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In order for the microelectromechanical systems (MEMS) industry to continue to grow
and advance, it is critical that methods are developed to determine the mechanical
reliability of MEMS devices. This is particularly so for advanced devices with contacting,
moving components, for which component strength is a key factor in determining
reliability. The etching processes used to produce MEMS devices leave residual surface
features that typically limit device strength and, consequently, device lifetime and
reliability. In order to optimize MEMS device reliability, it is therefore necessary to
understand and characterize the effects these etching processes have on MEMS-scale
device strengths. At the micro and nano scales, however, conventional strength testing

methods cannot be used, and a standardized test method for MEMS-scale strength

measurement has yet to be established. The micro-scale theta specimen, shaped like the



Greek-letter theta, acts as a tensile test specimen when loaded in compression by
generating a uniform tensile stress in the central web of the specimen. Utilizing the theta
specimen for strength measurements allows for simple micro-scale strength testing and
assessment of etching effects, while removing the difficulties associated with gripping
and loading specimens as well as minimizing potential misalignment effects.

Micro-scale silicon theta samples were fabricated using techniques relevant to
MEMS processing. Processing-structure relationships were determined with microscopy
techniques measuring sample dimensional variations, etch quality, and surface roughness.
Structure-properties relationships were determined using three techniques. Samples were
tested by instrumented indentation testing (IIT) and finite element analysis determined
sample strength. Sample set strength data were examined via Weibull statistics.
Fractographic analysis determined initial fracture locations and fracture propagation
behavior.

Key scientific findings included: (1) directly relating the processing-induced
etching quality of fabricated samples to sample strength, and (2) critical flaw size
calculations from sample strength measurements that were consistent with sample surface
roughness. Technical contributions included development of the micro-scale theta
specimen fabrication methodology, super-resolution dimensional measurements, and
extension of IIT to strength measurements. The micro-scale theta specimen and
corresponding testing methodology have enabled successful determination of processing-
structure-mechanical properties relationships for three processing approaches. This is

vital to the determination of properties-performance relationships in MEMS devices.
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Chapter 1: Background and Introduction

1.1 The Promise of Micro-Electro-Mechanical Systems (MEMS)

Many advanced materials are intended for use in small scale applications, for example,
microelectronics [Gambino and Colgan, 1998; Kim, 2003; Wallace and Wilk, 2003],
microelectromechanical systems (MEMS) [Spearing, 2000; Madou, 2002], photonics
[Soref, 1993; Fan et al., 2009; Yan et al., 2009], biotechnology [Fan et al., 2009], and
magnetic storage [Parkin et al., 2003; Fan et al., 2009; Slaughter, 2009; Gulyaev et al.,
2010]. MEMS are microscale devices that are electromechanical in operation: Devices
that are mechanically deformed through an electrical control path are actuators; Devices
that produce an electrical response on mechanical deformation are sensors. MEMS are
typically fabricated using lithographic and etching techniques originally developed for
the microelectronics industry and commonly made out of brittle materials, especially
silicon. The great potential for MEMS is in devices that can perform significant
mechanical work. Such work can be performed by MEMS that incorporate large-load
components, such as thermal and piezoelectric actuators [Bell et al., 2005], or that
include contacting and moving components, such as electrical contacts in microswitches,
hinges in microactuators, and gear teeth in micromotors [Kovacs, 1998].

Figure 1.1 highlights a number of promising MEMS devices and organizes them
by the device mechanical behavior and component interactions during operation. Type 0
devices have components that have negligible operational movement compared to
component size and the primary example for this type is the inkjet printer head [Le,

1998]. Type 1 devices contain moving components without contacting interactions. These
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Figure 1.1: Types of MEMS devices based on the device component feature interactions
during operation [Bernstein et al., 1993; Le, 1998; Dudley et al., 2003; Romig et al.,

2003; Flater et al., 2006]. DMD: Digital micromirror device.



types of MEMS include accelerometers, gyroscopes [Bernstein et al., 1993], resonators,
and pressure sensors with many of these devices used in everyday applications, such as
vehicle sensors, video game systems, and cell phones. Type 2 MEMS devices have
contacting and moving components and these include relays, valves, pumps, and the
digital micromirror device (DMD) (by Texas Instruments) [Dudley et al., 2003]. The
most complex type of MEMS, Type 3, have contacting and rubbing components and
includes devices such as optical switches, locks, gear discriminators, and the inch-worm
‘nanotractor’ [Flater et al., 2006].

Currently, only a few of the devices featured in Figure 1.1 are commercially
successful. These successful devices are limited primarily to the first two types, with a
single successful Type 2 device. The remaining MEMS lack reliability, meaning the
devices have a very low probability of performing the intended design function
effectively for a desired operational lifetime. The one successful Type 2 device is the
DMD, which is used in high brightness displays such as projectors and televisions. (The
DMD design has three aspects that allow it to operate reliably: The contacting surface
area is minimized, the device is coated with a self-healing self-assembled lubricating
monolayer, and the device is hermetically sealed [Van Kessel ef al., 1998].) Each of the
successful MEMS devices have revolutionized and replaced the previous method of
providing their particular functions, such as MEMS accelerometers replacing ball-and-
shaft vehicle air bag sensors; they have been integrated into everyday life in many ways.
This is only a fraction of the potential of MEMS, with many Type 2 and 3 devices that

cannot yet be made to be operationally reliable.



