max(0,x — 7), the discounted problem
(LPg) is essentially covered by Assumption P of Bertsekas {1, pp. 251|, and the following

theorem is now readily obtained by specializing results from Section 6.4 of Bertsekas [1].

Theorem 4.1 The value function V[;’ satisfies the Dynamic Programming equation

Vg =TgVv, (4.10)
and 1s obtained as the pointwise limit
7lziTI(r>10 Vg (z) = Vj (2) (4.11)

for all z in IN. Moreover, the Markov stationary policy g* in P defined by the mapping
g*:IN — [0,1] is optimal for problem (LPg) if

1 if vV (z)>0;
g*(z) = { arbitrary in [0,1] if YV, (z) = 0; (4.12)
0 if vVj(z)<0

for every z in IN.

The value iteration method implicit in Theorem 4.1 constitutes a powerful tool to further
characterize the structure of the optimal policy. Lemma 4.3 below already sheds some light on
the form of the optimal policy and leads to some interesting consequences for problem (LPAT ).

Choose L” in IN such that g — vL” > O and g — (L + 1) < 0, i.e,, L7":= max{l €
IN: p—~l > 0}. The quantity L7 is clearly finite and induces an obvious partition of the state
space IN with ¢7(z) > 0 for 0 < z < L? and ¢"(z) < 0 for L” < z. The following fact will be

useful in what follows.

Lemma 4.2 For everyy >0, if u—~v <0, 1.e., L7 =0, then Vf;/ (L") =0, while if u — v > 0,
Le., L7 >0, then V(L") > 0.

11



Proof: For L7 = 0, ¢7 being non-positive, the relation J5""(L7) < 0 for all 7 in P implies
V5 (L") < 0, while it is plain that Jg,(o,o) (L") =0. For L7 > 0, direct inspection shows that
Jg,(o,o) (L7) > ¢7(L") > 0 by the definition of L7, and the result follows. O

Lemma 4.8 For the discounted problem (LPg), an optimal Markov stationary policy g* can

always be chosen so that g*(z) =0 for all z > L.

Proof: Define the IF,,-stopping time 7 by

. {inf{ k>0: X(k)=L"} if the set is non-empty;

4.13
00 otherwise ( )

with the obvious interpretation that 7 is the first passage time into the state L7. For any

admissible policy 7 in P, pose Bj(z):= E7[B7] and

7 ( E"Zﬂw ]—E"Zﬂ* [r > 87 (X (1))

for all z in IN. Since an optimal stationary policy exists by Theorem 4.1, it readily follows

from the Markov property that the value function Vg’ satisfies the relation
V3 (e) = max{[37(e) + V(L") By (2)) (4.14)

for all z in IN, with the maximization being taken over all stationary policies g in P.

Take any arbitrary stationary policy g in P and construct from it a new policy g which

generates actions according to

oo [g(z) if 0<z<L7;
-"("‘)'_{o if 2> L. (4.15)

Since V(L") > 0 by Lemma 4.2, Lemma 4.3 will now be established by showing that I7*/(z) <
Ig’g(m) and Bg(z) < Bg (z) for all z in IN.

By Theorem 1.3 of Appendix I, the very form of § implies the ordering

({X(®)}, P) <ot ({X(1)}8°, PY) (4.16)
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for all z in IN. If 0 < z < L", the probability measures P¢ and P? coincide on the o-field
IF, and obviously I (z) = Ig’a(z) and Bj(z) = Bg (z). For z > L7, the reader will readily

check that almost surely
1fr > 8] =1{X(s) > L7, 1< s < ] = f(X(1),--+, X(2)) t=1,2,--- (4.17)

and

1r > e?(X(t)) = ~1[X(s) > L7, 1 < s < ][y X(t) — ]
t=1,2,(4.18)

under both probability measures P¢ and P, where the mappings f, h: IN* — IR are monotone

non-decreasing. It is now immediate from (4.16) that (7, P#) <, (7, P¢), or equivalently,

(B", Pf) <. (7, PF) (4.19)

since 0 < @ < 1, and that
(1[r > t]e” (X (¢)), PY) <ot (1[r > t]c?(X(t)), PE). t=0,1,---(4.20)

The inequalities Bj(z) < Bg (z) and I3 () < Ig,ﬁ (z) are now readily obtained from (4.19)-
(4.20). w
The threshold value L7 given in Lemma 4.3 is tndependent of the policy = and of the

discount factor 8. This simple property already leads to a series of interesting facts for the

discounted problem.
For the case L” = 0, the optimal policy for problem (LPy) is easily specified.

Theorem 4.4 Assume p —~ < 0, i.e., L7 = 0 and ¢?(z) < 0 for all z in IN. The Markov
stationary policy (0,0) s optimal.

