
Abstract

Title of dissertation: SCALABLE LEARNING
FOR GEOSTATISTICS AND
SPEAKER RECOGNITION

Balaji Vasan Srinivasan
Doctor of Philosophy, 2011

Thesis directed by: Professor Ramani Duraiswami
Department of Computer Science

With improved data acquisition methods, the amount of data that is being

collected has increased several fold. One of the objectives in data collection is to

learn useful underlying patterns. In order to work with data at this scale, the

methods not only need to be effective with the underlying data, but also have to be

scalable to handle larger data collections. This thesis focuses on developing scalable

and effective methods targeted towards different domains, geostatistics and speaker

recognition in particular.

Initially we focus on kernel based learning methods and develop a GPU based

parallel framework for this class of problems. An improved numerical algorithm that

utilizes the GPU parallelization to further enhance the computational performance

of kernel regression is proposed. These methods are then demonstrated on problems

arising in geostatistics and speaker recognition.

In geostatistics, data is often collected at scattered locations and factors like

instrument malfunctioning lead to missing observations. Applications often require

the ability to interpolate this scattered spatiotemporal data on to a regular grid con-

tinuously over time. This problem can be formulated as a regression problem, and

one of the most popular geostatistical interpolation techniques, kriging is analogous

to a standard kernel method: Gaussian process regression. Kriging is computa-

tionally expensive and needs major modifications and accelerations in order to be

used practically. The GPU framework developed for kernel methods is extended

to kriging and further the GPU’s texture memory is better utilized for enhanced

computational performance.

Speaker recognition deals with the task of verifying a person’s identity based

on samples of his/her speech utterances. This thesis focuses on text-independent

framework and three new recognition frameworks were developed for this problem.

We proposed a kernelized Renyi distance based similarity scoring for speaker recog-

nition. While its performance is promising, it does not generalize well for limited

training data and therefore does not compare well to state-of-the-art recognition

systems. These systems compensate for the variability in the speech data due to

the message, channel variability, noise and reverberation. State-of-the-art systems

model each speaker as a mixture of Gaussians (GMM) and compensate for the

variability (termed nuisance). We propose a novel discriminative framework using a

latent variable technique, partial least squares (PLS), for improved recognition. The

kernelized version of this algorithm is used to achieve a state-of-the-art speaker ID

system, that shows results competitive with the best systems reported on in NISTs

2010 Speaker Recognition Evaluation.

SCALABLE LEARNING FOR GEOSTATISTICS
AND SPEAKER RECOGNITION

by

Balaji Vasan Srinivasan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor Ramani Duraiswami, Chair/Advisor
Professor Shihab Shamma, Dean’s Representative
Professor Larry Davis
Professor Rama Chellappa
Professor Howard Elman

c⃝ Copyright by
Balaji Vasan Srinivasan

2011

Dedication

I dedicate this thesis to my parents who have been supporting me in all my

endeavors and are instrumental in what I am in this life of mine. I also place all my

work as an offering to the Lotus feet of Bhagawan Sri Sathya Sai Baba.

ii

Acknowledgments

I am grateful to those people who have made this research and thesis possible

and those who have made my experience in graduate school one that I will always

remember fondly.

First and foremost I’d like to thank my advisor, Professor Ramani Duraiswami

for giving me an invaluable opportunity to work on challenging and extremely in-

teresting projects. I should say I have been amazingly fortunate to have had an

advisor who has always been a perfect friend, philosopher and guide in all walks

of my graduate life. His unparalleled enthusiasm and energy-level have inspired me

during tough times. He gave me the freedom to explore on my own, and at the same

time the guidance to recover when my steps faltered. I am always thankful to him

to have made my PhD such a beautiful learning experience!

I thank Professors Larry Davis, Rama Chellappa, Shihab Shamma and Howard

Elman for agreeing to serve on my dissertation committee. I have had the wonderful

opportunity to interact with each of them at varying degrees during different times

of my dissertation research. I have learned a lot through these interactions as

well as the courses I have taken with them. They have all been instrumental in

shaping up different parts of my research. I would also like to thank Professor

Raghu Murtugudde for his invaluable inputs in my work on kriging.

I thank Drs. Dmitry Zotkin and Nail Gumerov for all the discussions and

brainstorming sessions I have had with them during the course of my research. I

would also like to thank my colleagues Adam O’donovan, Qi Hu and Yuancheng

iii

(Mike) Luo for the constructive criticisms and discussions that have helped me

improve upon my work.

I would also like to gratefully acknowledge the National Ocean and Atmo-

spheric Administration (NOAA) [Award NA06NES4280016] and the Office of the

Director of National Intelligence (ODNI), Intelligence Advanced Research Projects

Activity (IARPA), through the Army Research Laboratory (ARL) for funding var-

ious parts of the research in this thesis.

A special thanks to Bargava, Raghu, Ashwin and Kiran for providing useful

guidance at crucial moments. I also thank my friends Ramanand, Ranjit, Sidharth,

Suhasini, Poornima, Karthik and Annamalai for all the bright moments that I have

shared with them during my PhD days.

I am forever indebted to my parents because I am what I am due to their

support, effort and sacrifices. They have been by my side at all situation giving me

the much needed emotional support always.

Finally, I thank Almighty for giving me the physical and mental strength to

work on this thesis.

iv

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Learning methods . 1
1.2 Large scale data . 2
1.3 Curse of dimensionality . 3
1.4 Choice of learning method . 4
1.5 Thesis focus . 4

1.5.1 Geostatistics . 5
1.5.2 Speaker recognition . 5

1.6 Organization . 6

2 Graphical Processors for Machine Learning 8
2.1 Computational bottlenecks in kernel machines 8
2.2 Graphical processors . 10

2.2.1 Addressing scalability with GPUs 14
2.3 Accelerating kernel methods on GPUs 14

2.3.1 Kernel summation: . 14
2.3.2 Accelerating iterative algorithms: 17
2.3.3 Accelerating kernel matrix decompositions: 17

2.4 Experiments . 19
2.4.1 Host and device: . 20
2.4.2 Experiment1 - Kernel summations: 20

2.4.2.1 Comparison with FIGTREE: 22
2.4.2.2 Kernel Density Estimation (KDE): 23

2.4.3 Experiment2 - Iterative approaches using kernel summations: . 25
2.4.3.1 Mean Shift Clustering: 25
2.4.3.2 Optimal Bandwidth Estimation: 26
2.4.3.3 Gaussian Process Regression: 26
2.4.3.4 Learning a Ranking function: 28

2.4.4 Experiment3: Matrix decompositions 30
2.4.4.1 Spectral Regression for Kernel Discriminant Analysis: 31

2.5 Conclusions . 32

3 Spatio-temporal kriging for geospatial data reconstruction 34
3.1 Geospatial data reconstruction . 34
3.2 Kriging . 36

3.2.1 Formulation . 37
3.2.2 Covariance functions . 38
3.2.3 Gaussian process regression & kriging 39
3.2.4 Evaluation of the variance of the estimate 40

v

3.3 Accelerated kriging . 40
3.3.1 GPU parallelization . 40
3.3.2 Performance comparison . 42

3.4 Parameter estimation . 45
3.4.1 Validation . 45

3.5 Experiments . 47
3.5.1 SeaWiFS Chlorophyll Data 48
3.5.2 DINEOF . 48
3.5.3 Reconstruction performance 50
3.5.4 DINEOF-initialized kriging 51

3.6 Conclusions . 53

4 Preconditioned Krylov solvers for kernel regression 57
4.1 Krylov methods . 59

4.1.1 Fast matrix-vector products: 61
4.1.2 Convergence of Krylov methods: 61
4.1.3 Need for preconditioning: . 62

4.2 Preconditioning techniques . 63
4.2.1 Conventional preconditioners 63
4.2.2 Flexible preconditioners . 64
4.2.3 Krylov method as a flexible preconditioner 65

4.3 Preconditioner for kernel matrices 66
4.3.1 Preconditioner acceleration . 68
4.3.2 Preconditioner parameters . 69
4.3.3 Effect of regularization parameter (σ): 69
4.3.4 Effect of CG tolerance (ϵ): . 71
4.3.5 Test of convergence . 72

4.4 Experiments . 74
4.4.1 Gaussian process regression (GPR) 74
4.4.2 Kriging . 76

4.5 Conclusions and discussions . 78

5 Kernelized Rényi distance for subset selection 80
5.1 Sample-based entropy estimation . 81
5.2 “Kernelization” of the Rényi Distance 82

5.2.1 Accelerating KRD evaluation via GPUs 84
5.2.2 Inconsistency of sample-based KL divergence 85
5.2.3 Applications of KRD . 87

5.3 KRD for subset selection . 88
5.3.1 Validation: Kernel density comparison 90

5.4 Applications of subset selection . 91
5.4.1 Gaussian Process Regression: 92

5.4.1.1 Pose Estimation: . 94
5.4.2 Visual words and object recognition 96

5.5 Conclusion . 99

vi

6 Kernelized Rényi distance for similarity scoring 100
6.1 Speaker recognition . 100
6.2 Dataset and features . 102
6.3 k-NN for Speaker Identification . 103
6.4 Likelihood Ratio for Speaker Verification 104
6.5 Conclusions . 105

7 A partial least squares framework for speaker recognition 107
7.1 Speaker adaptation and supervectors 107
7.2 Partial Least Squares . 110

7.2.1 PLS Regression . 112
7.3 Accelerating PLS . 115
7.4 Experiments . 118

7.4.1 Supervector dimensions . 118
7.4.2 Single training utterance . 119
7.4.3 Multiple training utterances 121
7.4.4 Effect of training sample size per speaker 122
7.4.5 Noise robustness of PLS . 123

7.5 Conclusion . 123

8 Kernel PLS framework for speaker recognition 125
8.1 Joint Factor Analysis and the i-vectors 127

8.1.1 Hyper-parameter training . 129
8.1.2 Intersession compensation in i-vector space 129

8.2 Kernel Partial least squares (KPLS) 130
8.2.1 KPLS speaker models . 133

8.3 One-shot similarity scoring . 134
8.3.1 Present approach: . 135

8.4 Experiments . 136
8.4.1 Parameters of KPLS/OSS . 136

8.4.1.1 Choice of kernel . 136
8.4.1.2 Set of negative examples A 137

8.4.2 Systems compared . 138
8.4.2.1 Joint Factor Analysis 138
8.4.2.2 Probabilistic Linear Discriminant Analysis 140
8.4.2.3 Cosine Distance Scoring: 141

8.4.3 Results . 141
8.4.4 Effect of Noise . 144

8.5 Conclusions . 145

9 PLS for loan defaults prediction 147
9.1 Loan monitoring and warning systems 147
9.2 Variable influence on projection . 150

9.2.1 PLS model for loan prediction 151
9.3 Experiments . 151

vii

9.3.1 Least Squares Regression vs PLS Regression 152
9.3.2 Subpopulation modeling . 153

9.3.2.1 Observation-based subpopulation 154
9.3.2.2 Indicators-based subpopulation 155

9.3.3 Indicator variables based boosting 156
9.3.3.1 Excursions . 158
9.3.3.2 Trend Ratio . 158

9.4 Conclusion . 160

10 Conclusions 161
10.1 Open problems . 162

10.1.1 Parallelizing linear summation algorithms: 162
10.1.2 Other parallel paradigms . 162
10.1.3 Co-kriging . 163
10.1.4 Quadratic Rényi entropy between GMM 164
10.1.5 Improved speaker recognition 165

A Random sampling for testing accelerated algorithms 166
A.1 Chernoff Bounds . 166
A.2 Sampling Problem . 167

A.2.1 Adaptation . 167

Bibliography 170

viii

List of Tables

2.1 Data-parallel kernel summation on the GPU 15
2.2 Data parallel kernel construction on the GPU 19
2.3 Performance of kernel density estimation on the 15 normal mixture

densities in [56] for a data size of 10000 24
2.4 Performance on the optimal bandwidth estimation problem on the 15

normal mixture densities in [56] for a data size of 10000 26
2.5 Performance on Gaussian process regression with standard datasets;

d denotes the input dimension and N the size of the input data. The
mean absolute error in each case was less than 10−5 for a the Gaussian
covariance (kernel) (Eq. 2.2) . 28

2.6 Performance of WMW-statistic based ranking, GPU based approach
vs the linear algorithm in [71] . 29

2.7 SRKDA [11] - Comparison between the GPU implementation and
a CPU implementation on Caltech-101 dataset [30]; mean absolute
error (measured on the projection of a test data of size 100) in each
case was ∼ 10−5 . 32

4.1 Performance of our FGMRES based Gaussian process regression against
the CG based approach by Gibbs and Mackay (GM) in [34]; d is the
dimension and N is the size of the dataset with the Gaussian ker-
nel. Total time taken for prediction is shown here, with the number
of iterations for convergence indicated within parenthesis. The mean
error in prediction between the two approaches was less than 10−6 in
all the cases. 76

4.2 Performance of our FGMRES based Gaussian process regression against
the CG based approach by Gibbs and Mackay (GM) in [34]; d is the
dimension and N is the size of the dataset with a non-Gaussian ker-
nel (Matern). Total time taken for prediction is shown here, with
the number of iterations for convergence indicated within parenthesis.
The mean error in prediction between the two approaches was less
than 10−6 in all the cases. 77

5.1 Comparison of performance of our method with SVM and RVM for
pose estimation. Each error entry gives the mean absolute error be-
tween the predicted face pose score and the actual score assigned to
the image. Note that the prediction using RVM and GPR involved
the evaluation of the variance (confidence) also, whereas the SVM
computed only the predictions . 96

5.2 Accuracy of classification when objects from different number of classes
were trained and predicted. The size of the dictionary was set to be
30 times the number of classes of object present. Each entry here
indicates the over-all percentage of correct prediction, and the time
taken for dictionary formation is given within braces 98

ix

6.1 Classification accuracy for various methods in speaker identification
experiment. 104

6.2 EER for various methods in speaker verification experiment. Time
reported is the average time of one score evaluation. Time to build
the imposter models for GMM and VQ is not included. 106

7.1 Equal-error-rates obtained with PLS (with/without data splitting),
SVM, and GMM across various condition for the NIST 2008 core
set. Note: there is no nuisance attribute compensation. 120

7.2 Equal-error-rates obtained with PLS, SVM and GMM across vari-
ous condition for the 8conv-short3 set. Note: there is no nuisance
attribute compensation. 122

8.1 Equal error rate (EER) and detection cost function (DCF) values
obtained using Joint Factor Analysis, Probabilistic Linear Discrimi-
nant Analysis, Cosine Discriminative Scoring, Kernel Partial Least
Squares and One-shot/KPLS classifiers for the NIST SRE 2010 ex-
tended core data set. 142

9.1 Confusion matrix for the PLS regression model, numbers shown in
percentages of the total records . 153

9.2 Confusion matrix for the subpopulation based multi-PLS regression
model - subpopulation selected based on aggregated observed risk, num-
bers shown in percentages of the total records 154

9.3 Confusion matrix for the subpopulation based multi-PLS regression
model - subpopulation selected based on the slope of delinquent days
(indicator variable), numbers shown in percentages of the total records 155

9.4 Confusion matrix for the subpopulation based multi-PLS regression
model based on the approach in Fig. 9.4, numbers shown in percent-
ages of the total records . 159

x

List of Figures

2.1 [color] Growth in the CPU and GPU speeds over the last 6 years on
benchmarks (Image from [63]) . 12

2.2 [color] Logical organization of the GPU memories as seen through
CUDA (Image from [63]) . 13

2.3 Speedup obtained on a GPU for various kernel summations for a data
size of 10, 000. The mean absolute error between the CPU and GPU
based summation in all the cases were less 10−5. 21

2.4 Performance of GPUML for Gaussian kernel summation compared
to FIGTREE[58], the linear algorithm for various data sizes at 3-
dimensions . 23

2.5 Performance of GPUML for Gaussian kernel summation compared to
FIGTREE[58], the linear algorithm for various data dimensions . . . 24

2.6 [color] An example of mean shift clustering on a color image; Left:
Original Image; Right: Segmented image 25

2.7 Speedup obtained for Cholesky and QR decomposition of a Gaussian
kernel matrix, based on [113] on a 10, 000-size data (size of the ker-
nel matrix) for various dimensions of the input data; the speedups
reported here are for the matrix construction on GPU using Table
2.2 and decomposition using [113] against the matrix construction on
CPU and GPU decomposition using [113]. The mean absolute error
in each case was less than 10−4. 31

3.1 [color] Speedup of our new implementation over the original GPUML
[101] . 42

3.2 [color] Synthetic surface generated and sampled to test the perfor-
mance of our kriging . 43

3.3 Performance comparison across different kriging approaches for the
synthetic data in Eq. (3.9). 43

3.4 [color] Variance estimates from kriging for reconstructing the gappy
data in Eq. (3.9) . 44

3.5 Statistical validation of the parameter estimation technique 46
3.6 [color] Kriging was used to reconstruct the data recorded over the

Chesapeake Bay region shown here 49
3.7 [color] Kriging was used to reconstruct the data recorded over the Pa-

cific ocean region shown here . 50
3.8 Reconstruction performances . 52
3.9 Correlation between the observed and reconstructed values 53
3.10 [color] Chesapeake Bay before and after the 2003 Isabel hurricane . . 55

4.1 [color] Effect of kernel hyper-parameters on the matrix conditioning
and CG iterations . 62

4.2 [color] Effect of regularizer σ on the convergence for FCG and FGM-
RES. 70

xi

4.3 [color] Effect of CG tolerance ϵ on the convergence for FCG and FGM-
RES. 71

4.4 [color] Performance of the proposed preconditioner with CG and GM-
RES against ILU-preconditioned and unpreconditioned versions 72

5.1 Validation of the Kernelized Renyi Distance; Entropic distances be-
tween Gaussian distribution for various dimensions, distances evalu-
ated analytically based on the underlying distribution and from sam-
ples (based on density estimates) . 86

5.2 Variance of the KL based on sample-based estimates 87
5.3 Density estimates of the normal density mixtures in [56] using the

entire samples and our low rank subset 91
5.4 Comparison of the performance of the training and prediction with

our approach, Informative vector machine and Sparse Pseudo-input
Gaussian Process with Abalone and PumaDyn8NH 94

5.5 This is a randomly chosen class of pose images from the PIE dataset.
The images were assigned scores of {-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1}
from left-to-right . 95

6.1 [color] A modular representation of a generic speaker recognition system100

7.1 [color]GMM Speaker Adaptation with Universal Background Model . . 108
7.2 GMM to supervectors . 109
7.3 [color] Partial Least Squares (PLS) latent spaces for speaker recognition.112
7.4 Schematic of the proposed Partial Least Squares (PLS) technique for

speaker recognition. 114
7.5 [color] Speedup obtained by the GPU-based NIPALS for various sam-

ple sizes of different feature dimensions 117
7.6 [color] Performance of PLS against SVM and GMM baseline systems

on the NIST 2008 core set. 121
7.7 [color] Performance of PLS against SVM and GMM baselines on

8conv-short3 set. 123
7.8 [color] EER for PLS, SVM, and GMM/UBM systems under various

scenarios. 124

8.1 [color] Non-linear mapping and the corresponding subspaces learnt via
Kernel Partial Least Squares (KPLS). 131

8.2 [color] One Shot Similarity scoring 135
8.3 One-shot schematic for speaker recognition. 135
8.4 [color] Performance of KPLS on the SRE 2010 extended core dataset

based on the Gaussian and Cosine kernels 137
8.5 [color] Effect of the size of the set of negative examples A in the per-

formance: EER for condition 2 in the SRE 2010 extended core task
with OSS-KPLS . 138

8.6 [color] Performance of JFA, PLDA, CDS, KPLS and OSS-KPLS clas-
sifiers on the NIST SRE 2010 extended core data set. 143

xii

8.7 [color] Performance of JFA, PLDA, CDS, KPLS and OSS-KPLS clas-
sifiers on the NIST SRE 2010 extended core data set: DET curves
for various test conditions . 144

8.8 [color] Sensitivity of JFA, PLDA, CDS, KPLS and OSS-KPLS to
additive babble noise on the Condition 2 of SRE 2010 extended core
dataset . 145

9.1 Possible mapping of risk severity . 148
9.2 Loan related observations are used to model the associated risk 149
9.3 [color] Error histogram: Least squares regression vs PLS 152
9.4 Subpopulation model to improve data imbalance 154
9.5 [color] Error histogram for PLS subpopulation models: aggregated ob-

servations vs derived indicators . 156
9.6 [color] Error histogram based on the subpopulation PLS models 157
9.7 [color] Error histogram on the PLS model: combination of subpopu-

lation based modeling with indicator based boosting 159

xiii

Chapter 1

Introduction

During the past decade, it has become relatively easy to collect huge amounts

of data. Examples include data in astronomy, internet traffic, meteorology and

surveillance. A goal of this collection is to mine the data for useful information and

thus learn meaningful statistical patterns that allow one to predict/recognize unseen

patterns.

1.1 Learning methods

Learning is a principled method for distilling predictive and scientific theo-

ries from raw data. There are different flavors to learning. In regression, a few

observations are used to model a continuous target variable, e.g. predicting the

temperature/rainfall at some point in the future based on current weather patterns.

Classification attempts to model the observations to predict a discrete target vari-

able, e.g. classifying a person based on his face image. In information retrieval,

the observations are used to rank the data in order of certain preferences. Certain

methods attempt to capture the general pattern underneath the data, e.g. Parzen

window estimate to learn the underlying data distribution. A common theme in all

these methods is to look for special structures in the unstructured raw data.

Learning methods can be broadly categorized as parametric and non-parametric

1

approaches. Parametric approaches assume a structure to the function to be esti-

mated and uses observations to estimate the parameters of the assumed structure

and thus the function. When there is prior information available about the model,

the parametric model is a favorable choice.

Non-parametric methods do not assume any such structure for the function

and generally “allow the data to speak for itself”. They are very robust in modeling

the non-linearities, and can be used when the parametric approaches fail (due to ab-

sence of prior knowledge of the model or due to improved robustness requirements).

Both these methods have their own advantages and disadvantages. The use of

either of these methods for a particular application is determined by its effectiveness

with the underlying data. Effectiveness of a learning method to a particular data

depends on the nature of the attributes recorded and the target application.

1.2 Large scale data

The ease of data collection has led to a surge of the number of observable

attributes and the low cost of data storage has resulted in a large number of samples

being stored. This results in the availability of tall fat data for learning. Internet

bigwigs like Google handle several petabytes of data daily and the data at this

scale offer sufficient information to aid in better learning models. However, with

the data at such scale, the scalability of any chosen learning approach becomes

as important as its effectiveness to the underlying data. Non-parametric methods

are computationally much more expensive than parametric methods and therefore

2

require special focus.

The scalability of an approach can be addressed either via algorithmic improve-

ments or via parallelization. Algorithmic improvements approximate the underly-

ing problem or cast them in a different framework, and thereby reduce the overall

asymptotic complexity. Parallelization techniques make use of modern multi-core

architecture (e.g. OpenMP, GPU/CUDA) or distributed systems (e.g. Hadoop,

MPI) to enable scalability to large datasets.

1.3 Curse of dimensionality

In large scale data, several noisy dimensions are also encountered in most

cases necessitating the need for denoising the data before applying any learning

method. Further, for most machine learning tasks even though the data is very

high dimensional, the true intrinsic dimensionality is typically very small. That

is, the number of actual dimensions required for the target modeling/prediction is

much lesser than those observed/recorded. All these have led to the study of several

dimensionality reduction techniques and subspace modeling.

Dimensionality reduction techniques can be supervised or unsupervised. The

popular principal component analysis (PCA) is an unsupervised technique that

learns projects where the data variability is maximum. PCA is very used to remove

noisy directions from the data. However, it leads to the same projections irrespec-

tive of the target application. Often, an application specific subspace is desirable

for better learning, Fisher discriminant analysis, canonical correlation analysis, par-

3

tial least squares are some techniques that aid in such supervised dimensionality

reduction.

1.4 Choice of learning method

The choice of a particular learning method is dictated by the characteristics

of the underlying data and the target application. If the data is well-correlated and

low-dimensional, any prior knowledge available on the data can be used to build

a parametric model. In the absence of prior knowledge, non-parametric methods

can be used. If the data is high-dimensional, PCA based dimensionality reduction

is often the first step used. Alternately, if the precise target to be modeled is

known, supervised dimensionality reduction can be used directly to achieve more

correlated projections. The choice of learning methods can be made as before after

the appropriate dimensionality reduction. Some dimensionality reduction techniques

such as Canonical Correlation Analysis (CCA), Partial Least Squares (PLS) can be

directly extended to a regression / classification technique, which is handy in some

applications as well.

1.5 Thesis focus

The primary focus of this thesis is to develop effective and scalable learning

methods for geostatistics and speaker recognition. The scalability of the methods

that we develop/explore is addressed via graphical processors (GPUs). We initially

focus on the computational bottlenecks in kernel based learning methods. We di-

4

vide the computational bottlenecks into three main categories and accelerate each

of them on a GPU [95, 101]. Given the GPU acceleration, we improve the com-

putational performance in a kernel regression via fast preconditioners in a flexible

Krylov solver [97]. The combined framework provides a scalable approach to solve

kernel regression.

1.5.1 Geostatistics

In geostatistics, data is often collected in scattered locations. However, for

practical analysis, the data is required in a regular grid. In some cases, the observa-

tions might be missing due to instrument malfunctions or other reasons. Kriging[42]

is a very popular geospatial interpolation technique for effective data reconstruction.

We draw connections between kriging and kernel regression and extend the GPU

accelerations previously developed with an optimized usage of GPU texture memory

to improve scalability for the data in kriging [98]. We also design a gradient descent

based parameter estimation technique for kriging. The combined framework is used

successfully to reconstruct ocean color satellite data over the Chesapeake bay and

Pacific ocean.

1.5.2 Speaker recognition

Speaker recognition is the task of verifying the identity of a speaker based

on his speech samples. We focus on a text-independent speaker recognition frame-

work. Features in speaker recognition are extracted from overlapping time frames.

5

Because of a text-independent framework, these features can be seen as samples

from a target distribution and the problem of recognition becomes evaluating the

probabilistic distance between distributions. We develop a Rényi entropy based

distance using Parzen window estimates [96] and utilize the GPU accelerations to

develop a fast probabilistic distance[94] and illustrate its application to speaker

recognition[99]. However, its performance is limited due to lack of generalizability

with limited training data. To address this, we explore a partial least square (PLS)

framework for speaker recognition for better generalization [104] and extend it to its

kernelized framework to improve recognition robustness using i-vectors [100]. The

PLS framework was accelerated on a GPU [102] and its kernelized version utilizes

GPUML for its acceleration.

1.6 Organization

This thesis is organized as follows. In Chapter 2, we introduce a generic GPU

framework to solve several computational issues in kernel methods. In Chapter 3, we

extend these ideas to a geostatistical interpolation technique, kriging. We also bring

out the connection between kriging and Gaussian process regression, and utilize the

connection to estimate prediction variance. In Chapter 4, we introduce a GPU-

based fast preconditioner to efficiently solve the kernel regression with a flexible

Krylov solver. In Chapter 5, we introduce the probabilistic distance based on the

quadratic Rényi entropy and its kernelization. We illustrate its performance with a

subset selection approach in a suite of learning and vision problems. We adapt the

6

kernelized Rényi distance (KRD) for speaker recognition in Chapter 6. While the

performance of KRD for speaker recognition is promising, it fails against a state-of-

the-art system. We therefore introduce a partial least squares (PLS) framework for

speaker recognition that compares well with the state-of the-art systems in Chapter

7 and kernelize the framework for a more robust performance in Chapter 8. While

the approaches developed in this thesis are targeted towards specific applications,

the frameworks can be extended to many other problems as well. This is illustrated

in Chapter 9 by extending the PLS framework to predict risk of loan defaults for

a loan monitoring agency. Chapter 10 concludes the thesis with pointers to a few

future directions.

7

Chapter 2

Graphical Processors for Machine Learning

During the past decades, several advances have been made in the field of ma-

chine learning and pattern recognition. Kernel machines are a particular class of

learning approaches, that are very popular for their robustness. Several variants of

kernel machines such as support vector machines, kernel density estimation, Gaus-

sian process regression have been proposed and used successfully in many practical

applications. However, the computational complexity of these are either quadratic

or cubic, thus hindering their application to very large datasets. This chapter fo-

cuses on addressing these computational issues via the use of graphical processors.

The core algorithms that will be discussed in this chapter are available as an open

source software, GPUML [95, 101].

2.1 Computational bottlenecks in kernel machines

A core computation in many kernel approaches is the weighted summation of

kernel functions

f(xj) =
N∑
i=1

qiK(xi, xj), f = Kq, (2.1)

which may also be treated as the product of a kernel matrix K with a vector q.

Here xi is the d-dimensional observation. Typically, f(x) needs to be evaluated

at M points, resulting in an overall complexity of O(MN). By evaluating the

8

kernel function on the fly, the space complexity can be kept to O(M + N). Other

computations with the matrix K, or its relatives, may also be sought, including

solution of linear systems, eigen decomposition and others, and usually the complete

matrix has to be stored in some of these cases, increasing the memory complexity

to O(MN).

