University of Maryland College Park

Institute for Advanced Computer Studies TR-92-61
Department of Computer Science TR-2908

SRRIT — A FORTRAN Subroutine
to Calculate the Dominant Invariant Subspace
of a Nonsymmetric Matrix*

7. Baif
G. W. Stewart?

May, 1992

ABSTRACT
SRRIT is a FORTRAN program to calculate an approximate orthonor-
mal basis for a dominant invariant subspace of a real matrix A by the
method of simultaneous iteration [12]. Specifically, given an integer m,
SRRIT attempts to compute a matrix () with m orthonormal columns
and real quasi-triangular matrix 7' of order m such that the equation

AQ = QT

is satisfied up to a tolerance specified by the user. The eigenvalues of T
are approximations to the m largest eigenvalues of A, and the columns
of () span the invariant subspace corresponding to those eigenvalues.
SRRIT references A only through a user provided subroutine to form
the product AQ); hence it is suitable for large sparse problems.

*This report is available by anonymous ftp from thales.cs.umd.edu in the directory
pub/reports. The program is available in pub/srrit

"Department of Mathematics, University of Kentucky, Lexington, K'Y 40506.

{Department of Computer Science and Institute for Advanced Computer Studies, University
of Maryland, College Park, MD 20742. This work was supported in part by the National Science
Foundation under Contract Number CCR9115586.

SRRIT— A FORTRAN SUBROUTINE
TO CALCULATE THE DOMINANT INVARIANT SUBSPACE
OF A NONSYMMETRIC MATRIX*

7. Barf
G. W. STEWART?

Abstract

SRRIT is a FORTRAN program to calculate an approximate orthonor-
mal basis for a dominant invariant subspace of a real matrix A by the
method of simultaneous iteration [12]. Specifically, given an integer m, SR-
RIT attempts to compute a matrix ¢ with m orthonormal columns and
real quasi-triangular matrix T of order m such that the equation

AQ = QT

is satisfied up to a tolerance specified by the user. The eigenvalues of T
are approximations to the m largest eigenvalues of A, and the columns of
() span the invariant subspace corresponding to those eigenvalues. SRRIT
references A only through a user provided subroutine to form the product
AQ); hence it is suitable for large sparse problems.

1. Description

The program described in this paper is designed primarily to solve eigenvalue
problems involving large, sparse nonsymmetric matrices. The program attempts
to calculate a set of the largest eigenvalues of the matrix in question. In addition
it calculates a canonical orthonormal basis for the invariant subspace spanned by
eigenvectors and principal vectors corresponding to the set of eigenvalues. No
explicit representation of the matrix is required; instead the user furnishes a sub-
routine to calculate the product of the matrix with a vector.

*The report is available by anonymous ftp from thales.cs.umd.edu in the directory
pub/reports. The program is available in pub/srrit. Earlier version appeared as Techni-
cal Report TR-154, Department of Computer Science, University of Maryland, 1978.

"Department of Mathematics, University of Kentucky, Lexington, K'Y 40506.

{Department of Computer Science and Institute for Advanced Computer Studies, University
of Maryland, College Park, Maryland 20742. This work was supported in part by the National
Science Foundation under Contract Number CCR9115586.

2 SRRIT: Simultaneous Iteration

Since the programs do not produce a set of eigenvectors corresponding to the
eigenvalues computed, it is appropriate to begin with a mathematical description
of what is actually computed and how the user may obtain eigenvectors from
the output if they are required. Let A be matrix of order n with eigenvalues
A1, Az, ..., A, ordered so that

Ml Pl = [l
An invariant subspace of A is any subspace Q for which
r€EQ — Ax e Q;

i.e., the subspace is transformed into itself by the matrix A.

If @ is an invariant subspace of A and the columns of @ = (¢1,¢2, ..., ¢n) form
a basis for Q, then Ag; € Q, and hence Ag; can be expressed as linear combination
of the columns of); i.e., there is an m-vector ¢; such that A¢; = Qt;. Setting

T — (tl,tg,...,tm),

we have the relation

4Q = QT. (1)
In fact the matrix 7' is just the representation of the matrix A in the subspace Q
with respect to the basis ().

It = is an eigenvector of T' corresponding to the eigenvalue A, then it follows
from (1) and the relation Tz = Az that

A(Qx) = MQx), (2)

so that QQx is an eigenvector of A corresponding to the eigenvalue A. Thus the
eigenvalues of T" are also eigenvalues of A. Conversely, any eigenvalue of A whose
eigenvector lies in @ is also an eigenvector of T'. Consequently, there is a one-one
correspondence of eigenvectors of T" and eigenvectors of A that lie in Q.

If |Ai| > |Aig1], then there is a unique dominant invariant subspace Q; corre-
sponding to Ay, Ag, ..., A, When Q; and Q44 exist, Q; C Q;y1. SRRIT attempts
to compute a nested sequence of orthonormal bases of Q1,Qs,...,Q,,. Specit-
ically, if all goes well, the subroutine produces a matrix) with orthonormal
columns having the property that if [A;| > |Ai11| then ¢1, 42, ..., ¢ span Q;.

The case where A;_; and)\; are a complex conjugate pair, and hence |\;,_1| =
|Ai], is treated as follows. The matrix @) is calculated so that the matrix T"in (1)

SRRIT: Simultaneous Iteration 3

is quasi-triangular; i.e., T"is block triangular with 1 x 1 and 2 x 2 blocks on its
diagonal. The structure of a typical quasi-triangular matrix is illustrated below

for m = 6:
X X X X X X
0 X X X x X
0 X X X x X
0 0 0 x x X
0 0 0 0 x x
0 0 0 0 x x

The 1 x 1 blocks of T' contain the real eigenvalues of A and the 2 x 2 blocks contain
conjugate pairs of complex eigenvalues. This arrangement enables us to work
entirely with real numbers, even when some of the eigenvalues of T" are complex.
The existence of such a decomposition is a consequence of Schur’s theorem [11].