Type 2 and 3 devices cannot be made reliable because the adhesion and friction
effects of the contacting and rubbing components are difficult to assess. A possible
consequence of the large loads and the frictional effects during device operation is that
stress generated in a component exceeds the component strength, leading to component
failure and thus truncated lifetime and uncertain device reliability. Careful fabrication
procedures can lead to increased component strength (e.g., the strength of single-crystal
silicon structures and devices has been shown to reach values as great as 18 GPa
[Namazu et al., 2000]), but the distribution of strength values over component sample
populations is usually extremely broad [Jadaan et al, 2003], and the stress ranges
experienced in MEMS devices in use are likely to vary greatly.

Thus, MEMS device reliability is difficult to predict, and, as a result, the number
of MEMS devices that demonstrate significant mechanical work is still limited. In order
to optimize manufacturing yield and operational performance, especially reliability [van
Spengen, 2003], all materials and devices must maintain mechanical integrity; these
devices must be designed to withstand the largest locking stress that friction and adhesion
effects cause. To enable this, the development or optimization of particular device
materials and components, and their processing methods, thus requires measurements of
structure and properties at small scales. A pervasive measurement requirement is that of
measuring mechanical properties, and relating them to processing and structure: A
mechanical test structure capable of assessing the effects of the processing techniques on
device material mechanical behavior is thus required and a statistically meaningful
number of tests are necessary for precision assessment. A robust strength measurement

technique and test structure developed for the micro-scale will enable development of the
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processing-structure-properties relationships that are crucial for the optimization of
MEMS device materials and components.

In addition, the development of such a robust micro-scale strength measurement
technique for MEMS materials and processing should be extendable to other materials
and processing such as for materials development in which the materials may be

available only in small volumes.

1.2 Strength Testing Methodologies

Establishing processing-structure-mechanical properties linkages at small scales is
difficult [Lord et al., 2010]: Not only are the involved loads and displacements small,
making measurement difficult, but issues of specimen gripping and loading alignment,
which are also often problematic at large scales [Durelli ef al., 1962], are made more
difficult as well. In addition, post-test sample collection and manipulation are difficult,
which impedes the ability to identify property-limiting structural defects during failure
analysis and thus hinders the capacity to alter processing procedures for property
optimization.

The ability to assess the effects of processing variations on strength is a crucial
aspect of a strength testing methodology. Such processing-strength variations are
highlighted in Figure 1.2, which shows a graph of measured fracture strength of single-
crystal silicon (Si) as a function of the approximate stressed area for many sample and

loading geometries (uniaxial and equibiaxial tension and bending) and surface processing
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Figure 1.2: Fracture strength as a function of approximate stressed area for single-crystal
silicon for a variety of fabrication methods. Data were collected from a large number of
sources [Eisner, 1955; Pearson ef al., 1957; Sylwestrowicz, 1962; Hu, 1982; McLaughlin
and Willoughby, 1987; Johansson et al., 1988; Ericson and Schweitz, 1990; Vedde and
Gravesen, 1996; Wilson and Beck, 1996; Wilson et al., 1996; Schweitz and Ericson,
1999; Suwito et al., 1999; Chen et al., 2000; Namazu et al., 2000; Yi et al., 2000; Chen et
al., 2002; Sundararajan et al., 2002; Jeong et al., 2004; Quinn et al., 2005; Tsuchiya et
al., 2005; Hoffmann et al., 2006; Isono et al., 2006; Nakao et al., 2006; Miller et al.,
2007; Zhu et al., 2009; Banks-Sills et al., 2011]. Power law trend lines are shown to
highlight the overall behavior of the strength data. TMAH: Tetramethylammonium
hydroxide; EDP: Ethylenediamine pyrocatechol; RIE: Reactive ion etching; DRIE: Deep

reactive ion etching.



methods sources [Eisner, 1955; Pearson et al., 1957; Sylwestrowicz, 1962; Hu, 1982;
McLaughlin and Willoughby, 1987; Johansson et al., 1988; Ericson and Schweitz, 1990;
Vedde and Gravesen, 1996; Wilson and Beck, 1996; Wilson et al., 1996; Schweitz and
Ericson, 1999; Suwito et al., 1999; Chen et al., 2000; Namazu et al., 2000; Yi et al.,
2000; Chen et al., 2002; Sundararajan et al., 2002; Jeong et al., 2004; Quinn et al., 2005;
Tsuchiya et al., 2005; Hoffmann et al., 2006; Isono et al., 2006; Nakao et al., 2006;
Miller et al., 2007; Zhu et al., 2009; Banks-Sills et al., 2011]. Two clear trends are
apparent in Figure 1.2: (1) Fracture strengths tend to decrease with increased stressed
area, independent of processing method. This is consistent with the engineering principle
[Ashby, 1999] that fabrication methods tend to scale surface roughness, and therefore
strength-limiting defect sizes, with component size; (2) Fracture strengths tend to
decrease with increased stressed area, with different dependencies for different
processing methods. This is consistent with the physics principle [Davidge, 1979] that
processing methods tend to generate a particular distribution of flaw potency, and that the
probability of a component containing a more potent defect increases with component
size. The dashed lines on Figure 1.2 indicate trend (2) for selected fabrication methods.
An implication of Figure 1.2 is that if processing method and stressed area are invariant,
then strength should not be altered by sample or component geometry.