Existing approaches to accelerate kernel methods, either approximate the ker-

nel summation/decomposition or parallelize them. Approaches like the Improved

Fast Gauss Transform [119, 72] and dual-trees [51] evaluate kernel sums in lin-

ear time using efficient approximations. Message Passing Interface (MPI) on dis-

tributed clusters [54] and thread-based parallel approaches on graphical processing

units (GPU)[105, 64] have been used to parallelize and speed up kernel machines.

Most of the GPU based parallelization have primarily cast the underlying problems

in terms of pixel and fragment shaders. With the emergence of CUDA (Compute

Unified Device Architecture), it is possible to remove this additional overhead to

better exploit the computational capabilities of the GPU. This has been used to

accelerate the popular kernel machine, SVM in [107, 17]. Although CUDA based

GPU algorithms have been used in some applications, a comprehensive work on the

use of GPU for kernel machines has never been done and in this chapter, we try

to address this by accelerating the following categories of kernel based algorithms

using CUDA on GPU,

1. simple matrix-vector product involving kernel matrices (eg. for kernel density

estimation)

9

2. solution of linear system of kernel matrices (eg. for kernel regression)

3. decomposition (like Cholesky, QR) of kernel matrices (eg. for spectral cluster-

ing)

We feel that the computational bottleneck in most of the kernel machines falls into

one of these three categories. We propose approaches to accelerate each of these

on a GPU and illustrate the speedup on applications like kernel density estimation,

mean shift clustering, Gaussian process regression, ranking and kernel discriminant

analysis.

This chapter is organized as follows. In section 2.2, we introduce the graphical

processors and discuss their capabilities. In section 2.3, we discuss the mapping of

various kernel problems on to the GPU and introduce the GPU-accelerated kernel

matrix-vector product and matrix decomposition. In section 2.4, we present the

various experiments performed to illustrate the speedups obtained in each case.

Finally we provide our conclusions in section 2.5.

2.2 Graphical processors

Computer chip-makers are no longer able to easily improve the speed of proces-

sors, with the result that computer architectures of the future will have more cores,

rather than more capable faster cores. This era of multicore computing requires

that algorithms be adapted to the data parallel architecture. A particularly capable

set of data parallel processors are the graphical processors, which have evolved into

highly capable compute coprocessors. A graphical processing unit (GPU) is a highly

10

parallel, multi-threaded, multi-core processor with tremendous computational horse-

power. In 2008, while the fastest Intel CPU could achieve only ∼ 50Gflops speed

theoretically, GPUs could achieve ∼ 950Gflops on actual benchmarks [63]. Fig. 2.1

shows the relative growth in the speeds of NVIDIA GPUs and Intel CPUs (similar

numbers are reported for AMD/ATI CPUs and GPUs); the FERMI architecture

significantly improves these benchmarks further. Moreover, GPUs power utilization

per flop is an order of magnitude better. GPUs are particularly well-suited for data

parallel computation and are designed as a single-program-multiple-data (SPMD)

architecture with very high arithmetic intensity (ratio of arithmetic operation to

memory operations). However, the GPU does not have the functionalities of a CPU

like task-scheduling. Therefore, it can efficiently be used to assist the CPU in its

operation rather than replace it.

In November 2006, NVIDIA introduced Compute Unified Device Architecture

(CUDA)[63], a parallel programming model that leverages the parallel compute

engine in NVIDIA GPUs to solve general purpose computational problems. With

CUDA, GPUs can be seen as a collection of parallel co-processors that can assist

the main processor in its computations. The OpenCL initiative seeks to provide a

similar non-proprietary API for general purpose GPU computing.

Fig. 2.2 shows how current GPU coprocessors appear to a user through CUDA.

Each GPU has a set of multiprocessors, each with 8 processors. All multiprocessors

communicate with a global memory, which can be as large as 4GB, and a con-

stant/texture memory. More capable GPUs share more multiprocessors and more

global memory. The 8 processors in each multiprocessor share a local shared mem-

11

Figure 2.1: [color] Growth in the CPU and GPU speeds over the last 6 years on

benchmarks (Image from [63])

ory and a local set of registers. The instructions in the GPU are designed to be

executed as parallel threads on multiple data. Therefore, the computations are or-

ganized into grids, which are groups of thread blocks. A thread block is defined

as a patch of threads that are executed on a single multiprocessor. A maximum of

512 threads can be housed in a single thread block. Each thread performs its op-

erations independently and halts when a synchronization barrier is reached. While

GPUs can do double precision, most advantage is gained on single precision com-

putations, and double precision is advised only when it is absolutely essential for

algorithmic correctness. Newer GPUs that are to be released in coming years relax

this restriction.

The main processor (the host) controls the computations and provides the

12

Figure 2.2: [color] Logical organization of the GPU memories as seen through CUDA

(Image from [63])

data on which the GPU (the device) can work on. This data is generally transferred

from the host memory to the device’s global memory. The global memory is large

enough to hold many of the large datasets usually encountered (∼ 4GB on current

GPUs). It is important to note that access times to different memories in the device

are significantly different. Accesses to global memory are the most expensive and

it takes approximately 400 clock cycles for one access. However, if each thread in a

block accesses consecutive global memory locations, it takes less time than a random

13

access. This is referred to as memory coalescing. Accesses from the cached constant

and texture memory, which can be written to from the host, are cheaper. Read

and write local memory is provided by shared memory (which is shared between all

processors in a multiprocessor), and per-processor register memory, and takes only

as long as one instruction.

2.2.1 Addressing scalability with GPUs

The key difference between an efficient algorithm on a sequential processor

and a graphics processor is that the former requires to have as little computation as

possible while the latter needs to minimize memory access to and from the global

memory. In other words, an efficient GPU algorithm should ensure a coalesced

transfer of data from the global memory to the local shared memory, a parallelization

strategy that results in most of the work being done on data that is in local registers

or shared memory, and a well defined patterns of access to global memory.

2.3 Accelerating kernel methods on GPUs

2.3.1 Kernel summation:

We will refer to the data points xi in Eq. (2.1) as source points, and the points

at which the kernel sums are evaluated as evaluation points (in line with N -body

algorithms, which have a similar computational structure). There are several ways

each thread can be designed. One obvious parallelization approach is to assign each

thread to process the effect of each source point; another one is to assign each thread

14

GPU based acceleration for kernel summation

Data: Source points xi, i = 1, . . . , N , evaluation points yj, j = 1, . . . ,M

Each thread evaluates the sum corresponding to one evaluation point:

Step 1: Load evaluation point corresponding to the current thread in

to a local register.

Step 2: Load the first chunk of source data to the shared memory.

Step 3: Evaluate part of kernel sum corresponding to source data

in the shared memory.

Step 4: Store the result in a local register.

Step 5: If all the source points have not been processed yet,

load the next chunk, go to Step 3.

Step 6: Write the sum in the local register to the global memory.

Table 2.1: Data-parallel kernel summation on the GPU

to process individual evaluation points independently.

If each thread is assigned to evaluate the effects of a particular source on all

evaluation points, it would have to update the value at each evaluation point in

the global memory, thus requiring a number of global memory writes, resulting in

a memory inefficient algorithm. However, if each thread is assigned to evaluate

a particular evaluation point, it would require only one global memory write per

thread. This would however result in several global reads per thread. In this case

the use of shared memory and registers can reduce the number of global accesses.

We assign each thread to evaluate the kernel sum on an evaluation point. If

15

there are N source points, then each thread would be required to read N source

points from global memory. We reduce the total accesses to global memory by

transferring source points to the shared memory. The shared memory is not large

enough to house the entire set of data. So it is required to divide the data into

chunks and load them according to the capacity of the shared memory (the number

of source points that can be loaded to the shared memory is limited by its size

and data dimension). The size of each chunk is set to be equal to the number of

threads in the block, and each thread transfers one source element from the global

memory to the shared memory, thus ensuring coalesced memory reads. The weights

corresponding to each source is loaded to the shared memory in the same way. Once

the source data is available in the shared memory, all threads update the kernel sums

involving the source points in the shared memory.

In order to further reduce the global memory accesses, we use local registers

for each evaluation point and the evaluation sum. Once all the source data are

evaluated, the sum in the register is written back to global memory. The algorithm

is summarized in Table 2.1. If d is the dimension of the data points, then we use

d+1 shared memory location per thread (one source point and its kernel weight) and

d+1 registers per thread (one evaluation point and the corresponding kernel sum).

The proposed approach is generic and can be extended to any kernel, an important

distinction from the CPU based approximation algorithms [51, 119, 72, 58].

16

2.3.2 Accelerating iterative algorithms:

Several kernel machines involve solution of linear or least square systems with

kernel matrices, or computation of a few eigenvalues and eigenvectors of a kernel

matrix. Iterative approaches are used for problems of this type. These include

conjugate gradients [34] for Gaussian process regression, power iterations for eigen-

value computations, more sophisticated Krylov and Arnoldi methods, and others.

In each case, the core computation per iteration is the matrix vector product, with

the computation of a residual or error term. We discuss individual cases in the

experimental section. As far as GPU implementations are concerned, accelerations

are achieved by having the above sum evaluated in the iterative procedure. Better

speedups can be obtained if the data between iterations are allowed to stay on the

GPU, thus avoiding data transfers between host and device. The other way to ac-

celerate these algorithms is to reduce the number of iterations via techniques such

as preconditioning. This discussion is deferred till Chapter 4.

2.3.3 Accelerating kernel matrix decompositions:

Several matrix decompositions are already available on the GPU [113] and

here, the strategy is to use CPU algorithms, with part of the computation per-

formed on the GPU. To accelerate kernel methods, these libraries can be used as is,

similar to the way Lapack and other libraries are used to accelerate CPU versions

of kernel methods. Given the training and test data, the kernel matrix needs to

be constructed before decomposition. Constructing the matrix has a computational

17

complexity of O(dN2) in most kernels, d being the dimension of the input data. For

higher dimension (d > 50) the matrix construction cost can become as significant as

the decomposition itself, because of the availability of optimized implementations

of the decomposition algorithms. However, if the structure of the kernel matrices is

utilized, the matrix construction can also be parallelized on the GPU. The matrix

decomposition algorithms return a matrix which requires O(N2) memory, and mem-

ory requirements in these approaches cannot be reduced by generating the kernel

matrices on-the-fly as in the kernel summation.

We construct the matrix on the GPU and utilize this matrix for decomposition

using approaches in [113]. The proposed approach is summarized in Table 2.2. We

load a chunk of the training and test points to the shared memory and generate the

block of the kernel matrix that involving these training/test points in the current

thread block. This is repeated across all the thread blocks to construct the entire

kernel matrix, which can be used for matrix decomposition.

Testing these accelerated frameworks for very large datasets is close to impos-

sible. We shall address this issue in Appendix A via use of random sampling with

Chernoff bounds for small-scale testing of large-scale problems. In our subsequent

experiments, we shall use moderately sized datasets for evaluating our accelerated

frameworks.

18

Accelerated kernel matrix construction for matrix decomposition

Data: Source points xi, i = 1, . . . , N , evaluation points yj, j = 1, . . . ,M

Each thread evaluates one element of the kernel matrix

Step 1: Load the source points from global memory into the shared memory.

Step 2: For large data dimension which can not fit into shared memory,

divide the each source vector into several chunks of constant size and

load them consecutively.

Step 3: Compute the distance contribution of the current chunk in a local

register, and load the next chunk. Repeat this until the complete dimension

is spanned.

Step 4: Use the computed distance for evaluating the matrix entry.

Step 5: Write the final computed kernel matrix entries into global memory.

Table 2.2: Data parallel kernel construction on the GPU

2.4 Experiments

We tested the GPU accelerated kernel methods with three classes of problems.

The first problem class used the accelerated summation on different kernels and

tested the speedup on a synthetic data. Further we extended our approach to

speed-up kernel density estimation. We also compare GPU based Gaussian kernel

summation with a linear algorithm, FIGTREE [58]. In the second problem class,

we looked at different iterative approaches which employ the kernel summation over

each iteration. Finally we look at algorithms that use kernel matrix decompositions

19

and accelerate them using our acceleration (Table 2.2).

2.4.1 Host and device:

In all experiments the host processor is an Intel Xeon Quad-Core 2.4GHz with

4GB RAM. The GPU is a Tesla C1060 which has 240 cores arranged as 30 multi-

processors. It has 4GB of global memory, 16384 registers per thread block and 16kB

shared memory per multiprocessor.

For all experiments, GPU codes were written in CUDA and compiled with

Matlab linkages. Similarly, the CPU codes were written in C++ with Matlab link-

ages. This allowed for convenient execution of machine learning algorithms.

2.4.2 Experiment1 - Kernel summations:

We accelerated widely-used kernels namely the Gaussian (Eq. 2.2), Matern

(Eq. 2.3), periodic (Eq. 2.4) and Epanechnikov (Eq. 2.5) kernels given by,

K(xi, x) = s× exp

(
−(d(xi, x))

2

2

)
, (2.2)

K(xi, x) = s× (1 +
√
3d(xi, x))× exp(−

√
3d(xi, x)), (2.3)

K(xi, x) = s× exp (−2 sin2(π ∗ d(xi, x))), (2.4)

K(xi, x) = s× (1− d(xi, x)
2)× 1(d(xi, x) < 1), (2.5)

where d(xi, x) is the Euclidean distance between the points xi and x, s is a scaling

parameter and 1(d(xi, x) < 1) is an indicator function. Also there is a bandwidth h

20

0 10 20 30 40 50
10

1

10
2

10
3

Dimension

S
pe

ed
up

Kernel summation on GPU

Gaussian
Epanechnikov
Matern
Periodic

Figure 2.3: Speedup obtained on a GPU for various kernel summations for a data size

of 10, 000. The mean absolute error between the CPU and GPU based summation

in all the cases were less 10−5.

associated with distance d(., .) such that,

d(x1, x2) =
d∑

k=1

∥x1,k − x2,k∥2

h2
. (2.6)

The synthetic data for this experiment were generated by choosing a random

number between 0 and 1 uniformly for each dimension of the source and evaluation

points. Datasets of varying dimensions are generated in this fashion. The resulting

speedup for each kernel for a 10, 000-size data is shown in Fig. 2.3. The speedup

obtained is lower for a simple kernel like Epanechnikov, but as the complexity of

the kernel increases, the speedup obtained is significant, like for periodic/Gaussian.

This can be attributed to the fact that for simpler kernels, the data transfer time is

more dominant than for a complex kernel. As the dimension increases, the number

21

of threads that can be accommodated on each processor is reduced to fit the data

in the shared memory, and hence there is a reduction in the speedup.

2.4.2.1 Comparison with FIGTREE:

There are several approximation algorithms that evaluate the kernel summa-

tions in linear time, for example, FIGTREE [58] for the Gaussian kernel. In spite

of the speedups obtained by the GPU-based approach, the asymptotic dependence

on data size is still O(N2). Therefore, a linear approach like FIGTREE [58] will

outperform it at some point. In order to explore this, we compared the perfor-

mance of our GPU algorithm with FIGTREE which combines two popular linear

approximation algorithms, Improved Fast Gauss Transform (IFGT) [119, 72] and

tree based approaches, and automatically chooses the fastest method for a given

data. We expected FIGTREE to beat our implementation at some point, but this

was observed only for a data size greater than 128, 000 as seen in Fig. 2.4.

Although the linear approach eventually outperforms the GPU version, the

performance of these approaches are found to have great dependence on data dimen-

sions and kernel bandwidth. Also, these approaches are restricted to the Gaussian

kernel and require a fixed bandwidth over the data. In contrast, our GPU based

approach can be used with any kernel for varying bandwidths. We compared the

performance of our algorithm with FIGTREE for various dimensions at a differ-

ent kernel bandwidth and the results are shown in Fig. 2.5. It can be seen that

the speedup obtained by the GPU approach over FIGTREE increases with data

22

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

Data Size (3−D data)

T
im

e
ta

ke
n

GPUML
FIGTREE

Figure 2.4: Performance of GPUML for Gaussian kernel summation compared to

FIGTREE[58], the linear algorithm for various data sizes at 3-dimensions

dimensions.

2.4.2.2 Kernel Density Estimation (KDE):

KDE (or Parzen window based density estimation) is a non-parametric way

of estimating the probability density function of a random variable. Given a set of

observations D = {x1, x2, · · · , xN}, the density estimate at a new point x is given

by

f(x) =
1

Nh

N∑
i=1

K

(
x− xi

h

)
. (2.7)

Two kernels widely used for density estimation are the Gaussian kernel (Eq.

2.2) and the Epanechnikov kernel (Eq. 2.5). We performed KDE based on GPU

acceleration on the 15 normal mixture densities in [56] and compared performance

with a direct approach. The error between the two approaches was less than 10−6

for each distribution. The results are tabulated in Table 2.3.

23

10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

Dimensions (10,000−sized data)

T
im

e
ta

ke
n

GPUML
FIGTREE

Figure 2.5: Performance of GPUML for Gaussian kernel summation compared to

FIGTREE[58], the linear algorithm for various data dimensions

Mean CPU time for Gaussian kernel 25.144s

Mean GPU time for Gaussian kernel 0.022s

Mean absolute error between estimates ∼ 10−7

Mean CPU time for Epanechnikov kernel 25.117s

Mean GPU time for Epanechnikov kernel 0.011s

Mean absolute error between estimates ∼ 10−7

Table 2.3: Performance of kernel density estimation on the 15 normal mixture den-

sities in [56] for a data size of 10000

24

Figure 2.6: [color] An example of mean shift clustering on a color image; Left:

Original Image; Right: Segmented image

2.4.3 Experiment2 - Iterative approaches using kernel summations:

In this experiment, we explored different algorithms, that uses the kernel sum-

mation (Eq. 2.1) within an iterative algorithm like conjugate gradient.

2.4.3.1 Mean Shift Clustering:

Mean shift clustering [19] is a non-parametric clustering approach based on

kernel density estimation. It involves running a gradient ascent over the kernel

density estimate in order to move each data point towards the local mode. Finally,

it returns the set of modes (centers) to which each data point converges. A typical

result of mean-shift based clustering on an image is shown in Fig. 2.6.

In this experiment, we apply the GPU-based density estimates over each iter-

ation of the gradient ascent to speed up the mean shift clustering approach in [19].

For the image in Fig. 2.6, it was observed that the naive direct implementation

took almost 13.5 hours, whereas the corresponding GPU implementation took only

35 seconds for clustering.

25

2.4.3.2 Optimal Bandwidth Estimation:

Determining the bandwidth h of the kernel in density estimation is of paramount

importance for the performance of the estimator [87]. For a Gaussian kernel, there

have been several approaches to evaluate the optimal bandwidth for given data

points. We looked at the plug-in approach in [85] and accelerated it using the GPU.

The key computation in the bandwidth selection approach in [85] is the evaluation

of a weighted sum of the GaussianDerivative kernel,

K(xi, x) = s×Hr(d(xi, x))× exp

(
−(d(xi, x))

2

2

)
, (2.8)

where Hr is the rth Hermite polynomial. We used a GPU based GaussianDeriva-

tive kernel summation with a Levenberg-Marquardt based non-linear least

squares to solve for the bandwidth of the Gaussian kernel as in [85] and the results

are shown in Table 2.4.

Mean CPU time 390.847s

Mean GPU time 0.369s

Mean abs error < 10−5

Table 2.4: Performance on the optimal bandwidth estimation problem on the 15

normal mixture densities in [56] for a data size of 10000

2.4.3.3 Gaussian Process Regression:

Gaussian process regression is a probabilistic kernel regression approach which

uses the prior that the regression function (f(X)) is sampled from a Gaussian pro-

26

cess. For regression, it is assumed that a set of datapoints D = {X, y}Ni=1, where

X is the input and y is the corresponding output. The function model is assumed

to be y = f(x) + ϵ where ϵ is a Gaussian noise with variance σ2. Rasmussen et al.

[69] use the Gaussian process prior with a zero mean function and has a covariance

function defined by a kernel K(x, x′) which is the covariance between x and x′,

i.e. f(x) ∼ GP (0, K(x, x′)). They show that with this Gaussian process prior, the

posterior of the output y is also Gaussian with mean m and covariance V given by,

m = k(x∗)T (K + σ2I)−1y

V = K(x∗, x∗)− k(x∗)
T (K + σ2I)−1k(x∗)

k(x∗) = [K(x1, x∗), K(x2, x∗) . . . , K(xN , x∗)]

where x∗ is the input at which prediction is required and . Here m is the prediction

at x∗ and V the variance estimate of prediction. Some popular kernels used with

Gaussian process regression are Gaussian (Eq. 2.2), Matern (Eq. 2.3)and periodic

kernels (Eq. 2.4).

The parameters of the kernels s and h are called the hyperparameters of the

Gaussian process and there are different approaches to estimate these [69]. Given the

hyperparameters, the core complexity in Gaussian processes involves solving a linear

system involving the kernel covariance matrix and hence is O(N3). Gibbs et al. [34]

suggest a conjugate gradient based approach to solve the Gaussian process problem

in O(kN2), k being the number of conjugate gradient iterations. In each iteration

of the conjugate gradient solver, the key computation is a weighted summation of

the covariance kernel functions. In this experiment, we used our GPU based kernel

27

CPU GPU

Dataset dxN Time Time

(s) (s)

Diabetes 2x43 0.0473 0.1639

Abalone 7x4177 235.8 0.79

Bank7FM 8x4499 631.2 2.19

CompAct 22x8192 1884.2 9.3

PumaDyn8NH 8x4499 467.69 1.72

Stock 9x950 13.34 0.27

Table 2.5: Performance on Gaussian process regression with standard datasets; d

denotes the input dimension and N the size of the input data. The mean absolute

error in each case was less than 10−5 for a the Gaussian covariance (kernel) (Eq.

2.2)

summation to speed up each iteration of the conjugate gradient. Table 2.5 shows

the performance of Gaussian process regression on various standard datasets [110]

for a Gaussian kernel.

2.4.3.4 Learning a Ranking function:

In information retrieval, a ranking function is a function that ranks data

matching a given search query point according to their relevance. In order to rank

the data, a preference relation needs to be learned, which is given by the ranking

function. A ranking function f maps a pair of data-points to a score value, which

28

Dataset dxN Raykar et al.[71] GPU

Auto 8x392 0.7499s 0.5280s

CA Housing 9x20640 105.2s 27.82s

CompAct 22x8192 5.67 5.56s

Abalone 8x4177 9.838s 5.003s

Table 2.6: Performance of WMW-statistic based ranking, GPU based approach vs

the linear algorithm in [71]

can be sorted for ranking. There are several approaches to learn the ranking function

for a given dataset. We particularly looked at the preference graphs based approach

in [71].

Raykar et al. [71] maximize the generalized Wilcoxon-Mann-Whitney (WMW)

statistic [66] using a non-linear conjugate gradient approach to learn the ranking

function. Instead of maximizing the WMW statistic, they use a continuous surro-

gate based on the log-likelihood, thus maximizing a relaxed statistic. They use a

sigmoid function to model the pair-wise probability, and approximate it using an

erfc function. They thus reduce the core computation of the ranking problem to

the evaluation of a weighted sum of erfc functions. A linear algorithm for the sum-

mation of the erfc functions is proposed in [71], which is then used for the efficient

learning of the ranking function.

We use GPU based summation of erfc functions for learning the ranking func-

tion and compare it with the linear approach in [71] on the datasets used in [71] and

the results are shown in Table 2.6. It can be seen that our approach consistently

29

outperforms the approach in [71]. Note that the approach in [71] is linear in com-

putational complexity, whereas our approach is quadratic and still outperforms the

linear approach for large datasets.

2.4.4 Experiment3: Matrix decompositions

Often, in many algorithms, it is required to perform LU, QR or Cholesky

decomposition of the kernel matrices, for example [11] and a direct decomposition

will have a cubic complexity. The GPU-based summation cannot be used in these

scenarios, but there are many algorithms for performing efficient matrix decompo-

sitions accelerated on GPUs. In this experiment, we discuss these approaches for

kernel matrices.

Volkov et al. [113] claim that their implementation is the fastest LU, QR and

Cholesky decomposition as of 2008. We adapted their approach for kernel matrices

in this experiment. As the dimension of the input data increases, the construction

of the kernel matrices becomes the dominant part of the decomposition, due to

the high efficiency of these algorithms. In order to illustrate this, we performed

Cholesky and QR decompositions of kernel matrices for data of various dimensions

for a 10, 000-size synthetic data (generated as before). We decomposed a Gaussian

kernel matrix on the GPU using [113], compared the performance for the matrix

constructed on the CPU with the GPU counterpart, and the results are shown in

Fig. 2.7. As the data dimension increases, the speedup obtained also increases.

This suggests that for large dimensions, matrix construction takes significant time

30

and hence the proposed approach would increase speedup.

10
1

10
2

10
3

10
4

2

4

6

8

10

Data dimension

S
pe

ed
up

QR
Cholesky

Figure 2.7: Speedup obtained for Cholesky and QR decomposition of a Gaussian

kernel matrix, based on [113] on a 10, 000-size data (size of the kernel matrix) for

various dimensions of the input data; the speedups reported here are for the matrix

construction on GPU using Table 2.2 and decomposition using [113] against the ma-

trix construction on CPU and GPU decomposition using [113]. The mean absolute

error in each case was less than 10−4.

2.4.4.1 Spectral Regression for Kernel Discriminant Analysis:

Linear discriminant analysis (LDA) is a statistical projection approach, where

the projections are obtained by maximizing the inter-class covariance, while simul-

taneously minimizing the intra-class covariance. For non-linear problems, the LDA

is performed on the kernel space and is termed as Kernel discriminant analysis

(KDA). KDA requires the eigen decomposition of the kernel matrix and hence is

computationally expensive for large datasizes. Cai et. al [11] address this prob-

lem by casting the eigen decomposition problem as a spectral regression and have

proposed a spectral-regression based KDA (SRKDA). At the core of SRKDA is

31

a Cholesky decomposition of the kernel matrices, this has resulted in a 27 times

theoretical speedup of SRKDA over KDA.

However, the Cholesky decomposition remains the core computational task

of SRKDA, and its cubic complexity is still computationally expensive for large

datasizes. We address this problem using the proposed kernel matrix decomposition.

We performed SRKDA-based decomposition on the SIFT features extracted from

the 10 classes of the CalTech-101 dataset [30]. The results are tabulated in Table 2.7.

It is evident that there is a significant improvement in the performance compared

to a direct implementation.

DataSize Direct GPU

1000 0.61s 0.2830s

2500 4.41s 2.1337s

5000 22.06s 12.467s

7500 60.30s 37.28s

Table 2.7: SRKDA [11] - Comparison between the GPU implementation and a CPU

implementation on Caltech-101 dataset [30]; mean absolute error (measured on the

projection of a test data of size 100) in each case was ∼ 10−5

2.5 Conclusions

In this chapter, we have looked at accelerating popular kernel approaches on

the GPU. We have reported the speedups obtained for the summation and decom-

32

position of various kernels on GPUs. Our approaches are not just limited to the

kernels reported and can be extended to any generic kernel. Further, we have shown

the improvement in performance with different kernel machines like kernel density

estimation, Gaussian process regression, learning a Ranking function and kernel

discriminant analysis using spectral regression. We have also compared our perfor-

mance with a linear algorithm [58]. With the increasing speeds in GPUs compared

to the CPUs (as shown in Fig. 2.1), the performance can only improve further

and can provide effective solution to computation bottlenecks in various kernel ma-

chines. We have made these algorithms in CUDA with Matlab linkages available

under LGPL as an opensource1 and we hope to keep evolving the library.

In subsequent chapters, we shall extend these GPU frameworks to more tar-

geted applications like kriging and speaker recognition.

1www.umiacs.umd.edu/users/balajiv/GPUML.htm

33

Chapter 3

Spatio-temporal kriging for geospatial data reconstruction

In the last chapter, we discussed the utilization of GPUs to accelerate different

kernel based algorithms. In this chapter, we introduce the geospatial interpolation

technique, kriging and bring out its connection with the Gaussian process regression

(introduced in the last chapter). We then specialize the GPU acceleration used with

Gaussian process regression for kriging by better utilization of the GPU’s texture

memory. The resulting kriging framework is also used with a modified gradient

descent algorithm to estimate the kriging parameters via cross-validation.

3.1 Geospatial data reconstruction

Sensors deployed on satellites are often used to collect enviromental data where

a direct measurement is expensive or difficult. For example, satellite images allow

general studies of the sea surface characteristics as well as studies at depth that

present a signal at the surface, such as from internal waves. These images are

widely used due to their vast spatial coverage and precise observation. Several

kinds of data are measured by satellites using sensors that span the electromagnetic

spectrum. Sensors working in the visible and infrared frequencies (e.g. to measure

ocean color) are affected by cloud cover. Instrument malfunctions or the variable

satellite orbital paths lead to missing values in the observed data. A complete

34

data set is important for initializing many meteorological models or data analysis.

This problem is receiving significant attention because a better understanding of

climate variability due to human and geological factors is required, and because of

the importance such data have in planning during an era of considerable climate

change.

Techniques like spline data interpolation [28] and inverse methods [39, 44]

have been explored for the reconstruction of the missing satellite observations. An

alternate self-consistent model has been proposed in [4] and developed as the Data

INterpolating Empirical Orthogonal Functions (DINEOF); and has been used for

several data reconstructions [1, 2]. In this chapter, we reconsider the use of geo-

statistical kriging [42] as an alternate data reconstruction approach, and exploit its

connection to the modern statistical technique of Gaussian process regression (GPR)

[70] to provide an approach to estimate the variance of the reconstruction.