The eigenvalues of the matrix 7" computed by the program appear in descend-
ing order of magnitude along its diagonal. For fixed ¢, let Q" = (q1,q2,...,¢) and
let T be the leading principal submatrix of T' of order i. Then if the 7th diagonal
entry of T' does not begin a 2 x 2 blocks, we have

AQl = QIZ'TIQ"

Thus the first ¢ columns of () span the invariant subspace corresponding to the
first ¢ eigenvalues of T'. When |A;]| > |A;41] this is the unique dominant invariant
subspace Q;, When |\;| = |Aiy1| the columns of QI span a dominant invariant
subspace; but it is not unique, since there is no telling which comes first, \; or
Ait1-

Any manipulations of A within the subspace Q corresponding to () can be
accomplished by manipulating the matrix T'. For example,

ARQ = QT*,
so that if f(A) is any function defined by a power series, we have

FA)Q = QF(T).

It the spectrum of A that is not associated with) is negligible, considerable
work can be saved by working with the generally much smaller matrix 7" in the
coordinate system defined by (). If explicit eigenvectors are desired, they may
be obtained by evaluating the eigenvectors of T" and appling (2). The program
STREVC in LAPACK [1] will evaluate the eigenvectors of a quasi-triangular matrix.

SRRIT: Simultaneous Iteration

2. Usage

SRRIT 1s a subroutine in ANSI FORTRAN 77 to calculate the basis for @Q,,
described in Section 1. The calling sequence for SRRIT is

CALL SRRIT (N, NV, M, MAXIT, ISTART, Q, LDQ, AQ, LDA, T, LDT,

with

N

NV

MAXIT

ISTART

LDQ

AQ

WR, WI, RSD, ITRSD, IWORK, WORK, LWORK, INFO, EPS)

(input) INTEGER
The order of the matrix A.

(input) INTEGER
NV is the size of the leading invariant subspace of A that the user
desired.

(input) INTEGER
M is the size of iteration space (NV <M < N).

(input) INTEGER
MAXIT is an upper bound on the number of iterations the program is
to execute.

(input) INTEGER

ISTART specifies whether user supplies an initial basis Q.

<0, Q is initialized by the program.

= 1, starting Q has been set in the input but is not orthonormal.
> 1, starting Q has been set in the input and is orthonormal.

(input/output) REAL array, dimension(LDQ, M)

On entry, if ISTART > 0, Q contains the starting () which will be used
in the simultaneous iteration. On exit, Q contains the orthonormal
vectors described above.

(input) INTEGER
The leading dimension of Q, LDQ > max(1,N).

(output) REAL array, dimension(LDA, M)
On exit, AQ contains the product AQ).

SRRIT: Simultaneous Iteration 5

LDA

LDT

WR,WI

RSD

ITRSD

IWORK

WORK

LWORK

INFO

(input) INTEGER
The leading dimension of A, LDA > max(1,N).

(output) REAL array, dimension(LDT, M)
On exit, T contains of representation of A described above.

(input) INTEGER
The leading dimension of T, LDT > max(1,M).

(output) REAL arrays, dimension (M)

On exit, WR and WI contain the real and imaginary parts, respectively,
of the eigenvalues of T, which is also the dominant eigenvalues of
matrix A. The eigenvalues appear in decreasing order.

(output) REAL arrays, dimension(M)
On exit, RSD contains the 2-norm of the residual vectors.

(output) INTEGER array, dimension(M)
On exit, ITRSD contains the iteration numbers at which the residuals
were computed.

(workspace) INTEGER array, dimension(2*M)

(workspace) REAL array, dimension(LWORK)

(input) INTEGER
The length of work space. LWORK >= M+ M+ 5 * M.

(output) INTEGER
On exit, if INFO is set to

0: normal return.

1: error from initial orthogonalization

2: error from subroutine SRRSTP

3: error from subroutine COND

4: error from orthogonalization in power iteration

6 SRRIT: Simultaneous Iteration

EPS (input) REAL

A convergence criterion supplied by user.

The user is required to furnish a subroutine to calculate the product AQ. The
calling sequence for this subroutine is

CALL ATQ(N, L, M, Q, LDQ, AQ, LDA)
with

N (input) INTEGER
The order of the matrix A.

L, M (input) INTEGER
The numbers of the first and the last column of Q to multiply by the
matrix A.

Q (input) REAL array, dimension (LDQ, M)
contains the matrix ().

AQ (output) REAL array, dimension (LDQ, M)
On return, columns L through M of AQ contains the product of the
matrix A with columns L through M of the matrix).

A call to ATQ causes the iteration counter to be increased by one, so that the
parameter MAXIT is effectively a limit on the number of calls to ATQ.*

The convergence criterion is described in detail in section 3 and 4. Essentially
the matrices () and T calculated by the program will satisty

(A+ E)QH\IV _ Q|1\WT|W (3)

where NV (on return) is the number of columns that have converged and F is of
order EPS/||A||. From this it can be seen that that the well-conditioned eigenvalues
of A should have approximately — log EPS correct decimal digits.