Proof: As pointed out in the proof of Lemma 4.2, Vﬁ'y (0) = Jg,(o,o) (0) = 0, and Lemma 4.3
yields the result. |

Thus, only the case L™ > 0, or equivalently & — «v > 0, needs to be considered. By virtue

of Lemma 4.3, the Dynamic Programming equation (4.10) reduces to

V] (z) = () + BEIV; (4°(2)) (4.21)
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for all z > L7, and therefore,
Vi(z+1)=c"(z+ 1) + B(uVj () + BV (z + 1)) (4.22)

for all z > L" upon using (4.6b). The following property is immediate.

Lemma 4.5 Assume p — v > 0, i.e., L7 > 0. The value function Vﬂ"’ satisfies the tnequality
Vﬂ'7 (L"+1) - Vf;’ (L") <o. (4.23)

Proof: Substract V(L) from both sides of (4.22) evaluated at z = L. Easy algebraic

manipulations give the result via the fact V(L") > 0 from Lemma 4.2. |

The value iteration method of Theorem 4.1 is now used to establish the integer-concavity
of the value function V[;’ by showing the concavity of each one of the iterates {V§'}§° given by
(4.9). However, this is a non-trivial task as several situations need to be discussed separately.
The difficulty seems to stem from the fact that multiple transitions are possible here owing to
the discrete nature of time in this system. This is in contrast with the continuous-time version
of this problem for which concavity of the value function is more readily obtained through

some of the arguments of [18].

The next result shows in what sense integer-concavity is preserved at each step of the
backward induction of Dynamic Programming. It will be convenient to say that a mapping
f:IN — IR satisfies the property (A7), s =1,---,4, if

(A1): f is integer-concave with 0 < f(1) — f(0) < p — 1,

(A2): f is integer-concave with p — v < f(1) — f(0) < 1,

(A3): f is integer-concave with f(2) — f(1) < —~,

(Ad4): f is integer-concave with f(2) — f(1) > —~.
Theorem 4.6 Assume that p—~ > 0. (i) Suppose A+ p < 1. If f satisfies (A2), so does Tgf.
(i) Suppose A+ i > 1 and p? < ~. If f satisfies (A1) and (A3), so does T3f. (iii) Suppose
A+u>1and % < XA < p. If f satisfies (A2) and (A4), so does Tgf. (iv) Suppose A+ p > 1
and X < % < p. If f satisfies (A1) with 7f(1) < O, then Tgf satisfies (A1) and (A3). If f
satisfies (A1) and (A3) with 7 f(1) > 0, then Tgf satisfies (A1) and (A4). If f satisfies either
(A1) and (A4) with 7 f(1) > 0, or (A2) and (A4) (whence 7 f(1) > O necessarily), then T4 f
satisfies either (A1) and (A4), or (A2) and (A4).
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A complete discussion of this key result can be found in Appendix II. It is noteworthy
that concavity alone does not propagate through the induction and that additional growth
conditions are needed. Unfortunately there does not seem to be a natural interpretation for

these conditions.

Theorem 4.7 Assume p—~ > 0, i.e., L7 > 0. The value function Vﬁ" 1s tnteger-concave, with

BA .

axP W=V <Vi(1) and V(L7 +1) <Vj(L7). (4.24)

Proof: The argument is standard and inductively uses Theorem 4.6 on the successive iterates
{V4'}8°. This is made possible by observing that the Oth iterate Vj is the concave mapping ¢”
which satisfies ¢7(1) — ¢7(0) = p — v and ¢7(2) — ¢?(1) = —4. The reader will now check that
each one of the four situations discussed in Theorem 4.6 applies to yield the integer-concavity
of Vi with0 < V(1) - V3 (0) < 1foralln=1,2,---

In the limit, by Theorem 4.1, the value function Vﬂ'y is thus integer-concave with 0 <
V[;’(l) - Vﬂ" (0) < 1. Consequently, VV[? (0) > 0 and ¢*(0) = 1 is an optimal action by (4.12),
whence V{;’ (0) = ,@[/\V; (1) + ;\V; (0)] by virtue of the Dynamic Programming equation (4.10).
The first part of (4.24) now follows via the fact that V(1) > Jg’(o’o)(l) > — > 0, while
the second part is nothing but (4.23). O
Theorem 4.8 Assume p—~ > 0, i.e., L7 > 0. For every 0 < B < 1, there ezists a threshold
policy (Lg, 1) which solves problem (LPg), where the optimal threshold value Lg satisfies the
relation 0 < Lz < L7,

Proof: Integer-concavity of V; implies that VVj is monotone decreasing, whence the quantity
VV[;’ changes sign at most once, from positive to negative since VV; (0) > 0 and VVﬁ'7 (L7 +
1) < 0 by Theorem 4.7. Consequently, there exists a level Ly, with 0 < Ly < L7, such that
VVg(z) >0for 0 <z < L} and vVg (2) < 0 for all z > Lj. The threshold policy (L3,1) is
then clearly optimal by Theorem 4.1. O