Kriging [42] is a group of geostatistical techniques to interpolate the value of

a random field (e.g., the elevation, z, of the landscape as a function of the geo-

graphic location) at an unobserved location from observations of its value at nearby

locations. It belongs to a family of linear least squares estimation algorithms that

are used in several geostatistical applications. It has its origin in mining applica-

tion, where it was used to estimate the changes in ore grade within the mine [49].

Kriging has since been applied in several scientific disciplines including atmospheric

science, environmental monitoring and soil management. However, kriging has a

cubic computational cost, that can be detrimental for large datasets. We mitigate

this problem using an iterative formulation that can be implemented efficiently on

35

multi-core graphical processors.

This chapter is organized as follows. In Section 3.2, the kriging framework is

introduced and its relation to Gaussian process regression is discussed. In Section

3.3, the computational cost of kriging is addressed via the use of graphical processors

and a modified gradient descent is introduced to estimate the parameters of kriging

in Section 3.4. We reconstruct the SeaWiFS chlorophyll concentration recorded over

Chesapeake bay and Pacific ocean using the developed framework and is compared

to the reconstruction with DINEOF in Section 3.5.

3.2 Kriging

Kriging is a popular interpolation technique used with geostatistical data. It

has linear and non-linear variants. Linear kriging estimates the unknown data as

a linear combination of known data. Simple kriging, ordinary kriging and univer-

sal kriging are linear variants. The nonlinear indicator kriging, log-normal kriging

and disjunctive kriging were developed to account for non-linearities in the models.

Moyeed et al. [59] show that the performance of linear and non-linear kriging are

comparable except in the use of skewed data where non-linear kriging performs bet-

ter. We shall restrict the discussion here to simple kriging, although our approaches

can be extended to the other variants as well. Simple kriging is statistically the best

linear estimator. It is termed the best because it attempts to minimize the residual

variance.

36

3.2.1 Formulation

Let the data be sampled at N locations (x1, x2, . . . , xN), and the corresponding

values be (v1, v2, . . . , vN). The value v̂j at an unknown location x̂j is estimated as

a weighted linear combination of v’s, given by ṽj =
∑N

i=1w
j
i vi. Here, ṽj is the

estimate, and let v̂j be the actual (unknown) value at x̂j. The residue rj = ṽj − v̂j

and the residual variance is then given by,

var(rj) = cov (ṽj, ṽj)− 2cov (ṽj, v̂j) + cov (v̂j, v̂j) (3.1)

The first term can further be simplified as,

cov (ṽj, ṽj) = cov

(
N∑
i=1

wj
i vi,

N∑
i=1

wj
i vi

)

=
N∑
i=1

N∑
k=1

wj
iw

j
kcov (vi, vk) =

N∑
i=1

N∑
k=1

wj
iw

j
kCik,

where Cik = cov(vi, vk). Similarly, the second term becomes,

cov (ṽj, v̂j) = cov

((
N∑
i=i

wj
i vi

)
, v̂j

)
=

N∑
i=1

wj
iC

∗
ij,

where C∗
ij indicate the covariance between known location i and unknown location

j. Finally, assuming that the random variables have the same variance σ2
v , the third

term can be expressed as cov (v̂j, v̂j) = σ2
v .

For simple kriging, it is required to find wj by minimizing var(rj) with respect

to wj. This can be written as the minimization of the penalized cost function,

J =
N∑
i=1

N∑
k=1

wj
iw

j
kCik +

N∑
i=1

wj
iC

∗
ij + σ2

v .

Taking the partial derivative w.r.t wj
i ,

∂J

∂wj
i

= 2
N∑
k=1

wj
kCik − 2Ciĵ

37

and setting it to 0,
C11 . . . C1N

...
. . .

...

CN1 . . . CNN




wj

1

...

wj
N

 =


C∗

1j

...

C∗
Nj


⇒ Cwj = C∗

j (3.2)

In order to obtain the kriged output at M locations, Eq. (3.2) needs to be solved

at each of these locations, resulting in the system,

v∗ = vTC−1C∗, (3.3)

where,

v∗ =


ṽ1

...

ṽM

 ,v =


v1

...

vN

 ,C∗ =


C∗

1

...

C∗
M



T

3.2.2 Covariance functions

The covariances Cij can either be specified by a standard function or by sta-

tistically evaluating them at each location. The latter approach incurs huge storage

costs for large datasets and is not easy to compute when reconstruction is required at

an unseen location. A functional form of covariance is preferred in these cases. The

covariance function is generally chosen to reflect prior information. In the absence

of such knowledge, the Gaussian function is the most widely used covariance[42],

Cij = exp

(
−∥xi − xj∥2

h2

)
. (3.4)

38

Another advantage with a functional representation is that it is possible to krige by

computing the matrix C on-the-fly thus saving on memory. We shall use this here.

3.2.3 Gaussian process regression & kriging

We can transform the above kriging problem into Gaussian process regression,

and improve the efficiency. Evaluation of a single set of weights wj for a given

location j requires the solution of the system in Eq. (3.2) and has a computational

complexity of O(N3), N being the number of samples. Further, to get the weights

at M locations, the complexity increases to O(MN3). For M ≈ N , the asymptotic

complexity is O(N4), this is undesirable for large N . Without loss of generality, the

system in Eq. (3.3) can be transposed,

v∗ = C∗C−1v. (3.5)

Now, the kriging comprises of solving a linear system followed by a covariance

matrix-vector product; thus resulting in a complexity of O(N3+N2). This is an or-

der reduction from the original formulation. Note that, the weights are not evaluated

explicitly, and so the storage is also avoided. The two steps of the new formulation

are [70]

Solve for y, Cy = v, v∗ = Ĉ∗Ty (3.6)

Such a formulation makes kriging similar to the training and prediction in Gaussian

process regression [69].

39

3.2.4 Evaluation of the variance of the estimate

The Gaussian process similarity allows for the definition of a variance (Σj) [69]

of the estimate at the jth kriged location given by,

Σj = C∗
jj −C∗T

j CC∗
j (3.7)

Note that the cost of each variance estimate is O(N3) per estimate.

3.3 Accelerated kriging

The key computation in Eq. (3.5) is solution of the linear system for C. As

seen in Section 2.3, use of iterative solvers is much more efficient than direct solution.

With the use of iterative solvers, accelerating the covariance matrix-vector product

accelerates kriging as well.

We have already discussed the single-processor (IFGT[119, 72], Dual trees[51],

FIGTREE[58]) and multiple-processor (GPUML [95, 101] accelerations for weighted

Gaussian summations. Each of these approaches has its own advantages and disad-

vantages. Single-processor accelerations perform well for the low-dimensional data

encountered in kriging, however, GPU-based acceleration outperform the single pro-

cess acceleration for sample sizes upto 100, 000 [101]. To take advantage of both the

ideas, we use an approximation approach on the GPU.

3.3.1 GPU parallelization

A naive parallelization of the covariance matrix-vector product on graphical

processor [101] has been used previously to accelerate kriging [98]. GPUML [101]

40

was tuned for optimal performance across dimensions by employing the shared mem-

ory and registers to store covariance parameters and points xi’s. However, kriging

involves low-dimensional data and a more specialized implementation would help

here. We use 2 specific rules to further improve on GPUML acceleration for the

low-dimensional data.

A Gaussian kernel (Eq. 3.4) decays as the distance between the two points

increases. Therefore, we avoid computing exponentials when their value are

negligible, i.e. the distance between the points is greater than a threshold

radius r. We compute this r using the following rule:

exp

(
−∥r∥2

h2

)
< ϵ→ r > h

√
− ln ϵ, (3.8)

where ϵ is the guaranteed error bound on the evaluated sum, and is set to 10−6 here.

In the data reconstruction problem, we encounter gridded data only and the

distance between the data points are multiples of the grid-size along each dimension

of interest (latitude and longitude). We therefore, precompute the Gaussian

kernels for multiples of the grid-size up to the cut-off radius r and store

it on the texture memory. Because the texture memory is cached, this not only

avoids recomputations, but also enables a faster access to the stored exponential

values.

Fig. 3.1 shows the computational improvement of our new approach over

GPUML across various datasizes and Gaussian bandwidths h. We obtain up to

2X speedup over GPUML. The savings by our approach is maximal at lower and

moderate bandwidths, because of a lower cut-off radius, and hence better cache

41

0.3 0.6 1 2

10
4

10
5

Gaussian bandwidth (h)
N

um
be

r
of

 s
am

pl
es

 (
N

)

1

1.5

2

Figure 3.1: [color] Speedup of our new implementation over the original GPUML

[101]

utilization. The speedup increases for larger data sizes because of the savings due

to minimum Gaussian evaluations.

3.3.2 Performance comparison

In all experiments the host processor is an Intel Xeon Quad-Core 2.4GHz with

4GB RAM. The GPU is a Tesla C1060 which has 240 cores arranged as 30 multi-

processors. It has 4GB of global memory, 16384 registers per thread block and 16kB

shared memory per multiprocessor.

We tested our kriging approach on synthetic data generated on a 2-D grid

using the relation

f(x1, x2) = sin(0.4x1) + cos(0.2x2 + 0.2), (3.9)

where 0.0 ≤ x1, x2 ≤ 10.0. The surface represented by such a function is given in

Fig. 3.2.

The data were removed from this 2-D grid to create artificial gaps, and the

42

Figure 3.2: [color] Synthetic surface generated and sampled to test the performance

of our kriging

gaps were then filled via kriging. The size of the gaps was varied to vary the problem

size. We compared our approach against widely used kriging packages: Dace kriging

[52] and mGstat kriging [38]. The comparison of the time taken by various kriging

approaches is shown in Fig. 3.3. It can be seen that the proposed approach is

computationally better than other approaches. Of course, the choice of kriging

parameter is paramount for the reconstruction quality, but we defer discussion of

this to Section 3.4.

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

Problem size

T
im

e
ta

ke
n

(s
)

Time taken for kriging

Dace kriging
M−Gstat kriging
Our kriging

Figure 3.3: Performance comparison across different kriging approaches for the syn-

thetic data in Eq. (3.9).

43

As mentioned earlier, one advantage of kriging is that it provides a way to esti-

mate the variance of the reconstructed data. Fig. 3.4 shows the variance estimates

for the reconstructed data, based a 3 sampling instances with 1%, 5% and 10%

coverages respectively over the entire grid. It can be seen that when the amount of

observed data is smaller, the reconstruction is more unreliable indicated by higher

variance across the entire grid. When the coverage is reasonable (10% in Fig. 3.4),

there is lower variance of the estimates and hence more reliability.

Figure 3.4: [color] Variance estimates from kriging for reconstructing the gappy data

in Eq. (3.9)

44

3.4 Parameter estimation

A key factor in the performance of kriging is the choice of the kriging param-

eters, Θ that give best reconstruction. For the Gaussian kernel, Θ = {h}. We use

modified gradient descent with cross-validation to estimate it.

The main assumption in this approach is that the error function is quadratic

with respect to Θ. We divide our training data into training and hold-off sets. We

train using the training set for various Θ values and test it on the hold-off set. The

gradient descent algorithm is initialized with the Θ value that yields the least error.

Different error metrics like the mean relative error, root mean square error, etc., can

be used; we chose the mean relative error in our experiments. The parameter Θ is

moved along the direction of negative gradient of the relative error evaluated using

its finite-difference approximation. We repeat this for different hold-off sets and the

median is chosen as the optimal value. This is summarized in Algorithm 1.

3.4.1 Validation

Our parameter estimation approach is validated with the 2−D synthetic data

(Fig. 3.2). The data is now divided into two parts, 90% for training and 10%

for testing. A part of training data (10%) is set aside as hold-off data, and we

estimate the parameter Θ based on the error on this hold-off. Fig. 3.5(a) shows

the Θ relationship with the hold-off error and also the bandwidth chosen by our

approach. The estimated Θ is used on the unseen data. This is repeated for various

combinations of train, hold-off and test data. Fig.3.5(b) shows the values of Θ from

45

different trials, and the median chosen to be the optimal Θ. Figures. 3.5(c) and

3.5(d) show the corresponding hold-off and test error distributions for the chosen Θ

in each trial. A similar test and hold-off error distribution validate the parameter

estimation approach.

0 1 2
10

−4

10
−2

10
0

Θ (h)

R
el

at
iv

e
er

ro
r

(a) Parameter Θ vs the relative error.

Dotted lines show Θ chosen by our ap-

proach and the corresponding error

0 1 2 3
0

0.01

0.02

0.03

Parameter Θ estimated
across various trials

P
ro

ba
bi

lit
y

Chosen Θ

(b) Statistics of the parameter Θ based on

our estimation technique across 100 tri-

als.

0 0.5 1

x 10
−3

0

0.02

0.04

Absolute error on the
hold−off set

P
ro

ba
bi

lit
y

(c) Statistics of the error on the hold-

off sets based on our estimation technique

across 100 trials.

0 0.5 1

x 10
−3

0

0.02

0.04

Absolute error on the
test set

P
ro

ba
bi

lit
y

(d) Statistics of the error on the test sets

based on our parameter estimation tech-

nique across 100 trials.

Figure 3.5: Statistical validation of the parameter estimation technique

46

3.5 Experiments

Ocean color corresponds to chlorophyll concentrations, which is related to the

energy at the bottom of the marine food chain and is a critical link to the carbon

cycle [61]. Subtle changes in the ocean’s color result from changes in the concen-

trations of marine phytoplankton, suspended sediments and dissolved substances in

the water column. Knowing these is very much necessary for various industries, pri-

marily fisheries and for proper modeling of the carbon and oxygen in the ocean[61].

We used the kriging framework to reconstruct the weekly chlorophyll concentration

(ocean color) recorded for the Chesapeake bay and west coast sector of the Pa-

cific ocean between 1998 and 2006 from the Sea-viewing Wide Field-of-view Sensor

(SeaWiFS).

Because of the spatio-temporal nature of these data, we modify the spatial

kriging framework mentioned above to a spatio-temporal kriging. The parameters

of this modified framework are Θ = {hs, ht}, where hs is the spatial Gaussian

spread, ht is the temporal Gaussian spread. Note that, we use the same hs across

both latitudes and longitudes, and hence our covariance function is isotropic. Using

a different h for latitudinal and longitudinal scales (anisotropic covariance) can be

appropriate in some cases but was not explored in this work. We estimate hs first

using Alg. 1 and then estimate ht by fixing hs. The 1998 chlorophyll data over both

the regions was used to determine the parameters, which are then used for all the

data from subsequent years.

47

3.5.1 SeaWiFS Chlorophyll Data

The SeaWiFS instrument [57] was designed to monitor the color of the global

oceans and provides a time series of chlorophyll maps of the global ocean. Data

from SeaWiFs provide insight into the understanding of the marine ecosystem and

the ocean’s role in the global carbon and other biogeochemical cycles, and have been

utilized e.g. om [86].

We use the chlorophyll data from a SeaWiFS-equipped satellite and collected

over the Chesapeake Bay and the west coast sector of the Pacific ocean. The Chesa-

peake bay (Fig. 3.6) data is collected from 78oW to 73oW and from 34oN to 40oN

at a resolution of ∼ 50 observations per degree, resulting in a grid of 240 × 288..

Similarly, the Pacific ocean (Fig. 3.7) data is collected from 159oW to 100oW and

from 25oN to 59oN at a resolution of ∼ 12 observations per degree, resulting in a grid

of 600× 400. The two areas offer datasets at different resolution, size and coverage

enabling a good spectrum for our comparisons.

3.5.2 DINEOF

A widely used geostatistical reconstruction technique is based on Empirical

Orthogonal Function (EOF) interpolation, and we used the data-interpolating-EOF

(DINEOF) [1] for comparisons with kriging. DINEOF considers a spatio-temporal

data as a M × N matrix X, M denoting the spatial space, and N denoting the

temporal space. Performing a singular value decomposition (SVD) (otherwise known

as the Empirical Orthogonal Functions / EOFs) on this matrix, X = UΣV results in

48

DelawareMaryland
District of Columbia

 Chesapeake Bay

 78° W 77° W 76° W 75° W 74° W 73° W
 34° N

 35° N

 36° N

 37° N

 38° N

 39° N

 40° N

Figure 3.6: [color] Kriging was used to reconstruct the data recorded over the Chesa-

peake Bay region shown here

set of dominant singular values (EOF modes, Σ). EOF-based interpolation estimate

the EOFs (U and V) and their modes (Σ) from the raw data filling the missing

data of X with zeros, and reconstructs X using the dominant EOFs. This process

is repeated to convergence and the final X matrix is the desired reconstruction. A

detailed description is available in [1, 2, 4]. DINEOF does not account for the spatial

location of a missing point or the spatial resolution of the data being reconstructed.

DINEOF software1 uses the Lanczos method for the SVD, based on ARPACK

[1] to reconstruct the gappy data, and is computationally efficient. Beckers et al. [4]

1http://modb.oce.ulg.ac.be/mediawiki/index.php/DINEOF

49

 150° W
 140° W 130° W

 120
° W

 110
° W

 30 ° N

 40 ° N

 50 ° N

Arizona
California

Idaho

Montana

Nevada

Oregon

Utah

Washington

 Pacific Ocean

 Canada

Figure 3.7: [color] Kriging was used to reconstruct the data recorded over the Pacific

ocean region shown here

suggest that the performance of the reconstruction improves when the input data

spans a period of few weeks within the required time-frame. DINEOF reconstruction

takes 3 parameters, namely the the number of EOF modes, size of the Lanczos

subspace and temporal scale of the input data. These parameters were set via cross-

validation as prescribed in [1].

3.5.3 Reconstruction performance

The computational complexity of DINEOF reconstruction (the primary bottle-

neck being SVD) is O(min(MN2, NM2)). On the other-hand, the computational

complexity of our approach is O(k(NM)2). Because only a few weeks of data are con-

sidered, the complexity is approximately O(N) for DINEOF and (GPU-accelerated)

50

O(kN2) for kriging. DINEOF and kriging based reconstruction are applied to both

the regions above and the results are illustrated in Figs. 3.8(a) and 3.8(b). For

the Chesapeake Bay, the average time taken by DINEOF is 17s, whereas kriging

takes 44s. However, the average error (evaluated on different hold-off sets over

multiple-trials) for DINEOF is 0.6mg/m3 (80% relative error) and for kriging is

0.4mg/m3 (24% relative error). Similarly, for the Pacific ocean, the average time

taken by DINEOF is 80s, whereas kriging takes 390s. However, the average error

for DINEOF is 0.2mg/m3 (79% relative error) and for kriging is 0.1mg/m3 (21%

relative error). Despite the GPU acceleration, kriging’s computational cost is expen-

sive in comparison to DINEOF because of the corresponding quadratic and linear

time complexities. However, there is a significant improvement in the reconstruction

quality, as indicated by the relative and absolute errors.

Such errors are the subject of vigorous debate in the meteorological community,

and we believe that the improved error and robustness of our method should be

useful in applications. Since the debates on warming trends and uptake or release

of CO2 by the ocean and so on often depend on interpolating sparse data, accurate

reconstructions of gappy data are often much more crucial than computational costs.

3.5.4 DINEOF-initialized kriging

EOF based approaches do not count the spatial-location of the data for recon-

struction. Although this helps EOF methods to reliably reconstruct even sparsely-

observed data, this results in a reduced impact of spatially-closer observations. On

51

20

40

60

DINEOF Kriging DINEOF + KrigingR
ec

on
st

ru
ct

io
n

T
im

e(
s)

0

1

2

DINEOF Kriging DINEOF + KrigingM
ea

n
ab

so
lu

te

er
ro

r(
m

g/
m

3)

0

200

400

DINEOF Kriging DINEOF + Kriging
Reconstruction Method

R
el

at
iv

e
er

ro
r

(in
 p

er
ce

nt
ag

e)

(a) Over the Chesapeake Bay

0
200
400
600

DINEOF Kriging DINEOF + KrigingR
ec

on
st

ru
ct

io
n

T
im

e(
s)

0

0.2

0.4

0.6

DINEOF Kriging DINEOF + KrigingM
ea

n
ab

so
lu

te

er
ro

r(
m

g/
m

3)

0

100

200

300

DINEOF Kriging DINEOF + Kriging
Reconstruction Method

R
el

at
iv

e
er

ro
r

(in
 p

er
ce

nt
)

(b) Over the Pacific Ocean

Figure 3.8: Reconstruction performances

the other hand, kriging performs very well locally, but fails when the data coverage is

low (the variance of estimates is very high for lower coverage and hence less reliable

as seen from Fig. 3.4). We therefore, combined both these techniques for the data

reconstruction and the corresponding results are also shown in Figs. 3.8(a). The

missing data are first reconstructed via DINEOF and followed by kriging to obtain

the final estimate. Although this increases the computational cost of the overall

approach (68s for Chesapeake Bay and 650s for Pacific ocean), the reconstruction

quality improves over the reconstruction based on kriging alone. The mean error

for Chesapeake Bay data is 0.34mg/m3 (24% relative error) and for Pacific ocean is

0.08mg/m3 (19% relative error).

52

An analysis on the correlation between the observed and reconstructed data

reveals a better correlation for this DINEOF-initialized kriging over most of the

analyzed time periods. Figs. 3.9(a) and 3.9(b) show the correlation plots for the

Chesapeake Bay and Pacific ocean. The combined approach has the maximum

correlation in most of the weeks, followed by the kriging based reconstruction. Weeks

where DINEOF-initialized kriging has a low correlation, DINEOF and kriging based

reconstruction also exhibit lower correlation, thus suggesting issues with observed

data during these weeks.

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Week

C
or

re
la

tio
n

Year: 2001

DINEOF
Kriging
Dineof−initialized kriging

(a) Over the Chesapeake Bay

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

0.9

1

Week

C
or

re
la

tio
n

Year: 2006

DINEOF
Kriging
Dineof−initialized kriging

(b) Over the Pacific Ocean

Figure 3.9: Correlation between the observed and reconstructed values

3.6 Conclusions

A kriging technique for statistically predicting missing data is formulated and

its computational complexity is addressed via the use of graphical processors. The

kriging parameters are estimated by a combination of standard cross-validation with

an approximate gradient descent minimization. The resulting framework is used for

53

reconstructing the gappy data collected over the Chesapeake Bay and Pacific ocean,

and the reconstruction quality was compared against an EOF-based reconstruction

approach. While computationally kriging is expensive inspite of GPU acceleration

because of its cubic complexity, it was seen that error residues are significantly

lower compared to an EOF based approach. Finally, it was also observed that a

combination of EOF and kriging yields better error residuals. The key algorithms

and accelerations introduced in this paper will soon be release as an open source

package.

Such reconstructed data find its application for initializing a meteorological

model, data analysis and pattern discovery. For example, the effect of Hurricane

Isabel2 that hit the North Eastern United States between 6 and 20 of September

2003 has been well-studied. Roman et al. [74] observe an increased phytoplankton

around the middle bay immediately after the hurricane, which later died down

towards early October. As an after-effect, an increased zooplankton activity was

also observed around mid-November. The kriged reconstructions during this period

also exhibit these patterns on the chlorophyll as seen in Fig. 3.10, and our approach

can be helpful for similar analysis in these directions.

2http://en.wikipedia.org/wiki/Hurricane_Isabel

54

 78° W 77° W 76° W 75° W 74° W 73° W
 34° N

 35° N

 36° N

 37° N

 38° N

 39° N

 40° N

C
hl

or
op

hy
ll

co

nc
en

tr
at

io
n

(in
 m

g/
m

3)

0

5

10

15

20

25

30

35

40

(a) Before ISABEL

 78° W 77° W 76° W 75° W 74° W 73° W
 34° N

 35° N

 36° N

 37° N

 38° N

 39° N

 40° N

C
hl

or
op

hy
ll

co

nc
en

tr
at

io
n

(in
 m

g/
m

3)

0

5

10

15

20

25

30

35

40

(b) During ISABEL: Growth of phytoplanktons

 78° W 77° W 76° W 75° W 74° W 73° W
 34° N

 35° N

 36° N

 37° N

 38° N

 39° N

 40° N

C
hl

or
op

hy
ll

co

nc
en

tr
at

io
n

(in
 m

g/
m

3)

0

5

10

15

20

25

30

35

40

(c) After ISABEL in early October

 78° W 77° W 76° W 75° W 74° W 73° W
 34° N

 35° N

 36° N

 37° N

 38° N

 39° N

 40° N

C
hl

or
op

hy
ll

co

nc
en

tr
at

io
n

(in
 m

g/
m

3)

0

5

10

15

20

25

30

35

40

(d) After ISABEL in mid-November (Zooplank-

tons growth)

Figure 3.10: [color] Chesapeake Bay before and after the 2003 Isabel hurricane

55

Algorithm 1 Modified gradient descent for kriging parameter estimation

1: Given: Training locations Xtrain and corresponding values vtrain

2: Given: Initial parameter value Θinit

3: repeat

4: Choose: Hold-off locations Xhold−off and corresponding values vhold−off

5: Initialize step-size α, decay-factor β

6: Evaluate v∗−1
hold−off and v∗0hold−offusing xtrain and ytrain for Θinit and βΘinit

7: Define err∗j = (v∗jhold−off − vhold−off)/vhold−off and evaluate err∗−1 and err∗0.

8: iteration = 0

9: repeat

10: iteration++

11: Evaluate ∆Θerr
∗iter via finite-differences

12: Move Θiter along the negative of this gradient direction weighted by α

13: until convergence of Θ

14: Θset = Θlast

15: until Required number of trials reached

16: Θfinal=median(Θsets)

17: return Θfinal

56

Chapter 4

Preconditioned Krylov solvers for kernel regression

It was seen in Chapter 2 that the core algorithm in several kernel machines

involves a number of linear algebra operations on matrices of kernel functions,

which take as arguments the training and/or the testing data. A kernel func-

tion Φ(xi, xj) generalizes the notion of the similarity between data points. Given

X = {x1, x2, . . . , xN}, xi ∈ Rd, the kernel matrix entries are given by Φ(xi, xj),

K̂ =


Φ(x1, x1) . . . Φ(x1, xN)

...
. . .

...

Φ(xN , x1) . . . Φ(xN , xN)

 . (4.1)

Φ is generally chosen to reflect prior information about the problem. In the absence

of any prior knowledge, the Gaussian is the most widely used kernel. Most kernel

methods use the kernel matrix in regularized form,

K = K̂+ γI; (4.2)

with γ chosen appropriately according to the problem.

Kernel regression is one of the popular kernel methods that appears in many

variations. We had seen two variants in Gaussian process regression[69] (Chapter

2) and geostatistical kriging[42] (Chapter 3). While the formulations in each of

these differ slightly, the key computation in all these requires the solution of a

linear system with K. Direct solution for a dense kernel matrix system has a time

57

complexity O(N3) and memory complexity O(N2), which prevents its use with large

datasets. Therefore, iterative Krylov methods [80] are used to address this partially

by reducing the time complexity to O(kN2), k being the number of iterations [34, 21].

The dominant cost per Krylov iteration is a kernel matrix-vector product (MVP),

which has been accelerated on a single core and multiple cores (Chapter 2). In

these fast kernel MVP, there is a trade-off between accuracy and speed, and usually

a MVP of reduced accuracy can be obtained faster. The fast MVPs scale well for

large datasets, however the convergence rate for large problems suffers since the

matrix might not always be “well-conditioned”. To speedup the iterative methods

for large scale kernel regression, apart from using fast MVP, we need to reduce the

number of iterations and where possible use lower accuracy MVP without affecting

the solution accuracy. We address this problem in this chapter by introducing fast

preconditioners for a flexible Krylov solver.

For symmetric marices, the convergence of the Krylov methods is determined

by the conditioning of the kernel matrix characterized by the matrix condition num-

ber κ (κ ≥ 1),

κ =
λmax

λmin

, 1 ≤ κ <∞. (4.3)

where λmax is its largest eigenvalue and λmin the smallest eigenvalue. For smaller κ,

the Krylov methods converge faster. When a kernel matrix is ill-conditioned, there is

a significant decrease in rate of convergence, necessitating a “preconditioner” [80] to

improve the conditioning of the matrix used in iteration and accelerate convergence.

Preconditioning has been suggested for kernel matrix computations [21, 60], but to

58

our knowledge, there has been no previous work on a method to actually design a

preconditioner for such matrices.

To be effective, the preconditioner matrix construction cost should be small,

and it should be able to take advantage of fast matrix vector products. We propose

a novel preconditioner that improves convergence and has the added benefit that it

utilizes the matrix-vector product acceleration available for the kernel matrix.

The chapter is organized as follows. We introduce Krylov methods and their

convergence properties in Sec. 4.1 and survey different preconditioning techniques in

Sec. 4.2. The new preconditioner is introduced and its parameters and convergence

are studied in Sec. 4.3. Finally we test its performance on synthetic and standard

datasets in Sec. 4.4.

4.1 Krylov methods

Krylov solvers are the methods of choice for many linear algebra problems

(solving linear systems, eigenvalue problems, optimization). They iteratively im-

prove the solution of a “cost-minimization” problem over a set of basis vectors (the

Krylov basis) created via matrix vector products of the matrix under consideration.

While a detailed discussion and analysis can be found in [80, 78], we provide a brief

overview here in the context of solving linear systems.

Consider the solution of the linear system, Kx = b. Krylov methods be-

gin with an initial guess x(0) and minimize the cost function r(k) = b − Kx(k)

in some norm, by moving the iterates along directions in the Krylov subspace

59

Kk = span(b,Kb, . . . ,Kk−1b). The directions are augmented over each Krylov it-

eration, a significant difference from simpler iterative approaches like Gauss-Siedel

where the next iterate depends only on the previous one.