The rate of convergence of the ith column of () depends on the ratio [Ayr1/Ai]-
From this reason it may be desirable to take the number of columns M of) to be

*Qur conventions differ from the “common” conventions for sparse matrix-vector products.
The subroutine ATQ gives the user the chance to calculate A@) with only one pass over the data
structure defining A, with a corresponding saving of work.

SRRIT: Simultaneous Iteration 7

greater than the number of columns NV that one desires to compute. For example,
if the eigenvalues A are 1.0, 0.9, 0.5, ..., it will pay to take M = 2 or 3, even if
only the eigenvector corresponding to 1.0 is desired.

Since SRRIT is designed primarily to calculate the largest eigenvalues of a large
matrix, no provisions have been made to handle zero eigenvalues. In particular,
zero eigenvalues can cause the program to stop in the auxiliary subroutine ORTH.

SRRIT requires a number of auxiliary subroutine (SRRSTP, RESID, GROUP,
ORTH, COND) which are described in Section 5. It also requires the LAPACK
subroutines such as SGEHD2, and the some variation of the LAPACK subroutines
such as SLAQR3 etc. Appendix A contains list of all auxiliary subroutines.

SRRIT can be used as a black box. As such the first NV vectors it returns
will satisfy (3), although not as many as vectors as the user requests need have
converged by the time MAXIT is reached. However, the construction of the program
has involved a number of ad hoc decisions. Although the authors have attempted
to make such decisions in a reasonable manner, it is too much to expect that the
program will perform efficiently on all distributions of eigenvalues. Consequently
the program has been written in such a way that it can be easily modified by
someone who is familiar with its details. The purpose of the next three sections
is to provide the interested user with these details.

3. Method

The Schur vectors () of A are computed by a variant of simultaneous iteration,
which is a generalization of the power method for finding the dominant eigen-
vector of a matrix. The method has an extensive literature [3, 4, 5, 8, 10], and
Rutishauser [7] has published a program for symmetric matrices, from which many
of the features in SRRIT have been drawn. The present variant of simultaneous
iteration method has been analyzed in [12].

The iteration for computing) may be described briefly as follows. Start with
an n X m matrix (o having orthonormal columns. Given (), form (),4; according
to the formula

Qu-l—l = (AQM)R;-II—D

where R, 1, is either an identity matrix or an upper triangular matrix chosen to
make the columns of)41 orthonormal (just how often such an orthogonalization
should be performed will be discussed below). If |A,,| > [An41], then under mild
restrictions on (g the column space of (), approaches Q,,.

8 SRRIT: Simultaneous Iteration

The individual columns of (), will in general approach the corresponding
columns of the matrix ¢) defined in Section 1; however the error in the ¢th column
is proportional to max{|A;/Ai_1|*, | Aix1/Ai|*}, and convergence may be intolerably
slow. The process may be accelerated by the occasional application of a “Schur-
Rayleigh-Ritz step” (from which SRRIT derives its name), which will now be
described. Start with @), just after an orthogonalization step, so that QEQM =1.
Form the matrix

BM = QEAQ%M
and reduce it to ordered quasi-triangular form 7}, by an orthogonal similarity
transformation Y),:

VIBY, =1, (4)
Finally overwrite (), with @Y.

The matrices (), formed in this way have the following property. If [A\;_1| >
|Ai] > |Aig1], then under mild restrictions on (¢ the ith column ql(“) of @, will
converge approximately linearly to the ¢th column ¢; of @ with ratio |A,11/\].
Thus not only is the convergence accelerated, but the first columns of (), tend to
converge faster than the later ones.

A number of practical questions remain to be answered.

1. How should one determine when a column of (), has converged?

2. Can one take advantage of the early convergence of some of the columns of
(), to save computations?

3. How often should one orthogonalize the columns of the ()7

4. How often should one perform the SRR step described above?

Here we shall merely outline the answers to these questions. The details will be
given in the next section.

1. Convergence. If |\;,_1| = |Ai| or |[A;| = |Aig1], the ith column of @ is not
uniquely determined; and when |);| is close to |A41] or |A;_1|, the ¢th column
cannot be computed accurately. Thus a convergence criterion based on the :th
column ql(“) of (), becoming stationary is likely to fail when A has equimodular
eigenvalues. Accordingly we have adopted a different criterion which amounts to
requiring that the relation (1) almost be satisfied. Specifically, let tg“) denote the
ith column of T}, in (4). Then the ¢th column of the @), produced by the SRR

step is said to have converged if the 2-norm of the residual vector

i = Ag? — Qi (5)

SRRIT: Simultaneous Iteration 9

is less than some prescribed tolerance.
If this criterion is satisfied for each column of (),, then the residual matrix

Ru = AQM - QMTM

will be small. This in turn implies that there is a small matrix £, = —RMQE such
that
(A + EM)QM = T,

so that), and T), solve the desired eigenproblem for the slightly perturbed matrix
A+ E,, provided only that some small eigenvalue of A 4+ E, has not by happen-
stance been included in 7),. To avoid this possibility we group nearly equimodular
eigenvalues together and require that the average of their absolute values settle
down before testing their residuals. In addition a group of columns is tested only
if the preceding columns have all converged.

2. Deflation. The theory of the iteration indicates that the initial columns
of the (), will converge before the later ones. When this happens considerable
computation can be saved by freezing these columns. This saves multiplying the
frozen columns by A, orthogonalizing them when R,;, # I, and work in the SRR
step.