5. Properties of threshold policies
For each threshold policy (L,n) with L in IN and 0 < 5 < 1, the sequence {X(n)} is

a time-homogeneous Markov chain with state space IN under the probability measure P{Z:m),
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This chain has a single ergodic set, namely, {0,1,---,L}ifp = 0or {0,1,:-+,L+1}if0 <y < 1,
with all the other states being transient. Consequently, the Markov chain {X(n)}$ admits
under P(Im) a unique invariant measure, which is denoted by IP(L") with corresponding
expectation operator IE(X"), This invariant measure IP(Z) is computed by solving the
equations

P& = PENQ((L,n)) and Y PED () =1. (5.1)

z=0

Routine calculations yield the solution of (5.1) in the form

Wi (z)
1+ 3202, Wi(2)

P(L”’)(x) = Wi’(x)p(L,n)(o) =

where upon defining p: = f}‘%, for L > 1,

(1 if z=0;
% if 1<z< UL
L X -
Wi(z) =1 %I—Az\n if z=1L; (5.3a)
L+1 .
L AL if z=L+1
0 if z>L+1
while for L = 0,
A
w2(0) =1, WI(1) = 7:’- and WJ(z)=0, z> 1. (5.3b)

Let X denote a generic IN-valued random variable. For any mapping d : IN — IR, the
quantity E(L’")d(X) is always finite since IP(X") has finite support, and the first passage
time to the set of ergodic states being almost surely finite, the following characterization is

obtained [4, Thm. 1.15.2, pp. 92] [5, Thm. 4.5.4, pp. 97].

Lemma 5.1 For any mapping d: IN — IR, the convergence
lim —— Y d(X(t)) = EEMd(X) PEm) — g.5.(5.4)

takes place, independently of the initial distribution. Furthermore, if the RV’s {d(X(n))}&° are
uniformly integrable under P(L) then the convergence (5.4) also holds in L (R, IF, P(L»)).
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When d is bounded, the second part of Lemma 5.1 follows from the Bounded Conver-
gence Theorem, whereas if d is unbounded but monotone, uniform integrability of the RV’s

{d(X(n)}8° under P(L+) is determined by the integrability of the RV d(E).

Lemma 5.2 If the mapping d: IN — IR is monotone and the RV d(E) is integrable, then the
RV’s {d(X(n))}S° form an uniformly integrable sequence under P&, gnd the convergence
(5.4) thus takes place both P(I'") — q.s. and in L' (0, IF, P(E:7)),

Proof: Under the threshold policy (L, 7), the queue sizes {X(n)}$° satisfy the inequality
X(n)<EV(L+1) pLm) _ 4. n=0,1,---(5.5)

and the monotonicity of d implies |d(X(n))| < |d(E)| + |d(L + 1)| + |d(0}]| for all » = 0,1, --
Therefore, the sequence {d(X(n))}s° is uniformly integrable under P{%:") whenever the RV
d(Z) is integrable. Lemma 5.1 concludes the proof. |

The estimate (5.5) implies that for each z in IN, the Markov chain {X(n)}§® visits only
finitely many states, say {0,1,---,zV (L + 1)}, P{EM._as. The chain is thus equivalent to a
finite-state Markov chain under P,S ’"), and the Bounded Convergence Theorem yields
Lemma 5.3 For any mapping d: IN — IR, the convergence (5.4) always takes place both
PEM g5 and in L(q, I, PQSL’")) for every z in IN.

The next lemma will be useful in proving Theorem 6.2 which constitutes the main result
of Section 6. The results obtained will also be applicable to various situations discussed in the

companion paper [10].

Lemma 5.4 For any mapping d: IN — IR and any threshold policy (L,n), there always ezist a
scalar J and a mapping h: IN — IR such that

h(z) +J = d(z) + (L, 1) (2) E[A(A" ()] + (L, n) (z) E[R(A°(2))] (6.6)

for all z in IN. The quantity J s given by

— (Lym) — p(Lm)
J = ilTTonJr Ef [Zd t))] = B 4(X), (5.7)

whereas the mapping h: IN — IR is unique up to an additive constant and s given by
= B Z — B [r)g (5.8)
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for all z in IN, under the constraint h(L) = 0. Here 7 is the IF,,-stopping time defined by (4.13)
but with L instead of L".

Equation (5.6) is sometimes referred as the Potsson equation associated with the cost
function d under the threshold policy (L,7), and Lemma 5.4 asserts that the pair (h, J) given
by (5.7)-(5.8) is a solution to this Poisson equation. Its proof is by now standard and is omitted
for sake of brevity. Crucial to the argument is the fact that the chain {X(n)}§° reduces to a
finite-state Markov chain under P,gL’") for every z in IN. The interested reader is invited to
consult the monograph by Ross [16] or the work by Shwartz and Makowski [17] for a typical
approach.

It is clear from Lemma 5.2 that the equalities T((L,7n)) = pIPZ[X # 0], N((L,n)) =
EIMX and

J((L,m)) = T((Lym)) — YN((L,n)) = plP (X # 0] — yBENX (5.9)

are obtained under the threshold policy (L,n) for every L in IN and 0 < 5 < 1. The following

property is immediate.