At the kth iteration of the Krylov methods, an orthogonal matrix V (k) =

[v1, v2, . . . , vk] is generated such that columns of V (k) span the Krylov subspace Kk.

This would result in an “Arnoldi computation” [80],

KV (k) = V (k+1)H̄(k), (4.4)

where H̄(k) is an augmented Hessenberg matrix,

H̄(k) =



h1,1 h1,2 h1,3 . . . h1,k

h2,1 h2,2 h2,3 . . . h2,k

...
...

...
...

...

0 . . . 0 hk,k−1 hk,k

0 . . . 0 0 hk+1,k


,

where hi,j = (vTj Kvi). The next iterate x(k) is then obtained by solving the least

squares problem, miny ∥H̄(k)y − βe1∥, where e1 = [1, 0, . . . , 0]T , and the iterate is

given by,

x(k) = V (k)y. (4.5)

This is the Arnoldi iteration for system solution [80].

The conjugate gradient (CG) method is the most widely used Krylov method

with symmetric matrices. For symmetric K, H̄(k) in Eq. 4.4 is tridiagonal leading to

the particularly efficient CG method. The generalized minimum residual (GMRES)

60

is usually used for non-symmetric problems though it can be used in the symmet-

ric case as well. GMRES directly extends the Arnoldi iterations to minimize the

residuals r(k) in the 2−norm. CG minimizes the K-norm of the residual and utilizes

the conjugacy in the resulting formulation, which results in not having to store the

Krylov basis vectors. CG, therefore, results in a more efficient (lower cost per itera-

tion) specialized formulation than the GMRES. The specific algorithmic differences

are detailed in [80]. Kernel matrices are symmetric and satisfy the Mércer conditions

aTKa > 0, for any a; and hence K is positive definite. Therefore, CG has been the

preferred choice for kernel matrices [34]; however, GMRES has also been used [21].

4.1.1 Fast matrix-vector products:

The key computation in each Krylov step is the matrix-vector product, f = Kq

or f(xj) =
∑N

i=1 qiΦ(xi, xj). We used GPUML from Chapter 2 to parallelize kernel

summation on graphical processors (GPUs).

4.1.2 Convergence of Krylov methods:

The convergence rate of iterative approaches is given by the ratio of the error

(ek) at k
th iteration to the initial error (e0) in some norm. For example, the ratio

for CG [80] is,

∥ek∥K
∥e0∥K

≤ 2

(√
κ− 1√
κ+ 1

)k

. (4.6)

A more complicated expression may be derived for GMRES [80].

61

C
on

di
tio

nN
um

be
r

10
2

10
4

10
6

10
8

10
10

10
−9

10
−7

10
−5

10
−3

10
−1

0.01

0.02

0.05

0.1

G
au

ss
ia

n
B

an
dw

id
th

 (
h)

Condition Number

T
ot

al
 C

G
 it

er
at

io
ns

 to
 c

on
ve

rg
e

10
1

10
2

10
−9

10
−7

10
−5

10
−3

10
−1

0.01

0.02

0.05

0.1

Regularizer (γ)

G
au

ss
ia

n
B

an
dw

id
th

 (
h)

Iterations

Figure 4.1: [color] Effect of kernel hyper-parameters on the matrix conditioning and

CG iterations

4.1.3 Need for preconditioning:

The condition number of kernel matrices depends on the data point distri-

bution and the kernel hyper-parameters. For the Gaussian (Eq. 2.2), the hyper-

parameters are the bandwidth h and the regularizer γ. While xi’s are given, the

hyper-parameters are generally evaluated using maximum-likelihood. Fig. 4.1 shows

the condition number and number of CG iterations to converge for a kernel matrix

constructed from data points generated uniformly at random inside a unit cube.

There is a direct correspondence between the condition number and number of CG

62

iterations. For larger regularizer and smaller bandwidths, the convergence is much

better. The data point distribution influences the conditioning as well. It is how-

ever not possible to hand select these parameters for each problem. It is therefore

necessary to “precondition” [80] the system to be solved to yield better Krylov

convergence irrespective of the underlying matrix conditioning.

4.2 Preconditioning techniques

Consider Kx = b. A left preconditioner (M−1) operate on this system as,

M−1Kx = M−1b; (4.7)

and a right preconditioner operates as,

KM−1y = b, y = Mx. (4.8)

The preconditioner M−1 should be chosen such that the resulting matrices (M−1K

or KM−1) have a low condition number. An ideal preconditioner (M−1) is a matrix

that well approximates K−1, but is easy to compute.

4.2.1 Conventional preconditioners

Standard preconditioners used in the literature are for sparse matrices that

arise in the solution of differential equations, and include those based on Jacobi

and Symmetric Successive Over-Relaxation (SSOR) algorithms. For general sparse

matrices, incomplete LU preconditioners are often used. The triangular factors L

and U for a sparse matrix may not be sparse, but incomplete LU factorizations leads

63

to sparse L and U matrices by forcing the coefficients leading to zero entries of the

sparse matrix to zero. For a dense matrix, elements are sparsified using a cut-off

threshold.

Preconditioners to radial basis function interpolation are a closely related prob-

lem and fast preconditioners have been proposed in this direction [3, 29, 37]. How-

ever, these approaches are limited to low dimensions (∼ 3) and are computationally

inefficient for larger dimensions.

4.2.2 Flexible preconditioners

As seen from Eqs. (4.7) and (4.8), a left preconditioner modifies the right-hand

side in the problem whereas the right preconditioner leaves it as is. This property of

right preconditioners can be exploited to create “flexible” preconditioning techniques

where a different preconditioner can be used in each Krylov step [79, 89, 62], since

the preconditioner only appears implicitly. Flexible preconditioning can be used

with both CG [62] and GMRES [79].

Although many papers have shown the convergence of flexible precondition-

ers under exact arithmetic, it is very hard to estimate the convergence rate or the

number of outer iterations accurately under inexact arithmetic since the underly-

ing subspaces, x0 + span{M1
−1v1,M2

−1v2, . . . ,Mk
−1vk} are no longer a standard

Krylov subspace. This affects CG since the new subspace impacts the underlying

conjugacy. Notay [62] proposes 2 modifications to a preconditioned flexible CG. The

iterates should be “reorthogonalized” at each step to maintain conjugacy; and the

64

preconditioner system should be solved with high accuracy. Flexible preconditioners

are however easily used with GMRES. This fact will be observed in results below,

where a poorer performance is observed for flexible CG relative to flexible GMRES.

The algorithmic details of flexible GMRES is enlisted in Algorithm 2, and the

corresponding unpreconditioned version is obtained by replacing the Ms in Algo-

rithm 2 with identity matrices. The iterations are stopped when ϵ = b−Kxi

N
goes

below a certain tolerance. Similar extension is available for CG as well and is shown

in Algorithm 3. The stopping criterion is similar to the flexible GMRES. The un-

preconditioned CG is obtained by removing the reorthogonolization step in flexible

CG and replacing M with an identity matrix.

4.2.3 Krylov method as a flexible preconditioner

In Algorithms 2 and 3, all that is needed to prescribe the right preconditioner

is a black-box routine which returns the solution to a linear system with the pre-

conditioner matrix M. Instead of explicitly specifying M−1, it is possible to specify

it implicitly by solve a linear system with M using another Krylov method such as

CG. However, because this iteration does not converge exactly the same way each

time it is applied, the use of an iterative method as preconditioner is equivalent to

using a different M for each iteration [89] in exact arithmetic. We refer to the

preconditioner, operating with matrix M as “inner Krylov” and to the main solver

operating on KM−1 as “outer Krylov”.

65

Algorithm 2 Flexible GMRES [79]

1: r0 = (b−Kx0), β = ∥r0∥2 and v1 = r0/β

2: Define the m+ 1×m matrix, H̄m = {hi,j}1≤i≤j+1;1≤j≤m

3: for j = 0 to m do

4: Solve Mjzj = vj (inner preconditioner)

5: w = Kzj (matrix-vector product)

6: for i = 0 to j do

7: hi,j = (w, vi), w = w − hi,jvi

8: end for

9: hj+1,j = ∥w∥2, vj+1 = w/hj+1,j

10: end for

11: Zm = [z1, . . . , zm],

12: ym = argminy ∥βe1 − H̄my∥2, xm = x0 + Zmym

13: IF satisfied STOP, else x0 = xm and GOTO 1

4.3 Preconditioner for kernel matrices

Conventional preconditioners require construction of the complete matrix ini-

tially, followed by expensive matrix decompositions. Thus they have a computa-

tional cost of O(N3) and a memory requirement of at least O(N2). Additionally,

the preconditioner evaluations will require a O(N2) “unstructured” matrix-vector

product, which does not have any standard acceleration technique and is hard to

parallelize. This limits application to very large datasets and will ruin any advan-

tage gained by the use of fast matrix-vector products (as will be seen later in Sec.

66

Algorithm 3 Flexible Conjugate Gradient [62]

1: r0 = (b−Kx0), i = 0

2: while ri is not sufficient small do

3: Solve Mizi = ri

4: di = zi −
i−1∑
k=0

(zi,Kdk)

(dk,Kdk)
dk [Reorthogonolization]

5: xi+1 = xi +
(di, ri)

(di,Kdi)
di

6: ri+1 = ri −
(di, ri)

(di,Kdi)
Kdi

7: i = i+ 1

8: end while

4.3.5).

This leads us to consider to the key requirement for any preconditioning

approach for a kernel matrix: the preconditioner should operate with an

asymptotic time complexity and memory requirement that are at least

the same as the fast matrix vector product. Otherwise the application of the

preconditioner would increase the cost. This leads us to one of the main contribu-

tions of this chapter – a particularly simple construction of a right preconditioner,

which also has a fast matrix vector product.

We propose to use a regularized kernel matrix K as a right preconditioner,

M = K+ σI. (4.9)

Regularization is a central theme in statistics and machine learning [111], and is not

a new concept for kernel machines, e.g. ridge regression, where the kernel matrix

(K̂) is regularized as K̂ + γI. However, the γ is chosen by statistical techniques,

67

and hence cannot be controlled.

Our use of this old trick of regularization is in a new context – in the precon-

ditioner matrix M. The simple prescription achieves the following properties:

• improves the condition number of the matrix M, leading to faster convergence

of the inner iterations

• improves condition number of the outer matrix KM−1.

To translate this idea in to a useful preconditioner, we need a prescription for select-

ing the regularization parameter σ and specifying the accuracy ϵ to which the inner

system needs to be solved. We use CG to solve the inner preconditioner system.

It is important to note here that Krylov methods are numerical techniques

whose formulation rely on exact arithmetics; therefore performances with matrices

K and K + σI are significantly different, as was also seen in their convergence and

conditioning in Fig. 4.1.

4.3.1 Preconditioner acceleration

A preconditioner improves the convergence of the iterative approach at the

expense of an increased cost per iteration (cost associated with the preconditioner

construction amortized over all iterations and cost of applying the preconditioner

matrix). For a preconditioner to be useful, the total time taken by the precondi-

tioned approach should be less than the unpreconditioned approach.

The key advantages of the proposed preconditioner is that, because M is

derived from K, given X = {x1, x2, . . . , xN}, xi ∈ Rd it is not necessary to explicitly

68

construct the preconditionerM−1. Further, the key computation in the inner Krylov

iteration is a matrix-vector product, Mx. This can be accelerated using the same

fast algorithm as for K. Further, the preconditioner system only needs to be solved

approximately (with a low residual CG tolerance [accuracy to which the CG is

solved] and with a lower accuracy matrix-vector product). In the experiments we use

low-accuracy fast matrix vector products for the inner iterations (single precision on

the GPU). For the outer iterations, the products are performed in double-precision

(double-precision on GPUs are slower).

4.3.2 Preconditioner parameters

To guarantee an efficient preconditioner, it must be ensured that the CG used

for the preconditioner has rapid convergence. While the data points and kernel

hyper-parameters cannot be controlled, the preconditioner regularizer σ can be.

The convergence of the CG for a kernel matrix for different σ’s is shown in Fig. 4.1.

It can be seen that for large enough σ, the CG converges rapidly. The CG can also

be forced to have an early termination by setting a low solution accuracy (ϵ).

4.3.3 Effect of regularization parameter (σ):

In flexible Krylov methods, the outer iteration solves KM−1y = b, and the

inner CG solvesMx = y. For small values of σ, the preconditioner M is closer to the

actual matrix K. Therefore, the outer GMRES solves a better conditioned system;

however, when K is ill-conditioned, M will also be somewhat ill-conditioned, thus

69

slowing the convergence of the inner iterations.

To demonstrate this, we generated data as before by taking 2000 random

samples in a unit cube and generated a matrix for the Gaussian kernel. We tested the

convergence with this preconditioner for various regularizer values (Figs. 4.2(a) and

4.2(b)). For smaller σ, the convergence of the outer Krylov iterations is faster, but

the cost per iteration increases due to slow convergence of the inner Krylov iterations.

Large regularization results in a poor preconditioner M. A moderate value of the

regularizer would therefore be an appropriate choice. This is consistently observed

in both FCG and FGMRES, however, because of its formulation, the optimal FCG

regularizer σ is an order of magnitude lower than that for FGMRES.

The choice of a regularizer involves a trade-off between the preconditioner’s

accurate representation of the kernel matrix and its desired conditioning.

10
0

10
5

10
10

10
0

10
2

N
um

be
r

of
 It

er
at

io
ns

10
0

10
5

10
10

10
0

10
2

Condition number

T
im

e
ta

ke
n

CG
FCG − σ=1.00e−002
FCG − σ=1.00e−004
FCG − σ=1.00e−006

(a) Effect of regularizer σ on flexible CG

10
0

10
5

10
10

10
0

10
2

N
um

be
r

of
 It

er
at

io
ns

10
0

10
5

10
10

10
0

10
2

Condition number

T
im

e
ta

ke
n

GMRES
FGMRES − σ=1.00e+000
FGMRES − σ=1.00e−002
FGMRES − σ=1.00e−004

(b) Effect of regularizer σ on flexible GMRES

Figure 4.2: [color] Effect of regularizer σ on the convergence for FCG and FGMRES.

70

4.3.4 Effect of CG tolerance (ϵ):

We tested the performance of the preconditioner for various tolerances in the

inner iterations (Figs. 4.3(a) and 4.3(b)). There is a consistent improvement in

the outer Krylov convergence for more precise convergence settings of the inner

Krylov solver. However, the cost of inner iterations increases if this is set too fine.

Therefore, a moderate value of ϵ works best for both FCG and FGMRES in terms

of computational costs.

The choice of tolerance for CG iterations is a trade-off between the required

solution accuracy of the preconditioner system (and hence the convergence of the

outer iterations) and the related computational cost.

10
0

10
5

10
10

10
0

10
2

N
um

be
r

of
 It

er
at

io
ns

10
0

10
5

10
10

10
0

10
2

Condition number

T
im

e
ta

ke
n

CG
FCG − ε=1.00e−002
FCG − ε=1.00e−004
FCG − ε=1.00e−006

(a) Effect of inner CG tolerance ϵ on flexible

CG

10
0

10
5

10
10

10
0

10
2

N
um

be
r

of
 It

er
at

io
ns

10
0

10
5

10
10

10
0

10
2

Condition number

T
im

e
ta

ke
n

GMRES
FGMRES − ε=1.00e−002
FGMRES − ε=1.00e−004
FGMRES − ε=1.00e−006

(b) Effect of inner CG tolerance ϵ on flexible

GMRES

Figure 4.3: [color] Effect of CG tolerance ϵ on the convergence for FCG and FGM-

RES.

71

10
2

10
4

10
6

10
8

10
0

10
2

N
um

be
r

of
 It

er
at

io
ns

10
2

10
4

10
6

10
8

10
−1

10
0

10
1

Condition number

T
im

e
ta

ke
n

CG
GMRES
FCG
FGMRES
ILU−CG
ILU−GMRES

Figure 4.4: [color] Performance of the proposed preconditioner with CG and GMRES

against ILU-preconditioned and unpreconditioned versions

4.3.5 Test of convergence

We compared the performance of flexible CG and flexible GMRES against ILU

preconditioned CG and GMRES and the unpreconditioned CG and GMRES.

We set the preconditioner σ and tolerance ϵ to {10−4, 10−4} respectively for

FCG and {10−2, 10−4} for FGMRES respectively. 2000 data points were generated

randomly in a unit cube for testing the convergence. The computational perfor-

mance and convergence is shown in Fig. 4.4. The number of iterations of the pre-

72

conditioned approaches are always less than those for the unpreconditioned cases.

The computational cost per iteration is the least for CG compared to GMRES,

FCG, and FGMRES. ILU based preconditioners are marginally better in conver-

gence (iterations) compared to our approach for better conditioned cases. But ILU

(and other similar preconditioners) require explicit kernel matrix construction and

rely of sparsity and the absence of these properties in kernel matrices result in sig-

nificantly higher computational cost compared to our preconditioners as well the

unpreconditioned solver. This make conventional preconditioners impractical to be

used with large datasets.

We see from the experiments above that FCG needs increased accuracy of

the inner linear system solution. In contrast, FGMRES is more forgiving of inner

linear system error and only requires coarse accuracy to reduce the number of outer

iteration to the same magnitude as FCG. On the other hand, especially for the ill-

conditioned matrices, solving the inner Krylov method with fine accuracy takes much

more time. Hence, given the ill-conditioned kernel matrices, the best FMGRES has

the smaller number of outer iterations as well as smaller total computation time.

The unpreconditioned algorithm of choice is CG, because of its lower storage

and comparative efficiency. However, FGMRES is the method of choice for precon-

ditioned iterations. Note that while GMRES requires extra storage in comparison

to CG, FCG also requires this extra storage (for reorthogonalization), and we do

not pay a storage penalty for the choice of FGMRES over FCG. In the rest of the

chapter, we accordingly use FGMRES.

73

4.4 Experiments

The performance of the preconditioner is illustrated on various datasets on

different variants of kernel regression. We first look at Gaussian process regression

with a Gaussian kernel and then extend the preconditioned approach to a generalized

(non-Gaussian) kernel. We finally experiment on kriging [42] and report results on

a large geostatistical dataset.

Although dataset-specific tuning of the preconditioner parameters can yield

better results, this is impractical. We therefore use the following rules to set the

preconditioner parameters.

• The tolerance (ϵ) for the preconditioner system solution is set at an order of

magnitude larger than the outer iteration tolerance (e.g., if the outer tolerance

was 10−4, the inner tolerance was set to 10−3).

• Similarly, the preconditioner regularizer σ is also set to an order of magnitude

higher than the kernel regularizer γ. When the outer regularizer is 0, the inner

regularizer is set to 10−3

While this might not yield the best preconditioner system, it performs well in most

cases from the experiments. In all the experiments, the outer iteration tolerance

was set to 10−6.

4.4.1 Gaussian process regression (GPR)

Mackay et al. [34] suggest using CG to solve the GPR. Table 4.1 shows a

comparison of the performance of Gaussian process regression based on our precon-

74

ditioner and our implementation of the CG approach in [34] on various standard

datasets1. The matrix vector product associated with the CG approach in [34] was

also accelerated using GPUML.

The convergence of the FGMRES is consistently better than the unprecon-

ditioned approach. Although for smaller datasets the computational performance

of the preconditioned and unpreconditioned [34] solvers are comparable, the perfor-

mance of FGMRES gets better for larger data sizes. This is because, for larger prob-

lems, cost per iteration in both CG and FGMRES increases, and thus a FGMRES

which converges faster becomes significantly better than the CG-based approach.

Low rank approaches [92, 83, 91] also address the time complexity in kernel

regression by working on an “active set” of setM and reducing the time to O(M2N).

We compared with the low rank Gaussian processes based on [91], and found our

approach to be superior. Because these approaches involve the solution of a large

optimization problem, straightforward algorithmic acceleration or parallelization is

not possible. Since the methods and accelerations used in this chapter are signif-

icantly different from those in [91], we have not reported these here, and defer a

detailed comparison to the future.

To illustrate the applicability of our preconditioner to non-Gaussian kernels,

we tested it on the Matern kernel[114],

k(xi, xj) = (1 +
√
3dij) exp(−

√
3dij), (4.10)

where dij =
√

∥xi−xj∥2
h2 . We used the GPR framework for a binary classification

1www.liaad.up.pt/~ltorgo/Regression/

75

Datasets GM [34] FGMRES Datasets GM [34] FGMRES

Robot-arm 23.81s 11.79s Bank 49.40s 37.74s

(9× 8192) (75) (4) (33× 4500) (38) (3)

Census 117.45s 90.31s Ailerons 131.34s 128.22s

(9× 22784) (42) (4) (41× 7154) (31) (4)

Census (2) 663.70s 482.50s Sarcos 1399s 797.9s

(17× 22784) (83) (5) (28× 44484) (50) (4)

Table 4.1: Performance of our FGMRES based Gaussian process regression against

the CG based approach by Gibbs and Mackay (GM) in [34]; d is the dimension

and N is the size of the dataset with the Gaussian kernel. Total time taken for

prediction is shown here, with the number of iterations for convergence indicated

within parenthesis. The mean error in prediction between the two approaches was

less than 10−6 in all the cases.

problem and tested it on several standard datasets2. The results are tabulated in

Table 4.2. Here again, FGMRES has a better computational performance than the

CG solver, thus illustrating its validity on non-Gaussian kernels.

4.4.2 Kriging

We compared the FGMRES-based kriging against the CG versions on the

ocean chlorophyll concentration data recorded along the Pacific coast of North Amer-

2www.csie.ntu.edu.tw/~cjlin/libsvmtools/

76

Datasets GM [34] FGMRES Datasets GM [34] FGMRES

Glass 0.32s 0.36s German 0.33s 0.45s

(10× 214) (45) (4) (25× 1000) (4) (2)

Australian 0.71s 0.53s Vehicle 0.66s 0.55s

(15× 690) (25) (3) (19× 846) (16) (3)

Splice 0.39s 0.93s Letter 186.58s 69.54s

(61× 1000) (1) (1) (17× 15000) (35) (4)

Table 4.2: Performance of our FGMRES based Gaussian process regression against

the CG based approach by Gibbs and Mackay (GM) in [34]; d is the dimension and

N is the size of the dataset with a non-Gaussian kernel (Matern). Total time taken

for prediction is shown here, with the number of iterations for convergence indicated

within parenthesis. The mean error in prediction between the two approaches was

less than 10−6 in all the cases.

ica (the data map is shown in Fig. 3.7) used in Chapter 3. We look at the 7-day

aggregate of the chlorophyll concentration, which is recorded on a grid of 416×600.

However, this includes several locations with missing data or those located over land.

This results in approximately 179, 065± 3, 5405 data samples per week.

It was observed that for each week’s data the CG-based approach converges

in 46 ± 12 iterations in 2, 301 ± 800s, whereas FGMRES converges in just 3± 1

iterations in 725± 190s, thus resulting in over 3X speedup.

77

4.5 Conclusions and discussions

Krylov solvers are guaranteed convergence within N iterations, N being the

number of samples. Therefore, when N goes high, reducing the number of iterations

using a preconditioner at a marginal overhead improves computational performance.

The improvement is significant for very large data sizes as is also observed in our

experiments with Sarcos and kriging datasets. It can therefore be concluded that

very large datasets mandate the use of efficient preconditioners to improve perfor-

mance. When K is not regularized, the system is more prone for ill-conditioning,

and the preconditioner becomes even more necessary and therefore will be required

even for smaller datasets.

The key contributions of this work are as follows,

• A novel yet simple preconditioner is proposed to solve a linear system with a

kernel matrix using flexible Krylov methods.

• A technique to accelerate the inner preconditioner system using truncated CG

with fast matrix vector products was developed.

• Rules to select the preconditioner parameter were shown.

Although there has been a lot of research using Krylov approaches for kernel

machines [34, 21, 60], to the best of our knowledge, this is the first paper to propose

an accelerated preconditioner for Krylov methods for kernel systems. The proposed

approach is not tied to any particular acceleration technique and would work with

any generic MVP acceleration. The performance of the proposed approach is illus-

78

trated in various learning approaches with data sizes up to 200, 000, and there is

an improvement of up to ∼ 10X in the number of iterations to converge and up

to ∼ 3X in the total time taken compared to a conjugate gradient based approach,

which complements the gains achieved via fast matrix vector products.

79

Chapter 5

Kernelized Rényi distance for subset selection

In the preceding chapters, we have looked at the GPU-based acceleration of

kernel primitives and its extension to various classes of kernel regression problem. In

this chapter, we explore a similarity measure based on the quadratic Rényi entropy.

We utilize kernelization (Parzen window estimates) to evaluate the underlying dis-

tribution in a non-parametric fashion. The resulting computation cost is mitigated

via GPUML.

Rényi entropy refers to a generalized class of entropies that have been used

in several applications. We derive a non-parametric distance between distributions

based on the quadratic Rényi entropy. The distributions are estimated via Parzen

density estimates and the quadratic complexity of the resulting distance evaluation

is mitigated with GPUML. This results in an efficiently evaluated non-parametric

entropic distance - the kernelized Rényi distance or the KRD. We extend KRD

to measure dissimilarities between distributions and illustrate its applications to

statistical subset selection and dictionary learning for object recognition and pose

estimation. In the next chapter, we will further extend the KRD into a similarity

measure and show its application to speaker recognition.

80

5.1 Sample-based entropy estimation

The entropy of a distribution measures the amount of information contained

by the distribution. The Shannon entropy is the most widely used entropic measure.

For a random variableX whose probability distribution is p(x), the Shannon entropy

is given by,

H(X) = −
∫

p(x) log p(x)dx (5.1)

The Shannon Entropy is a specific case of a more generalized family of Rényi en-

tropies characterized by a parameter α. The Rényi entropy of order α (α ≥ 0) is

given by

Hα(x) =
1

1− α
log

∫
p(x)αdx (5.2)

As α→ 1, the Rényi entropy reduces to the Shannon entropy (Eq. 5.1) in the limits

as shown in [67]. The Shannon entropy of a joint probability distribution can be

separated into the entropies of the individual random variables of the joint distri-

bution. These properties, coupled with the analytical tractability of the Shannon

measures for the commonly encountered parametric distributions, has made it the

preferred choice for many problems. Despite this advantage, the Shannon entropy

may be suboptimal in certain applications that require entropy estimation from

samples [41].

Sample-based entropy estimation generally involves the pdf estimation (p(x))

followed by the entropy-integral approximation (H(X) or Hα(x)). The pdf estima-

tion is much harder at higher dimensions, leading to an inconsistent entropy estimate

which can be detrimental to the underlying application. However, it has been shown

81

that for a quadratic Rényi entropy (α = 2), the pdf-estimation step can be bypassed

by directly solving the integral with a kernel density estimate plug-in [67]. This re-

sults in a consistent estimator even for higher dimension, as is illustrated later in

Section 5.2. Motivated by this, we consider the quadratic Rényi entropy and solve

the integral with a kernel density estimate plug-in following [67]. We adapt the

resulting distance measure to problems in speaker recognition, object recognition

and pose estimation; improvements are seen in each case. Throughout this chapter

(and the next one) the term Rényi entropy will refer to the quadratic Rényi entropy

(α = 2).

This chapter is organized as follows. The quadratic Rényi entropy is intro-

duced, kernelized and accelerated in Section 5.2. The subset selection algorithm

based on the kernelized Rényi distance is presented and validated in Section 5.3

before illustrating its applications in Section 5.4.

5.2 “Kernelization” of the Rényi Distance

The quadratic Rényi entropy (for α = 2 in Eq. 5.2) is given by,

H2(x) = − log

∫
p(x)2dx. (5.3)

If p(x) is known, the entropy can be computed using the integral above. In many

practical scenarios, the density is unknown and must be estimated from samples

drawn from the distribution. There are parametric and non-parametric ways of

estimating the density function. In the parametric case, a particular form for the

density is assumed and the parameters associated with the form are estimated from

82

the samples, e.g. via the expectation-maximization algorithm. A non-parametric

approach to density estimation uses a kernel window and estimates the density as a

sum of kernel functions of the available samples from the distribution. Using kernel

density estimation for p(x) as in [82], we get

p(x) =
1

N

N∑
i=1

Kh(x, xi), (5.4)

xi indicates the sample location, Kh(x, xi) is a kernel function, quite often the

Gaussian kernel,

Kh(x1, x2) =
1

h
√
2π

exp

(
−|x1 − x2|2

h2

)
, (5.5)

with h the bandwidth that must be selected according to the data. This approach is

preferred when the underlying distribution is unknown. Provided there are sufficient

samples, a non-parametric approach provides unbiased estimates. Plugging-in Eq.

(5.4) for p(x) to Eq. (5.3), we get

H2(x) = − log

∫ (
1

N

N∑
i=1

Kh(x, xi)

)2

dx (5.6)

= − log
1

N2

N∑
i=1

N∑
j=1

∫
Kh(x, xi)Kh(x, xj)dx.