3. Orthogonalization. The orthogonalization of the columns of AQ), is a mod-
erately expensive procedure, which is to be put off as long as possible. The danger
in postponing orthogonalization is that cancellation of significant figures can oc-
cur when A(Q), is finally orthogonalized, as it must be just before an SRR step.
In [12] it is shown that one can expect no more than

t = jlogyo k(1) (6)

decimal digits to cancel after j iterations without orthogonalization (here x(T') =
T\l || T~ is condition number of 7" with respect to inversion). The relation (6)
can be used to determine the number of iterations between orthogonalizations.

4. SRR Steps. The SRR step described above does not actually accelerate
the convergence of the (),; rather it unscramble approximations to the columns of
Q. that are already present in the column space of (), and orders them properly.
Therefore, the only time an SRR step needs to be performed is when it is expected
that a column has converged. Since it is known from the theory of the iteration
that the residual in (5) tends almost linearly to zero, the iteration at which they
will satisty the convergence criterion can be predicted from their values at two
iterations. As with convergence, this prediction is done in groups corresponding
to nearly equimodular eigenvalues.

10 SRRIT: Simultaneous Iteration

4. Details of SRRIT

In designing SRRIT, we have tried to make it easily modifiable. This has been
done in two ways. First, we have defined a number of important control parame-
ters and given them values at the beginning of the program. The knowledgeable
user may alter these values to improve the efficiency of the program in solving
particular problems. Second, a number of important tasks have been isolated in
independent subroutines. This should make it easy to modify the actual structure
of SRRIT, should the user decide that such radical measures are necessary. In this
section we shall describe SRRI'T in some detail, specifying the action of control
parameters. In the next section we shall describe the supporting subroutines.

Here follows a list of the control parameters with a brief description of their
functions and their default initial values.

INIT A number of initial iteration to be performed at the outset (5).

STPFAC A constant used to determine the maximum number of iterations

before the next SRR step (2).

ALPAH A parameter used in predicting when the next residual will converge

(1.0).

BETA Another parameter used in predicting when the next residual will
converge (1.1).

GRPTOL A tolerance for grouping equimodular eigenvalues (1072).

CNVTOL A convergence criterion for the average value of a cluster of equimod-
ular eigenvalues (107?).

ORTTOL The number of decimal digits whose loss can be tolerated in orthog-
onalization steps, (2).

We now give an informal description of SRRIT as it appears in the algorithm
section. The variable L points to the first column of) that has not converged.
The variable IT is the iteration counter. The variable NXTSRR is the iteration at
which the next SRR step is to take place, and the variable IDORT is the interval
between orthogonalization.

SRRIT: Simultaneous Iteration 11

SRRIT:
1. initialize control parameters
2. initialize
1. IT = 0;
2. L =0;
3. initialize Q as described by ISTART
3. SRR: loop
1. perform an SRR step

2. compute residuals RSD
3. check convergence, resetting L if necessary
4. if L > NV or IT > MAXIT then leave SRR
5. calculate NXTSRR
6. calculate IDORT and NXTORT
7.Q = AQ; IT = IT + 1
8. ORTH: loop until IT = NXTSRR
1. POWER: loop until IT = NXTORT
1. AQ = AQ
2. Q = AQ
3. IT = IT+1
end POWER

2. orthogonalize Q
3. NXTORT = min(NXTSRR, IT+IDORT)
end ORTH
end SRR
4. NV = L-1
end SRRIT

The details of this outline are as follows (the numbers correspond to the state-
ments in the algorithm).

2.3 If ISTART < 0, then Q is initialized using the random number generation
function SLARND, then orthonormalized by ORTH. If ISTART = 1, then Q is supplied
by user, and is orthogonalized by calling subroutine ORTH. If ISTART > 1, the
initial orthonomalized Q is supplied by user.

3. This is the main loop of the program. Each time an SRR step is performed
and convergence is tested.

3.1. The SRR step is performed by the subroutine SRRSTP, which returns the
new Q and AQ, as well as T and its eigenvalues.

3.2. The residuals RSD are computed by the subroutine RESID.

12 SRRIT: Simultaneous Iteration

3.3. The algorithm for determining convergence is the following, starting with
the L-th eigenvalue, the subroutine GROUP is called to determine a group of nearly
equimodular eigenvalues, as defined by the parameter GRPTOL. The same is done
for the old eigenvalues from the last SRR step. If the groups have the same
number of eigenvalues and the average value of the eigenvalues has settled down
(as specified by CNVTOL), then the residuals are averaged and tested against EPS.
If the test successtul. L is increased by the number in the group, and the tests are
repeated. Otherwise control is passed to statement 3.4.

3.4. Here two conditions for stopping SRRIT are tested.

3.5. The iteration at which the next SRR-step is to take place (NXTSRR) is
determined as follows. NXTSRR is tentatively set equal to STPFAC*IT. If the num-
ber of eigenvalues in the new and old groups corresponding to the next set of
unconverged eigenvalues is the same, the average of the norms of the residuals of
each group ARSD is calculated. If ARSD is greater or equal to old ARSD (denoted as
OARSD), then NXTSRR = STPFAC*IT. Otherwise

NXTSRR = min(IT + ALPHA + BETA * IDSRR, STPFAC * IT)

where
log(ARSD/EPS)

IDSRR = (ITORSD — ITRSD) log(ARSD,/OARSD)

where ITRSD and ITORSD are the iteration numbers where the new RSD and old RSD
are computed. Finally NXTSRR is constrained to be less than or equal to MAXIT.
3.6. The interval IDORT between orthogonalizations is computed from (6):

IDORT = max(1, ORTTOL/ log,, (7)),

where the condition number x(7T') is calculated by the external function COND. The
next orthogonalization occurs at

NXTORT = min(IT + IDORT, NXTSRR).