Lemma 5.5 For every L in IN, the mappingsn — T'((L,n)) and n — N((L,n)) are continuous
and strictly monotone increasing on the interval [0, 1], whence, the quantities T'((L,0)) and

N((L,0)) increase as L increases.

Proof: From (5.2)-(5.3), continuity of the mappings n — T((L,n)) and  — N((L,n))
is a direct consequence of the continuity of the mappings  — IP(L’")(:::) for all z in IV,
whereas strict monotonicity follows from the strict monotonicity of each one of the mappings
n — IPIm)[X > k] for 1 < k < L+ 1. The second part of the lemma is now immediate since
(L +1,0) = (L,1). 1

With the notation a = by5- and b = E—L%;)‘—z, (5.2)-(5.3) yield the expressions

_p(Ve—r+a)  p((0—AVL_a)n+Vi_1)
T((L,m) = 1+Vii+a (b=-A14+Vi_))n+14+Vi_y

(5.10)

and
_Ura+al+p)  (B(L+p)—Ap-1)n+Ur

N((Z,m)) 1+Vii+a  (b=AA+Vo_))n+1+Vry (5-11)
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for L > 1, with T'(0,n) = uN(0,7) = 7":_—)‘}"; Here Ur_; and Vy,_; are defined for L > 1 by

L—1 4 p* ¥ .
ke + LXE if 1;
Up-1=4q =7 F T : L>1 (5.12)
; lf L=1
and
L1 g8 X2l if L> 1
Vi1 = §k=1 FEAE Ao (5.13)

The next lemma shows that for each v > 0, the quantity J7((L,0)) has a single relative

maximum.
Lemma 5.8 For each v > 0, the mapping L — J7((L,0)) is discretely unimodal, with the
global mazimum being achieved at at most two adjacent levels.

Proof: For each L =0,1,---, pose A(L):= J7((L + 1,0)) — J7((L,0)), and observe from the
relations (5.10)-(5.11) that

L : .
A(L) = | Ay W = 10) i L2 (5.14)
Yo (4~ 2Co) if =0

where Cp, = (L+p)(14+Vz—1) —Ur—_1 for L > 1 and Cy = 1. The property will be established
if the quantities C can be shown to be positive and strictly increasing in L. Positivity is
obvious since Cr, > 0 if and only if L+ gz > N((L — 1, 1)), an inequality which obviously holds
since the chain can never go above level L under the threshold policy (L — 1, 1). Monotonicity

follows from the relations
Cry1—=CL=1+Vp+ (L+p)(VL —Vi—1) = (UL —UL-1) =1+ VL >0
for L > 1, with Cy — Co = ji(1 + Vo) > 0, by making use of (5.12)-(5.13). M

6. The long-run average problems

The long-run average problem (LP7) is now solved by standard Tauberian arguments

applied to the discounted problem (LFPj).

Theorem 6.1 For each v > 0, there always ezists a threshold policy (Lf’,n,”;), with 0 <

L% < L7, which solves the long-run average problem (LP7) and yields the optimal cost J7 as
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JY = E(L:I’":f)c'V(X). When p—~ < 0, i.e., LY = 0, then necessarilyn’ = 0 and J7 = 0, while

tfu—~>0,ie, L7 >0, then n} can always be chosen to be 1.

Proof: If L7 = 0, the invariant measure IP(>?) has all its mass concentrated on {0} and the
cost ¢7 is non-positive. The relation (5.9) readily implies J7((0,0)) = E(®%¢7(X) =0 >
J7(x) for all 7 in P, and the optimality of the policy (0,0) thus trivially follows.

To study the non-trivial case L > 0, consider Py to be the collection of all policies 7 in P
which incur a finite long-run average cost J7(r), or equivalently, Ps:= {r € P: J7(r) > —oc0}.
It should be clear that in solving (LP7), only those policies in Py need to be considered. By
virtue of (4.2), a version of the Tauberian Theorem [9, Lemma 1] [20] applies to the sequence

{E™c"(X(n))}& to give

n

1 -E" D (X () < 111[1;1T11nf(1 — B)J3(x) (6.1)

J7 () =1in%inf
njoo N

for every policy « in Py, with equality in (6.1) when J7(7) is defined as a limit. As shown in

Lemma 5.2, this is clearly the case when = is of threshold type, with

JV((L,n)) = EE&M(X) = lim 1

lim B )X (0) = hm( - (T 62

pIL

forevery Lin INand 0< 9 < 1. If (Lg, 1) is the optimal threshold policy for problem (LP;)
given by Theorem 4.8, then obviously the inequality