For the Gaussian kernel,

∫
Kh(x, xi)Kh(x, xj)dx = K̂ĥ(xi, xj), (5.7)

where K̂ is also a Gaussian kernel with bandwidth equalling sum of the bandwidths

of the two Gaussian kernels [118]. Using this relation in Eq. (5.6),

H2(x) = − log

(
1

N2

N∑
i=1

N∑
j=1

K̂ĥ(xi, xj)

)
. (5.8)

83

Consider two distinct distributions with densities p and q, with p defined by

the set of data points, Dp = {xp1, . . . , xpN} and q defined by the set of data-points,

Dq = {xq1, . . . , xqM}, the distance between p(x) and q(x) is,

H2(p∥q) = − log

(
1

NM

N∑
i=1

M∑
j=1

K̂ĥ(xpi, xqj)

)
. (5.9)

This is called Rényi cross-information potential [67]. This was first defined and

analyzed by Principe et al. [67] and has since been used in several applications

including clustering [43], visual tracking [120] and source separation [27]. We shall

refer to this measure (Eq. 5.9) as the Kernelized Rényi Distance (KRD).

The advantages of the KRD are:

(1) because the KRD uses a non-parametric on-the-fly density estimation, it does

not require any parametric approximations for the distance evaluation;

(2) the KRD is symmetric unlike the popular KL-divergence measure;

(3) because it starts with Rényi entropy of α = 2 it should exhibit faster convergence

to the true measure for sampled data [40, 120].

The disadvantages of the KRD are its memory and computational complexity.

5.2.1 Accelerating KRD evaluation via GPUs

Evaluating the KRD between two distributions, each represented by N data-

points, would require (O(N2)) operations. It should be noted that the core compu-

tation in Eq. (5.9) is the summation of the Gaussian kernel. The key computation in

KRD is the weighted summation of Gaussian kernel function, and we used GPUML

[101] from Chapter 2 to accelerate KRD evaluations.

84

5.2.2 Inconsistency of sample-based KL divergence

Gockay et al. [35] observe that sample based estimation of the KL-divergence

exhibits variability at higher dimensions because it is ratio-based (other ratio-based

distances like Chernoff distance are also inconsistent at higher dimensions for sample

based estimation). In this experiment, we illustrate this fact by using synthetic data

and also show that the KRD measure (Eq. 5.9) does not exhibit such inconsistency.

In this experiment, we generated 10, 000 samples from two Gaussian distribu-

tions, N(µ, 0.25I) and N(−µ, 0.25I), where µ = {1, . . . , 1} and I the identity matrix,

for various data dimensions. KL divergence between two Gaussian distributions with

means µ1 and µ2 and variances Σ1 and Σ2 is given by,

KL(p||q) =
1

2
ln
|Σ1|
|Σ2|

+
1

2
tr
[
Σ1(Σ

−1
1 − Σ−1

2)
]

+
1

2
tr
[
Σ−1

2 (µ1 − µ2)(µ1 − µ2)
T
]

(5.10)

This distance is made symmetric by taking the average of KL(p||q) and KL(q||p).

Similarly the quadratic Rényi cross entropy between two Gaussian distribution is

given by,

KRD(p||q) = N (µ2|µ1,Σ1 + Σ2) (5.11)

where N (x|µ,Σ) is the evaluation of the Gaussian distribution with mean µ and

variance Σ evaluated at x [7].

We evaluate the KRD between samples for all the dimensions along with the

KL divergence based on the samples. For comparison we also evaluate the KL-

divergence and quadratic Rényi entropic distance between the distributions based

85

on the first and second order statistics. As the dimension increases, the distance

between distribution increases (as the means of the Gaussian are now more and

more far placed) and is expected to be reflected in the corresponding measures. The

normalized distance scores across dimension for various sample sizes (N) is shown

in Fig. 5.1.

0 5 10 15
0

0.5

1
KL − analysis

Dimension

D
is

ta
nc

e

0 5 10 15
0

0.5

1
KL − samples

Dimension

D
is

ta
nc

e

0 5 10 15
0

0.5

1
KRD − analysis

Dimension

D
is

ta
nc

e

0 5 10 15
0

0.5

1
KRD − samples

Dimension

D
is

ta
nc

e

Figure 5.1: Validation of the Kernelized Renyi Distance; Entropic distances between

Gaussian distribution for various dimensions, distances evaluated analytically based

on the underlying distribution and from samples (based on density estimates)

It can be seen that the trend followed by the sample-based KRD score com-

pares favorably with the statistics-based distance. However the trend of the sample-

based KL divergence is skewed at higher dimensions illustrating the inconsistency.

The variances of the corresponding KL sample-based distances are shown in Fig.

5.2, which indicates the associated instability. The variance of the other measures

were < 10−7 across several trials.

86

0 5 10 15

10
−5

10
0

KL − samples

Dimension
V

ar
ia

nc
e

Figure 5.2: Variance of the KL based on sample-based estimates

It was observed that the sample based KL divergence estimates do exhibit

the desired trend when estimated from a very large number of samples (∼ 75, 000

samples for 15 dimensions). However, in a practical scenario, this critical sample

size required to remove the underlying inconsistency in the trend is either unknown

or is beyond the modeler’s control.

5.2.3 Applications of KRD

There are numerous applications where the distance measure (equation 5.9)

can be potentially applied. But however, we limit our experiments and discussion to

the applications of the distance measure to statistical subset selection and similarity

scoring. We shall discuss the subset selection in this chapter and defer the discussion

on similarity scoring to the next chapter.

87

5.3 KRD for subset selection

The distance measure (Eq. 5.9) can be used in a greedy algorithm to extract a

statistical subset such that the subset and the original data are as close as possible

in the probabilistic space.

Existing algorithms for subset selection can be categorized into two types,

greedy and clustering-based approaches. Greedy approaches [20, 50, 91] define a

cost function to minimize and adds data to the subset that will minimize the cost.

Clustering based approaches (eg. Vector Quantization) cluster datapoints in non-

overlapping clusters and use the cluster centers as the low ranked representation.

Both these approaches are well known for sparsification in learning and vision ap-

plications. Our objective is to use the KRD to develop a greedy algorithm to select

a representative subset of a large dataset.

If the original distribution is denoted as p(x), the subset selection can be

formulated as forming a distribution q(x) using data-points from p(x) such that

p(x) and q(x) are as close to each other as possible. In other words, we would want

to add the next point in the subset to be drawn from the original set in such a

way that H2(p∥q) is minimized by this addition. It is easy to see that for a direct

use of the measure in Eq. (5.9) the subset will be clustered around the mode of

the distribution. However for a subset to be actually representative of the data, it

would be desirable to capture the significant outlier points as well. The distance

measure in Eq. (5.9) is therefore modified as,

H2(p∥q) = − log

(
1− 1

NM

M∑
j=1

N∑
i=1

(
K̂(xpi, xqj)

K̂(xpi, xpj)

))
(5.12)

88

As mentioned before, the requirement on the subset selection is that the pdf

defined from the subset should be as close as possible to the original distribution.

Hence, in our KRD based subset selection, we minimize the distance between the

subset distribution and the data distribution relative to the distance of the distri-

bution with itself. This is done above by taking the ratio of the contribution of each

training data element to the two distance measures. The subtraction from 1 is done

to to formulate subset selection as a minimization. For numerical convenience, we

clamp all ratios
K̂(xpi,xqj)

K̂(xpi,xpi)
above 1 to 1 and set log 0 = 0.

Greedy algorithms for subset selection fall into two categories; they either

singly add data-points from the original set to a subset till the distance between

the original and new distribution is less than a pre-defined threshold, or they add

a pre-defined number of data-points incrementally. In this work, we will use the

latter approach. Suppose a subset of size M needs to be extracted from a dataset

of size N , the greedy algorithm would add the data points one-by-one. For each

point, the distance measure is evaluated for all the points of the distribution from

the distribution. Because of the use of fast Gauss summations, this step has a

complexity of O(MN) and this is repeated for M points, thus leading to an overall

complexity of O(M2N). However, we have parallelized this computation efficient on

a GPU using GPUML [101].

We exploit the facts that the distance measure in Eq. (5.12) is symmetric and

that the influence of each sample point is additive (log is a monotone function).

To minimize the distance at each iteration, we consider the contribution of each

data-point in the original dataset to the distance, and add the point to the subset

89

Algorithm 4 The greedy algorithm for subset selection using the distance measure

Given: Data D = {x1, . . . , xN}

Initialize subset I to be empty

for 1 to M (input subset size) do

Define set J = all elements in D not in I

Add an element (el) from J to I which minimizes

H(pD∥pI) using Eq. (5.12)

Remove el from J

end for

Output I

that makes the largest relative distance contribution.

5.3.1 Validation: Kernel density comparison

In order to validate our approach to subset selection, we drew 2000 samples

from the 15 normal density mixtures in [56]. We estimated the underlying density

using the standard kernel density estimation, utilizing the entire set of drawn sam-

ples. We then used our KRD based subset selection to reduce the number of samples

to 20% of the sample size, and estimated the kernel densities using this low ranked

representation. The results for 6 of the 15 distributions are shown in Fig. 5.3. It

can be seen that our low ranked estimates are similar to those obtained from the

entire samples thus validating our approach further. Notice that the KDE on the

entire dataset also misses some fine features because of the sample size.

90

−5 0 5
0

0.5

1

Data point
K

D
E

Density estimation for a Skewed unimodal

−5 0 5
0

0.5

1

Data point

K
D

E

Density estimation for a Strongly skewed

−5 0 5
0

0.5

1

Data point

K
D

E

Density estimation for a Kurtotic unimodal

−5 0 5
0

0.5

1

Data point

K
D

E

Density estimation for a Outlier

−5 0 5
0

0.5

1

Data point

K
D

E

Density estimation for a Claw

−5 0 5
0

0.5

1

Data point

K
D

E

Density estimation for a Aymmetric Claw

Full data
Subset

Figure 5.3: Density estimates of the normal density mixtures in [56] using the entire

samples and our low rank subset

5.4 Applications of subset selection

The subset selection algorithm can be used in several applications.

With the improvements in learning algorithm, the complexity involved in

learning has also increased along with the amount of data available. Hence sparse

learning algorithms which use the sophisticated approaches with very few exemplar

points are gaining popularity, for example, Support Vector Machine[8](SVM). Prob-

abilistic algorithm like Relevance Vector Machine[109](RVM) and Gaussian Process

91

Regression [69](GPR) which not only provide the predictions, but also a confidence

value for the prediction are gaining popularity. As seen in the Chapters 2 and 3,

the Gaussian process regression is not sparse by nature. But several works have

attempted to sparsify this; these approaches fall in three classes; 1.) a low rank ap-

proximation (chapter 8 in [69]); 2.) Learning from a subset of the original data like

in [50, 20, 91]; 3.) learning using mixture of experts like approach. The proposed

algorithm can be used in the second category here.

Vector quantization (VQ) is a well known approach in vision and audio ap-

plications. It has been used in object recognition [31] for learning a dictionary

of codewords, which can later be used for forming histograms from objects. The

histogram of the codewords are then used for training and classification of object

categories. The key idea in the utilization of VQ in these applications is to find

cluster centers which are then considered as representatives of the set. It is possible

to use our subset selection approach in place of VQ.

5.4.1 Gaussian Process Regression:

The core complexity in Gaussian process regression (Chapter 2) involves solv-

ing a linear system involving the kernel covariance matrix and hence is O(N3). We

have already seen the mitigation of this cost via GPU. An alternate approach to

overcome this is to obtain a sparse representation (subset) of the original dataset

which retains the information contained in the original data. For example, Online

Gaussian Process (OGP) [20] uses a set of Basis Vectors (BVs) to train and predict

92

the GP model. Similarly, the Informative Vector Machine (IVM) [50] uses a KL-like

distance measure to select a representative subset by approximating the posterior.

Sparse Pseudo-input Gaussian processes (SPGP) [91] performs a sampling on the

training points to obtain pseudo training data which is then used for training and

prediction. Each of these approaches has a computational complexity of O(MN),

where N is the size of the original data and M is the size of the subset. Along the

same lines, we propose the use of our subset selection algorithm to obtain a subset

of the training data, by using a combined input-output space, an idea inspired by

[120] where a joint feature-spatial space is used for tracking. Once the subset was

selected, we trained and predicted the Gaussian Process model [69].

In order to test the proposed algorithm with Gaussian process regression,

we performed regression with two standard datasets, Abalone and PumaDyn8NH

[110]. We compared the performance with popular sparse data selection methods for

Gaussian processes - IVM and SPGP. Fig. 5.4 shows that our algorithm performed

much faster than the other methods when applied to large datasets although the

assymptotic complexity in our approach was O(N2M) against (O(MN)) for IVM

and SPGP.

It should be noted here that the error shown were absolute and not normal-

ized. For example, the output variable in Abalone is its age and the errors obtained

were of the order 1.5 − 2. At these scales, our performance can be asserted to be

comparable with other approaches. Further, the approaches with which we com-

pared our method were tuned low-ranked approximations designed specifically for

Gaussian process regression, thus our untuned subset selection performs on par with

93

0 5 10 15 20 25
10

−2

10
−1

10
0

Size of the Active Set
as a percentage of data size

M
ea

n
A

bs
ol

ut
e

E
rr

or

KRD
IVM
SPGP

0 5 10 15 20 25
10

0

10
1

10
2

10
3

10
4

Size of the Active Set
as a percentage of data size

T
ot

al
 ti

m
e

KRD
IVM
SPGP

(a) Abalone

0 5 10 15 20 25
10

−2

10
−1

10
0

Size of the Active Set
as a percentage of data size

M
ea

n
A

bs
ol

ut
e

E
rr

or

KRD
IVM
SPGP

0 5 10 15 20 25
10

−1

10
0

10
1

10
2

10
3

10
4

Size of the Active Set
as a percentage of data size

T
ot

al
 ti

m
e

KRD
IVM
SPGP

(b) PumaDyn8NH

Figure 5.4: Comparison of the performance of the training and prediction with our

approach, Informative vector machine and Sparse Pseudo-input Gaussian Process

with Abalone and PumaDyn8NH

the other tuned approaches.

5.4.1.1 Pose Estimation:

Motivated by the superior performance of the KRD-based sparse GPR, we

applied our approach to learn the head pose from human face images. Sparse re-

gression based pose estimation has been done in several papers, for example, [55]

uses RVM to train images to learn poses, [68] uses an online Gaussian process algo-

94

rithm to learn head pose from images. For this experiment, we used the PIE dataset

[88] after annotating the image. For the purpose of this experiment, we considered

only the horizontal orientations of the human face. The images were annotated with

a score between −1 (left) to +1 (right) based on the horizontal orientation of the

human face. A randomly selected class from the dataset is shown in Fig. 5.5 along

with the score assigned to them.

Figure 5.5: This is a randomly chosen class of pose images from the PIE dataset.

The images were assigned scores of {-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1} from left-

to-right

Each image was projected onto a 30 dimensional subspace using PCA and

were trained to learn the scores assigned to the image. Further, we also compared

the results with popular sparse learning methods Relevance Vector Machine (RVM)

(from [108] and Support Vector Machine (SVM) (from [16]. The error in prediction

and performance are tabulated in table 5.1. In all the experiments, 90% of the

images were used for training and the learning method was tested on the remaining

10%. 20% of the training data were selected by our method which was then used for

training the GP model. Note that, both RVM and GPR are probabilistic regression

approaches and provide a variance in prediction as well, a key difference from SVM.

KRD-based GPR is faster than RVM. It is slower than SVM, but the additional

95

computational cost is to provide the variance in predictions.

Mean Absolute Time taken

Method Error in for prediction

prediction (seconds)

GPR 0.0261 20.7

RVM 0.0431 50.4

SVM 0.0755 9.9

Table 5.1: Comparison of performance of our method with SVM and RVM for pose

estimation. Each error entry gives the mean absolute error between the predicted face

pose score and the actual score assigned to the image. Note that the prediction using

RVM and GPR involved the evaluation of the variance (confidence) also, whereas

the SVM computed only the predictions

5.4.2 Visual words and object recognition

We applied our subset selection algorithm to object recognition. The bag-of-

words approach [90, 31] have been widely used for object categorization because of

its simplicity and good performance. The basic steps in bag-of-feature based object

recognition can be summarized as:

1. Features are extracted from an image by either diving it into grids or using

interest point detectors.

96

2. The features are then represented by a set of descriptors. One of the popular

descriptors are the Scale-Invariant Feature Transform (SIFT) [53].

3. The next step is to generate a codebook from the descriptors. In this step, the

feature descriptors are Vector Quantized (VQ) and the centers of the clusters

are defined to be the codewords of the dictionary of object categories.

4. Features from the images can now be expressed as a histogram of all codewords

in the dictionary.

5. The histogram is used to train a classifier for object categorization.

6. For an unlabeled image, the histogram of codewords is extracted, and then

the trained classifier is used for classification.

We propose to replace the VQ step above with the KRD-based subset selection

approach to get a representative set of the collection of descriptors. We show that by

this approach, for comparable accuracy, there is a marked improvement in the time

taken for dictionary formation. We used a standard k-means based vector quantizer

for this experiment.

We use the SIFT descriptors of the image extracted after running an interest-

point detector using the toolbox from [112]. In order to provide a basis for com-

parison, we also use a VQ based dictionary. Once the dictionaries are obtained, the

histogram of codewords are extracted from the image. We use a 5-Nearest Neighbor

classifier to compare the performance of the two dictionaries. The images used for

the training and testing were obtained from the Caltech-101 dataset [30].

97

In this experiment, we randomly choose classes from the dataset and extracted

dictionaries using 5 images from each class with the two approaches mentioned. The

dictionaries were used to obtain codeword histogram from each image. The trained

histograms are then used to classify unseen test images using a 5 nearest neighbor

search. We repeated the experiment for 2, 3, 4, 5, 6 and 10 class prediction, in each

case the size of the dictionary was set at 30 times the number of classes trained.

Table 5.2 shows the overall accuracy and time taken for dictionary formation for

our approach and VQ based approach.

VQ-based Present method

2-class 77.8 (24.1s) 71.3 (18.7s)

3-class 62.3 (36.1s) 63.8 (26.7s)

4-class 78.4 (95s) 78.4 (83s)

5-class 61.4 (175.3s) 62.7 (103.6s)

6-class 63.4 (195.9s) 59.3 (114.2s)

10-class 47.8 (313.3) 52.7 (175s)

Table 5.2: Accuracy of classification when objects from different number of classes

were trained and predicted. The size of the dictionary was set to be 30 times the

number of classes of object present. Each entry here indicates the over-all percentage

of correct prediction, and the time taken for dictionary formation is given within

braces

98

It can be seen that, with comparable accuracy, our approach is much faster

than the VQ based approach, especially as the number of classes increases. We have

thus shown that the dictionary based on our method has comparable performance

with the VQ based approach, but takes lesser time for dictionary formation.

5.5 Conclusion

In this chapter, we have developed a new information-theoretic distance mea-

sure based on KRD and used it to develop a subset selection algorithm. The subset

selection algorithm was successfully applied to both synthetic and real problems

(Gaussian process regression, and to replace vector quantization). Our approach,

while being much more efficient, performed comparably or better than approaches

previously used. In the next chapter, we will extend this measure to similarity

scoring for a speaker recognition problem.

99

Chapter 6

Kernelized Rényi distance for similarity scoring

The KRD in Eq (5.9) represents the distance between two distributions p(x)

and q(x). We looked at its application to subset selection in the last chapter. It

is also possible to use the KRD as a similarity function, to measure similarities

between classes (each represented by a set of feature points), by measuring the dis-

tance between feature distributions. We illustrate this idea in a speaker recognition

problem in this chapter.

6.1 Speaker recognition

Figure 6.1: [color] A modular representation of a generic speaker recognition system

Fig. 6.1 shows a generic text-independent speaker recognition system that

will be used in this chapter. Once a speech signal (both reference and test) is

available, the first step in any recognition system is to extract features vectors from

the signals. Once the features are extracted, there are many approaches to build

100

the speaker model. Gaussian Mixture Models (GMM) [73] build a semi-parametric

model in the feature space, and are one of the widely used approaches in speaker

recognition. Alternatively, it is possible to measure the distance between the feature

vectors from the reference and test signals [6]. An advantage of such an approach

is very low training time. We use such an approach in this work. As shown in

Fig. 6.1, a scoring function is used to quantify the measured distance between the

reference and test spaces. The main task of the scoring function in a recognition

system is to find the similarity (or dissimilarity) between the reference and test

signal space and quantify this using a matching score. The matching score can be

used to authenticate based on a threshold, or to classify a speaker using k-nearest

neighbor classifier.

There have been several information-theoretic and statistical measures that

have been used to measure scores between speech signals. Second-order statisti-

cal measures [6] like sphericity and Gaussian likelihood have been used in speaker

identification, which use only the mean and variance of feature vectors. Soong et

al. [93] use a vector quantizer based codebook along with the Euclidean distance

to compare speech signals. Information theoretic measures like KL-divergence and

Bhattacharya distance have also been used in the speaker recognition framework

[12]. However, the underlying feature distributions are assumed to be Gaussian in

all these works. This can be limiting when the underlying distribution is seen to

be very different from a Gaussian. Semi-parametric Gaussian mixture models [73]

address this issue to some extent, and are popularly used in speaker recognition.

A disadvantage with semiparametric and non-parametric approaches is the associ-

101

ated computational complexity, which make them undesirable for large problems.

But however, in the proposed non-parametric distance (Eq. 5.9), we have already

addressed the computational complexity using GPUs.

The KRD in Eq (5.9) represents the distance between two distributions p(x)

and q(x). In order to use this as a scoring function in speaker recognition (Fig.

6.1), it is necessary to formulate the speech signals (reference and test) as samples

from distributions. The feature selection in the recognition system extracts features

from multiple overlapping frames of the speech signal. Suppose there are N and M

overlapping frames in the reference and the test signal respectively, and d features

are extracted, then we will have N × d vector representing the reference signal, and

a M × d vector representing the test signal. We formulate this feature set to be

samples drawn from the corresponding feature distribution of the speaker. Using

Eq. (5.9), we can thus evaluate the matching score.

This chapter is organized as follows. The features and dataset used are de-

scribed in section 6.2. The performance of KRD based similarity measure is illus-

trated for speaker identification in section 6.3 and for speaker verification in 6.4

6.2 Dataset and features

For this experiment, we used the speech signals from the TIMIT [22] database,

which consists of data from 630 different speakers. Each sample for a speaker con-

tains one sentence uttered by the speaker and there are totally 10 samples per

speaker. We extracted 13 mel-frequency cepstral coefficients (MFCC) coefficients

102

from 25ms speech frames with 10ms overlap [26]. For all our experiments, we nor-

malized the feature vectors to a set of zero-mean-unit-variance (except for the ap-

proaches that used only the first and second order statistics of the feature vectors).

Although there are more complex sets of features used for speaker recognition (e.g.,

the above features can be augmented with velocity and energy and then pruned via

split vector quantization), here we used just the MFCC because the objective was

the comparison of distance measures. The method is of course generic enough to be

extended with other features, and benefits obtained from GPU implementation will

still be very significant.

6.3 k-NN for Speaker Identification

In speaker identification problem, the speaker is known a priori to be a member

of a set of N speakers and a new test sample must be classified into one of N classes.

In this experiment, we used the KRD measure with a 3-nearest neighbor classifier

for speaker identification. We repeated the experiment with the GaussLL and VQ

measures also using the 3-nearest neighbor classifier. We also built an SVM (with

an RBF kernel) based speaker identification system [13] for comparison.

For each case, we use 5 samples for each speaker to do the training and test

on the remaining samples. We evaluated the performance of each of the approaches

for 10, 25, 50, 75, and 100-class scenarios. The classification results are shown in

Table 6.1. It can be seen that the proposed approach performs better than the other

approaches for all the cases.

103

Table 6.1: Classification accuracy for various methods in speaker identification ex-

periment.

of speakers VQ GaussLL SVM KRD

10 96.00 94.00 94.00 96.00

25 90.40 91.20 82.40 92.00

50 70.67 73.87 66.80 78.40

75 64.40 71.60 61.07 74.40

100 54.80 63.20 55.80 64.80

6.4 Likelihood Ratio for Speaker Verification

Speaker verification system accepts a sample X as a speaker S if the likelihood

ratio P (X|S)
P (X|S′)

> T , where T denotes a threshold. The likelihood P (X|S) denotes

the probability that the features from the sample X were generated by speaker S.

Similarly, P (X|S ′) denote the probability the features are from an imposter. The

threshold T can be adjusted so that the false acceptance rate (FAR) (an imposter

being identified as a speaker) and the false rejection rate (FRR) (a speaker being

rejected as an imposter) are equal. We used this Equal Error Rate (EER) criterion

to evaluate the performance of our measure.

We compared our scoring function with the Gaussian-likelihood measure [6]

(GaussLL), Euclidean distance between vector quantized codebook [93] (VQ), KL-

based measure [12] (KLa), KL-scores evaluated from the samples (KLs), and GMM-

UBM based score [73]. The Matlab kmeans function was used to build the codebook

104

of size 50. The GMM was built using the statistical toolbox in Matlab, and number

of mixtures was chosen to be 32 with diagonal covariance for each speaker. The

universal background model [73] (UBM) for the imposter was built by collecting

feature samples from a large number of speakers in the database. For the GMM,

the UBM had 256 mixtures, whereas for other measures the entire set of UBM

samples were used.

We evaluate each of the above scores for a test signal with respect to the

reference speaker and imposter speaker models and compute the ratio between the

two, which is then used for threshold comparisons. The equal error rate obtained

in this way is reported in Table 6.2 for each of the scores. It can be seen that the

proposed scoring function outperforms the other approaches in all the cases.

In Table 6.2, we have also reported the average time taken to evaluate the

score between two sets of feature vectors (speaker/imposter). The measures Gaus-

sLL and KLa take the least time. However, these measures use only the first and

second order statistics for score evaluation and hence inexpensive to compute. While

our score is more complex, it still takes lesser time than all advanced approaches

(VQ, GMM, and KLs).

6.5 Conclusions

We have adapted the KRD into a scoring function and used in a speaker

verification and identification system. The results compare favorably with other

105

Table 6.2: EER for various methods in speaker verification experiment. Time re-

ported is the average time of one score evaluation. Time to build the imposter models

for GMM and VQ is not included.

VQ KLs KLa GaussLL GMM KRD

Time 0.7s 4.5s 0.03s 0.04s 0.4s 0.16s

EER 5.33 6.67 6.67 6.00 8.00 4.67

similarity score based approaches. However, state-of-the-art speaker recognition sys-

tem yields an equal error rate of 1.75 with the TIMIT database taking around 1.2s

per speaker. The state-of-the-art system is based on a Gaussian Mixture Modeling

(GMM) with a Universal Background Model (UBM) and speaker adaptation [73]

and generalizes well to limited training data. This is key aspect lacking in the KRD-

based classifiers and also exists for other similar classifiers. In the next chapter, we

explore the GMM-UBM system briefly and use it to propose a new learning solution

in this space that generalizes well for limited training data and compares well to the

state-of-the-art systems.

106

Chapter 7

A partial least squares framework for speaker recognition

In the last chapter, we formulated the problem of speaker recognition as a

task of measuring the distance of a test distribution from a target and imposter

distribution to make a decision. While this was promising, it did not compare well

with the state-of-the-art recognition system. In this chapter, we explore the state-

of-the-art recognition system to extend it to a discriminative learning framework.

7.1 Speaker adaptation and supervectors

State-of-the-art speaker recognition systems use a Gaussian mixture model

(GMM) to represent each speaker. Given, unknown speaker features x, the likeli-

hood for a given speaker si is given by,

p(x|si) =
K∑
i=1

πkN (x|µik,Σik), (7.1)

where {µ,Σ, π} are the GMM parameters and N (x|µ,Σ) indicates a Gaussian dis-

tribution with mean µ and variance Σ evaluated at point x. To account for limited

training data available, the problem is cast into a framework in which differences

from a universal background model (UBM) are used to adapt speaker-specific GMMs

[73]. The universal background model is built by pooling features from a large num-

ber of speakers and denotes an average speaker. Training samples from a particular

speaker is used to adapt this model toward the speaker in a MAP sense [73]. This

107

is illustrated in Fig. 7.1, where the UBM is colored in blue and the adapted speaker

in red.

Figure 7.1: [color]GMM Speaker Adaptation with Universal Background Model

More recently, the problem has been transformed into a task of learning the

between-class separability in a supervector setting [48]. The supervectors are ob-

tained by concatenating the centers of the adapted speaker GMMs into a single

vector (Fig. 7.2) and this results in a single fixed-lenght feature vector for a speaker

utterance of any length. The objective in the supervector space is to discriminate

between a speaker and imposters by accounting for the speaker variability while

ignoring nuisance information. Commonly, only a few (often one) speech samples

from a very large speech database belong to the target speaker, which necessitates

use of the method capable of learning from a few samples in a very high dimensional

space. Different approaches such as GMM likelihood ratios [73] and support vector

machines [15] have been explored previously.

Several learning techniques have been used to tackle similar scenarios in other

108

Figure 7.2: GMM to supervectors

domains. One approach that was originally developed in chemometrics is partial

least squares [75] and its kernelized version [77]. Partial least squares (PLS) [75]

techniques are a wide class of methods for modeling relations between sets of ob-

served variables by means of latent variables. PLS has been used for regression,

classification, and dimensionality reduction. The underlying assumption in PLS is

that the observed data is generated by a system/process that is driven by a small

number of latent variables.

PLS is often used as a dimensionality reduction technique and therefore draws

comparisons with principal component analysis (PCA) and linear discriminant anal-

ysis (LDA). PCA is an unsupervised dimensionality reduction algorithm, which

results in a single projection irrespective of the task. LDA is a supervised dimen-

sionality reduction technique that results in different subspaces for different tasks.