3.7. Since the SRR step computes a product AQ, the iteration count must be
increased and AQ placed back in Q.

3.8. Loop on orthogonalizations.

3.8.1. Loop overwriting Q with the product AQ.

4. Set NV to the number of vectors that have actually converged and return.

SRRIT: Simultaneous Iteration 13

5. Auxiliary Subroutines

In this section we shall describe some of the subroutines called by SRRIT. All the
required subroutines and their corresponding functionalities are listed in Appendix
A. These subroutines have been coded in greater generality than is strictly required
by SRRIT in order to make the program easily modifiable by the user.

SRRSTP(N, L, M, Q, LDQ, AQ, LDA, T, LDT, WR, WI, U, LDU, WORK,
LWORK, INFO)

This subroutine performs an SRR step on columns L through M of Q. After form-
ing AQ and T = QT(AQ), the routine calls BLAS 2 LAPACK routine SGEHD2
to reduce T' to upper Hessenberg form, then the subroutine SLAQR3 is called to
reduce T to ordered quasi-triangular form. The triangularizing transformation U
is postmultiplied into Q and AQ. The new computed eigenvalues are placed in the
arrays WR, WI.

RESID(N, L, M, Q, LDQ, AQ, LDA, T, LDT, RSD)

This subroutine computes the norm of the residuals (5) for columns L through
M of Q. For a complex pair of eigenvalues, the average of the norms of their two
residuals is returned.

GROUP(L, M, WR, WI, RSD, NGRP, CTR, AE, ARSD, GRPTOL)

This subroutine locates a group of approximately equimodular eigenvalues Ap, Apyq,
..., Anangrp—1. The eigenvalues so grouped satisfy

|| — CTR| < GRPTOL #CTR, ¢ =L,L-+1,...,L+NGRP — 1.
The mean of the group is returned in AE.
ORTH(N, L, M, Q, LDQ, INFO)

This subroutine orthonormalizes column L through M of the array Q with respect to
column 1 through M. Column 1 through L-1 are assumed to be orthonormalized.
The method used is the modified Gram-Schmidt method with reorthogonalization.
No more than MAXTRY reorthogonalizations are performed (currently, MAXTRY is set
to 5), after which the routine executes a stop. The routine will also stop if any
column becomes zero.

14 SRRIT: Simultaneous Iteration

SLAQR3(IJOB, ICOMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, LDZ, WORK,
INFO)

This subroutine computes the Schur factorization of a real upper Hessenberg ma-
trix. The blocks of quasi-triangular forms are ordered so that the eigenvalues
appear in descending order of absolute value along the diagonal. The decomposi-
tion produced by SLAQR3 differs from the one produced by EISPACK subroutine
HQR [9] or LAPACK subroutine SHSEQR in that the eigenvalues of the final quasi-
triangular matrix are ordered. It is essentially the same as the program HQR3
[13]. However, instead of using QR iteration to do the diagonal swapping in HQR3,
SLAQR3 uses a direct swapping method [2].

6. Numerical Experiments

The program described above has been tested on a number of problems. In this
section, we give three examples that illustrate the flexibility of the method and
its ability to deal with equimodular or clustered eigenvalues.

All the experiments have been run on a SUN Sparc 14+ workstation. We used
single precision (mantissa of 32 bits).

Example 1. The first example is a random walk on an (n + 1) x (n + 1)
triangular grid, which is illustrated below for n = 6.

jenliy BN 2NN NN BN N BN
— @& ®© & o o o
N e o o o e

W e e e o

~ ®© e e

Ccte e

.
6

¢

—~— O = N W Ot

S

The points of the grid are labelled (j,¢),(¢ = 0,...,n,5 = 0,...,n —). From
the point (7,7), a transition may take place to one of the four adjacent points
(J+1,0),0(,e4+1),(j —1,2),(y,¢ —1). The probability of jumping to either of the
nodes (j — 1,2) or (j,2 — 1) is

jti

n

pd(j,i) = (7)

SRRIT: Simultaneous Iteration 15

with the probability being split equally between the two nodes when both nodes
are on the grid. The probability of jumping to either of the nodes (j + 1,¢) or
(jye+1)is

pu(j,l) =1 —pd(j,l) (8)
with the probability again being split when both nodes are on the grid.

If the (n + 1)(n 4 2)/2 nodes (y,4) are numbered 1,2,..., (n + 1)(n +2)/2 in
some fashion, then the random walk can be expressed as a finite Markov chain
whose transition matrix A consisting of the probabilities az; of jumping from node
[to node k (A is actually the transpose of the usual transition matrix; see [6]). To
calculate the 2th element of the vector A¢g one need only regard the components
of ¢ as the average number of individuals at the nodes of the grid and use the
probabilities (7) and (8) to calculate how many individuals will be at node ¢ after
the next transition.

We are interested in the steady state probabilities of the chain, which is ordi-
narily the appropriately scaled eigenvector corresponding to the eigenvalue unity.
However, if we number the diagonals on the grid that are parallel to the hy-
potenuse by 0,1,2,....n, then an individual on an even diagonal can only jump
to an odd diagonal, and vice versa. This means that the chain is cyclic with period
two, and that A has an eigenvalue of —1 as well as 1.

To run the problem on SRRIT, the nodes of the grid were matched with the
components of the vector ¢ in the order (0,0),(1,0),...,(n,0),(0,1),(1,1),...,(n—
1,1),(0,2),..... Note that the matrix A is never explicitly used; all computations
are done in terms of the transition probabilities (7) and (8).