Test structures to measure the strength of MEMS materials and components that
could be used to optimize fabrication processes include tensile bars [Sharpe et al., 1997,
Suwito et al., 1999; Boyce et al., 2008], fixed—free beams [Ericson and Schweitz, 1990],
fixed—fixed beams [Namazu et al., 2000], and biaxial flexure plates [Chen et al., 2000].

Test specimens that have enabled statistically meaningful numbers of small-scale tensile
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strength measurements have often employed complex geometries microfabricated from
multilayer polycrystalline material; these include pull tabs [Bagdahn ef al., 2003; Boyce
et al., 2007; Miller et al., 2007] and chains of links [Boyce, 2010] for which specialized
mechanical loading systems were required and on-chip tensile bars for which electrical
connection was required for thermal actuation of the tests [Hazra et al., 2009; 2011].
Simpler geometries microfabricated from single layer silicon-on-insulator (SOI) material
have also been demonstrated: In one case, large numbers of samples in the form of beams
were tested, using loading by an atomic force microscope (AFM) [Namazu et al., 2000];
in another, a tensile dog-bone geometry was demonstrated [Banks-Sills et al., 2011],
although the specimen does not lend itself well to testing large numbers of samples and a
specialized mechanical loading system is required.

A simple and optimized test specimen design and testing methodology that can be
utilized over many materials and processing techniques, and that avoids the loading and
misalignment difficulty typically associated with strength testing methodologies, is
desirable in order to provide a broad testing methodology useful to the MEMS industry

for device assessment, modification, and optimization.

1.3 Theta Specimen Testing Prototype

An experimental method that avoids many of the difficulties in measuring mechanical
properties of materials at small scales is instrumented indentation testing (IIT) [Oliver
and Pharr, 1992; Field and Swain, 1993; 1995; Mencik et al., 1997; Oliver and Pharr,
2004; Oyen and Cook, 2009]. Commercial IIT instruments are well able to measure loads

in the micronewton to 100s of millinewtons range and displacements in the nanometer to



10s of micrometers ranges, enabling small-scale mechanical testing. As the only IIT
measurement requirement is the mounting of a large specimen surface, typically
millimeters or more in dimension, perpendicular to the axis of a probe loaded into the
surface in compression, gripping, alignment, and manipulation difficulties are largely
obviated. In addition, examination of the resulting indentations on the large specimen
surface is relatively easy, allowing for failure analysis [Anstis et al., 1981; Cook and
Pharr, 1990; Bradby et al., 2001; Cook, 2006; Gouldstone et al., 2007]. Elastic modulus,
hardness and yield stress, toughness, and viscosity are thus all measurable with IIT
[Chantikul et al., 1981; Oliver and Pharr, 1992; Field and Swain, 1993; Oyen and Cook,
2009].

Recently, a new experimental test specimen was introduced [Quinn et al., 2005;
Fuller et al., 2007; Gaither et al., 2010] that allows tensile strength of brittle materials to
be measured at small scales and which utilizes many of the advantages of IIT: The tensile
test specimen deliberately does not attempt to replicate large-scale tensile test specimen
geometries with the attendant gripping and alignment difficulties, but instead integrates
the “specimen” into a test “frame”. The integrated circular frame and specimen cross-
piece, or “web” segment, resemble the Greek letter ®, and the overall specimen is known
as a “theta” specimen [Durelli et al., 1962; Durelli and Parks, 1962; Durelli, 1967]. The
specimen is easily tested in compression with an IIT device, resulting in tension in the
specimen web segment and thereby avoiding gripping issues. Precision microfabrication
techniques can lead to a well-defined alignment of the tensile specimen relative to the
loading axis, thereby minimizing alignment issues. Two theta specimens with outer

geometry variations were fabricated as shown in Figure 1.3(a) and (b), a round theta
9
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Figure 1.3: The first generation theta test specimen designs. (a) Round and (b) hexagonal
theta test samples are 300 um across, and (c) the test strip includes 10 theta samples.

Images from Quinn ef al. [Quinn et al., 2005].
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[Figure 1.3(a)] and a hexagonal theta [Figure 1.3(b)], and each set was fabricated on a 10
sample test strip as shown in Figure 1.3(c). The first generation fabrication sequence
utilized a single through-wafer etch step, shown in Figure 1.4. These first generation
samples were successfully tested via IIT, sample strengths were determined form the
linear load-displacement responses [Quinn et al., 2005], and fracture was observed to
occur in the theta web region as expected [Quinn, 2008]. These test specimens and testing
results demonstrated the viability of the theta specimen technique for micro-scale
strength measurements, but also revealed a number of problems, which will be addressed

in the next section.

1.4 Thesis: Theta-based Approach for MEMS Device Assessment and Optimization

My thesis is that the theta specimen is an optimal test structure for use in a commercially
viable method for measure strength and optimizing MEMS through the establishment of
processing-structure-properties relationships. I propose to demonstrate this through
optimizing the overall methodology building on the earlier theta testing demonstration.
The first generation theta specimens presented in the previous section
demonstrated as a proof-of-concept that the theta specimen can be used to measure
strength at the micro-scale; however clear problems with the test structure and testing
methodology were apparent with this first generation. For instance, the use of a single
wafer for the sample device layer and single etch step, as shown in Figure 1.4, did not
produce controlled etch surface features, nor optimal device dimensions due to side wall

taper, a deviation from a 90° sidewall angle.