PLS is similar to LDA in this sense. But unlike LDA, PLS is not limited by a

projection space dimension of c − 1 (where c is the number of classes). A detailed

comparison of PLS, PCA, and LDA is presented in [77]. PLS based techniques have

been very successful in the fields of chemometrics and bioinformatics. Recently,

PLS has been adapted to image processing and computer vision problems (such as

109

human detection and face recognition) [81] and was shown to greatly improve the

performance, especially for 2-class problems.

Motivated by this, we explore here a partial least squares based framework for

speaker modeling and recognition in the supervector space. Extension to handling

nuisance parameters is discussed in the next chapter. This chapter is organized

as follows. In Section 7.2, we introduce the PLS framework and its adaptation to

speaker recognition. The framework is accelerated on a GPU in Section 7.3. We

describe our experiments and discuss results in Section 7.4.

7.2 Partial Least Squares

Denote a d-dimensional supervector by x and the corresponding speaker label

by y. Essentially, x is the feature (super)vector (input variable) and y is the speaker

identity (output variable that has to be learned). Assume that the total number of

speakers is N and denote the N × d matrix of supervectors by X and the N × 1

vector of labels (1 for speaker and −1 for imposter) by Y . Given the variable

pairs {xi, yi}, i = 1, . . . , N (x ∈ Rd, y ∈ R), PLS aims at modeling the relationship

between x and y using projections into latent spaces. While a detailed analysis of

PLS can be found in [75], we provide a brief overview here. PLS decomposes X and

Y as

X = TP T + E, (7.2)

Y = UQT + F, (7.3)

110

where T and U (N × p, p < d) are the latent vectors, P (d× p) and Q (1× p) are

the loading vectors, and E (N × d) and F (N × 1) are residual matrices. PLS is

usually solved via the nonlinear iterative partial least squares (NIPALS) algorithm

[75] that constructs a set of weight vectors W = {w1, w2, . . . , wp} such that

max[cov(ti, ui)]
2 = max

|wi|=1
[cov(Xwi, Y)]2, (7.4)

where ti and ui are the i
th columns of T and U respectively and cov(ti, ui) indicates

the sample covariance between latent vectors ti and ui. Maximizing the covariance

in the latent vector space is equivalent to maximizing discrimination in the same

space; in other words, for a particular speaker, PLS learns a subspace in which the

speaker latent vectors tS are well separated from the imposter latent vector tI . This

is illustrated in Fig. 7.3. Thus, PLS learns a unique latent space for each speaker.

After extraction of latent vectors ti and ui, the matrices X and Y are deflated by

subtracting their rank-1 approximation based on ti and ui:

X ← X − tip
T
i ; Y ← Y − uiq

T
i . (7.5)

This step removes any information captured by ti and ui from X and Y . The process

is repeated till a sufficient number of latent vectors is obtained. This number is

determined via standard cross-validation techniques [81].

It can be shown [75] that the weight w in NIPALS corresponds to the first

eigenvector of the following eigenvalue problem and the NIPALS is just a mirror of

the popular power iterations for finding the dominant eigenvectors,

[XTyyTX]w = λw. (7.6)

111

Figure 7.3: [color] Partial Least Squares (PLS) latent spaces for speaker recognition.

Because the rank of the above system is limited by the number of samples N , N < d

yields a few dominant eigenvectors and hence PLS works best in this scenario.

The weight matrix W can be used for dimensionality reduction, and the result-

ing projection can be used with any standard classifier to model a target speaker.

However, it was observed that the performance was not as good as the alternative

presented below. We instead use PLS in a regression framework that implicitly

utilizes the PLS weights W obtained from the NIPALS algorithm.

7.2.1 PLS Regression

Substituting the w from Eq. (7.4) in Eq. (7.2), we get

XW = TP TW + E ⇒ T = XW (P TW)−1. (7.7)

112

Now, U can be written in terms of T [75] as U = TD +H, where D is a diagonal

matrix and H is the residue. Eq. (7.3) now becomes

Y = TDQT +HQT + F = XW (P TW)−1DQT + F̄ , (7.8)

and we get the PLS regression:

Y = XB +G; B = W (P TW)−1DQT , (7.9)

where B is the set of PLS regression coefficients. This regression framework directly

provides the way to compute the matching score for seamless speaker discrimina-

tion, eliminating the need for a separate classifier. It also utilizes the latent structure

learnt by NIPALS algorithm better – the regression coefficients weight the supervec-

tor centers that discriminate the current speaker against imposters more than other

centers. Hence, the regression coefficients are unique to each speaker. Note that,

although PLS is used widely a dimensionality reduction technique, we use a PLS-

based regression technique, and the dimensionality reduction is not used explicitly

for speaker modeling.

In our work here, we first train the GMM UBM using a large amount of data.

Then, we create a specific GMM for each speaker in the database by adapting the

UBM using the speaker (training) utterances. Then, the speaker supervector [48]

is created by concatenating the means of the speaker GMM. Note that the whole

training utterance is represented by one point in the supervector space. We then

learn the PLS regression model using a one-vs-all scheme. Finally, we perform the

scoring and Z-normalize the output scores [5] using a large number of non-target

speakers (imposters). These steps are summarized in Fig. 7.4.

113

Figure 7.4: Schematic of the proposed Partial Least Squares (PLS) technique for

speaker recognition.

The beneficial properties of the proposed PLS framework for speaker recogni-

tion can be summarized as follows:

1. It is a discriminative technique (like SVM); hence, the performance should

improve as the amount of speaker training data increases.

2. SVM learns a separating hyperplane between speaker and imposter supervec-

tors, whereas PLS learns discriminative projection that maximizes the covari-

ance of supervectors and speaker labels in the projected space. PLS regression

weights the supervectors based on these projections to score each utterance.

3. The computational cost of PLS is O(Nd) against O(N2d) for SVM, where d

is the supervector dimension and N is the number of supervectors.

4. The PLS technique used here is linear. Non-linear PLS can potentially be

done by using the kernel-trick [77]. However, this direction will be explored in

114

the next chapter.

7.3 Accelerating PLS

Despite the success of PLS, its O(Nd) computational cost may not work well

for very large sample sizes or feature dimension. We address this scalability issue via

use of graphical processors. The NIPALS algorithm is shown in Alg. 5 and comprises

two main steps; in the first step, the weight w is evaluated according to Eq. 7.4.

Once w is obtained, NIPALS performs a deflation of the X and Y matrices, which

is a rank-1 update such that any information captured by w is removed from X and

Y . If the desired latent space dimension is not achieved, the algorithm returns to

the first step to evaluate a new w.

The NIPALS algorithm (Alg. 5) involves a number of linear algebra operations

on the feature matrix X and response variable Y . The asymptotic space and time

complexity is O(dN) (assuming f ≤ d). It is not possible to do away with O(dN)

space requirement because this is required to store the feature matrix. However,

the time complexity can be addressed with efficient parallelization strategy using

graphical processors.

CUBLAS is an implementation of BLAS (Basic Linear Algebra Subprograms)

on top of the NVIDIA CUDA driver. The library is self-contained at the API

level, that is, no direct interaction with the CUDA driver is necessary. CUBLAS

attaches to a single GPU and does not auto-parallelize across multiple GPUs. The

basic model by which applications use the CUBLAS library is to create matrix

115

Algorithm 5 Nonlinear Iterative PArtial Least Squares (NIPALS) algorithm (with

CUBLAS)

Given: N × d feature samples X and N × f response variable Y

repeat

Given: N × d Feature samples X and response variable Y

Allocate GPU memory for X and y and transfer data to GPU

[cublasAlloc,cublasSetVector]

repeat

w = XTu/(uTu); ∥w∥ → 1: [cublasSgemv,cublasSscal,cublasSnrm2]

t = Xw: [cublasSgemv]

c = Y T t/(tT t); ∥c∥ → 1: [cublasSgemv,cublasSscal,cublasSnrm2]

u = Y c: [cublasSgemv]

until Convergence

p = XT t: [cublasSgemv]

Deflate X : X ← X − tpT and Y : Y ← Y − tcT : [cublasSgemv]

until Required number of factors are obtained

and vector objects in GPU memory space, fill them with data, call a sequence of

CUBLAS functions, and, finally, upload the results from GPU memory space back

to the host. To accomplish this, CUBLAS provides helper functions for creating and

destroying objects in GPU space, and for writing data to and retrieving data from

these objects. CUBLAS offers best speedup for BLAS2 (matrix-vector operations)

and BLAS3 (matrix-matrix operations) operations.

NIPALS has several BLAS1, BLAS2 and BLAS3 tasks. Therefore, the best

116

computational performance would result if BLAS2 and BLAS3 are performed on

GPU and BLAS1 on CPU. But, this would result in several data movements back

and forth between CPU and GPU, and can cost heavily in access times. Therefore, in

our GPU-based NIPALS we perform all blas operations on the GPU. Such a strategy

would be advantageous because the BLAS2 and BLAS3 speedups are significant

and the savings on the memory transfer times is big enough to weigh over BLAS1

disadvantages. The pointers to various CUBLAS function that can be used at

various steps in NIPALS is enlisted in Alg. 5.

We illustrate the GPU acceleration of NIPALS on the INRIA dataset used in

[81]. Fig. 7.5 shows the speedup of our GPU-based NIPALS for various sample and

feature sizes. Although there is considerable speedup for lower datasize/dimension,

significant speedup is obtained for large datasize/dimension indicating its utility for

large datasets.

10
2

10
3

10
4

10
2

10
3

10
4

Number of features

N
um

be
r

of
 s

am
pl

es

Speedup

5

10

15

20

25

30

Figure 7.5: [color] Speedup obtained by the GPU-based NIPALS for various sample

sizes of different feature dimensions

117

7.4 Experiments

We performed experimental evaluation of the proposed method on the core

(short2-short3) test set and 8conv-short3 test set in the NIST SRE 20081 evaluation

dataset. The dataset is grouped into 8 trial conditions: C1: interview speech (IS)

both for training and testing (BTT); C2: IS, using the same microphone for training

and testing; C3: IS, using different microphones for training and testing; C4: IS

for training, telephone speech (TS) for testing; C5: TS for training, noninterview

microphone speech for testing; C6: TS BTT; C7: English TS BTT; and C8: English

TS BTT by native English speakers. For all experiments, we used 19 MFCC features

along with their deltas.

We compared performance of the PLS-based approach against the GMM/UBM

based system [73] and GMM-supervector-kernel based SVM [15]. The libSVM pack-

age was used for our SVM runs. The GMM/UBM code was developed in house and

validated against results reported in NIST SRE 2006. Note that since nuisance at-

tributes are not being modeled, the GMM/UBM EER is relatively high compared

to SRE 2008 results (where nuisance corrections based on JFA were applied).

7.4.1 Supervector dimensions

It was observed that 4096-center GMM gave the best performance with core

set, while 2048-center model was best for 8conv-short3 set. With SVM, these num-

bers are 1024 and 512, respectively; and with PLS, 512 and 256, respectively. While

1www.itl.nist.gov/iad/mig/tests/sre/2008/

118

a larger number of GMM centers leads to severe over-fitting to the background data

(which helps GMM capture background characteristics better but does not provide

room for supervector based discrimination), very few centers lead to severe under-

fitting and the resulting GMM models do not generalize well to test conditions. This

is the reason PLS works best with moderate number of GMM centers, which also

reduces the computational load by an order of magnitude.

7.4.2 Single training utterance

In the core set, there is only one training utterance per speaker. There are

1270 male and 1993 female speakers (3263 total) and 98776 trials. Each trial belongs

to one or more of 8 conditions outlined above. The DET curves for all 8 conditions

are shown in Fig. 7.6 and the equal error rates are listed in Table 7.1.

Note that having only one training utterance per speaker does not provide

enough data for discriminative approaches like SVM and PLS; the GMM/UBM

system is likely to perform better in this case. In spite of that, the PLS framework

outperforms GMM/UBM in conditions 2, 5 − 8 (5 out of 8) and is comparable for

condition 4.

As mentioned, the PLS framework makes use of intra-speaker variability.

Therefore, the performance is expected to improve if more supervectors belonging

to the target speaker are available. Ideally, speaker utterances should be recorded

across various nuisance conditions, which will enable PLS to truly capture speaker-

related information and reject channel-related one. Alternatively, we explored simple

119

GMM SVM PLS PLS PLS

2-splits 4-splits

C1 13.84 19.73 18.43 18.02 17.13

C2 6.15 12.73 3.38 3.38 3.64

C3 13.54 19.49 18.39 18.08 17.13

C4 21.31 23.63 22.48 22.79 22.79

C5 19.03 24.34 13.90 13.64 13.90

C6 13.48 18.44 10.13 9.60 9.77

C7 10.69 15.41 6.52 5.51 5.92

C8 10.42 16.34 6.61 5.47 5.98

Table 7.1: Equal-error-rates obtained with PLS (with/without data splitting), SVM,

and GMM across various condition for the NIST 2008 core set. Note: there is no

nuisance attribute compensation.

mechanism of splitting the training data to create multiple supervectors per utter-

ance. Note that this does not guarantee the availability of training vectors across

nuisance conditions. However, it was observed that the PLS performance indeed

improved significantly with 2-way split of the training data, although there is no

further improvement with 4-way split. The DET curves for these cases are also

shown in Fig. 7.6.

120

0 0.5
0

0.5

False Alarm

M
is

se
d

D
et

ec
tio

n Condition 1

0 0.5
0

0.5

False Alarm

M
is

se
d

D
et

ec
tio

n Condition 2

0 0.5
0

0.5

False Alarm

M
is

se
d

D
et

ec
tio

n Condition 3

0 0.5
0

0.5

False Alarm

M
is

se
d

D
et

ec
tio

n Condition 4

0 0.5
0

0.5

False Alarm

M
is

se
d

D
et

ec
tio

n Condition 5

0 0.5
0

0.5

False Alarm

M
is

se
d

D
et

ec
tio

n Condition 6

0 0.5
0

0.5

False Alarm

M
is

se
d

D
et

ec
tio

n Condition 7

0 0.5
0

0.5

False Alarm

M
is

se
d

D
et

ec
tio

n Condition 8

GMM
SVM
PLS
PLS − 2splits
PLS − 4splits

Figure 7.6: [color] Performance of PLS against SVM and GMM baseline systems on

the NIST 2008 core set.

7.4.3 Multiple training utterances

The 8conv-short3 set consists of 8 training utterances per speaker. There are

240 male and 395 female speakers (635 total) and 16570 trials. There are no trials

corresponding to conditions C1 through C4, as all training data is telephone speech.

We compared the performance of PLS-based speaker recognition against GMM/UBM

and SVM baseline systems, and the DET curves are shown in Fig. 7.7 with the cor-

responding equal error rates in Table 7.2. It can be seen that PLS outperforms other

121

systems in all conditions.

GMM SVM PLS

C5 10.98 10.52 8.63

C6 6.66 5.62 4.30

C7 4.82 3.94 2.41

C8 5.27 3.76 3.02

Table 7.2: Equal-error-rates obtained with PLS, SVM and GMM across various con-

dition for the 8conv-short3 set. Note: there is no nuisance attribute compensation.

7.4.4 Effect of training sample size per speaker

Because the 8conv-short3 set contains 8 training utterances (and therefore

8 supervectors) per speaker, it also provides a good framework for evaluation of

the recognizer performance dependence on the amount of training data. We have

trained each of our recognition systems with 1, 2, . . . 8 utterances per speaker; the

corresponding results are shown in Fig. 7.8(a). It can be seen that all 3 system

show improved performance with the increase in the number of training speaker

supervectors. However, unlike GMM and SVM, PLS performance does not saturate

but instead continues to decrease. This is because PLS relies on the intra-class

variance to determine the projection; therefore, having more training data implies

better intra-speaker variance estimate and better performance.

122

0 0.1 0.2
0

0.1

0.2

False Alarm
M

is
se

d
D

et
ec

tio
n Condition 5

0 0.1 0.2
0

0.1

0.2

False Alarm

M
is

se
d

D
et

ec
tio

n Condition 6

0 0.1 0.2
0

0.1

0.2

False Alarm

M
is

se
d

D
et

ec
tio

n Condition 7

0 0.1 0.2
0

0.1

0.2

False Alarm

M
is

se
d

D
et

ec
tio

n Condition 8

GMM
SVM
PLS

Figure 7.7: [color] Performance of PLS against SVM and GMM baselines on 8conv-

short3 set.

7.4.5 Noise robustness of PLS

To evaluate PLS robustness to noise, we added Gaussian noise to test samples

in the 8conv-short3 set (male only) and evaluated the performance of all three

recognition systems. The results are shown in Fig. 7.8(b). It can be seen that

additive noise decreases the performance for all systems, but PLS still outperforms

both SVM and GMM.

7.5 Conclusion

We have applied a PLS latent vector framework to the GMM supervectors in

speaker recognition and have shown that it outperforms the baseline GMM/UBM

and SVM systems on NIST 2008 SRE dataset in most conditions. However, the

123

2 4 6 8
4

6

8

10

12

14

training samples per speaker

E
qu

al
 e

rr
or

 r
at

e

GMM
SVM
PLS

(a) Number of training points

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

SNR in dB

E
E

R
s

GMM
SVM
PLS

(b) Noise robustness

Figure 7.8: [color] EER for PLS, SVM, and GMM/UBM systems under various

scenarios.

PLS-speaker scoring is asymmetric, viz. given 2 samples A and B, training a PLS

model on A and testing on B does not yield the same decision as training a model

on B and testing on A, which is desirable in many recognition engines. We shall

address this in the next chapter.

The PLS system we currently have does not account for nuisance parameters

(channel and session variability); therefore, our baseline systems also did not include

nuisance parameter elimination for fair comparison. Nuisance compensations with

PLS will also be discussed in the next chapter.

124

Chapter 8

Kernel PLS framework for speaker recognition

In the last chapter, we introduced a PLS framework for speaker recognition

sans nuisance compensation. Within the PLS framework, it is possible to compen-

sate nuisance directions either at the PLS end, or at the supervector end. We had

explored both options, however the latter was more successful; we describe this in

this chapter.

Recently, several approaches have been tested to make the GMM-based speaker

recognition robust to session and channel variabilities, including JFA technique [10]

[47] and the i-vectors framework [24]. JFA learns two subspaces of maximal channel-

related and speaker-related variabilities and attempts to jointly learn the directions

along these subspaces for any given supervector. On the other hand, i-vectors en-

capsulate the directions in a total variability space. The i-vectors are smaller in

dimension compared to the GMM-supervectors and thus provide an abridged rep-

resentation of the utterance.

Given the i-vector representation, the key problem is to develop learning tech-

niques that distinguish target and non-target trials in the i-vector space. Generative

PLDA models [45], discriminative SVMs [14], and CDS classifiers [84] have been

studied for speaker recognition using i-vectors. We have earlier extended a linear

PLS framework in supervector-space [104] to a kernel framework to best model the

125

non-linear i-vector space[100].

Discriminative frameworks in speaker recognition fall under two categories.

The first class of approaches models each speaker independently against a set of

background speakers [14]. While such a independent modeling is preferred in many

practical recognition systems, this often suffers from an imbalance in the number

of positive and negative examples available for training. Also, the scoring is gen-

erally asymmetric (while such a problem may exist for certain generative models

as well, popular methods like JFA, PLDA, etc have symmetric scoring). Alternate

methods attempt to learn a pair-wise similarities between a train utterance and a

test utterance e.g. [84, 9]. While such an approach does not allow for explicit inde-

pendent speaker modeling, it does not suffer from data imbalance and asymmetric

scoring due to pair-wise considerations. In this chapter, we propose to combine both

these class of approaches in to a single hybrid framework by developing KPLS-based

discriminative based “one-shot similarity” framework.

One-shot similarity framework [117, 116] has been proposed in the context of

face recognition. Given two (feature) vectors, the one-shot-similarity reflects the

likelihood that each vector belongs the same class as the other vector and not in

the class defined by a set of negative examples. The potential of this approach has

been explored widely in computer vision [116, 117].

This chapter is organized as follows. In Section 8.1, the factor analysis frame-

work is introduced and extend to obtain total variability framework with i-vectors.

KPLS framework is introduced and adapted to the speaker recognition problem in

Section 8.2. The one-shot similarity scoring is detailed in Section 8.3. Section 8.4

126

discusses the recognition results on NIST SRE 2010 data and includes comparisons

against several state-of-the-art systems.

8.1 Joint Factor Analysis and the i-vectors

While the MAP adaptation of the UBM works well for speaker recognition, it

fails in the presence smaller training u While the MAP adaptation and supervectors

work well for speaker recognition, it fails in the presence smaller training utterances

where the data sparsity prevents some components of the UBM from being adapted.

Further it does not address any nuisance compensations in the supervector space.

Joint Factor Analysis (JFA) [46] attempts to address this by correlating the various

Gaussian components of the UBM. The key assumption in JFA is that the intrinsic

dimension of the adapted supervector is much smaller than N×d. JFA breaks down

the speaker- and channel- dependent supervector M into two components,

M = s+ c, (8.1)

where s is the speaker dependent part, and c is the channel dependent part given

by,

s = m+ V y +Dz

c = Ux

M = m+ Ux+ V y +Dz (8.2)

where {m,U, V,D} are the hyper-parameters of the JFA model, which are estimated

via Expectation Maximization (EM). The rationale behind this equation is that

127

aside from the offset m (UBM), the mean supervector is the superposition of three

fundamental components with rather distinctive meaning. The component that lives

in U is used to denote undesired variabilities in the observed vectors (e.g. channel

related variability). The component living in V is used to denote the speaker related

variability. U and V are termed the eigen-channel and eigen-voices respectively and

typically Nd × 400 dimensions. D provides a mechanism to capture the residual

variability not captured by U and V . Thus, the key idea in the JFA technique is

to find two subspaces (V and U) that best capture the speaker and the channel

variabilities in the feature space. The term joint factor analysis comes from the fact

the three latent variables x, y and z are jointly estimated unlike traditional factor

analysis where an independent estimation is adopted.

Dehak et al. [24] observed that the channel subspace still contains information

about the speaker and vice-versa. Therefore, a combined subspace was proposed to

capture both variabilities and called the total variability space. In this formulation,

the speaker- and channel-dependent supervector s is modeled as

s = m+ Tw, (8.3)

where m is a speaker- and channel-independent supervector (usually the UBM su-

pervector), T is a low-rank Nd × 400 dimensional matrix representing the basis of

the total variability space, and w is a normal-distributed vector representing the co-

ordinates of the speaker in that space. The vector w is called the i-vector, short for

“intermediate vectors” due to their intermediate representation between the acoustic

and supervector representation; or the “identity vectors” for their compact repre-

128

sentation of a speaker’s identity. The set {m,T} represent the hyper-parameters of

the total-variability framework. Typically, the number of dimensions of w is three

orders of magnitude smaller than that of the supervectors (e.g. 400 vs 105). The

i-vectors thus provide a concise representation of the high-dimensional supervectors.

8.1.1 Hyper-parameter training

A key difference between the training of total variability matrix T and the

eigen-voices V is that for V all utterances from a specific speaker are considered

to belong to the same person, whereas T -training takes each utterance to be in-

dependent irrespective of the speaker identity. Otherwise, both training takes a

similar EM-approach [47]. The eigen-channel U is estimated after estimating the

eigen-voices and the approach is detailed in [33]. Both JFA and i-vectors are adept

at modeling the intrinsic variabilities, however, i-vectors are increasingly being pre-

ferred due to their superior recognition performance and compact representation.

8.1.2 Intersession compensation in i-vector space

The i-vector representation does not include explicit compensation for the

intersession variabilities like in JFA. However, standard intersession compensations

have been proposed in the i-vector space [25]. The most successful compensation

include a Linear Discriminant Analysis (LDA) projection followed by Within Class

Covariance Normalization (WCCN).

Linear discriminant analysis (LDA) looks to find orthogonal directions that

129

simultaneously maximize the inter-speaker discrimination and minimize the intra-

speaker variability. This is analogous to learning a direction that removes channel

and other nuisance directions from the i-vectors. The idea behind WCCN is to scale

the total variability space by a factor that is inversely proportional to an estimate of

the within-class covariance. This deemphasizes the directions of high intra-speaker

variability.

A LDA based subspace is first learnt on the i-vectors, and training and testing

i-vectors are projected into this space. Let L denote the LDA projection matrix.

Then, a within-class covariance normalization matrix W is learnt on LDA-projected

space. A compensated i-vector for a raw i-vector w is given by,

ŵ = W−0.5(Lw). (8.4)

A detailed description of the nuisance compensation in i-vector space is avail-

able in [25]. Given the compensated i-vectors, the key challenge in speaker recog-

nition is the design of appropriate learning techniques that can classify speakers in

the i-vector space.

8.2 Kernel Partial least squares (KPLS)

A brief description of kernel PLS is provided here; more detailed analysis is

available in [76]. Denote a d-dimensional feature by x (the i-vector from a single

speech utterance in our case) and the corresponding speaker label by y. KPLS

considers the mapping of the features x to a higher dimensional space, given by

Φ : Rd ⇒ Rd̄. Assume momentarily that such a Φ is defined and known. KPLS

130

formulation proceeds similar to the linear counterpart in Section 7.2, by replacing

X with Φ(X). Similar to the linear PLS, KPLS is also solved via the nonlinear

iterative partial least squares (NIPALS) algorithm (Alg. 5) [75], which constructs a

set of weight vectors W = {w1, w2, . . . , wp} such that

max[cov(ti, ui)]
2 = max

|wi|=1
[cov(Φ(X)wi, Y)]2, (8.5)

where ti and ui are the i
th columns of T and U respectively and cov(ti, ui) indicates

the sample covariance between latent vectors ti and ui. Maximizing the covariance

in the latent vector space is equivalent to maximizing discrimination in the same

space; in other words, for a particular speaker, KPLS learns a subspace in which the

speaker latent vectors tS are well separated from the imposter latent vector tI as

illustrated in Figure 8.1. Thus, KPLS learns a unique latent space for each speaker.

Figure 8.1: [color] Non-linear mapping and the corresponding subspaces learnt via

Kernel Partial Least Squares (KPLS).

It has been shown [75] that the NIPALS algorithm is equivalent to iteratively

131

finding the dominant eigenvectors of the problem

[Φ(X)TyyTΦ(X)]wi = λw. (8.6)

The Φ(X)-scores ti are then obtained as ti = Φ(X)wi. Rosipal et al. [76] modify

this eigenproblem as

[Φ(X)Φ(X)TyyT]t = γt. (8.7)

Using the “kernel” trick [7], Φ(X)Φ(X)T can be defined as a kernel matrixK leading

to the final eigenproblem

[KyyT]t = γt. (8.8)

A key advantage of this kernelization is that an explicit definition of the mapping

function Φ is not required and it suffices to define a kernel function between pairs

of feature vectors. This modified version of the NIPALS algorithm for KPLS has

been detailed in [76].

After extraction of latent vectors ti and ui, the kernel matrix K is deflated by

removing any information captured by ti and ui from K:

K ← (In − ttT)K(In − ttT). (8.9)

The process is repeated till a sufficient number (determined via standard cross-

validation) of latent vectors is obtained.

132

8.2.1 KPLS speaker models

We use the KPLS in the regression framework [104] for speaker modeling.

Substituting the w from Eq. (7.4) in Eq. (7.2), we get

Φ(X)W = TP TW + E ⇒ T = Φ(X)W (P TW)−1. (8.10)

Now, U can be written in terms of T as U = TD+H, where D is a diagonal matrix

and H is the residual [75]. Eq. (7.3) now becomes

Y = TDQT +HQT + F = Φ(X)W (P TW)−1DQT + F̄ .

Using P = Φ(X)TT and W = Φ(X)TU from [76] in the above equation, we generate

the score for a test i-vector:

scoreKPLS = Φ(Xt)Φ(X)TU(T TΦ(X)Φ(X)TU)−1DQT .

This leads to the KPLS regression:

scoreKPLS = KtB; B = U(T TKU)−1DQT , (8.11)

where B is the set of PLS regression coefficients, Kt is the kernel matrix between

training data and testing data i-vectors, and K is the kernel matrix between the

training data i-vectors only. The regression framework provides a direct method

to compute the “KPLS speaker models”. The kernel matrix deflation requires the

explicit construction of the kernel matrix, and the accelerated construction from

GPUML was used for this purpose.

The KPLS score is obtained using Eq. (8.11) with the kernel built using testing

data i-vectors against the development data and training data i-vectors. Note that

133

the KPLS score is a linear combination of the cosine scores between the testing data

i-vector and the combination of target data and development data i-vectors and that

this linear combination (B) is unique to each speaker.

8.3 One-shot similarity scoring

One shot similarity (OSS) draws its motivation from the class of one-shot

learning techniques that learn from one or few training examples [117]. It has been

explored in the contexts of face recognition [116] and insect species identification

[117]. OSS compares two vectors by considering a single, unlabeled negative example

set and using it to learn what signals are considered “different”. Given a definition

for a set of background data (negative examples) A , one shot similarity compares

any pairs of feature-vectors x and y to provide their similarity scoring. OSS first

computes a model for the vector x and then uses the model to score y. Intuitively,

this score would give the likelihood of y belonging to the same class as x. A similar

score for x based on a model built with y is obtained. The one-shot similarity (OSS)

score is then obtained by averaging these two scores. These steps are illustrated in

Fig. 8.2.