The problem was run for a 30 x 30 grid which means N = 496. We took M =
6, NV = 4, and EPS = 107° . The results for each iteration for each iteration in
which an SRR step was performed are summarized in the following. The variables
WR and WI are the real and imaginary parts of the eigenvalues. RSD is the norm of
the corresponding residual. CTR is the center of the current convergence cluster.
AE is the average value of the eigenvalues in the cluster. ARSD is the average of
the residuals ARSD. NXTSRR is the number of iterations to the next SRR step and
IDORT is the number to the next orthogonalization.

IT = 0
WR = 0.8225E-01 -0.5044E-01 -0.1708E-02 -0.1708E-02 0.2715E-01 -0.2220E-01
WI = 0.0000E+00 0.0000E+00 0.1173E-01 -0.1173E-01 0.0000E+00 0.0000E+00
RSD = 0.5798E+00 0.6257E+00 0.8696E+00 0.8696E+00 0.5774E+00 0.5797E+00
NGRP = 1
CTR = 0.8225E-01

16 SRRIT: Simultaneous Iteration

AE = 0.8225E-01
ARSD = 0.5798E+00
NXTSRR = 5 IDORT = 1

IT = 5
WR = —-0.4445E+00 -0.3217E+00 0.2972E+00 0.1818E+00 -0.1370E+00 -0.2263E-01
WI = 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
RSD = 0.7679E+00 0.8694E+00 0.8836E+00 0.8691E+00 0.9538E+00 0.8957E+00
NGRP = 1
CTR = 0.4445E+00
AE = —0.4445E+00
ARSD = 0.7679E+00
NXTSRR = 10 IDORT = 1

IT = 10
WR = —-0.7853E+00 -0.6389E+00 0.4249E+00 -0.3609E+00 0.1900E+00 -0.7887E-01
WI = 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
RSD = 0.6394E+00 0.7446E+00 0.7923E+00 0.9019E+00 0.9719E+00 0.9758E+00
NGRP = 1
CTR = 0.7853E+00
AE = -0.7853E+00
ARSD = 0.6394E+00
NXTSRR = 20 IDORT = 1

IT = 20
WR = -0.9179E+00 0.6101E+00 -0.5658E+00 0.3678E+00 -0.3665E+00 -0.1833E+00
WI = 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
RSD = 0.3907E+00 O0.7700E+00 0.7185E+00 0.9397E+00 0.8234E+00 0.9254E+00
NGRP = 1
CTR = 0.9179E+00
AE = -0.9179E+00
ARSD = 0.3907E+00
NXTSRR = 40 IDORT = 2

IT = 40
WR = -0.9891E+00 0.9585E+00 -0.8963E+00 0.8758E+00 -0.5805E+00 0.1108E+00
WI = 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
RSD = 0.2900E-01 0.2592E+00 0.4044E+00 0.4707E+00 0.7484E+00 0.9456E+00
NGRP = 1
CTR = 0.9891E+00
AE = -0.9891E+00
ARSD = 0.2900E-01
NXTSRR = 80 IDORT = 1

IT = 80
WR = —-0.9990E+00 0.9968E+00 0.9913E+00 -0.9907E+00 -0.9579E+00 0.8811E+00
WI = 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
RSD = 0.2347E-01 0.4834E-01 0.3555E-01 0.2970E-01 0.1595E+00 0.4273E+00
NGRP = 1

CTR = 0.9990E+00

SRRIT: Simultaneous Iteration 17

AE = -0.9990E+00
ARSD = 0.2347E-01
NXTSRR = 160 IDORT = 15

IT = 160
WR = -0.1000E+01 0.1000E+01 0.9934E+00 -0.9934E+00 -0.9754E+00 0.9746E+00
WI = 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
RSD = 0.5815E-03 0.3167E-02 0.2486E-02 0.6028E-03 0.1128E-01 0.4427E-01
NGRP = 2
CTR = 0.1000E+01
AE = -0.1884E-04
ARSD = 0.2277E-02
NXTSRR = 320 IDORT = 18

IT = 320
WR = -0.1000E+01 0.1000E+01 0.9935E+00 -0.9935E+00 -0.9755E+00 0.9755E+00
WI = 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
RSD = 0.3055E-06 0.1198E-05 0.2302E-05 0.5986E-06 0.1712E-03 0.6930E-03
NGRP = 2 2 2
CTR = 0.1000E+01 0.993BE+00 0.9755E+00
AE = -0.2980E-07 0.2980E-06 0.0000E+00
ARSD = 0.8745E-06 0.1682E-05 0.5047E-03

The course of the iteration is unexceptionable. The program doubles the in-
terval between SRR step until it can predict convergence of the first cluster cor-
responding to the eigenvalues +1. The first prediction falls slightly short, but the
second gets it. The program terminates on the convergence of the second group
of two eigenvalues.

To compare the actually costs, runs were made with m = 2,4.,6,8, which gave
the following table of iterations and timings (in second) for the convergence of the
first group of two eigenvalues.

ot m X ¢t | run time
1660 | 3320 49.84
600 2400 37.99
320 1920 32.82
183 1464 27.45

0w O = o3

As predicted by the convergence theory, the number of iterations decreases as m
increases. However, as m increases we must also multiply more columns of () by A,
and for this particular problem the number of matrix-vector multiplications m x it
is probably a better measure of the amount of work involved. From the table it
is seen that this measure is also decreasing, although less dramatically than the
number of iterations. This of course does not include the overhead generated by

18 SRRIT: Simultaneous Iteration

SRRIT itselt, which increases with m and may be considerable. We will see this
point in the following example 3.