11



(a)
test strip and sample

sidewall surface
I _/_

(b)
Figure 1.4: The first generation theta specimen fabrication sequence [Quinn et al., 2005].
(a) Photoresist was spun on to the wafer and photolithographically patterned. (b) The
theta samples and test strips were formed simultaneously using a through-wafer DRIE

step. The photoresist was removed directly after the through-wafer etching.
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The wafer used for the first generation fabrication had to be thin due to the
requirement that the test strips and samples were simultaneously fabricated by a through-
wafer etch. The sample test strips in Figure 1.3(c) were difficult to handle, manipulate,
and mount for testing. The test strip design and the consequent mounting configuration
did not produce a secure and stable mounting and testing configuration. The sample strip
was difficult to fix in the holder and could move during testing. The test strip was also
difficult to seat for testing. In addition, due to the mounting method, the sample was
neither capable of being mounted without some tilt nor avoid contact with the
surrounding material. This reduced both the ability to load the sample properly and avoid
load transfer to the surrounding mount material. The samples were not isolated from one
another and fragments from tested samples could potentially interfere with subsequent
samples tests. Furthermore, post-test analysis was also difficult due to the test strip design
and mounting configuration.

The indenter-to-sample testing interaction was also non-ideal due to the use of a
large flat punch indenter tip that had a degree of tilt that inevitably loaded the theta
samples primarily at one end rather than the ideal position in the center. The first
generation theta geometries in Figure 1.3(a) and (b) were designed after the original
Durelli theta design, which was not optimized to minimize secondary stresses. When
loaded, the primary stress in the theta samples was across the constant cross-section web
region while significant secondary tensile stress was also induced across the internal top
and bottom surfaces of the theta samples.

Each of these problems has been addressed in the current research. The second

generation theta testing methodology has been optimized by several means. The
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mounting and loading configuration has been changed for ease of mounting and testing,
loading location control, and sample alignment and isolation. The theta specimen and test
strip have been optimized and additional test specimens have been developed to explore
this testing methodology for extended applications. The optimized test strip was designed
to be much larger and thicker than the samples connected to it as opposed to the strip and
samples being of similar size scales for the first generation (see Figure 1.3 and Figure
2.23 later). The sample fabrication has been optimized to provide sample thickness and
etch process control. The optimized fabrication approach was amenable to multiple
process variations for sample creation and provides an opportunity for extending this
methodology to additional materials and processing in the future.

To demonstrate that this theta-specimen testing approach enables the assessment
and optimization of MEMS processing and structural designs, a number of sample
fabrication runs are developed, performed, and assessed. Figure 1.5 is a diagram designed
to illustrate important aspects necessary for developing an understanding of MEMS
component behavior that can ultimately lead to improved MEMS reliability. This sort of
diagram is often used in the discussion of materials science and engineering aspects of
materials and components [Ashby, 1999]. Processing, structure, properties, and
performance are all important links in the assessment and optimization of MEMS
devices. Images from chapters in this dissertation are included in Figure 1.5 next to the
particular associated relationship. Processing-structure relationships are established by
analyzing the fabricated sample structures at both sample and surface length scales.
Structure-properties relationships are established through the testing and evaluation of the

fabricated sample sets. In future work, the demonstration of these developed relationships
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Figure 1.5: The processing-structure-properties-performance relationship for this
dissertation with images from each step of the project that will be covered in the

following chapters.
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with this testing approach can be used to extend this methodology to the determination of
properties-performance relationships. The dissertation outline in the next section provides
the layout for how I accomplished each portion of this research, the details of which are

presented in the following chapters.

1.5 Dissertation Outline

This dissertation is organized as follows. In this first chapter the background and
motivation of this research is covered. The development of the processing-structure
relationships is presented in Chapters 2 and 3. In Chapter 2 the design and fabrication of
all test specimens and the experimental testing method is presented. Four specimen types
are developed for strength testing using an optimized testing design that allows for simple
testing in a conventional instrumented indenter. The resulting etch surface features and
sample geometry variations of the fabricated samples are analyzed via AFM and an
image processing routine, respectively, in Chapter 3. Statistical data are compared from
the AFM analysis of every processing method variation of the fabricated batches of test
samples. The image processing routine in Chapter 3 provides the distribution of sample
geometry dimension variations for each batch of fabricated test samples.

The development of the structure-property relationships is presented in Chapters 4
to 7. Chapter 4 presents the finite element analysis (FEA) simulations and analysis of the
four test specimens. The simulation analyses are used to determine the sample
compliance and develop stress and strain relationships as functions of IIT load and load-

point displacement, respectively. Several sample geometry dimension variations were
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performed in the FEA simulations to account for the fabricated sample variations
presented in Chapter 3.

In Chapters 5 to 7 the experimental test results and post-test examination are
covered. In Chapter 5 the elastic deformation response of the fabricated samples are
compared to the FEA simulated relationships. The comparison between the FEA and
experimental results validates the testing methodology for the theta specimen approach.
In Chapter 6 the fracture strength behavior of each sample is determined using FEA
interpolation equations developed in Chapter 4. Weibull analysis is applied to the
strength distributions of each sample set. In Chapter 7 fractography is applied to fracture
surfaces of the tested samples to determine the flaws that induced fracture and the way
the samples fractured. Fracture mirror size comparisons are made and critical flaw size
calculations are compared to the surface roughness measurement made in Chapter 3.