In the context of speaker recognition and KPLS, the single, unlabeled negative

example set A is the set of i-vectors from background speakers, x is the target

speaker’s training i-vector and y is the test i-vector. We use KPLS to model each

vector based on the negative example set.

134

Figure 8.2: [color] One Shot Similarity scoring

8.3.1 Present approach:

In our experiments, we use gender dependent sets A. For each target speaker,

the corresponding i-vector is assigned a label of +1; samples in set A are assigned

a label of −1; the KPLS model (one-vs-all approach) is trained; and the speaker-

specific regression coefficients B are learnt according to Eq. (8.11). This is repeated

for both train and test i-vectors. KPLS output scores in each case are Z-normalized

[5]. The scores are then combined to a one-shot similarity score. These steps are

summarized in Figure 8.3.

Figure 8.3: One-shot schematic for speaker recognition.

135

8.4 Experiments

We performed experimental evaluation of the proposed method on the extended

core set of the NIST SRE 2010 evaluation data set, which is grouped into 9 trial

conditions1. Our development data consisted of NIST SRE 2004, 2005, 2006, and

2008 data; Switchboard data set, phases 2 and 3; Switchboard-Cellular data set,

parts 1 and 2; and Fisher data set (total of 17319 male and 22256 female utterances).

A gender-dependent 2048-center UBM with diagonal covariance was trained using

the standard 57 MFCC features, and the gender-dependent total variability matrix

T of dimension 400 was also learnt.

8.4.1 Parameters of KPLS/OSS

Two main parameters of the KPLS/OSS system are the kernel function and

the set A in one-shot framework.

8.4.1.1 Choice of kernel

There are several popular kernels used with kernel methods. We explored two

popular kernels namely Gaussian (Eq. 8.12) and Cosine (Eq. 8.13).

kGaussian(ŵ1, ŵ2) = exp

[
∥ŵ1 − ŵ2∥2

2

]
(8.12)

kCosine(ŵ1, ŵ2) =

(
ŵT

1 ŵ2

)
(ŵT

1 ŵ1) (ŵT
2 ŵ2)

(8.13)

The performance of KPLS on the SRE 2010 extended core dataset based on these two

kernels is shown in Fig. 8.4. Both these kernels have comparable results, the cosine

1www.itl.nist.gov/iad/mig/tests/sre/2010/

136

kernel has a marginally better performance than Gaussian in several conditions and

hence was used in our subsequent experiments.

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

Conditions

EER for KPLS

Cosine
Gaussian

Figure 8.4: [color] Performance of KPLS on the SRE 2010 extended core dataset

based on the Gaussian and Cosine kernels

8.4.1.2 Set of negative examples A

The background data or the negative example set A determines the distri-

bution of the negative examples. The size of this set is fixed and the samples

are chosen from our development data in such a way that the resulting speaker con-

tains the maximum possible distinct encompassing various channels in the combined

databases. Such a choice would enable the best possible discriminative framework.

The effect of the size of the set A is shown in Fig. 8.5 where the EER for condition

2 (interview speech from different microphone for training and testing) in SRE 2010

extended core task is shown for various sizes of the set A.

The drop in EER from size ∼ 1000 to a size ∼ 5000 is considerable (4.2 →

137

2000 4000 6000 8000 10000

3.9

4

4.1

4.2

Number of negative examples
E

E
R

Condition 5 in SRE 2010

Figure 8.5: [color] Effect of the size of the set of negative examples A in the perfor-

mance: EER for condition 2 in the SRE 2010 extended core task with OSS-KPLS

4.0). However, the drop from ∼ 5000 to ∼ 10000 is not equally significant (4.0 →

3.95), considering the increased computational cost associated with the increase.

Therefore, the size of A was set at ∼ 5000 in our experiments.

8.4.2 Systems compared

The proposed OSS-KPLS based speaker recognition was compared against

several state-of-the-art systems, specifically JFA [10] [47], PLDA [45], and CDS

[23]. We describe these systems briefly here.

8.4.2.1 Joint Factor Analysis

JFA provides an explicit mechanism to model the undesired variability in the

speech signal. It decomposes the speaker supervector as

s = m+ Ux+ V y +Dz, (8.14)

138

where {m,U, V,D} are the hyper-parameters of the JFA model, which are estimated

via Expectation Maximization (EM). The rationale behind this equation is that

aside from the offset m (UBM), the mean supervector is the superposition of three

fundamental components with rather distinctive meaning. The component that lives

in U is used to denote undesired variabilities in the observed vectors (e.g. channel

related variability). The component living in V is used to denote the speaker related

variability. D provides a mechanism to capture the residual variability not captured

by U and V .

Defining ΦJFA = [UV D] and β = [xyz]T , we obtain compensated training and

testing supervectors as

ηtrain/test = ΦJFAβ − Uxtrain/test. (8.15)

The final JFA score is then given by

scoreJFA =
1

N
ηtrainWtestηtest; (8.16)

where N is the number of frames in the test segment, Wtest = ΓtestΣ
−1, Γtest is the

soft-count of each Gaussian mixture as defined in [33] and Σ is the variance of the

UBM.

In our experiments, we use the JFA as described in [33]. The U and V matrices

are learnt with 300 and 100 dimensions respectively. The final JFA scores are then

ZT-normalized [5].

139

8.4.2.2 Probabilistic Linear Discriminant Analysis

PLDA facilitates the comparison of i-vectors in a verification trial. A special

two-covariance PLDA model is generally used for speaker recognition in the i-vector

space. The speaker variability and session variability are modeled using across-class

and within-class covariance matrices (Σac and Σwc respectively) in the PLDA setup.

A latent vector y representing the speakers is assumed to be normally distributed

N (y;µ,Σac), and for a given speaker represented by this latent vector, the i-vector

distribution is assumed to be p(w|y) = N (w; y,Σwc).

Given two i-vectors w1 and w2, PLDA defines two hypotheses Hs and Hd

indicating that they belong to the same speaker or to different speakers respectively.

The score is then defined as log p(w1,w2|Hs)
p(w1,w2|Hd)

. Marginalization of the two distributions

with respect to the latent vectors leads to

scorePLDA = log

N


 w1

w2

 ;

 µ

µ

 ,

 ΣtotΣac

ΣacΣtot




N


 w1

w2

 ;

 µ

µ

 ,

 Σtot0

0Σtot




In our experiments, we found that using a Σac of rank 200 along with a full-

rank (rank 400) matrix Σwc produced the best results. The scores were S-normalized

only for those conditions that involve telephone speech (all except C1, C2 and C4,

where S-norm was found to be detrimental for both EER and DCF). The S-norm is

defined in [45] and can be interpreted loosely as a symmetric version of Z-norm [5].

140

8.4.2.3 Cosine Distance Scoring:

The CDS classifier has been used by Dehak et al. [24] and Senoussaoui et al.

[84]. Improved performance has been reported over the corresponding SVM-based

approach. The CDS classifier defines the score for the trial as a cosine similarity

function between two i-vectors after projecting them to an LDA subspace (learnt

on the development data) to remove the session variability. If w1 and w2 are the

training data and the testing data i-vectors and A is the LDA projection matrix,

the CDS score is given by

scoreCDS =
(Aw1)

T (Aw2)√
(Aw1)T (Aw1)

√
(Aw2)T (Aw2)

. (8.17)

In out experiments, the CDS scores were Z-normalized [5].

8.4.3 Results

We compared the performance of the OSS-KPLS based speaker recognition

against the JFA, PLDA, CDS and KPLS systems. The corresponding equal error

rate (EER) and detection cost function (DCF) values across each condition are

tabulated in Table 8.1 and are shown graphically in Figure 8.6. The DCF is defined

as for NIST SRE 2010 “core” and “8conv/core” conditions. The corresponding DET

curves are shown in Fig. 8.7.

The PLDA and JFA systems belong to the class of generative methods for

speaker recognition. Between them, the PLDA is better in most of the conditions.

In contrast, OSS-KPLS and CDS belong to the class of discriminative methods,

and OSS-KPLS outperforms CDS in most of the conditions (in terms of EER).

141

Systems C1 C2 C3 C4 C5 C6 C7 C8 C9

JFA 2.67 4.34 4.06 3.65 3.55 7.04 8.16 3.11 2.13

0.53 0.62 0.55 0.63 0.52 0.86 0.96 0.50 0.43

PLDA 1.77 3.09 3.00 2.85 2.59 5.43 8.06 2.51 2.17

0.36 0.59 0.56 0.50 0.49 0.79 0.86 0.52 0.39

CDS 2.27 4.06 3.71 3.48 4.18 6.36 8.46 2.99 1.96

0.33 0.55 0.58 0.47 0.56 0.82 0.76 0.52 0.32

KPLS 1.77 3.48 5.36 2.61 4.05 6.36 7.62 2.87 2.17

0.33 0.57 0.62 0.47 0.61 0.85 0.85 0.55 0.34

OSS 1.65 3.57 4.84 2.85 3.84 6.19 7.34 2.73 1.82

0.31 0.55 0.59 0.45 0.55 0.84 0.82 0.53 0.33

OSS+ 1.58 2.76 2.97 2.48 2.59 5.39 7.16 2.40 1.61

PLDA 0.35 0.59 0.56 0.50 0.49 0.79 0.86 0.51 0.36

Table 8.1: Equal error rate (EER) and detection cost function (DCF) values obtained

using Joint Factor Analysis, Probabilistic Linear Discriminant Analysis, Cosine Dis-

criminative Scoring, Kernel Partial Least Squares and One-shot/KPLS classifiers

for the NIST SRE 2010 extended core data set.

142

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

Conditions

E
E

R
 in

 %

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Conditions

D
C

F

JFA
PLDA
CDS
KPLS
OSS−KPLS
OSS−KPLS+PLDA

Figure 8.6: [color] Performance of JFA, PLDA, CDS, KPLS and OSS-KPLS clas-

sifiers on the NIST SRE 2010 extended core data set.

OSS-KPLS performance was comparable to PLDA performance in several testing

conditions in terms of EERs and DCFs and is better than PLDA in 3 of the 9

conditions for both EER and DCF. Also note that in most conditions OSS-KPLS

is easily the second best system (if not the best) in terms of both EERs and DCFs

for most of the tested conditions.

Given that the PLDA and OSS-KPLS perform consistently better than other

systems, we explored the possibility of score fusion between these approaches. We

computed the fused score by combining the output scores with linear weights, which

were trained using a small subset of development data. The results are also shown

143

1 2 5 10 20
1
2

5
10
20

M
is

se
d

D
et

ec
tio

n
P

ro
ba

bi
lit

y
(%

)

Condition 1

1 2 5 10 20
1
2

5
10
20

Condition 2

1 2 5 10 20
1
2

5
10
20

Condition 3

1 2 5 10 20
1
2

5
10
20

M
is

se
d

D
et

ec
tio

n
P

ro
ba

bi
lit

y
(%

)

Condition 4

1 2 5 10 20
1
2

5
10
20

Condition 5

1 2 5 10 20
1
2

5
10
20

Condition 6

1 2 5 10 20
1
2

5
10
20

False Alarm
Probablity (%)

M
is

se
d

D
et

ec
tio

n
P

ro
ba

bi
lit

y
(%

)

Condition 7

1 2 5 10 20
1
2

5
10
20

False Alarm
Probablity (%)

Condition 8

1 2 5 10 20
1
2

5
10
20

False Alarm
Probablity (%)

Condition 9

 JFA
PLDA
CDS
KPLS
OSS−KPLS

Figure 8.7: [color] Performance of JFA, PLDA, CDS, KPLS and OSS-KPLS clas-

sifiers on the NIST SRE 2010 extended core data set: DET curves for various test

conditions

in Table 7.1 and Figure 7.6. The fused scores yield the best EERs in all conditions,

suggesting the complementary nature of PLDA and OSS-KPLS in capturing speaker

characteristics. More sophisticated fusion strategy is a subject of further research.

8.4.4 Effect of Noise

In order to test the noise sensitivity of the OSS-KPLS system, babble noise of

various levels were added to all test utterances and the individual systems’ perfor-

144

mances were evaluated. The results for Condition 2 (interview speech from different

microphone for training and testing) of the SRE 2010 extended core is shown in

Fig. 8.8. It can be seen that additive noise deteriorates the performance of all the

systems. However, OSS-KPLS is the second best system even in the presence of

noise in terms of EERs and is the best system in terms of DCFs.

5 10 15 20 25 30 35 40
0

10

20

30

SNR in dB

E
E

R

5 10 15 20 25 30 35 40
0.5

0.6

0.7

0.8

0.9

1

SNR in dB

D
C

F

JFA
PLDA
CDS
KPLS
OSS−KPLS

Figure 8.8: [color] Sensitivity of JFA, PLDA, CDS, KPLS and OSS-KPLS to addi-

tive babble noise on the Condition 2 of SRE 2010 extended core dataset

8.5 Conclusions

In this chapter, we have extended kernel partial least square into a one-shot-

similar framework for speaker recognition. The one-shot similarity enables a sym-

metric scoring for the KPLS-based discriminative framework. The proposed frame-

work was compared against several state-of-the-art systems on the NIST SRE 2010

145

extended core data set. The OSS-KPLS system outperforms the state-of-the-art

in several conditions and provides complementary information, resulting in further

improved performance using simple linear score combination as a score fusion tech-

nique. Performance analysis in the presence of noise indicates that the new system

maintains the performance gap even in the presence of noise.

146

Chapter 9

PLS for loan defaults prediction

We have earlier seen the application of partial least squares for the problem of

speaker recognition in Chapter 7. While our focus there was on speaker recognition,

the method itself is generic and has several practical applications. In this chapter,

we explore one such application to a totally different domain: risk prediction with

student loans.

9.1 Loan monitoring and warning systems

Several financial institutions proactively monitor loans of various types (by

lender, term, age, default criterion etc.) and from several domains (such as auto,

home, student etc.). When the monitoring relies on a manual process and the

number of active loans is enormous, it is challenging to predict the total number

of loans that have a high propensity to not pay back and which those that are

at a high risk of defaulting in the near future. Without the aid of an automated

system, it would be a lengthy, erroneous, and/or one-size-fits-all type montioring

process. However, if the risk associated with a given loan record can be predicted

well ahead of time, the agency can carry out appropriate communication or other

suitable action to prevent loan default.

For a given portfolio, variables at various scales can be observed or deduced.

147

On a personal level, it is possible to observe the borrower-specific payment patterns

such as loan repayment behavior (current, delinquent, forbearances used, etc), inter-

payment gaps, and the rate of communication. Various interactions of a borrower -

as with the call center servicing the customer and online portal activity regarding

the loan can be recorded. It is also possible to include regional scale data such

as the unemployment rate that would signify the general repayment capacity of

the regional population. Observations can also be aggregated at the national scale

from national institutions like Department of Labor, etc. In this work, we use data

from an actual loan services provider and the exact details of the agency and the

observations are deliberately omitted due to privacy constraints.

S
ev

er
ity

 S
co

re

Delinquency

Step function

S
ev

er
ity

 S
co

re

Delinquency

Ramp function

S
ev

er
ity

 S
co

re

Delinquency

Exponential function

S
ev

er
ity

 S
co

re

Delinquency

Piece−wise linear function

Figure 9.1: Possible mapping of risk severity

In order to predict the risk associated with a loan, it is required to define a

quantitative mapping of observed variables to risk that can be used by an agent

to take appropriate decision. A domain expert can provide pointers to functional

mappings such as a ramp, piecewise-linear, exponential, etc [Fig. 9.1]. We use a

148

combination of these functions to map the delinquency to a risk severity of a loan

in a scale of 0 to 100. Again, due to proprietary reasons, the exact nature of the

risk function is not revealed here.

Figure 9.2: Loan related observations are used to model the associated risk

Given the observations and a quantitative risk, we formulate the task of risk

severity prediction as a regression problem [Fig. 9.2]. We extend the partial least

squares regression[75] from Chapter 7 to model the risk severity and use the asso-

ciated variable influence on projection to choose the most influential variables for

prediction. We tune the overall approach to suit the nature of this problem, the key

challenges here are,

1. A very small part of an observed population constitutes defaulted case that is

required to be modeled. Any model must address this imbalance

2. The financial status of a person can be very volatile, in order to capture such

volatility special indicator variables on top of the model predictions.

3. To handle the large data sizes, the method must be computationally scalable.

Observations over a 12-month period are used to model the the loan severity 6

months ahead of time (risk at the 18th month). The model capabilities are tested

149

on an independent set of records which has approximately the equal same size as

the training data.

This chapter is organized as follows. We introduce the Variable influence of

projection (VIP) based variable selection in Section 9.2. Domain specific adaptation

of PLS and VIP to improve the predictions is discussed with our experiments in

Section 9.3 and Section 9.4 concludes the chapter.

9.2 Variable influence on projection

Although traditional regression models will be able to deal with a large number

of highly correlated variables (predictors or descriptors), there are several situations

in which better predictions are obtained when a subset from a larger number of vari-

ables is selected. This occurs mainly because in a set of hundreds of variables, most

of them enclose noise, irrelevant and/or redundant information. Feature selection

is a way to identify variable subsets that in fact reproduce the observed values of

a dependent variable, i.e. those subsets that are, for a proposed problem, the most

useful to obtain a more accurate regression model. Although the main emphasis

in variable selection is upon the prediction, it is desirable that the selected subsets

should aid the interpretation of the regression model. Thus, the aim of variable

selection is to reduce significantly the number of variables to obtain simple, robust

and interpretable models[106]. Here, we use the Variable Influence on Projection or

VIP to select the most important variables for prediction.

The VIP score of a predictor, first published by Wold et al. [115], is a summary

150

of the importance for the projections to find f latent variables. The VIP score for

the j-th variable is a measure based on the weighted PLS coefficients W (from Eq.

7.4). Given W and the latent vectors T and U , the VIP score for the j-th variable

is given by,

VIPj =

√∑
f b

2
fW

2
jf∑

f b
2
f

; (9.1)

where bf =
∑
f

tTf uf

tTf tf
.

Once the VIP scores are computed, an appropriate “threshold” can be used to

choose the variables. However, since the average of squared VIP scores equals 1, the

“greater than one rule” is generally used as a criterion for variable selection [18].

9.2.1 PLS model for loan prediction

In our PLS model for loan prediction, we first determine the influential variable

via VIP. Once the variables are selected, the regression coefficients are learnt on this

reduced set. A 10−fold cross-validation is used to select the number of latent PLS

factors in each case.

9.3 Experiments

In our experiments, we first illustrate the performance of PLS regression

against a standard least squares regression. Due to its better performance PLS

was chosen for further model improvements. We address the data imbalance via

multiple PLS models and the volatility in data by using indicator variables. The

151

PLS approach is computationally efficient and the scalability has already been ad-

dressed in Chapter 7.

9.3.1 Least Squares Regression vs PLS Regression

In our first experiment, we compared the PLS regression with a least squares

regression. The variable selection in PLS was performed with VIP-scores, with the

least squares regression, variable selection was performed using the method in [32].

As a first measure of comparison, we look at the histogram of the error for the

two approaches in Fig. 9.3. For the least squares regression, around 60% of the

predicted scores fall within an error range of ±10, whereas close to 75% of the PLS-

predicted scores fall within ±10 range. Also, the computation complexity of PLS

regression is better than the least squares regression due to the expensive pseudo-

inverse computation in least squares regression. Due to these reasons, we use PLS

for our further analysis. However all the improvements we propose are applicable

to the least squares regression as well.

−100−80 −60 −40 −20 0 20 40 60 80 100
0

20

40

60

80

100

%
 o

f t
es

t s
am

pl
es

 in
 th

e
bu

ck
et

Error Buckets (Predicted score − Actual score)

Least Squares Regression

(a) Least squares regression

−100−80 −60 −40 −20 0 20 40 60 80 100
0

20

40

60

80

100

%
 o

f t
es

t s
am

pl
es

 in
 th

e
bu

ck
et

Error Buckets (Predicted score − Actual score)

Partial Least Squares Regression

(b) PLS regression

Figure 9.3: [color] Error histogram: Least squares regression vs PLS

152

The confusion matrix of the baseline PLS-model is shown in Table 9.1. It can

be seen that there is low accuracy in high risk predictions. A similar distribution is

also observed with the least squares regression as well requiring further modifications

of the regression model to handle the problem.

Predictions

Low Risk Medium Risk High Risk

Ground truth

Low Risk 84.00 2.03 0.00

Medium Risk 5.25 1.01 0.00

High Risk 5.30 2.41 0.00

Table 9.1: Confusion matrix for the PLS regression model, numbers shown in per-

centages of the total records

9.3.2 Subpopulation modeling

For the domain that we are building the model, it is necessary to have higher

accuracy at the high risk region even if this is at the expense of a lower accuracy at

the low risk region. One possible reason for the low-accuracy-high-risk prediction

is the the data imbalance. To address this, we propose to build separate models to

different subpopulation of the data; this idea is summarized in Fig. 9.4. The sub-

population can be selected based on aggregated observed values or some indicators

derived from the observations.

153

Figure 9.4: Subpopulation model to improve data imbalance

9.3.2.1 Observation-based subpopulation

One way to select a subpopulation is by clustering the average of a particular

variable in the observation period. In our experiment, we averaged the quantized risk

in the observed period and divided that into three clusters of low/medium/high risk.

Such a segregation helps overcome the data imbalance to some extent as indicated

by the corresponding confusion matrix in Table. 9.2.

Predictions

Low Risk Medium Risk High Risk

Ground truth

Low Risk 81.41 4.33 0.27

Medium Risk 3.90 2.26 0.10

High Risk 3.41 3.67 0.63

Table 9.2: Confusion matrix for the subpopulation based multi-PLS regression model

- subpopulation selected based on aggregated observed risk, numbers shown in per-

centages of the total records

154

9.3.2.2 Indicators-based subpopulation

In the last experiment, the subpopulation was chosen solely based on the

aggregate of an observed value. An alternate is to do some manipulations on certain

observed variables leading to an indicator and segregating the population based on

this indicator. In this experiment, we compute the slope of the delinquent days in

the last financial quarter and use it as an indicator to segregate the population.

Such a segregation also provides similar improvements like the last experiment and

the confusion matrix is shown in Table. 9.3.

Predictions

Low Risk Medium Risk High Risk

Ground truth

Low Risk 81.40 4.34 0.27

Medium Risk 4.36 1.79 0.11

High Risk 3.38 3.77 0.57

Table 9.3: Confusion matrix for the subpopulation based multi-PLS regression model

- subpopulation selected based on the slope of delinquent days (indicator variable),

numbers shown in percentages of the total records

Both the indicator-based subpopulation and aggregated-observation based sub-

population yields comparable results which is also indicated by the error-histograms

in Fig. 9.5. We therefore proceed with the aggregated-observation based subpopu-

lation modeling for our further analysis.

While sub-population modeling improves over the single model discussed be-

155

−100−80 −60 −40 −20 0 20 40 60 80 100
0

20

40

60

80

100

%
 o

f t
es

t s
am

pl
es

 in
 th

e
bu

ck
et

Error Buckets (Predicted score − Actual score)

Subpopulation model based on average observed risk

(a) Aggregated risk based subpopulation

−100−80 −60 −40 −20 0 20 40 60 80 100
0

20

40

60

80

100

%
 o

f t
es

t s
am

pl
es

 in
 th

e
bu

ck
et

Error Buckets (Predicted score − Actual score)

Subpopulation model based on delinquency trend

(b) Slope of delinquency days based subpopula-

tion

Figure 9.5: [color] Error histogram for PLS subpopulation models: aggregated obser-

vations vs derived indicators

fore, there is still room for improvement. In order to first analyze whether this is

due to the model deficiency or any other data related issue, we look at the risks in

the observed month, during the unobserved period, predicted risk and the actual

risk at the 18-th month. Fig. 9.6(a) shows the general trend all the records where

the risk of the borrower/loan is low till the 12-th month and Fig. 9.6(b) shows a

subset of these cases where there is a high risk in the 18-th month and the model

fails to catch these. These results illustrate that atleast two-thirds of the high risk

records predicted low are due to the volatility in the borrower’s risk rather than the

model deficiency itself. To address this, we propose to artificially boost the model

outputs based on certain inputs.

9.3.3 Indicator variables based boosting

Indicator variables summarize certain special characteristics of a given set of

observations. The exact definition of the indicator variables varies from domain to

156

0

20

40

60

80

100

120

R
is

k
S

co
re

s

Avg 12 month risk < 30, 12th month risk < 30
80.26 percent of total cases

12−month
average risk

12th month
risk

13−17 month
average risk

18th month
risk

18th month
predicted risk

Average Risk
Max Risk
1σ

(a) Low risk prediction: general statistic

0

20

40

60

80

100

120

R
is

k
S

co
re

s

Avg 12 month risk < 30, 12th month risk < 30
18th month risk > 80, predicted risk <30

2.17 percent of total cases

12−month
average risk

12th month
risk

13−17 month
average risk

18th month
risk

18th month
predicted risk

Average Risk
Max Risk
1σ

(b) Low risk prediction: high risk cases predicted as low risk

Figure 9.6: [color] Error histogram based on the subpopulation PLS models

domain. We have already seen the performance of the indicator-based subpopulation

model in the last section. In this experiment, we use the indicators to boost the

model outputs. For boosting model outputs, we propose a couple of new indicator

variables that can signify certain loan/borrower related characteristics:

157

9.3.3.1 Excursions

We define excursion as the number of times an observed variable exceeds its

own mean (or any other level like mean + one-standard-deviation). This has the

potential to indicate the frequency of the activity, and was particularly useful for

communication related observations.

9.3.3.2 Trend Ratio

We define trend as the slope of a variable of interest in a three-month window.

Trend ratio in an observed period is the percentage of the positive trend evaluated

in the overlapping time windows of the observed period. This has the potential to

indicate whether a particular variable has an increasing trend or a decreasing trend.

While these indicators can be added to the variable set and used for building

new models, this will have very little impact on the model due to the quantity of

these indicators in comparison to the actual observed variables. We therefore boost

the model outputs based on these indicators.

For example, a good borrower would have frequent loan-related interactions

with the agency via phone or web , which will be indicated by a higher value of the

corresponding excursions. A defaulter on the other hand would have very minimal

interactions. Similarly a larger delinquency trend ratio would indicate a higher loan

risk. Using rules of these kinds (the thresholds set based on the training data), we

boost the model outputs and the corresponding confusion matrix is shown in Table

9.4. There is huge improvement over the subpopulation models for the high-risk

158

prediction, however this comes at a drop in the accuracy of the low risk predictions.

In other words, the model with these modification is very conservative, with high

false negatives at the expense of lower false positives; this is also indicated by the

error histogram in Fig. 9.7, where the original error distribution is more spread in

the new predictions.

Predictions

Low Risk Medium Risk High Risk

Ground truth

Low Risk 68.51 16.83 3.39

Medium Risk 1.19 1.81 0.55

High Risk 1.24 3.21 3.28

Table 9.4: Confusion matrix for the subpopulation based multi-PLS regression model

based on the approach in Fig. 9.4, numbers shown in percentages of the total records

−100−80 −60 −40 −20 0 20 40 60 80 100
0

20

40

60

80

100

%
 o

f t
es

t s
am

pl
es

 in
 th

e
bu

ck
et

Error Buckets (Predicted score − Actual score)

Subpopulation model + Indicator variable based boosting

Figure 9.7: [color] Error histogram on the PLS model: combination of subpopulation

based modeling with indicator based boosting

159

9.4 Conclusion

In this chapter, we extend the partial least squares regression model to predict

the loan severity “n” months ahead of time based on a series of observations ranging

from individual behavior to aggregate level statistics. Variable Influence on Projec-

tion (VIP) [106] is used to select the most important variables for the prediction. To

address the imbalance in the data (large number of low risk records), we proposed

to use multiple PLS-models based on subpopulations of the data chosen either via

aggregated observations or via derived indicators. To further enhance the output,

we define new domain-specific indicator variables that are used to boost the model

output on the basis of conditions observed in the data. This results in enhanced

performance of the model, particularly for high risk loan records keeping in mind

that our goal was to have a conservative model.

160

Chapter 10

Conclusions

This thesis introduced several novel learning solutions for geospatial interpo-

lation and speaker recognition. The learning algorithms were scaled via the use of

graphical processors to handle large datasets.

We began with the key computational primitive in kernel machines and accel-

erated them on the graphical processors. The resulting acceleration was illustrated

in several problem and the core algorithm is released as GPUML, an open-source

under Lesser GPL [95, 101]. We extended GPUML to solve the geostatistical krig-

ing [98] by drawing connections with Gaussian process regression. The fast matrix

vector products with iterative conjugate gradient solvers are used to scale the krig-

ing and Gaussian process regression to large problems. However, the convergence

of iterative solvers becomes an issue for larger datasets, and was addressed with a

fast preconditioner in a flexible Krylov solver [97].

We have used the kernelization idea with GPUML to obtain a non-parametric

Rényi entropy based information theoretic distance called the kernelized Rényi dis-

tance that has potential applications in subset selection [94] and similarity scoring

[99]. KRD similarity scoring for speaker recognition performed well against similar

approaches, but does not hold its performance against a state-of-the-art recognition

system. This led to the formulation of a partial least squares framework for speaker

161

recognition [104, 103] that has comparable performance to the state-of-the-art sys-

tems. The PLS framework was also accelerated on graphical processors to address

scalability [102]. The PLS framework was further kernelized to address the nuisance

variabilities in speaker recognition, resulting in a very robust recognition system.