Example 2. This example shows how SRRIT can be used in conjunction with
the inverse power method to find the smallest eigenvalues of a matrix. Consider
the boundary value problem

y" + ply =0,
y(0) =0, (9)
y'(0)+7y'(1) =0, 0<y<1

The eigenvalues of this problem are easily seen to be given by
b =i cosh™ (=),

which are complex. The following table lists the reciprocals of the first eight
eigenvalues for v = 0.01.

-2

It |2

0.012644 + 0.02313 0.02636
0.004446 + 0.00739 0.00854
0.002895 + 0.00220 0.00364
0.001274 + 0.00089; 0.00195

(10)

The solution of (9) can be approximated by finite difference techniques as follows.
Let y; denote the approximate solution at the point x; = ¢/(n+1) (: =0,1,...,n+
1). Replacing the derivatives in (9) with three point difference operators, we
obtain the following (n + 1) by (n + 1) generalized matrix eigenvalue problem for

y e (y17y27 . 7yn+1)T:
Ay + p*By =0,

where

1 -2 1
4 -1 v =4y 3y

SRRIT: Simultaneous Iteration 19

and B = h*diag(1,1,...,1,0). We may recast this problem in the form

1
Cy = 2y
where C' = A7!'B.
To apply SRRIT to this problem, we must be able to compute z = C'¢ for any
vector g. This can be done by solving the linear system

Az = By,
which is done by sparse Gaussian elimination.

The problem was run for n = 300 with M = 6, NV = 4, and EPS = 107° . The
results were the following:

IT = 0
WR = 0.5990E-02 -0.7362E-03 -0.4792E-03 -0.1994E-03 -0.1419E-03 -0.6238E-04
WI = 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
RSD = 0.2616E-01 0.6177E-02 0.4108E-02 0.1956E-01 0.6401E-02 0.9908E-02
NGRP = 1
CTR = 0.5990E-02
AE = 0.5990E-02
ARSD = 0.2616E-01
NXTSRR = 5 IDORT = 1

IT = 5
WR = 0.1264E-01 0.1264E-01 -0.4476E-02 -0.4476E-02 -0.2732E-02 -0.2732E-02
WI = 0.2313E-01 -0.2313E-01 0.7324E-02 -0.7324E-02 0.1156E-02 -0.1156E-02
RSD = 0.1804E-06 0.1804E-06 0.1965E-04 0.1965E-04 0.8603E-03 0.8603E-03
NGRP = 2
CTR = 0.2636E-01
AE = 0.1264E-01
ARSD = 0.1804E-06
NXTSRR = 10 IDORT = 1

IT = 10
WR = 0.1264E-01 0.1264E-01 -0.4447E-02 -0.4447E-02 -0.2838E-02 -0.2838E-02
WI = 0.2312E-01 -0.2312E-01 0.7308E-02 -0.7308E-02 0.2131E-02 -0.2131E-02
RSD = 0.2184E-07 0.2184E-07 0.7119E-07 0.7119E-07 0.1584E-03 0.1584E-03
NGRP = 2 2 2
CTR = 0.2636E-01 0.8555E-02 0.3549E-02
AE = 0.1264E-01 -0.4447E-02 -0.2838E-02
ARSD = 0.2184E-07 0.7119E-07 0.1584E-03

Given the extremely favorable ratios of the eigenvalues in table (10) - the
absolute value of the ratio of the seventh to the first is about 0.075, It is not

20 SRRIT: Simultaneous Iteration

surprising that the iteration converges quickly. Indeed the only thing preventing
convergence at the fifth iteration is that the first eigenvalue changed from real in
the first iteration to complex in the fifth. Thus the problem is hardly a fair test of
machinery of SRRIT. However, it is an excellent example how easy it is to apply
SRRIT to a problem with complex eigenvalues. It also disposes of the notion that
large eigenvalue problems must always require a large amount of work to solve;
the factor that limits the size if the storage available, not the time required to
compute Ax. The next example from partial differential equation demonstrates
this point again.

Example 3. Let us consider the following sample convection-diffusion prob-
lem:

—Au + 2pruy 4+ 2pouy —psu = 0 in Q
u = 0 on 0N

where) is the unit square {(z,y) € R*,0 < z,y < 1} and py, p2, p3 are positive
constants. After discretizing the equation by centered differences on a uniform
n x n grid, we get a nonsymmetric n? x n? block tridiagonal matrix

B (B+ 1)1
(-B+1)I B (B+ 1)1
(—g+1) B (B+ 1)1

B+ 1)1
(-B+1)I B

with

4—o0 ~v—1

——-1 4—-0 ~—-1
——-1 4—-—0c ~v—1

~v—1
—v—1 4—-0

where 3 = pih,y = pyh,o0 = psh? and h = 1/(n + 1). The eigenvalues of matrix
A are given by

7

n+1’

k
Apy=4—0+ 2(1 _ ﬂ2)1/2 cos % + 2(1 _ 72)1/2 cos 1<k l<n
n

SRRIT: Simultaneous Iteration 21

The following lists the first ten eigenvalues for p; = p, = p3 = 1:

0.7977818F + 01
0.7949033E + 01
0.7949033E + 01
0.7920248 F + 01
0.7901366 L + 01
0.7901366 L + 01
0.7872581F 4 01
0.7872581F 4 01
0.7835278L 4 01
0.7835278L 4 01

The algorithm was run on the 961 x 961 matrix A obtained by taking 31 x 31 mesh
grid. We are interested in the first dominant eigenvalues. The results obtained
are listed in the following table for different value of m (EPS = 107*):

Ama1/M it | m x it | run time
0.9964 | 1280 | 2560 18.13
0.9904 593 2372 17.55
0.9868 320 1920 15.36
0.9821 320 2560 21.21

w O = |3

This is a cluster eigenvalue problem, the ratios of the eigenvalues is very closed.
As the increase of m, the iteration steps was reduced. However, the total number
of matrix-vector multiplications are increased.