The summary of this research and the usefulness of this testing methodology to
small-scale mechanical testing are discussed in Chapter 8. Future paths of investigation
are also covered in Chapter 8. Future investigations will focus on the extension of this

testing approach to additional materials, to device reliability, and to the MEMS industry.
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Chapter 2: Fabrication and Testing Methodology

In this chapter the processing-structure relationship is developed through the optimization
of the test specimen designs, fabrication sequence, and the sample etching techniques.
The optimizations of the fabrication sequence and sample etching techniques are
described in detail. Resulting large-scale surface features for each fabrication run were
examined including surface etch quality and sample cross-sections. The IIT methodology

for the optimized design is also covered.

2.1  Sample Design

Four small-scale test specimen designs for measuring strength were included in this
research project: Two were theta specimens with different internal geometries for tensile
strength measurement, a C-ring specimen for bending strength, and a gapped-theta
specimen for nanomaterial tensile strength and as an alternative bending strength
structure. Figure 2.1 shows schematic diagrams of each test specimen developed for
small scale testing. All specimen geometries are formed from a frame with a circular
exterior that is attached to a macro-scale strip at the base (not shown, see Figure 2.23
later) similar to the first generation test strip, and include a hat structure at the specimen
top. The theta specimens in Figure 2.1(a)-(c) incorporate a web across the center of the
specimen with the latter design having a gap in the center of the web. The specimen
geometry shown in Figure 2.1(a) is based on the original design by Durelli [Durelli ef al.,
1962; Durelli and Parks, 1962; Durelli, 1967] and consists of straight sections joined by

tangential circular sections to define the frame interior. The specimen geometry shown in
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Figure 2.1: Schematic diagrams of the (a) Durelli, (b) arch, and (c) gapped-arch theta, and
(d) C-ring test specimens. The outer ring of each specimen is diametrally compressed
with load P and displacement /4, generating a uniaxial tensile stress state in the web
segment in (a) and (b), tension across the gap of an attached nanomaterial in (c), and
bending stress state in the central outside region of (d). The diameter of the outer ring is

D and the width of the web segment is w.
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Figure 2.1(b) is the new arch theta specimen [Gaither et al., 2010], and consists of a
single circular arch to define the frame interior.

The theta specimen designs use tangential circular sections to incorporate the web
and have the same diameter, D, of 250 um and web width, w, of 8§ um. During testing, a
load, P, is applied to the top surface of the specimen and the load-point displacement, 4,
is measured. Loading the Durelli and arch theta specimens in compression generates a
uniform tensile stress across the uniform cross-section of the web. The arch theta design
replaces the complex internal geometry of the original Durelli design with an arch,
thereby reducing the size and extent of secondary, non-web, stresses in the specimens on
loading (see Ch. 4). The top hat structure is included to minimize loading misalignments
and stress concentrations [Fuller et al., 2007; Gaither et al., 2010] that also lead to large
secondary stresses. Both of these design changes increase the probability that sample
failure would initiate, as intended, in the web. The stressed area of the web, in tension, in
both designs was approximately 6.25 x 10° um?, about the center of the area range of Fig.
1.2.

The gapped-arch theta specimen [Figure 2.1(c)] is designed exactly like the arch
theta sample with a 10 um gap in the center of the web region. The C-ring specimen
[Figure 2.1(d)] was included as a micro-scale bend test similar to a conventional bend
test. It was designed to be a scaled down version to the ASTM standard C-ring test

method [C1323-96, 2001]. The C-ring design includes an inner diameter of 200 um and

an opening of 40 um on the right side.
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2.2 Deep Reactive lon Etching (DRIE) Techniques

Two etching techniques were utilized in the fabrication of multiple batches of samples,
both of which are deep reactive ion etching (DRIE) techniques. Figure 2.2 shows how
these two DRIE methods can produce high-aspect-ratio structures with vertical sidewalls.
For Bosch DRIE in Figure 2.2(a), alternating short steps of SFs isotropic etching and
C4Fs passivation, at ambient temperature, produce an essentially anisotropic etch overall
with characteristic etch steps called scallops [Senturia, 2001; Chen et al., 2002]. For
cryogenic DRIE in Figure 2.2(b), a continuous process of etching and passivation with
SF¢ and O,, respectively, are used to produce an anisotropic etch overall with
characteristic smooth sidewalls [Chekurov et al., 2007]. The cryogenic DRIE process is
performed at low temperatures between —130 °C and —90 °C.

Three sample batches were fabricated in this project: Two Bosch DRIE processes,
with significantly different scallop pitch sizes, and a single cryogenic DRIE process were
used to fabricate the first two and third batch of samples, respectively. Each process was
optimized for the second generation sample mask layout in order to produce vertical
sidewalls, most importantly in the web region, to produce a constant cross-section tensile
test region. The details of the Bosch DRIE processes applied and modified, as well as the

development of the applied cryogenic DRIE process, are discussed in a later section.