10.1 Open problems

The following are some of the open problems in line with the work in this

thesis.

10.1.1 Parallelizing linear summation algorithms:

In Section 2.4.2.1, we compared our implementation with a linear version of

Gaussian kernel summation. It was evident that inspite of the speedup obtained by

our approach, a linear algorithm will eventually beat it. Motivated by this, we tried

to map parts of the linear algorithm in [58] on the GPU and achieved speedups up

to 3X for some stages. The chief bottle-neck here is the construction of underlying

data-structures and if there can be an appropriate map of the data structures to the

GPU, the speed up can be substantially increased like in [36].

10.1.2 Other parallel paradigms

While GPU’s power is evident from our results, they are definitely not the

panacea for all ranks of computational problems. Several parallel programming

models are increasingly coming up to address the large amounts of data encountered

162

in several applications. Popular ones include Hadoop (map/reduce) and MPI. GPU-

like multithreaded programming on CPUs is enabled via OpenMP. In this thesis,

GPUs have satisfied our computational requirements in most problems and hence

was used. In a practical problem, the choice of a particular paradigm is dictated by

the needs of the application and the nature of the underlying data.

Typically, when the data dimensions are smaller (< 100), GPUs provide huge

improvement in computational performances (provided the algorithm has a “par-

allelizable” part). For very large data dimensions, a combination of MPI with

OpenMP can yield better performances. Although Hadoop is designed for a spe-

cial suite of problems, they are being increasingly preferred for many applications

due to their large scale parallelization (across several 1000s of nodes in the cloud)

and associated fault-tolerance guarantees. It would be interesting to explore the

extendability of the learning solutions in this thesis to these paradigms.

10.1.3 Co-kriging

We have proposed new acceleration schemes for kriging and have successfully

deployed it to reconstruct missing data in satellite observations. Another aspect that

can be considered is to krige the distributed and discontinuous data for meteorolog-

ical and air quality parameters and health survey data to find correlations between

them and causative links to develop predictive models. Our kriging framework can

be used with such disparate datasets as well where spatio-temporal accuracy of the

data-filling is very critical for analyzing. An interesting direction could be the study

163

of co-kriging between disparate variables in this context. This requires both model-

level questions and scalability-related questions to be answered to come up with the

appropriate framework.

10.1.4 Quadratic Rényi entropy between GMM

We have independently looked at GMMs for speaker recognition and the

Quadradic Rényi entropy for similarity scoring. An interesting extension is to use

the Rényi entropy to evaluate distances between GMMs. Given 2 Gaussian mixture

models,

G1(x) =
N∑
j=1

π1
jN (x|µ1

j ,Σ
1
j), and (10.1)

G2(x) =
M∑
j=1

π2
jN (x|µ2

j ,Σ
2
j). (10.2)

The quadratic Rényi information potential between them can be obtained as,

R(G1∥G2) = − log

∫
G1(x)G2(x)dx,

= − log

∫ N∑
i=1

M∑
j=1

π1
i π

2
jN (x|µ1

j ,Σ
1
j)N (x|µ2

j ,Σ
2
j)dx,

= − log
N∑
i=1

M∑
j=1

π1
i π

2
jN (µ2

j |µ2
j ,Σ

1
j + Σ2

j) (10.3)

With the Rényi information potential, it is possible to obtain a closed-form solution,

a difference from the KL-divergence based distances between GMMs [65]. It will be

interesting to extend this idea to a suite of problems like in [65].

164

10.1.5 Improved speaker recognition

The i-vectors in speaker recognition are very successful and we have effectively

utilized it in our KPLS frameworks for speaker recognition. The problem of speaker

recognition has been studied for several decades now, but still there are several

scopes for new research directions.

The i-vectors capture the variabilities in a linear-space; if this can be extended

to learn a non-linear manifold and the associated mappings, a better model for

variability can potentially be obtained. This raises several research questions such

as the best mapping in the context of variability, best back-end system that can

learn from these mapping and others which are subjects for further exploration.

Another key area for potential improvements is the performance in noisy en-

vironment. Current systems are impressive under clean conditions, but robustness

to noisy training and test conditions are being actively explored. It will be interest-

ing to explore the best combination of front-end and back-end to account for noise

related variabilities.

165

Appendix A

Random sampling for testing accelerated algorithms

There are a number of applications where summation of source kernels at

a number of target points need to evaluated. These computations have quadratic

complexity (O(N2)) thus hindering its scalability to large datasets. We have seen one

approach to accelerate this problem via the use of graphical processors in Chapter

2. However it is not possible to test these approaches for large datasets due to the

large cost of direct evaluations. To overcome this, we propose a random sampling

approach using which evaluate the error only atK evaluation points, and extrapolate

these characteristics to the whole datasets with guaranteed bounds. We derive the

sample size K for a desired accuracy based on Chernoff bounds.

A.1 Chernoff Bounds

Chernoff bound gives the upper tail bound (Pr [X ≥ µ(1 + δ)]) and lower tail

bound (Pr [X ≤ µ(1− δ)]). The upper tail bound is given by,

Pr [X ≥ µ(1 + δ)] =

(
eδ

(1 + δ)(1+δ)

)µ

≤ e−µδ2/3 (A.1)

Similarly, the lower tail bound can be given by,

Pr [X ≤ µ(1− δ)] ≤ e−µδ2/2. (A.2)

166

Eqs A.1 and A.2 gives the Chernoff bound.

A.2 Sampling Problem

The goal in sampling is to select a subset of the original data at random.

Let us analyze the property of the resulting subset, let Xi be the random variable

corresponding to the ith sample of the subset such that, Xi is 1 if a desired property

is satisfied, 0 otherwise. If K is the size of the subset, then it is desired that,

Pr

[∣∣∣∣∑iXi

K
− M

N

∣∣∣∣ ≥ ϵ

]
≤ η, (A.3)

where M is the number of datapoints satisfying the desired property in the original

dataset. Let us denote M
N

as p and
∑

iXi as Y , thus Eq. A.3 can be rewritten as,

Pr

[∣∣∣∣YK − p

∣∣∣∣ ≥ ϵ

]
= Pr [|Y −Kp| ≥ Kϵ]

= Pr [Y ≥ Kp+Kϵ]

+Pr [Y ≤ Kp−Kϵ] (A.4)

To summarize, we want to select K sized subset from a large data, such that, if M

points of the N total points in the full data have a certain property, the property is

preserved by a certain number L points in the subset, such that L
K

= M
N

with high

probability given by Eq. A.4.

A.2.1 Adaptation

Before applying the Chernoff bound here, we adapt this to the problem of

testing a summation algorithm. The summation algorithm would give the sum at

167

evaluation points in an efficient fashion. We want to test the accuracy of the fast

algorithm. So we shall sample evaluation points at random K points and would

evaluate the sum directly at these points. We would then check the accuracy with

respect to the fast algorithm to be tested. We expect the error evaluated at all K

points to be below a certain threshold.

Let us assume that the fast algorithm assures an error bound of ς. Let us

define the property that we shall look for in the data as the error between the direct

and fast approach ≤ ς. Because the algorithm assures such an error bound, the p

in Eq. A.4 is 1. The expected number of the points in the subset that will hold the

error property is K, thus µ = K. Applying Chernoff bound and substituting p = 1

in Eq. A.4,

Pr [Y ≥ K(1 + ϵ)] + Pr [Y ≤ K(1− ϵ)]

≤ 0 + eKϵ2/2

≤ eKϵ2/2 ≤ δ

⇒ K ≥ 2

ϵ2
log

(
1

δ

)
(A.5)

Thus, setting the parameters ϵ,δ and ς, we can choose K points uniformly at

random from the original data set, evaluate the sum directly and test for the desired

error bound. If all the points satisfy the required error bound ς, algorithm can be

declared accurate within confidence interval ϵ and probability 1− δ.

In order to validate this bound, we compare the GPU based kernel summation

in Chapter 2 for Gaussian kernel and corresponding direct-double-precision version.

168

We evaluated the sum of 10, 000 Gaussian kernels for 10, 000 points. We use the

bound in A.5 and evaluated the kernel at 2, 952 points with the direct approach

to test the error. The error was less than 10−5 at all these points. Therefore, our

bound leads to the suggestion that at least 95% of the samples have a relative error

≤ 10−5 with probability 0.95. We validated this bound by evaluating the sum via

direct approach at all points, and 100% of the samples had relative error ≤ 10−5.

169

Bibliography

[1] A. Alvera-Azcárate, A. Barth, D. Sirjacobs, and J.M. Beckers. Enhancing
temporal correlations in eof expansions for the reconstruction of missing data
using dineof. Ocean Science, 5:475–485, October 2009.

[2] A Alvera-Azcrate, A. Barth, M. Rixen, and J.M. Beckers. Reconstruction
of incomplete oceanographic data sets using empirical orthogonal functions:
application to the adriatic sea surface temperature. Ocean Modelling, 9(4):325
– 346, 2005.

[3] R.K. Beatson, J.B. Cherrie, and C.T. Mouat. Fast fitting of radial basis
functions: Methods based on preconditioned GMRES iteration. Advances in
Computational Mathematics, 11:253–270, 1999.

[4] J.M. Beckers and M. Rixen. Eof calculations and data filling from incomplete
oceanographic datasets. Journal of Atmospheric and Oceanic Technology, 20,
2003.

[5] F. Bimbot and et al. A tutorial on text-independent speaker verification.
EURASIP Journal on Applied Signal Processing, 4:430–451, 2004.

[6] F. Bimbot, I. Magrin-Chagnolleau, and L. Mathan. Second-order statistical
measures for text-independent speaker identification. Speech Communication,
17:51–54, 1995.

[7] C. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., 2006.

[8] C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2:121–167, 1998.

[9] L. Burget, S. Cumani, O. Glembak, P. Matejka, and N. Brummer. Discrimina-
tively trained probabilistic linear discriminant analysis for speaker verification.
In IEEE International Conference on Acoustics, Speech and Signal Processing,
2011.

[10] L. Burget, P. Matejka, P. Schwarz, O. Glembek, and J. Cernocky. Analysis
of feature extraction and channel compensation in a GMM speaker recogni-
tion system. IEEE Transactions on Audio, Speech, and Language Processing,,
15(7):1979 –1986, Sep. 2007.

[11] D. Cai, X. He, and J. Han. Efficient kernel discriminant analysis via spectral
regression. In IEEE International Conference on Data Mining, pages 427–432.
IEEE Computer Society, 2007.

170

[12] J.P. Campbell. Speaker recognition: a tutorial. Proceedings of the IEEE,
85(9):1437–1462, Sep 1997.

[13] W. M. Campbell, J. P. Campbell, D. A. Reynolds, E. Singer, and P. A. Torres-
carrasquillo. Support vector machines for speaker and language recognition.
Computer Speech and Language, 20:210–229, 2006.

[14] W.M. Campbell, J.P. Campbell, D.A. Reynolds, E. Singer, and P.A. Torres-
Carrasquillo. Support vector machines for speaker and language recognition.
Computer Speech & Language, 20:210 – 229, 2006. Odyssey 2004: The speaker
and Language Recognition Workshop.

[15] W.M. Campbell, D.E. Sturim, D.A. Reynolds, and A. Solomonoff. SVM based
speaker verification using a GMM supervector kernel and NAP variability
compensation. In IEEE International Conference on Acoustics, Speech and
Signal Processing, volume 1, 2006.

[16] S. Canu, S. Grandvalet, V. Guigue, and A. Rakotomamonjy. SVM and kernel
methods Matlab toolbox. Perception Systmes et Information, France, 2005.

[17] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector machine
training and classification on graphics processors. In International Conference
on Machine Learning, pages 104–111, 2008.

[18] Il-Gyo Chong and Chi-Hyuck Jun. Performance of some variable selection
methods when multicollinearity is present. Chemometrics and Intelligent Lab-
oratory Systems, March 2005.

[19] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence,, 24(5):603–619, May 2002.

[20] L. Csató and M. Opper. Sparse on-line Gaussian processes. Neural Comput.,
14(3):641–668, 2002.

[21] N. de Freitas, Y. Wang, M. Mahdaviani, and D. Lang. Fast Krylov methods
for n-body learning. In Advances in Neural Information Processing Systems,
2005.

[22] Defense. The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus
(TIMIT). DARPA-ISTO, 1990.

[23] N. Dehak, R. Dehak, J. Glass, D. Reynolds, and P. Kenny. Cosine similarity
scoring without score normalization techniques. In Proc Odyssey Speaker and
Language Recognition Workshop, June 2010.

[24] N. Dehak, R. Dehak, P. Kenny, N. Brummer, P. Ouellet, and P. Dumouchel.
Support vector machines versus fast scoring in the low-dimensional total vari-
ability space for speaker verification. In Interspeech, pages 1559–1562, 2009.

171

[25] N. Dehak, P.J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet. Front-end
factor analysis for speaker verification. IEEE Transactions on Audio, Speech,
and Language Processing, 19(4):788 –798, may 2011.

[26] Daniel P. W. Ellis. PLP and RASTA (and MFCC, and inversion) in Matlab,
2005. online web resource.

[27] D. Erdogmus, II Hild, K.E., and J.C. Principe. Independent components
analysis using Rényi’s mutual information and legendre density estimation.
In International Joint Conference on Neural Networks, volume 4, pages 2762
–2767, 2001.

[28] R. Everson, P. Cornillonz, and A. Webbery. An empirical eigenfunction anal-
ysis of sea surface temperatures in the western north atlantic. Journal of
Physical Oceanography, 1997.

[29] A.C. Faul, G. Goodsell, and M.J.D. Powell. A Krylov subspace algorithm for
multiquadric interpolation in many dimensions. IMA Journal of Numerical
Analysis, 25:1–24(24), 2005.

[30] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from
few training examples: An incremental Bayesian approach tested on 101 ob-
ject categories. In Conference on Computer Vision and Pattern Recognition
Workshop,, page 178, 2004.

[31] L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning natu-
ral scene categories. In IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, 2005.

[32] D.P. Foster and R.A. Stine. Variable selection in data mining: Building a pre-
dictive model for bankruptcy. Journal of the American Statistical Association,
pages 303–313, 2004.

[33] D. Garcia-Romero and C. Espy-Wilson. Joint factor analysis for speaker recog-
nition reinterpreted as signal coding using overcomplete dictionaries. In Proc
Odyssey Speaker and Language Recognition Workshop, June 2010.

[34] M. Gibbs and D. Mackay. Efficient implementation of Gaussian processes.
Technical report, 1997.

[35] E. Gokcay and J.C. Principe. Information theoretic clustering. IEEE Transac-
tion on Pattern Analysis and Machine Intelligence, 24(2):158–171, Feb 2002.

[36] N. Gumerov and R. Duraiswami. Fast multipole methods on graphics proces-
sors. Journal of Computational Physics, 227(18):8290–8313, September 2008.

[37] N.A. Gumerov and R. Duraiswami. Fast radial basis function interpolation
via preconditioned Krylov iteration. SIAM Journal on Scientific Computing,
29(5):1876–1899, 2007.

172

[38] T. Hansen. mgstat: A geostatistical matlab toolbox, 2004. online web resource.

[39] R. He, R.H. Weisberg, H. Zhang, F.E. Muller-Karger, and R.W. Helber.
A cloud-free, satellite-derived, sea surface temperature analysis for the west
florida shelf. Geophysical Research Letters, 30(15), August 2003.

[40] A. Hegde, T. Lan, and D. Erdogmus. Order statistics based estimator for
Renyi entropy. IEEE Workshop on Machine Learning for Signal Processing,
pages 335–339, Sept. 2005.

[41] A.O. Hero, B. Ma, O. Michel, and J. Gorman. Alpha divergence for clas-
sification, indexing and retrieval. Technical report, University of Michigan,
2001.

[42] E.H. Isaaks and R.M. Srivastava. Applied Geostatistics. Oxford University
Press, 1989.

[43] R. Jenssen, II Hild, K.E., D. Erdogmus, J.C. Principe, and T. Eltoft. Cluster-
ing using renyi’s entropy. International Joint Conference on Neural Networks,
1:523 – 528, 2003.

[44] A. Kaplan, Y. Kushnir, and M.A. Cane. Reduced space optimal interpolation
of historical marine sea level pressure: 1854–1992. Journal of Geophysical
Research, 1997.

[45] P. Kenny. Bayesian speaker verification with heavy tailed prior. In Proc
Odyssey Speaker and Language Recognition Workshop, June 2010.

[46] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel. Speaker and session
variability in gmm-based speaker verification. IEEE Transactions on Audio,
Speech, and Language Processing, 15(4):1448 –1460, 2007.

[47] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel. A study of
interspeaker variability in speaker verification. IEEE Transactions on Audio,
Speech, and Language Processing,, 16(5):980–988, July 2008.

[48] T. Kinnunen and H. Li. An overview of text-independent speaker recognition:
From features to supervectors. Speech Communication, 52:12 – 40, 2010.

[49] D.G. Krige. A statistical approach to some basic mine valuation problems on
the witwatersrand. Journal of the Chemical, Metallurgical and Mining Society
of South Africa, 52(6):119–139, December 1951.

[50] N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process meth-
ods: The informative vector machine. In Advances in Neural Information
Processing Systems, pages 609–616, 2003.

[51] D. Lee, A. Gray, and A. Moore. Dual-tree fast Gauss transforms. In Advances
in Neural Information Processing Systems 18, pages 747–754. 2006.

173

[52] S. Lophaven, H. Nielsen, and J. Sndergaard. Dace, a Matlab kriging toolbox,
2002. online web resource.

[53] D.G. Lowe. Object recognition from local scale-invariant features. In Inter-
national Conference on Computer Vision, pages 1150–1157, 1999.

[54] S. Lukasik. Parallel computing of kernel density estimates with MPI. In
International conference on Computational Science, pages 726–733. Springer-
Verlag, 2007.

[55] Yong M., Yoshinori K., K. Kinoshita, S. Lao, and M. Kawade. Sparse Bayesian
regression for head pose estimation. International Conference on Pattern
Recognition, 3:507–510, 2006.

[56] J. Marron and M. Wand. Exact mean integrated squared error. The Annals
of Statistics, 20(2):712–736, 1992.

[57] C.R. McClain, M.L. Cleave, G.C. Feldman, W.W. Greg, S.B. Hooker, and
N. Kuring. Science quality seawifs data for global biosphere research. Sea
Technology, 39:10 – 16, 1998.

[58] V. Morariu, B.V. Srinivasan, V.C. Raykar, R. Duraiswami, and L. Davis.
Automatic online tuning for fast Gaussian summation. In Advances in Neural
Information Processing Systems, 2008.

[59] R. Moyeed and A. Papritz. An empirical comparison of kriging methods for
nonlinear spatial point prediction. Mathematical Geology, 34(4):365–386, May
2002.

[60] I. Murray. Gaussian processes and fast matrix-vector multiplies. In Numerical
Mathematics in Machine Learning workshop, 2009.

[61] R. Murtugudde, S.R. Signorini, J.R. Christian, A.J. Busalacchi, C.R. Mc-
Clain, and J. Picaut. Ocean color variability of the tropical indo-pacific
basin observed by seawifs during 1997-1998. Journal of Geophysical Research,
104:18351–18366, 1999.

[62] Y. Notay. Flexible conjugate gradients. SIAM J. Sci. Comput., 22(4):1444–
1460, 2000.

[63] NVIDIA. NVIDIA CUDA Programming Guide 3.2. 2010.

[64] J. Ohmer, F. Maire, and R. Brown. Implementation of kernel methods on
the GPU. In Digital Image Computing: Technqiues and Applications,, pages
543–550, Dec 2005.

[65] M.K. Omar and J. Pelecanos. A novel approach to detecting non-native speak-
ers and their native language. In IEEE International Conference on Acoustics
Speech and Signal Processing (ICASSP), pages 4398 –4401, march 2010.

174

[66] G. Omer, R. Rosales, and B. Krishnapuram. Learning rankings via convex
hull separation. In Advances in Neural Information Processing Systems, pages
395–402, 2006.

[67] J.C. Principe, J. Fisher, and D. Xu. Information theoretic learning. Wiley-
Interscience, 2000.

[68] A. Ranganathan and M. Yang. Online sparse matrix Gaussian process regres-
sion and vision applications. In European Conference on Computer Vision,
pages 468–482. Springer-Verlag, 2008.

[69] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2005.

[70] V. Raykar. Scalable machine learning for massive datasets: Fast summation
algorithms. PhD thesis, Department of computer science, University of Mary-
land, College Park, 2007.

[71] V. Raykar, R. Duraiswami, and B. Krishnapuram. A fast algorithm for learn-
ing a ranking function from large-scale data sets. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 30(7):1158–1170, 2008.

[72] V.C. Raykar and R. Duraiswami. The improved fast Gauss transform with
applications to machine learning. In Large Scale Kernel Machines, pages 175–
201, 2007.

[73] D.A. Reynolds, T. Quatieri, and R. Dunn. Speaker verification using adapted
Gaussian mixture models. In Digital Signal Processing, 2000.

[74] M.R. Roman, W.C. Boicourt, D.G. Kimmel, W.D. Miller, J.E. Adolf, J. Bichy,
L.W. Harding, Jr., E.D. Houde, S. Jung, and X. Zhang. Chesapeake bay
plankton and fish abundance enhanced by hurricane isabel. EOS Transactions,
86:261–265, 2005.

[75] R. Rosipal and N. Kramer. Overview and recent advances in partial least
squares. In Subspace, Latent Structure and Feature Selection Techniques, Lec-
ture Notes in Computer Science, pages 34–51. Springer, 2006.

[76] R. Rosipal and L.J. Trejo. Kernel partial least squares regression in reproduc-
ing kernel hilbert space. J. Mach. Learn. Res., 2:97–123, March 2002.

[77] R. Rosipal and L.J. Trejo. Kernel PLS-SVC for linear and nonlinear classifica-
tion. In 20th International Conference on Machine Learning, pages 640–647,
2003.

[78] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester
University Press, 1992.

175

[79] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J.
Sci. Comput., 14(2):461–469, 1993.

[80] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, 2003.

[81] W.R. Schwartz, A. Kembhavi, D. Harwood, and L.S. Davis. Human detection
using partial least squares analysis. In International Conference on Computer
Vision, 2009.

[82] David W. Scott. Multivariate Density Estimation: Theory, Practice, and
Visualization (Wiley Series in Probability and Statistics). Wiley-Interscience,
September 1992.

[83] M Seeger, C.K.I Williams, N Lawrence, and S. Dp. Fast forward selection to
speed up sparse gaussian process regression. In Workshop on AI and Statistics
9, 2003.

[84] M. Senoussaoui, P. Kenny, N. Dehak, and P Dumouchel. An i-vector extractor
suitable for speaker recognition with both microphone and telephone speech.
In Proc Odyssey Speaker and Language Recognition Workshop, June 2010.

[85] S. Sheather and M. Jones. A reliable data-based bandwidth selection method
for kernel density estimation. Journal of the Royal Statistical Society, 53:683–
690, 1991.

[86] S.R. Signorini, R. Murtugudde, C.R. McClain, J.R. Christian, J. Picaut, and
A.J. Busalacchi. Biological and physical signatures in the tropical and sub-
tropical atlantic. Journal of Geophysical Research, 104:18367–18382, 1999.

[87] B. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
& Hall/CRC, April 1986.

[88] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination, and expression
database. IEEE transactions on Pattern Analysis and Machine Inference,
25(12):1615–1618, Dec. 2003.

[89] V. Simoncini and D.B. Szyld. Flexible inner-outer Krylov subspace methods.
SIAM J. Numer. Anal., 40(6):2219–2239, 2002.

[90] J. Sivic, B.C. Russell, A.A. Efros, A. Zisserman, and W.T. Freeman. Discov-
ering object categories in image collections. In IEEE International Conference
on Computer Vision, 2005.

[91] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-
inputs. In Advances in Neural Information Processing Systems, pages 1257–
1264, 2006.

176

[92] E. Snelson and Z. Ghahramani. Local and global sparse gaussian process
approximations. In Artificial Intelligence and Statistics (AISTATS), 2007.

[93] F. Soong, A. Rosenberg, L. Rabiner, and B. Juang. A vector quantization ap-
proach to speaker recognition. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 10, pages 387–390, Apr 1985.

[94] B.V Srinivasan and R. Duraiswami. Efficient subset selection via the kernelized
Rényi distance. In IEEE International Conference on Computer Vision, pages
1081–1088, September 2009.

[95] B.V. Srinivasan and R. Duraiswami. Scaling kernel machine learning algorithm
via the use of GPUs. In GPU Technology Conference. NVIDIA Research
Summit, 2009.

[96] B.V Srinivasan and R. Duraiswami. Kernelized rényi distance for similarity
scoring and speaker recognition. Technical report, University of Maryland -
CS-TR-4994, 2011.

[97] B.V. Srinivasan, R. Duraiswami, and N. Gumerov. Fast matrix-vector product
based fgmres for kernel machines. In Copper Mountain Conference on Iterative
Methods, 2010.

[98] B.V. Srinivasan, R. Duraiswami, and R. Murtugudde. Efficient kriging for real
time spatio-temporal kriging. In Conference on Probability and Statistics in
Atmospheric sciences., 2010.

[99] B.V. Srinivasan, R. Duraiswami, and D.N. Zotkin. Kernelized Rényi dis-
tance for speaker recognition. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 2010.

[100] B.V. Srinivasan, D Garcia-Romero, D.N. Zotkin, and R. Duraiswami. Ker-
nel partial least squares framework for speaker recognition. In 12th Annual
Conference of the International Speech Communication Association (INTER-
SPEECH), 2011.

[101] B.V. Srinivasan, Q. Hu, and R. Duraiswami. GPUML: Graphical processors
for speeding up kernel machines. In Workshop on High Performance Analytics
- Algorithms, Implementations, and Applications. Siam International Confer-
ence on Data Mining, 2010.

[102] B.V Srinivasan, W.R. Schwartz, R. Duraiswami, and L.S. Davis. Partial least
squares on graphical processor for efficient pattern recognition. Technical
report, University of Maryland - CS-TR-4968, 2010.

[103] B.V. Srinivasan, D.N. Zotkin, and R. Duraiswami. A partial least squares
based speaker recognition system. In Snowbird Learning Workshop, 2011.

177

[104] B.V. Srinivasan, D.N. Zotkin, and R. Duraiswami. A partial least squares
framework for speaker recognition. In IEEE International Conference on
Acoustics, Speech and Signal Processing, 2011.

[105] D. Steinkraus, I. Buck, and P. Simard. Using GPUs for machine learning algo-
rithms. In International Conference on Document Analysis and Recognition,,
volume 2, pages 1115–1120, Sep 2005.

[106] R. Teofilo, J. Martins, and M. Ferreira. Sorting variables by using informative
vectors as a strategy for feature selection in multivariate regression. In Journal
of Chemometrics, volume 23, pages 32–48.

[107] D. Thanh-Nghi and V. Nguyen. A novel speed-up SVM algorithm for massive
classification tasks. In IEEE International Conference on Research, Innova-
tion and Vision for the Future, pages 215–220, July 2008.

[108] A. Thayananthan, R. Navaratnam, B. Stenger, P. Torr, and R. Cipolla. Mul-
tivariate relevance vector machines for tracking. In European Conference on
Computer Vision, pages 124–138. Springer-Verlag, 2006.

[109] M. Tipping. The relevance vector machine. In Advances in Neural Information
Processing Systems. Morgan Kaufmann, 2000.

[110] L. Torgo. Available at http://www.liaad.up.pt/~ltorgo/Regression/

DataSets.html.

[111] V. Vapnik. The Nature of Statistical Learning Theory (Information Science
and Statistics). Springer, 2nd edition, November 1999.

[112] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of com-
puter vision algorithms. http://www.vlfeat.org/, 2008.

[113] V. Volkov and J. Demmel. LU, QR and Cholesky factorizations using vector
capabilities of gpus. Technical Report UCB/EECS-2008-49, EECS Depart-
ment, University of California, Berkeley, May 2008.

[114] C. Williams and C. Rasmussen. Gaussian processes for regression. In Advances
in Neural Information Processing Systems, 1996.

[115] S. Wold, E. Johansson, and M. Cocch. PLS-partial least squares projections
to latent structures. 3D QSAR in Drug Design, pages 523 – 548, 1993.

[116] L . Wolf, T. Hassner, and Y. Taigman. Descriptor Based Methods in the
Wild. In Workshop on Faces in ’Real-Life’ Images: Detection, Alignment,
and Recognition, Marseille, France, 2008.

[117] L. Wolf, T. Hassner, and Y. Taigman. The one-shot similarity kernel. In IEEE
12th International Conference on Computer Vision, pages 897 –902, 2009.

178

[118] D. Xu, J.C. Principe, J. Fisher, and H. Wu. A novel measure for independent
component analysis (ICA). In IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 2, pages 1161–1164, May 1998.

[119] C. Yang, C. Duraiswami, and L. Davis. Efficient kernel machines using the
improved fast gauss transform. In Advances in Neural Information Processing
Systems, 2004.

[120] C. Yang, R. Duraiswami, and L. Davis. Efficient mean-shift tracking via a new
similarity measure. In IEEE International Conference on Computer Vision
and Pattern Recognition, volume 1, pages 176–183, June 2005.

179