(1-8)Jg(m) < (1-B)JI5((Lg, 1)) (6-3)

holds for all 8 in (0,1) and every policy = in Ps. Since the threshold Lg never exceeds the level
L, which is independent of the discount factor 8, there are only LY + 1 possible threshold
values for L. Consequently, for any sequence {8,}{° in (0,1), with 8, 1 1 as n | oo, there
exists a further subsequence {8,,}7°, with 8,,, T 1, such that lim,,1oo Lgm = L. The threshold
values {Lgm}‘l>° being discrete, for m large enough, they must all be identical to L} and the
optimal policy (L3 ,1) necessarily coincides with the threshold policy (L},1). Upon taking
the limits in (6.3) along the subsequence {8,,}{°, the relations (6.1)-(6.3) readily imply that
JY(r) < J7((L%,1)) for all m in Py, i.e., the policy (LZ,1) is optimal. 1
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For the case p — v > 0, i.e., L7 > 0, the search for an optimal policy can therefore be
restricted to the class of all pure threshold policies with threshold below level L7, and the
optimal cost J7 of problem (LP7) can simply be written as

J7'= max J'((L,1))= max E®Y(X) = max E@Y1(X). (6.4)
0<L<L~y 0<L<L7 LEN

In Section 5, explicit expressions were developed for the cost generated by threshold policies,
and can now be used to identify the optimal cost and threshold policy through (6.4). This
idea is now exploited to produce a somewhat strengthened result, which is key to solving the

constrained problem (Py).

Theorem 6.2 For each threshold value L in IN, there always ezists v(L) > 0, with L) >,

so that any admaissible policy m in P given by

1 it X(n) < L;
mn(H(n)) = { arbitrary in [0,1] if X(n)=IL; (6.5)
0 if X(n)>L

solves the long-run average problem (LPY(L)),

The following result will be useful in the proof of Theorem 6.2.

Lemma 6.3 Let the pair (h,J) be obtained in Lemma 5.4. If the sequence {d(X(n))}§ is

uniformly integrable under P(X:1), then the convergence

1
i (Lm) — ELm) (s
lim - [BED[R(X (0 + 1))] - BEh(E)]
. (6.6)
— T (L) — B p =] =
rlr.lTI<I>10 | [EED[1(r > n+1)h(X(n+1))] - EE"[R(E)]] =0
takes place.
Proof: A standard argument based on (5.6) [16,17] readily leads to the relation
EEMR(E) + (n+1)J = EEMVR(X(n+ 1)) + B Y " d(X () n=0,1,---
=0
and therefore
1
] (L,n) —_ (L) p (= —
71»1%10 1 [EV*™M (X (n+ 1)) — B R(E)] =0 (6.7)
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owing to (5.7) and to Lemma 5.1. The quantity E(Z"[1(r < n + 1)h(X(n + 1))] is bounded
by virtue of (5.5), and the last part of relation (6.6) is now obtained. O

A proof of Theorem 6.2.

For each L in IN, pose

T((L,1)) — T((L,0))
(L):= N((L,1)) - N((L,0))’

(6.8)

and observe that v(L) > 0 owing to Lemma 5.5. The relations (5.9) and (6.8) easily imply
J1E((L, 1)) = JYE)((L,0)). Tt then follows from Lemma 5.6 and (6.4) that

JTB((L,1)) = I (L, 0)) = max IV ((1,0)) = J75), (6.9)

and both policies (L,1) and (L,0) solve problem (LP7(F)). The reader will check from the
expressions (5.10)-(5.11) that necessarily L < L) ag expected from Theorem 6.1. To prove
Theorem 6.2, i.e., that any policy 7 of the form (6.5) is optimal for problem (LP7(L)), it only
remains to show that JY(X) () = J7(L). Note that the policies (L,1) and (L,0) are clearly
amongst these policies.

Take the mapping d = ¢?X) in Lemma 5.4, and let (hs, J;) be the corresponding solution
to the Poisson equation (5.6) associated with the threshold policy (L,?),7 = 0,1, when hy(L) =
ho(L) = 0. The relation (6.9) yields J; = Jo = J7(F), whereas direct inspection of (5.8) reveals
hi(z) = ho(z) for all z # L by the very definition of the stopping time 7. The condition
h1(L) = ho{L) = O immediately implies that hy = ho:= h. This last fact, when substituted
into the Poisson equations associated with the two policies (L, 1) and (L,0), readily shows

that they must coincide with E[h(AY(L))] = E[h(A°(L))], and that they are of the form
h(z) + I = 7 )(z) + p(a) E[h(A! (2))] + p(a) E[R(A°(2))], (6.10)
for all z in IN, where
1 if 0<z< I
p(z) = { arbitrary in [0,1] if z = L;
0 if z> L.

Consider the policy 7 in P be defined by (6.5). As in the proof of Lemma 6.3, (6.10)

again leads to the relation

1
n+1

1
n+1

Jr(L) —

E" f: "X (2) + [E"h(X(n+1))— E™h(E)] n=0,1,---(6.11)
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with
E™h(X(n+1))]=E"[1(r <n+1h(X(n+1))]+ E"[1(r > n+ 1)A(X(n+1))]. (6.12)

By the very form (6.5) assumed for = and the definition of 7, it is easy to see that the first

term on the right-hand side of (6.12) is bounded while the second term satisfies the relation
E™[1(r > n+ Dh(X(n+1))] = EL[1(r > n+ 1)k(X(n+1))] (6.13)

for any 0 < 5 < 1, since both probability measures P(EZ") and PT™ coincide on IF, . As a

result,
Egn+1W”MX@+UN—E”MQH
- lim n—jrl[Em(r > n+ )h(X(n+1))] — E"[a(5)]] (6.14)
. 1 L,n L, = —
— lim —<[EE(1(r > n+ DA(X(n + 1)) - BEVI(E)] =0

upon invoking Lemma 6.3. The relation JY(E)(r) = J7(L) is now obtained by taking the limit

in (6.11) and making use of (6.14), and this completes the proof. O
A proof of Theorem 3.2.