2.3 Fabrication

Each fabrication run was performed on a single wafer and each sample batch was created
with a different etching recipe. The sample layout on each wafer is illustrated in Figure
2.3. This layout allowed for hundreds of Durelli and arch thetas and C-rings to be
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Figure 2.2: Deep Reactive lon Etching (DRIE) processes. (a) The Bosch DRIE process

produces high-aspect-ratio structures using a repeating sequence of etching and
passivation that produce characteristic etch steps known as scallops. (b) The cryogenic
DRIE process produces high-aspect-ratio structures using a continuous process of etching

and sidewall passivation that can produce smooth surfaces.
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Figure 2.3: The wafer layout for each set of second generation samples. Each batch is a

single etched wafer.
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fabricated in a single run. The second generation fabrication sequence has been optimized
from problems discovered in the first generation of theta specimens and covered in Ch. 1.
The fabrication sequence flow chart and schematic diagram for the second generation of
test sample sets is shown in Figure 2.4 and Figure 2.5, respectively. The three batches of
samples, denoted as batch A, B, and C, were fabricated using the fabrication sequence in
Figure 2.4 and Figure 2.5 using a single wafer for each sample batch. All three wafers
were 100 mm diameter (001) silicon-on-insulator (SOI) wafers, consisting of three layers:
Device, insulator, and handle wafer layers. The single-crystal silicon (Si) device layers
were (25.0 £ 0.5) um thick for the batch A and B wafers, and (25 £ 1) um for the batch C
wafer. The SiO, isolation layers were (2.0 £ 0.1) um thick for the batch A and C wafers,
and (1.00 = 0.05) um for the batch B wafers. The Si handle wafer layers were (400 £ 10)
pum, (400 = 5) um, and (480 £ 10) um thick, for the batch A, B, and C wafers,
respectively. The uncertainty values represent variations across the wafer as specified by
the manufacturer (Ultrasil Corporation, Hayward, CA). The SOI structure allowed for
better control of sample device thickness and more robust strips for manipulation and
mounting of samples for testing than with the first generation design [Quinn ef al., 2005;
Quinn, 2009]. The Si device layer and Si handle wafer layer were patterned by front- and
back-side photolithographic masks and etched using DRIE to define the sample and strip
structures. After Si etching, the SiO, layer was removed with a buffered-oxide etch to
create the freestanding samples. The subsections below detail the steps shown in Figure
2.4 and Figure 2.5 for the second generation sample fabrication process. Details of the
development of particularly important and sensitive steps will be discussed in a later

section.
24



1 9

| Incoming Wafer —{ Spin Photoresist
prebake 115°C 90 s
2 L lD L
| RCA Clean | Expose Back
spin rinse dry wait > 2 hours
3 : L 11 L
| Prime Wafer | Develop Back
4 : k0 : 12 k0
| Spin Photoresist | Spray Front
prebake 115°C 60 s
5 L 13 L
| Expose Front | DRIE Back
wait > 5 min
E W 14 W ;
| Develop Front | Remove Photoresist

overnight vacuum
|, hard bake 60 °C

7 15 .
| DRIE Front | BOE
dump rinse
. i e | spin rinse dry

| Prime Back | Final Wafer

Figure 2.4: Fabrication sequence flow chart. The wafers were first cleaned, and then the
front side was processed. Once the front side was done the back side was processed. To

complete the fabrication the exposed insulator layer was removed.
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Figure 2.5: The fabrication sequence for the second generation test samples. The state of

the wafer at each step is shown and this corresponds with each step in the flow chart in

Figure 2.4.
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2.3.1 Step 1: Incoming Wafer
As received from the manufacturer, the state of the surfaces of each SOI wafer
was unknown. The surface was likely contaminated by some amount of organic and

inorganic materials indicated in Figure 2.5 by the O and X symbols, respectively.

2.3.2  Step 2: RCA Clean

Each SOI wafer was cleaned with a RCA clean (named after the developer, Radio
Corporation of America). This consisted of two standard clean (SC) recipes. SCI is used
to remove organics and debris while SC2 is used to remove the remaining metal
contaminants left by SCI1 from the surface. In SC1 the wafer is placed in a 5:1:1 mixture
of deionized (DI) water, ammonium hydroxide, and hydrogen peroxide, respectively, at
80 °C for 10 minutes. After SC1 the wafer is placed into a dump rinse process that soaks
the wafer in DI water for 60 s then replaces with new DI water four times. The wafer is
then placed in a 2 % hydrofluoric acid solution for 20 s to remove oxidized hydrocarbons.
The wafer is then placed back into the dump rinse process. In SC2 the wafer is placed in
a 5:1:1 mixture of DI water, hydrochloric acid, and hydrogen peroxide, respectively, at
80 °C for 10 minutes. The wafer is then placed into a final dump rinse process and then
placed in a spin rinse dryer tool (SRD-880S31EML, Semitool, Kalispell, MT) to dry the
wafer without any residue. [All chemicals are from the same manufacturer (J.T. Baker,

Mallinkrodt Baker, Inc., Phillipsburg, NJ).]

2.3.3  Step 3: Prime Wafer
Once the wafer was cleaned, a hexamethyldisilazene (HMDS) (J.T. Baker,

Mallinkrodt Baker, Inc., Phillipsburg, NJ) monolayer was applied to the wafer in order to
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promote adhesion between the wafer surface and photoresist. The development of this

sensitive step will be discussed further in a later section.

2.3.4 Step 4: Spin Photoresist

A layer of positive photoresist (Microposit S1813 Positive Photoresist, Rohm and
Haas Electronic Materials LLC, Marlborough, MA) was spun onto the wafer using a
spinner and hot-plate tool (Model 200CB, Brewer Science, Rolla, MO). The photoresist
is stored under refrigeration; prior to spinning, the photoresist is set out overnight to
warm to room temperature. The photoresist was portioned onto the wafer and the wafer
spun at 3000 rpm for 60 s to obtain photoresist thickness uniformity. The wafer was then
prebaked at 115 °C for 60 s to bake off solvent in the photoresist [Liu ef al., 2011]. The
photoresist layer was 1.3 um, 1.4 um and 1.2 pm thick for the first, second, and third
batch wafers, respectively. [Step height measurements here, and throughout, were
performed with a profilometer (DekTak 6m, Digital Instruments/Veeco Metrology

Group, Plainview, NY); the profilometer was calibrated against a thickness standard.]