Appendix A. List of Subroutines Called by SRRIT

ATQ supplied by user, but the calling sequence has to be as described in
Section 2.

SRRSTP performs an Schur-Rayleigh-Ritz iteration step.
ORTH orthonormalizes columns of a matrix.
RESID computes the each column norm of residual vectors R = AQ) — QT

GROUP finds a cluster of complex numbers.

22

SRRIT: Simultaneous Iteration

SLAQR3

COND

SLARAN

SORGN2

SLAEQU

computes the Schur factorization of a real upper Hessenberg matrix,
the eigenvalues of Schur form appear in descending order of magni-
tude along its diagonal. This subroutine is a variant of LAPACK
subroutine SLAHQR for computing the Schur decomposition.

estimates the [.,-norm condition number with respect to inversion of
an upper Hessenberg matrix.

generates a random real number from a uniform (0,1) distribution.

forms all or part of a real orthogonal matrix Q, which is defined as a
product of & Householder transformations.

Standardization of a 2 by 2 block

Subroutins from BLAS

ISAMAX

SCOPY

sSDOT

SROT

SAXPY

SSCAL

SSWAP

SNRM2

SGEMV

SGER

SGEMM

finds the index of element having max. absolute value.
copy a vector x to vector y.

inner product of two vectors = y.

applies a plane rotation.

saxpy operation: ax +y — y.

scale a vector by a constant.

interchanges two vectors.

compute 2-norm of a vector.

matrix-vector multiplication.

performs thr rank 1 updating: az -y* + A — A.

matrix-matrix multiplication.

SRRIT: Simultaneous Iteration 23

Subroutines from LAPACK

SGEHD2 reduces a full matrix to upper Hessenberg matrix (BLAS 2 code).

STREXC moves a given 1 by 1 or 2 by 2 diagonal block of a real Schur matrix
to the specified position.

SLAEXC swaps adjacent diagonal blocks (1 by 1 or 2 by 2) of a Schur matrix.
SLARFG generates Householder transformation.

SLARF (X) applies Householder transformation.

SLASY2 solves up to 2 by 2 Sylvester equation AX — XB = C.

SLALN2 solves up to 2 by 2 linear system equation (A — ol)x = b.

SLANV2 computes the Schur decomposition of a 2 by 2 matrix.

SLADIV computes complex division in real arithmetic.

SLAPY2 computes \/m.

SLARTG generates a plane rotation.

SLANGE computes norm of a general matrix.

SLANHS computes norm of a Hessenberg matrix.

SLASSQ called by SLANGE and SLANHS.

SLAZRO initializes a matrix.

SLACPY copy from one array to another array.

SLAMCH determines machine parameters, such as machine precisioni SLABAD.
LSAME checks character parameter.

XERBLA An error handler routine (return error messages).

24 SRRIT: Simultaneous Iteration
References

[1] E. Anderson, 7. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A.
Greenbaum, S. Hammarling, A. Mckenney, S. Ostrouchov and D. Sorensen,
LAPACK Users” Guide, Release 1.0, STAM, Philadelphia, 1992.

[2] Z. Bai and J. Demmel, On swapping diagonal blocks in real Schur form,
submitted to Lin. Alg. Appl. 1992

[3] F. L. Bauer, Das Verfahren der Treppeniteration und verwandte Ver-
fahren zur Losung algebraischer Figenwertprobleme, 7. Angew, Math. Phys.
8(1957), pp.214-235.

[4] M. Clint and A. Jennings, The evaluation of eigenvalues and eigenvectors
of a real symmetric matrix by simultaneous iteration, Comput. J. 13(1970),
pp.68-80

[5] A. Jennings and W. J. Stewart, A simultaneous iteration method for the
unsymmetric eigenvalue problem, J. Inst. Math. Appl. 8(1971), pp.111-121.

[6] W. Feller, An introduction to probability theory and its applications, John
Wiley, New York, 1961

[7] H. Rutishauser, Computational aspects of F. L. Bauer’s simultaneous itera-
tion method, Numer. Math. 13(1969), pp.4-13.

[8] H. Rutishauser, Simultaneous iteration method for symmetric matrices, Nu-
mer. Math. 16(1970), pp.205-223.

[9] B. T. Smith, J. M. Boyle, B. S. Garbow, Y. Ikebe, V. C. Klema and C. B.
Moler, Matrix eigensystem routines — EISPACK guide, Lec. Notes in Comp.
Sci. 6, Springer, New York, 1974

[10] G. W. Stewart, Accelerating the orthogonal iteration for the eigenvalues of a
Hermitian matrix, Numer. Math. 13(1969), pp.362-376.

[11] G. W. Stewart, Introduction to Matrix Computations, Academic Press, New
York, 1973.

[12] G. W. Stewart, Simultaneous iteration for computing invariant subspaces of

non-Hermitian matrices, Numer. Math. 25(1976), pp.123-126.

SRRIT: Simultaneous Iteration 25

[13] G. W. Stewart, HQR3 and EXCHNG: FORTRAN subroutines for calculating
the eigenvalues of a real upper Hessenberg matrix in a prescribed order, ACM

Trans. Math. Software 2(1976), pp.275-280.