It should be clear from Theorem 6.2 that any threshold policy (L,7), with 5 arbitrary
in [0,1], satisfies conditions (C1) and (C3) of Theorem 3.3 for some (L) > 0. Thus, in order
to solve problem (Py), it only remains to find one such threshold policy that saturates the

constraint.

Since N((0,0)) = 0, Lemma 5.5 readily implies the existence and uniqueness of the pair
(L*,n*) such that N((L*,n*)) =V if N((o0,1)) > V. The optimal threshold and bias values
L* and n* are uniquely defined by solving

EMX -V, 0<np<landl=0,1,--- (6.15)

With the help of Lemma 5.5 and equations (5.10)-(5.13), this is equivalent to the following:

Either 0 <V < ﬁ, and then
uV

L*=0 and 7]*:}—(1—_—‘{/_—),

(6.16)
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orV > ﬁ and then

Upr—1 —VVie 1 <V < Ups —VVpe (6.17)
and
7= WV Vi) = Ur:-1) (6.18)
P TIN(L + B = V) + M (V(1+ VEe—1) = Up-—1)’ '
in which case L* > 1. Theorem 3.2 is proved. |
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APPENDIX I

A comparison result

The notion of stochastic ordering is useful for comparing the performance of various poli-
cies. This is achieved through a stochastic comparison result for the underlying queue size
process among certain class of admissible policies. The reader is invited to consult the mono-

graphs by Ross [15, Chap. 8] and Stoyan [19] for further information on stochastic ordering.

Let P! and P2 be two probability measures defined on IF', with the corresponding expec-
tation operators E1 and E?, respectively. If YV is a IR™-valued RV defined on (2, IF), then
the RV (Y, P?) is said to be stochastic larger than (Y, P') if and only if E'[f(Y)] < E2[f(Y)]
for all increasing functions f: IR™ — IR for which these expectations exist; this is customarily

denoted by (Y, P) <, (Y, P?%).

This notion extends naturally to sequences of IR-valued RV’s defined on (Q,F). The
sequence ({Y (¢)}3°, P?) is said to be stochastic larger than ({Y (¢)}$°, P!) if and only if

(¥ (0), Y (1),+-, Y (r)), PT) <ot (¥ (0), Y (1),+,Y (n)), P?) n=0,1,-(I.1)
This is denoted simply by ({Y (¢)}&°, P!) <. ({Y (¢)}8°, P2?) and is equivalent to
Ef(¥(0),Y(1),-, Y (n))] < E*[f(Y(0), Y (1),--",Y (n))] n=0,1,-(I.2)

for all increasing functions f: IR™*t! — IR for which the expectations exist.

While the relation (I.2) is usually hard to verify directly in practice, sufficient conditions
are available in the literature, and one such condition, due to Veinott [19, pp. 29], is given
below for easy reference. Throughout the discussion, the IR®*!-valued RV (Y (0),---,Y (n))
and the element (yo, -+ ,yn) of IR**! are denoted by ¥ (™) and y(™), respectively.

Lemma I.1 Let {Y ()} be a sequence of IR-valued RV’s on (Q,IF). If
(¥ (0), P') <at (Y (0), P?) (1.34)
and for every a in IR
PUY(n+1) > oY W = ™) < PYY (n+ 1) > a|Y (M) = y()] n=0,1,--- (I.3b)

whenever z(™ < y(") componentwise in IN*t1, then ({Y (t)}$°, P*) <ot ({Y ()}, P?).
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Here, this result is used as follows. For every admissible policy m in P, introduce the

sequence {#,}$° of mappings t,: IN"t! — [0,1] defined by
#n(z():= PTU(n) = 1|1X™ = ] = E"[r, (H(n))| XM = 2]  n=0,1,---(14)

for all (™) in IN™*1,

Theorem 1.2 Consider two admissible policies 11 and n2 in P. If the relations
i (2) < 7 (y™) n=0,1,-(L5)

hold for all (™) < y(™) with z,, = yy, then ({X(£)}2,P™) <o ({X(t)}, P™).

Proof: Since the probability distribution of E is independent of the policy, the relation (I1.3a)
trivially holds. It suffices to show that the conditions (I.5) imply (I.3b).