2.3.5 Step 5: Expose Front

The photoresist was then exposed at 130 mJ cm™ using a front side contact
aligner (MAS8, Suss MicroTec, Munchen, Germany) with a 950 W Hg lamp. The sample
patterns were transferred using a patterned chromium mask with soda-lime glass
substrate; in the first batch the mask was made off-site (Compugraphics Photomask
Solutions, Los Gatos, CA), while subsequent batches used a front side mask made on-site

that will be described in a later section. The photolithographic mask designs were
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transferred to the SOI wafers such that the web segment of the test samples was oriented

along a <110> direction with less than 0.5° misalignment [Gaither ef al., 2010].

2.3.6  Step 6: Develop Front

A five-minute wait (minimum) was observed between exposure and development
to ensure nitrogen outgassing of the photoresist [Liu et al., 2011]. The front side was then
developed to remove photoresist from the exposed areas using tetramethyl ammonium
hydroxide (TMAH)-based developer (Microposit MF-319 Developer, Rohm and Hass
Electronic Materials LLC, Marlborough, MA). Development took less than one minute.
After development the wafer was rinsed for one minute in a deionized water bath and
then placed in a spin-rinse-dryer to remove all developer and avoid residue on the
exposed silicon surface. The wafer was then loaded into a vacuum oven (VWR 1410,
Sheldon Manufacturing, Inc., Cornelius, OR) overnight at approximately 60 °C and a
(vacuum-gauge) pressure of 98 kPa for an overnight vacuum ‘hard’ bake. The hard bake
improves the chemical and physical stability of the photoresist [Liu ef al., 2011], which

increases the substrate-to-photoresist etching selectivity.

2.3.7 Step 7: DRIE Front

The resulting photoresist sidewall profile from the exposure process was not
perfectly vertical; the profile typically contained a footing near the substrate that was
easily removed with a photoresist descum process. Prior to etching the front silicon
device layer, a one to two minute photoresist descum step was performed to improve the
sidewall profile of the photoresist as shown in Figure 2.6. The sidewall footing (typical of

the lithographic process, but not present in the figure) and sidewall curvature in
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Figure 2.6: (a) Example of the sidewall profile of the photoresist in the batch A
processing development prior to the descum process. The photoresist profile had a
curvature and typically a footing near the wafer surface (not shown); the location of the
typical footing is indicated by the arrow. (b) Another example of the sidewall profile after

a one minute descum process. The profile curvature and footing have been removed.



Figure 2.6(a) is removed with the descum in Figure 2.6(b). (The two examples in Figure
2.6 are from two different process run resulting in slightly different sidewall angles but
the two examples demonstrate the effect of the descum process on the sidewall profile.)
This was accomplished using a reactive ion etcher (790 Series, Unaxis, St. Petersburg,
FL) and the descum process was run at 80 Pa, 15 standard cubic centimeters per minute
(sccm) O, and 150 W with a nominal photoresist etch rate of 75 nm min~'. The 25 pm Si
device layer was then etched using deep reactive ion etching (DRIE) techniques to create
the test specimens with vertical sidewalls. As stated, three different processes were used,
one for each of the batches of second generation samples. These important processes are

discussed further in a later section.

2.3.8 Step 8: Prime Back

Once the front side had been etched and the sample structures created, the
backside of the wafer was processed, starting with the priming of the wafer backside
surface with HMDS in the same manner as Step 3. Details of this step are discussed in a

later section.

2.3.9 Step 9: Spin Photoresist

A thicker layer of positive photoresist (Megaposit SPR 220-7.0 Positive
Photoresist, Rohm and Haas Electronic Materials LLC, Marlborough, MA) was spun
onto the wafer backside using the same spinner and hot-plate tool as Step 4. Again, the
photoresist was set out overnight to warm to room temperature. The photoresist was
portioned onto the wafer and the wafer spun at 1600 rpm for 60 s to obtain photoresist

thickness uniformity. The wafer was then prebaked at 115 °C for 90 s to bake off solvent
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in the photoresist. The photoresist layer was nominally 8.5 um, 9.5 um, and 8.8 um thick

for the first, second, and third batches, respectively.

2.3.10 Step 10: Expose Back

The photoresist was then exposed at 470 mJ cm > using a back side contact
aligner (BA6, Karl Suss, Munchen, Germany) with a 1000 W Hg lamp. The sample
patterns were transferred using a patterned chromium mask with soda-lime glass
substrate (Compugraphics Photomask Solutions, Los Gatos, CA). The back side contact
aligner was used to match up the front and back side patterns on the wafer using
corresponding alignment marks that were included on each mask. Particular care was

required to ensure the patterns were matched on each wafer.

2.3.11 Step 11: Develop Back

A two hour wait (minimum) was observed between exposure and development.
The back side was then developed to remove photoresist from the exposed areas using
another tetramethyl ammonium hydroxide (TMAH) based developer (Megaposit MF-
26A Developer, Rohm and Hass Electronic Materials LLC, Marlborough, MA).
Development took approximately two minutes. After development the wafer was rinsed
and spin-rinse dried as described in Step 6. For the first batch the wafer was then placed
in a vacuum oven for an overnight vacuum hard bake as described in Step 6. For the

second and third batch the vacuum hard back was performed after Step 12.
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2.3.12 Step 12: Spray Front
This step was added after the first batch of samples due to the need to protect the
front side from an unintended etch process during the back side etch (Step 13). The

development and details of this step are discussed in a later section.