Routine calculations first imply via (2.4)-(2.6) that for every policy = in P,

1 if z,>a+1;
- n n i+ Apfn(z(™) if z,=a+1;
P [X(n+1) > a|X(™ = £(M] = l;ﬂfrnétz:(")() ) if 7, = a; n=0,1,---(1.6)
0, if z,<a

for all (") in IN"*1. It is plain that 0 < Agf, (2", a) < g+ Aufn(y"D,a+1) < 1 for
all z(»=1 and y(*1) in JR™, and (1.3b) thus holds whenever z(® < y(™) with z,, < y, for
any two arbitrary policies in P. It thus suffices to show that (1.3b) holds for (") < (") with
Zyn, = Yn for the policies 7! and =2 considered here. But assumption (I.5) and the relation
(1.6) readily combine to yield (I.3b) whenever z(") < (™) with z,, = v,,, and the conclusion

now follows from Lemma I.1. O

Theorem 1.3 Consider two admissible policies m' and w2 in P. If there exists a sequence

{fn}& of mappings fn: IN — [0,1] such that
7r711,(h‘n) < fn(zn) < W,zb(hn) n=0,1,--- (I"])

for all hy in H,, then ({X(£)}, P™) <a ({X(8)}&, P™).

Proof: It is plain from (I.4) and (I.7) that for all (™) and y(™) in N1, ﬁ}l(z(")) < fulzn)
and #2(y(™) > f.(v.). Condition (I.5) is now easily justified with z, = y,, and the result
follows from Theorem I.2. M
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APPENDIX I1
A proof of Theorem 4.6

Let v > 0 and 0 < B < 1 held fixed throughout the discussion and pose g: = T[;’ f for
notational simplicity.
Lemma II.1 If the mapping f:IN — IR is integer-concave over IN, then the mapping g is

integer-concave over IN — {0}.

Proof: From (4.4)-(4.5), it follows that
9(z) = ¢"(z) + ABE[f(A°(z))] + A8 max{E[f(A°(z) + 1)}, E[f(A°(z))]} (I1.1)
for all z in IN. With the notation h(z): = E[f(A°())] for all z in IN, (II.1) takes the form
g9(z) = ¢"(z) + ABh(z) + AB max{h(z + 1), h(z)} (I1.2)

for all z > 1 in IN since then A%(z) + 1 = A°(z + 1). The integer-concavity of f over IN
readily implies that the mapping & is integer-concave over IN — {0}, and thus so is the mapping
z — max{h(z+ 1), h(z)} by direct inspection. The cost ¢” being integer-concave, g is the sum
of mappings which are integer-concave over IN — {0} and is therefore integer-concave over
IN - {0}. O

Owing to Lemma II.1, the study of the integer-concavity of ¢ when f is integer-concave

reduces to the study of the inequality
g(1) — ¢(0) > g(2) — g(1). (I1.3)

The following facts are obtained by direct inspection of (4.5)-(4.7) and are useful in the dis-
cussion. If f is integer-concave with w7 f(0) = f(1) — f(0) > 0, then g(0) = B(Af(0) + Af(1))

and

9(1) —g(0)=p—~

) (II.4)
+ Bmax{(a — A)(f(1) = £(0)), AA(f(1) - £(0)) + A(F(2) = F(1))]}-
More precisely, one of two cases occurs:
(1) vf(1) < 0: By concavity of f, v f(2) < 0 with
g9(1) —g(0) = p — v+ B(a~ A)(f(1) - £(0)) (I11.5a)
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and

9(2) —g(1) = —v+ BV f(1). (I1.5b)
(2) vf(1) >0:
g(1) — 9(0) = u— v+ Ba[A(f(1) - £(0)) + A(f(2) - f(1))] (I1.6a)
and
_l-v+Brv i1 if vf(2) <0
9(2) ~g(1) = { . i g(ivv f((}) +AV f(2) if 3?8 ; 0. (11.65)

From (I1.4)-(I11.6) and the concavity of f, the reader will readily check the following estimates.

Lemma I1.2 Assume that f is integer-concave with f(1) — f(0) > 0.

(@) If f(1) — f(0) < 1, the upper bound g(1) — g(0) < p— v+ B < 1— v < 1 holds, and
vf(1) < Land A(f(1) — £(0)) + A(f(2) — f(1)) < 1.

(b) Suppose A+ p < 1. The lower bound g(1) — g(0) > p — ~ holds, and A(f(1) — £(0)) +
A(f(2) - F(1)) 2 v f(1)-

(c) Suppose XA+ p > 1. The relation A(f(1) — f(0)) + A(f(2) — (1)) < wf(1) holds. If
F(1) = £(0) < u =1, then g(1) — g(0) > (1 — ) (1 — Bu) > 0, whereas A(f(1) - £(0)) +
A(f(2) — f(1)) > (resp. <)O0 +f and only if g(1) — g(0) > (resp. <)p — .

(d) Vf(1) > (resp. <)0 if and only if g(2) — (1) > (resp. <) —

The next lemma shows that the relation (I1.3) is easily obtained in certain cases.