2.3.13 Step 13: DRIE Back

Prior to etching the back side handle wafer, a 1 min to 2 min photoresist descum
step was performed. The back side handle wafer was then etched using the same Bosch
DRIE recipe for all three batch wafers. The recipe (developed with a colleague) consisted
of a three step cycle: A deposition step that masks all exposed wafer surfaces, a short etch
step to remove the deposited mask from the horizontal surfaces, and a longer etch step
that isotropically etches the exposed silicon. This final step creates the scallops
characteristic of the Bosch DRIE process. The recipe was operated at a chamber pressure
of 3.1 Pa, and inductively-coupled plasma (ICP) power of 900 W. Back-side cooling was
applied with helium at 6.7 kPa to help control wafer temperature during processing. The
deposition step was 3 s using 60 sccm C4Fg and 40 sccm Ar. The first etch step was 4 s
using 60 sccm SF, 40 sccm Ar, and a bias power of 12 W. The second etch step was 7 s
using 60 sccm SFg, 40 sccm Ar, and a bias power of 12 W. This three step process was
one Bosch DRIE loop and the etch rate for this process was approximately 1 pm loop™.
The handle wafer thickness was 400 um for the first and second batch wafers and 480 um
for the third batch wafer. In order to complete the back side etch and fully define the
structures at the end of the etch, a 5 % to 10 % increase in the number of loops was

needed.
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2.3.14 Stepl4: Remove Photoresist

After the backside was etched all resists were removed using a series of steps.
Two different successful approaches were used to accomplish this step during fabrication
of the three wafers. In the first, a 2 min descum in the reactive ion etcher removes the
tougher outer layer of photoresist. This is follow by a 30 min bath of 65 °C photoresist
stripper (Microposit Remover 1165, Rohm and Hass Electronic Materials LLC,
Marlborough, MA). The clean process was completed with a 30 min etch in a microwave
asher (Model 300, PVA TePla, Corona, CA) at 500 W, 60 Pa, and 600 sccm O,. In the
second, the wafer was placed into a bath of Remover PG (MicroChem, Newton, MA) at
65 °C for 10 minutes, and then placed into a dump rinse cycle. After the dump rinse the
wafer was placed into a room temperature bath of Nanostrip (OM Group, Cyantek,
Fremont, CA) for up to 2 min, and then placed back into a dump rinse cycle followed by
the spin-rinse-dryer. The Remover PG removes the majority of the photoresist, while the

Nanostrip removes the last layer of photoresist that tend to be more difficult to remove.

2.3.15 Step 15: Buffered-Oxide Etch (BOE)

Once the resist materials were removed from the wafer, the oxide layer (2 um for
the first and third batch, 1 um for the second batch) was etched using a 6:1 buffered-
oxide etch (BOE) mixture (J.T. Baker, Mallinkrodt Baker, Inc., Phillipsburg, NIJ)
containing hydrofluoric acid and ammonium fluoride. This released the specimens from
surrounding material (except where they were attached to the test strip); island structures

inside and around the samples were released and remained in the BOE bath.
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2.3.16 Step 16: Final Wafer

After all processing has been completed the samples and test strips are ready for
removal from the wafer. Prior to removal, optical images were captured of each sample
(see Ch. 3). Test strips were removed with a diamond scribe on the narrowed outer

regions of the strips.

2.4 Defining Structures

This section covers details regarding the fabrication process, covering steps 3 to 6 and 8
to 11 in Figure 2.5, in particular the modifications made to Steps 3 and 8. For the batch A
wafer the front and back sides were primed by first performing a 1-min dehydration bake
at 200 °C to remove moisture from the surface. Directly after the dehydration bake
HMDS was spun onto the wafer at 3000 rpm for 30 s. This procedure appeared to work
well with the batch A wafer; a monolayer of HMDS was applied without producing
problems with the subsequent lithographic processes as shown in Figure 2.6(a). However,
while working on the process development for later batch wafers, a significant problem
arose. Using this HMDS priming process, the photoresist sidewall angle and develop
times were not consistent with identical runs of the subsequent steps (i.e., spin, expose,
and develop photoresist) to the HMDS priming.

The photoresist sidewall profiles can be seen in Figure 2.7. Photoresist
development after exposure, using the front and back side processes, are supposed to take
less than one and two minutes, respectively, based on the photoresist and exposures used
with reference to manufacturer product specifications; this was not typically the case. The

develop times took upwards of 5 minutes and 15 minutes for the front- and back-side
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(a) (b)

(c) (d)
Figure 2.7: The effect of the HMDS priming method on photolithographic sidewall

angles. (a) The poor sidewall angle due to the HMDS liquid spin-prime process. (b) The
process in (a) modified with a g-line UV light filter resulting in a better profile. (c) The
vapor priming process effect on the original (broadband UV) exposure resulting in a
profile consistent with the original photoresist profile in Figure 2.6(a). (d) The vapor
priming process effect on the g-line exposure used in (b) resulting in an essentially

vertical sidewall.
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processes, respectively. Furthermore, the sidewall angles, for the same processes, which
had been shown to produce nearly vertical sidewalls as desired in earlier attempts [Figure
2.6(a)] such as the batch A wafer, would get progressively worse, as in Figure 2.7(a),
with the longer develop times required in a pr