Lemma I1.3 Assume that f is integer-concave with f(1) — f(0) > 0. If g(1) — g(0) > O with
vf(1) <0, or if f(1) — f(0) < 1 with 7f(1) >0 and v f(2) > 0, then (I1.3) holds.

Proof: The first part of lemma readily follows from (d) of Lemma II.2. To prove the second

part, note from the concavity of f that f(1) — f(0) > wf(1) and f(2) — f(1) > Vf(2).
Consequently,

(9(1) — 9(0)) — (9(2) — (1)) > 1 — BuA(f(1) — f(0)) + A(£(2) = F(1))] = — B >0

by making use of (I1.6) and (a) of Lemma II.2. |

A proof of Theorem 4.6.
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First, the growth condition on g is seen to hold in each case (i)-(iv) from Lemma IL2.
For (i), (2) and (b) of Lemma IL.2 imply p — v < g(1) — ¢(0) < 1. In (i) vf(1) < u(u -
¥) + B(=7) = u® — v < 0, while in the first part of (iv) Vf(1) < 0, and in both cases,
0 < g(1) —g(0) < u— v and g(2) — g(1) < —v by (c) and (d) of Lemma II.2, respectively.
In (i), V(1) > ale =)+ B(—) = 4 — 7 2 0, and A(F(1) - 7(0)) + A(/(2) — (1)) >
Al —~)+A(—7)) > 0, and thus by (a), (c) and (d) of Lemma IL.2, u—~ < ¢(1) —¢(0) < 1 and
9(2) —g(1) > —~. In the second part of (iv), ¥ f(1) > 0 and X(f(1) — f(0)) +A(F(2) ~ (1)) <
Al =) + A(=7)) < 0, whence 0 < g(1) — ¢(0) < p — v and g(2) — ¢(1) > —v by (c) and
(d) of Lemma I1.2, respectively. Finally, in the last part of (iv), the growth condition on g is
nothing but 0 < g(1) — ¢(0) < 1 and g(2) — ¢(1) > —~, while the condition 7 f(1) > 0 always
holds. Since g(1) - ¢(0) < 1 and —v < g(2) — ¢(1) by (a) and (d) of Lemma, II.2, respectively,
it suffices to show that g(1) — ¢g(0) > 0. That this is indeed the case, observe from (I1.6a) that
9(1) —g(0) > p — v+ Bia(—Ay) > pi(l — BAu) > 0, since here u? > v and f(2) — f(1) > —~.

The proof of Theorem 4.6 will be complete by proving (I1.3). Since 0 < f(1) — f(0) < 1

and g(1) —g(0) > 0 in all four cases (i)-(iv), it follows from Lemma II.3 that only the situation
where 7 f(1) > 0 and v f(2) < O needs to be considered, in which case

(9(1) = 9(0)) - (9(2) — 9(1)) = u+ Ba[A(f(1) — £(0)) + A(f(2) — F(1))] - BAV F(1) (I1.7)

by (I11.6). In (ii) and in the first part of (iv), v (1) < 0 and (I1.3) follows from Lemma I1.3.
For (i), (I1.7) and (a)-(b) of Lemma II.2 imply

(9(1) - 9(0)) ~ (9(2) —g(1)) >+ BV F(1) - BV f(1) =p—Buv f(1) > u— Bu > 0.

For (iii), A(f(1) — £(0)) + A(f(2) — £(1)) > 0 as shown earlier, and (I1.7) yields (g(1) — g(0)) —
(9(2)—g(1)) > p—BAV f(1) > p—Pp v f(1) > 0 since X < . For the last part of (iv), it is
plain that ¥ f(1) < 1 so that when A(f(1) — f(0)) + A(f(2) — f(1)) > 0, the right-hand side
of (I1.7) is obviously non-negative since g — BA 7 f(1) > u — Bu v f(1) > 0. On the other
hand, if A(f(1) — f(0)) + A(£(2) — f(1)) <0, then A(f(1) — £(0)) < A(f(1) — (2)) < Ay and
thus A v £(1) < Ap(f(1) — £(0)) < p)y since obviously —y < f(2) — f(1) < 0. From (I1.7)
and the fact f(2) — f(1) > —~, it follows that

(9(1) — 9(0)) — (9(2) — 9(1)) > 4 BEA(f(2) — f(1)) — Budy > p — BEAY — Bury > 0.
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Finally, for the second part of (iv), note that now X(F(1) ~ £(0)) + A(f(2) - f(1)) <0. Itis
convenient to use the estimate obtained for g(1) — ¢(0) in (c) of Lemma IL2 to conclude that

(g(1) — g(0)) — (9(2) —9(1)) = (b =) (1 = Bu) = (=7 + BA7 (1)) (I1.8)

Since by assumption Ay f(1) < Ap(p—~)+B(=7)] < %(,1,2 —~),and (p—7)(1- Bu)—(—v+

BL(u? —)) = p—Bp*+ 82’ 0, (I1.8) readily implies (¢(1) —9(0)) - (9(2) —g(1)) > 0. The

proof of Theorem 4.6 is now complete. O
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